Sample records for initial bacterial colonization

  1. Competition for space during bacterial colonization of a surface.

    PubMed

    Lloyd, Diarmuid P; Allen, Rosalind J

    2015-09-06

    Competition for space is ubiquitous in the ecology of both microorganisms and macro-organisms. We introduce a bacterial model system in which the factors influencing competition for space during colonization of an initially empty habitat can be tracked directly. Using fluorescence microscopy, we follow the fate of individual Escherichia coli bacterial cell lineages as they undergo expansion competition (the race to be the first to colonize a previously empty territory), and as they later compete at boundaries between clonal territories. Our experiments are complemented by computer simulations of a lattice-based model. We find that both expansion competition, manifested as differences in individual cell lag times, and boundary competition, manifested as effects of neighbour cell geometry, can play a role in colonization success, particularly when lineages expand exponentially. This work provides a baseline for investigating how ecological interactions affect colonization of space by bacterial populations, and highlights the potential of bacterial model systems for the testing and development of ecological theory. © 2015 The Authors.

  2. Competition for space during bacterial colonization of a surface

    PubMed Central

    Lloyd, Diarmuid P.; Allen, Rosalind J.

    2015-01-01

    Competition for space is ubiquitous in the ecology of both microorganisms and macro-organisms. We introduce a bacterial model system in which the factors influencing competition for space during colonization of an initially empty habitat can be tracked directly. Using fluorescence microscopy, we follow the fate of individual Escherichia coli bacterial cell lineages as they undergo expansion competition (the race to be the first to colonize a previously empty territory), and as they later compete at boundaries between clonal territories. Our experiments are complemented by computer simulations of a lattice-based model. We find that both expansion competition, manifested as differences in individual cell lag times, and boundary competition, manifested as effects of neighbour cell geometry, can play a role in colonization success, particularly when lineages expand exponentially. This work provides a baseline for investigating how ecological interactions affect colonization of space by bacterial populations, and highlights the potential of bacterial model systems for the testing and development of ecological theory. PMID:26333814

  3. Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes

    PubMed Central

    Chaston, John M.; Murfin, Kristen E.; Heath-Heckman, Elizabeth A.; Goodrich-Blair, Heidi

    2013-01-01

    Summary The specificity of a horizontally transmitted microbial symbiosis is often defined by molecular communication between host and microbe during initial engagement, which can occur in discrete stages. In the symbiosis between Steinernema nematodes and Xenorhabdus bacteria, previous investigations focused on bacterial colonization of the intestinal lumen (receptacle) of the nematode infective juvenile (IJ), as this was the only known persistent, intimate, and species-specific contact between the two. Here we show that bacteria colonize the anterior intestinal cells of other nematode developmental stages in a species-specific manner. Also, we describe three processes that only occur in juveniles that are destined to become IJs. First, a few bacterial cells colonize the nematode pharyngeal-intestinal valve (PIV) anterior to the intestinal epithelium. Second, the nematode intestine constricts while bacteria initially remain in the PIV. Third, anterior intestinal constriction relaxes and colonizing bacteria occupy the receptacle. At each stage, colonization requires X. nematophila symbiosis region 1 (SR1) genes and is species-specific: X. szentirmaii, which naturally lacks SR1, does not colonize unless SR1 is ectopically expressed. These findings reveal new aspects of Xenorhabdus bacteria interactions with and transmission by their Steinernema nematode hosts, and demonstrate that bacterial SR1 genes aid in colonizing nematode epithelial surfaces. PMID:23480552

  4. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates

    PubMed Central

    Olm, Matthew R.; Brown, Christopher T.; Brooks, Brandon; Firek, Brian; Baker, Robyn; Burstein, David; Soenjoyo, Karina; Thomas, Brian C.; Morowitz, Michael; Banfield, Jillian F.

    2017-01-01

    The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. PMID:28073918

  5. The social structure of microbial community involved in colonization resistance.

    PubMed

    He, Xuesong; McLean, Jeffrey S; Guo, Lihong; Lux, Renate; Shi, Wenyuan

    2014-03-01

    It is well established that host-associated microbial communities can interfere with the colonization and establishment of microbes of foreign origins, a phenomenon often referred to as bacterial interference or colonization resistance. However, due to the complexity of the indigenous microbiota, it has been extremely difficult to elucidate the community colonization resistance mechanisms and identify the bacterial species involved. In a recent study, we have established an in vitro mice oral microbial community (O-mix) and demonstrated its colonization resistance against an Escherichia coli strain of mice gut origin. In this study, we further analyzed the community structure of the O-mix by using a dilution/regrowth approach and identified the bacterial species involved in colonization resistance against E. coli. Our results revealed that, within the O-mix there were three different types of bacterial species forming unique social structure. They act as 'Sensor', 'Mediator' and 'Killer', respectively, and have coordinated roles in initiating the antagonistic action and preventing the integration of E. coli. The functional role of each identified bacterial species was further confirmed by E. coli-specific responsiveness of the synthetic communities composed of different combination of the identified players. The study reveals for the first time the sophisticated structural and functional organization of a colonization resistance pathway within a microbial community. Furthermore, our results emphasize the importance of 'Facilitation' or positive interactions in the development of community-level functions, such as colonization resistance.

  6. Extracellular Polymeric Substance Production and Aggregated Bacteria Colonization Influence the Competition of Microbes in Biofilms.

    PubMed

    Jayathilake, Pahala G; Jana, Saikat; Rushton, Steve; Swailes, David; Bridgens, Ben; Curtis, Tom; Chen, Jinju

    2017-01-01

    The production of extracellular polymeric substance (EPS) is important for the survival of biofilms. However, EPS production is costly for bacteria and the bacterial strains that produce EPS (EPS+) grow in the same environment as non-producers (EPS-) leading to competition between these strains for nutrients and space. The outcome of this competition is likely to be dependent on factors such as initial attachment, EPS production rate, ambient nutrient levels and quorum sensing. We use an Individual-based Model (IbM) to study the competition between EPS+ and EPS- strains by varying the nature of initial colonizers which can either be in the form of single cells or multicellular aggregates. The microbes with EPS+ characteristics obtain a competitive advantage if they initially colonize the surface as smaller aggregates and are widely spread-out between the cells of EPS-, when both are deposited on the substratum. Furthermore, the results show that quorum sensing-regulated EPS production may significantly reduce the fitness of EPS producers when they initially deposit as aggregates. The results provide insights into how the distribution of bacterial aggregates during initial colonization could be a deciding factor in the competition among different strains in biofilms.

  7. Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury. Incidence, risk factors, and association with ventilator-associated pneumonia.

    PubMed

    Ewig, S; Torres, A; El-Ebiary, M; Fábregas, N; Hernández, C; González, J; Nicolás, J M; Soto, L

    1999-01-01

    We prospectively evaluated the relation of upper airway, lower airway, and gastric colonization patterns with the development of pneumonia and its etiology in 48 patients with surgical (n = 25) and medical (n = 23) head injury. Initial colonization was assessed by cultures of nasal and pharyngeal swabs, tracheobronchial aspirates, gastric juice, and bronchoscopically retrieved protected specimen brush. Follow-up colonization was determined until the end points extubation, suspected ventilator-associated pneumonia (VAP), or death. The initial colonization rate at any site at ICU admission was 39/47 (83%). It mainly accounted for Group I pathogens (Streptococcus pneumoniae, Staphylococcus aureus, Hemophilus influenzae) of the upper and lower airways. At follow-up, colonization rates with Group II pathogens (Gram-negative enteric bacilli and Pseudomonas spp.) increased significantly. The high initial bacterial load with Group I pathogens of the upper airways and trachea decreased during Days 2 to 4, whereas that of Group II pathogens increased. Upper airway colonization was an independent predictor of follow-up tracheobronchial colonization (odds ratio [OR], 9.9; 95% confidence interval [CI], 1.8 to 56.3 for initial colonization with Group I pathogens; OR, 23.9; 95% CI, 3.8 to 153.3 for follow-up colonization with Group II pathogens). Previous (short-term) antibiotics had a protective effect against colonization with Group I pathogens of the lower respiratory tract (OR, 0.2; 95% CI, 0.05 to 0.86), but they were a risk factor for colonization with Group II pathogens (OR, 6.1; 95% CI, 1.3 to 29). Initial tracheobronchial colonization with Group I pathogens was associated with a higher probability of early onset pneumonia (OR, 4. 1; 95% CI, 0.7 to 23.3), whereas prolonged antibiotic treatment (> 24 h) independently predicted late-onset pneumonia (OR, 9.2; 95% CI, 1.7 to 51.3). We conclude that patients with head injury are colonized in the airways mainly by Group I pathogens early in the evolution of illness. The upper airways represent the main reservoir for subsequent lower airway colonization with Group I pathogens. Previous (short-term) antibiotic treatment is protective against initial tracheobronchial colonization with Group I pathogens, but it represents a risk factor for subsequent lower airway colonization by Group II pathogens.

  8. Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota.

    PubMed

    Sánchez, M C; Llama-Palacios, A; Blanc, V; León, R; Herrera, D; Sanz, M

    2011-04-01

    There are few in vitro models available in the scientific literature for study of the structure, formation and development of the subgingival biofilm. The purpose of this study was to develop and validate an in vitro biofilm model, using representative selected bacteria from the subgingival microbiota. Six standard reference strains were used to develop biofilms over sterile ceramic calcium hydroxyapatite discs coated with saliva within the wells of presterilized polystyrene tissue culture plates. The selected species represent initial (Streptococcus oralis and Actinomyces naeslundii), early (Veillonella parvula), secondary (Fusobacterium nucleatum) and late colonizers (Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans). The structure of the biofilm obtained was studied using a vital fluorescence technique in conjunction with confocal laser scanning microscopy. The biofilm bacterial kinetics were studied by terminal restriction fragment length polymorphism analysis. After 12 h, initial and early colonizers were the first microorganisms detected adhering to the calcium hydroxyapatite discs. The intermediate colonizer F. nucleatum was not detected in the model until 24 h of incubation. Late colonizers A. actinomycetemcomitans and P. gingivalis could be measured inside the biofilm after 48 h. The biofilm reached its steady state between 72 and 96 h after inoculation, with bacterial vitality increasing from the hydroxyapatite surface to the central part of the biofilm. An in vitro biofilm model was developed and validated, demonstrating a pattern of bacterial colonization and maturation similar to the in vivo development of the subgingival biofilm. © 2011 John Wiley & Sons A/S.

  9. Bacterial adherence in the pathogenesis of urinary tract infection: a review.

    PubMed

    Reid, G; Sobel, J D

    1987-01-01

    Bacterial adherence to the uroepithelium is recognized as an important mechanism in the initiation and pathogenesis of urinary tract infections (UTI). The uropathogens originate predominantly in the intestinal tract and initially colonize the periurethral region and ascend into the bladder, resulting in symptomatic or asymptomatic bacteriuria. Thereafter, depending on host factors and bacterial virulence factors, the organisms may further ascend and give rise to pyelonephritis. Uropathogens are selected by the presence of virulence characteristics that enable them to resist the normally efficient host defense mechanisms. Considerable progress has been made in identifying bacterial adhesins and in demonstrating bacterial receptor sites on uroepithelial surfaces. Recent studies have identified natural anti-adherence mechanisms in humans as well as possible increased susceptibility to UTI when these mechanisms are defective and when receptor density on uroepithelial cells is altered. Knowledge of bacterial adherence mechanisms may permit alternative methods of prevention and management of urinary infection, including the use of subinhibitory concentrations of antibiotics, vaccine development, nonimmune inhibition of bacterial adhesins and receptor sites, and the use of autochthonous flora, such as lactobacilli, to exclude uropathogens from colonizing the urinary tract.

  10. The quest for a unified view of bacterial land colonization

    PubMed Central

    Wu, Hao; Fang, Yongjun; Yu, Jun; Zhang, Zhang

    2014-01-01

    Exploring molecular mechanisms underlying bacterial water-to-land transition represents a critical start toward a better understanding of the functioning and stability of the terrestrial ecosystems. Here, we perform comprehensive analyses based on a large variety of bacteria by integrating taxonomic, phylogenetic and metagenomic data, in the quest for a unified view that elucidates genomic, evolutionary and ecological dynamics of the marine progenitors in adapting to nonaquatic environments. We hypothesize that bacterial land colonization is dominated by a single-gene sweep, that is, the emergence of dnaE2 derived from an early duplication event of the primordial dnaE, followed by a series of niche-specific genomic adaptations, including GC content increase, intensive horizontal gene transfer and constant genome expansion. In addition, early bacterial radiation may be stimulated by an explosion of land-borne hosts (for example, plants and animals) after initial land colonization events. PMID:24451209

  11. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria.

    PubMed

    DiSalvo, Susanne; Haselkorn, Tamara S; Bashir, Usman; Jimenez, Daniela; Brock, Debra A; Queller, David C; Strassmann, Joan E

    2015-09-08

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed "farmers") stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon.

  12. Limited Colonization Undermined by Inadequate Early Immune Responses Defines the Dynamics of Decidual Listeriosis.

    PubMed

    Rizzuto, Gabrielle; Tagliani, Elisa; Manandhar, Priyanka; Erlebacher, Adrian; Bakardjiev, Anna I

    2017-08-01

    The bacterial pathogen Listeria monocytogenes causes foodborne systemic disease in pregnant women, which can lead to preterm labor, stillbirth, or severe neonatal disease. Colonization of the maternal decidua appears to be an initial step in the maternal component of the disease as well as bacterial transmission to the placenta and fetus. Host-pathogen interactions in the decidua during this early stage of infection remain poorly understood. Here, we assessed the dynamics of L. monocytogenes infection in primary human decidual organ cultures and in the murine decidua in vivo A high inoculum was necessary to infect both human and mouse deciduas, and the data support the existence of a barrier to initial colonization of the murine decidua. If successful, however, colonization in both species was followed by significant bacterial expansion associated with an inability of the decidua to mount appropriate innate cellular immune responses. The innate immune deficits included the failure of bacterial foci to attract macrophages and NK cells, cell types known to be important for early defenses against L. monocytogenes in the spleen, as well as a decrease in the tissue density of inflammatory Ly6C hi monocytes in vivo These results suggest that the infectivity of the decidua is not the result of an enhanced recruitment of L. monocytogenes to the gestational uterus but rather is due to compromised local innate cellular immune responses. Copyright © 2017 American Society for Microbiology.

  13. Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction.

    PubMed

    Araújo, Welington Luiz; Santos, Daiene Souza; Dini-Andreote, Francisco; Salgueiro-Londoño, Jennifer Katherine; Camargo-Neves, Aline Aparecida; Andreote, Fernando Dini; Dourado, Manuella Nóbrega

    2015-10-01

    The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in bacterial colonization.

  14. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

    PubMed Central

    Chahales, Peter; Thanassi, David G.

    2015-01-01

    Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities such as biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hairlike fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections. PMID:26542038

  15. Burkholderia bacteria infectiously induce the proto-farming symbiosis of Dictyostelium amoebae and food bacteria

    PubMed Central

    DiSalvo, Susanne; Haselkorn, Tamara S.; Bashir, Usman; Jimenez, Daniela; Brock, Debra A.; Queller, David C.; Strassmann, Joan E.

    2015-01-01

    Symbiotic associations can allow an organism to acquire novel traits by accessing the genetic repertoire of its partner. In the Dictyostelium discoideum farming symbiosis, certain amoebas (termed “farmers”) stably associate with bacterial partners. Farmers can suffer a reproductive cost but also gain beneficial capabilities, such as carriage of bacterial food (proto-farming) and defense against competitors. Farming status previously has been attributed to amoeba genotype, but the role of bacterial partners in its induction has not been examined. Here, we explore the role of bacterial associates in the initiation, maintenance, and phenotypic effects of the farming symbiosis. We demonstrate that two clades of farmer-associated Burkholderia isolates colonize D. discoideum nonfarmers and infectiously endow them with farmer-like characteristics, indicating that Burkholderia symbionts are a major driver of the farming phenomenon. Under food-rich conditions, Burkholderia-colonized amoebas produce fewer spores than uncolonized counterparts, with the severity of this reduction being dependent on the Burkholderia colonizer. However, the induction of food carriage by Burkholderia colonization may be considered a conditionally adaptive trait because it can confer an advantage to the amoeba host when grown in food-limiting conditions. We observed Burkholderia inside and outside colonized D. discoideum spores after fruiting body formation; this observation, together with the ability of Burkholderia to colonize new amoebas, suggests a mixed mode of symbiont transmission. These results change our understanding of the D. discoideum farming symbiosis by establishing that the bacterial partner, Burkholderia, is an important causative agent of the farming phenomenon. PMID:26305954

  16. Ingested Shiga Toxin 2 (Stx2) Causes Histopathological Changes in Kidney, Spleen and Thymus Tissues and Mortality in Mice

    USDA-ARS?s Scientific Manuscript database

    The Shiga toxin (Stxs) producing bacterial strain, Escherichia coli O157:H7, colonizes the distal small intestine and the colon, initiating a very broad spectrum of illnesses such as hemolytic-uremic syndrome (HUS) characterized by microangiopathic hemolytic anemia, thrombocytopenia and acute renal ...

  17. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.

    PubMed

    Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien

    2013-09-01

    To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.

  18. Impact of humic acids on the colonic microbiome in healthy volunteers.

    PubMed

    Swidsinski, Alexander; Dörffel, Yvonne; Loening-Baucke, Vera; Gille, Christoph; Reißhauer, Anne; Göktas, Onder; Krüger, Monika; Neuhaus, Jürgen; Schrödl, Wieland

    2017-02-07

    To test the effects of humic acids on innate microbial communities of the colon. We followed the effects of oral supplementation with humic acids (Activomin ® ) on concentrations and composition of colonic microbiome in 14 healthy volunteers for 45 d. 3 × 800 mg Activomin ® were taken orally for 10 d followed by 3 × 400 mg for 35 d. Colonic microbiota were investigated using multicolor fluorescence in situ hybridization (FISH) of Carnoy fixated and paraffin embedded stool cylinders. Two stool samples were collected a week prior to therapy and one stool sample on days 10, 31 and 45. Forty-one FISH probes representing different bacterial groups were used. The sum concentration of colonic microbiota increased from 20% at day 10 to 30% by day 31 and remained stable until day 45 (32%) of humic acid supplementation ( P < 0.001). The increase in the concentrations in each person was due to growth of preexisting groups. The individual microbial profile of the patients remained unchanged. Similarly, the bacterial diversity remained stable. Concentrations of 24 of the 35 substantial groups increased from 20% to 96%. Two bacterial groups detected with Bac303 ( Bacteroides ) and Myc657 (mycolic acid-containing Actinomycetes ) FISH probes decreased ( P > 0.05). The others remained unaffected. Bacterial groups with initially marginal concentrations (< 0.1 × 10 9 /mL) demonstrated no response to humic acids. The concentrations of pioneer groups of Bifidobacteriaceae , Enterobacteriaceae and Clostridium difficile increased but the observed differences were statistically not significant. Humic acids have a profound effect on healthy colonic microbiome and may be potentially interesting substances for the development of drugs that control the innate colonic microbiome.

  19. Impact of humic acids on the colonic microbiome in healthy volunteers

    PubMed Central

    Swidsinski, Alexander; Dörffel, Yvonne; Loening-Baucke, Vera; Gille, Christoph; Reißhauer, Anne; Göktas, Onder; Krüger, Monika; Neuhaus, Jürgen; Schrödl, Wieland

    2017-01-01

    AIM To test the effects of humic acids on innate microbial communities of the colon. METHODS We followed the effects of oral supplementation with humic acids (Activomin®) on concentrations and composition of colonic microbiome in 14 healthy volunteers for 45 d. 3 × 800 mg Activomin® were taken orally for 10 d followed by 3 × 400 mg for 35 d. Colonic microbiota were investigated using multicolor fluorescence in situ hybridization (FISH) of Carnoy fixated and paraffin embedded stool cylinders. Two stool samples were collected a week prior to therapy and one stool sample on days 10, 31 and 45. Forty-one FISH probes representing different bacterial groups were used. RESULTS The sum concentration of colonic microbiota increased from 20% at day 10 to 30% by day 31 and remained stable until day 45 (32%) of humic acid supplementation (P < 0.001). The increase in the concentrations in each person was due to growth of preexisting groups. The individual microbial profile of the patients remained unchanged. Similarly, the bacterial diversity remained stable. Concentrations of 24 of the 35 substantial groups increased from 20% to 96%. Two bacterial groups detected with Bac303 (Bacteroides) and Myc657 (mycolic acid-containing Actinomycetes) FISH probes decreased (P > 0.05). The others remained unaffected. Bacterial groups with initially marginal concentrations (< 0.1 × 109/mL) demonstrated no response to humic acids. The concentrations of pioneer groups of Bifidobacteriaceae, Enterobacteriaceae and Clostridium difficile increased but the observed differences were statistically not significant. CONCLUSION Humic acids have a profound effect on healthy colonic microbiome and may be potentially interesting substances for the development of drugs that control the innate colonic microbiome. PMID:28223733

  20. Symbiosis initiation in the bacterially luminous sea urchin cardinalfish Siphamia versicolor.

    PubMed

    Dunlap, P V; Gould, A L; Wittenrich, M L; Nakamura, M

    2012-09-01

    To determine how each new generation of the sea urchin cardinalfish Siphamia versicolor acquires the symbiotic luminous bacterium Photobacterium mandapamensis, and when in its development the S. versicolor initiates the symbiosis, procedures were established for rearing S. versicolor larvae in an aposymbiotic state. Under the conditions provided, larvae survived and developed for 28 days after their release from the mouths of males. Notochord flexion began at 8 days post release (dpr). By 28 dpr, squamation was evident and the caudal complex was complete. The light organ remained free of bacteria but increased in size and complexity during development of the larvae. Thus, aposymbiotic larvae of the fish can survive and develop for extended periods, major components of the luminescence system develop in the absence of the bacteria and the bacteria are not acquired directly from a parent, via the egg or during mouth brooding. Presentation of the symbiotic bacteria to aposymbiotic larvae at 8-10 dpr, but not earlier, led to initiation of the symbiosis. Upon colonization of the light organ, the bacterial population increased rapidly and cells forming the light-organ chambers exhibited a differentiated appearance. Therefore, the light organ apparently first becomes receptive to colonization after 1 week post-release development, the symbiosis is initiated by bacteria acquired from the environment and bacterial colonization induces morphological changes in the nascent light organ. The abilities to culture larvae of S. versicolor for extended periods and to initiate the symbiosis in aposymbiotic larvae are key steps in establishing the experimental tractability of this highly specific vertebrate and microbe mutualism. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  1. [Preoperatiove Airway Bacterial Colonization: the Missing Link between Non-small Cell Lung Cancer Following Lobectomy and Postoperative Pneumonia?

    PubMed

    Gao, Ke; Lai, Yutian; Huang, Jian; Wang, Yifan; Wang, Xiaowei; Che, Guowei

    2017-04-20

    Surgical procedure is the main method of treating lung cancer. Meanwhile, postoperative pneumonia (POP) is the major cause of perioperative mortality in lung cancer surgery. The preoperative pathogenic airway bacterial colonization is an independent risk factor causing postoperative pulmonary complications (PPC). This cross-sectional study aimed to explore the relationship between preoperative pathogenic airway bacterial colonization and POP in lung cancer and to identify the high-risk factors of preoperative pathogenic airway bacterial colonization. A total of 125 patients with non-small cell lung cancer (NSCLC) underwent thoracic surgery in six hospitals of Chengdu between May 2015 and January 2016. Preoperative pathogenic airway bacterial colonization was detected in all patients via fiber bronchoscopy. Patients' PPC, high-risk factors, clinical characteristics, and the serum surfactant protein D (SP-D) level were also analyzed. The incidence of preoperative pathogenic airway bacterial colonization among NSCLC patients was 15.2% (19/125). Up to 22 strains were identified in the colonization positive group, with Gram-negative bacteria being dominant (86.36%, 19/22). High-risk factors of pathogenic airway bacterial colonization were age (≥75 yr) and smoking index (≥400 cigarettes/year). PPC incidence was significantly higher in the colonization-positive group (42.11%, 8/19) than that in the colonization-negative group (16.04%, 17/106)(P=0.021). POP incidence was significantly higher in the colonization-positive group (26.32%, 5/19) than that in the colonization-negative group (6.60%, 7/106)(P=0.019). The serum SP-D level of patients in the colonization-positive group was remarkably higher than that in the colonization-negative group [(31.25±6.09) vs (28.17±5.23)](P=0.023). The incidence of preoperative pathogenic airway bacterial colonization among NSCLC patients with POP was 41.67% (5/12). This value was 3.4 times higher than that among the patients without POP (OR=3.363, 95%CI: 1.467-7.711). An intimate correlation was observed between POP and pathogenic airway bacterial colonization in lung cancer. The high-risk factors of pathogenic airway bacterial colonization were age and smoking index.

  2. Enterobacter Strains Might Promote Colon Cancer.

    PubMed

    Yurdakul, Dilşad; Yazgan-Karataş, Ayten; Şahin, Fikrettin

    2015-09-01

    Many studies have been performed to determine the interaction between bacterial species and cancer. However, there has been no attempts to demonstrate a possible relationship between Enterobacter spp. and colon cancer so far. Therefore, in the present study, it is aimed to investigate the effects of Enterobacter strains on colon cancer. Bacterial proteins were isolated from 11 Enterobacter spp., one Morganella morganii, and one Escherichia coli strains, and applied onto NCM460 (Incell) and CRL1790 (ATCC) cell lines. Cell viability and proliferation were determined in MTS assay. Flow Cytometry was used to detect CD24 level and apoptosis. Real-Time PCR studies were performed to determine NFKB and Bcl2 expression. Graphpad Software was used for statistical analysis. The results showed that proteins, isolated from the Enterobacter spp., have significantly increased cell viability and proliferation, while decreasing the apoptosis of the cell lines tested. The data in the present study indicated that Enterobacter strains might promote colon cancer. Moreover, Enterobacter spp. could be a clinically important factor for colon cancer initiation and progression. Studies can be extended on animal models in order to develop new strategies for treatment.

  3. Purple rice extract supplemented diet reduces DMH- induced aberrant crypt foci in the rat colon by inhibition of bacterial β-glucuronidase.

    PubMed

    Summart, Ratasark; Chewonarin, Teera

    2014-01-01

    Purple rice has become a natural product of interest which is widely used for health promotion. This study investigated the preventive effect of purple rice extract (PRE) mixed diet on DMH initiation of colon carcinogenesis. Rats were fed with PRE mixed diet one week before injection of DMH (40 mg/kg of body weight once a week for 2 weeks). They were killed 12 hrs after a second DMH injection to measure the level of O6-methylguanine and xenobiotic metabolizing enzyme activities. In rats that received PRE, guanine methylation was reduced in the colonic mucosa, but not in the liver, whereas PRE did not affect xenobiotic conjugation, with reference to glutathione-S-transferase or UDP-glucuronyl transferase. After 5 weeks, rats that received PRE with DMH injection had fewer ACF in the colon than those treated with DMH alone. Interestingly, a PRE mixed diet inhibited the activity of bacterial β-glucuronidase in rat feces, a critical enzyme for free methylazoxymethanol (MAM) release in the rat colon. These results indicated that purple rice extract inhibited β-glucuronidase activity in the colonic lumen, causing a reduction of MAM-induced colonic mucosa DNA methylation, leaded to decelerated formation of aberrant crypt foci in the rat colon. The supplemented purple rice extract might thus prevent colon carcinogenesis by the alteration of the colonic environment, and thus could be further developed for neutraceutical products for colon cancer prevention.

  4. Streptococcus pneumoniae Colonization Is Required To Alter the Nasal Microbiota in Cigarette Smoke-Exposed Mice

    PubMed Central

    Shen, Pamela; Whelan, Fiona J.; Schenck, L. Patrick; McGrath, Joshua J. C.; Vanderstocken, Gilles; Bowdish, Dawn M. E.; Surette, Michael G.

    2017-01-01

    ABSTRACT Smokers have nasal microbiota dysbiosis, with an increased frequency of colonizing bacterial pathogens. It is possible that cigarette smoke increases pathogen acquisition by perturbing the microbiota and decreasing colonization resistance. However, it is difficult to disentangle microbiota dysbiosis due to cigarette smoke exposure from microbiota changes caused by increased pathogen acquisition in human smokers. Using an experimental mouse model, we investigated the impact of cigarette smoke on the nasal microbiota in the absence and presence of nasal pneumococcal colonization. We observed that cigarette smoke exposure alone did not alter the nasal microbiota composition. The microbiota composition was also unchanged at 12 h following low-dose nasal pneumococcal inoculation, suggesting that the ability of the microbiota to resist initial nasal pneumococcal acquisition was not impaired in smoke-exposed mice. However, nasal microbiota dysbiosis occurred as a consequence of established high-dose nasal pneumococcal colonization at day 3 in smoke-exposed mice. Similar to clinical reports on human smokers, an enrichment of potentially pathogenic bacterial genera such as Fusobacterium, Gemella, and Neisseria was observed. Our findings suggest that cigarette smoke exposure predisposes to pneumococcal colonization independent of changes to the nasal microbiota and that microbiota dysbiosis observed in smokers may occur as a consequence of established pathogen colonization. PMID:28760931

  5. Streptococcus pneumoniae Colonization Is Required To Alter the Nasal Microbiota in Cigarette Smoke-Exposed Mice.

    PubMed

    Shen, Pamela; Whelan, Fiona J; Schenck, L Patrick; McGrath, Joshua J C; Vanderstocken, Gilles; Bowdish, Dawn M E; Surette, Michael G; Stämpfli, Martin R

    2017-10-01

    Smokers have nasal microbiota dysbiosis, with an increased frequency of colonizing bacterial pathogens. It is possible that cigarette smoke increases pathogen acquisition by perturbing the microbiota and decreasing colonization resistance. However, it is difficult to disentangle microbiota dysbiosis due to cigarette smoke exposure from microbiota changes caused by increased pathogen acquisition in human smokers. Using an experimental mouse model, we investigated the impact of cigarette smoke on the nasal microbiota in the absence and presence of nasal pneumococcal colonization. We observed that cigarette smoke exposure alone did not alter the nasal microbiota composition. The microbiota composition was also unchanged at 12 h following low-dose nasal pneumococcal inoculation, suggesting that the ability of the microbiota to resist initial nasal pneumococcal acquisition was not impaired in smoke-exposed mice. However, nasal microbiota dysbiosis occurred as a consequence of established high-dose nasal pneumococcal colonization at day 3 in smoke-exposed mice. Similar to clinical reports on human smokers, an enrichment of potentially pathogenic bacterial genera such as Fusobacterium , Gemella , and Neisseria was observed. Our findings suggest that cigarette smoke exposure predisposes to pneumococcal colonization independent of changes to the nasal microbiota and that microbiota dysbiosis observed in smokers may occur as a consequence of established pathogen colonization. Copyright © 2017 American Society for Microbiology.

  6. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model.

    PubMed

    Thomsen, K; Christophersen, L; Bjarnsholt, T; Jensen, P Ø; Moser, C; Høiby, N

    2016-03-01

    Oral prophylactic therapy by gargling with pathogen-specific egg yolk immunoglobulins (IgY) may reduce the initial airway colonization with Pseudomonas aeruginosa in cystic fibrosis (CF) patients. IgY antibodies impart passive immunization and we investigated the effects of anti-P. aeruginosa IgY antibodies on bacterial eradication in a murine pneumonia model. P. aeruginosa pneumonia was established in Balb/c mice and the effects of prophylactic IgY administration on lung bacteriology, clinical parameters and subsequent inflammation were compared to controls. Prophylactic administration of IgY antibodies targeting P. aeruginosa significantly reduced the bacterial burden by 2-log 24h post-infection compared to controls and was accompanied by significantly reduced clinical symptom scores and successive inflammatory cytokine profile indicative of diminished lung inflammation. Passive immunization by anti-P. aeruginosa IgY therapy facilitates promptly bacterial clearance and moderates inflammation in P. aeruginosa lung infection and may serve as an adjunct to antibiotics in reducing early colonization. Copyright © 2015. Published by Elsevier B.V.

  7. Expression levels of antimicrobial peptide tachyplesin I in transgenic Ornithogalum lines affect the resistance to Pectobacterium infection.

    PubMed

    Lipsky, Alexander; Joshi, Janak Raj; Carmi, Nir; Yedidia, Iris

    2016-11-20

    The genus Ornithogalum includes several ornamental species that suffer substantial losses from bacterial soft rot caused by Pectobacteria. The absence of effective control measures for use against soft rot bacteria led to the initiation of a project in which a small antimicrobial peptide from an Asian horseshoe crab, tachyplesin (tpnI), was introduced into two commercial cultivars: O. dubium and O. thyrsoides. Disease severity and bacterial colonization were examined in transgenic lines expressing this peptide. Disease resistance was evaluated in six lines of each species by measuring bacterial proliferation in the plant tissue. Three transgenic lines of each species were subjected to further analysis in which the expression level of the transgene was evaluated using RT-PCR and qRT-PCR. The development of disease symptoms and bacterial colonization of the plant tissue were also examined using GFP-expressing strain of P. carotovorum subsp. brasiliense Pcb3. Confocal-microscopy imaging revealed significantly reduced quantities of bacterial cells in the transgenic plant lines that had been challenged with the bacterium. The results clearly demonstrate that tpnI expression reduces bacterial proliferation, colonization and disease symptom (reduced by 95-100%) in the transgenic plant tissues. The quantity of tpnI transcripts, as measured by qRT-PCR, was negatively correlated with the protection afforded to the plants, as measured by the reduced severity of disease symptoms in the tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Bacterial Community Profiling of Plastic Litter in the Belgian Part of the North Sea.

    PubMed

    De Tender, Caroline A; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Ruttink, Tom; Dawyndt, Peter

    2015-08-18

    Bacterial colonization of marine plastic litter (MPL) is known for over four decades. Still, only a few studies on the plastic colonization process and its influencing factors are reported. In this study, seafloor MPL was sampled at different locations across the Belgian part of the North Sea to study bacterial community structure using 16S metabarcoding. These marine plastic bacterial communities were compared with those of sediment and seawater, and resin pellets sampled on the beach, to investigate the origin and uniqueness of plastic bacterial communities. Plastics display great variation of bacterial community composition, while each showed significant differences from those of sediment and seawater, indicating that plastics represent a distinct environmental niche. Various environmental factors correlate with the diversity of MPL bacterial composition across plastics. In addition, intrinsic plastic-related factors such as pigment content may contribute to the differences in bacterial colonization. Furthermore, the differential abundance of known primary and secondary colonizers across the various plastics may indicate different stages of bacterial colonization, and may confound comparisons of free-floating plastics. Our studies provide insights in the factors that shape plastic bacterial colonization and shed light on the possible role of plastic as transport vehicle for bacteria through the aquatic environment.

  9. Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation.

    PubMed

    Izquierdo-Barba, Isabel; García-Martín, José Miguel; Álvarez, Rafael; Palmero, Alberto; Esteban, Jaime; Pérez-Jorge, Concepción; Arcos, Daniel; Vallet-Regí, María

    2015-03-01

    Bacterial colonization and biofilm formation on orthopedic implants is one of the worst scenarios in orthopedic surgery, in terms of both patient prognosis and healthcare costs. Tailoring the surfaces of implants at the nanoscale to actively promote bone bonding while avoiding bacterial colonization represents an interesting challenge to achieving better clinical outcomes. Herein, a Ti6Al4V alloy of medical grade has been coated with Ti nanostructures employing the glancing angle deposition technique by magnetron sputtering. The resulting surfaces have a high density of nanocolumnar structures, which exhibit strongly impaired bacterial adhesion that inhibits biofilm formation, while osteoblasts exhibit good cell response with similar behavior to the initial substrates. These results are discussed on the basis of a "lotus leaf effect" induced by the surface nanostructures and the different sizes and biological characteristics of osteoblasts and Staphylococcus aureus. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Identification of Population Bottlenecks and Colonization Factors during Assembly of Bacterial Communities within the Zebrafish Intestine

    PubMed Central

    Wiles, Travis J.; Martinez, Emily S.; Jemielita, Matthew; Burns, Adam R.; Parthasarathy, Raghuveer; Bohannan, Brendan J. M.

    2015-01-01

    ABSTRACT The zebrafish, Danio rerio, is a powerful model for studying bacterial colonization of the vertebrate intestine, but the genes required by commensal bacteria to colonize the zebrafish gut have not yet been interrogated on a genome-wide level. Here we apply a high-throughput transposon mutagenesis screen to Aeromonas veronii Hm21 and Vibrio sp. strain ZWU0020 during their colonization of the zebrafish intestine alone and in competition with each other, as well as in different colonization orders. We use these transposon-tagged libraries to track bacterial population sizes in different colonization regimes and to identify gene functions required during these processes. We show that intraspecific, but not interspecific, competition with a previously established bacterial population greatly reduces the ability of these two bacterial species to colonize. Further, using a simple binomial sampling model, we show that under conditions of interspecific competition, genes required for colonization cannot be identified because of the population bottleneck experienced by the second colonizer. When bacteria colonize the intestine alone or at the same time as the other species, we find shared suites of functional requirements for colonization by the two species, including a prominent role for chemotaxis and motility, regardless of the presence of another species. PMID:26507229

  11. Colonic responses to Lactobacillus farciminis treatment in trinitrobenzene sulphonic acid-induced colitis in rats.

    PubMed

    Lamine, F; Eutamène, H; Fioramonti, J; Buéno, L; Théodorou, V

    2004-12-01

    It has recently been shown that Lactobacillus farciminis treatment exerts an anti-inflammatory effect in trinitrobenzene sulphonic acid (TNBS)-induced colitis partly through a nitric oxide release by this strain. The aim of this study was to evaluate whether L. farciminis treatment shares also the general mechanisms of action involved in the beneficial effect of probiotics in the colonic inflammatory process. Rats received L. farciminis for 15 days before and 4 days after intracolonic administration of TNBS or vehicle. The following parameters were evaluated: macroscopic damage of colonic mucosa, myeloperoxidase activity, cytokine mucosal levels, bacterial profile in colonic content and mucosa, bacterial translocation and colonic paracellular permeability. In the absence of TNBS, L. farciminis treatment reduced colonic paracellular permeability and increased the IL-10 level in the colonic wall. TNBS administration induced colonic macroscopic damage, associated with an increase of myeloperoxidase activity, bacterial translocation, colonic paracellular permeability and IL-1beta mucosal level, and a decrease in IL-10 mucosal level. Moreover, the bacterial profile of colonic content and mucosa was modified. All these alterations were abolished or significantly reduced by L. farciminis treatment. As previously shown, L. farciminis treatment improves TNBS-induced colitis. This study indicates that, in addition to the nitric oxide released by this bacterial strain, the anti-inflammatory action of L. farciminis involves also normalization of colonic microflora, prevention of bacterial translocation, enhancement of barrier integrity and a decrease in the IL-1beta mucosal level.

  12. Differential protein abundance of a basolateral MCT1 transporter in the human gastrointestinal tract.

    PubMed

    Al-Mosauwi, Hashemeya; Ryan, Elizabeth; McGrane, Alison; Riveros-Beltran, Stefanie; Walpole, Caragh; Dempsey, Eugene; Courtney, Danielle; Fearon, Naomi; Winter, Desmond; Baird, Alan; Stewart, Gavin

    2016-12-01

    Bacterially derived short chain fatty acids (SCFAs), such as butyrate, are vital in maintaining the symbiotic relationship that exists between humans and their gastrointestinal microbial populations. A key step in this process is the transport of SCFAs across colonic epithelial cells via MCT1 transporters. This study investigated MCT1 protein abundance in various human intestinal tissues. Initial RT-PCR analysis confirmed the expected MCT1 RNA expression pattern of colon > small intestine > stomach. Using surgical resection samples, immunoblot analysis detected higher abundance of a 45 kDa MCT1 protein in colonic tissue compared to ileum tissue (P < 0.001, N = 4, unpaired t-test). Importantly, MCT1 abundance was found to be significantly lower in sigmoid colon compared to ascending colon (P < 0.01, N = 8-11, ANOVA). Finally, immunolocalization studies confirmed MCT1 to be abundant in the basolateral membranes of surface epithelial cells of the ascending, transverse, and descending colon, but significantly less prevalent in the sigmoid colon (P < 0.05, N = 5-21, ANOVA). In conclusion, these data confirm that basolateral MCT1 protein abundance is correlated to levels of bacterially derived SCFAs along the human gastrointestinal tract. These findings highlight the importance of precise tissue location in studies comparing colonic MCT1 abundance between normal and diseased states. © 2016 International Federation for Cell Biology.

  13. Effectiveness of Polyvalent Bacterial Lysate and Autovaccines Against Upper Respiratory Tract Bacterial Colonization by Potential Pathogens: A Randomized Study

    PubMed Central

    Zagólski, Olaf; Stręk, Paweł; Kasprowicz, Andrzej; Białecka, Anna

    2015-01-01

    Background Polyvalent bacterial lysate (PBL) is an oral immunostimulating vaccine consisting of bacterial standardized lysates obtained by lysis of different strains of bacteria. Autovaccines are individually prepared based on the results of smears obtained from the patient. Both types of vaccine can be used to treat an ongoing chronic infection. This study sought to determine which method is more effective against nasal colonization by potential respiratory tract pathogens. Material/Methods We enrolled 150 patients with aerobic Gram stain culture and count results indicating bacterial colonization of the nose and/or throat by potential pathogens. The participants were randomly assigned to each of the following groups: 1. administration of PBL, 2. administration of autovaccine, and 3. no intervention (controls). Results Reduction of the bacterial count in Streptococcus pneumoniae-colonized participants was significant after the autovaccine (p<0.001) and PBL (p<0.01). Reduction of the bacterial count of other β-hemolytic streptococcal strains after treatment with the autovaccine was significant (p<0.01) and was non-significant after PBL. In Haemophilus influenzae colonization, significant reduction in the bacterial count was noted in the PBL group (p<0.01). Methicillin-resistant Staphylococcus aureus colonization did not respond to either treatment. Conclusions The autovaccine is more effective than PBL for reducing bacterial count of Streptococcus pneumoniae and β-hemolytic streptococci, while PBL was more effective against Haemophilus influenzae colonization. PMID:26434686

  14. Effect of UV-photofunctionalization on Oral Bacterial Attachment and Biofilm Formation to Titanium Implant Material

    PubMed Central

    de Avila, Erica Dorigatti; Lima, Bruno P.; Sekiya, Takeo; Torii, Yasuyoshi; Ogawa, Takahiro; Shi, Wenyuan; Lux, Renate

    2015-01-01

    Bacterial biofilm infections remain prevalent reasons for implant failure. Dental implant placement occurs in the oral environment, which harbors a plethora of biofilm-forming bacteria. Due to its trans-mucosal placement, part of the implant structure is exposed to oral cavity and there is no effective measure to prevent bacterial attachment to implant materials. Here, we demonstrated that UV treatment of titanium immediately prior to use (photofunctionalization) affects the ability of human polymicrobial oral biofilm communities to colonize in the presence of salivary and blood components. UV-treatment of machined titanium transformed the surface from hydrophobic to superhydrophilic. UV-treated surfaces exhibited a significant reduction in bacterial attachment as well as subsequent biofilm formation compared to untreated ones, even though overall bacterial viability was not affected. The function of reducing bacterial colonization was maintained on UV-treated titanium that had been stored in a liquid environment before use. Denaturing gradient gel-electrophoresis (DGGE) and DNA sequencing analyses revealed that while bacterial community profiles appeared different between UV-treated and untreated titanium in the initial attachment phase, this difference vanished as biofilm formation progressed. Our findings confirm that UV-photofunctionalization of titanium has a strong potential to improve outcome of implant placement by creating and maintaining antimicrobial surfaces. PMID:26210175

  15. Effects of the 10-Valent Pneumococcal Nontypeable Haemophilus influenzae Protein D–Conjugate Vaccine on Nasopharyngeal Bacterial Colonization in Young Children: A Randomized Controlled Trial

    PubMed Central

    van den Bergh, Menno R.; Spijkerman, Judith; Swinnen, Kristien M.; François, Nancy A.; Pascal, Thierry G.; Borys, Dorota; Schuerman, Lode; IJzerman, Ed P. F.; Bruin, Jacob P.; van der Ende, Arie; Veenhoven, Reinier H.; Sanders, Elisabeth A. M.

    2013-01-01

    Background. This study evaluated the effects of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D–conjugate vaccine (PHiD-CV) on nasopharyngeal bacterial colonization compared with the 7-valent pneumococcal conjugate vaccine (7vCRM) in young children. Methods. A randomized controlled trial in the Netherlands, initiated 2 years after 7vCRM introduction, was conducted between 1 April 2008 and 1 December 2010. Infants (N = 780) received either PHiD-CV or 7vCRM (2:1) at 2, 3, 4, and 11–13 months of age. Nasopharyngeal samples taken at 5, 11, 14, 18, and 24 months of age were cultured to detect Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, and Staphylococcus aureus. Polymerase chain reaction assays quantified H. influenzae and S. pneumoniae and confirmed H. influenzae as nontypeable (NTHi). Primary outcome measure was vaccine efficacy (VE) against NTHi colonization. Results. In both groups, NTHi colonization increased with age from 33% in 5-month-olds to 65% in 24-month-olds. Three months postbooster, VE against colonization was 0.5% (95% confidence interval [CI], −21.8% to 18.4%) and VE against acquisition 10.9% (95% CI, −31.3% to 38.9%). At each sampling moment, no differences between groups in either NTHi prevalence or H. influenzae density were detected. Streptococcus pneumoniae (range, 39%–57%), M. catarrhalis (range, 63%­–69%), and S. aureus (range, 9%–30%) colonization patterns were similar between groups. Conclusions. PHiD-CV had no differential effect on nasopharyngeal NTHi colonization or H. influenzae density in healthy Dutch children up to 2 years of age, implying that herd effects for NTHi are not to be expected. Other bacterial colonization patterns were also similar. Clinical Trials Registration NCT00652951. PMID:23118268

  16. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.

    PubMed

    Bulgarelli, Davide; Rott, Matthias; Schlaeppi, Klaus; Ver Loren van Themaat, Emiel; Ahmadinejad, Nahal; Assenza, Federica; Rauf, Philipp; Huettel, Bruno; Reinhardt, Richard; Schmelzer, Elmon; Peplies, Joerg; Gloeckner, Frank Oliver; Amann, Rudolf; Eickhorst, Thilo; Schulze-Lefert, Paul

    2012-08-02

    The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found on any plant root or plant debris in the tested soils. By contrast, colonization of Arabidopsis roots by members of the Actinobacteria depends on other cues from metabolically active host cells.

  17. Systemic cytokine signaling via IL-17 in smokers with obstructive pulmonary disease: a link to bacterial colonization?

    PubMed Central

    Andelid, Kristina; Tengvall, Sara; Andersson, Anders; Levänen, Bettina; Christenson, Karin; Jirholt, Pernilla; Åhrén, Christina; Qvarfordt, Ingemar; Ekberg-Jansson, Ann; Lindén, Anders

    2015-01-01

    We examined whether systemic cytokine signaling via interleukin (IL)-17 and growth-related oncogene-α (GRO-α) is impaired in smokers with obstructive pulmonary disease including chronic bronchitis (OPD-CB). We also examined how this systemic cytokine signaling relates to bacterial colonization in the airways of the smokers with OPD-CB. Currently smoking OPD-CB patients (n=60, corresponding to Global initiative for chronic Obstructive Lung Disease [GOLD] stage I–IV) underwent recurrent blood and sputum sampling over 60 weeks, during stable conditions and at exacerbations. We characterized cytokine protein concentrations in blood and bacterial growth in sputum. Asymptomatic smokers (n=10) and never-smokers (n=10) were included as control groups. During stable clinical conditions, the protein concentrations of IL-17 and GRO-α were markedly lower among OPD-CB patients compared with never-smoker controls, whereas the asymptomatic smoker controls displayed intermediate concentrations. Notably, among OPD-CB patients, colonization by opportunistic pathogens was associated with markedly lower IL-17 and GRO-α, compared with colonization by common respiratory pathogens or oropharyngeal flora. During exacerbations in the OPD-CB patients, GRO-α and neutrophil concentrations were increased, whereas protein concentrations and messenger RNA for IL-17 were not detectable in a reproducible manner. In smokers with OPD-CB, systemic cytokine signaling via IL-17 and GRO-α is impaired and this alteration may be linked to colonization by opportunistic pathogens in the airways. Given the potential pathogenic and therapeutic implications, these findings deserve to be validated in new and larger patient cohorts. PMID:25848245

  18. Dermacentor andersoni transmission of Francisella tularensis subsp. novicida reflects bacterial colonization, dissemination and replication coordinated with tick feeding.

    USDA-ARS?s Scientific Manuscript database

    Ticks serve as biological vectors for a wide variety of bacterial pathogens which must be able to efficiently colonize specific tick tissues prior to transmission. The bacterial determinants of tick colonization are largely unknown, a knowledge gap attributed in large part to the paucity of tools t...

  19. Bacterial α2-macroglobulins: colonization factors acquired by horizontal gene transfer from the metazoan genome?

    PubMed Central

    Budd, Aidan; Blandin, Stephanie; Levashina, Elena A; Gibson, Toby J

    2004-01-01

    Background Invasive bacteria are known to have captured and adapted eukaryotic host genes. They also readily acquire colonizing genes from other bacteria by horizontal gene transfer. Closely related species such as Helicobacter pylori and Helicobacter hepaticus, which exploit different host tissues, share almost none of their colonization genes. The protease inhibitor α2-macroglobulin provides a major metazoan defense against invasive bacteria, trapping attacking proteases required by parasites for successful invasion. Results Database searches with metazoan α2-macroglobulin sequences revealed homologous sequences in bacterial proteomes. The bacterial α2-macroglobulin phylogenetic distribution is patchy and violates the vertical descent model. Bacterial α2-macroglobulin genes are found in diverse clades, including purple bacteria (proteobacteria), fusobacteria, spirochetes, bacteroidetes, deinococcids, cyanobacteria, planctomycetes and thermotogae. Most bacterial species with bacterial α2-macroglobulin genes exploit higher eukaryotes (multicellular plants and animals) as hosts. Both pathogenically invasive and saprophytically colonizing species possess bacterial α2-macroglobulins, indicating that bacterial α2-macroglobulin is a colonization rather than a virulence factor. Conclusions Metazoan α2-macroglobulins inhibit proteases of pathogens. The bacterial homologs may function in reverse to block host antimicrobial defenses. α2-macroglobulin was probably acquired one or more times from metazoan hosts and has then spread widely through other colonizing bacterial species by more than 10 independent horizontal gene transfers. yfhM-like bacterial α2-macroglobulin genes are often found tightly linked with pbpC, encoding an atypical peptidoglycan transglycosylase, PBP1C, that does not function in vegetative peptidoglycan synthesis. We suggest that YfhM and PBP1C are coupled together as a periplasmic defense and repair system. Bacterial α2-macroglobulins might provide useful targets for enhancing vaccine efficacy in combating infections. PMID:15186489

  20. A Transient Exposure to Symbiosis-Competent Bacteria Induces Light Organ Morphogenesis in the Host Squid.

    PubMed

    Doino, J A; McFall-Ngai, M J

    1995-12-01

    Recent studies of the symbiotic association between the Hawaiian sepiolid squid Euprymna scolopes and the luminous bacterium Vibrio fischeri have shown that colonization of juvenile squid with symbiosis-competent bacteria induces morphogenetic changes of the light organ. These changes occur over a 4-day period and include cell death and tissue regression of the external ciliated epithelium. In the absence of bacterial colonization, morphogenesis does not occur. To determine whether the bacteria must be present throughout the morphogenetic process, we used the antibiotic chloramphenicol to clear the light organ of bacteria at various times during the initial colonization. We provide evidence in this study that a transient, 12-hour exposure to symbiosis-competent bacteria is necessary and sufficient to induce tissue regression in the light organ over the next several days. Further, we show that successful entrance into the light organ is necessary to induce morphogenesis, suggesting that induction results from bacterial interaction with internal crypt cells and not with the external ciliated epithelium. Finally, no difference in development was observed when the light organ was colonized by a mutant strain of V. fischeri that did not produce autoinducer, a potential light organ morphogen.

  1. Molecular characterization of total and metabolically active bacterial communities of "white colonizations" in the Altamira Cave, Spain.

    PubMed

    Portillo, M Carmen; Saiz-Jimenez, Cesareo; Gonzalez, Juan M

    2009-01-01

    Caves with paleolithic paintings are influenced by bacterial development. Altamira Cave (Spain) contains some of the most famous paintings from the Paleolithic era. An assessment of the composition of bacterial communities that have colonized this cave represents a first step in understanding and potentially controlling their proliferation. In this study, areas showing colonization with uncolored microorganisms, referred to as "white colonizations", were analyzed. Microorganisms present in these colonizations were studied using DNA analysis, and those showing significant metabolic activity were detected in RNA-based RNA analysis. Bacterial community fingerprints were obtained both from DNA and RNA analyses, indicating differences between the microorganisms present and metabolically active in these white colonizations. Metabolically active microorganisms represented only a fraction of the total bacterial community present in the colonizations. 16S rRNA gene libraries were used to identify the major representative members of the studied communities. Proteobacteria constituted the most frequently found division both among metabolically active microorganisms (from RNA-based analysis) and those present in the community (from DNA analysis). Results suggest the existence of a huge variety of taxa in white colonizations of the Altamira Cave which represent a potential risk for the conservation of the cave and its paintings.

  2. Experimental Models of C. albicans-Streptococcal Co-infection.

    PubMed

    Sobue, Takanori; Diaz, Patricia; Xu, Hongbin; Bertolini, Martinna; Dongari-Bagtzoglou, Anna

    2016-01-01

    Interactions of C. albicans with co-colonizing bacteria at mucosal sites can be synergistic or antagonistic in disease development, depending on the bacterial species and mucosal site. Mitis group streptococci and C. albicans colonize the oral mucosa of the majority of healthy individuals. These streptococci have been termed "accessory pathogens," defined by their ability to initiate multispecies biofilm assembly and promote the virulence of the mixed bacterial biofilm community in which they participate. To demonstrate whether interactions with Mitis group streptococci limit or promote the potential of C. albicans to become an opportunistic pathogen, in vitro and in vivo co-infection models are needed. Here, we describe two C. albicans-streptococcal co-infection models: an organotypic oral mucosal tissue model that incorporates salivary flow and a mouse model of oral co-infection that requires reduced levels of immunosuppression compared to single fungal infection.

  3. Role of Streptococcus sanguinis sortase A in bacterial colonization.

    PubMed

    Yamaguchi, Masaya; Terao, Yutaka; Ogawa, Taiji; Takahashi, Toshihito; Hamada, Shigeyuki; Kawabata, Shigetada

    2006-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, has low cariogenicity, though colonization on tooth surfaces by this bacterium initiates aggregation by other oral bacteria and maturation of dental plaque. Additionally, S. sanguinis is frequently isolated from infective endocarditis patients. We investigated the functions of sortase A (SrtA), which cleaves LPXTG-containing proteins and anchors them to the bacterial cell wall, as a possible virulence factor of S. sanguinis. We identified the srtA gene of S. sanguinis by searching a homologous gene of Streptococcus mutans in genome databases. Next, we constructed an srtA-deficient mutant strain of S. sanguinis by insertional inactivation and compared it to the wild type strain. In the case of the mutant strain, some surface proteins could not anchor to the cell wall and were partially released into the culture supernatant. Furthermore, adherence to saliva-coated hydroxyapatite beads and polystyrene plates, as well as adherence to and invasion of human epithelial cells were reduced significantly in the srtA-deficient strain when compared to the wild type. In addition, antiopsonization levels and bacterial survival of the srtA-deficient mutant were decreased in human whole blood. This is the first known study to report that SrtA contributes to antiopsonization in streptococci. Our results suggest that SrtA anchors surface adhesins as well as some proteins that function as antiopsonic molecules as a means of evading the human immune system. Furthermore, they demonstrate that SrtA of S. sanguinis plays important roles in bacterial colonization.

  4. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis.

    PubMed

    Mueller, R F; Characklis, W G; Jones, W L; Sears, J T

    1992-05-01

    The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.

  5. Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited.

    PubMed

    Hurst, Jacklyn R; Kasper, Katherine J; Sule, Akshay N; McCormick, John K

    2018-07-01

    Streptococcus pyogenes is a human-specific and globally prominent bacterial pathogen that despite causing numerous human infections, this bacterium is normally found in an asymptomatic carrier state. This review provides an overview of both bacterial and human factors that likely play an important role in nasopharyngeal colonization and pharyngitis, as well as the development of acute rheumatic fever and rheumatic heart disease. Here we highlight a recently described role for bacterial superantigens in promoting acute nasopharyngeal infection, and discuss how these immune system activating toxins could be crucial to initiate the autoimmune process in rheumatic heart disease. Copyright © 2018. Published by Elsevier B.V.

  6. Should colon-penetrating small missiles be removed? An experimental study of retrocolic wound tracks.

    PubMed

    Edwards, D P; Brown, D; Watkins, P E

    1999-01-01

    Small-fragment injury to the colon may occur in approximately 5% of battlefield casualties. The surgical management aims to reduce the risk of retrocolic infection and provide optimal conditions for colonic wound healing. This study aimed to quantify the risk of retrocolic infection. Steel fragments were fired through exteriorized porcine colon and caught in 20% gelatin. The fragments, and resultant tracks, were extracted and subjected to quantitative bacteriological examination to determine the extent of contamination. The median bacterial count for complete tracks was 1.2 x 10(4) CFU/g (interquartile range 1.8 x 10(3) to 2.7 x 10(4)). Counts were highest in the initial 1 cm of the track and reduced along its length. This study does not support wound track excision or missile fragment removal in cases of retrocolic trauma following penetrating colonic injury. Either or both procedures will increase local trauma and are likely to prejudice colonic wound repair.

  7. Dynamics of 'Candidatus Liberibacter asiaticus' Colonization of New Growth of Citrus.

    PubMed

    Hilf, Mark E; Luo, Weiqi

    2018-05-14

    'Candidatus Liberibacter asiaticus' is a phloem-colonizing intracellular bacterial pathogen of citrus associated with the disease huanglongbing. A study of patterns of colonization and bacterial population growth in new growth of different citrus types was conducted by pruning infected citron, sweet orange, sour orange, mandarin, citrange and Citrus macrophylla trees to force the growth of axillary and adventitious shoots. The first three leaves on newly emerged shoots were collected at 30, 60 and 90 days to assess colonization and population growth of 'Ca. L. asiaticus' using real time PCR (qPCR). Single trials were conducted with mandarin and citron, two trials each for citrange, sour orange and sweet orange, and four trials for C. macrophylla. In citron the proportion of colonized leaves increased significantly over time, with 67, 85 and 96% of leaves colonized at 30, 60 and 90 days, respectively. For the other citrus types the exact proportion of colonized leaves differed, but colonization exceeded 60% in mandarin, sour orange, and citrange, and exceeded 80% at 30 days in two trials with sweet orange and three trials with C. macrophylla, but there was no significant increase in the proportion of colonized leaves at 60 and 90 days. Bacteria were readily detected by 30 days in new leaves of all citrus types. Differences in the growth of the bacterial population between citrus types and at different times of the year were noted, but common trends were apparent. In general, bacterial titers peaked at 60 days, except in leaves of C. macrophylla where bacterial titers peaked at 30 days. The early and consistently high proportion of leaf colonization observed for new growth of sweet orange during two trials and for C. macrophylla during three trials indicates a near synchronous colonization of new leaves by 30 days.

  8. Lipopolysaccharide O-Antigen Prevents Phagocytosis of Vibrio anguillarum by Rainbow Trout (Oncorhynchus mykiss) Skin Epithelial Cells

    PubMed Central

    Lindell, Kristoffer; Fahlgren, Anna; Hjerde, Erik; Willassen, Nils-Peder; Fällman, Maria; Milton, Debra L.

    2012-01-01

    Colonization of host tissues is a first step taken by many pathogens during the initial stages of infection. Despite the impact of bacterial disease on wild and farmed fish, only a few direct studies have characterized bacterial factors required for colonization of fish tissues. In this study, using live-cell and confocal microscopy, rainbow trout skin epithelial cells, the main structural component of the skin epidermis, were demonstrated to phagocytize bacteria. Mutant analyses showed that the fish pathogen Vibrio anguillarum required the lipopolysaccharide O-antigen to evade phagocytosis and that O-antigen transport required the putative wzm-wzt-wbhA operon, which encodes two ABC polysaccharide transporter proteins and a methyltransferase. Pretreatment of the epithelial cells with mannose prevented phagocytosis of V. anguillarum suggesting that a mannose receptor is involved in the uptake process. In addition, the O-antigen transport mutants could not colonize the skin but they did colonize the intestines of rainbow trout. The O-antigen polysaccharides were also shown to aid resistance to the antimicrobial factors, lysozyme and polymyxin B. In summary, rainbow trout skin epithelial cells play a role in the fish innate immunity by clearing bacteria from the skin epidermis. In defense, V. anguillarum utilizes O-antigen polysaccharides to evade phagocytosis by the epithelial cells allowing it to colonize rapidly fish skin tissues. PMID:22662189

  9. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    PubMed Central

    Domin, Hanna; Zurita-Gutiérrez, Yazmín H.; Scotti, Marco; Buttlar, Jann; Hentschel Humeida, Ute; Fraune, Sebastian

    2018-01-01

    The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community. PMID:29740401

  10. Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance

    PubMed Central

    Naito, Tomoaki; Mulet, Céline; De Castro, Cristina; Molinaro, Antonio; Saffarian, Azadeh; Nigro, Giulia; Bérard, Marion; Clerc, Mélanie; Pedersen, Amy B.; Pédron, Thierry

    2017-01-01

    ABSTRACT We identified a crypt-specific core microbiota (CSCM) dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC) crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter, Delftia, and Stenotrophomonas). Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS), through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4)-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage. PMID:29042502

  11. Interplay between the Gastric Bacterial Microbiota and Candida albicans during Postantibiotic Recolonization and Gastritis

    PubMed Central

    Mason, Katie L.; Erb Downward, John R.; Falkowski, Nicole R.; Young, Vincent B.; Kao, John Y.

    2012-01-01

    The indigenous bacterial microbiome of the stomach, including lactobacilli, is vital in promoting colonization resistance against Candida albicans. However, there are gaps in our understanding about C. albicans gastric colonization versus disease, especially during the postantibiotic recovery phase. This study compared the gastric responses to C. albicans strains CHN1 and SC5314 in microbiome-disturbed and germfree mice to elucidate the contribution of the indigenous microbiota in C. albicans colonization versus disease and yeast-bacterium antagonism during the post-cefoperazone recolonization period. C. albicans can prevent the regrowth of Lactobacillus spp. in the stomach after cefoperazone and promote increased colonization by Enterococcus spp. Using a culture-independent analysis, the effects of oral cefoperazone on the gastric bacterial microbiota were observed to last at least 3 weeks after the cessation of the antibiotic. Disturbance of the gastric bacterial community by cefoperazone alone was not sufficient to cause gastritis, C. albicans colonization was also needed. Gastritis was not evident until after day 7 in cefoperazone-treated infected mice. In contrast, in germfree mice which lack a gastric microbiota, C. albicans induced gastric inflammation within 1 week of inoculation. Therefore, the gastric bacterial community in cefoperazone-treated mice during the first week of postantibiotic recolonization was sufficient to prevent the development of gastritis, despite being ineffective at conferring colonization resistance against C. albicans. Altogether, these data implicate a dichotomy between C. albicans colonization and gastric disease that is bacterial microbiome dependent. PMID:21986629

  12. Interplay between the gastric bacterial microbiota and Candida albicans during postantibiotic recolonization and gastritis.

    PubMed

    Mason, Katie L; Erb Downward, John R; Falkowski, Nicole R; Young, Vincent B; Kao, John Y; Huffnagle, Gary B

    2012-01-01

    The indigenous bacterial microbiome of the stomach, including lactobacilli, is vital in promoting colonization resistance against Candida albicans. However, there are gaps in our understanding about C. albicans gastric colonization versus disease, especially during the postantibiotic recovery phase. This study compared the gastric responses to C. albicans strains CHN1 and SC5314 in microbiome-disturbed and germfree mice to elucidate the contribution of the indigenous microbiota in C. albicans colonization versus disease and yeast-bacterium antagonism during the post-cefoperazone recolonization period. C. albicans can prevent the regrowth of Lactobacillus spp. in the stomach after cefoperazone and promote increased colonization by Enterococcus spp. Using a culture-independent analysis, the effects of oral cefoperazone on the gastric bacterial microbiota were observed to last at least 3 weeks after the cessation of the antibiotic. Disturbance of the gastric bacterial community by cefoperazone alone was not sufficient to cause gastritis, C. albicans colonization was also needed. Gastritis was not evident until after day 7 in cefoperazone-treated infected mice. In contrast, in germfree mice which lack a gastric microbiota, C. albicans induced gastric inflammation within 1 week of inoculation. Therefore, the gastric bacterial community in cefoperazone-treated mice during the first week of postantibiotic recolonization was sufficient to prevent the development of gastritis, despite being ineffective at conferring colonization resistance against C. albicans. Altogether, these data implicate a dichotomy between C. albicans colonization and gastric disease that is bacterial microbiome dependent.

  13. Metabolism links bacterial biofilms and colon carcinogenesis

    PubMed Central

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  14. Metabolism links bacterial biofilms and colon carcinogenesis.

    PubMed

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production.

    PubMed

    Hofmann, Andreas; Fischer, Doreen; Hartmann, Anton; Schmid, Michael

    2014-01-01

    In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system) or via agricultural soil amended with spiked organic fertilizers (soil system). In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH) was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4 × 10 CFU/ml in the axenic system or 4 × 10(5) CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in some cases.

  16. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production

    PubMed Central

    Hofmann, Andreas; Fischer, Doreen; Hartmann, Anton; Schmid, Michael

    2014-01-01

    In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system) or via agricultural soil amended with spiked organic fertilizers (soil system). In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH) was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4 × 10 CFU/ml in the axenic system or 4 × 105 CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in some cases. PMID:24829562

  17. Live Attenuated Influenza Virus Increases Pneumococcal Translocation and Persistence Within the Middle Ear

    PubMed Central

    Mina, Michael J.; Klugman, Keith P.; Rosch, Jason W.; McCullers, Jonathan A.

    2015-01-01

    Background. Infection with influenza A virus (IAV) increases susceptibility to respiratory bacterial infections, resulting in increased bacterial carriage and complications such acute otitis media, pneumonia, bacteremia, and meningitis. Recently, vaccination with live attenuated influenza virus (LAIV) was reported to enhance subclinical bacterial colonization within the nasopharynx, similar to IAV. Although LAIV does not predispose to bacterial pneumonia, whether it may alter bacterial transmigration toward the middle ear, where it could have clinically relevant implications, has not been investigated. Methods. BALB/c mice received LAIV or phosphate-buffered saline 1 or 7 days before or during pneumococcal colonization with either of 2 clinical isolates, 19F or 7F. Middle ear bacterial titers were monitored daily via in vivo imaging. Results. LAIV increased bacterial transmigration to and persistence within the middle ear. When colonization followed LAIV inoculation, a minimum LAIV incubation period of 4 days was required before bacterial transmigration commenced. Conclusions. While LAIV vaccination is safe and effective at reducing IAV and coinfection with influenza virus and bacteria, LAIV may increase bacterial transmigration to the middle ear and could thus increase the risk of clinically relevant acute otitis media. These data warrant further investigations into interactions between live attenuated viruses and naturally colonizing bacterial pathogens. PMID:25505300

  18. First impressions in a glowing host-microbe partnership.

    PubMed

    Wernegreen, Jennifer J

    2013-08-14

    Despite the clear significance of beneficial animal-microbe associations, mechanisms underlying their initiation and establishment are rarely understood. In this issue of Cell Host & Microbe, Kremer et al. (2013) reveal that first contact within the squid-vibrio symbiosis triggers profound molecular and chemical changes that are crucial for bacterial colonization. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Impact of experimental human pneumococcal carriage on nasopharyngeal bacterial densities in healthy adults.

    PubMed

    Shak, Joshua R; Cremers, Amelieke J H; Gritzfeld, Jenna F; de Jonge, Marien I; Hermans, Peter W M; Vidal, Jorge E; Klugman, Keith P; Gordon, Stephen B

    2014-01-01

    Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63%) of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study's sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14) was seen compared to that in the presence of H. influenzae (12/16). Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p = 0.008) compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute.

  20. Prevention of bacterial colonization of contact lenses with covalently attached selenium and effects on the rabbit cornea.

    PubMed

    Mathews, Steven M; Spallholz, Julian E; Grimson, Mark J; Dubielzig, Richard R; Gray, Tracy; Reid, Ted W

    2006-08-01

    Although silicone hydrogel materials have produced many corneal health benefits to patients wearing contact lenses, bacteria that cause acute red eye or corneal ulcers are still a concern. A coating that inhibits bacterial colonization while not adversely affecting the cornea should improve the safety of contact lens wear. A covalent selenium (Se) coating on contact lenses was evaluated for safety using rabbits and prevention of bacterial colonization of the contact lenses in vitro. Contact lenses coated with Se were worn on an extended-wear schedule for up to 2 months by 10 New Zealand White rabbits. Corneal health was evaluated with slit-lamp biomicroscopy, pachymetry, electron microscopy, and histology. Lenses worn by the rabbits were analyzed for protein and lipid deposits. In addition, the ability of Se to block bacterial colonization was tested in vitro by incubating lenses in a Pseudomonas aeruginosa broth followed by scanning electron microscopy of the contact lens surface. The covalent Se coating decreased bacterial colonization in vitro while not adversely affecting the corneal health of rabbits in vivo. The Se coating produced no noticeable negative effects as observed with slit-lamp biomicroscopy, pachymetry, electron microscopy, and histology. The Se coating did not affect protein or lipid deposition on the contact lenses. The data from this pilot study suggest that a Se coating on contact lenses might reduce acute red eye and bacterial ulceration because of an inhibition of bacterial colonization. In addition, our safety tests suggest that this positive effect can be produced without an adverse effect on corneal health.

  1. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective

    PubMed Central

    Chagnot, Caroline; Zorgani, Mohamed A.; Astruc, Thierry; Desvaux, Mickaël

    2013-01-01

    Bacterial colonization of biotic or abiotic surfaces results from two quite distinct physiological processes, namely bacterial adhesion and biofilm formation. Broadly speaking, a biofilm is defined as the sessile development of microbial cells. Biofilm formation arises following bacterial adhesion but not all single bacterial cells adhering reversibly or irreversibly engage inexorably into a sessile mode of growth. Among molecular determinants promoting bacterial colonization, surface proteins are the most functionally diverse active components. To be present on the bacterial cell surface, though, a protein must be secreted in the first place. Considering the close association of secreted proteins with their cognate secretion systems, the secretome (which refers both to the secretion systems and their protein substrates) is a key concept to apprehend the protein secretion and related physiological functions. The protein secretion systems are here considered in light of the differences in the cell-envelope architecture between diderm-LPS (archetypal Gram-negative), monoderm (archetypal Gram-positive) and diderm-mycolate (archetypal acid-fast) bacteria. Besides, their cognate secreted proteins engaged in the bacterial colonization process are regarded from single protein to supramolecular protein structure as well as the non-classical protein secretion. This state-of-the-art on the complement of the secretome (the secretion systems and their cognate effectors) involved in the surface colonization process in diderm-LPS and monoderm bacteria paves the way for future research directions in the field. PMID:24133488

  2. Mechanisms of Bacterial Colonization of the Respiratory Tract

    PubMed Central

    Siegel, Steven J.; Weiser, Jeffrey N.

    2016-01-01

    Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis. PMID:26488280

  3. A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death.

    PubMed

    Clementi, Emily A; Marks, Laura R; Duffey, Michael E; Hakansson, Anders P

    2012-08-03

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets.

  4. A Novel Initiation Mechanism of Death in Streptococcus pneumoniae Induced by the Human Milk Protein-Lipid Complex HAMLET and Activated during Physiological Death*

    PubMed Central

    Clementi, Emily A.; Marks, Laura R.; Duffey, Michael E.; Hakansson, Anders P.

    2012-01-01

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets. PMID:22700972

  5. Live attenuated influenza virus increases pneumococcal translocation and persistence within the middle ear.

    PubMed

    Mina, Michael J; Klugman, Keith P; Rosch, Jason W; McCullers, Jonathan A

    2015-07-15

    Infection with influenza A virus (IAV) increases susceptibility to respiratory bacterial infections, resulting in increased bacterial carriage and complications such acute otitis media, pneumonia, bacteremia, and meningitis. Recently, vaccination with live attenuated influenza virus (LAIV) was reported to enhance subclinical bacterial colonization within the nasopharynx, similar to IAV. Although LAIV does not predispose to bacterial pneumonia, whether it may alter bacterial transmigration toward the middle ear, where it could have clinically relevant implications, has not been investigated. BALB/c mice received LAIV or phosphate-buffered saline 1 or 7 days before or during pneumococcal colonization with either of 2 clinical isolates, 19F or 7F. Middle ear bacterial titers were monitored daily via in vivo imaging. LAIV increased bacterial transmigration to and persistence within the middle ear. When colonization followed LAIV inoculation, a minimum LAIV incubation period of 4 days was required before bacterial transmigration commenced. While LAIV vaccination is safe and effective at reducing IAV and coinfection with influenza virus and bacteria, LAIV may increase bacterial transmigration to the middle ear and could thus increase the risk of clinically relevant acute otitis media. These data warrant further investigations into interactions between live attenuated viruses and naturally colonizing bacterial pathogens. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. CpxRA influences Xenorhabdus nematophila colonization initiation and outgrowth in Steinernema carpocapsae nematodes through regulation of the nil locus.

    PubMed

    Herbert Tran, Erin E; Andersen, Aaron W; Goodrich-Blair, Heidi

    2009-06-01

    The gammaproteobacterium Xenorhabdus nematophila mutualistically colonizes an intestinal region of a soil-dwelling nematode and is a blood pathogen of insects. The X. nematophila CpxRA two-component regulatory system is necessary for both of these host interactions (E. Herbert et al., Appl. Environ. Microbiol. 73:7826-7836, 2007). Mutualistic association of X. nematophila with its nematode host consists of two stages: initiation, where a small number of bacterial cells establish themselves in the colonization site, and outgrowth, where these cells grow to fill the space. In this study, we show that the Cpx system is necessary for both of these stages. X. nematophila DeltacpxR1 colonized fewer nematodes than its wild-type parent and did not achieve as high a density as did the wild type within a portion of the colonized nematodes. To test whether the DeltacpxR1 host interaction phenotypes are due to its overexpression of mrxA, encoding the type I pilin subunit protein, we assessed the colonization phenotype of a DeltacpxR1 DeltamrxA1 double mutant. This mutant displayed the same colonization defect as DeltacpxR1, indicating that CpxR negative regulation of mrxA does not play a detectable role in X. nematophila-host interactions. CpxR positively regulates expression of nilA, nilB, and nilC genes necessary for nematode colonization. Here we show that the nematode colonization defect of the DeltacpxR1 mutant is rescued by elevating nil gene expression through mutation of nilR, a negative regulator of nilA, nilB, and nilC. These data suggest that the nematode colonization defect previously observed in DeltacpxR1 is caused, at least in part, by altered regulation of nilA, nilB, and nilC.

  7. Bacterial colonization patterns in daily chlorhexidine care at the exit site in peritoneal dialysis patients-A prospective, randomized controlled trial.

    PubMed

    Wang, Hsi-Hao; Hung, Shih-Yuan; Chang, Min-Yu; Lee, Yi-Che; Lin, Hsiu-Fang; Lin, Tsun-Mei; Yang, Su-Pen; Lin, Hsi-Hsun; Yang, Su-Ching; Wang, Jiun-Ling

    2017-01-01

    Bacterial colonization patterns in daily chlorhexidine care at the exit site in peritoneal dialysis (PD) patients were not known. We performed a prospective, randomized controlled trial enrolling 89 PD patients. After stratification by initial Staphylococcus aureus (SA) carrier status, patients were randomly assigned to receive daily 4% chlorhexidine care (intervention group) or normal saline (control group) at the exit site. Monthly, we cultured bacteria from the exit site and nasal swabs for 1 year. The SA colonization rates at exit site at 6 and 12 months were significantly lower in the intervention group than the control group (5.0% vs. 22.9%, p = 0.023 and 8.6% vs. 28.1%, p = 0.037 for 6 and 12 months, respectively). The Methicillin-resistant SA (MRSA) colonization rate at exit site at 6 months was similar (5.7% vs. 2.5%,p = 0.596) in control and intervention group, but significantly lower in the intervention group than the control group at exit site at 12months (0% vs. 12.5%, p = 0.047). The gram-negative bacilli (GNB) colonization rates were similar between the intervention and control groups at 6 and 12 months. Genotyping of all MRSA isolates showed ST (sequence type) 59 was the most predominant clone. In conclusion, chlorhexidine care at the exit site in PD patients may be a good strategy for SA and MRSA decolonization. ClinicalTrials.gov NCT02446158.

  8. Effects of BV-Associated Bacteria and Sexual Intercourse on Vaginal Colonization with the Probiotic Lactobacillus crispatus CTV-05

    PubMed Central

    Ngugi, Benjamin M.; Hemmerling, Anke; Bukusi, Elizabeth A.; Kikuvi, Gideon; Gikunju, Joseph; Shiboski, Stephen; Fredricks, David N.; Cohen, Craig R.

    2011-01-01

    Objective Several fastidious bacteria have been associated with bacterial vaginosis (BV), but their role in lactobacilli recolonization failure is unknown. We studied the effect of seven BV-associated bacterial species and two Lactobacillus species on vaginal colonization with L. crispatus CTV-05 (LACTIN-V). Methods Twenty four women with BV were given a 5-day course of metronidazole vaginal gel and then randomized 3:1 to receive either LACTIN-V or placebo applied vaginally once daily for 5 initial consecutive days, followed by a weekly application over 2 weeks. Vaginal swabs for L. crispatus CTV-05 culture and 9-bacterium specific 16S rRNA gene quantitative PCR assays were analyzed on several study visits for the 18 women receiving LACTIN-V. Results Vaginal colonization with CTV-05 was achieved in 61% of the participants receiving LACTIN-V at either the day 10 or the 28 visit and 44% at day 28. Participants not colonized with CTV-05 had generally higher median concentrations of BV-associated bacteria compared to those who colonized. Between enrollment and day 28, the median concentration of Gardnerella vaginalis minimally reduced from 104.5 to 104.3 16S rRNA gene copies per swab in women who colonized with CTV-05 but increased from 105.7 to 107.3 in those who failed to colonize (p=0.19). Similarly, the median concentration of Atopobium spp. reduced from 102.7 16S rRNA gene copies per swab to below limit of detection in women who colonized with CTV-05 but increased from 102.7 to 106.6 in those who failed to colonize (p=0.04). The presence of endogenous L. crispatus at enrollment was found to be significantly associated with a reduced odds of colonization with CTV-05 on day 28 (p=0.003) and vaginal intercourse during the study significantly impaired successful CTV-05 colonization (p=0.018). Conclusion Vaginal concentration of certain BV-associated bacteria, vaginal intercourse during treatment and presence of endogenous L. crispatus at enrollment predict colonization with probiotic lactobacilli. PMID:21992977

  9. Impact of Experimental Human Pneumococcal Carriage on Nasopharyngeal Bacterial Densities in Healthy Adults

    PubMed Central

    Shak, Joshua R.; Cremers, Amelieke J. H.; Gritzfeld, Jenna F.; de Jonge, Marien I.; Hermans, Peter W. M.; Vidal, Jorge E.; Klugman, Keith P.; Gordon, Stephen B.

    2014-01-01

    Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63%) of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study’s sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14) was seen compared to that in the presence of H. influenzae (12/16). Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p = 0.008) compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute. PMID:24915552

  10. A Murine Model of Group B Streptococcus Vaginal Colonization.

    PubMed

    Patras, Kathryn A; Doran, Kelly S

    2016-11-16

    Streptococcus agalactiae (group B Streptococcus, GBS), is a Gram-positive, asymptomatic colonizer of the human gastrointestinal tract and vaginal tract of 10 - 30% of adults. In immune-compromised individuals, including neonates, pregnant women, and the elderly, GBS may switch to an invasive pathogen causing sepsis, arthritis, pneumonia, and meningitis. Because GBS is a leading bacterial pathogen of neonates, current prophylaxis is comprised of late gestation screening for GBS vaginal colonization and subsequent peripartum antibiotic treatment of GBS-positive mothers. Heavy GBS vaginal burden is a risk factor for both neonatal disease and colonization. Unfortunately, little is known about the host and bacterial factors that promote or permit GBS vaginal colonization. This protocol describes a technique for establishing persistent GBS vaginal colonization using a single β-estradiol pre-treatment and daily sampling to determine bacterial load. It further details methods to administer additional therapies or reagents of interest and to collect vaginal lavage fluid and reproductive tract tissues. This mouse model will further the understanding of the GBS-host interaction within the vaginal environment, which will lead to potential therapeutic targets to control maternal vaginal colonization during pregnancy and to prevent transmission to the vulnerable newborn. It will also be of interest to increase our understanding of general bacterial-host interactions in the female vaginal tract.

  11. Activated fluid transport regulates bacterial-epithelial interactions and significantly shifts the murine colonic microbiome

    PubMed Central

    Keely, Simon; Kelly, Caleb J.; Weissmueller, Thomas; Burgess, Adrianne; Wagner, Brandie D.; Robertson, Charles E.; Harris, J. Kirk; Colgan, Sean P.

    2012-01-01

    Within the intestinal mucosa, epithelial cells serve multiple functions to partition the lumen from the lamina propria. As part of their natural function, intestinal epithelial cells actively transport electrolytes with passive water movement as a mechanism for mucosal hydration. Here, we hypothesized that electrogenic Cl- secretion, and associated mucosal hydration, influences bacterial-epithelial interactions and significantly influences the composition of the intestinal microbiota. An initial screen of different epithelial secretagogues identified lubiprostone as the most potent agonist for which to define these principles. In in vitro studies using cultured T84 cells, lubiprostone decreased E. coli translocation in a concentration-dependent manner (p < 0.001) and decreased S. typhimurium internalization and translocation by as much as 71 ± 6% (p < 0.01). Such decreases in bacterial translocation were abolished by inhibition of electrogenic Cl- secretion and water transport using the Na-K-Cl- antagonist bumetanide (p < 0.01). Extensions of these findings to microbiome analysis in vivo revealed that lubiprostone delivered orally to mice fundamentally shifted the intestinal microbiota, with notable changes within the Firmicutes and Bacteroidetes phyla of resident colonic bacteria. Such findings document a previously unappreciated role for epithelial Cl- secretion and water transport in influencing bacterial-epithelial interactions and suggest that active mucosal hydration functions as a primitive innate epithelial defense mechanism. PMID:22614705

  12. Colonization and infection by Helicobacter pylori in humans.

    PubMed

    Andersen, Leif Percival

    2007-11-01

    When Helicobacter pylori arrives in the human stomach, it may penetrate the mucin layer and adhere to the gastric epithelial cells or it may pass through the stomach without colonizing the mucosa. In this paper, the colonization process and the ensuing immunological response will be briefly described. Urease production is necessary for H. pylori to establish a pH-neutral microenvironment around the bacteria. The flagella enable the bacteria to move and the shape of H. pylori makes it possible to penetrate the mucin layer where it comes into contact with the gastric epithelial cells. H. pylori contains several adhesins that enable it to adhere to the epithelial cells. This adherence activates IL-8 which, together with bacterial antigens, attracts polymorphs and monocytes and causes acute gastritis. Antigen-presenting cells activate lymphocytes and other mononuclear cells that are attracted to the inflamed mucosa, causing chronic superficial gastritis and initiating a cytotoxic or an antigen-producing Th response. The infection is established within a few weeks after the primary exposure to H. pylori. After this initial colonization, many chemical, biochemical, and immunologic reactions take place that are of importance in the progress of the infection and the development of disease.

  13. Colonization by aerobic bacteria in karst: Laboratory and in situ experiments

    USGS Publications Warehouse

    Personne, J.-C.; Poty, F.; Mahler, B.J.; Drogue, C.

    2004-01-01

    Experiments were carried out to investigate the potential for bacterial colonization of different substrates in karst aquifers and the nature of the colonizing bacteria. Laboratory batch experiments were performed using limestone and PVC as substrates, a natural bacterial isolate and a known laboratory strain (Escherichia coli [E. coli]) as inocula, and karst ground water and a synthetic formula as growth media. In parallel, fragments of limestone and granite were submerged in boreholes penetrating two karst aquifers for more than one year; the boreholes are periodically contaminated by enteric bacteria from waste water. Once a month, rock samples were removed and the colonizing bacteria quantified and identified. The batch experiments demonstrated that the natural isolate and E. coli both readily colonized limestone surfaces using karst ground water as the growth medium. In contrast, bacterial colonization of both the limestone and granite substrates, when submerged in the karst, was less intense. More than 300 bacterial strains were isolated over the period sampled, but no temporal pattern in colonization was seen as far as strain, and colonization by E. coli was notably absent, although strains of Salmonella and Citrobacter were each observed once. Samples suspended in boreholes penetrating highly fractured zones were less densely colonized than those in the borehole penetrating a less fractured zone. The results suggest that contamination of karst aquifers by enteric bacteria is unlikely to be persistent. We hypothesize that this may be a result of the high flow velocities found in karst conduits, and of predation of colonizing bacteria by autochthonous zooplankton.

  14. Warfare between Host Immunity and Bacterial Weapons.

    PubMed

    Yu, Manda; Lai, Erh-Min

    2017-01-11

    Bacterial pathogens deploy protein secretion systems to facilitate infection and colonization of their hosts. In this issue of Cell Host & Microbe, Chen et al. (2017) report a new role for a type VI secretion effector in promoting bacterial colonization by preventing inflammasome activation induced by a type III secretion system. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    PubMed

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Progressive response of large intestinal bacterial community and fermentation to the stepwise decrease of dietary crude protein level in growing pigs.

    PubMed

    Peng, Yu; Yu, Kaifan; Mu, Chunlong; Hang, Suqin; Che, Lianqiang; Zhu, Weiyun

    2017-07-01

    The study aimed to determine the effects of reduction of dietary crude protein (CP) level with balanced essential amino acids (EAA) on intestinal bacteria and their metabolites of growing pigs. Forty pigs (initial BW 13.50 ± 0.50 kg, 45 ± 2 days of age) were randomly assigned to four dietary treatments containing CP levels at 20.00% (normal crude protein, NP); 17.16% (medium crude protein, MP); 15.30% (low crude protein, LP); and 13.90% (extremely low crude protein, ELP), respectively. Crystalline AAs were added to meet the EAA requirement of pigs. After 4-week feeding, eight pigs per treatment (n = 8) were randomly selected and slaughtered for sampling of ileal, cecal, and colonic digesta and mucosa. Pigs with moderately reduced CP level had increased bacterial diversity, with the Shannon diversity indices for the colon digesta in the LP group and mucosa in the MP and LP groups significantly (P < 0.05) higher than those in the NP and ELP groups. As the CP level reduces, the Bifidobacterium population were linearly decreased (P < 0.05) both in ileum, cecum, and colon, and the ELP group had the lowest Bifidobacterium population in the cecum and colon, with its value significantly lower than NP and MP groups (P < 0.05). However, the ELP group had the highest population of Escherichia coli in the colon, with its value significantly higher than the LP group (P < 0.05). For bacterial metabolites, as CP level decreased, total short-chain fatty acid (T-SCFA), acetate, and butyrate were linearly increased (linear, P < 0.05) in the ileum, while all SCFAs except formate in the cecum and T-SCFA and acetate in the colon, were linearly decreased (P < 0.05). Reducing CP level led to a linear decrease of microbial crude protein (MCP) in the ileum (P < 0.05) and ammonia in all intestine segments (P < 0.05). The spermidine in cecum and total amines, cadaverine, methylamine, and spermidine in colon were shown a quadratic change (P < 0.05) as dietary CP decreases, with the highest concentration in LP group. These findings suggest that moderate reduction of dietary CP level may benefit large intestinal bacterial community and its fermentation, which was negatively affected by extremely low CP diet.

  17. Physical stress and bacterial colonization

    PubMed Central

    Otto, Michael

    2014-01-01

    Bacterial surface colonizers are subject to a variety of physical stresses. During the colonization of human epithelia such as on the skin or the intestinal mucosa, bacteria mainly have to withstand the mechanical stress of being removed by fluid flow, scraping, or epithelial turnover. To that end, they express a series of molecules to establish firm attachment to the epithelial surface, such as fibrillar protrusions (pili) and surface-anchored proteins that bind to human matrix proteins. In addition, some bacteria – in particular gut and urinary tract pathogens – use internalization by epithelial cells and other methods such as directed inhibition of epithelial turnover to ascertain continued association with the epithelial layer. Furthermore, many bacteria produce multi-layered agglomerations called biofilms with a sticky extracellular matrix, providing additional protection from removal. This review will give an overview over the mechanisms human bacterial colonizers have to withstand physical stresses with a focus on bacterial adhesion. PMID:25212723

  18. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx

    PubMed Central

    Shak, Joshua R.; Vidal, Jorge E.; Klugman, Keith P.

    2013-01-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. PMID:23273566

  19. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier

    PubMed Central

    Rime, Thomas; Hartmann, Martin; Frey, Beat

    2016-01-01

    Rapid disintegration of alpine glaciers has led to the formation of new terrain consisting of mineral debris colonized by microorganisms. Despite the importance of microbial pioneers in triggering the formation of terrestrial ecosystems, their sources (endogenous versus exogenous) and identities remain elusive. We used 454-pyrosequencing to characterize the bacterial and fungal communities in endogenous glacier habitats (ice, sub-, supraglacial sediments and glacier stream leaving the glacier forefront) and in atmospheric deposition (snow, rain and aeolian dust). We compared these microbial communities with those occurring in recently deglaciated barren soils before and after snow melt (snow-covered soil and barren soil). Atmospheric bacteria and fungi were dominated by plant-epiphytic organisms and differed from endogenous glacier habitats and soils indicating that atmospheric input of microorganisms is not a major source of microbial pioneers in newly formed soils. We found, however, that bacterial communities in newly exposed soils resembled those of endogenous habitats, which suggests that bacterial pioneers originating from sub- and supraglacial sediments contributed to the colonization of newly exposed soils. Conversely, fungal communities differed between habitats suggesting a lower dispersal capability than bacteria. Yeasts putatively adapted to cold habitats characteristic of snow and supraglacial sediments were similar, despite the fact that these habitats were not spatially connected. These findings suggest that environmental filtering selects particular fungi in cold habitats. Atmospheric deposition provided important sources of dissolved organic C, nitrate and ammonium. Overall, microbial colonizers triggering soil development in alpine environments mainly originate from endogenous glacier habitats, whereas atmospheric deposition contributes to the establishment of microbial communities by providing sources of C and N. PMID:26771926

  20. Potential sources of microbial colonizers in an initial soil ecosystem after retreat of an alpine glacier.

    PubMed

    Rime, Thomas; Hartmann, Martin; Frey, Beat

    2016-07-01

    Rapid disintegration of alpine glaciers has led to the formation of new terrain consisting of mineral debris colonized by microorganisms. Despite the importance of microbial pioneers in triggering the formation of terrestrial ecosystems, their sources (endogenous versus exogenous) and identities remain elusive. We used 454-pyrosequencing to characterize the bacterial and fungal communities in endogenous glacier habitats (ice, sub-, supraglacial sediments and glacier stream leaving the glacier forefront) and in atmospheric deposition (snow, rain and aeolian dust). We compared these microbial communities with those occurring in recently deglaciated barren soils before and after snow melt (snow-covered soil and barren soil). Atmospheric bacteria and fungi were dominated by plant-epiphytic organisms and differed from endogenous glacier habitats and soils indicating that atmospheric input of microorganisms is not a major source of microbial pioneers in newly formed soils. We found, however, that bacterial communities in newly exposed soils resembled those of endogenous habitats, which suggests that bacterial pioneers originating from sub- and supraglacial sediments contributed to the colonization of newly exposed soils. Conversely, fungal communities differed between habitats suggesting a lower dispersal capability than bacteria. Yeasts putatively adapted to cold habitats characteristic of snow and supraglacial sediments were similar, despite the fact that these habitats were not spatially connected. These findings suggest that environmental filtering selects particular fungi in cold habitats. Atmospheric deposition provided important sources of dissolved organic C, nitrate and ammonium. Overall, microbial colonizers triggering soil development in alpine environments mainly originate from endogenous glacier habitats, whereas atmospheric deposition contributes to the establishment of microbial communities by providing sources of C and N.

  1. Nasopharyngeal bacterial burden and antibiotics: Influence on inflammatory markers and disease severity in infants with respiratory syncytial virus bronchiolitis.

    PubMed

    Suárez-Arrabal, M Carmen; Mella, Cesar; Lopez, Santiago M; Brown, Nicole V; Hall, Mark W; Hammond, Sue; Shiels, William; Groner, Judith; Marcon, Mario; Ramilo, Octavio; Mejias, Asuncion

    2015-10-01

    Animal studies suggest that RSV increases nasopharyngeal (NP) bacterial colonization facilitating bacterial infections. We investigated the influence of antibiotic treatment and colonization with potentially pathogenic bacteria on inflammatory markers and disease severity in RSV-infected in infants. Healthy young infants hospitalized with RSV bronchiolitis (n = 136) and age-matched healthy controls (n = 23) were enrolled and NP samples cultured for potentially pathogenic bacteria including: Gram-positive bacteria (GPB): Staphylococcus aureus, Streptococcus pneumoniae, β-hemolytic Streptococcus; and Gram-negative bacteria (GNB): Moraxella catarrhalis and Haemophilus influenzae. Clinical parameters and plasma IL-8, IL-6 and TNF-α concentrations were compared according to the bacterial class and antibiotic treatment. Antibiotic treatment decreased by 10-fold NP bacterial recovery. Eighty-one percent of RSV infants who did not receive antibiotics before sample collection were colonized with pathogenic bacteria. Overall, GNB were identified in 21% of patients versus 4% of controls who were mostly colonized with GPB. Additionally, in RSV patients NP white blood cell counts (p = 0.026), and blood neutrophils (p = 0.02) were higher in those colonized with potentially pathogenic bacteria versus respiratory flora. RSV patients colonized with GNB had higher plasma IL-8 (p = 0.01) and IL-6 (p < 0.01) concentrations than controls, and required longer duration of oxygen (p = 0.049). Infants with RSV bronchiolitis colonized with potentially pathogenic bacteria had increased numbers of mucosal and systemic inflammatory cells. Specifically, colonization with GNB was associated with higher concentrations of proinflammatory cytokines and a trend towards increased disease severity. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  2. Different Types of Dietary Fibers Trigger Specific Alterations in Composition and Predicted Functions of Colonic Bacterial Communities in BALB/c Mice.

    PubMed

    Luo, Yuheng; Zhang, Ling; Li, Hua; Smidt, Hauke; Wright, André-Denis G; Zhang, Keying; Ding, Xuemei; Zeng, Qiufeng; Bai, Shiping; Wang, Jianping; Li, Jian; Zheng, Ping; Tian, Gang; Cai, Jingyi; Chen, Daiwen

    2017-01-01

    Soluble dietary fibers (SDF) are fermented more than insoluble dietary fibers (IDF), but their effect on colonic bacterial community structure and function remains unclear. Thus, bacterial community composition and function in the colon of BALB/c mice ( n = 7) fed with a high level (approximately 20%) of typical SDF, oat-derived β-glucan (G), microcrystalline cellulose (M) as IDF, or their mixture (GM), were compared. Mice in group G showed a lowest average feed intake ( p < 0.05) but no change on the average body weight gain ( p > 0.05) compared to other groups, which may be associated with the highest concentration of colonic propionate ( p < 0.05) in these mice. The bacterial α-diversity of group G was significantly lower than other groups ( p < 0.01). In group G, the relative abundance of bacteria belonging to the phylum Bacteroidetes was significantly increased, whereas bacteria from the phylum Firmicutes were significantly decreased ( p < 0.01). The core bacteria for different treatments showed distinct differences. Bacteroides , Dehalobacterium , and Prevotella , including known acetogens and carbohydrate fermenting organisms, were significantly increased in relative abundance in group G. In contrast, Adlercreutzia , Odoribacter , and Coprococcus were significantly more abundant in group M, whereas Oscillospira , Desulfovibrio , and Ruminoccaceae , typical hydrogenotrophs equipped with multiple carbohydrate active enzymes, were remarkably enriched in group GM ( p < 0.05). The relative abundance of bacteria from the three classes of Proteobacteria , Betaproteobacteria , Gammaproteobacteria (including Enterobacteriaceae ) and Deltaproteobacteria , were significantly more abundant in group G, indicating a higher ratio of conditional pathogenic bacteria in mice fed dietary β-glucan in current study. The predicted colonic microbial function showed an enrichment of "Energy metabolism" and "Carbohydrate metabolism" pathways in mice from group G and M, suggesting that the altered bacterial community in the colon of mice with the two dietary fibers probably resulted in a more efficient degradation of dietary polysaccharides. Our result suggests that the influence of dietary β-glucan (SDF) on colonic bacterial community of mice was more extensively than MCC (IDF). Co-supplementation of the two fibers may help to increase the bacterial diversity and reduce the conditional pathogens in the colon of mice.

  3. Genome-wide identification of bacterial plant colonization genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Benjamin J.; Feltcher, Meghan E.; Waters, Robert J.

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44more » other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Here, our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.« less

  4. Genome-wide identification of bacterial plant colonization genes

    DOE PAGES

    Cole, Benjamin J.; Feltcher, Meghan E.; Waters, Robert J.; ...

    2017-09-22

    Diverse soil-resident bacteria can contribute to plant growth and health, but the molecular mechanisms enabling them to effectively colonize their plant hosts remain poorly understood. We used randomly barcoded transposon mutagenesis sequencing (RB-TnSeq) in Pseudomonas simiae, a model root-colonizing bacterium, to establish a genome-wide map of bacterial genes required for colonization of the Arabidopsis thaliana root system. We identified 115 genes (2% of all P. simiae genes) with functions that are required for maximal competitive colonization of the root system. Among the genes we identified were some with obvious colonization-related roles in motility and carbon metabolism, as well as 44more » other genes that had no or vague functional predictions. Independent validation assays of individual genes confirmed colonization functions for 20 of 22 (91%) cases tested. To further characterize genes identified by our screen, we compared the functional contributions of P. simiae genes to growth in 90 distinct in vitro conditions by RB-TnSeq, highlighting specific metabolic functions associated with root colonization genes. Here, our analysis of bacterial genes by sequence-driven saturation mutagenesis revealed a genome-wide map of the genetic determinants of plant root colonization and offers a starting point for targeted improvement of the colonization capabilities of plant-beneficial microbes.« less

  5. Gamma-cyclodextrin/usnic acid thin film fabricated by MAPLE for improving the resistance of medical surfaces to Staphylococcus aureus colonization

    NASA Astrophysics Data System (ADS)

    Iordache, Florin; Grumezescu, Valentina; Grumezescu, Alexandru Mihai; Curuţiu, Carmen; Diţu, Lia Mara; Socol, Gabriel; Ficai, Anton; Truşcă, Roxana; Holban, Alina Maria

    2015-05-01

    This study reports on the successful deposition of γ-cyclodextrin/usnic acid (γCD/UA) thin film by Matrix Assisted Pulsed Laser Evaporation (MAPLE) as anti-adherent coating on medical surfaces against microbial colonization. The obtained results demonstrate that these bioactive thin films inhibit Staphylococcus aureus biofilm formation at all stages, starting with their initiation. The antibiofilm effect was constant along the bacterial incubation time. Furthermore, the γCD/UA coatings show a great biocompatibility which means that this material is suitable for the development of modern medical devices with antimicrobial properties.

  6. Taking Root: Enduring Effect of Rhizosphere Bacterial Colonization in Mangroves

    PubMed Central

    Pinto, Fernando N.; Egas, Conceição; Almeida, Adelaide; Cunha, Angela; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia

    2010-01-01

    Background Mangrove forests are of global ecological and economic importance, but are also one of the world's most threatened ecosystems. Here we present a case study examining the influence of the rhizosphere on the structural composition and diversity of mangrove bacterial communities and the implications for mangrove reforestation approaches using nursery-raised plants. Methodology/Principal Findings A barcoded pyrosequencing approach was used to assess bacterial diversity in the rhizosphere of plants in a nursery setting, nursery-raised transplants and native (non-transplanted) plants in the same mangrove habitat. In addition to this, we also assessed bacterial composition in the bulk sediment in order to ascertain if the roots of mangrove plants affect sediment bacterial composition. We found that mangrove roots appear to influence bacterial abundance and composition in the rhizosphere. Due to the sheer abundance of roots in mangrove habitat, such an effect can have an important impact on the maintenance of bacterial guilds involved in nutrient cycling and other key ecosystem functions. Surprisingly, we also noted a marked impact of initial nursery conditions on the rhizosphere bacterial composition of replanted mangrove trees. This result is intriguing because mangroves are periodically inundated with seawater and represent a highly dynamic environment compared to the more controlled nursery environment. Conclusions/Significance In as far as microbial diversity and composition influences plant growth and health, this study indicates that nursery conditions and early microbial colonization patterns of the replants are key factors that should be considered during reforestation projects. In addition to this, our results provide information on the role of the mangrove rhizosphere as a habitat for bacteria from estuarine sediments. PMID:21124923

  7. Transit time affects the community stability of Lactobacillus and Bifidobacterium species in an in vitro model of human colonic microbiotia.

    PubMed

    Rodes, Laetitia; Paul, Arghya; Coussa-Charley, Michael; Al-Salami, Hani; Tomaro-Duchesneau, Catherine; Fakhoury, Marc; Prakash, Satya

    2011-12-01

    Retention time, which is analogous to transit time, is an index for bacterial stability in the intestine. Its consideration is of particular importance to optimize the delivery of probiotic bacteria in order to improve treatment efficacy. This study aims to investigate the effect of retention time on Lactobacilli and Bifidobacteria stability using an established in vitro human colon model. Three retention times were used: 72, 96, and 144 h. The effect of retention time on cell viability of different bacterial populations was analyzed with bacterial plate counts and PCR. The proportions of intestinal Bifidobacteria, Lactobacilli, Enterococci, Staphylococci and Clostridia populations, analyzed by plate counts, were found to be the same as that in human colonic microbiota. Retention time in the human colon affected the stability of Lactobacilli and Bifidobacteria communities, with maximum stability observed at 144 h. Therefore, retention time is an important parameter that influences bacterial stability in the colonic microbiota. Future clinical studies on probiotic bacteria formulations should take into consideration gastrointestinal transit parameters to improve treatment efficacy.

  8. Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model.

    PubMed

    Rezzonico, Enea; Mestdagh, Renaud; Delley, Michèle; Combremont, Séverine; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy; Bibiloni, Rodrigo

    2011-01-01

    Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host's gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents.

  9. Development of the initial diatom microfouling layer on antifouling and fouling-release surfaces in temperate and tropical Australia.

    PubMed

    Molino, Paul J; Campbell, Ewan; Wetherbee, Richard

    2009-11-01

    Diatoms are a major component of the slime layers that form on artificial surfaces in marine environments. In this article, the role played by diatoms during the pioneering stages of colonization of three marine antifouling (AF) coatings, viz Intersmooth 360, Super Yacht 800 and a fouling-release (FR) coating Intersleek 700, was investigated. The study was conducted over three distinct seasons in two very different marine environments in Australia, ie temperate Williamstown, Victoria and tropical Cairns, Queensland. Diatom fouling occurred more rapidly on the FR coating Intersleek 700, compared to both biocidal AF paints. However, colonization by diatoms on all three coatings was generally slow during the 16-day study. Benthic diatoms do not subsist by floating around in the water column, rather they only gain the opportunity to colonize new surfaces when they either voluntarily release or are displaced from their benthic habitat, thereafter entering the water column where the opportunity to adhere to a new surface presents itself. However, once settled, fouling diatoms grow exponentially from the site of attachment, spreading out until they populate large areas of the surface. This mode of surface colonization correlates more with an 'infection' type, epidemiology model, a mechanism that accounts for the colonization of significant regions of the coating surface from a single fouling diatom cell, forming 'clonal patches'. This is in comparison to the bacterial colonization of the surface, which exhibits far more rapid recruitment and growth of cells on the substratum surface. Therefore, it is hypothesized that fouling diatoms may be characterized more by their ability to adhere and grow on surfaces already modified by bacterial biofilms, rather than on their strength of adhesion. Cell morphology and the ability to avoid shear may also be an important factor.

  10. Bacterial colonization of penile prosthesis after its withdrawal due to mechanical failure.

    PubMed

    Etcheverry-Giadrosich, B; Torremadé-Barreda, J; Pujol-Galarza, L; Vigués-Julià, F

    2017-12-01

    Prosthetic surgery to treat erectile dysfunction has a risk of infection of up to 3%, but this risk can increase to 18% when the surgery involves replacement. This increased risk of infection is attributed to the bacterial colonization of the prosthesis during the initial surgery. To analyse the presence of germs in the prosthesis that is withdrawn due to mechanical failure (not infection), as well as the surgical results and its progression. A retrospective study was conducted of all replacements performed between 2013 and 2016 at a single centre. We analysed demographic data, prior type of prosthesis, surgical procedure, microbiological study and follow-up. Of the 12 replacement procedures, a microbiological study of the extracted prosthesis was performed in a total of 10 cases. Of the 10 replacements, the cultures were positive in 5 cases (50%). Staphylococcus epidermidis was the most prevalent germ. All patients underwent a flushing procedure, and an antibiotic-coated prosthesis was implanted. We recorded no infections with the new implanted device after a mean follow-up of 27.33 months (SD 4.13; 95% CI 18.22-36.43). In our study population, we observed a high rate of bacterial colonization of the prostheses that were replaced due to mechanical failure. When a flushing procedure was performed during the replacement surgery, there were no more infections than those reported in treatment-naive cases. Copyright © 2017 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.

    PubMed

    Davis, Elisabeth M; Li, Dongyang; Shahrooei, Mohammad; Yu, Bin; Muruve, Daniel; Irvin, Randall T

    2013-04-01

    Three protease-resistant bioorganic 304 stainless steel surfaces were created through the reaction of synthetic peptides consisting of the D-enantiomeric isomer (D-K122-4), the retro-inverso D-enantiomeric isomer (RI-K122-4), and a combination of the two peptides (D+RI) of the Pseudomonas aeruginosa PilA receptor binding domain with steel surfaces. The peptides used to produce the new materials differ only in handedness of their three-dimensional structure, but they reacted with the steel to yield materials that differed in their surface electron work function (EWF) while displaying an identical chemical composition and equivalent surface adhesive force properties. These surfaces allowed for an assessment of the relative role of surface EWF in initial biofilm formation. We examined the ability of various bacteria (selected strains of Listeria monocytogenes, L. innocua, Staphylococcus aureus and S. epidermidis) to initiate biofilm formation. The D-K1224 generated surface displayed the lowest EWF (classically associated with greater molecular interactions and more extensive biofilm formation) but was observed to be least effectively colonized by bacteria (>50% decrease in bacterial adherence of all strains). The highest surface EWF with the lowest surface free energy (RI-K122-4 generated) was more extensively colonized by bacteria, with the binding of some strains being equivalent to unmodified steel. The D+RI generated surface was least effective in minimizing biofilm formation, where some strains displayed enhanced bacterial colonization. Fluorescent microscopy revealed that the D and RI peptides displayed similar but clearly different binding patterns, suggesting that the peptides recognized different sites on the steel, and that differential binding of the peptides to the steel surfaces influences the binding of different bacterial strains and species. We have demonstrated that stainless steel surfaces can be easily modified by peptides to generate surfaces with new physiochemical properties. The D-K122-4-modified surface substantially decreases biofilm formation compared to the RI-K122-4 and D+RI surfaces. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Antibody blocks acquisition of bacterial colonization through agglutination

    PubMed Central

    Roche, A. M.; Richard, A. L.; Rahkola, J. T.; Janoff, E. N.; Weiser, J. N.

    2014-01-01

    Invasive infection often begins with asymptomatic colonization of mucosal surfaces. A murine model of bacterial colonization with Streptococcus pneumoniae was used to study the mechanism for mucosal protection by immunoglobulin. In previously colonized immune mice, bacteria were rapidly sequestered within large aggregates in the nasal lumen. To further examine the role of bacterial agglutination in protection by specific antibodies, mice were passively immunized with IgG purified from anti-pneumococcal sera or pneumococcal type-specific monoclonal human IgA (hIgA1 or hIgA2). Systemically-delivered IgG accessed the mucosal surface and blocked acquisition of colonization and transmission between littermates. Optimal protection by IgG was independent of Fc fragment and complement and, therefore, did not involve an opsonophagocytic mechanism. Enzymatic digestion or reduction of IgG prior to administration showed that protection required divalent binding that maintained its agglutinating effect. Divalent hIgA1 is cleaved by the pneumococcal member of a family of bacterial proteases that generate monovalent Fabα fragments. Thus, passive immunization with hIgA1 blocked colonization by an IgA1-protease deficient mutant (agglutinated), but not the protease-producing wild-type parent (not agglutinated), whereas protease-resistant hIgA2 agglutinated and blocked colonization by both. Our findings highlight the importance of agglutinating antibodies in mucosal defense and reveal how successful pathogens evade this effect. PMID:24962092

  13. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection.

    PubMed

    Xu, Qingfu; Wischmeyer, Jareth; Gonzalez, Eduardo; Pichichero, Michael E

    2017-07-01

    We sought to understand how polymicrobial colonization varies during health, viral upper respiratory infection (URI) and acute upper respiratory bacterial infection to understand differences in infection-prone vs. non-prone patients. Nasopharyngeal (NP) samples were collected from 74 acute otitis media (AOM) infection-prone and 754 non-prone children during 2094 healthy visits, 673 viral URI visits and 631 AOM visits. Three otopathogens Streptococcus pneumoniae (Spn), Nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis (Mcat) were identified by culture. NP colonization rates of multiple otopathogens during health were significantly lower than during viral URI, and during URI they were lower than at onset of upper respiratory bacterial infection in both AOM infection-prone and non-prone children. AOM infection-prone children had higher polymicrobial colonization rates than non-prone children during health, viral URI and AOM. Polymicrobial colonization rates of AOM infection-prone children during health were equivalent to that of non-prone children during viral URI, and during viral URI were equivalent to that of non-prone during AOM infection. Spn colonization was positively associated with NTHi and Mcat colonization during health, but negatively during AOM infection. The infection-prone patients more frequently have multiple potential bacterial pathogens in the NP than the non-prone patients. Polymicrobial interaction in the NP differs during health and at onset of infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  14. The effect of a probiotic drink with Lactobacillus plantarum 299v on the bacterial composition in faeces and mucosal biopsies of rectum and ascending colon.

    PubMed

    Goossens, D A M; Jonkers, D M A E; Russel, M G V M; Stobberingh, E E; Stockbrügger, R W

    2006-01-15

    Studies on probiotics mainly base their results on faecal samples, which may not represent the situation in the mucosa of distal and proximal colon. In a placebo-controlled study, to assess the effect of Lactobacillus plantarum 299v on the bacterial composition of faecal vs. mucosal samples. Twenty-nine patients undergoing colonoscopic examination for polyps consumed a twice-daily drink with or without L. plantarum 299v (10(11) CFU/day) for 2 weeks. Faecal samples were collected before and after consumption. During colonoscopy, biopsies were collected from the ascending colon and rectum. The faecal and mucosal bacterial concentrations and prevalence were determined. L. plantarum 299v significantly increased the concentration of faecal lactic acid bacteria, lactobacilli and clostridia, and was identified in two rectal biopsies but not in the ascending colon biopsies of probiotic-treated subjects. Concentrations and prevalence in ascending colon and rectum biopsies were comparable, but were significantly lower compared with faecal samples. After probiotic consumption, a significant increase in the faecal concentration of lactobacilli was found but concentrations were low in biopsies. The bacterial composition in biopsies of the ascending colon and rectum did not differ based on culture techniques. To further elucidate the modes of action of probiotics, it might be necessary to study differences in colonization with molecular techniques.

  15. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx.

    PubMed

    Shak, Joshua R; Vidal, Jorge E; Klugman, Keith P

    2013-03-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Using Bayesian modelling to investigate factors governing antibiotic-induced Candida albicans colonization of the GI tract

    PubMed Central

    Shankar, Jyoti; Solis, Norma V.; Mounaud, Stephanie; Szpakowski, Sebastian; Liu, Hong; Losada, Liliana; Nierman, William C.; Filler, Scott G.

    2015-01-01

    Receipt of broad-spectrum antibiotics enhances Candida albicans colonization of the GI tract, a risk factor for haematogenously-disseminated candidiasis. To understand how antibiotics influence C. albicans colonization, we treated mice orally with vancomycin or a combination of penicillin, streptomycin, and gentamicin (PSG) and then inoculated them with C. albicans by gavage. Only PSG treatment resulted in sustained, high-level GI colonization with C. albicans. Furthermore, PSG reduced bacterial diversity in the colon much more than vancomycin. Both antibiotic regimens significantly reduced IL-17A, IL-21, IL-22 and IFN-γ mRNA levels in the terminal ileum but had limited effect on the GI fungal microbiome. Through a series of models that employed Bayesian model averaging, we investigated the associations between antibiotic treatment, GI microbiota, and host immune response and their collective impact on C. albicans colonization. Our analysis revealed that bacterial genera were typically associated with either C. albicans colonization or altered cytokine expression but not with both. The only exception was Veillonella, which was associated with both increased C. albicans colonization and reduced IL-21 expression. Overall, antibiotic-induced changes in the bacterial microbiome were much more consistent determinants of C. albicans colonization than either the GI fungal microbiota or the GI immune response. PMID:25644850

  17. Demonstration of bacterial biofilms in culture-negative silicone stent and jones tube.

    PubMed

    Parsa, Kami; Schaudinn, Christoph; Gorur, Amita; Sedghizadeh, Parish P; Johnson, Thomas; Tse, David T; Costerton, John W

    2010-01-01

    To demonstrate the presence of bacterial biofilms on a dacryocystorhinostomy silicone stent and a Jones tube. One dacryocystorhinostomy silicone stent and one Jones tube were removed from 2 patients who presented with an infection of their respective nasolacrimal system. Cultures were obtained, and the implants were processed for scanning electron microscopy and confocal laser scanning microscopy, advanced microscopic methods that are applicable for detection of uncultivable biofilm organisms. Routine bacterial cultures revealed no growth, but bacterial biofilms on outer and inner surfaces of both implants were confirmed by advanced microscopic techniques. To the authors' knowledge, this is the first article that documents the presence of biofilms on a Crawford stent or a Jones tube on patients who presented with infections involving the nasolacrimal system. Although initial cultures revealed absence of any bacterial growth, confocal laser scanning microscopy and scanning electron microscopy documented bacterial colonization. Clinicians should consider the role of biofilms and the limitation of our standard culturing techniques while treating patients with device- or implant-related infections.

  18. Colonization of fish skin is vital for Vibrio anguillarum to cause disease.

    PubMed

    Weber, Barbara; Chen, Chang; Milton, Debra L

    2010-02-01

    Vibrio anguillarum causes a fatal haemorrhagic septicaemia in marine fish. During initial stages of infection, host surfaces are colonized; however, few virulence factors required for colonization of the host are identified. In this study, in vivo bioluminescent imaging was used to analyse directly the colonization of the whole rainbow trout animal by V. anguillarum. The wild type rapidly colonized both the skin and the intestines by 24 h; however, the bacterial numbers on the skin were significantly higher than in the intestines indicating that skin colonization may be important for disease to occur. Mutants defective for the anguibactin iron uptake system, exopolysaccharide transport, or Hfq, an RNA chaperone, were attenuated for virulence, did not colonize the skin, and penetrated skin mucus less efficiently than the wild type. These mutants, however, did colonize the intestines and were as resistant to 2% bile salts as is the wild type. Moreover, exopolysaccharide mutants were significantly more sensitive to lysozyme and antimicrobial peptides, while the Hfq and anguibactin mutants were sensitive to lysozyme compared with the wild type. Vibrio anguillarum encodes several mechanisms to protect against antimicrobial components of skin mucus enabling an amazingly abundant growth on the skin enhancing its disease opportunities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. Phase 2a study assessing colonization efficiency, safety, and acceptability of Lactobacillus crispatus CTV-05 in women with bacterial vaginosis.

    PubMed

    Hemmerling, Anke; Harrison, William; Schroeder, Adrienne; Park, Jeanna; Korn, Abner; Shiboski, Stephen; Foster-Rosales, Anne; Cohen, Craig R

    2010-12-01

    Bacterial vaginosis (BV) is a common vaginal infection caused by a lack of endogenous lactobacilli and overgrowth of pathogens that frequently recurs following antibiotic treatment. A phase 2a study assessed colonization efficiency, safety, tolerability, and acceptability of Lactobacillus crispatus CTV-05 (LACTIN-V) administered by a vaginal applicator. Twenty-four women with BV were randomized in a 3:1 ratio of active product to placebo. Participants used LACTIN-V at 2 × 10 colony-forming units (cfu)/dose or placebo for 5 initial consecutive days, followed by a weekly application over 2 weeks. They returned for follow-up on Days 10 and 28. Sixty-one percent of the 18 women randomized to the LACTIN-V group were colonized with L. crispatus CTV-05 at Day 10 or Day 28. Among LACTIN-V users with complete adherence to the study regimen, 78% were colonized at Day 10 or Day 28. Of the 120 adverse events (AEs) that occurred, 108 (90%) and 12 (10%) were of mild and moderate severity, respectively. AEs were evenly distributed between the LACTIN-V and placebo group. Of the total AEs, 93 (78%) were genitourinary in origin. The most common genitourinary AEs included vaginal discharge (46%), abdominal pain (46%), dysuria (21%), pollakiuria (21%), vaginal odor (21%), and genital pruritus (17%). No grade 3 or 4 AEs or serious AEs occurred and no deep epithelial disruption was seen during colposcopic evaluation. The product was well tolerated and accepted. LACTIN-V colonized well, and was safe and acceptable in women treated for BV.

  20. Superantigens Modulate Bacterial Density during Staphylococcus aureus Nasal Colonization

    PubMed Central

    Xu, Stacey X.; Kasper, Katherine J.; Zeppa, Joseph J.; McCormick, John K.

    2015-01-01

    Superantigens (SAgs) are potent microbial toxins that function to activate large numbers of T cells in a T cell receptor (TCR) Vβ-specific manner, resulting in excessive immune system activation. Staphylococcus aureus possesses a large repertoire of distinct SAgs, and in the context of host-pathogen interactions, staphylococcal SAg research has focused primarily on the role of these toxins in severe and invasive diseases. However, the contribution of SAgs to colonization by S. aureus remains unclear. We developed a two-week nasal colonization model using SAg-sensitive transgenic mice expressing HLA-DR4, and evaluated the role of SAgs using two well-studied stains of S. aureus. S. aureus Newman produces relatively low levels of staphylococcal enterotoxin A (SEA), and although we did not detect significant TCR-Vβ specific changes during wild-type S. aureus Newman colonization, S. aureus Newman Δsea established transiently higher bacterial loads in the nose. S. aureus COL produces relatively high levels of staphylococcal enterotoxin B (SEB), and colonization with wild-type S. aureus COL resulted in clear Vβ8-specific T cell skewing responses. S. aureus COL Δseb established consistently higher bacterial loads in the nose. These data suggest that staphylococcal SAgs may be involved in regulating bacterial densities during nasal colonization. PMID:26008236

  1. Bacterial species colonizing the vagina of healthy women are not associated with race.

    PubMed

    Beamer, May A; Austin, Michele N; Avolia, Hilary A; Meyn, Leslie A; Bunge, Katherine E; Hillier, Sharon L

    2017-06-01

    The vaginal microbiota of 36 white versus 25 black asymptomatic women were compared using both cultivation-dependent and -independent identification. Significant differences by race were found in colonization and density of bacterial species. However, exclusion of 12 women with bacterial vaginosis by Nugent criteria resulted in no significant differences by race. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Gauze Impregnated With Quaternary Ammonium Salt Reduces Bacterial Colonization of Surgical Drains After Breast Reconstruction.

    PubMed

    Strong, Amy L; Wolfe, Emily T; Shank, Nina; Chaffin, Abigail E; Jansen, David A

    2018-06-01

    Surgical site infection after breast reconstruction is associated with increased length of hospital stay, readmission rates, cost, morbidity, and mortality. Identifying methods to reduce surgical site infection without the use of antibiotics may be beneficial at reducing antimicrobial resistance, reserving the use of antibiotics for more severe cases. Quaternary ammonium salts have previously been shown to be a safe and effective antimicrobial agent in the setting of in vitro and in vivo animal experiments. A retrospective study was conducted to investigate the antimicrobial properties of a quaternary ammonium salt, 3-trimethoxysilyl propyldimethyloctadecyl ammonium chloride (QAS-3PAC; Bio-spear), at reducing surgical drain site colonization and infection after breast reconstruction (deep inferior epigastric perforator flap reconstruction or tissue expander placement). Twenty patients were enrolled, with 14 surgical drains covered with nonimpregnated gauze and 17 surgical drains covered with QAS-3PAC impregnated gauze, for the purposes of investigating bacterial colonization. Antibiotic sensitivity analysis was also conducted when bacterial cultures were positive. The overall incidence of bacterial colonization of surgical drains was lower in the treatment group compared with the control group (17.6% vs 64.3%, respectively; P = 0.008). QAS-3PAC impregnated gauze reduced the incidence of bacterial colonization of surgical drains during the first (0.0% vs 33.3%) and second (33.3% vs 87.5%; P = 0.04) postoperative week. Furthermore, no enhanced antibiotic resistance was noted on drains treated with QAS-3PAC impregnated gauze. The results of this study suggest that QAS-3PAC impregnated gauze applied over surgical drains may be an effective method for reducing the incidence of bacterial colonization.

  3. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    PubMed

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  4. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    NASA Astrophysics Data System (ADS)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  5. Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion.

    PubMed

    Lovewell, Rustin R; Collins, Ryan M; Acker, Julie L; O'Toole, George A; Wargo, Matthew J; Berwin, Brent

    2011-09-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.

  6. Step-Wise Loss of Bacterial Flagellar Torsion Confers Progressive Phagocytic Evasion

    PubMed Central

    Lovewell, Rustin R.; Collins, Ryan M.; Acker, Julie L.; O'Toole, George A.; Wargo, Matthew J.; Berwin, Brent

    2011-01-01

    Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria. PMID:21949654

  7. Reduced bacterial growth and increased osteoblast proliferation on titanium with a nanophase TiO2 surface treatment.

    PubMed

    Bhardwaj, Garima; Webster, Thomas J

    2017-01-01

    The attachment and initial growth of bacteria on an implant surface dictates the progression of infection. Treatment often requires aggressive antibiotic use, which does not always work. To overcome the difficulties faced in systemic and local antibiotic delivery, scientists have forayed into using alternative techniques, which includes implant surface modifications that prevent initial bacterial adhesion, foreign body formation, and may offer a controlled inflammatory response. The current study focused on using electrophoretic deposition to treat titanium with a nanophase titanium dioxide surface texture to reduce bacterial adhesion and growth. Two distinct nanotopographies were analyzed, Ti-160, an antimicrobial surface designed to greatly reduce bacterial colonization, and Ti-120, an antimicrobial surface with a topography that upregulates osteoblast activity while reducing bacterial colonization; the number following Ti in the nomenclature represents the atomic force microscopy root-mean-square roughness value in nanometers. There was a 95.6% reduction in Staphylococcus aureus (gram-positive bacteria) for the Ti-160-treated surfaces compared to the untreated titanium alloy controls. There was a 90.2% reduction in Pseudomonas aeruginosa (gram-negative bacteria) on Ti-160-treated surfaces compared to controls. For ampicillin-resistant Escherichia coli , there was an 81.1% reduction on the Ti-160-treated surfaces compared to controls. Similarly for surfaces treated with Ti-120, there was an 86.8% reduction in S. aureus , an 82.1% reduction in P. aeruginosa , and a 48.6% reduction in ampicillin-resistant E. coli . The Ti-120 also displayed a 120.7% increase at day 3 and a 168.7% increase at day 5 of osteoblast proliferation over standard titanium alloy control surfaces. Compared to untreated surfaces, Ti-160-treated titanium surfaces demonstrated a statistically significant 1 log reduction in S. aureus and P. aeruginosa , whereas Ti-120 provided an additional increase in osteoblast proliferation for up to 5 days, criteria, which should be further studied for a wide range of orthopedic applications.

  8. Effects of Glucosinolates and Flavonoids on Colonization of the Roots of Brassica napus by Azorhizobium caulinodans ORS571

    PubMed Central

    O'Callaghan, Kenneth J.; Stone, Philip J.; Hu, Xiaojia; Griffiths, D. Wynne; Davey, Michael R.; Cocking, Edward C.

    2000-01-01

    Plants of Brassica napus were assessed quantitatively for their susceptibility to lateral root crack colonization by Azorhizobium caulinodans ORS571(pXLGD4) (a rhizobial strain carrying the lacZ reporter gene) and for the concentration of glucosinolates in their roots by high-pressure liquid chromatography (HPLC). High- and low-glucosinolate-seed (HGS and LGS) varieties exhibited a relatively low and high percentage of colonized lateral roots, respectively. HPLC showed that roots of HGS plants contained a higher concentration of glucosinolates than roots of LGS plants. One LGS variety showing fewer colonized lateral roots than other LGS varieties contained a higher concentration of glucosinolates than other LGS plants. Inoculated HGS plants treated with the flavonoid naringenin showed significantly more colonization than untreated HGS plants. This increase was not mediated by a naringenin-induced lowering of the glucosinolate content of HGS plant roots, nor did naringenin induce bacterial resistance to glucosinolates or increase the growth of bacteria. The erucic acid content of seed did not appear to influence colonization by azorhizobia. Frequently, leaf assays are used to study glucosinolates and plant defense; this study provides data on glucosinolates and bacterial colonization in roots and describes a bacterial reporter gene assay tailored easily to the study of ecologically important phytochemicals that influence bacterial colonization. These data also form a basis for future assessments of the benefits to oilseed rape plants of interaction with plant growth-promoting bacteria, especially diazotrophic bacteria potentially able to extend the benefits of nitrogen fixation to nonlegumes. PMID:10788398

  9. Causes for massive bacterial colonization on mucosal membranes during infectious mononucleosis: implications for acute otitis media.

    PubMed

    Stenfors, Lars-Eric; Bye, Helga-Marie; Räisänen, Simo

    2002-09-24

    A common complication of virus-induced upper respiratory tract infections is acute otitis media caused by bacterial pathogens. Simultaneously, increased bacterial colonization in the nasopharynx occurs. Our intention in this study was to identify the causes of this increased colonization of bacteria by evaluating their coating with the antibacterial substances lysozyme, lactoferrin and immunoglobulins IgG, S-IgA and IgM and their ability to penetrate epithelial cells during infectious mononucleosis (IM) caused by Epstein-Barr virus. Cellular samples were collected from the oropharynx of 21 patients (16 males, five females; age range 10-21 years) with current IM. An immunocytochemical assay using gold-labelled antiserum to human lysozyme, lactoferrin, IgG, S-IgA and IgM followed by gold particle and epithelial cell tracing in the transmission electron microscope. A significant reduction in bacterial coating with IgG (P<0.05) and S-IgA (P<0.01) was noted, whereas there was a significant increase in coating with lactoferrin (P<0.01) and IgM (P<0.01). No significant change in lysozyme coating of the bacteria was noted, compared with healthy controls. Bacterial penetration into epithelial cells was seen particularly in patients culture-positive for beta-haemolytic streptococci. Reduced bacterial coating with IgG and S-IgA immunoglobulins, combined with bacterial penetration into epithelial cells, may exacerbate the bacterial colonization on oropharyngeal mucosal membranes observed during IM.

  10. Different Types of Dietary Fibers Trigger Specific Alterations in Composition and Predicted Functions of Colonic Bacterial Communities in BALB/c Mice

    PubMed Central

    Luo, Yuheng; Zhang, Ling; Li, Hua; Smidt, Hauke; Wright, André-Denis G.; Zhang, Keying; Ding, Xuemei; Zeng, Qiufeng; Bai, Shiping; Wang, Jianping; Li, Jian; Zheng, Ping; Tian, Gang; Cai, Jingyi; Chen, Daiwen

    2017-01-01

    Soluble dietary fibers (SDF) are fermented more than insoluble dietary fibers (IDF), but their effect on colonic bacterial community structure and function remains unclear. Thus, bacterial community composition and function in the colon of BALB/c mice (n = 7) fed with a high level (approximately 20%) of typical SDF, oat-derived β-glucan (G), microcrystalline cellulose (M) as IDF, or their mixture (GM), were compared. Mice in group G showed a lowest average feed intake (p < 0.05) but no change on the average body weight gain (p > 0.05) compared to other groups, which may be associated with the highest concentration of colonic propionate (p < 0.05) in these mice. The bacterial α-diversity of group G was significantly lower than other groups (p < 0.01). In group G, the relative abundance of bacteria belonging to the phylum Bacteroidetes was significantly increased, whereas bacteria from the phylum Firmicutes were significantly decreased (p < 0.01). The core bacteria for different treatments showed distinct differences. Bacteroides, Dehalobacterium, and Prevotella, including known acetogens and carbohydrate fermenting organisms, were significantly increased in relative abundance in group G. In contrast, Adlercreutzia, Odoribacter, and Coprococcus were significantly more abundant in group M, whereas Oscillospira, Desulfovibrio, and Ruminoccaceae, typical hydrogenotrophs equipped with multiple carbohydrate active enzymes, were remarkably enriched in group GM (p < 0.05). The relative abundance of bacteria from the three classes of Proteobacteria, Betaproteobacteria, Gammaproteobacteria (including Enterobacteriaceae) and Deltaproteobacteria, were significantly more abundant in group G, indicating a higher ratio of conditional pathogenic bacteria in mice fed dietary β-glucan in current study. The predicted colonic microbial function showed an enrichment of “Energy metabolism” and “Carbohydrate metabolism” pathways in mice from group G and M, suggesting that the altered bacterial community in the colon of mice with the two dietary fibers probably resulted in a more efficient degradation of dietary polysaccharides. Our result suggests that the influence of dietary β-glucan (SDF) on colonic bacterial community of mice was more extensively than MCC (IDF). Co-supplementation of the two fibers may help to increase the bacterial diversity and reduce the conditional pathogens in the colon of mice. PMID:28611761

  11. Differences in Bacterial Colonization and Biofilm Formation Property of Uropathogens between the Two most Commonly used Indwelling Urinary Catheters.

    PubMed

    Verma, Amit; Bhani, Deepa; Tomar, Vinay; Bachhiwal, Rekha; Yadav, Shersingh

    2016-06-01

    Catheter Associated Urinary Tract Infections (CAUTI) are one of the most common cause of nosocomial infections. Many bacterial species show biofilm production, which provides survival benefit to them by providing protection from environmental stresses and causing decreased susceptibility to antimicrobial agents. Two most common types of catheters used in our setup are pure silicone catheter and silicone coated latex catheter. The advantage of pure silicone catheter for long term catheterization is well established. But there is still a controversy about any advantage of the silicone catheter regarding bacterial colonization rates and their biofilm production property. The aim of our study was to compare the bacterial colonization and the biofilm formation property of the colonizing bacteria in patients with indwelling pure silicone and silicone coated latex catheters. This prospective observational study was conducted in the Urology Department of our institute. Patients who needed catheterization for more than 5 days during the period July 2015 to January 2016 and had sterile precatheterisation urine were included in the study. Patients were grouped into 2 groups of 50 patients each, Group A with the pure silicone catheter and Group B with the silicone coated latex catheter. Urine culture was done on the 6(th) day of indwelling urinary catheter drainage. If growth was detected, then that bacterium was tested for biofilm production property by tissue culture plate method. Statistical analyses were performed using the Statistical Package for the Social Science Version 22 (SPSS-22). After 5 days of indwelling catheterization, the pure silicone catheter had significantly less bacterial colonization than the silicone coated latex catheter (p-value=0.03) and the biofilm forming property of colonizing bacteria was also significantly less in the pure silicone catheter as compared to the silicone coated latex catheter (p-value=0.02). There were no significant differences in the colonizing bacteria in the 2 groups. In both the groups the most common bacteria were Escherichia coli. The pure silicone catheter is advantageous over the silicone coated latex catheter in terms of incidence of bacterial colonization as well as the biofilm formation and hence in the management of CAUTI.

  12. Flow Chamber System for the Statistical Evaluation of Bacterial Colonization on Materials

    PubMed Central

    Menzel, Friederike; Conradi, Bianca; Rodenacker, Karsten; Gorbushina, Anna A.; Schwibbert, Karin

    2016-01-01

    Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial colonization. Standardized tests relying on statistical evidence are indispensable to evaluate the quality and safety of these new materials. We describe here a flow chamber system for biofilm cultivation under controlled conditions with a total capacity for testing up to 32 samples in parallel. In order to quantify the surface colonization, bacterial cells were DAPI (4`,6-diamidino-2-phenylindole)-stained and examined with epifluorescence microscopy. More than 100 images of each sample were automatically taken and the surface coverage was estimated using the free open source software g’mic, followed by a precise statistical evaluation. Overview images of all gathered pictures were generated to dissect the colonization characteristics of the selected model organism Escherichia coli W3310 on different materials (glass and implant steel). With our approach, differences in bacterial colonization on different materials can be quantified in a statistically validated manner. This reliable test procedure will support the design of improved materials for medical, industrial, and environmental (subaquatic or subaerial) applications. PMID:28773891

  13. The inhibition of staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection

    PubMed Central

    Antoci, Valentin; Adams, Christopher S.; Parvizi, Javad; Davidson, Helen M.; Composto, Russell J.; Freeman, Theresa A.; Wickstrom, Eric; Ducheyne, Paul; Jungkind, Donald; Shapiro, Irving M.; Hickok, Noreen J.

    2008-01-01

    Peri-prosthetic infections are notoriously difficult to treat as the biomaterial implant is ideal for bacterial adhesion and biofilm formation, resulting in decreased antibiotic sensitivity. Previously, we reported that vancomycin covalently attached to a Ti alloy surface (Vanc-Ti) could prevent bacterial colonization. Herein we examine the effect of this Vanc-Ti surface on Staphylococci epidermidis, a Gram-positive organism prevalent in orthopaedic infections. By direct colony counting and fluorescent visualization of live bacteria, S. epidermidis colonization was significantly inhibited on Vanc-Ti implants. In contrast, the gram negative organism Escherichia coli readily colonized the Vanc-Ti rod, suggesting retention of antibiotic specificity. By histochemical and SEM analysis, Vanc-Ti prevented S. epidermidis biofilm formation, even in the presence of serum. Furthermore, when challenged multiple times with S. epidermidis, Vanc-Ti rods resisted bacterial colonization. Finally, when S. epidermidis was continuously cultured in the presence of Vanc-Ti, the bacteria maintained a Vanc sensitivity equivalent to the parent strain. These findings indicate that antibiotic derivatization of implants can result in a surface that can resist bacterial colonization. This technology holds great promises for the prevention and treatment of periprosthetic infections. PMID:18814909

  14. Bacterial flora of the sigmoid neovagina.

    PubMed Central

    Toolenaar, T A; Freundt, I; Wagenvoort, J H; Huikeshoven, F J; Vogel, M; Jeekel, H; Drogendijk, A C

    1993-01-01

    The bacterial microbiota of 15 sigmoid neovaginas, created in patients with congenital vaginal aplasia or male transsexualism, was studied. No specimen was sterile, and only normal inhabitants of the colon were cultured. The total counts of bacteria were lower than those reported for healthy sigmoid colons. PMID:8308126

  15. Bacteria meets influenza A virus: A bioluminescence mouse model of Escherichia coli O157:H7 following influenza A virus/Puerto Rico/8/34 (H1N1) strain infection.

    PubMed

    Wang, Zhongyi; Chi, Hang; Wang, Xiwen; Li, Wenliang; Li, Zhiping; Li, Jiaming; Fu, Yingying; Lu, Bing; Xia, Zhiping; Qian, Jun; Liu, Linna

    2018-01-01

    Objective To develop a bioluminescence-labelled bacterial infection model to monitor the colonization and clearance process of Escherichia coli O157:H7 in the lungs of mice following influenza A virus/Puerto Rico/8/34 (H1N1) strain (IAV/PR8) infection. Methods BALB/c mice were administered IAV/PR8 or 0.01 M phosphate-buffered saline (PBS; pH 7.4) intranasally 4 days prior to intranasal administration of 1 × 10 7 colony-forming units (CFU) of E. coli O157:H7-lux. Whole-body bioluminescent signals were monitored at 10 min, 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Lung bioluminescent signals and bacterial load (CFU/g) were monitored at 4 h, 8 h, 12 h, 16 h and 24 h post-bacterial infection. Results Prior IAV/PR8 infection of mice resulted in a higher level of bacterial colonization and a lower rate of bacterial clearance from the lungs compared with mice treated with PBS. There were also consistent findings between the bioluminescence imaging and the CFU measurements in terms of identifying bacterial colonization and monitoring the clearance dynamics of E. coli O157:H7-lux in mouse lungs. Conclusion This novel bioluminescence-labelled bacterial infection model rapidly detected bacterial colonization of the lungs and monitored the clearance dynamics of E. coli O157:H7-lux following IAV/PR8 infection.

  16. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    PubMed

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Pre-treatment with Bifidobacterium breve UCC2003 modulates Citrobacter rodentium-induced colonic inflammation and organ specificity.

    PubMed

    Collins, James W; Akin, Ali R; Kosta, Artemis; Zhang, Ning; Tangney, Mark; Francis, Kevin P; Frankel, Gad

    2012-11-01

    Citrobacter rodentium, which colonizes the gut mucosa via formation of attaching and effacing (A/E) lesions, causes transmissible colonic hyperplasia. The aim of this study was to evaluate whether prophylactic treatment with Bifidobacterium breve UCC2003 can improve the outcome of C. rodentium infection. Six-week-old albino C57BL/6 mice were pre-treated for 3 days with B. breve, challenged with bioluminescent C. rodentium and administered B. breve or PBS-C for 8 days post-infection; control mice were either administered B. breve and mock-infected with PBS, or mock-treated with PBS-C and mock-infected with PBS. C. rodentium colonization was monitored by bacterial enumeration from faeces and by a combination of both 2D bioluminescence imaging (BLI) and composite 3D diffuse light imaging tomography with µCT imaging (DLIT-µCT). At day 8 post-infection, colons were removed and assessed for crypt hyperplasia, histology by light microscopy, bacterial colonization by immunofluorescence, and A/E lesion formation by electron microscopy. Prophylactic administration of B. breve did not prevent C. rodentium colonization or A/E lesion formation. However, this treatment did alter C. rodentium distribution within the large intestine and significantly reduced colonic crypt hyperplasia at the peak of bacterial infection. These results show that B. breve could not competitively exclude C. rodentium, but reduced pathogen-induced colonic inflammation.

  18. N-acetylcysteine prevents the development of gastritis induced by Helicobacter pylori infection.

    PubMed

    Jang, Sungil; Bak, Eun-Jung; Cha, Jeong-Heon

    2017-05-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen, causing various gastric diseases ranging from gastritis to gastric adenocarcinoma. It has been reported that combining N-acetylcysteine (NAC) with conventional antibiotic therapy increases the success rate of H. pylori eradication. We evaluated the effect of NAC itself on the growth and colonization of H. pylori, and development of gastritis, using in vitro liquid culture system and in vivo animal models. H. pylori growth was evaluated in broth culture containing NAC. The H. pylori load and histopathological scores of stomachs were measured in Mongolian gerbils infected with H. pylori strain 7.13, and fed with NAC-containing diet. In liquid culture, NAC inhibited H. pylori growth in a concentration-dependent manner. In the animal model, 3-day administration of NAC after 1 week from infection reduced the H. pylori load; 6-week administration of NAC after 1 week from infection prevented the development of gastritis and reduced H. pylori colonization. However, no reduction in the bacterial load or degree of gastritis was observed with a 6-week administration of NAC following 6-week infection period. Our results indicate that NAC may exert a beneficial effect on reduction of bacterial colonization, and prevents the development of severe inflammation, in people with initial asymptomatic or mild H. pylori infection.

  19. Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance.

    PubMed

    Naito, Tomoaki; Mulet, Céline; De Castro, Cristina; Molinaro, Antonio; Saffarian, Azadeh; Nigro, Giulia; Bérard, Marion; Clerc, Mélanie; Pedersen, Amy B; Sansonetti, Philippe J; Pédron, Thierry

    2017-10-17

    We identified a crypt-specific core microbiota (CSCM) dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC) crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter , Delftia , and Stenotrophomonas ). Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS), through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4)-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage. IMPORTANCE The LPS from crypt-specific core microbiota controls intestinal epithelium proliferation through necroptosis of stem cells and enhances cell differentiation, mainly the goblet cell lineage. Copyright © 2017 Naito et al.

  20. Lactobacillus salivarius REN counteracted unfavorable 4-nitroquinoline-1-oxide-induced changes in colonic microflora of rats.

    PubMed

    Zhang, Ming; Qiao, Xuewei; Zhao, Liang; Jiang, Lu; Ren, Fazheng

    2011-12-01

    Probiotics and carcinogens both have a significant effect on the microfloral composition of the human intestine. The objective of this study was to investigate the impact of an important carcinogen, 4-Nitroquinoline-1-Oxide on colonic microflora and the efficacy of the probiotic Lactobacillus salivarius REN as an agent of counteracting these effects. Using denaturing gradient gel electrophoresis (DGGE) combined with redundancy analysis, we demonstrated that both 4-Nitroquinoline-1-Oxide and L. salivarius REN significantly altered the bacterial communities of rat colons. A total of 27 bacterial strains were identified as being affected by treatment with 4-Nitroquinoline-1-Oxide or L. salivarius REN using a t-value biplot combined with band sequencing. 4-Nitroquinoline-1-Oxide treatment increased the abundance of two potential pathogens (one Helicobacter strain and one Desulfovibrio strain), as well as reducing the abundance of two potentially beneficial strains (one Ruminococcaceae strain and one Rumen bacteria). The Helicobacter strain was initally detected in carcinogen-treated rat intestinal microflora, but L. salivarius REN treatment effectively suppressed the growth of the Helicobacter strain. These results suggested that L. salivarius REN may be a potential probiotic, efficiently acting against the initial infection with, and the growth of pathogenic bacteria.

  1. Chitin-induced T6SS in Vibrio cholerae is dependent on ChiS activation.

    PubMed

    Chourashi, Rhishita; Das, Suman; Dhar, Debarpan; Okamoto, Keinosuke; Mukhopadhyay, Asish K; Chatterjee, Nabendu Sekhar

    2018-05-01

    Vibrio cholerae regularly colonizes the chitinous exoskeleton of crustacean shells in the aquatic region. The type 6 secretion system (T6SS) in V. cholerae is an interbacterial killing device. This system is thought to provide a competitive advantage to V. cholerae in a polymicrobial community of the aquatic region under nutrient-poor conditions. V. cholerae chitin sensing is known to be initiated by the activation of a two-component sensor histidine kinase ChiS in the presence of GlcNAc2 (N,N'-diacetylchitobiose) residues generated by the action of chitinases on chitin. It is known that T6SS in V. cholerae is generally induced by chitin. However, the effect of ChiS activation on T6SS is unknown. Here, we found that ChiS inactivation resulted in impaired bacterial killing and reduced expression of T6SS genes. Active ChiS positively affected T6SS-mediated natural transformation in V. cholerae. ChiS depletion or inactivation also resulted in reduced colonization on insoluble chitin surfaces. Therefore, we have shown that V. cholerae colonization on chitinous surfaces activates ChiS, which promotes T6SS-dependent bacterial killing and horizontal gene transfer. We also highlight the importance of chitinases in T6SS upregulation.

  2. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus.

    PubMed

    García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina; Lopez, Daniel

    2017-09-12

    A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus , which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureus teichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.

  3. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus

    PubMed Central

    García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina

    2017-01-01

    A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. PMID:28893374

  4. Reduced toll-like receptor 4 and substance P gene expression is associated with airway bacterial colonization in children.

    PubMed

    Grissell, Terry V; Chang, Anne B; Gibson, Peter G

    2007-04-01

    Neuro-immune interactions are increasingly relevant to human health and disease. The neuropeptide Substance P also has antibacterial activity and bears similarities to the innate immune antibacterial defensins. This suggests possible co-regulation of neuropeptide and innate immune mediators. In this study, non-bronchoscopic bronchoalveolar lavage (BAL) was performed on 69 children. BAL was examined for cellular profile, microbiology (bacteria, virus) and gene expression for TLRs 2, 3, 4; chemokine receptors (CCR3, CCR5, CXCR1); neurotrophins and neurokinin genes (TAC1, TAC3, CGRP, NGF). In children with bacterial colonization (n=10) there was an airway inflammatory response with increased BAL neutrophils, IL-8 protein, and CXCR1 expression. Substance P (TAC1) and TLR4 RNA expression were reduced in children with bacterial colonization. TLR3 mRNA was increased in 7.2% (n=5) children with rhinovirus, and there was a non-significant trend to increased TLR2. There is evidence for co-regulation of neurokinin (TAC1) and TLR4 gene expression in airway cells from children with airway bacterial colonization and their reduced expression may be associated with an impaired bacterial clearance. (c) 2007 Wiley-Liss, Inc.

  5. Colonization of Vitis vinifera by a Green Fluorescence Protein-Labeled, gfp-Marked Strain of Xylophilus ampelinus, the Causal Agent of Bacterial Necrosis of Grapevine

    PubMed Central

    Grall, Sophie; Manceau, Charles

    2003-01-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development. PMID:12676663

  6. Colonization of Vitis vinifera by a green fluorescence protein-labeled, gfp-marked strain of Xylophilus ampelinus, the causal agent of bacterial necrosis of grapevine.

    PubMed

    Grall, Sophie; Manceau, Charles

    2003-04-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development.

  7. Bacterial characteristics and clinical significance of ureteral double-J stents in children.

    PubMed

    García-Aparicio, L; Blázquez-Gómez, E; Martin, O; Krauel, L; de Haro, I; Rodó, J

    2015-01-01

    To determine the incidence of urinary tract infection in those patients that we have used an ureteral double-J stent as internal diversion after urological procedures. We reviewed all the medical records of patients who had a ureteral double-J stent after a urological procedure from August 2007 to May 2013. We have analyzed the following data: age, gender, type of prophylaxis, incidence of urinary tract infection (UTI), days of internal diversion with double-J stent, surgical procedure, bacterial characteristics, bacterial sensibility to antibiotics and UTI treatment. We have used 73 double-J stents as ureteral internal diversion in 67 patients with a mean age of 44.73±57.23. Surgical procedures were 50 laparoscopic Anderson-Hynes pyeloplasties in 49 patients, and 20 high-pressure balloon dilatation of the ureterovesical junction to treat primary obstructive megaureter in 15 patients; and 3 patients with ureterovesical obstruction after endoscopic treatment of vesicoureteral reflux. Forty three stents showed a bacterial colonization in cultures. Pseudomona aeruginosa was present in 9 (20.9%) stents. Only in 12 stents, bacterial colonization was sensible to antibiotic prophylaxis. Stent colonization was higher in boys and younger patients. Four patients had a febrile UTI. Incidence of UTI in younger patients that underwent HBPD of UVJ is higher. Bacterial colonization is frequent in double-J stents but the incidence of UTI is low. Double-J colonization is higher in younger patients. Patients that underwent HPBD have a higher risk of UTI related with ureteral double J stent. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis

    PubMed Central

    Lopez-Medina, Eduardo; Fan, Di; Coughlin, Laura A.; Ho, Evi X.; Lamont, Iain L.; Reimmann, Cornelia; Hooper, Lora V.; Koh, Andrew Y.

    2015-01-01

    Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. PMID:26313907

  9. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association.

    PubMed

    Chun, Carlene K; Troll, Joshua V; Koroleva, Irina; Brown, Bartley; Manzella, Liliana; Snir, Einat; Almabrazi, Hakeem; Scheetz, Todd E; Bonaldo, Maria de Fatima; Casavant, Thomas L; Soares, M Bento; Ruby, Edward G; McFall-Ngai, Margaret J

    2008-08-12

    The light-organ symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri offers the opportunity to decipher the hour-by-hour events that occur during the natural colonization of an animal's epithelial surface by its microbial partners. To determine the genetic basis of these events, a glass-slide microarray was used to characterize the light-organ transcriptome of juvenile squid in response to the initiation of symbiosis. Patterns of gene expression were compared between animals not exposed to the symbiont, exposed to the wild-type symbiont, or exposed to a mutant symbiont defective in either of two key characters of this association: bacterial luminescence or autoinducer (AI) production. Hundreds of genes were differentially regulated as a result of symbiosis initiation, and a hierarchy existed in the magnitude of the host's response to three symbiont features: bacterial presence > luminescence > AI production. Putative host receptors for bacterial surface molecules known to induce squid development are up-regulated by symbiont light production, suggesting that bioluminescence plays a key role in preparing the host for bacteria-induced development. Further, because the transcriptional response of tissues exposed to AI in the natural context (i.e., with the symbionts) differed from that to AI alone, the presence of the bacteria potentiates the role of quorum signals in symbiosis. Comparison of these microarray data with those from other symbioses, such as germ-free/conventionalized mice and zebrafish, revealed a set of shared genes that may represent a core set of ancient host responses conserved throughout animal evolution.

  10. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association

    PubMed Central

    Chun, Carlene K.; Troll, Joshua V.; Koroleva, Irina; Brown, Bartley; Manzella, Liliana; Snir, Einat; Almabrazi, Hakeem; Scheetz, Todd E.; de Fatima Bonaldo, Maria; Casavant, Thomas L.; Soares, M. Bento; Ruby, Edward G.; McFall-Ngai, Margaret J.

    2008-01-01

    The light–organ symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri offers the opportunity to decipher the hour-by-hour events that occur during the natural colonization of an animal's epithelial surface by its microbial partners. To determine the genetic basis of these events, a glass-slide microarray was used to characterize the light-organ transcriptome of juvenile squid in response to the initiation of symbiosis. Patterns of gene expression were compared between animals not exposed to the symbiont, exposed to the wild-type symbiont, or exposed to a mutant symbiont defective in either of two key characters of this association: bacterial luminescence or autoinducer (AI) production. Hundreds of genes were differentially regulated as a result of symbiosis initiation, and a hierarchy existed in the magnitude of the host's response to three symbiont features: bacterial presence > luminescence > AI production. Putative host receptors for bacterial surface molecules known to induce squid development are up-regulated by symbiont light production, suggesting that bioluminescence plays a key role in preparing the host for bacteria-induced development. Further, because the transcriptional response of tissues exposed to AI in the natural context (i.e., with the symbionts) differed from that to AI alone, the presence of the bacteria potentiates the role of quorum signals in symbiosis. Comparison of these microarray data with those from other symbioses, such as germ-free/conventionalized mice and zebrafish, revealed a set of shared genes that may represent a core set of ancient host responses conserved throughout animal evolution. PMID:18682555

  11. A High Grain Diet Dynamically Shifted the Composition of Mucosa-Associated Microbiota and Induced Mucosal Injuries in the Colon of Sheep.

    PubMed

    Wang, Yue; Xu, Lei; Liu, Junhua; Zhu, Weiyun; Mao, Shengyong

    2017-01-01

    This study investigated the dynamic shifts in mucosa-associated microbiota composition and mucosal morphology in the colon of sheep fed a high grain (HG) diet. A total of 20 male sheep were randomly assigned to four groups ( n = 5 for each). The sheep in first group received hay diet. The animals in other 3 groups were fed an HG diet for 7 (HG7), 14 (HG14), or 28 (HG28) days, respectively. Colonic digesta samples were collected to determine the pH and the concentrations of volatile fatty acid (VFA) and lactate. The colonic mucosa was sampled to characterize the bacterial communities using Illumina MiSeq sequencing and to determine mRNA expression levels of cytokines and tight junction protein genes using quantitative real-time PCR. As time advanced, results revealed that colonic pH linearly decreased ( P = 0.007), and the concentrations of total VFA linearly increased ( P < 0.001). Microbial analysis showed that an HG diet linearly reduced ( P < 0.050) the diversity and richness of the colonic microbiota. The principal coordinate analysis results showed that the colonic mucosa-associated bacterial communities of the four groups significantly shifted with number of days fed an HG diet. At the genus level, HG feeding significantly increased the relative abundance of some taxa including Prevotella , Coprococcus , Roseburia , and Clostridium_sensu_stricto_1 , and decreased the proportion of Treponema, and the percentage of these taxa was not affected by days fed an HG diet. The microscopic examination showed that HG feeding caused the mucosal epithelial injury. The RT-PCR results showed that the mRNA expression of claudin-1 ( P = 0.038), IL-1β ( P = 0.045), IL-6 ( P = 0.050), and TNF-α ( P = 0.020) increased linearly with number of days fed an HG diet. The correlation analysis revealed significant correlation between the colonic mucosal mRNA expression of cytokines and mucosal bacterial composition. Generally, HG feeding increased colonic fermentation and altered colonic mucosal bacterial communities, which eventually caused colonic mucosal damage and led to colonic dysfunction, and these changes occurred gradually over at least 4 weeks.

  12. A High Grain Diet Dynamically Shifted the Composition of Mucosa-Associated Microbiota and Induced Mucosal Injuries in the Colon of Sheep

    PubMed Central

    Wang, Yue; Xu, Lei; Liu, Junhua; Zhu, Weiyun; Mao, Shengyong

    2017-01-01

    This study investigated the dynamic shifts in mucosa-associated microbiota composition and mucosal morphology in the colon of sheep fed a high grain (HG) diet. A total of 20 male sheep were randomly assigned to four groups (n = 5 for each). The sheep in first group received hay diet. The animals in other 3 groups were fed an HG diet for 7 (HG7), 14 (HG14), or 28 (HG28) days, respectively. Colonic digesta samples were collected to determine the pH and the concentrations of volatile fatty acid (VFA) and lactate. The colonic mucosa was sampled to characterize the bacterial communities using Illumina MiSeq sequencing and to determine mRNA expression levels of cytokines and tight junction protein genes using quantitative real-time PCR. As time advanced, results revealed that colonic pH linearly decreased (P = 0.007), and the concentrations of total VFA linearly increased (P < 0.001). Microbial analysis showed that an HG diet linearly reduced (P < 0.050) the diversity and richness of the colonic microbiota. The principal coordinate analysis results showed that the colonic mucosa-associated bacterial communities of the four groups significantly shifted with number of days fed an HG diet. At the genus level, HG feeding significantly increased the relative abundance of some taxa including Prevotella, Coprococcus, Roseburia, and Clostridium_sensu_stricto_1, and decreased the proportion of Treponema, and the percentage of these taxa was not affected by days fed an HG diet. The microscopic examination showed that HG feeding caused the mucosal epithelial injury. The RT-PCR results showed that the mRNA expression of claudin-1 (P = 0.038), IL-1β (P = 0.045), IL-6 (P = 0.050), and TNF-α (P = 0.020) increased linearly with number of days fed an HG diet. The correlation analysis revealed significant correlation between the colonic mucosal mRNA expression of cytokines and mucosal bacterial composition. Generally, HG feeding increased colonic fermentation and altered colonic mucosal bacterial communities, which eventually caused colonic mucosal damage and led to colonic dysfunction, and these changes occurred gradually over at least 4 weeks. PMID:29123511

  13. Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts

    PubMed Central

    Crozier, Louise; Hedley, Pete E.; Morris, Jenny; Wagstaff, Carol; Andrews, Simon C.; Toth, Ian; Jackson, Robert W.; Holden, Nicola J.

    2016-01-01

    Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 ‘Sakai,’ to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant–microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai. PMID:27462311

  14. Colon-targeted delivery of live bacterial cell biotherapeutics including microencapsulated live bacterial cells

    PubMed Central

    Prakash, Satya; Malgorzata Urbanska, Aleksandra

    2008-01-01

    There has been an ample interest in delivery of therapeutic molecules using live cells. Oral delivery has been stipulated as best way to deliver live cells to humans for therapy. Colon, in particular, is a part of gastrointestinal (GI) tract that has been proposed to be an oral targeted site. The main objective of these oral therapy procedures is to deliver live cells not only to treat diseases like colorectal cancer, inflammatory bowel disease, and other GI tract diseases like intestinal obstruction and gastritis, but also to deliver therapeutic molecules for overall therapy in various diseases such as renal failure, coronary heart disease, hypertension, and others. This review provides a comprehensive summary of recent advancement in colon targeted live bacterial cell biotherapeutics. Current status of bacterial cell therapy, principles of artificial cells and its potentials in oral delivery of live bacterial cell biotherapeutics for clinical applications as well as biotherapeutic future perspectives are also discussed in our review. PMID:19707368

  15. Cross-kingdom interactions: Candida albicans and bacteria.

    PubMed

    Shirtliff, Mark E; Peters, Brian M; Jabra-Rizk, Mary Ann

    2009-10-01

    Bacteria and fungi are found together in a myriad of environments and particularly in a biofilm, where adherent species interact through diverse signaling mechanisms. Yet, despite billions of years of coexistence, the area of research exploring fungal-bacterial interactions, particularly within the context of polymicrobial infections, is still in its infancy. However, reports describing a multitude of wide-ranging interactions between the fungal pathogen Candida albicans and various bacterial pathogens are on the rise. An example of a mutually beneficial interaction is coaggregation, a phenomenon that takes place in oral biofilms where the adhesion of C. albicans to oral bacteria is considered crucial for its colonization of the oral cavity. In contrast, the interaction between C. albicans and Pseudomonas aeruginosa is described as being competitive and antagonistic in nature. Another intriguing interaction is that occurring between Staphylococcus aureus and C. albicans, which although not yet fully characterized, appears to be initially synergistic. These complex interactions between such diverse and important pathogens would have significant clinical implications if they occurred in an immunocompromised host. Therefore, understanding the mechanisms of adhesion and signaling involved in fungal-bacterial interactions may lead to the development of novel therapeutic strategies for impeding microbial colonization and development of polymicrobial disease. © 2009 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  16. [Original strategy for prevention of recurrent symptomatic urinary tract infections in patients with neurogenic bladder: Bacterial interference, state of the art].

    PubMed

    Falcou, L; Davido, B; Even, A; Bouchand, F; Salomon, J; Sotto, A; Denys, P; Dinh, A

    2018-05-01

    Urinary tract infection (UTI) is the most common complication in patients with neurogenic bladder. The long-term use of antibiotic drugs induces an increase in antimicrobial resistance and adverse drug reactions. Bacterial interference is a new concept to prevent recurrent UTI which consists in a bladder colonization with low virulence bacteria. We performed a literature review on this emerging therapy. Literature review of bacterial interference to prevent symptomatic urinary tract infection in neurological population. Seven prospectives study including 3 randomized, double-blind and placebo controlled trial were analyzed. The neurological population was spinal cord injured in most cases. The bladder colonization was performed with 2 non-pathogen strains of Escherichia coli: HU 2117 and 83972. At 1 month, 38 to 83% of patients were colonized. Mean duration of colonization was 48.5 days to 12.3 months. All studies showed that colonization might reduce the number of urinary tract infections and is safe with absence of serious side effects. Bacterial interference is a promising alternative therapy for the prevention of recurrent symptomatic urinary tract infections in neurogenic patients. This therapy should have developments for a daily use practice and for a long-term efficacy. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. Aposymbiotic culture of the sepiolid squid Euprymna scolopes: role of the symbiotic bacterium Vibrio fischeri in host animal growth, development, and light organ morphogenesis.

    PubMed

    Claes, M F; Dunlap, P V

    2000-02-15

    The sepiolid squid Euprymna scolopes forms a bioluminescent mutualism with the luminous bacterium Vibrio fischeri, harboring V. fischeri cells in a complex ventral light organ and using the bacterial light in predator avoidance. To characterize the contribution of V. fischeri to the growth and development of E. scolopes and to define the long-term effects of bacterial colonization on light organ morphogenesis, we developed a mariculture system for the culture of E. scolopes from hatching to adulthood, employing artificial seawater, lighting that mimicked that of the natural environment, and provision of prey sized to match the developmental stage of E. scolopes. Animals colonized by V. fischeri and animals cultured in the absence of V. fischeri (aposymbiotic) grew and survived equally well, developed similarly, and reached sexual maturity at a similar age. Development of the light organ accessory tissues (lens, reflectors, and ink sac) was similar in colonized and aposymbiotic animals with no obvious morphometric or histological differences. Colonization by V. fischeri influenced regression of the ciliated epithelial appendages (CEAs), the long-term growth of the light organ epithelial tubules, and the appearance of the cells composing the ciliated ducts, which exhibit characteristics of secretory tissue. In certain cases, aposymbiotic animals retained the CEAs in a partially regressed state and remained competent to initiate symbiosis with V. fischeri into adulthood. In other cases, the CEAs regressed fully in aposymbiotic animals, and these animals were not colonizable. The results demonstrate that V. fischeri is not required for normal growth and development of the animal or for development of the accessory light organ tissues and that morphogenesis of only those tissues coming in contact with the bacteria (CEAs, ciliated ducts, and light organ epithelium) is altered by bacterial colonization of the light organ. Therefore, V. fischeri apparently makes no major metabolic contribution to E. scolopes beyond light production, and post-embryonic development of the light organ is essentially symbiont independent. J. Exp. Zool. 286:280-296, 2000. Copyright 2000 Wiley-Liss, Inc.

  18. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    NASA Astrophysics Data System (ADS)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  19. Insight into the bacterial gut microbiome of the North American moose (Alces alces)

    PubMed Central

    2012-01-01

    Background The work presented here provides the first intensive insight into the bacterial populations in the digestive tract of the North American moose (Alces alces). Eight free-range moose on natural pasture were sampled, producing eight rumen samples and six colon samples. Second generation (G2) PhyloChips were used to determine the presence of hundreds of operational taxonomic units (OTUs), representing multiple closely related species/strains (>97% identity), found in the rumen and colon of the moose. Results A total of 789 unique OTUs were used for analysis, which passed the fluorescence and the positive fraction thresholds. There were 73 OTUs, representing 21 bacterial families, which were found exclusively in the rumen samples: Lachnospiraceae, Prevotellaceae and several unclassified families, whereas there were 71 OTUs, representing 22 bacterial families, which were found exclusively in the colon samples: Clostridiaceae, Enterobacteriaceae and several unclassified families. Overall, there were 164 OTUs that were found in 100% of the samples. The Firmicutes were the most dominant bacteria phylum in both the rumen and the colon. Microarray data available at ArrayExpress, accession number E-MEXP-3721. Conclusions Using PhyloTrac and UniFrac computer software, samples clustered into two distinct groups: rumen and colon, confirming that the rumen and colon are distinct environments. There was an apparent correlation of age to cluster, which will be validated by a larger sample size in future studies, but there were no detectable trends based upon gender. PMID:22992344

  20. The Inside Story of Shigella Invasion of Intestinal Epithelial Cells

    PubMed Central

    Carayol, Nathalie; Tran Van Nhieu, Guy

    2013-01-01

    As opposed to other invasive pathogens that reside into host cells in a parasitic mode, Shigella, the causative agent of bacillary dysentery, invades the colonic mucosa but does not penetrate further to survive into deeper tissues. Instead, Shigella invades, replicates, and disseminates within the colonic mucosa. Bacterial invasion and spreading in intestinal epithelium lead to the elicitation of inflammatory responses responsible for the tissue destruction and shedding in the environment for further infection of other hosts. In this article, we highlight specific features of the Shigella arsenal of virulence determinants injected by a type III secretion apparatus (T3SA) that point to the targeting of intestinal epithelial cells as a discrete route of invasion during the initial event of the infectious process. PMID:24086068

  1. The Haemophilus influenzae Hap Autotransporter Binds to Fibronectin, Laminin, and Collagen IV

    PubMed Central

    Fink, Doran L.; Green, Bruce A.; St. Geme III, Joseph W.

    2002-01-01

    Nontypeable Haemophilus influenzae (NTHI) initiates infection by colonizing the upper respiratory tract mucosa. NTHI disease frequently occurs in the context of respiratory tract inflammation, where organisms encounter damaged epithelium and exposed basement membrane. In this study, we examined interactions between the H. influenzae Hap adhesin and selected extracellular matrix proteins. Hap is an autotransporter protein that undergoes autoproteolytic cleavage, with release of the adhesive passenger domain, Haps, from the bacterial cell surface. We found that Hap promotes bacterial adherence to purified fibronectin, laminin, and collagen IV and that Hap-mediated adherence is enhanced by inhibition of autoproteolysis. Adherence is inhibited by pretreatment of bacteria with a polyclonal antiserum recognizing Haps. Purified Haps binds with high affinity to fibronectin, laminin, and collagen IV but not to collagen II. Binding of Haps to fibronectin involves interaction with the 45-kDa gelatin-binding domain but not the 30-kDa heparin-binding domain of fibronectin. Taken together, these observations suggest that interactions between Hap and extracellular matrix proteins may play an important role in NTHI colonization of the respiratory tract. PMID:12183535

  2. Inactivation of ferric uptake regulator (Fur) attenuates Helicobacter pylori J99 motility by disturbing the flagellar motor switch and autoinducer-2 production.

    PubMed

    Lee, Ai-Yun; Kao, Cheng-Yen; Wang, Yao-Kuan; Lin, Ssu-Yuan; Lai, Tze-Ying; Sheu, Bor-Shyang; Lo, Chien-Jung; Wu, Jiunn-Jong

    2017-08-01

    Flagellar motility of Helicobacter pylori has been shown to be important for the bacteria to establish initial colonization. The ferric uptake regulator (Fur) is a global regulator that has been identified in H. pylori which is involved in the processes of iron uptake and establishing colonization. However, the role of Fur in H. pylori motility is still unclear. Motility of the wild-type, fur mutant, and fur revertant J99 were determined by a soft-agar motility assay and direct video observation. The bacterial shape and flagellar structure were evaluated by transmission electron microscopy. Single bacterial motility and flagellar switching were observed by phase-contrast microscopy. Autoinducer-2 (AI-2) production in bacterial culture supernatant was analyzed by a bioluminescence assay. The fur mutant showed impaired motility in the soft-agar assay compared with the wild-type J99 and fur revertant. The numbers and lengths of flagellar filaments on the fur mutant cells were similar to those of the wild-type and revertant cells. Phenotypic characterization showed similar swimming speed but reduction in switching rate in the fur mutant. The AI-2 production of the fur mutant was dramatically reduced compared with wild-type J99 in log-phase culture medium. These results indicate that Fur positively modulates H. pylori J99 motility through interfering with bacterial flagellar switching. © 2017 John Wiley & Sons Ltd.

  3. Function and phylogeny of bacterial butyryl-CoA:acetate transferases and their diversity in the proximal colon of swine

    USDA-ARS?s Scientific Manuscript database

    Studying the host-associated butyrate-producing bacterial community is important because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl-coA:acetate transferase (2.3.8.3) as a the main gene for butyrate production in intestinal ecosystems; h...

  4. Efficacy of a mouthrinse based on hydroxyapatite to reduce initial bacterial colonisation in situ.

    PubMed

    Kensche, A; Holder, C; Basche, S; Tahan, N; Hannig, C; Hannig, M

    2017-08-01

    The present in situ - investigation aimed to specify the impact of pure hydroxyapatite microclusters on initial bioadhesion and bacterial colonization at the tooth surface. Pellicle formation was carried out in situ on bovine enamel slabs (9 subjects). After 1min of pellicle formation rinses with 8ml of hydroxyapatite (HA) microclusters (5%) in bidestilled water or chlorhexidine 0.2% were performed. As negative control no rinse was adopted. In situ biofilm formation was promoted by the intraoral slab exposure for 8h overnight. Afterwards initial bacterial adhesion was quantified by DAPI staining and bacterial viability was determined in vivo/in vitro by live/dead-staining (BacLight). SEM analysis evaluated the efficacy of the mouthrinse to accumulate hydroxyapatite microclusters at the specimens' surface and spit-out samples of the testsolution were investigated by TEM. Compared to the control (2.36×10 6 ±2.01×10 6 bacteria/cm 2 ), significantly reduced amounts of adherent bacteria were detected on specimens rinsed with chlorhexidine 0.2% (8.73×10 4 ±1.37×10 5 bacteria/cm 2 ) and likewise after rinses with the hydroxyapatite testsolution (2.08×10 5 ±2.85×10 5 bacteria/cm 2 , p<0.001). No demonstrable effect of HA-particles on Streptococcus mutans viability could be shown. SEM analysis confirmed the temporary adsorption of hydroxyapatite microclusters at the tooth surface. Adhesive interactions of HA-particles with oral bacteria were shown by TEM. Hydroxyapatite microclusters reduced initial bacterial adhesion to enamel in situ considerably and could therefore sensibly supplement current approaches in dental prophylaxis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Induction of a gradual, reversible morphogenesis of its host's epithelial brush border by Vibrio fischeri.

    PubMed

    Lamarcq, L H; McFall-Ngai, M J

    1998-02-01

    Bacteria exert a variety of influences on the morphology and physiology of animal cells whether they are pathogens or cooperative partners. The association between the luminous bacterium Vibrio fischeri and the sepiolid squid Euprymna scolopes provides an experimental model for the study of the influence of extracellular bacteria on the development of host epithelia. In this study, we analyzed bacterium-induced changes in the brush borders of the light organ crypt epithelia during the initial hours following colonization of this tissue. Transmission electron microscopy of the brush border morphology in colonized and uncolonized hosts revealed that the bacteria effect a fourfold increase in microvillar density over the first 4 days of the association. Estimates of the proportions of bacterial cells in contact with host microvilli showed that the intimacy of the bacterial cells with animal cell surfaces increases significantly during this time. Antibiotic curing of the organ following colonization showed that sustained interaction with bacteria is essential for the retention of the induced morphological changes. Bacteria that are defective in either light production or colonization efficiency produced changes similar to those by the parent strain. Conventional fluorescence and confocal scanning laser microscopy revealed that the brush border is supported by abundant filamentous actin. However, in situ hybridization with beta-actin probes did not show marked bacterium-induced increases in beta-actin gene expression. These experiments demonstrate that the E. scolopes-V. fischeri system is a viable model for the experimental study of bacterium-induced changes in host brush border morphology.

  6. Induction of a Gradual, Reversible Morphogenesis of Its Host’s Epithelial Brush Border by Vibrio fischeri

    PubMed Central

    Lamarcq, Laurence H.; McFall-Ngai, Margaret J.

    1998-01-01

    Bacteria exert a variety of influences on the morphology and physiology of animal cells whether they are pathogens or cooperative partners. The association between the luminous bacterium Vibrio fischeri and the sepiolid squid Euprymna scolopes provides an experimental model for the study of the influence of extracellular bacteria on the development of host epithelia. In this study, we analyzed bacterium-induced changes in the brush borders of the light organ crypt epithelia during the initial hours following colonization of this tissue. Transmission electron microscopy of the brush border morphology in colonized and uncolonized hosts revealed that the bacteria effect a fourfold increase in microvillar density over the first 4 days of the association. Estimates of the proportions of bacterial cells in contact with host microvilli showed that the intimacy of the bacterial cells with animal cell surfaces increases significantly during this time. Antibiotic curing of the organ following colonization showed that sustained interaction with bacteria is essential for the retention of the induced morphological changes. Bacteria that are defective in either light production or colonization efficiency produced changes similar to those by the parent strain. Conventional fluorescence and confocal scanning laser microscopy revealed that the brush border is supported by abundant filamentous actin. However, in situ hybridization with β-actin probes did not show marked bacterium-induced increases in β-actin gene expression. These experiments demonstrate that the E. scolopes-V. fischeri system is a viable model for the experimental study of bacterium-induced changes in host brush border morphology. PMID:9453641

  7. Interactions of Seedborne Bacterial Pathogens with Host and Non-Host Plants in Relation to Seed Infestation and Seedling Transmission

    PubMed Central

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1×106 colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized by compatible/incompatible/null-interacting bacteria to higher populations; however, the level of colonization differed significantly depending on the type of bacterial species used. PMID:24936863

  8. Oral and endotracheal tubes colonization by periodontal bacteria: a case-control ICU study.

    PubMed

    Porto, A N; Cortelli, S C; Borges, A H; Matos, F Z; Aquino, D R; Miranda, T B; Oliveira Costa, F; Aranha, A F; Cortelli, J R

    2016-03-01

    Periodontal infection is a possible risk factor for respiratory disorders; however, no studies have assessed the colonization of periodontal pathogens in endotracheal tubes (ET). This case-control study analyzed whether periodontal pathogens are able to colonize ET of dentate and edentulous patients in intensive care units (ICU) and whether oral and ET periodontal pathogen profiles have any correlation between these patients. We selected 18 dentate and 18 edentulous patients from 78 eligible ICU patients. Oral clinical examination including probing depth, clinical attachment level, gingival index , and plaque index was performed by a single examiner, followed by oral and ET sampling and processing by quantitative polymerase chain reaction (total bacterial load, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia). Data were statistically analyzed by Mann-Whitney U, two-way analysis of variance (p < 0.05). Among dentate, there was no correlation between clinical parameters and ET bacterial levels. Both dentate and edentulous patients showed similar ET bacterial levels. Dentate patients showed no correlation between oral and ET bacterial levels, while edentulous patients showed positive correlations between oral and ET levels of A. actinomycetemcomitans, P. gingivalis, and T. forsythia. Periodontal pathogens can colonize ET and the oral cavity of ICU patients. Periodontal pathogen profiles tend to be similar between dentate and edentulous ICU patients. In ICU patients, oral cavity represents a source of ET contamination. Although accompanied by higher oral bacterial levels, teeth do not seem to influence ET bacterial profiles.

  9. Streptococcus pyogenes pharyngeal colonization resulting in recurrent, prepubertal vulvovaginitis.

    PubMed

    Hansen, Megan T; Sanchez, Veronica T; Eyster, Kathleen; Hansen, Keith A

    2007-10-01

    Recurrent, prepubertal, vaginal infections are an uncommon, troublesome problem for the patient and her family. Failure of initial therapy to alleviate vulvovaginitis may be related to vulvar skin disease, foreign body, sexual abuse, pinworms, reactions to medications, anatomic anomalies, or allergies. This report describes a case of recurrent Streptococcus pyogenes vulvovaginitis secondary to presumed vaginal re-inoculation from pharyngeal colonization. A 4-yr-old presented with one year of culture proven, recurrent Streptococcus pyogenes vulvovaginitis. Her symptoms repeatedly resolved with penicillin therapy, but continued to recur following cessation of antibiotic therapy. Evaluation included physical examination, trans-abdominal pelvic ultrasound, and vaginoscopy which all revealed normal upper and lower genital tract anatomy. Both the patient and her mother demonstrated culture proven, Group A Streptococcus pharyngeal colonization. Because of the possibility of repeated inoculations of the vaginal area from the colonized pharynx, they were both treated for decolonization with a regimen of amoxicillin and rifampin for ten days. Following this therapy there was resolution of vaginal symptoms with no further recurrence. Follow-up pharyngeal culture done on both mother and child on their last visit were negative for Group A Streptococcus. This case demonstrated an unusual specific cause of recurrent vaginitis resulting from presumed self or maternal re-inoculation with group A beta-hemolytic streptococcus from pharyngeal colonization. Group A beta-hemolytic streptococcus are consistently sensitive to penicillin, but up to 25% of acute pharyngitis cases treated with penicillin having continued asymptomatic, bacterial carriage within the nasopharynx. Thus initial alleviation of symptoms in a patient with Group A beta-hemolytic vulvovaginitis treated with penicillin, can have continued asymptomatic pharyngeal colonization which can result in recurrence of the vulvovaginitis. This case stresses the importance of considering re-infection through this route in the patient with recurrent Group A beta-hemolytic streptococcus vulvovaginitis.

  10. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel

    PubMed Central

    Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence

    2016-01-01

    The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630

  11. Inhibition of nitric oxide production and the effects of arginine and Lactobacillus administration in an acute liver injury model.

    PubMed

    Adawi, D; Molin, G; Jeppsson, B

    1998-12-01

    To study the effect of inhibiting nitric oxide production and the effects of arginine and lactobacilli administration in an acute liver injury (LI) model. Infectious complications caused by enteric bacteria are common in patients with liver diseases and those who have undergone liver surgery. Increased bacterial translocation has been proposed as one underlying mechanism. Lactobacilli constitute an integral part of the normal gastrointestinal microecology; they are involved in host metabolism and have many beneficial properties. Arginine has numerous roles in cellular metabolism and may be metabolized by lactobacilli in some cases. We have previously shown that rectal administration of Lactobacillus plantarum DSM 9843 (strain 299v), with and without arginine, in an acute LI model significantly reduces the extent of the LI and reduces bacterial translocation. To clarify the pathogenetic mechanisms, we studied the role of nitric oxide in the effects of L. plantarum and arginine in acute LI, as determined by bacterial translocation, ileal, cecal, and colonic nucleotides, RNA, and DNA. Male Sprague-Dawley rats were used. L. plantarum, 2% arginine, and/or N-nitro-L-arginine methyl ester (L-NAME), as appropriate, were administered rectally once daily for 8 days. Acute LI was induced on the eighth day by intraperitoneal injection of D-galactosamine (1.1 g/kg body weight), and samples were collected after 24 hours. Bacterial translocation was evaluated by culture of portal and arterial blood, mesenteric lymph nodes, and liver tissue. Liver enzymes and bilirubin were assayed in the serum. The bacterial load in the cecum and colon was determined. Ileal, cecal, and colonic mucosal nucleotides, RNA, and DNA were evaluated. The levels of liver enzymes and bilirubin were lower in liver-injured rats supplemented with arginine and Lactobacillus, and this effect was abolished by the addition of L-NAME. Inhibition of nitric oxide production (by L-NAME) increased bacterial translocation in many groups. L-NAME administration increased the cecal and colonic bacterial count and decreased the levels of mucosal nucleotides, RNA, and DNA. Inhibition of nitric oxide production modulated the effects of arginine and L. plantarum in this acute LI model. L-NAME potentiated the LI, as indicated by elevation of liver enzymes and bilirubin, and it also increased bacterial translocation and the cecal and colonic bacterial count. Increased bacterial translocation could be one of the mechanisms by which LI is potentiated.

  12. Anti-plaque effect of a synergistic combination of green tea and Salvadora persica L. against primary colonizers of dental plaque.

    PubMed

    Abdulbaqi, Hayder Raad; Himratul-Aznita, Wan Harun; Baharuddin, Nor Adinar

    2016-10-01

    Green tea (Gt), leafs of Camellia sinensis var. assamica, is widely consumed as healthy beverage since thousands of years in Asian countries. Chewing sticks (miswak) of Salvadora persica L. (Sp) are traditionally used as natural brush to ensure oral health in developing countries. Both Gt and Sp extracts were reported to have anti-bacterial activity against many dental plaque bacteria. However, their combination has never been tested to have anti-bacterial and anti-adherence effect against primary dental plaque colonizers, playing an initial role in the dental plaque development, which was investigated in this study. Two-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria. Gt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (p<0.05) and lower the adherence ability (p<0.003) towards experimental pellicles. Combination between Gt and Sp aqueous extracts exhibited synergistic anti-plaque activity, and could be used as a useful active agent to produce oral health care products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Inoculation of a phenanthrene-degrading endophytic bacterium reduces the phenanthrene level and alters the bacterial community structure in wheat.

    PubMed

    Liu, Juan; Xiang, Yanbing; Zhang, Zhiming; Ling, Wanting; Gao, Yanzheng

    2017-06-01

    Colonization by polycyclic aromatic hydrocarbon (PAH)-degrading endophytic bacteria (PAHDEB) can reduce the PAH contamination risk in plant. However, little information is available on the impact of PAHDEB colonization on the endophytic bacterial community of inner plant tissues. A phenanthrene-degrading endophytic bacterium (PDEB), Massilia sp. Pn2, was inoculated onto the roots of wheat and subjected to greenhouse container experiments. The endophytic bacterial community structure in wheat was investigated using high-throughput sequencing technology. The majority of endophytic bacteria in wheat were Proteobacteria, and the dominant genus was Pseudomonas. Phenanthrene contamination clearly increased the diversity of endophytic bacteria in wheat. The cultivable endophytic bacteria counts in wheat decreased with increasing the level of phenanthrene contamination; the endophytic bacterial community structure changed correspondingly, and the bacterial richness first increased and then decreased. Inoculation of strain Pn2 reduced the phenanthrene contamination in wheat, enlarged the biomass of wheat roots, changed the bacterial community structure and enhanced the cell counts, diversity and richness of endophytic bacteria in phenanthrene-contaminated wheat in a contamination level-dependent manner. The findings of this investigation provide insight into the responses of endophytic bacterial community in plant to external PAH contamination and PAHDEB colonization.

  14. Effect of water flow and chemical environment on microbiota growth and composition in the human colon.

    PubMed

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-06-20

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota.

  15. Effect of water flow and chemical environment on microbiota growth and composition in the human colon

    PubMed Central

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-01-01

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota. PMID:28588144

  16. Non-Hematopoietic MLKL Protects Against Salmonella Mucosal Infection by Enhancing Inflammasome Activation.

    PubMed

    Yu, Shui-Xing; Chen, Wei; Liu, Zhen-Zhen; Zhou, Feng-Hua; Yan, Shi-Qing; Hu, Gui-Qiu; Qin, Xiao-Xia; Zhang, Jie; Ma, Ke; Du, Chong-Tao; Gu, Jing-Min; Deng, Xu-Ming; Han, Wen-Yu; Yang, Yong-Jun

    2018-01-01

    The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL -/- mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL -/- mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL -/- mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization.

  17. Predicting postoperative fever and bacterial colonization on packing material following endoscopic endonasal surgery.

    PubMed

    Nomura, Kazuhiro; Yamanaka, Yurika; Sekine, Yasuhiro; Yamamoto, Hiroki; Esu, Yoshihiko; Hara, Mariko; Hasegawa, Masayo; Shinnabe, Akihiro; Kanazawa, Hiromi; Kakuta, Risako; Ozawa, Daiki; Hidaka, Hiroshi; Katori, Yukio; Yoshida, Naohiro

    2017-01-01

    Postoperative fever following endoscopic endonasal surgery is a rare occurrence of concern to surgeons. To elucidate preoperative and operative predictors of postoperative fever, we analyzed the characteristics of patients and their perioperative background in association with postoperative fever. A retrospective review of 371 patients who had undergone endoscopic endonasal surgery was conducted. Predictors, including intake of antibiotics, steroids, history of asthma, preoperative nasal bacterial culture, duration of operation, duration of packing and intraoperative intravenous antibiotics on the occurrence of postoperative fever, and bacterial colonization on the packing material, were analyzed retrospectively. Fever (≥38 °C) occurred in 63 (17 %) patients. Most incidences of fever occurred on postoperative day one. In majority of these cases, the fever subsided after removal of the packing material without further antibiotic administration. However, one patient who experienced persistent fever after the removal of packing material developed meningitis. History of asthma, prolonged operation time (≥108 min), and intravenous cefazolin administration instead of cefmetazole were associated with postoperative fever. Odds ratios (ORs) for each were 2.3, 4.6, and 2.0, respectively. Positive preoperative bacterial colonization was associated with postoperative bacterial colonization on the packing material (OR 2.3). Postoperative fever subsided in most patients after removal of the packing material. When this postoperative fever persists, its underlying cause should be examined.

  18. Sequential colonization of periodontal pathogens in induction of periodontal disease and atherosclerosis in LDLRnull mice.

    PubMed

    Chukkapalli, Sasanka S; Easwaran, Meena; Rivera-Kweh, Mercedes F; Velsko, Irina M; Ambadapadi, Sriram; Dai, Jiayin; Larjava, Hannu; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2017-01-01

    Periodontal disease (PD) and atherosclerotic vascular disease (ASVD) are both chronic inflammatory diseases with a polymicrobial etiology and have been epidemiologically associated. The purpose is to examine whether periodontal bacteria that infect the periodontium can also infect vascular tissues and enhance pre-existing early aortic atherosclerotic lesions in LDLRnull mice. Mice were orally infected with intermediate bacterial colonizer Fusobacterium nucleatum for the first 12 weeks followed by late bacterial colonizers (Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia) for the remaining 12 weeks mimicking the human oral microbiota ecological colonization. Genomic DNA from all four bacterial was detected in gingival plaque by PCR, consistently demonstrating infection of mouse gingival surfaces. Infected mice had significant levels of IgG and IgM antibodies, alveolar bone resorption, and showed apical migration of junctional epithelium revealing the induction of PD. These results support the ability of oral bacteria to cause PD in mice. Detection of bacterial genomic DNA in systemic organs indicates hematogenous dissemination from the gingival pockets. Bacterial infection did not alter serum lipid fractions or serum amyloid A levels and did not induce aortic atherosclerotic plaque. This is the first study examining the causal role of periodontal bacteria in induction of ASVD in LDLRnull mice. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during Long-Term Patient Colonization.

    PubMed

    Conlan, Sean; Park, Morgan; Deming, Clayton; Thomas, Pamela J; Young, Alice C; Coleman, Holly; Sison, Christina; Weingarten, Rebecca A; Lau, Anna F; Dekker, John P; Palmore, Tara N; Frank, Karen M; Segre, Julia A

    2016-06-28

    Carbapenem-resistant Klebsiella pneumoniae strains are formidable hospital pathogens that pose a serious threat to patients around the globe due to a rising incidence in health care facilities, high mortality rates associated with infection, and potential to spread antibiotic resistance to other bacterial species, such as Escherichia coli Over 6 months in 2011, 17 patients at the National Institutes of Health (NIH) Clinical Center became colonized with a highly virulent, transmissible carbapenem-resistant strain of K. pneumoniae Our real-time genomic sequencing tracked patient-to-patient routes of transmission and informed epidemiologists' actions to monitor and control this outbreak. Two of these patients remained colonized with carbapenemase-producing organisms for at least 2 to 4 years, providing the opportunity to undertake a focused genomic study of long-term colonization with antibiotic-resistant bacteria. Whole-genome sequencing studies shed light on the underlying complex microbial colonization, including mixed or evolving bacterial populations and gain or loss of plasmids. Isolates from NIH patient 15 showed complex plasmid rearrangements, leaving the chromosome and the blaKPC-carrying plasmid intact but rearranging the two other plasmids of this outbreak strain. NIH patient 16 has shown continuous colonization with blaKPC-positive organisms across multiple time points spanning 2011 to 2015. Genomic studies defined a complex pattern of succession and plasmid transmission across two different K. pneumoniae sequence types and an E. coli isolate. These findings demonstrate the utility of genomic methods for understanding strain succession, genome plasticity, and long-term carriage of antibiotic-resistant organisms. In 2011, the NIH Clinical Center had a nosocomial outbreak involving 19 patients who became colonized or infected with blaKPC-positive Klebsiella pneumoniae Patients who have intestinal colonization with blaKPC-positive K. pneumoniae are at risk for developing infections that are difficult or nearly impossible to treat with existing antibiotic options. Two of those patients remained colonized with blaKPC-positive Klebsiella pneumoniae for over a year, leading to the initiation of a detailed genomic analysis exploring mixed colonization, plasmid recombination, and plasmid diversification. Whole-genome sequence analysis identified a variety of changes, both subtle and large, in the blaKPC-positive organisms. Long-term colonization of patients with blaKPC-positive Klebsiella pneumoniae creates new opportunities for horizontal gene transfer of plasmids encoding antibiotic resistance genes and poses complications for the delivery of health care. Copyright © 2016 Conlan et al.

  20. Comparative Analysis of Bacterial Community Composition and Structure in Clinically Symptomatic and Asymptomatic Central Venous Catheters

    PubMed Central

    Stressmann, Franziska A.; Couve-Deacon, Elodie; Chainier, Delphine; Chauhan, Ashwini; Wessel, Aimee; Durand-Fontanier, Sylvaine; Escande, Marie-Christine; Kriegel, Irène; Francois, Bruno; Ploy, Marie-Cécile

    2017-01-01

    ABSTRACT Totally implanted venous access ports (TIVAPs) are commonly used catheters for the management of acute or chronic pathologies. Although these devices improve health care, repeated use of this type of device for venous access over long periods of time is also associated with risk of colonization and infection by pathogenic bacteria, often originating from skin. However, although the skin microbiota is composed of both pathogenic and nonpathogenic bacteria, the extent and the consequences of TIVAP colonization by nonpathogenic bacteria have rarely been studied. Here, we used culture-dependent and 16S rRNA gene-based culture-independent approaches to identify differences in bacterial colonization of TIVAPs obtained from two French hospitals. To explore the relationships between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection, we analyzed the bacterial community parameters between TIVAPs suspected (symptomatic) or not (asymptomatic) of infection. Although we did not find a particular species assemblage or community marker to distinguish infection risk on an individual sample level, we identified differences in bacterial community composition, diversity, and structure between clinically symptomatic and asymptomatic TIVAPs that could be explored further. This study therefore provides a new view of bacterial communities and colonization patterns in intravascular TIVAPs and suggests that microbial ecology approaches could improve our understanding of device-associated infections and could be a prognostic tool to monitor the evolution of bacterial communities in implants and their potential susceptibility to infections. IMPORTANCE Totally implanted venous access ports (TIVAPs) are commonly used implants for the management of acute or chronic pathologies. Although their use improves the patient’s health care and quality of life, they are associated with a risk of infection and subsequent clinical complications, often leading to implant removal. While all TIVAPs appear to be colonized, only a fraction become infected, and the relationship between nonpathogenic organisms colonizing TIVAPs and the potential risk of infection is unknown. We explored bacteria present on TIVAPs implanted in patients with or without signs of TIVAP infection and identified differences in phylum composition and community structure. Our data suggest that the microbial ecology of intravascular devices could be predictive of TIVAP infection status and that ultimately a microbial ecological signature could be identified as a tool to predict TIVAP infection susceptibility and improve clinical management. PMID:28959736

  1. Live Attenuated Influenza Vaccine Enhances Colonization of Streptococcus pneumoniae and Staphylococcus aureus in Mice

    PubMed Central

    Mina, Michael J.; McCullers, Jonathan A.; Klugman, Keith P.

    2014-01-01

    ABSTRACT Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection. PMID:24549845

  2. The Vibrio cholerae Colonization Factor GbpA Possesses a Modular Structure that Governs Binding to Different Host Surfaces

    PubMed Central

    Wong, Edmond; Vaaje-Kolstad, Gustav; Ghosh, Avishek; Hurtado-Guerrero, Ramon; Konarev, Peter V.; Ibrahim, Adel F. M.; Svergun, Dmitri I.; Eijsink, Vincent G. H.; Chatterjee, Nabendu S.; van Aalten, Daan M. F.

    2012-01-01

    Vibrio cholerae is a bacterial pathogen that colonizes the chitinous exoskeleton of zooplankton as well as the human gastrointestinal tract. Colonization of these different niches involves an N-acetylglucosamine binding protein (GbpA) that has been reported to mediate bacterial attachment to both marine chitin and mammalian intestinal mucin through an unknown molecular mechanism. We report structural studies that reveal that GbpA possesses an unusual, elongated, four-domain structure, with domains 1 and 4 showing structural homology to chitin binding domains. A glycan screen revealed that GbpA binds to GlcNAc oligosaccharides. Structure-guided GbpA truncation mutants show that domains 1 and 4 of GbpA interact with chitin in vitro, whereas in vivo complementation studies reveal that domain 1 is also crucial for mucin binding and intestinal colonization. Bacterial binding studies show that domains 2 and 3 bind to the V. cholerae surface. Finally, mouse virulence assays show that only the first three domains of GbpA are required for colonization. These results explain how GbpA provides structural/functional modular interactions between V. cholerae, intestinal epithelium and chitinous exoskeletons. PMID:22253590

  3. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization

    PubMed Central

    Balbontín, Roberto; Vlamakis, Hera; Kolter, Roberto

    2014-01-01

    Salmonella Typhimurium inhabits a variety of environments and is able to infect a broad range of hosts. Throughout its life cycle, some hosts can act as intermediates in the path to the infection of others. Aspergillus niger is a ubiquitous fungus that can often be found in soil or associated to plants and microbial consortia. Recently, S. Typhimurium was shown to establish biofilms on the hyphae of A. niger. In this work, we have found that this interaction is stable for weeks without a noticeable negative effect on either organism. Indeed, bacterial growth is promoted upon the establishment of the interaction. Moreover, bacterial biofilms protect the fungus from external insults such as the effects of the anti-fungal agent cycloheximide. Thus, the Salmonella–Aspergillus interaction can be defined as mutualistic. A tripartite gnotobiotic system involving the bacterium, the fungus and a plant revealed that co-colonization has a greater negative effect on plant growth than colonization by either organism in dividually. Strikingly, co-colonization also causes a reduction in plant invasion by S. Typhimurium. This work demonstrates that S. Typhimurium and A. niger establish a mutualistic interaction that alters bacterial colonization of plants and affects plant physiology. PMID:25351041

  4. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    PubMed

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  5. Investigating Bacterial-Animal Symbioses with Light Sheet Microscopy

    PubMed Central

    Taormina, Michael J.; Jemielita, Matthew; Stephens, W. Zac; Burns, Adam R.; Troll, Joshua V.; Parthasarathy, Raghuveer; Guillemin, Karen

    2014-01-01

    SUMMARY Microbial colonization of the digestive tract is a crucial event in vertebrate development, required for maturation of host immunity and establishment of normal digestive physiology. Advances in genomic, proteomic, and metabolomic technologies are providing a more detailed picture of the constituents of the intestinal habitat, but these approaches lack the spatial and temporal resolution needed to characterize the assembly and dynamics of microbial communities in this complex environment. We report the use of light sheet microscopy to provide high resolution imaging of bacterial colonization of the zebrafish intestine. The methodology allows us to characterize bacterial population dynamics across the entire organ and the behaviors of individual bacterial and host cells throughout the colonization process. The large four-dimensional datasets generated by these imaging approaches require new strategies for image analysis. When integrated with other “omics” datasets, information about the spatial and temporal dynamics of microbial cells within the vertebrate intestine will provide new mechanistic insights into how microbial communities assemble and function within hosts. PMID:22983029

  6. Antiproliferative effects of yogurt fractions obtained by membrane dialysis on cultured mammalian intestinal cells.

    PubMed

    Ganjam, L S; Thornton, W H; Marshall, R T; MacDonald, R S

    1997-10-01

    The consumption of yogurt has been associated with a reduced incidence of colon cancer in population groups. Bioactive peptides produced during bacterial fermentation may alter the risk of colon cancer via modification of cell proliferation in the colon. Using our previously described cell culture model system, we have isolated a yogurt fraction that decreases cell proliferation. Yogurt was fractionated using 10,000- and 500-Da membrane dialysis. When the yogurt fraction was incubated with IEC-6 or Caco-2 cells, cell division was decreased compared with control treatments, as determined by thymidine incorporation. Cell division was not inhibited in response to a similarly produced milk fraction or in response to solutions of lactic acid. The determination of cell kinetics by flow cytometry revealed a decrease in the number of cells in the initial growth phase in response to the yogurt fraction for the IEC-6 cells, but not the Caco-2 cells. Alpha-Lactalbumin inhibited cell division of both cell lines, but beta-casein did not.

  7. Amended Description of the Genes for Synthesis of Actinomyces naeslundii T14V Type 1 Fimbriae and Associated Adhesin

    DTIC Science & Technology

    2007-05-07

    type 2 fimbriae promote biofilm formation (14) through recognition of hostlike saccharide motifs in the surface polysaccharides of early colonizing...a NuPAGE Tris-acetate gradient gel (3 to 8%), transferred to a nitro- cellulose membrane, probed with MAb 8A against an epitope of FimP, and...inhibitors of bacterial adhesion: observations from the study of gram-positive bacteria that initiate biofilm formation on the tooth surface. Adv. Dent. Res

  8. Secreted mucins and airway bacterial colonization in non-CF bronchiectasis.

    PubMed

    Sibila, Oriol; Suarez-Cuartin, Guillermo; Rodrigo-Troyano, Ana; Fardon, Thomas C; Finch, Simon; Mateus, Eder Freddy; Garcia-Bellmunt, Laia; Castillo, Diego; Vidal, Silvia; Sanchez-Reus, Ferran; Restrepo, Marcos I; Chalmers, James D

    2015-10-01

    Secreted mucins play a key role in antibacterial defence in the airway, but have not previously been characterized in non-cystic fibrosis (CF) bronchiectasis patients. We aim to investigate the relationship between secreted mucins levels and the presence of bacterial colonization due to potentially pathogenic microorganisms (PPM) in the airways of stable bronchiectasis patients. Clinically stable bronchiectasis patients were studied prospectively at two centres. Patients with other pulmonary conditions were excluded. Spontaneous sputum was subject to bacterial culture, and secreted mucins (MUC2, MUC5AC and MUC5B) were measured in sputum supernatants by ELISA. A total of 50 patients were included. PPM were identified from sputum samples in 30 (60%), with Pseudomonas aeruginosa (n = 10) and Haemophilus influenzae (n = 10) as the most common PPM. There were no baseline differences among airway colonized and non-colonized patients. Patients with airways colonized by PPM presented higher levels of airway MUC2. No differences in MUC5AC levels were found among groups, whereas MUC5B levels were undetectable. Patients with P. aeruginosa colonization expressed the highest levels of MUC2. High levels of MUC2 and MUC5AC are also correlated with disease severity using the Bronchiectasis Severity Index. Airway MUC2 levels were higher in bronchiectasis patients colonized with PPM compared with those without airway colonization, especially in patients with P. aeruginosa. These findings suggest that airway-secreted mucins levels may play a role in the pathogenesis of airway infection in non-CF bronchiectasis. © 2015 Asian Pacific Society of Respirology.

  9. Evidence of variable bacterial colonization on coloured elastomeric ligatures during orthodontic treatment: An intermodular comparative study.

    PubMed

    Sharma, Ravish; Sharma, Kavita; Sawhney, Rajesh

    2018-03-01

    Besides, other factors, the choice of materials used as orthodontic ligatures could be one of the many tools to counter the effects of microbial adhesion, that culminates into dental ailments. Therefore, we assessed bacterial adhesion on elastomeric ligatures with special reference to coloured elastomeric rings during orthodontic treatment. A split mouth study, involving 240 samples of different elastomeric ligatures from forty orthodontic patients possessing good oral hygiene was carried out. The archwire was ligated to the brackets on both arches with elastomeric rings (superslick, clear transparent , blue and pink) at predetermined quadrants. After six weeks, ligatures from second premolars were removed and processed for bacterial enumeration using standard techniques. Bacterial counts were also determined for stimulated saliva samples taken at 0 and 6 weeks. A statistically significant difference in bacterial counts was obtained amongst different elastomeric modules used. Maximum bacterial counts were found on conventional pigmented elastomeric modules, followed by Superslick module and clear module. More number of bacteria associated with the conventional pink as compared to the conventional blue pigmented modules, however it was not statistically significant. The three bacterial genera Streptococcus Staphylococcus and Aerobic Lactobacilli adhered to elastomeric modules in following predominant pattern i.e. Conventional pink>Conventional Blue>Superslick>Clear. The studies evidenced colour and material dependent bacterial colonization on orthodontic modules and could be an indicator of bacterial biofilm forming potential based on surface chemistries and a clinically efficacious tool to redesign conventional and modified elastomeric rings as orthodontic ligation accessories. Key words: Bacterial colonization, biofilm, coloured elastomers, orthodontic ligatures.

  10. Attenuated portal hypertension in germ-free mice: Function of bacterial flora on the development of mesenteric lymphatic and blood vessels.

    PubMed

    Moghadamrad, Sheida; McCoy, Kathy D; Geuking, Markus B; Sägesser, Hans; Kirundi, Jorum; Macpherson, Andrew J; De Gottardi, Andrea

    2015-05-01

    Intestinal bacterial flora may induce splanchnic hemodynamic and histological alterations that are associated with portal hypertension (PH). We hypothesized that experimental PH would be attenuated in the complete absence of intestinal bacteria. We induced prehepatic PH by partial portal vein ligation (PPVL) in germ-free (GF) or mice colonized with altered Schaedler's flora (ASF). After 2 or 7 days, we performed hemodynamic measurements, including portal pressure (PP) and portosystemic shunts (PSS), and collected tissues for histomorphology, microbiology, and gene expression studies. Mice colonized with intestinal microbiota presented significantly higher PP levels after PPVL, compared to GF, mice. Presence of bacterial flora was also associated with significantly increased PSS and spleen weight. However, there were no hemodynamic differences between sham-operated mice in the presence or absence of intestinal flora. Bacterial translocation to the spleen was demonstrated 2 days, but not 7 days, after PPVL. Intestinal lymphatic and blood vessels were more abundant in colonized and in portal hypertensive mice, as compared to GF and sham-operated mice. Expression of the intestinal antimicrobial peptide, angiogenin-4, was suppressed in GF mice, but increased significantly after PPVL, whereas other angiogenic factors remained unchanged. Moreover, colonization of GF mice with ASF 2 days after PPVL led to a significant increase in intestinal blood vessels, compared to controls. The relative increase in PP after PPVL in ASF and specific pathogen-free mice was not significantly different. In the complete absence of gut microbial flora PP is normal, but experimental PH is significantly attenuated. Intestinal mucosal lymphatic and blood vessels induced by bacterial colonization may contribute to development of PH. © 2015 by the American Association for the Study of Liver Diseases.

  11. Anti-Pseudomonas aeruginosa IgY Antibodies Induce Specific Bacterial Aggregation and Internalization in Human Polymorphonuclear Neutrophils

    PubMed Central

    Thomsen, K.; Christophersen, L.; Bjarnsholt, T.; Jensen, P. Ø.; Moser, C.

    2015-01-01

    Polymorphonuclear neutrophils (PMNs) are essential cellular constituents in the innate host response, and their recruitment to the lungs and subsequent ubiquitous phagocytosis controls primary respiratory infection. Cystic fibrosis pulmonary disease is characterized by progressive pulmonary decline governed by a persistent, exaggerated inflammatory response dominated by PMNs. The principal contributor is chronic Pseudomonas aeruginosa biofilm infection, which attracts and activates PMNs and thereby is responsible for the continuing inflammation. Strategies to prevent initial airway colonization with P. aeruginosa by augmenting the phagocytic competence of PMNs may postpone the deteriorating chronic biofilm infection. Anti-P. aeruginosa IgY antibodies significantly increase the PMN-mediated respiratory burst and subsequent bacterial killing of P. aeruginosa in vitro. The mode of action is attributed to IgY-facilitated formation of immobilized bacteria in aggregates, as visualized by fluorescence microscopy and the induction of increased bacterial hydrophobicity. Thus, the present study demonstrates that avian egg yolk immunoglobulins (IgY) targeting P. aeruginosa modify bacterial fitness, which enhances bacterial killing by PMN-mediated phagocytosis and thereby may facilitate a rapid bacterial clearance in airways of people with cystic fibrosis. PMID:25895968

  12. Bacterial strategies of resistance to antimicrobial peptides.

    PubMed

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  13. Perinatal Bisphenol A Exposure Induces Chronic Inflammation in Rabbit Offspring via Modulation of Gut Bacteria and Their Metabolites

    PubMed Central

    Veeramachaneni, D. N. Rao; Walters, William A.; Lozupone, Catherine; Palmer, Jennifer; Hewage, M. K. Kurundu; Bhatnagar, Rohil; Amir, Amnon; Kennett, Mary J.; Knight, Rob

    2017-01-01

    ABSTRACT Bisphenol A (BPA) accumulates in the maturing gut and liver in utero and is known to alter gut bacterial profiles in offspring. Gut bacterial dysbiosis may contribute to chronic colonic and systemic inflammation. We hypothesized that perinatal BPA exposure-induced intestinal (and liver) inflammation in offspring is due to alterations in the microbiome and colonic metabolome. The 16S rRNA amplicon sequencing analysis revealed differences in beta diversity with a significant reduction in the relative abundances of short-chain fatty acid (SCFA) producers such as Oscillospira and Ruminococcaceae due to BPA exposure. Furthermore, BPA exposure reduced fecal SCFA levels and increased systemic lipopolysaccharide (LPS) levels. BPA exposure-increased intestinal permeability was ameliorated by the addition of SCFA in vitro. Metabolic fingerprints revealed alterations in global metabolism and amino acid metabolism. Thus, our findings indicate that perinatal BPA exposure may cause gut bacterial dysbiosis and altered metabolite profiles, particularly SCFA profiles, leading to chronic colon and liver inflammation. IMPORTANCE Emerging evidence suggests that environmental toxicants may influence inflammation-promoted chronic disease susceptibility during early life. BPA, an environmental endocrine disruptor, can transfer across the placenta and accumulate in fetal gut and liver. However, underlying mechanisms for BPA-induced colonic and liver inflammation are not fully elucidated. In this report, we show how perinatal BPA exposure in rabbits alters gut microbiota and their metabolite profiles, which leads to colonic and liver inflammation as well as to increased gut permeability as measured by elevated serum lipopolysaccharide (LPS) levels in the offspring. Also, perinatal BPA exposure leads to reduced levels of gut bacterial diversity and bacterial metabolites (short-chain fatty acids [SCFA]) and elevated gut permeability—three common early biomarkers of inflammation-promoted chronic diseases. In addition, we showed that SCFA ameliorated BPA-induced intestinal permeability in vitro. Thus, our study results suggest that correcting environmental toxicant-induced bacterial dysbiosis early in life may reduce the risk of chronic diseases later in life. PMID:29034330

  14. The Inhibition of Escherichia coli Biofilm Formation by Gallium Nitrate-Modified Titanium.

    PubMed

    Zhu, Yuanyuan; Qiu, Yan; Chen, Ruiqi; Liao, Lianming

    2015-08-01

    Periprosthetic infections are notoriously difficult to treat due to biofilm formation. Previously, we reported that gallium-EDTA attached to PVC (polyvinyl chloride) surface could prevent bacterial colonization. Herein we examined the effect of this gallium-EDTA complex on Escherichia coli biofilm formation on titanium. It was clearly demonstrated that gallium nitrate significantly inhibited the growth and auto-aggregation of Escherichia coli. Furthermore, titanium with gallium-EDTA coating resisted bacterial colonization as indicated by crystal violet staining. When the chips were immersed in human serum and incubated at 37 °C, they demonstrated significant antimicrobial activity after more than 28 days of incubation. These findings indicate that gallium-EDTA coating of implants can result in a surface that can resist bacterial colonization. This technology holds great promise for the prevention and treatment of periprosthetic infections.

  15. Polysaccharide from seeds of Plantago asiatica L. affects lipid metabolism and colon microbiota of mouse.

    PubMed

    Hu, Jie-Lun; Nie, Shao-Ping; Wu, Qi-Meng; Li, Chang; Fu, Zhi-Hong; Gong, Joshua; Cui, Steve W; Xie, Ming-Yong

    2014-01-08

    Polysaccharide from the seeds of Plantago asiatica L. was given via oral administration to mice (0.4 g/kg body weight, 30 days) to observe its effects on mouse nutrient metabolism and colon microbiota. It was found the polysaccharide intake could lower the apparent absorption of lipid. Total triglyceride, cholesterol, and atherogenic index in blood serum with total lipid and cholesterol levels in liver of polysaccharide group mice were all significantly lower than those of the control group (p < 0.05). Furthermore, the effect of the polysaccharide intake on mouse colon bacterial communities was investigated. Mice from the polysaccharide group showed a higher colon bacterial diversity than the control group. Bacteroides sp., Eubacterium sp., butyrate-producing bacteria Butyrivibrio sp., and probiotics Bifidobacterium bifidum , Lactobacillus fermentum , and Lactobacillus reuteri in mouse colon were all increased after polysaccharide intake. These indicated that the intake of polysaccharide from P. asiatica L. could be beneficial for lipid metabolism and colon microbiota.

  16. Metabolome progression during early gut microbial colonization of gnotobiotic mice

    PubMed Central

    Marcobal, Angela; Yusufaly, Tahir; Higginbottom, Steven; Snyder, Michael; Sonnenburg, Justin L.; Mias, George I.

    2015-01-01

    The microbiome has been implicated directly in host health, especially host metabolic processes and development of immune responses. These are particularly important in infants where the gut first begins being colonized, and such processes may be modeled in mice. In this investigation we follow longitudinally the urine metabolome of ex-germ-free mice, which are colonized with two bacterial species, Bacteroides thetaiotaomicron and Bifidobacterium longum. High-throughput mass spectrometry profiling of urine samples revealed dynamic changes in the metabolome makeup, associated with the gut bacterial colonization, enabled by our adaptation of non-linear time-series analysis to urine metabolomics data. Results demonstrate both gradual and punctuated changes in metabolite production and that early colonization events profoundly impact the nature of small molecules circulating in the host. The identified small molecules are implicated in amino acid and carbohydrate metabolic processes, and offer insights into the dynamic changes occurring during the colonization process, using high-throughput longitudinal methodology. PMID:26118551

  17. The importance of appropriate initial bacterial colonization of the intestine in newborn, child and adult health

    PubMed Central

    Walker, W. Allan

    2017-01-01

    The fetus does not reside in a sterile intrauterine environment and is exposed to commensal bacteria from the maternal gut/blood stream which crosses the placenta and enters the amniotic fluid. This intestinal exposure to colonizing bacteria continues at birth and during the first year of life and has a profound influence on lifelong health. Why is this important? Intestinal crosstalk with colonizing bacteria in the developing intestine affects the infant’s adaptation to extrauterine life (immune homeostasis) and provides protection against disease expression (allergy, autoimmune disease, obesity, etc.) later in life. Colonizing intestinal bacteria are critical to the normal development of host defense. Disrupted colonization (dysbiosis) due to maternal dysbiosis, cesarean section delivery, use of perinatal antibiotics or premature delivery may adversely affect gut development of host defense and predispose to inflammation rather than homeostasis leading to increased susceptibility to disease later in life. Babies born by cesarean section have a higher incidence of allergy, type 1 diabetes and obesity. Infants given repeated antibiotic regimens during the first year of life are more likely to have asthma as adolescents. This research breakthrough helps to explain the shift in disease paradigms from infections to immune mediated in children from developed countries. This review will develop this research breakthrough. PMID:28426649

  18. Colonization sites in carriers of ESBL-producing Gram-negative bacteria.

    PubMed

    van Prehn, Joffrey; Kaiser, Anna M; van der Werff, Suzanne D; van Mansfeld, Rosa; Vandenbroucke-Grauls, Christina M J E

    2018-01-01

    The distribution of Extended-Spectrum Beta-Lactamase-producing Gram-negative bacteria (ESBL-GNB) colonization sites is relevant for infection control guidelines on detection and follow-up of colonization. We questioned whether it is possible to rely solely on rectal swab culture for follow-up of ESBL-GNB colonization. We retrospectively assessed ESBL-GNB colonization sites in patients in a tertiary hospital in the Netherlands. The Laboratory Information Management System was queried for all bacterial cultures obtained between January 2012 and August 2016. All patients with one or more cultures positive for ESBL-GNB were identified and the distribution of ESBL-GNB positive sample sites was assessed. A subgroup analysis was performed on patients for whom at least one rectal swab specimen was available. We identified 1011 ESBL-GNB carriers with 16,578 specimens for analysis. ESBL-GNB were most frequently isolated from the rectum (506/1011), followed by the urogenital (414/1011) and respiratory tract (142/1011), and pus (136/1011). For 588 patients at least one rectal swab specimen was available. In this subgroup, ESBL-GNB colonization was detected only in the rectum in 55.4% (326/588) of patients, in 30.6% (180/588) in the rectum and a different culture site, and in 13.9% (82/588) no rectal colonization was detected. Rectal colonization with ESBL-GNB was detected in 86% of ESBL-GNB carriers. However, in 14% of ESBL-GNB carriers we did not detect rectal colonization. Therefore, samples taken for follow-up of colonization with multi-drug resistant Gram-negative bacteria (MDR-GNB) should ideally also include samples from the site where the MDR-GNB was initially found.

  19. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy.

    PubMed

    Mason, Katie L; Erb Downward, John R; Mason, Kelly D; Falkowski, Nicole R; Eaton, Kathryn A; Kao, John Y; Young, Vincent B; Huffnagle, Gary B

    2012-10-01

    Candida albicans is a normal member of the gastrointestinal (GI) tract microbiota of healthy humans, but during host immunosuppression or alterations in the bacterial microbiota, C. albicans can disseminate and cause life-threatening illness. The bacterial microbiome of the GI tract, including lactic acid bacteria (LAB), plays a vital role in preventing fungal invasion. However, little is known about the role of C. albicans in shaping the bacterial microbiota during antibiotic recovery. We investigated the fungal burdens in the GI tracts of germfree mice and mice with a disturbed microbiome to demonstrate the role of the microbiota in preventing C. albicans colonization. Histological analysis demonstrated that colonization with C. albicans during antibiotic treatment does not trigger overt inflammation in the murine cecum. Bacterial diversity is reduced long term following cefoperazone treatment, but the presence of C. albicans during antibiotic recovery promoted the recovery of bacterial diversity. Cefoperazone diminishes Bacteroidetes populations long term in the ceca of mice, but the presence of C. albicans during cefoperazone recovery promoted Bacteroidetes population recovery. However, the presence of C. albicans resulted in a long-term reduction in Lactobacillus spp. and promoted Enterococcus faecalis populations. Previous studies have focused on the ability of bacteria to alter C. albicans; this study addresses the ability of C. albicans to alter the bacterial microbiota during nonpathogenic colonization.

  20. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.

    PubMed

    Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna

    2015-07-01

    Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  1. Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling.

    PubMed

    Villodre Tudela, Carmen; Boudry, Christelle; Stumpff, Friederike; Aschenbach, Jörg R; Vahjen, Wilfried; Zentek, Jürgen; Pieper, Robert

    2015-02-28

    The present study investigated the influence of bacterial metabolites on monocarboxylate transporter 1 (MCT1) expression in pigs using in vivo, ex vivo and in vitro approaches. Piglets (n 24) were fed high-protein (26 %) or low-protein (18 %) diets with or without fermentable carbohydrates. Colonic digesta samples were analysed for a broad range of bacterial metabolites. The expression of MCT1, TNF-α, interferon γ (IFN-γ) and IL-8 was determined in colonic tissue. The expression of MCT1 was lower and of TNF-α and IL-8 was higher with high-protein diets (P< 0·05). MCT1 expression was positively correlated with l-lactate, whereas negatively correlated with NH₃ and putrescine (P< 0·05). The expression of IL-8 and TNF-α was negatively correlated with l-lactate and positively correlated with NH₃ and putrescine, whereas the expression of IFN-γ was positively correlated with histamine and 4-ethylphenol (P< 0·05). Subsequently, porcine colonic tissue and Caco-2 cells were incubated with Na-butyrate, NH₄Cl or TNF-α as selected bacterial metabolites or mediators of inflammation. Colonic MCT1 expression was higher after incubation with Na-butyrate (P< 0·05) and lower after incubation with NH₄Cl or TNF-α (P< 0·05). Incubation of Caco-2 cells with increasing concentrations of these metabolites confirmed the up-regulation of MCT1 expression by Na-butyrate (linear, P< 0·05) and down-regulation by TNF-α and NH₄Cl (linear, P< 0·05). The high-protein diet decreased the expression of MCT1 in the colon of pigs, which appears to be linked to NH₃- and TNF-α-mediated signalling.

  2. Can a New Antiseptic Agent Reduce the Bacterial Colonization Rate of Central Venous Lines in Post-Cardiac Surgery Patients?

    PubMed Central

    Yousefshahi, Fardin; Azimpour, Khashayar; Boroumand, Mohammad Ali; Najafi, Mahdi; Barkhordari, Khosro; Vaezi, Mitra; Rouhipour, Nahid

    2013-01-01

    Background: Central venous (CV) catheters play an essential role in the management of critically ill patients in the Intensive Care Unit (ICU). CV lines are, however, allied to catheter-associated blood stream infections. Bacterial colonization of CV lines is deemed the main cause of catheter-associated infection. The purpose of our study was to compare bacterial colony counts in the catheter site before CV line insertion in two groups of post-cardiac surgery patients: a group receiving Sanosil (an antiseptic agent composed of H2O2 and silver) and a control group. Methods: This interventional prospective double-blinded clinical trial recruited the patients in three post-cardiac surgery ICUs of a heart center. The participants were divided into interventional (113 patients) and control (136 patients) groups. Sanosil was added to the routine preparation procedure (Chlorhexidine bath one day before and scrub with Povidone-Iodine just before the CV line insertion). After the removal of the CV lines, the catheters tips were sent for culture and evaluation of colony counts. Results: Catheter colonization occurred in 55 (22.1%) patients: 26 (23%) patients in the Sanosil group and 29 (21.3%) in the control group; there was no significant statistical difference between the two groups (p value = 0.75, RR = 1.05, 95% CI: 0.76–1.45). The most common organism having colonized in the cultures of the catheter tips was staphylococcus epidermis: 20 cases in the control group and 16 cases in the intervention group. Conclusion: Catheter colonization frequently occurs in post-cardiac surgery patients. However, our results did not indicate the effectiveness of adding Sanosil to the routine preparation procedure with respect to reducing catheter bacterial colonization. PMID:23967028

  3. Can a new antiseptic agent reduce the bacterial colonization rate of central venous lines in post-cardiac surgery patients?

    PubMed

    Yousefshahi, Fardin; Azimpour, Khashayar; Boroumand, Mohammad Ali; Najafi, Mahdi; Barkhordari, Khosro; Vaezi, Mitra; Rouhipour, Nahid

    2013-04-01

    Central venous (CV) catheters play an essential role in the management of critically ill patients in the Intensive Care Unit (ICU). CV lines are, however, allied to catheter-associated blood stream infections. Bacterial colonization of CV lines is deemed the main cause of catheter-associated infection. The purpose of our study was to compare bacterial colony counts in the catheter site before CV line insertion in two groups of post-cardiac surgery patients: a group receiving Sanosil (an antiseptic agent composed of H2O2 and silver) and a control group. This interventional prospective double-blinded clinical trial recruited the patients in three post-cardiac surgery ICUs of a heart center. The participants were divided into interventional (113 patients) and control (136 patients) groups. Sanosil was added to the routine preparation procedure (Chlorhexidine bath one day before and scrub with Povidone-Iodine just before the CV line insertion). After the removal of the CV lines, the catheters tips were sent for culture and evaluation of colony counts. Catheter colonization occurred in 55 (22.1%) patients: 26 (23%) patients in the Sanosil group and 29 (21.3%) in the control group; there was no significant statistical difference between the two groups (p value = 0.75, RR = 1.05, 95% CI: 0.76-1.45). The most common organism having colonized in the cultures of the catheter tips was staphylococcus epidermis: 20 cases in the control group and 16 cases in the intervention group. Catheter colonization frequently occurs in post-cardiac surgery patients. However, our results did not indicate the effectiveness of adding Sanosil to the routine preparation procedure with respect to reducing catheter bacterial colonization.

  4. Does implant coating with antibacterial-loaded hydrogel reduce bacterial colonization and biofilm formation in vitro?

    PubMed

    Drago, Lorenzo; Boot, Willemijn; Dimas, Kostantinos; Malizos, Kostantinos; Hänsch, Gertrud M; Stuyck, Jos; Gawlitta, Debby; Romanò, Carlo L

    2014-11-01

    Implant-related infections represent one of the most severe complications in orthopaedics. A fast-resorbable, antibacterial-loaded hydrogel may reduce or prevent bacterial colonization and biofilm formation of implanted biomaterials. We asked: (1) Is a fast-resorbable hydrogel able to deliver antibacterial compounds in vitro? (2) Can a hydrogel (alone or antibacterial-loaded) coating on implants reduce bacterial colonization? And (3) is intraoperative coating feasible and resistant to press-fit implant insertion? We tested the ability of Disposable Antibacterial Coating (DAC) hydrogel (Novagenit Srl, Mezzolombardo, Italy) to deliver antibacterial agents using spectrophotometry and a microbiologic assay. Antibacterial and antibiofilm activity were determined by broth microdilution and a crystal violet assay, respectively. Coating resistance to press-fit insertion was tested in rabbit tibias and human femurs. Complete release of all tested antibacterial compounds was observed in less than 96 hours. Bactericidal and antibiofilm effect of DAC hydrogel in combination with various antibacterials was shown in vitro. Approximately 80% of the hydrogel coating was retrieved on the implant after press-fit insertion. Implant coating with an antibacterial-loaded hydrogel reduces bacterial colonization and biofilm formation in vitro. A fast-resorbable, antibacterial-loaded hydrogel coating may help prevent implant-related infections in orthopaedics. However, further validation in animal models and properly controlled human studies is required.

  5. Osteopontin Mediates Citrobacter rodentium-Induced Colonic Epithelial Cell Hyperplasia and Attaching-Effacing Lesions

    PubMed Central

    Wine, Eytan; Shen-Tu, Grace; Gareau, Mélanie G.; Goldberg, Harvey A.; Licht, Christoph; Ngan, Bo-Yee; Sorensen, Esben S.; Greenaway, James; Sodek, Jaro; Zohar, Ron; Sherman, Philip M.

    2010-01-01

    Although osteopontin (OPN) is up-regulated in inflammatory bowel diseases, its role in disease pathogenesis remains controversial. The objective of this study was to determine the role of OPN in host responses to a non-invasive bacterial pathogen, Citrobacter rodentium, which serves as a murine infectious model of colitis. OPN gene knockout and wild-type mice were infected orogastrically with either C. rodentium or Luria-Bertani (LB) broth. Mouse-derived OPN+/+ and OPN−/− fibroblasts were incubated with C. rodentium and attaching-effacing lesions were demonstrated using transmission electron microscopy and immunofluorescence. Colonic expression of OPN was increased by C. rodentium infection of wild-type mice. Furthermore, colonic epithelial cell hyperplasia, the hallmark of C. rodentium infection, was reduced in OPN−/− mice, and spleen enlargement by infection was absent in OPN−/− mice. Rectal administration of OPN to OPN−/− mice restored these effects. There was an 8- to 17-fold reduction in bacterial colonization in OPN−/− mice, compared with wild-type mice, which was accompanied by reduced attaching–effacing lesions, both in infected OPN−/− mice and OPN−/− mouse fibroblasts. Moreover, adhesion pedestals were restored in OPN−/− cells complemented with human OPN. Therefore, lack of OPN results in decreased pedestal formation, colonization, and colonic epithelial cell hyperplasia responses to C. rodentium infection, indicating that OPN impacts disease pathogenesis through bacterial attachment and altered host immune responses. PMID:20651246

  6. Osteopontin mediates Citrobacter rodentium-induced colonic epithelial cell hyperplasia and attaching-effacing lesions.

    PubMed

    Wine, Eytan; Shen-Tu, Grace; Gareau, Mélanie G; Goldberg, Harvey A; Licht, Christoph; Ngan, Bo-Yee; Sorensen, Esben S; Greenaway, James; Sodek, Jaro; Zohar, Ron; Sherman, Philip M

    2010-09-01

    Although osteopontin (OPN) is up-regulated in inflammatory bowel diseases, its role in disease pathogenesis remains controversial. The objective of this study was to determine the role of OPN in host responses to a non-invasive bacterial pathogen, Citrobacter rodentium, which serves as a murine infectious model of colitis. OPN gene knockout and wild-type mice were infected orogastrically with either C. rodentium or Luria-Bertani (LB) broth. Mouse-derived OPN(+/+) and OPN(-/-) fibroblasts were incubated with C. rodentium and attaching-effacing lesions were demonstrated using transmission electron microscopy and immunofluorescence. Colonic expression of OPN was increased by C. rodentium infection of wild-type mice. Furthermore, colonic epithelial cell hyperplasia, the hallmark of C. rodentium infection, was reduced in OPN(-/-) mice, and spleen enlargement by infection was absent in OPN(-/-) mice. Rectal administration of OPN to OPN(-/-) mice restored these effects. There was an 8- to 17-fold reduction in bacterial colonization in OPN(-/-) mice, compared with wild-type mice, which was accompanied by reduced attaching-effacing lesions, both in infected OPN(-/-) mice and OPN(-/-) mouse fibroblasts. Moreover, adhesion pedestals were restored in OPN(-/-) cells complemented with human OPN. Therefore, lack of OPN results in decreased pedestal formation, colonization, and colonic epithelial cell hyperplasia responses to C. rodentium infection, indicating that OPN impacts disease pathogenesis through bacterial attachment and altered host immune responses.

  7. Bacterial Community Composition Associated with Pyrogenic Organic Matter (Biochar) Varies with Pyrolysis Temperature and Colonization Environment

    PubMed Central

    Dai, Zhongmin; Barberán, Albert; Li, Yong; Brookes, Philip C.

    2017-01-01

    ABSTRACT Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria, particularly Actinomycetales, was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature. PMID:28405627

  8. Bacterial Community Composition Associated with Pyrogenic Organic Matter (Biochar) Varies with Pyrolysis Temperature and Colonization Environment.

    PubMed

    Dai, Zhongmin; Barberán, Albert; Li, Yong; Brookes, Philip C; Xu, Jianming

    2017-01-01

    Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria , particularly Actinomycetales , was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature.

  9. Topical Antimicrobial Treatments Can Elicit Shifts to Resident Skin Bacterial Communities and Reduce Colonization by Staphylococcus aureus Competitors

    PubMed Central

    SanMiguel, Adam J.; Meisel, Jacquelyn S.; Horwinski, Joseph; Zheng, Qi

    2017-01-01

    ABSTRACT The skin microbiome is a complex ecosystem with important implications for cutaneous health and disease. Topical antibiotics and antiseptics are often employed to preserve the balance of this population and inhibit colonization by more pathogenic bacteria. However, despite their widespread use, the impact of these interventions on broader microbial communities remains poorly understood. Here, we report the longitudinal effects of topical antibiotics and antiseptics on skin bacterial communities and their role in Staphylococcus aureus colonization resistance. In response to antibiotics, cutaneous populations exhibited an immediate shift in bacterial residents, an effect that persisted for multiple days posttreatment. By contrast, antiseptics elicited only minor changes to skin bacterial populations, with few changes to the underlying microbiota. While variable in scope, both antibiotics and antiseptics were found to decrease colonization by commensal Staphylococcus spp. by sequencing- and culture-based methods, an effect which was highly dependent on baseline levels of Staphylococcus. Because Staphylococcus residents have been shown to compete with the skin pathogen S. aureus, we also tested whether treatment could influence S. aureus levels at the skin surface. We found that treated mice were more susceptible to exogenous association with S. aureus and that precolonization with the same Staphylococcus residents that were previously disrupted by treatment reduced S. aureus levels by over 100-fold. In all, the results of this study indicate that antimicrobial drugs can alter skin bacterial residents and that these alterations can have critical implications for cutaneous host defense. PMID:28630195

  10. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    PubMed

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  11. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants

    PubMed Central

    Yazici, Hilal; O'Neill, Mary B.; Kacar, Turgay; Wilson, Brandon R.; Oren, E. Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-01-01

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property. PMID:26795060

  12. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    PubMed

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  13. Leaf-FISH: Microscale Imaging of Bacterial Taxa on Phyllosphere

    PubMed Central

    Peredo, Elena L.; Simmons, Sheri L.

    2018-01-01

    Molecular methods for microbial community characterization have uncovered environmental and plant-associated factors shaping phyllosphere communities. Variables undetectable using bulk methods can play an important role in shaping plant-microbe interactions. Microscale analysis of bacterial dynamics in the phyllosphere requires imaging techniques specially adapted to the high autoflouresence and 3-D structure of the leaf surface. We present an easily-transferable method (Leaf-FISH) to generate high-resolution tridimensional images of leaf surfaces that allows simultaneous visualization of multiple bacterial taxa in a structurally informed context, using taxon-specific fluorescently labeled oligonucleotide probes. Using a combination of leaf pretreatments coupled with spectral imaging confocal microscopy, we demonstrate the successful imaging bacterial taxa at the genus level on cuticular and subcuticular leaf areas. Our results confirm that different bacterial species, including closely related isolates, colonize distinct microhabitats in the leaf. We demonstrate that highly related Methylobacterium species have distinct colonization patterns that could not be predicted by shared physiological traits, such as carbon source requirements or phytohormone production. High-resolution characterization of microbial colonization patterns is critical for an accurate understanding of microbe-microbe and microbe-plant interactions, and for the development of foliar bacteria as plant-protective agents. PMID:29375531

  14. Urine cytokine and chemokine levels predict urinary tract infection severity independent of uropathogen, urine bacterial burden, host genetics, and host age.

    PubMed

    Armbruster, Chelsie E; Smith, Sara N; Mody, Lona; Mobley, Harry L T

    2018-06-11

    Urinary tract infections (UTIs) are among the most common infections worldwide. Diagnosing UTIs in older adults poses a significant challenge as asymptomatic colonization is common. Identification of a non-invasive profile that predicts likelihood of progressing from urine colonization to severe disease would provide a significant advantage in clinical practice. We monitored colonization susceptibility, disease severity, and immune response to two uropathogens in two mouse strains across three age groups to identify predictors of infection outcome. Proteus mirabilis caused more severe disease than Escherichia coli, regardless of mouse strain or age, and was associated with differences in IL-1β, IFN-β, CXCL5 (LIX), CCL5 (RANTES), and CCL2 (MCP-1). In comparing the response to infection across age groups, mature adult mice were better able to control colonization and prevent progression to kidney colonization and bacteremia than young or aged mice, regardless of mouse strain or bacterial species, and this was associated with differences in IL-23, CXCL1, and CCL5. A bimodal distribution was noted for urine colonization, which was strongly associated with bladder CFUs and the magnitude of the immune response but independent of age or disease severity. To determine the value of urine cytokine and chemokine levels for predicting severe disease, all infection datasets were combined and subjected to a series of logistic regressions. A multivariate model incorporating IL-1β, CXCL1, and CCL2 had strong predictive value for identifying mice that did not develop kidney colonization or bacteremia, regardless of mouse genetic background, age, infecting bacterial species, or urine bacterial burden. In conclusion, urine cytokine profiles could potentially serve as a non-invasive decision-support tool in clinical practice and contribute to antimicrobial stewardship. Copyright © 2018 American Society for Microbiology.

  15. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens

    PubMed Central

    Pamer, Eric G.

    2016-01-01

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care–associated infections caused by highly antibiotic-resistant bacteria. PMID:27126035

  16. Case Study of the Distribution of Mucosa-Associated Bifidobacterium Species, Lactobacillus Species, and Other Lactic Acid Bacteria in the Human Colon

    PubMed Central

    Nielsen, D. S.; Møller, P. L.; Rosenfeldt, V.; Pærregaard, A.; Michaelsen, K. F.; Jakobsen, M.

    2003-01-01

    The distribution of mucosa-associated bacteria, bifidobacteria and lactobacilli and closely related lactic acid bacteria, in biopsy samples from the ascending, transverse, and descending parts of the colon from four individuals was investigated by denaturing gradient gel electrophoresis (DGGE). Bifidobacterial genus-specific, Lactobacillus group-specific, and universal bacterial primers were used in a nested PCR approach to amplify a fragment of the 16S rRNA gene. DGGE profiles of the bifidobacterial community were relatively simple, with one or two amplicons detected at most sampling sites in the colon. DGGE profiles obtained with Lactobacillus group-specific primers were complex and varied with host and sampling site in the colon. The overall bacterial community varied with host but not sampling site. PMID:14660412

  17. Non-Hematopoietic MLKL Protects Against Salmonella Mucosal Infection by Enhancing Inflammasome Activation

    PubMed Central

    Yu, Shui-Xing; Chen, Wei; Liu, Zhen-Zhen; Zhou, Feng-Hua; Yan, Shi-Qing; Hu, Gui-Qiu; Qin, Xiao-Xia; Zhang, Jie; Ma, Ke; Du, Chong-Tao; Gu, Jing-Min; Deng, Xu-Ming; Han, Wen-Yu; Yang, Yong-Jun

    2018-01-01

    The intestinal mucosal barrier is critical for host defense against pathogens infection. Here, we demonstrate that the mixed lineage kinase-like protein (MLKL), a necroptosis effector, promotes intestinal epithelial barrier function by enhancing inflammasome activation. MLKL−/− mice were more susceptible to Salmonella infection compared with wild-type counterparts, with higher mortality rates, increased body weight loss, exacerbated intestinal inflammation, more bacterial colonization, and severe epithelial barrier disruption. MLKL deficiency promoted early epithelial colonization of Salmonella prior to developing apparent intestinal pathology. Active MLKL was predominantly expressed in crypt epithelial cells, and experiments using bone marrow chimeras found that the protective effects of MLKL were dependent on its expression in non-hematopoietic cells. Intestinal mucosa of MLKL−/− mice had impaired caspase-1 and gasdermin D cleavages and decreased interleukin (IL)-18 release. Moreover, administration of exogenous recombinant IL-18 rescued the phenotype of increased bacterial colonization in MLKL−/− mice. Thus, our results uncover the role of MLKL in enhancing inflammasome activation in intestinal epithelial cells to inhibit early bacterial colonization. PMID:29456533

  18. Microbiology of folliculitis: a histological study of 39 cases.

    PubMed

    Jahns, Anika C; Lundskog, Bertil; Berg, Johanna; Jonsson, Rebecca; McDowell, Andrew; Patrick, Sheila; Golovleva, Irina; Palmer, Ruth H; Alexeyev, Oleg A

    2014-01-01

    Folliculitis is a common inflammatory skin syndrome. Several microbial organisms have been put forward as causative agents, but few studies visualized microbes directly in inflamed hair follicles. This retrospective study investigated bacterial and fungal colonization of inflamed hair follicles in patients with clinically diagnosed non-infectious folliculitis. Skin biopsies from 39 folliculitis patients and 27 controls were screened by fluorescence in situ hybridization (FISH) using broad-range bacterial and fungal probes and by immunofluorescence microscopy using a monoclonal antibody towards Gram-positive bacteria. Specific monoclonal and polyclonal antibodies towards Staphylococcus spp. and Propionibacterium acnes were applied for further species identification. Inflamed follicles were associated with bacterial colonization in 10 samples (26%) and fungal colonization in three samples (8%). Staphylococcus spp. were observed in inflamed follicles in seven samples (18%). Two samples were positive for P. acnes, which were identified as either type II or type IB/type III. Both Staphylococcus spp. and P. acnes were seen in macrocolonies/biofilm structures. In conclusion, one-third of patients with clinically diagnosed, non-infectious folliculitis exhibited microbial colonization with predominance of Staphylococcus spp. © 2013 APMIS Published by Blackwell Publishing Ltd.

  19. Use of Hybridization Chain Reaction-Fluorescent In Situ Hybridization To Track Gene Expression by Both Partners during Initiation of Symbiosis.

    PubMed

    Nikolakakis, K; Lehnert, E; McFall-Ngai, M J; Ruby, E G

    2015-07-01

    The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps required to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simultaneously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized, transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population. Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue responses to colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine.

    PubMed

    Schlisselberg, Dov B; Yaron, Sima

    2013-08-01

    Bacterial colonization and biofilm formation on stainless steel (SS) surfaces can be sources for cross contamination in food processing facilities, possessing a great threat to public health and food quality. Here the aim was to demonstrate the influence of surface finish of AISI 316 SS on colonization, biofilm formation and susceptibility of Salmonella Typhimurium to disinfection. Initial attachment of S. Typhimurium on surfaces of SS was four times lower, when surface was polished by Bright-Alum (BA) or Electropolishing (EP), as compared to Mechanical Sanded (MS) or the untreated surface (NT). The correlation between roughness and initial bacterial attachment couldn't account on its own to explain differences seen. Biofilms with similar thickness (15-18 μm) were developed on all surfaces 1-day post inoculation, whereas EP was the least covered surface (23%). Following 5-days, biofilm thickness was lowest on EP and MS (30 μm) and highest on NT (62 μm) surfaces. An analysis of surface composition suggested a link between surface chemistry and biofilm development, where the higher concentrations of metal ions in EP and MS surfaces correlated with limited biofilm formation. Interestingly, disinfection of biofilms with chlorine was up to 130 times more effective on the EP surface (0.005% surviving) than on the other surfaces. Overall these results suggest that surface finish should be considered carefully in a food processing plant. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Bacterial desorption from food container and food processing surfaces.

    PubMed

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  2. The effect of E coli virulence on bacterial translocation and systemic sepsis in the neonatal rabbit model.

    PubMed

    Jackson, R J; Smith, S D; Wadowsky, R M; DePudyt, L; Rowe, M I

    1991-04-01

    In the surgical neonate, three factors that promote bacterial translocation and systemic infection are: (1) intestinal bacterial colonization and overgrowth; (2) compromised host defenses; and (3) disruption of the mucosal epithelial barrier. The newborn rabbit provides an excellent model to study these factors. Like the human, there is early closure of the gut mucosa to macromolecules, and nutrition can be maintained by breast or formula feeding. This study examines translocation and systemic sepsis after colonization with virulent K1 and avirulent K100 strains of Escherichia coli. New Zealand white rabbit pups (2 to 5 days old) were studied. The gastrointestinal tracts of 12 were colonized with K1 E coli; 14 were colonized with K100 E coli; 12 control animals were not inoculated. Mesenteric lymph node (MLN), liver, spleen, and colon homogenate were cultured 72 hours postinoculation. No bacteria were isolated from the colons of all but one control animal. Translocation or systemic sepsis did not occur. Translocation to the MLN was significantly increased (P less than .03) in K1 (50%) and K100 (36%) groups compared with controls (0%). Translocation to liver and spleen (systemic sepsis) was significantly increased (P less than .03) in K1 animals (67%) compared with K100 (0%) or controls (0%). Colonization by both strains of E coli led to translocation to the MLN, but only K1 E coli caused systemic sepsis. This suggests that although colonization by E coli in the newborn leads to translocation to the MLN, progression to systemic sepsis is the result of characteristics of the bacteria and/or neonatal host responses.

  3. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon.

    PubMed

    Sundin, Olof H; Mendoza-Ladd, Antonio; Zeng, Mingtao; Diaz-Arévalo, Diana; Morales, Elisa; Fagan, B Matthew; Ordoñez, Javier; Velez, Philip; Antony, Nishaal; McCallum, Richard W

    2017-07-17

    The upper half of the human small intestine, known as the jejunum, is the primary site for absorption of nutrient-derived carbohydrates, amino acids, small peptides, and vitamins. In contrast to the colon, which contains 10 11 -10 12 colony forming units of bacteria per ml (CFU/ml), the normal jejunum generally ranges from 10 3 to 10 5  CFU per ml. Because invasive procedures are required to access the jejunum, much less is known about its bacterial microbiota. Bacteria inhabiting the jejunal lumen have been investigated by classical culture techniques, but not by culture-independent metagenomics. The lumen of the upper jejunum was sampled during enteroscopy of 20 research subjects. Culture on aerobic and anaerobic media gave live bacterial counts ranging from 5.8 × 10 3 CFU/ml to 8.0 × 10 6 CFU/ml. DNA from the same samples was analyzed by 16S rRNA gene-specific quantitative PCR, yielding values from 1.5 × 10 5 to 3.1 × 10 7 bacterial genomes per ml. When calculated for each sample, estimated bacterial viability ranged from effectively 100% to a low of 0.3%. 16S rRNA metagenomic analysis of uncultured bacteria by Illumina MiSeq sequencing gave detailed microbial composition by phylum, genus and species. The genera Streptococcus, Prevotella, Veillonella and Fusobacterium, were especially abundant, as well as non-oral genera including Escherichia, Klebsiella, and Citrobacter. The jejunum was devoid of the genera Alistipes, Ruminococcus, Faecalibacterium, and other extreme anaerobes abundant in the colon. In patients with higher bacterial loads, there was no significant change in microbial species composition. The jejunal lumen contains a distinctive bacterial population consisting primarily of facultative anaerobes and oxygen-tolerant obligate anaerobes similar to those found in the oral cavity. However, the frequent abundance of Enterobacteriaceae represents a major difference from oral microbiota. Although a few genera are shared with the colon, we found no evidence for retrograde movement of the most abundant colonic microbes to the jejunum. Some individuals had much higher bacterial loads, but this was not correlated with decreases in bacterial species diversity or other evidence of dysbiosis.

  4. Use of portable electronic devices in a hospital setting and their potential for bacterial colonization.

    PubMed

    Khan, Amber; Rao, Amitha; Reyes-Sacin, Carlos; Hayakawa, Kayoko; Szpunar, Susan; Riederer, Kathleen; Kaye, Keith; Fishbain, Joel T; Levine, Diane

    2015-03-01

    Portable electronic devices are increasingly being used in the hospital setting. As with other fomites, these devices represent a potential reservoir for the transmission of pathogens. We conducted a convenience sampling of devices in 2 large medical centers to identify bacterial colonization rates and potential risk factors. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    PubMed

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  6. Microscale spatial analysis provides evidence for adhesive monopolization of dietary nutrients by specific intestinal bacteria

    PubMed Central

    Takada, Toshihiko; Nagata, Yuriko; Kado, Shoichi; Kushiro, Akira

    2017-01-01

    Each species of intestinal bacteria requires a nutritional source to maintain its population in the intestine. Dietary factors are considered to be major nutrients; however, evidence directly explaining the in situ utilization of dietary factors is limited. Microscale bacterial distribution would provide clues to understand bacterial lifestyle and nutrient utilization. However, the detailed bacterial localization around dietary factors in the intestine remains uninvestigated. Therefore, we explored microscale habitats in the murine intestine by using histology and fluorescent in situ hybridization, focusing on dietary factors. This approach successfully revealed several types of bacterial colonization. In particular, bifidobacterial colonization and adhesion on granular starch was frequently and commonly observed in the jejunum and distal colon. To identify the bacterial composition of areas around starch granules and areas without starch, laser microdissection and next-generation sequencing-based 16S rRNA microbial profiling was performed. It was found that Bifidobacteriaceae were significantly enriched by 4.7 fold in peri-starch areas compared to ex-starch areas. This family solely consisted of Bifidobacterium pseudolongum. In contrast, there was no significant enrichment among the other major families. This murine intestinal B. pseudolongum had starch-degrading activity, confirmed by isolation from the mouse feces and in vitro analysis. Collectively, our results demonstrate the significance of starch granules as a major habitat and potential nutritional niche for murine intestinal B. pseudolongum. Moreover, our results suggest that colonizing bifidobacteria effectively utilize starch from the closest location and maintain the location. This may be a bacterial strategy to monopolize solid dietary nutrients. We believe that our analytical approach could possibly be applied to other nutritional factors, and can be a powerful tool to investigate in vivo relationships between bacteria and environmental factors in the intestine. PMID:28394924

  7. Microscale spatial analysis provides evidence for adhesive monopolization of dietary nutrients by specific intestinal bacteria.

    PubMed

    Nagara, Yusuke; Takada, Toshihiko; Nagata, Yuriko; Kado, Shoichi; Kushiro, Akira

    2017-01-01

    Each species of intestinal bacteria requires a nutritional source to maintain its population in the intestine. Dietary factors are considered to be major nutrients; however, evidence directly explaining the in situ utilization of dietary factors is limited. Microscale bacterial distribution would provide clues to understand bacterial lifestyle and nutrient utilization. However, the detailed bacterial localization around dietary factors in the intestine remains uninvestigated. Therefore, we explored microscale habitats in the murine intestine by using histology and fluorescent in situ hybridization, focusing on dietary factors. This approach successfully revealed several types of bacterial colonization. In particular, bifidobacterial colonization and adhesion on granular starch was frequently and commonly observed in the jejunum and distal colon. To identify the bacterial composition of areas around starch granules and areas without starch, laser microdissection and next-generation sequencing-based 16S rRNA microbial profiling was performed. It was found that Bifidobacteriaceae were significantly enriched by 4.7 fold in peri-starch areas compared to ex-starch areas. This family solely consisted of Bifidobacterium pseudolongum. In contrast, there was no significant enrichment among the other major families. This murine intestinal B. pseudolongum had starch-degrading activity, confirmed by isolation from the mouse feces and in vitro analysis. Collectively, our results demonstrate the significance of starch granules as a major habitat and potential nutritional niche for murine intestinal B. pseudolongum. Moreover, our results suggest that colonizing bifidobacteria effectively utilize starch from the closest location and maintain the location. This may be a bacterial strategy to monopolize solid dietary nutrients. We believe that our analytical approach could possibly be applied to other nutritional factors, and can be a powerful tool to investigate in vivo relationships between bacteria and environmental factors in the intestine.

  8. Novel model for multispecies biofilms that uses rigid gas-permeable lenses.

    PubMed

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Ebersole, Jeffrey L; Novak, Karen F

    2011-05-01

    Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues.

  9. Group B Streptococcal Colonization, Molecular Characteristics, and Epidemiology

    PubMed Central

    Shabayek, Sarah; Spellerberg, Barbara

    2018-01-01

    Streptococcus agalactiae or group B streptococcus (GBS) is a leading cause of serious neonatal infections. GBS is an opportunistic commensal constituting a part of the intestinal and vaginal physiologic flora and maternal colonization is the principal route of GBS transmission. GBS is a pathobiont that converts from the asymptomatic mucosal carriage state to a major bacterial pathogen causing severe invasive infections. At present, as many as 10 serotypes (Ia, Ib, and II–IX) are recognized. The aim of the current review is to shed new light on the latest epidemiological data and clonal distribution of GBS in addition to discussing the most important colonization determinants at a molecular level. The distribution and predominance of certain serotypes is susceptible to variations and can change over time. With the availability of multilocus sequence typing scheme (MLST) data, it became clear that GBS strains of certain clonal complexes possess a higher potential to cause invasive disease, while other harbor mainly colonizing strains. Colonization and persistence in different host niches is dependent on the adherence capacity of GBS to host cells and tissues. Bacterial biofilms represent well-known virulence factors with a vital role in persistence and chronic infections. In addition, GBS colonization, persistence, translocation, and invasion of host barriers are largely dependent on their adherence abilities to host cells and extracellular matrix proteins (ECM). Major adhesins mediating GBS interaction with host cells include the fibrinogen-binding proteins (Fbs), the laminin-binding protein (Lmb), the group B streptococcal C5a peptidase (ScpB), the streptococcal fibronectin binding protein A (SfbA), the GBS immunogenic bacterial adhesin (BibA), and the hypervirulent adhesin (HvgA). These adhesins facilitate persistent and intimate contacts between the bacterial cell and the host, while global virulence regulators play a major role in the transition to invasive infections. This review combines for first time epidemiological data with data on adherence and colonization for GBS. Investigating the epidemiology along with understanding the determinants of mucosal colonization and the development of invasive disease at a molecular level is therefore important for the development of strategies to prevent invasive GBS disease worldwide. PMID:29593684

  10. Chemical sensing in mammalian host-bacterial commensal associations

    USDA-ARS?s Scientific Manuscript database

    The mammalian gastrointestinal (GI) tract is colonized by a complex consortium of bacterial species. Bacteria engage in chemical signaling to coordinate population-wide behavior. However, it is unclear if chemical sensing plays a role in establishing mammalian host–bacterial commensal relationships....

  11. The effect of smoking on CT score, bacterial colonization and distribution of inflammatory cells in the upper airways of patients with chronic rhinosinusitis.

    PubMed

    Uhliarova, Barbora; Adamkov, Marian; Svec, Martin; Calkovska, Andrea

    2014-06-01

    The study was designed to determine whether smoking affects CT score, bacterial colonization of the upper airways and distribution of inflammatory cells in nasal mucosa in patients with chronic rhinosinusitis. Sixty-four patients were enrolled in the prospective study. We characterized differences in CT score, rate of revision surgery, differences in bacterial colonization in the middle nasal meatus and distribution of inflammatory cells in nasal tissue in smoking and non-smoking patients with chronic rhinosinusitis with nasal polyps (CRSwNP), chronic rhinosinusitis without nasal polyps (CRSsNP) and control group. Direct tobacco use was associated with significantly more severe form of the disease according to the preoperative CT investigation of paranasal sinuses using Lund-Mackay scoring system in both CRSwNP (p = 0.035) and CRSsNP (p = 0.023) groups. More intense colonization of upper-respiratory tract by the pathogenic bacteria in smokers compared to non-smokers was found. Non-pathogenic bacterial flora was more often present in non-smokers compared to smokers. Plasma cells and lymphocytes were the most numerous cells in nasal tissue in all three groups. In smokers with presence of pathogenic bacteria in middle nasal meatus there was stronger neutrophil (p = 0.002) and macrophage infiltration (p = 0.044) in CRSsNP group. Tobacco smoke exposure is related to higher Lund-Mackay score, increased colonization by pathogenic bacteria and lower incidence of commensals in middle nasal meatus, but does not influence cell distribution in nasal mucosa in patients with chronic rhinosinusitis.

  12. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere

    PubMed Central

    Matilla, Miguel A; Espinosa-Urgel, Manuel; Rodríguez-Herva, José J; Ramos, Juan L; Ramos-González, María Isabel

    2007-01-01

    Background Mutualistic interactions less well known than those between rhizobia and legumes are commonly found between plants and bacteria, frequently pseudomonads, which colonize roots and adjacent soil areas (the rhizosphere). Results A global analysis of Pseudomonas putida genes expressed during their interaction with maize roots revealed how a bacterial population adjusts its genetic program to this lifestyle. Differentially expressed genes were identified by comparing rhizosphere-colonizing populations with three distinct controls covering a variety of nutrients, growth phases and life styles (planktonic and sessile). Ninety rhizosphere up-regulated (rup) genes, which were induced relative to all three controls, were identified, whereas there was no repressed gene in common between the experiments. Genes involved in amino acid uptake and metabolism of aromatic compounds were preferentially expressed in the rhizosphere, which reflects the availability of particular nutrients in root exudates. The induction of efflux pumps and enzymes for glutathione metabolism indicates that adaptation to adverse conditions and stress (oxidative) response are crucial for bacterial life in this environment. The finding of a GGDEF/EAL domain response regulator among the induced genes suggests a role for the turnover of the secondary messenger c-diGMP in root colonization. Several mutants in rup genes showed reduced fitness in competitive root colonization. Conclusion Our results show the importance of two selective forces of different nature to colonize the rhizosphere: stress adaptation and availability of particular nutrients. We also identify new traits conferring bacterial survival in this niche and open a way to the characterization of specific signalling and regulatory processes governing the plant-Pseudomonas association. PMID:17784941

  13. Lesion bacterial communities in American lobsters with diet-induced shell disease.

    PubMed

    Quinn, Robert A; Metzler, Anita; Tlusty, Michael; Smolowitz, Roxanna M; Leberg, Paul; Chistoserdov, Andrei Y

    2012-04-26

    In southern New England, USA, shell disease affects the profitability of the American lobster Homarus americanus fishery. In laboratory trials using juvenile lobsters, exclusive feeding of herring Clupea harengus induces shell disease typified initially by small melanized spots that progress into distinct lesions. Amongst a cohabitated, but segregated, cohort of 11 juvenile lobsters fed exclusively herring, bacterial communities colonizing spots and lesions were investigated by denaturing gradient gel electrophoresis of 16S rDNA amplified using 1 group-specific and 2 universal primer sets. The Bacteroidetes and Proteobacteria predominated in both spots and lesions and included members of the orders Flavobacteriales (Bacteriodetes), Rhodobacterales, Rhodospirillales and Rhizobiales (Alphaproteobacteria), Xanthomonadales (Gammaproteobacteria) and unclassified Gammaproteobacteria. Bacterial communities in spot lesions displayed more diversity than communities with larger (older) lesions, indicating that the lesion communities stabilize over time. At least 8 bacterial types persisted as lesions developed from spots. Aquimarina 'homaria', a species commonly cultured from lesions present on wild lobsters with epizootic shell disease, was found ubiquitously in spots and lesions, as was the 'Candidatus Kopriimonas aquarianus', implicating putative roles of these species in diet-induced shell disease of captive lobsters.

  14. Differentiation of epithelial cells to M cells in response to bacterial colonization on the follicle-associated epithelium of Peyer's patch in rat small intestine.

    PubMed

    Chin, Keigi; Onishi, Sachiko; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Yokoyama, Toshifumi; Hoshi, Nobuhiko; Kitagawa, Hiroshi

    2006-10-01

    To clarify the relationship between M cells and intestinal microflora, histoplanimetrical investigation into the bacterial colonization and the differentiation to M cells was carried out in rat Peyer's patch under physiological conditions. The follicle-associated epithelium (FAE), except for the narrow area of apical region, was closely covered with both neighboring intestinal villi and a thick mucous layer, the latter of which also filled the intervillous spaces as well as the space between the FAE and the neighboring intestinal villi. Indigenous bacteria adhered almost constantly to the narrow areas of apical regions of both intestinal villi and the FAE. Bacterial colonies were occasionally located on the basal to middle region of FAE, where M cells also appeared, forming large pockets. When bacterial colonies were located on the basal to middle region of FAE, bacteria with the same morphological characteristics also proliferated in the intervillous spaces neighboring the Peyer's patch. In cases with no bacterial colonies on the basal to middle region of FAE, however, M cells were rare in the FAE. Histoplanimetrical analysis showed the similar distribution pattern of bacterial colonies on the FAE and M cells in the FAE. M cells ultrastructurally engulfed indigenous bacteria, which were then transported to the pockets. These results suggest that indigenous bacterial colonization on the FAE stimulates the differentiation of M cells in the FAE under physiological conditions. The uptake of bacteria by M cells might contribute the regulation of the development of indigenous bacterial colonies in the small intestine.

  15. Colonization of plant substrates at hydrothermal vents and cold seeps in the northeast Atlantic and Mediterranean and occurrence of symbiont-related bacteria

    PubMed Central

    Szafranski, Kamil M.; Deschamps, Philippe; Cunha, Marina R.; Gaudron, Sylvie M.; Duperron, Sébastien

    2015-01-01

    Reducing conditions with elevated sulfide and methane concentrations in ecosystems such as hydrothermal vents, cold seeps or organic falls, are suitable for chemosynthetic primary production. Understanding processes driving bacterial diversity, colonization and dispersal is of prime importance for deep-sea microbial ecology. This study provides a detailed characterization of bacterial assemblages colonizing plant-derived substrates using a standardized approach over a geographic area spanning the North-East Atlantic and Mediterranean. Wood and alfalfa substrates in colonization devices were deployed for different periods at 8 deep-sea chemosynthesis-based sites in four distinct geographic areas. Pyrosequencing of a fragment of the 16S rRNA-encoding gene was used to describe bacterial communities. Colonization occurred within the first 14 days. The diversity was higher in samples deployed for more than 289 days. After 289 days, no relation was observed between community richness and deployment duration, suggesting that diversity may have reached saturation sometime in between. Communities in long-term deployments were different, and their composition was mainly influenced by the geographical location where devices were deployed. Numerous sequences related to horizontally-transmitted chemosynthetic symbionts of metazoans were identified. Their potential status as free-living forms of these symbionts was evaluated based on sequence similarity with demonstrated symbionts. Results suggest that some free-living forms of metazoan symbionts or their close relatives, such as Epsilonproteobacteria associated with the shrimp Rimicaris exoculata, are efficient colonizers of plant substrates at vents and seeps. PMID:25774156

  16. Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection.

    PubMed

    Vincent, Caroline; Miller, Mark A; Edens, Thaddeus J; Mehrotra, Sudeep; Dewar, Ken; Manges, Amee R

    2016-03-14

    Clostridium difficile infection (CDI) is the leading infectious cause of nosocomial diarrhea. Hospitalized patients are at increased risk of developing CDI because they are exposed to C. difficile spores through contact with the hospital environment and often receive antibiotics and other medications that can disrupt the integrity of the indigenous intestinal microbiota and impair colonization resistance. Using whole metagenome shotgun sequencing, we examined the diversity and composition of the fecal microbiota in a prospective cohort study of 98 hospitalized patients. Four patients had asymptomatic C. difficile colonization, and four patients developed CDI. We observed dramatic shifts in the structure of the gut microbiota during hospitalization. In contrast to CDI cases, asymptomatic patients exhibited elevated relative abundance of potentially protective bacterial taxa in their gut at the onset of C. difficile colonization. Use of laxatives was associated with significant reductions in the relative abundance of Clostridium and Eubacterium; species within these genera have previously been shown to enhance resistance to CDI via the production of secondary bile acids. Cephalosporin and fluoroquinolone exposure decreased the frequency of Clostridiales Family XI Incertae Sedis, a bacterial family that has been previously associated with decreased CDI risk. This study underscores the detrimental impact of antibiotics as well as other medications, particularly laxatives, on the intestinal microbiota and suggests that co-colonization with key bacterial taxa may prevent C. difficile overgrowth or the transition from asymptomatic C. difficile colonization to CDI.

  17. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls.

    PubMed

    Kleessen, B; Kroesen, A J; Buhr, H J; Blaut, M

    2002-09-01

    Endogenous intestinal bacteria and/or specific bacterial pathogens are suspected of being involved in the pathogenesis of inflammatory bowel diseases (IBD). The aim of this study was to investigate IBD tissues for different bacterial population groups harbouring the mucosal surface and/or invading the mucosa. Tissue sections from surgical resections from the terminal ileum and/or the colon from 24 IBD patients (12 active ulcerative colitis (UC), 12 active Crohn disease (CD)) and 14 non-IBD controls were studied by fluorescent in situ hybridization on a quantifiable basis. More bacteria were detected on the mucosal surface of IBD patients than on those of non-IBD controls (P < 0.05). Bacterial invasion of the mucosa was evident in 83.3% of colonic specimens from the UC patients, in 55.6% of the ileal and in 25% of the colonic specimens from the CD patients, but no bacteria were detected in the tissues of the controls. Colonic UC specimens were colonized by a variety of organisms, such as bacteria belonging to the gamma subdivision of Proteobacteria, the Enterobacteriaceae, the Bacteroides/Prevotella cluster, the Clostridium histolyticum/Clostridium lituseburense group, the Clostridium coccoides/Eubacterium rectale group, high G + C Gram-positive bacteria, or sulphate-reducing bacteria, while CD samples harboured mainly bacteria belonging to the former three groups. Pathogenic events in CD and UC may be associated with different alterations in the mucosal flora of the ileum and colon.

  18. Impact of higher alginate expression on deposition of Pseudomonas aeruginosa in radial stagnation point flow and reverse osmosis systems.

    PubMed

    Herzberg, Moshe; Rezene, Tesfalem Zere; Ziemba, Christopher; Gillor, Osnat; Mathee, Kalai

    2009-10-01

    Extracellular polymeric substances (EPS) have major impact on biofouling of reverse osmosis (RO) membranes. On one hand, EPS can reduce membrane permeability and on the other, EPS production by the primary colonizers may influence their deposition and attachment rate and subsequently affect the biofouling propensity of the membrane. The role of bacterial exopolysaccharides in bacterial deposition followed by the biofouling potential of an RO membrane was evaluated using an alginate overproducing (mucoid) Pseudomonas aeruginosa. The mucoid P. aeruginosa PAOmucA22 was compared with its isogenic nonmucoid prototypic parent PAO1 microscopically in a radial stagnation point flow (RSPF) system for their bacterial deposition characteristics. Then, biofouling potential of PAO1 and PAOmucA22 was determined in a crossflow rectangular plate-and-frame membrane cell, in which the strains were cultivated on a thin-film composite, polyamide, flat RO membrane coupon (LFC-1) under laminar flow conditions. In the RSPF system, the observed deposition rate of the mucoid strain was between 5- and 10-fold lower than of the wild type using either synthetic wastewater medium (with ionic strength of 14.7 mM and pH 7.4) or 15 mM KCl solution (pH of 6.2). The slower deposition rate of the mucoid strain is explained by 5- to 25-fold increased hydrophilicity of the mucoid strain as compared to the isogenic wild type, PAO1. Corroborating with these results, a significant delay in the onset of biofouling of the RO membrane was observed when the mucoid strain was used as the membrane colonizer, in which the observed time for the induced permeate flux decline was delayed (ca. 2-fold). In conclusion, the lower initial cell attachment of the mucoid strain decelerated biofouling of the RO membrane. Bacterial deposition and attachment is a critical step in biofilm formation and governed by intimate interactions between outer membrane proteins of the bacteria and the surface. Shielding these interactions by a hydrated and hydrophilic alginate capsule is shown to dramatically lessen the biofouling potential of the membrane colonizers.

  19. Evaluation on the effects of 0.1% Peumus boldus leaf and Spiraea ulmaria plant extract combination on bacterial colonization in canine atopic dermatitis: A preliminary randomized, placebo controlled, double-blinded study.

    PubMed

    Santoro, Domenico; Bohannon, Mary; Ahrens, Kim; Navarro, Christelle; Gatto, Hugues; Marsella, Rosanna

    2018-06-01

    Defective skin barrier characterize canine atopic dermatitis (AD). Pyoderma is the most common complication. Herbal compounds have been suggested as alternatives to control bacterial colonization for their effect on natural antimicrobial peptides (AMPs). This study evaluated the effects of 0.1% Peumus boldus leaf and Spiraea ulmaria plant extract combination on clinical signs, bacterial colonization and AMPs secretion in atopic dogs compared to placebo. Twenty privately-owned atopic dogs were randomly divided in 2 groups (treatment: n = 10; placebo: n = 10) and their abdomen was sprayed every 24 h for 4 weeks. Total and inguinal clinical scores (CADESI-03), manual bacterial count, and skin washes for AMPs (cBD3-like and cCath) were performed on days 0, 14 and 28. AMPs were detected using in-house, previously-validated, canine-specific ELISAs. Data were statistically analyzed and a p < 0.05 was considered significant. Clinical scores and AMPs secretion did not differ significantly between the two groups at any time point. A significant reduction of the clinical scores was seen in the placebo group at 14 and 28 days (p < 0.04). On days 14 and 28, a reduction in the bacterial count was seen in the treated group compared with placebo (p < 0.009 and p = 0.04, respectively). Compared to baseline, a reduction in Staphylococcus spp. was seen in the treated group after 14 days of treatment (p < 0.03). These results show the efficacy of this plant extract combination against bacterial colonization, suggesting its potential usefulness in preventing bacterial infection in atopic dogs. The influence of this compound on AMPs secretion or other mechanisms should be further evaluated. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Prospective study of vaginal bacterial flora and other risk factors for vulvovaginal candidiasis.

    PubMed

    McClelland, R Scott; Richardson, Barbra A; Hassan, Wisal M; Graham, Susan M; Kiarie, James; Baeten, Jared M; Mandaliya, Kishorchandra; Jaoko, Walter; Ndinya-Achola, Jeckoniah O; Holmes, King K

    2009-06-15

    It has been suggested that vaginal colonization with lactobacilli may reduce the risk of vulvovaginal candidiasis (VVC), but supporting data are limited. Our objective was to determine the relationship between vaginal bacterial flora and VVC. We conducted a prospective cohort analysis that involved 151 Kenyan sex workers. At monthly follow-up visits, VVC was defined as the presence of yeast buds, pseudohyphae, or both on a wet preparation (including potassium hydroxide preparation) of vaginal secretions. Generalized estimating equations were used to identify correlates of VVC. Participants returned for a median of 12 visits (interquartile range, 11-12 visits). VVC was identified at 162 visits, including 26 involving symptomatic VVC. Bacterial vaginosis was associated with fewer episodes of VVC (adjusted odds ratio [aOR], 0.29 [95% confidence interval {CI}, 0.16-0.50]). After excluding women with concurrent bacterial vaginosis, another possible cause of vaginal symptoms, the likelihood of symptomatic VVC was higher among those who had had yeast identified on wet preparation of vaginal secretions during the past 60 days (aOR, 4.06 [95% CI, 1.12-14.74]) and those with concurrent vaginal Lactobacillus colonization (aOR, 3.75 [95% CI, 1.30-10.83]). Contrary to the commonly posited hypothesis that vaginal Lactobacillus colonization has a protective effect, we found that such colonization was associated with a nearly 4-fold increase in the likelihood of symptomatic VVC.

  1. Long-term Helicobacter pylori infection does not induce tauopathy and memory impairment in SD rats.

    PubMed

    Zhou, Huan; Guo, Ying; Li, Xing; Liuyang, Zheng-Yu; Shentu, Yang-Ping; Jing, Xiao-Peng; Liang, Jia-Wei; Zhou, Xin-Wen; Wang, Xiao-Chuan; Wang, Jian-Zhi; Zeng, Ji; Liu, Rong

    2017-12-01

    Helicobacter pylori (H.pylori) infection is a recognized risk factor of dementia, while its role and mechanism in Alzheimer disease (AD) remained unclarified. Our previous study has identified that injection of soluble H.pylori filtrate could induce AD-like pathologic changes and cognitive impairment in SD rats. In the present study, we further explored the effect of long-term stomach colonization of H.pylori bacteria on the brains of SD rats. The results showed that H.pylori bacteria gavage induced an efficient colonization of H.pylori in the stomach after four weeks. However, there was no significant change of tau phosphorylation at Thr205 (pT205), Thr231 (pT231), Ser396 (pS396) and Ser404 (pS404) sites in the hippocampus and cerebral cortex. The H.pylori-infected rats also showed no cognitive impairment. These observations may result from inefficient release of bacterial pathogenic factors or the overall lack of host inflammatory responses. We conclude that SD rat with long-term H.pylori colonization in the stomach is not a suitable animal model for exploring the effects of H.pylori infection on brain function in human beings; administration of bacterial filtrates may better reveal the systemic pathologic changes induced by bacterial infection in animals which show a negative host response to bacterial colonization.

  2. Use of microbial cultures and antibiotics in the prevention of infection-associated preterm birth.

    PubMed

    Klein, Laura L; Gibbs, Ronald S

    2004-06-01

    The purpose of this study was to summarize recent evidence regarding infection-associated preterm birth and to make appropriate recommendations. Antepartum treatment of lower genital tract infection or bacterial colonization has been found to reduce the incidence of preterm birth in the case of asymptomatic bacteriuria and bacterial vaginosis in selected patients but has been proved to be ineffective for vaginal colonization with organisms such as Ureaplasma urealyticum and group B streptococcus. This is a clinical opinion based on a review of recent data related to 1) the association between lower genital tract infection and preterm birth and 2) antibiotic trials to prevent preterm birth. Antepartum treatment of lower genital tract infection or bacterial colonization has been found to reduce the incidence of preterm birth in the case of asymptomatic bacteriuria and bacterial vaginosis in selected patients, but has been proven to be ineffective for vaginal colonization with organisms such as Ureaplasma urealyticum and group B streptococcus. Large well-designed trials have shown that the routine administration of antibiotics to women with preterm labor and intact membranes is not beneficial; however, antibiotic regimens including macrolides are recommended for preterm premature rupture of the membranes. Large well-designed trials have shown that the routine administration of antibiotics to women with preterm labor and intact membranes is not beneficial; however, antibiotic regimens that include macrolides are recommended for preterm premature rupture of the membranes.

  3. Comparison of the intestinal mucosal microbiota in dogs diagnosed with idiopathic inflammatory bowel disease and dogs with food-responsive diarrhea before and after treatment.

    PubMed

    Kalenyak, Katja; Isaiah, Anitha; Heilmann, Romy M; Suchodolski, Jan S; Burgener, Iwan A

    2018-02-01

    We report the first study to evaluate the intestinal mucosal microbiota of dogs with inflammatory bowel disease (IBD) and dogs with food-responsive diarrhea (FRD) before and after treatment. It was hypothesized that differences in the microbial composition exist between both disease groups and within groups pre- vs. post-treatment. Duodenal and colonic biopsies were obtained endoscopically from 24 dogs (15 FRD, 9 IBD) before and after treatment. The intestinal microbiota was evaluated by Illumina sequencing of the bacterial 16S rRNA gene. The global bacterial composition did not differ between IBD and FRD dogs, nor between treatment status. However, several bacterial taxa showed a difference in abundance. Comparing disease groups, an unclassified genus of Neisseriaceae was abundant in the duodenum in the IBD group, whereas Bilophila occurred more frequently in the duodenum and Burkholderia in the colon of FRD dogs. Comparing the microbiota pre- and post-treatment revealed Enterococcus, Corynebacterium and Proteobacteria to be enriched in the duodenum of FRD dogs pre-treatment, while Bacteroides was abundant in the colon post-treatment. In dogs with IBD, Bacteroides also reached significant abundance in the colon post-treatment. In conclusion, some differences in individual bacterial taxa were identified between IBD and FRD dogs and between treatment status. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Bacterial community succession in a high-altitude subarctic glacier foreland is a three-stage process.

    PubMed

    Kazemi, Sina; Hatam, Ido; Lanoil, Brian

    2016-11-01

    Alpine glaciers are retreating rapidly, exposing foreland minerals, which develop into soils. Bacterial communities in glacier forelands exhibit high rates of turnover and undergo dramatic shifts in composition within the first 50 years after deglaciation, followed by relative stabilization and convergence. This period of microbial development occurs simultaneously with plant colonization in most systems; thus, it remains unclear whether the changes in the bacterial communities occur primarily as the result of edaphic, climatic or biotic factors. We examined bacterial community structure along two replicate chronosequences within the glacial foreland of Duke River Glacier, Yukon, Canada. This foreland is estimated to include >200 years of bare soils before an appreciable grassline, likely due to the high latitude and altitude of the glacier. This enabled us to examine bacterial community development prior to plant colonization over a longer period than previous studies. We observed three successional groups in the chronosequence: (i) an 'early' group in soils of less than approximately 50 years since deglaciation; (ii) an 'intermediate' group within bare soils, after the early period but before the grassline, containing communities with a relatively high degree of variability in composition; and (iii) a 'grassline' group in soils collected after plant colonization with higher diversity but lower age-group variability in community composition. These findings suggest rapid replacement and addition of species better adapted to glacier foreland conditions followed by slower community shifts over the next 150 years and, finally, indications of a possible response to plant colonization. © 2016 John Wiley & Sons Ltd.

  5. Topical Antimicrobial Treatments Can Elicit Shifts to Resident Skin Bacterial Communities and Reduce Colonization by Staphylococcus aureus Competitors.

    PubMed

    SanMiguel, Adam J; Meisel, Jacquelyn S; Horwinski, Joseph; Zheng, Qi; Grice, Elizabeth A

    2017-09-01

    The skin microbiome is a complex ecosystem with important implications for cutaneous health and disease. Topical antibiotics and antiseptics are often employed to preserve the balance of this population and inhibit colonization by more pathogenic bacteria. However, despite their widespread use, the impact of these interventions on broader microbial communities remains poorly understood. Here, we report the longitudinal effects of topical antibiotics and antiseptics on skin bacterial communities and their role in Staphylococcus aureus colonization resistance. In response to antibiotics, cutaneous populations exhibited an immediate shift in bacterial residents, an effect that persisted for multiple days posttreatment. By contrast, antiseptics elicited only minor changes to skin bacterial populations, with few changes to the underlying microbiota. While variable in scope, both antibiotics and antiseptics were found to decrease colonization by commensal Staphylococcus spp. by sequencing- and culture-based methods, an effect which was highly dependent on baseline levels of Staphylococcus Because Staphylococcus residents have been shown to compete with the skin pathogen S. aureus , we also tested whether treatment could influence S. aureus levels at the skin surface. We found that treated mice were more susceptible to exogenous association with S. aureus and that precolonization with the same Staphylococcus residents that were previously disrupted by treatment reduced S. aureus levels by over 100-fold. In all, the results of this study indicate that antimicrobial drugs can alter skin bacterial residents and that these alterations can have critical implications for cutaneous host defense. Copyright © 2017 American Society for Microbiology.

  6. [Timing of bacterial colonization in severe burns: is strict isolation necessary?].

    PubMed

    Barret, Juan P

    2003-12-01

    Infection is still one of the main causes of mortality in severe burn patients. Strict isolation has been used for the prevention of infection, but the efficacy of this measure is debatable. The aim of this study was to determine the timing of bacterial colonization in these patients and to ascertain whether strict isolation is indicated. Thirty consecutive children with severe burns were studied. Patients were only barrier-nursed during dressing changes. On admission and twice weekly over the entire hospital stay, burn, sputum, gastric aspirates, feces, and blood samples were obtained for culture. All isolates were tested for specific biotypes. Results were studied with linear regression and repeated measures ANOVA to determine the timing of colonization and cross-colonization between patients. On admission, normal cutaneous flora were isolated from burn cultures of all patients. The remaining cultures were negative. After one week, gastric aspirates were found to be colonized by gram-negative bacteria and fungi. This was followed by colonization of feces, burn, and sputum cultures. Biotype identification showed unidirectional colonization from the gastrointestinal tract to burns and upper airway. There were no cross infections between patients. Microbial colonization in severe burn patients was endogenous in nature and there were no cross infections. Thus, strict isolation is not necessary in burn centers, except during outbreaks of multi-resistant microorganisms.

  7. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions.

    PubMed

    Mendis, Hajeewaka C; Thomas, Varghese P; Schwientek, Patrick; Salamzade, Rauf; Chien, Jung-Ting; Waidyarathne, Pramuditha; Kloepper, Joseph; De La Fuente, Leonardo

    2018-01-01

    Bacillus amyloliquefaciens QST713 and B. firmus I-1582 are bacterial strains which are used as active ingredients of commercially-available soil application and seed treatment products Serenade® and VOTiVO®, respectively. These bacteria colonize plant roots promoting plant growth and offering protection against pathogens/pests. The objective of this study was to develop a qPCR protocol to quantitate the dynamics of root colonization by these two strains under field conditions. Primers and TaqMan® probes were designed based on genome comparisons of the two strains with publicly-available and unpublished bacterial genomes of the same species. An optimized qPCR protocol was developed to quantify bacterial colonization of corn roots after seed treatment. Treated corn seeds were planted in non-sterile soil in the greenhouse and grown for 28 days. Specific detection of bacteria was quantified weekly, and showed stable colonization between ~104-105 CFU/g during the experimental period for both bacteria, and the protocol detected as low as 103 CFU/g bacteria on roots. In a separate experiment, streptomycin-resistant QST713 and rifampicin-resistant I-1582 strains were used to compare dilution-plating on TSA with the newly developed qPCR method. Results also indicated that the presence of natural microflora and another inoculated strain does not affect root colonization of either one of these strains. The same qPCR protocol was used to quantitate root colonization by QST713 and I-1582 in two corn and two soybean varieties grown in the field. Both bacteria were quantitated up to two weeks after seeds were planted in the field and there were no significant differences in root colonization in either bacteria strain among varieties. Results presented here confirm that the developed qPCR protocol can be successfully used to understand dynamics of root colonization by these bacteria in plants growing in growth chamber, greenhouse and the field.

  8. Developmental biology in marine invertebrate symbioses.

    PubMed

    McFall-Ngai, M J; Ruby, E G

    2000-12-01

    Associations between marine invertebrates and their cooperative bacterial symbionts offer access to an understanding of the roots of host-microbe interaction; for example, several symbioses like the squid-vibrio light organ association serve as models for investigating how each partner affects the developmental biology of the other. Previous results have identified a program of specific developmental events that unfolds as the association is initiated. In the past year, published studies have focused primarily on describing the mechanisms underlying the signaling processes that occur between the juvenile squid and the luminous bacteria that colonize it.

  9. Relative Contribution of P5 and Hap Surface Proteins to Nontypable Haemophilus influenzae Interplay with the Host Upper and Lower Airways

    PubMed Central

    Viadas, Cristina; Ruiz de los Mozos, Igor; Valle, Jaione; Bengoechea, José Antonio; Garmendia, Junkal

    2015-01-01

    Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence. PMID:25894755

  10. Bacterial plaque colonization around dental implant surfaces.

    PubMed

    Covani, Ugo; Marconcini, Simone; Crespi, Roberto; Barone, Antonio

    2006-09-01

    To examine the distribution of bacteria into the internal and external surfaces of failed implants using histologic analysis. There were 10 failed pure titanium and 5 failed hydroxyapatite-coated titanium implants consecutively removed various years after their placement. Criteria for fixture removal were peri-implant radiolucency and clinical mobility. The mobile fixtures were retrieved with the patients under local anesthesia. Fixtures were removed maintaining the abutments with the aim to observe the bacterial infiltration at the level of abutment/implant interface and on the implant surface. A thin radiolucent space was always present around all the failed implants. The abutments screws were tightly secured in all clinical cases. The bacterial cells were composed of cocci and filaments, which were adherent to the implant surface with an orientation perpendicular to the long axis of the implant. All the specimens included in this study showed bacteria at the level of implant/abutment interface. Histologic analysis at the level of abutment/implant interface in 2-stage implants identified heavy bacterial colonization. These findings appear to support those studies showing bacteria penetration at the level of the micro-gap, which can legitimate the hypothesis that the micro-gap at the bone level could present a risk for bone loss caused by bacterial colonization.

  11. Bacterial colonization on coated and uncoated orthodontic wires: A prospective clinical trial.

    PubMed

    Raji, Seyed Hamid; Shojaei, Hasan; Ghorani, Parinaz Saeidi; Rafiei, Elahe

    2014-11-01

    The advantages of coated orthodontic wires such as esthetic and their effects on reduced friction, corrosion and allergic reaction and the significant consequences of plaque accumulation on oral health encouraged us to assess bacterial colonization on these wires. A total of 18 (9 upper and 9 lower) epoxy resin coated 16 × 22 nickel-titanium wires (Spectra, GAC, USA) and 18 (9 upper and 9 lower) non-coated 16 × 22 nickel-titanium wires (Sentalloy, GAC, USA) with isolated packages were selected and sterilized before application. The samples were divided randomly between upper and lower arches in 18 patients and hence that every patient received one coated and one uncoated wire at the same time. Samples were removed and cut in equal lengths after 3 weeks and placed in phosphate buffered saline buffer. After separation of bacteria in trypsin and ethylenediaminetetraacetic acid solution, the diluted solution was cultured in blood agar and bacterial colony forming units were counted. Finally, the data was analyzed using the paired t-test and the significance was set at 0.05. Mean of bacterial colonization on uncoated wires was more than that of coated wires (P < 0.001). Bacterial plaque accumulation on epoxy resin coated nickel-titanium orthodontic wires is significantly lower than uncoated nickel-titanium wires.

  12. Differential Bacterial Colonization of Volcanic Minerals in Deep Thermal Basalts

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Popa, R.; Fisk, M. R.; Nielsen, M.; Wheat, G.; Jannasch, H.; Fisher, A.; Sievert, S.

    2010-04-01

    There are reports of microbial weathering patterns in volcanic glass and minerals of both terrestrial and Martian origin. Volcanic minerals are colonized differentially in subsurface hydrothermal environments by a variety of physiological types.

  13. SIGIRR, a negative regulator of TLR/IL-1R signalling promotes Microbiota dependent resistance to colonization by enteric bacterial pathogens.

    PubMed

    Sham, Ho Pan; Yu, Emily Yi Shan; Gulen, Muhammet F; Bhinder, Ganive; Stahl, Martin; Chan, Justin M; Brewster, Lara; Morampudi, Vijay; Gibson, Deanna L; Hughes, Michael R; McNagny, Kelly M; Li, Xiaoxia; Vallance, Bruce A

    2013-01-01

    Enteric bacterial pathogens such as enterohemorrhagic E. coli (EHEC) and Salmonella Typhimurium target the intestinal epithelial cells (IEC) lining the mammalian gastrointestinal tract. Despite expressing innate Toll-like receptors (TLRs), IEC are innately hypo-responsive to most bacterial products. This is thought to prevent maladaptive inflammatory responses against commensal bacteria, but it also limits antimicrobial responses by IEC to invading bacterial pathogens, potentially increasing host susceptibility to infection. One reason for the innate hypo-responsiveness of IEC is their expression of Single Ig IL-1 Related Receptor (SIGIRR), a negative regulator of interleukin (IL)-1 and TLR signaling. To address whether SIGIRR expression and the innate hypo-responsiveness of IEC impacts on enteric host defense, Sigirr deficient (-/-) mice were infected with the EHEC related pathogen Citrobacter rodentium. Sigirr -/- mice responded with accelerated IEC proliferation and strong pro-inflammatory and antimicrobial responses but surprisingly, Sigirr -/- mice proved dramatically more susceptible to infection than wildtype mice. Through haematopoietic transplantation studies, it was determined that SIGIRR expression by non-haematopoietic cells (putative IEC) regulated these responses. Moreover, the exaggerated responses were found to be primarily dependent on IL-1R signaling. Whilst exploring the basis for their susceptibility, Sigirr -/- mice were found to be unusually susceptible to intestinal Salmonella Typhimurium colonization, developing enterocolitis without the typical requirement for antibiotic based removal of competing commensal microbes. Strikingly, the exaggerated antimicrobial responses seen in Sigirr -/- mice were found to cause a rapid and dramatic loss of commensal microbes from the infected intestine. This depletion appears to reduce the ability of the microbiota to compete for space and nutrients (colonization resistance) with the invading pathogens, leaving the intestine highly susceptible to pathogen colonization. Thus, SIGIRR expression by IEC reflects a strategy that sacrifices maximal innate responsiveness by IEC in order to promote commensal microbe based colonization resistance against bacterial pathogens.

  14. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution

    PubMed Central

    Drescher, Knut; Dunkel, Jörn; Nadell, Carey D.; van Teeffelen, Sven; Grnja, Ivan; Wingreen, Ned S.; Stone, Howard A.; Bassler, Bonnie L.

    2016-01-01

    Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development. PMID:26933214

  15. Colonization and Movement of Xanthomonas fragariae in Strawberry Tissues.

    PubMed

    Wang, Hehe; McTavish, Christine; Turechek, William W

    2018-06-01

    Xanthomonas fragariae causes angular leaf spot of strawberry, an important disease in strawberry growing regions worldwide. To better understand how X. fragariae multiplies and moves in strawberry plants, a green fluorescent protein (GFP)-labeled strain was constructed and used to monitor the pathogen's presence in leaf, petiole, and crown tissue with fluorescence microscopy following natural and wound inoculation in three strawberry cultivars. Taqman PCR was used to quantify bacterial densities in these same tissues regardless of the presence of GFP signal. Results showed X. fragariae colonized leaf mesophyll, the top 1 cm portion of the petiole adjacent to the leaf blade, and was occasionally found colonizing xylem vessels down to the middle of the petioles. The colonization of vascular bundles and the limited systemic movement that was observed appeared to be a passive process, of which the frequency increased with wounding and direct infiltration of bacteria into leaf veins. X. fragariae was able to directly enter petioles and colonize the space under the epidermis. Systemic movement of the bacteria into crown and other uninoculated tissues was not detected visually by GFP. However, X. fragariae was occasionally detected in these tissues by qPCR, but at quantities very near the qPCR detection limit. Petiole tissue harboring bacteria introduced either by direct entry through natural openings or wounds, or by systemic movement from infected foliar tissue, likely serves as a main source of initial inoculum in field plantings.

  16. Construction and symbiotic competence of a luxA-deletion mutant of Vibrio fischeri.

    PubMed

    Visick, K G; Ruby, E G

    1996-10-10

    Bioluminescence by the squid Euprymna scolopes requires colonization of its light organ by the symbiotic luminous bacterium Vibrio fischeri. Investigation of the genetic determinants underlying bacterial symbiotic competence in this system has necessitated the continuing establishment and application of molecular genetic techniques in V. fischeri. We developed a procedure for the introduction of plasmid DNA into V. fischeri by electroporation, and isolated a mutant strain that overcame the apparent restriction barrier between V. fischeri and Escherichia coli. Using the technique of electroporation in combination with that of gene replacement, we constructed a non-luminous strain of V. fischeri (delta luxA::erm). In addition, we used the transducing phage rp-1 for the first time to transfer a chromosomal antibiotic resistance marker to another strain of V. fischeri. The luxA mutant was able to colonize E. scolopes as quickly and to the same extent as wild type. This result suggested that, at least during the initial stages of colonization, luminescence per se is not an essential factor for the symbiotic infection.

  17. Who's on First? Part II: Bacterial and fungal colonization of fresh soil minerals

    NASA Astrophysics Data System (ADS)

    Whitman, T.; Neurath, R.; Zhang, P.; Yuan, T.; Weber, P. K.; Zhou, J.; Pett-Ridge, J.; Firestone, M. K.

    2015-12-01

    Soil organic matter (SOM) stabilization by soil minerals is an important mechanism influencing soil C cycling. Microbes make up only a few percent of total SOM, but have a disproportionate impact on SOM cycling. Their direct interactions with soil minerals, however, are not well characterized. We studied colonization of fresh minerals by soil microbes in an Avena barbata (wild oat) California grassland soil microcosm. Examining quartz, ferrihydrite, kaolinite, and the heavy fraction of the native soil, we asked: (1) Do different minerals select for different communities, or do random processes drive the colonization of fresh minerals? (2) What factors influence which taxa colonize fresh minerals? After incubating mesh bags (<18 μm) of minerals buried next to actively growing plant roots for 2 months, we used high-throughput sequencing of 16S and ITS2 genes to characterize the microbial communities colonizing the minerals. We found significant differences between the microbial community composition of different minerals and soil for both bacteria and fungi. We found a higher relative abundance of arbuscular mycorrhial fungi with ferrihydrite and quartz, and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging of these minerals suggests that some fungal hyphae are moving C directly from roots to mineral surfaces. The enriched presence of both nematode-associated fungi (Pochonia sp.) and bacteria (Candidatus Xiphinematobacter) in the minerals suggests that these minerals may be a habitat for nematodes. Bacteria of the family Chitinophagaceae and genus Janthinobacterium were significantly enriched on both ferrihydrite and quartz minerals, both of which may interact with colonizing fungi. These findings suggest that: (1) Microbial colonization of fresh minerals is not a fully passive or neutral process. (2) Mineral exploration by plant-associated fungi and soil fauna transport may be factors in determining the initial colonization of minerals and subsequent C protection.

  18. Influence of human milk oligosaccharides on adherence of bifidobacteria and clostridia to cell lines.

    PubMed

    Musilova, Sarka; Modrackova, Nikol; Doskocil, Ivo; Svejstil, Roman; Rada, Vojtech

    2017-12-01

    Adhesion of gut bacteria to the intestinal epithelium is the first step in their colonization of the neonatal immature gut. Bacterial colonization of the infant gut is influenced by several factors, of which the most important are the mode of delivery and breast-feeding. Breast-fed infants ingest several grams of human milk oligosaccharides (HMOs) per day, which can become receptor decoys for intestinal bacteria. The most abundant intestinal bacteria in vaginally delivered infants are bifidobacteria, whereas infants born by cesarean section are colonized by clostridia. The influence of HMOs on the adhesion of five strains of intestinal bacteria (three bifidobacterial strains and two clostridial strains) to mucus-secreting and non-mucus-secreting human epithelial cells was investigated. Bifidobacterium bifidum 1 and Bifidobacterium longum displayed almost the same level of adhesion in the presence and absence of HMOs. By contrast, adhesion of Clostridium butyricum 1 and 2 decreased from 14.41% to 6.72% and from 41.54% to 30.91%, respectively, in the presence of HMOs. The results of this study indicate that HMOs affect bacterial adhesion and are an important factor influencing bacterial colonization of the gut. Adhesion of the tested bacteria correlates with their ability to autoaggregate.

  19. Spatiotemporal microbiota dynamics from quantitative in vitro and in silico models of the gut

    NASA Astrophysics Data System (ADS)

    Hwa, Terence

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth behaviors, which ultimately dictate the gut microbiota composition. Combining measurements of bacterial growth physiology with analysis of published data on human physiology into a quantitative modeling framework, we show how hydrodynamic forces in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla in the gut. Our model quantitatively explains the observed variation of microbiota composition among healthy adults, and predicts colonic water absorption (manifested as stool consistency) and nutrient intake to be two key factors determining this composition. The model further reveals that both factors, which have been identified in recent correlative studies, exert their effects through the same mechanism: changes in colonic pH that differentially affect the growth of different bacteria. Our findings show that a predictive and mechanistic understanding of microbial ecology in the human gut is possible, and offer the hope for the rational design of intervention strategies to actively control the microbiota. This work is supported by the Bill and Melinda Gates Foundation.

  20. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet.

    PubMed

    Zeng, Huawei; Ishaq, Suzanne L; Liu, Zhenhua; Bukowski, Michael R

    2018-04-01

    The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice. Published by Elsevier Inc.

  1. Increased risk of pneumonia and bronchiolitis after bacterial colonization of the airways as neonates.

    PubMed

    Vissing, Nadja H; Chawes, Bo L K; Bisgaard, Hans

    2013-11-15

    The frequency of pneumonia and bronchiolitis exhibits considerable variation in otherwise healthy children, and suspected risk factors explain only a minor proportion of the variation. We hypothesized that alterations in the airway microbiome in early life may be associated with susceptibility to pneumonia and bronchiolitis in young children. To investigate the relation between neonatal airway colonization and pneumonia and bronchiolitis during the first 3 years of life. Participants comprised children of the Copenhagen Prospective Studies on Asthma in Childhood2000 (COPSAC2000) cohort, a prospective birth cohort study of 411 children born to mothers with asthma. Aspirates from the hypopharynx at age 4 weeks were cultured for Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, and Staphylococcus aureus. Clinical information on pneumonia and bronchiolitis within the first 3 years of life was prospectively collected by the research physicians at the center. Analyses were adjusted for covariates associated with pneumonia and bronchiolitis and bacterial airway colonization. Hypopharyngeal aspirates and full clinical follow-up until 3 years of age were available for 265 children. Of these, 56 (21%) neonates were colonized with S. pneumoniae, H. influenzae, and/or M. catarrhalis at 4 weeks of age. Colonization with at least one of these microorganisms (but not S. aureus) was significantly associated with increased incidence of pneumonia and bronchiolitis (adjusted incidence rate ratio, 1.79 [1.29-2.48]; P < 0.005) independently of concurrent or later asthma. Neonatal airway colonization with S. pneumoniae, H. influenzae, or M. catarrhalis is associated with increased risk of pneumonia and bronchiolitis in early life independently of asthma. This suggests a role of pathogenic bacterial colonization of the airways in neonates for subsequent susceptibly to pneumonia and bronchiolitis.

  2. The role of respiratory viruses in the etiology of bacterial pneumonia

    PubMed Central

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-01-01

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. PMID:26884414

  3. Subinhibitory antibiotic therapy alters recurrent urinary tract infection pathogenesis through modulation of bacterial virulence and host immunity.

    PubMed

    Goneau, Lee W; Hannan, Thomas J; MacPhee, Roderick A; Schwartz, Drew J; Macklaim, Jean M; Gloor, Gregory B; Razvi, Hassan; Reid, Gregor; Hultgren, Scott J; Burton, Jeremy P

    2015-03-31

    The capacity of subinhibitory levels of antibiotics to modulate bacterial virulence in vitro has recently been brought to light, raising concerns over the appropriateness of low-dose therapies, including antibiotic prophylaxis for recurrent urinary tract infection management. However, the mechanisms involved and their relevance in influencing pathogenesis have not been investigated. We characterized the ability of antibiotics to modulate virulence in the uropathogens Staphylococcus saprophyticus and Escherichia coli. Several antibiotics were able to induce the expression of adhesins critical to urothelial colonization, resulting in increased biofilm formation, colonization of murine bladders and kidneys, and promotion of intracellular niche formation. Mice receiving subinhibitory ciprofloxacin treatment were also more susceptible to severe infections and frequent recurrences. A ciprofloxacin prophylaxis model revealed this strategy to be ineffective in reducing recurrences and worsened infection by creating larger intracellular reservoirs at higher frequencies. Our study indicates that certain agents used for antibiotic prophylaxis have the potential to complicate infections. Antibiotics are the mainstay treatment for bacterial infections; however, evidence is emerging that argues these agents may have off-target effects if sublethal concentrations are present. Most studies have focused on changes occurring in vitro, leaving questions regarding the clinical relevance in vivo. We utilized a murine urinary tract infection model to explore the potential impact of low-dose antibiotics on pathogenesis. Using this model, we showed that subinhibitory antibiotics prime uropathogens for adherence and invasion of murine urothelial tissues. These changes in initial colonization promoted the establishment of chronic infection. Furthermore, treatment of chronically infected mice with subtherapeutic ciprofloxacin served to exacerbate infection. A part of these changes was thought to be due to suppression of mucosal immunity, as demonstrated through reductions in cytokine secretion and migration of leukocytes into the urinary tract. This work identifies novel risk factors associated with antibiotic therapy when dosing strategies fall below subtherapeutic levels. Copyright © 2015 Goneau et al.

  4. Alteration of the gastrointestinal microbiota of mice by edible blue-green algae.

    PubMed

    Rasmussen, H E; Martínez, I; Lee, J Y; Walter, J

    2009-10-01

    To characterize the effect of edible blue-green algae (cyanobacteria) on the gastrointestinal microbiota of mice. C57BL/6J mice were fed a diet supplemented with 0% or 5% dried Nostoc commune, Spirulina platensis or Afanizominon flos-aquae (w/w) for 4 weeks. Molecular fingerprinting of the colonic microbiota using denaturing gradient gel electrophoresis revealed that administration of N. commune induced major alterations in colonic microbiota composition, while administration of S. platensis or A. flos-aquae had a more subtle impact. Community profile analysis revealed that administration of N. commune did not reduce microbial diversity indices of the colonic microbiota. Despite its pronounced effects on the bacterial composition in the colon, total bacterial numbers in the gut of mice fed N. commune were not reduced as assessed by quantitative real-time PCR and bacteriological culture. The results presented here show that administration of blue-green algae, and especially N. commune, alters colonic microbiota composition in mice with limited effects on total bacterial numbers or microbial diversity. Blue-green algae are consumed in many countries as a source of nutrients and to promote health, and they are intensively studied for their pharmaceutical value. Given the importance of the gut microbiota for many host functions, the effects of blue-green algae on gut microbial ecology revealed during this study should be considered when using them as food supplements or when studying their pharmaceutical properties.

  5. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization.

    PubMed

    Balbontín, Roberto; Vlamakis, Hera; Kolter, Roberto

    2014-11-01

    Salmonella Typhimurium inhabits a variety of environments and is able to infect a broad range of hosts. Throughout its life cycle, some hosts can act as intermediates in the path to the infection of others. Aspergillus niger is a ubiquitous fungus that can often be found in soil or associated to plants and microbial consortia. Recently, S. Typhimurium was shown to establish biofilms on the hyphae of A. niger. In this work, we have found that this interaction is stable for weeks without a noticeable negative effect on either organism. Indeed, bacterial growth is promoted upon the establishment of the interaction. Moreover, bacterial biofilms protect the fungus from external insults such as the effects of the anti-fungal agent cycloheximide. Thus, the Salmonella-Aspergillus interaction can be defined as mutualistic. A tripartite gnotobiotic system involving the bacterium, the fungus and a plant revealed that co-colonization has a greater negative effect on plant growth than colonization by either organism in dividually. Strikingly, co-colonization also causes a reduction in plant invasion by S. Typhimurium. This work demonstrates that S. Typhimurium and A. niger establish a mutualistic interaction that alters bacterial colonization of plants and affects plant physiology. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae).

    PubMed

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-10-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern.

  7. The effect of different growth regimes on the endophytic bacterial communities of the fern, Dicksonia sellowiana hook (Dicksoniaceae)

    PubMed Central

    de Araújo Barros, Irene; Luiz Araújo, Welington; Lúcio Azevedo, João

    2010-01-01

    Endophytic bacteria associated with the fern Dicksonia sellowiana were investigated. The bacterial communities from the surface-sterilized pinnae and rachis segments of the plants from the Brazilian Atlantic Rainforest that grew in native field conditions were compared with the bacterial communities from plants grown in greenhouses and plants that were initially grown in greenhouses and then transferred to the forest. From 540 pinnae and 540 rachis segments, 163 (30.2%) and 346 (64.2%) were colonized by bacteria, respectively. The main bacterial genera and species that were isolated included Bacillus spp. ( B. cereus, B. megaterium, B. pumilus and B. subtilis ) , Paenibacillus sp. , Amphibacillus sp. , Gracilibacillus sp. , Micrococcus sp. and Stenotrophomonas spp. ( S. maltophilia and S. nitroreducens ). B. pumilus was the most frequently isolated bacterial species . Amphibacillus and Gracilibacillus were reported as endophytes for the first time. Other commonly found bacterial genera were not observed in D. sellowiana , which may reflect preferences of specific bacterial communities inside this fern or detection limitations due to the isolation procedures. Plants that were grown in greenhouses and plants that were reintroduced into the forest displayed more bacterial genera and species diversity than native field plants, suggesting that reintroduction shifts the bacterial diversity. Endophytic bacteria that displayed antagonistic properties against different microorganisms were detected, but no obvious correlation was found between their frequencies with plant tissues or with plants from different growth regimes. This paper reports the first isolation of endophytic bacteria from a fern. PMID:24031575

  8. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements

    PubMed Central

    Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A.; Abraham, Wolf-Rainer; Höfle, Manfred G.

    2015-01-01

    The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. PMID:26135861

  9. Alternative approaches to ventilator-associated pneumonia prevention.

    PubMed

    Berra, L; Sampson, J; Fumagalli, J; Panigada, M; Kolobow, T

    2011-03-01

    Ventilator-associated pneumonia (VAP), which develops in patients receiving mechanical ventilation, is the most common nosocomial infection in patients with acute respiratory failure. The major mechanism of lower respiratory tract colonization is aspiration of bacteria-colonized secretions from the oropharynx into the lower airways. The hydrostatic pressure of the secretions that collect in the subglottic space, which is the area above the endotracheal tube (ETT) cuff, or aerosolization of bacteria from the secretions collected within the respiratory tubing may facilitate the leakage into the lower airways. Ideally, the elimination of the mechanisms responsible for aspiration would decrease the incidence of VAP. Several preventive measures have been tested in clinical trials with little success.Here we present the results of our efforts to develop novel approaches for the prevention of VAP. Specifically, we found that keeping ventilated patients in a lateral position, which eliminates gravitational forces, is feasible and possibly advantageous. Additionally, several novel medical devices have been recently developed to prevent bacterial biofilm formation from the ETT and breathing tubing. These devices include coated ETTs, mucus shavers and mucus slurpers. Prevention of ETT bacterial colonization showed decreased bacterial colonization of the respiratory circuit and of the lower respiratory tract in laboratory studies and clinical trials. Future large studies should be designed to test the hypothesis that VAP can be prevented with these novel strategies. While there is a current focus on the use of respiratory devices to prevent biofilm formation and microaspiration, it is important to remember that lower respiratory tract colonization is multifactorial. Prevention of VAP cannot be achieved solely by eliminating bacterial biofilm on respiratory devices, and more comprehensive care of the intubated patient needs to be implemented.

  10. Gut microbial diversity is reduced and is associated with colonic inflammation in a piglet model of short bowel syndrome

    PubMed Central

    Lapthorne, Susan; Pereira-Fantini, Prue M.; Fouhy, Fiona; Wilson, Guineva; Thomas, Sarah L.; Dellios, Nicole L.; Scurr, Michelle; O’Sullivan, Orla; Ross, R. Paul; Stanton, Catherine; Fitzgerald, Gerald F.; Cotter, Paul D.; Bines, Julie E.

    2013-01-01

    Background and objectives Following small bowel resection (SBR), the luminal environment is altered, which contributes to clinical manifestations of short bowel syndrome (SBS) including malabsorption, mucosal inflammation and bacterial overgrowth. However, the impact of SBR on the colon has not been well-defined. The aims of this study were to characterize the colonic microbiota following SBR and to assess the impact of SBR on mucosal inflammation in the colon. Results Analysis of the colonic microbiota demonstrated that there was a significant level of dysbiosis both two and six weeks post-SBR, particularly in the phylum Firmicutes, coupled with a decrease in overall bacterial diversity in the colon. This decrease in diversity was associated with an increase in colonic inflammation six weeks post-surgery. Methods Female (4-week old) piglets (5−6/group) received a 75% SBR, a transection (sham) or no surgery. Compositional analysis of the colonic microbiota was performed by high-throughput sequencing, two- and six-weeks post-surgery. The gene expression of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, IL-8, IL-18 and tumor necrosis factor (TNF)-α in the colonic mucosa was assessed by qRT-PCR and the number of macrophages and percentage inducible nitric oxide synthase (iNOS) staining in the colonic epithelium were quantified by immunohistochemistry. Conclusions SBR significantly decreased the diversity of the colonic microbiota and this was associated with an increase in colonic mucosal inflammation. This study supports the hypothesis that SBR has a significant impact on the colon and that this may play an important role in defining clinical outcome. PMID:23549027

  11. In vivo whole animal body imaging reveals colonization of Chlamydia muridarum to the lower genital tract at early stages of infection.

    PubMed

    Gupta, Rishein; Wali, Shradha; Yu, Jieh-Juen; Chambers, James P; Zhong, Guangming; Murthy, Ashlesh K; Bakar, Sazaly Abu; Guentzel, M N; Arulanandam, Bernard P

    2014-10-01

    The leading cause of sexually transmitted bacterial infection is Chlamydia trachomatis. The aim of this study is to investigate the early events in colonization of this bacterium within the murine genital tract. An in vivo animal body imaging technology was used to track fluorophore labeled C. muridarum elementary bodies (EBs) inoculated intravaginally in C57BL/6 mice during the first 24 h of infection. Ascension of viable EBs was observed (1) to be localized to the lower regions of the murine genital tract within the first 24 h post challenge and (2) was dose independent during this early exposure period. Molecular detection revealed enhanced bacterial load in lower regions of the genital tract with increasing bacterial load in the upper region beginning 12 h post inoculation. This study provides additional insight into chlamydial colonization in the murine genital tract during the first 12-24 h following inoculation.

  12. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice

    PubMed Central

    Turnbaugh, Peter J.; Ridaura, Vanessa K.; Faith, Jeremiah J.; Rey, Federico E.; Knight, Rob; Gordon, Jeffrey I.

    2010-01-01

    Diet and nutritional status are among the most important, modifiable determinants of human health. The nutritional value of food is influenced in part by a person’s gut microbial community (microbiota) and its component genes (microbiome). Unraveling the interrelationships between diet, the structure and operations of the gut microbiota, and nutrient and energy harvest is confounded by variations in human environmental exposures, microbial ecology and genotype. To help overcome these problems, we created a well-defined, representative animal model of the human gut ecosystem by transplanting fresh or frozen adult human fecal microbial communities into germ-free C57BL/6J mice. Culture-independent, metagenomic analysis of the temporal, spatial and intergenerational patterns of bacterial colonization showed that these humanized mice were stably and heritably colonized, and reproduced much of the bacterial diversity of the donor’s microbiota. Switching from a low-fat, plant polysaccharide-rich diet to a high-fat/high-sugar “Western” diet shifted the structure of the microbiota within a single day, changed the representation of metabolic pathways in the microbiome, and altered microbiome gene expression. Reciprocal transplants involving various combinations of donor and recipient diets revealed that colonization history influences the initial structure of the microbial community, but that these effects can be rapidly altered by diet. Humanized mice fed the Western diet have increased adiposity; this trait is transmissible via microbiota transplantation. Humanized gnotobiotic mice will be useful for conducting proof-of-principle “clinical trials” that test the effects of environmental and genetic factors on the gut microbiota and host physiology. PMID:20368178

  13. Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine.

    PubMed

    Zaheer, Rahat; Dugat-Bony, Eric; Holman, Devon; Cousteix, Elodie; Xu, Yong; Munns, Krysty; Selinger, Lorna J; Barbieri, Rutn; Alexander, Trevor; McAllister, Tim A; Selinger, L Brent

    2017-01-01

    Escherichia coli O157:H7 is a foodborne pathogen that colonizes ruminants. Cattle are considered the primary reservoir of E. coli O157:H7 with super-shedders, defined as individuals excreting > 104 E. coli O157:H7 CFU g-1 feces. The mechanisms leading to the super-shedding condition are largely unknown. Here, we used 16S rRNA gene pyrosequencing to examine the composition of the fecal bacterial community in order to investigate changes in the bacterial microbiota at several locations along the digestive tract (from the duodenum to the rectal-anal junction) in 5 steers previously identified as super-shedders and 5 non-shedders. The overall bacterial community structure did not differ by E. coli O157:H7 shedding status; but several differences in the relative abundance of taxa and OTUs were noted between the two groups. The genus Prevotella was most enriched in the non-shedders while the genus Ruminococcus and the Bacteroidetes phylum were notably enriched in the super-shedders. There was greater bacterial diversity and richness in samples collected from the lower- as compared to the upper gastrointestinal tract (GI). The spiral colon was the only GI location that differed in terms of bacterial diversity between super-shedders and non-shedders. These findings reinforced linkages between E. coli O157:H7 colonization in cattle and the nature of the microbial community inhabiting the digestive tract of super-shedders.

  14. Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine

    PubMed Central

    Cousteix, Elodie; Xu, Yong; Munns, Krysty; Selinger, Lorna J.; Barbieri, Rutn; Alexander, Trevor; McAllister, Tim A.; Selinger, L. Brent

    2017-01-01

    Escherichia coli O157:H7 is a foodborne pathogen that colonizes ruminants. Cattle are considered the primary reservoir of E. coli O157:H7 with super-shedders, defined as individuals excreting > 104 E. coli O157:H7 CFU g-1 feces. The mechanisms leading to the super-shedding condition are largely unknown. Here, we used 16S rRNA gene pyrosequencing to examine the composition of the fecal bacterial community in order to investigate changes in the bacterial microbiota at several locations along the digestive tract (from the duodenum to the rectal-anal junction) in 5 steers previously identified as super-shedders and 5 non-shedders. The overall bacterial community structure did not differ by E. coli O157:H7 shedding status; but several differences in the relative abundance of taxa and OTUs were noted between the two groups. The genus Prevotella was most enriched in the non-shedders while the genus Ruminococcus and the Bacteroidetes phylum were notably enriched in the super-shedders. There was greater bacterial diversity and richness in samples collected from the lower- as compared to the upper gastrointestinal tract (GI). The spiral colon was the only GI location that differed in terms of bacterial diversity between super-shedders and non-shedders. These findings reinforced linkages between E. coli O157:H7 colonization in cattle and the nature of the microbial community inhabiting the digestive tract of super-shedders. PMID:28141846

  15. Independent Bottlenecks Characterize Colonization of Systemic Compartments and Gut Lymphoid Tissue by Salmonella

    PubMed Central

    Lim, Chee Han; Voedisch, Sabrina; Wahl, Benjamin; Rouf, Syed Fazle; Geffers, Robert

    2014-01-01

    Vaccination represents an important instrument to control typhoid fever in humans and protects mice from lethal infection with mouse pathogenic serovars of Salmonella species. Mixed infections with tagged Salmonella can be used in combination with probabilistic models to describe the dynamics of the infection process. Here we used mixed oral infections with tagged Salmonella strains to identify bottlenecks in the infection process in naïve and vaccinated mice. We established a next generation sequencing based method to characterize the composition of tagged Salmonella strains which offers a fast and reliable method to characterise the composition of genome-tagged Salmonella strains. We show that initial colonization of Salmonella was distinguished by a non-Darwinian selection of few bacteria setting up the infection independently in gut associated lymphoid tissue and systemic compartments. Colonization of Peyer's patches fuels the sustained spread of bacteria into mesenteric lymph nodes via dendritic cells. In contrast, infection of liver and spleen originated from an independent pool of bacteria. Vaccination only moderately reduced invasion of Peyer's patches but potently uncoupled bacterial populations present in different systemic compartments. Our data indicate that vaccination differentially skews the capacity of Salmonella to colonize systemic and gut immune compartments and provide a framework for the further dissection of infection dynamics. PMID:25079958

  16. Novel Model for Multispecies Biofilms That Uses Rigid Gas-Permeable Lenses ▿

    PubMed Central

    Peyyala, Rebecca; Kirakodu, Sreenatha S.; Ebersole, Jeffrey L.; Novak, Karen F.

    2011-01-01

    Oral biofilms comprise complex multispecies consortia aided by specific inter- and intraspecies interactions occurring among commensals and pathogenic bacterial species. Oral biofilms are primary initiating factors of periodontal disease, although complex multifactorial biological influences, including host cell responses, contribute to the individual outcome of the disease. To provide a system to study initial stages of interaction between oral biofilms and the host cells that contribute to the disease process, we developed a novel in vitro model system to grow biofilms on rigid gas-permeable contact lenses (RGPLs), which enable oxygen to permeate through the lens material. Bacterial species belonging to early- and late-colonizing groups were successfully established as single- or three-species biofilms, with each group comprising Streptococcus gordonii, Streptococcus oralis, and Streptococcus sanguinis; S. gordonii, Actinomyces naeslundii, and Fusobacterium nucleatum; or S. gordonii, F. nucleatum, and Porphyromonas gingivalis. Quantification of biofilm numbers by quantitative PCR (qPCR) revealed substantial differences in the magnitude of bacterial numbers in single-species and multispecies biofilms. We evaluated cell-permeable conventional nucleic acid stains acridine orange, hexidium iodide, and Hoechst 33258 and novel SYTO red, blue, and green fluorochromes for their effect on bacterial viability and fluorescence yield to allow visualization of the aggregates of individual bacterial species by confocal laser scanning microscopy (CLSM). Substantial differences in the quantity and distribution of the species in the multispecies biofilms were identified. The specific features of these biofilms may help us better understand the role of various bacteria in local challenge of oral tissues. PMID:21421785

  17. Preventive effects of Schistosoma japonicum ova on trinitrobenzenesulfonic acid-induced colitis and bacterial translocation in mice.

    PubMed

    Zhao, Yuan; Zhang, Shuncai; Jiang, Li; Jiang, Jie; Liu, Hongchun

    2009-11-01

    To evaluate the preventive effects of Schistosoma japonicum ova on trinitrobenzenesulfonic acid (TNBS)-induced colitis and bacterial translocation in mice. BALB/c mice were randomly divided into three groups: control group; TNBS(+)Ova(-) group; and TNBS(+)Ova(+) group. Mice of the TNBS(+)Ova(+) group were exposed to 10 000 freeze-killed S. japonicum ova by i.p. injection on day 1 and day 11. On day 15, mice were challenged with TNBS to induce colitis. The following variables were assessed: colon pathological changes; serum expression of tumor necrosis factor-alpha (TNF-alpha), gamma-interferon (IFN-gamma) and interleukin-10 (IL-10); expression of Toll-like receptor 4 (TLR4) in colon; IFN-gamma, IL-10 and TLR4 mRNA expression in colon; and the bacterial translocation rate. Compared to TNBS(+)Ova(-) group, the colonic inflammation in the TNBS(+)Ova(+) group were relieved. A highly significant elevation of IFN-gamma and TNF-alpha were observed in the TNBS-induced colitis group. After exposure to the eggs, IFN-gamma was significantly decreased, while TNF-alpha was similar to that of the TNBS(+)ova(-) group. No obvious variation was seen in IL-10 expression in TNBS-induced colitis, compared to the controls. Exposure to the eggs led to a significant upregulation of IL-10 expression. TLR4 expression was elevated after injected with TNBS and was downregulated in the eggs group. Less intestinal bacterial translocation frequency was observed when exposed to eggs. S. japonicum ova can prevent the TNBS-induced colitis and reduce the bacterial translocation frequency in mice. The mechanisms were supposed to be due to the regulation of T-helper cell 1/2 balance and TLR4 expression.

  18. Changes in soil bacterial community triggered by drought-induced gap succession preceded changes in soil C stocks and quality

    PubMed Central

    Yuste, Jorge Curiel; Barba, Josep; Fernandez-Gonzalez, Antonio José; Fernandez-Lopez, Manuel; Mattana, Stefania; Martinez-Vilalta, Jordi; Nolis, Pau; Lloret, Francisco

    2012-01-01

    The aim of this study was to understand how drought-induced tree mortality and subsequent secondary succession would affect soil bacterial taxonomic composition as well as soil organic matter (SOM) quantity and quality in a mixed Mediterranean forest where the Scots pine (Pinus sylvestris) population, affected by climatic drought-induced die-off, is being replaced by Holm-oaks (HO; Quercus ilex). We apply a high throughput DNA pyrosequencing technique and 13C solid-state Nuclear Magnetic Resonance (CP-MAS 13C NMR) to soils within areas of influence (defined as an surface with 2-m radius around the trunk) of different trees: healthy and affected (defoliated) pines, pines that died a decade ago and healthy HOs. Soil respiration was also measured in the same spots during a spring campaign using a static close-chamber method (soda lime). A decade after death, and before aerial colonization by the more competitive HOs have even taken place, we could not find changes in soil C pools (quantity and/or quality) associated with tree mortality and secondary succession. Unlike C pools, bacterial diversity and community structure were strongly determined by tree mortality. Convergence between the most abundant taxa of soil bacterial communities under dead pines and colonizer trees (HOs) further suggests that physical gap colonization was occurring below-ground before above-ground colonization was taken place. Significantly higher soil respiration rates under dead trees, together with higher bacterial diversity and anomalously high representation of bacteria commonly associated with copiotrophic environments (r-strategic bacteria) further gives indications of how drought-induced tree mortality and secondary succession were influencing the structure of microbial communities and the metabolic activity of soils. PMID:23301169

  19. Genital tract shedding of herpes simplex virus type 2 in women: effects of hormonal contraception, bacterial vaginosis, and vaginal group B Streptococcus colonization.

    PubMed

    Cherpes, Thomas L; Melan, Melissa A; Kant, Jeffrey A; Cosentino, Lisa A; Meyn, Leslie A; Hillier, Sharon L

    2005-05-15

    Genital infections due to herpes simplex virus type 2 (HSV-2) are characterized by frequent reactivation and shedding of the virus and by the attendant risk of transmission to sexual partners. We investigated the effects of vaginal coinfections and hormonal contraceptive use on genital tract shedding of HSV-2 in women. A total of 330 HSV-2-seropositive women were followed every 4 months for a year. At each visit, one vaginal swab specimen was obtained for detection of HSV-2 by polymerase chain reaction, a second vaginal swab specimen was obtained for detection of group B Streptococcus (GBS) organisms and yeast by culture, and a vaginal smear was obtained for the diagnosis of bacterial vaginosis by Gram staining. HSV-2 DNA was detected in 88 (9%) of 956 vaginal swab specimens. Independent predictors of genital tract shedding of HSV-2 were HSV-2 seroconversion during the previous 4 months (adjusted odds ratio [aOR], 3.0; 95% confidence interval [CI], 1.3-6.8), bacterial vaginosis (aOR, 2.3; 95% CI, 1.3-4.0), high-density vaginal GBS colonization (aOR, 2.2; 95% CI, 1.3-3.8), and use of hormonal contraceptives (aOR, 1.8; 95% CI, 1.1-2.8). The present study identifies hormonal contraceptive use, bacterial vaginosis, and high-density vaginal GBS colonization as risk factors for genital tract shedding of HSV-2 in women. Because hormonal contraceptives are used by millions of women worldwide and because bacterial vaginosis and vaginal GBS colonization are common vaginal conditions, even modest associations with HSV-2 shedding would result in substantial attributable risks for transmission of the virus.

  20. Bacterial interactions in dental biofilm development.

    PubMed

    Hojo, K; Nagaoka, S; Ohshima, T; Maeda, N

    2009-11-01

    Recent analyses with ribosomal RNA-based technologies have revealed the diversity of bacterial populations within dental biofilms, and have highlighted their important contributions to oral health and disease. Dental biofilms are exceedingly complex and multispecies ecosystems, where oral bacteria interact cooperatively or competitively with other members. Bacterial interactions that influence dental biofilm communities include various different mechanisms. During the early stage of biofilm formation, it is known that planktonic bacterial cells directly attach to surfaces of the oral cavity or indirectly bind to other bacterial cells that have already colonized. Adherence through co-aggregation may be critical for the temporary retention of bacteria on dental surfaces, and may facilitate eventual bacterial colonization. It is likely that metabolic communication, genetic exchange, production of inhibitory factors (e.g., bacteriocins, hydrogen peroxide, etc.), and quorum-sensing are pivotal regulatory factors that determine the bacterial composition and/or metabolism. Since each bacterium can easily access a neighboring bacterial cell and its metabolites, genetic exchanges and metabolic communication may occur frequently in dental biofilms. Quorum-sensing is defined as gene regulation in response to cell density, which influences various functions, e.g., virulence and bacteriocin production. In this review, we discuss these important interactions among oral bacteria within the dental biofilm communities.

  1. Antimicrobial peptide coatings for hydroxyapatite: electrostatic and covalent attachment of antimicrobial peptides to surfaces

    PubMed Central

    Townsend, Leigh; Williams, Richard L.; Anuforom, Olachi; Berwick, Matthew R.; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A. H.; Webber, Mark; Peacock, Anna F. A.; Belli, Antonio; Logan, Ann

    2017-01-01

    The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material–tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria. PMID:28077764

  2. Bacterial communities in the small intestine respond differently to those in the caecum and colon in mice fed low- and high-fat diets

    PubMed Central

    Campbell, Sara; Moreau, Michael; Patel, Falshruti; Brooks, Andrew I.; Zhou, Yin Xiu; Häggblom, Max M.; Storch, Judith

    2017-01-01

    Bacterial communities in the mouse caecum and faeces are known to be altered by changes in dietary fat. The microbiota of the mouse small intestine, by contrast, has not been extensively profiled and it is unclear whether small intestinal bacterial communities shift with dietary fat levels. We compared the microbiota in the small intestine, caecum and colon in mice fed a low-fat (LF) or high-fat (HF) diet using 16S rRNA gene sequencing. The relative abundance of major phyla in the small intestine, Bacteriodetes, Firmicutes and Proteobacteria, was similar to that in the caecum and colon; the relative abundance of Verrucomicrobia was significantly reduced in the small intestine compared to the large intestine. Several genera were uniquely detected in the small intestine and included the aerotolerant anaerobe, Lactobacillus spp. The most abundant genera in the small intestine were accounted for by anaerobic bacteria and were identical to those identified in the large intestine. An HF diet was associated with significant weight gain and adiposity and with changes in the bacterial communities throughout the intestine, with changes in the small intestine differing from those in the caecum and colon. Prominent Gram-negative bacteria including genera of the phylum Bacteroidetes and a genus of Proteobacteria significantly changed in the large intestine. The mechanistic links between these changes and the development of obesity, perhaps involving metabolic endotoxemia, remain to be determined. PMID:28742010

  3. Colonization of chicken cecae by Escherichia coli associated with hemorrhagic colitis.

    PubMed Central

    Beery, J T; Doyle, M P; Schoeni, J L

    1985-01-01

    Bacterial enumeration, histologic examination, and immunoperoxidase staining demonstrated the ability of an Escherichia coli strain associated with hemorrhagic colitis (serotype O157:H7) to colonize chicken cecae for up to 90 days postinoculation after a peroral challenge at 1 day of age. The bacteria induced mild, transient, mucous membrane damage confined to the proximal cecae of healthy, normal-appearing chickens, principally at 14 to 28 days postinoculation. Attachment, effacement, and penetration of the cecal surface epithelium by E. coli O157:H7 were observed. With the exception of splenic, hepatic, and cecal tonsil immune-related changes and cecal damage and colonization, no other organ systems or portions of the gastrointestinal tract were affected by the bacteria. Bacterial counts indicated that E. coli O157:H7 was predominantly present in the cecae (often at levels greater than 10(6) CFU/g of tissue and contents) and to a lesser extent in the colon. Our results suggest that E. coli O157:H7 colonizes chicken cecae and is passed through the colon with fecal excrement. The ability of this organism to colonize chicken cecae indicates that chickens may serve as hosts and possibly as reservoirs for E. coli O157:H7. Images PMID:3885853

  4. What Healthcare Workers Should Know about Environmental Bacterial Contamination in the Intensive Care Unit.

    PubMed

    Russotto, Vincenzo; Cortegiani, Andrea; Fasciana, Teresa; Iozzo, Pasquale; Raineri, Santi Maurizio; Gregoretti, Cesare; Giammanco, Anna; Giarratano, Antonino

    2017-01-01

    Intensive care unit- (ICU-) acquired infections are a major health problem worldwide. Inanimate surfaces and equipment contamination may play a role in cross-transmission of pathogens and subsequent patient colonization or infection. Bacteria contaminate inanimate surfaces and equipment of the patient zone and healthcare area, generating a reservoir of potential pathogens, including multidrug resistant species. Traditional terminal cleaning methods have limitations. Indeed patients who receive a bed from prior patient carrying bacteria are exposed to an increased risk (odds ratio 2.13, 95% confidence intervals 1.62-2.81) of being colonized and potentially infected by the same bacterial species of the previous patient. Biofilm formation, even on dry surfaces, may play a role in reducing the efficacy of terminal cleaning procedures since it enables bacteria to survive in the environment for a long period and provides increased resistance to commonly used disinfectants. No-touch methods (e.g., UV-light, hydrogen peroxide vapour) are under investigation and further studies with patient-centred outcomes are needed, before considering them the standard of terminal cleaning in ICUs. Healthcare workers should be aware of the role of environmental contamination in the ICU and consider it in the broader perspective of infection control measures and stewardship initiatives.

  5. Natural History of Streptococcus sanguinis in the Oral Cavity of Infants: Evidence for a Discrete Window of Infectivity

    PubMed Central

    Caufield, Page W.; Dasanayake, Ananda P.; Li, Yihong; Pan, Yaping; Hsu, Jay; Hardin, J. Michael

    2000-01-01

    The heterogeneous group of oral bacteria within the sanguinis (sanguis) streptococci comprise members of the indigenous biota of the human oral cavity. While the association of Streptococcus sanguinis with bacterial endocarditis is well described in the literature, S. sanguinis is thought to play a benign, if not a beneficial, role in the oral cavity. Little is known, however, about the natural history of S. sanguinis and its specific relationship with other oral bacteria. As part of a longitudinal study concerning the transmission and acquisition of oral bacteria within mother-infant pairs, we examined the initial acquisition of S. sanguinis and described its colonization relative to tooth emergence and its proportions in plaque and saliva as a function of other biological events, including subsequent colonization with mutans streptococci. A second cohort of infants was recruited to define the taxonomic affiliation of S. sanguinis. We found that the colonization of the S. sanguinis occurs during a discrete “window of infectivity” at a median age of 9 months in the infants. Its colonization is tooth dependent and correlated to the time of tooth emergence; its proportions in saliva increase as new teeth emerge. In addition, early colonization of S. sanguinis and its elevated levels in the oral cavity were correlated to a significant delay in the colonization of mutans streptococci. Underpinning this apparent antagonism between S. sanguinis and mutans streptococci is the observation that after mutans streptococci colonize the infant, the levels of S. sanguinis decrease. Children who do not harbor detectable levels of mutans streptococci have significantly higher levels of S. sanguinis in their saliva than do children colonized with mutans streptococci. Collectively, these findings suggest that the colonization of S. sanguinis may influence the subsequent colonization of mutans streptococci, and this in turn may suggest several ecological approaches toward controlling dental caries. PMID:10858217

  6. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity.

    PubMed

    Caufield, P W; Dasanayake, A P; Li, Y; Pan, Y; Hsu, J; Hardin, J M

    2000-07-01

    The heterogeneous group of oral bacteria within the sanguinis (sanguis) streptococci comprise members of the indigenous biota of the human oral cavity. While the association of Streptococcus sanguinis with bacterial endocarditis is well described in the literature, S. sanguinis is thought to play a benign, if not a beneficial, role in the oral cavity. Little is known, however, about the natural history of S. sanguinis and its specific relationship with other oral bacteria. As part of a longitudinal study concerning the transmission and acquisition of oral bacteria within mother-infant pairs, we examined the initial acquisition of S. sanguinis and described its colonization relative to tooth emergence and its proportions in plaque and saliva as a function of other biological events, including subsequent colonization with mutans streptococci. A second cohort of infants was recruited to define the taxonomic affiliation of S. sanguinis. We found that the colonization of the S. sanguinis occurs during a discrete "window of infectivity" at a median age of 9 months in the infants. Its colonization is tooth dependent and correlated to the time of tooth emergence; its proportions in saliva increase as new teeth emerge. In addition, early colonization of S. sanguinis and its elevated levels in the oral cavity were correlated to a significant delay in the colonization of mutans streptococci. Underpinning this apparent antagonism between S. sanguinis and mutans streptococci is the observation that after mutans streptococci colonize the infant, the levels of S. sanguinis decrease. Children who do not harbor detectable levels of mutans streptococci have significantly higher levels of S. sanguinis in their saliva than do children colonized with mutans streptococci. Collectively, these findings suggest that the colonization of S. sanguinis may influence the subsequent colonization of mutans streptococci, and this in turn may suggest several ecological approaches toward controlling dental caries.

  7. An Ribonuclease T2 Family Protein Modulates Acinetobacter baumannii Abiotic Surface Colonization

    PubMed Central

    Jacobs, Anna C.; Blanchard, Catlyn E.; Catherman, Seana C.; Dunman, Paul M.; Murata, Yoshihiko

    2014-01-01

    Acinetobacter baumannii is an emerging bacterial pathogen of considerable medical concern. The organism's transmission and ability to cause disease has been associated with its propensity to colonize and form biofilms on abiotic surfaces in health care settings. To better understand the genetic determinants that affect biomaterial attachment, we performed a transposon mutagenesis analysis of abiotic surface-colonization using A. baumannii strain 98-37-09. Disruption of an RNase T2 family gene was found to limit the organism's ability to colonize polystyrene, polypropylene, glass, and stainless steel surfaces. DNA microarray analyses revealed that in comparison to wild type and complemented cells, the RNase T2 family mutant exhibited reduced expression of 29 genes, 15 of which are predicted to be associated with bacterial attachment and surface-associated motility. Motility assays confirmed that RNase T2 mutant displays a severe motility defect. Taken together, our results indicate that the RNase T2 family protein identified in this study is a positive regulator of A. baumannii's ability to colonize inanimate surfaces and motility. Moreover, the enzyme may be an effective target for the intervention of biomaterial colonization, and consequently limit the organism's transmission within the hospital setting. PMID:24489668

  8. Clinical and laboratory study of postvagotomy diarrhoea

    PubMed Central

    Browning, G. G.; Buchan, K. A.; Mackay, C.

    1974-01-01

    Thirty-two patients with diarrhoea, on average four years following truncal vagotomy and drainage, were studied. A comparison was made with 24 patients without postvagotomy diarrhoea. The incidence of bacterial colonization of the upper small intestine was no different in the two groups, though patients with a gastroenterostomy had a significantly higher incidence than those with a pyloroplasty. There was a higher incidence of `anaerobic colonization' in patients with diarrhoea, but statistical significance was not reached. Colonization was associated with significantly lower levels of gastric acid secretion. Though 13 patients with diarrhoea had an abnormal faecal fat excretion, no correlation could be found between this and the severity of the diarrhoea or bacterial colonization, either with an anaerobic or a coliform type flora. In patients with diarrhoea, no small intestinal mucosal abnormality was detected, the mean haematological and serum biochemistry values were within normal limits, and the body weight was similar to that before operation. Two patients with diarrhoea had abnormal haematological values five years following vagotomy and gastroenterostomy in association with `anaerobic colonization' of the upper small intestine. As the incidence of haematological abnormalities after gastric surgery increases with time, colonized patients might merit particularly close clinical observation. PMID:4608280

  9. Modification of Intestinal Microbiota and Its Consequences for Innate Immune Response in the Pathogenesis of Campylobacteriosis

    PubMed Central

    Heimesaat, Markus M.; Bereswill, Stefan; Tareen, Abdul Malik; Lugert, Raimond; Groß, Uwe; Zautner, Andreas E.

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis in the world, and thus one of the most important public health concerns. The initial stage in its pathogenesis after ingestion is to overcome colonization resistance that is maintained by the human intestinal microbiota. But how it overcomes colonization resistance is unknown. Recently developed humanized gnotobiotic mouse models have provided deeper insights into this initial stage and host's immune response. These studies have found that a fat-rich diet modifies the composition of the conventional intestinal microbiota by increasing the Firmicutes and Proteobacteria loads while reducing the Actinobacteria and Bacteroidetes loads creating an imbalance that exposes the intestinal epithelial cells to adherence. Upon adherence, deoxycholic acid stimulates C. jejuni to synthesize Campylobacter invasion antigens, which invade the epithelial cells. In response, NF-κB triggers the maturation of dendritic cells. Chemokines produced by the activated dendritic cells initiate the clearance of C. jejuni cells by inducing the actions of neutrophils, B-lymphocytes, and various subsets of T-cells. This immune response causes inflammation. This review focuses on the progress that has been made on understanding the relationship between intestinal microbiota shift, establishment of C. jejuni infection, and consequent immune response. PMID:24324507

  10. Swine MRSA isolates form robust biofilms

    USDA-ARS?s Scientific Manuscript database

    Background: Methicillin-resistant Staphylococcus aureus (MRSA) colonization of livestock animals is common and prevalence rates for pigs have been reported to be as high as 49%. Measures to prevent, control, or eliminate MRSA in swine is of considerable public health concern. Bacterial colonization ...

  11. Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus*

    PubMed Central

    Tsuboi, Koichiro; Nishitani, Mayo; Takakura, Atsushi; Imai, Yasuyuki; Komatsu, Masaaki; Kawashima, Hiroto

    2015-01-01

    Genome-wide association studies of inflammatory bowel diseases identified susceptible loci containing an autophagy-related gene. However, the role of autophagy in the colon, a major affected area in inflammatory bowel diseases, is not clear. Here, we show that colonic epithelial cell-specific autophagy-related gene 7 (Atg7) conditional knock-out (cKO) mice showed exacerbation of experimental colitis with more abundant bacterial invasion into the colonic epithelium. Quantitative PCR analysis revealed that cKO mice had abnormal microflora with an increase of some genera. Consistently, expression of antimicrobial or antiparasitic peptides such as angiogenin-4, Relmβ, intelectin-1, and intelectin-2 as well as that of their inducer cytokines was significantly reduced in the cKO mice. Furthermore, secretion of colonic mucins that function as a mucosal barrier against bacterial invasion was also significantly diminished in cKO mice. Taken together, our results indicate that autophagy in colonic epithelial cells protects against colitis by the maintenance of normal gut microflora and secretion of mucus. PMID:26149685

  12. Association of bacterial colonization at the time of presentation to a combat support hospital in a combat zone with subsequent 30-day colonization or infection.

    PubMed

    Kaspar, Robert L; Griffith, Matthew E; Mann, Paul B; Lehman, Devon J; Conger, Nicholas G; Hospenthal, Duane R; Murray, Clinton K

    2009-09-01

    U.S. casualties have developed multidrug-resistant (MDR) bacterial infections. A surveillance project to evaluate U.S. military patients for the presence of MDR pathogens from wounding through the first 30 days of care in the military healthcare system (MHS) was performed. U.S. military patients admitted to a single combat support hospital in Iraq during June-July of 2007 had screening swabs obtained for the detection of MDR bacteria and a subsequent retrospective electronic medical records review for presence of colonization or infection in the subsequent 30 days. Screening of 74 U.S. military patients in Iraq found one colonized with methicillin-resistant Staphylococcus aureus. Fifty-six patients of these were screened for Acinetobacter in Germany and one found colonized. Of patients evacuated to the U.S., 9 developed infections. Carefully obtained screening cultures immediately after injury combined with look-back monitoring supports the role of nosocomial transmission. Consistent infection control strategies are needed for the entire MHS.

  13. Pharyngeal colonization and drug resistance profiles of Morraxella catarrrhalis, Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae among HIV infected children attending ART Clinic of Felegehiwot Referral Hospital, Ethiopia.

    PubMed

    Mulu, Wondemagegn; Yizengaw, Endalew; Alemu, Megbaru; Mekonnen, Daniel; Hailu, Derese; Ketemaw, Kassaw; Abera, Bayeh; Kibret, Mulugeta

    2018-01-01

    Asymptomatic pharyngeal colonization by potential bacteria is the primary reservoir for bacterial species within a population and is considered a prerequisite for development of major childhood diseases such as sinusitis, otitis media, pneumonia, bacteremia, and meningitis. However, there is dearth of data on the colonization and drug resistance pattern of the main bacterial pathogens in the pharynx of HIV infected children in Ethiopia. Therefore, this study determined the pharyngeal colonization and drug resistance profile of bacterial pathogens in HIV infected children attending ART clinic of Felegehiwot Referral Hospital (FHRH), Amhara Region, Ethiopia. A hospital based cross-sectional study was conducted from May 2016 to June 2017 at the ART clinic of FHRH. A total of 300 HIV infected children were enrolled in the study. Data on socio-demographic characteristics of the study participants were collected with face-to-face interview and patient-card review using structured questionnaire. Bacterial species were identified using standard bacteriological techniques. Drug susceptibility testing was performed using disk diffusion technique. Chi-square test was done to determine associations among variables. The median age of the participants was 11 years. Overall, 153 (51%) of children were colonized by respiratory bacteria in their pharynx. Colonization rate was higher in children from mothers who had attained college and above levels of education than others (P = 0.04). It was also higher in children without the sign of malnutrition than others (P = 0.004). The colonization rate of S.aureus, M.catarrhalis, S.pneumoniae and H.influenzae were 88 (29%), 37 (12.3%), 31 (10.3%) and 6 (2%), respectively. S.aureus-M.catarrhalis concurrent colonization was found in 14 (4.7%) of children. Age (P = 0.03), schooling (P = 0.045) and history of running nose (P = 0.043) were significantly associated with S.aureus colonization. Living in urban setting (P = 0.042) and children from mothers with college and above levels of education (P = 0.002) were significantly associated with M.catarrhalis colonization. Majority of the isolates were resistant to penicillin (68.5%) and cotrimoxazole (52.5%).S.aureus isolates were resistant to penicillin (84.1%) and cotrimoxazole (51.1%).M.catarrhalis isolates were resistant to penicillin (94.6%), erythromycin (86.5%)and cotrimoxazole (78.4%). Overall, 99 (59.3%) of the isolates were multi-drug (MDR) resistant. The overall MDR rates among S.aureus, M.catarrhalis and S.pneumoniae isolates were 65.9%, 78.4% and 22.6%, respectively. Pharyngeal colonization of respiratory bacteria in HIV infected children is a major public health problem. Single and multiple antibiotic resistant is alarmingly high among respiratory colonizers. Therefore, regular screening of HIV infected children for culture and antimicrobial susceptibility testing is recommended to prevent the development of severe opportunistic infections.

  14. Bioluminescent imaging reveals novel patterns of colonization and invasion in systemic Escherichia coli K1 experimental infection in the neonatal rat.

    PubMed

    Witcomb, Luci A; Collins, James W; McCarthy, Alex J; Frankel, Gadi; Taylor, Peter W

    2015-12-01

    Key features of Escherichia coli K1-mediated neonatal sepsis and meningitis, such as a strong age dependency and development along the gut-mesentery-blood-brain course of infection, can be replicated in the newborn rat. We examined temporal and spatial aspects of E. coli K1 infection following initiation of gastrointestinal colonization in 2-day-old (P2) rats after oral administration of E. coli K1 strain A192PP and a virulent bioluminescent derivative, E. coli A192PP-lux2. A combination of bacterial enumeration in the major organs, two-dimensional bioluminescence imaging, and three-dimensional diffuse light imaging tomography with integrated micro-computed tomography indicated multiple sites of colonization within the alimentary canal; these included the tongue, esophagus, and stomach in addition to the small intestine and colon. After invasion of the blood compartment, the bacteria entered the central nervous system, with restricted colonization of the brain, and also invaded the major organs, in line with increases in the severity of symptoms of infection. Both keratinized and nonkeratinized surfaces of esophagi were colonized to a considerably greater extent in susceptible P2 neonates than in corresponding tissues from infection-resistant 9-day-old rat pups; the bacteria appeared to damage and penetrate the nonkeratinized esophageal epithelium of infection-susceptible P2 animals, suggesting the esophagus represents a portal of entry for E. coli K1 into the systemic circulation. Thus, multimodality imaging of experimental systemic infections in real time indicates complex dynamic patterns of colonization and dissemination that provide new insights into the E. coli K1 infection of the neonatal rat. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Bioluminescent Imaging Reveals Novel Patterns of Colonization and Invasion in Systemic Escherichia coli K1 Experimental Infection in the Neonatal Rat

    PubMed Central

    Witcomb, Luci A.; Collins, James W.; McCarthy, Alex J.; Frankel, Gadi

    2015-01-01

    Key features of Escherichia coli K1-mediated neonatal sepsis and meningitis, such as a strong age dependency and development along the gut-mesentery-blood-brain course of infection, can be replicated in the newborn rat. We examined temporal and spatial aspects of E. coli K1 infection following initiation of gastrointestinal colonization in 2-day-old (P2) rats after oral administration of E. coli K1 strain A192PP and a virulent bioluminescent derivative, E. coli A192PP-lux2. A combination of bacterial enumeration in the major organs, two-dimensional bioluminescence imaging, and three-dimensional diffuse light imaging tomography with integrated micro-computed tomography indicated multiple sites of colonization within the alimentary canal; these included the tongue, esophagus, and stomach in addition to the small intestine and colon. After invasion of the blood compartment, the bacteria entered the central nervous system, with restricted colonization of the brain, and also invaded the major organs, in line with increases in the severity of symptoms of infection. Both keratinized and nonkeratinized surfaces of esophagi were colonized to a considerably greater extent in susceptible P2 neonates than in corresponding tissues from infection-resistant 9-day-old rat pups; the bacteria appeared to damage and penetrate the nonkeratinized esophageal epithelium of infection-susceptible P2 animals, suggesting the esophagus represents a portal of entry for E. coli K1 into the systemic circulation. Thus, multimodality imaging of experimental systemic infections in real time indicates complex dynamic patterns of colonization and dissemination that provide new insights into the E. coli K1 infection of the neonatal rat. PMID:26351276

  16. Impact of contraceptive initiation on vaginal microbiota.

    PubMed

    Achilles, Sharon L; Austin, Michele N; Meyn, Leslie A; Mhlanga, Felix; Chirenje, Zvavahera M; Hillier, Sharon L

    2018-06-01

    Data evaluating the impact of contraceptives on the vaginal microbiome are limited and inconsistent. We hypothesized that women initiating copper intrauterine device use would have increased bacterial vaginosis and bacterial vaginosis-associated microbes with use compared to women initiating and using hormonal contraceptive methods. Vaginal swabs (N = 1047 from 266 participants seeking contraception) for Nugent score determination of bacterial vaginosis and quantitative polymerase chain reaction analyses for assessment of specific microbiota were collected from asymptomatic, healthy women aged 18-35 years in Harare, Zimbabwe, who were confirmed to be free of nonstudy hormones by mass spectrometry at each visit. Contraception was initiated with an injectable (depot medroxyprogesterone acetate [n = 41], norethisterone enanthate [n = 44], or medroxyprogesterone acetate and ethinyl estradiol [n = 40]), implant (levonorgestrel [n = 45] or etonogestrel [n = 48]), or copper intrauterine device (n = 48) and repeat vaginal swabs were collected after 30, 90, and 180 days of continuous use. Self-reported condom use was similar across all arms at baseline. Quantitative polymerase chain reaction was used to detect Lactobacillus crispatus, L jensenii, L gasseri/johnsonii group, L vaginalis, L iners, Gardnerella vaginalis, Atopobium vaginae, and Megasphaera-like bacterium phylotype I from swabs. Modified Poisson regression and mixed effects linear models were used to compare marginal prevalence and mean difference in quantity (expressed as gene copies/swab) prior to and during contraceptive use. Bacterial vaginosis prevalence increased in women initiating copper intrauterine devices from 27% at baseline, 35% at 30 days, 40% at 90 days, and 49% at 180 days (P = .005 compared to marginal prevalence at enrollment). Women initiating hormonal methods had no change in bacterial vaginosis prevalence over 180 days. The mean increase in Nugent score was 1.2 (95% confidence interval, 0.5-2.0; P = .001) in women using copper intrauterine devices. Although the frequency and density of beneficial lactobacilli did not change among intrauterine device users over 6 months, there was an increase in the log concentration of G vaginalis (4.7, 5.2, 5.8, 5.9; P = .046) and A vaginae (3.0, 3.8, 4.6, 5.1; P = .002) between baseline and 30, 90, and 180 days after initiation. Among other contraceptive groups, women using depot medroxyprogesterone acetate had decreased L iners (mean decrease log concentration = 0.8; 95% confidence interval, 0.3-1.5; P = .004) and there were no significant changes in beneficial Lactobacillus species over 180 days regardless of contraceptive method used. Copper intrauterine device use may increase colonization by bacterial vaginosis-associated microbiota, resulting in increased prevalence of bacterial vaginosis. Use of most hormonal contraception does not alter vaginal microbiota. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Tolerance to oxidative stress is required for maximal xylem colonization by the xylem-limited bacterial phytopathogen, Xylella fastidiosa.

    PubMed

    Wang, Peng; Lee, Yunho; Igo, Michele M; Roper, M Caroline

    2017-09-01

    Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem-limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H 2 O 2 ) relative to the wild-type. In addition, during early stages of grapevine infection, the survival rate was 1000-fold lower for the oxyR mutant than for the wild-type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell-cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  18. Infant Mouse Model for the Study of Shedding and Transmission during Streptococcus pneumoniae Monoinfection

    PubMed Central

    Zafar, M. Ammar; Kono, Masamitsu; Wang, Yang; Zangari, Tonia

    2016-01-01

    One of the least understood aspects of the bacterium Streptococcus pneumoniae (pneumococcus) is its transmission from host to host, the critical first step in both the carrier state and the disease state. To date, transmission models have depended on influenza A virus coinfection, which greatly enhances pneumococcal shedding to levels that allow acquisition by a new host. Here, we describe an infant mouse model that can be utilized to study pneumococcal colonization, shedding, and transmission during bacterial monoinfection. Using this model, we demonstrated that the level of bacterial shedding is highest in pups infected intranasally at age 4 days and peaks over the first 4 days postchallenge. Shedding results differed among isolates of five different pneumococcal types. Colonization density was found to be a major factor in the level of pneumococcal shedding and required expression of capsule. Transmission within a litter occurred when there was a high ratio of colonized “index” pups to uncolonized “contact” pups. Transmission was observed for each of the well-colonizing pneumococcal isolates, with the rate of transmission proportional to the level of shedding. This model can be used to examine bacterial and host factors that contribute to pneumococcal transmission without the effects of viral coinfection. PMID:27400721

  19. Swine MRSA isolates form robust biofilms

    USDA-ARS?s Scientific Manuscript database

    Methicillin-resistant Staphylococcus aureus (MRSA) colonization of livestock animals is common and prevalence rates for pigs have been reported to be as high as 49%. Measures to prevent, control, or eliminate MRSA in swine is of considerable public health concern. Bacterial colonization of both biol...

  20. Characterization of the Cultivable Gut Microflora in Wild-Caught 
Mediterranean Fish Species.

    PubMed

    Jammal, Ahmad; Bariche, Michel; Zu Dohna, Heinrich; Kambris, Zakaria

    2017-05-01

    Microflora of the gastrointestinal tract plays important roles in food digestion, nutrient absorption and in host defense against ingested pathogens. Several studies have focused on the microflora of farmed fishes, but the gut flora of wild fishes remains poorly characterized. The aim of this work was to provide an overview of the bacteria colonizing the gut of wild-caught fishes and to determine whether some bacterial species can be pathogenic. We isolated cultivable bacteria from fifteen wild-caught Mediterranean fish species corresponding to different habitat, diet and origin. Bacterial species identity was determined by 16s rRNA gene sequencing for the 61 isolates. The potential pathogenicity of isolated bacteria was investigated using fruit fly (Drosophila melanogaster) and zebrafish (Danio rerio) as model organisms. Two bacterial strains (Serratia sp. and Aeromonas salmonicida) were lethal when microinjected to Drosophila, while zebrafish did not develop any disease when exposed to any of 34 isolated bacterial strains. However, it was interesting to note that two bacterial strains (Shewanella and Arthrobacter) isolated from marine fishes were able to colonize the guts of freshwater zebrafish. The results of this study give an overview of the bacterial species found in the guts of wild fishes living off Beirut seashore. It shows that some parameters believed to be limiting factors to host-gut colonization by bacteria can be overcome by some species. This pilot study could be extended by sampling a larger number of fish species with several specimens per fish species, and by identifying uncultivable bacteria that reside in the fish guts. Our results may have implications for the utilization of certain bacterial species in fish farming or their use as bio-indicators for water and/or food quality.

  1. Influence of clinical history on airways bacterial colonization in subjects with chronic tracheostomy.

    PubMed

    Lusuardi, M; Capelli, A; Cerutti, C G; Gnemmi, I; Zaccaria, S; Donner, C F

    2000-05-01

    Patients with chronic tracheostomy are subject to significant bacterial colonization of the airways, a risk factor for respiratory infections. The aim of our study was to verify whether bacterial colonization and humoral immune response in the airways can be influenced by the disease which led to chronic respiratory failure and tracheostomy. Thirty-nine clinically stable outpatients with chronic tracheostomy were considered: 24 were affected by chronic obstructive pulmonary disease (COPD) (mean age 66 years, range 54-78, M/F 19/3; months since tracheostomy 23, range 3-62), 15 by restrictive lung disease (RLD) (12 thoracic wall deformities, three neuromuscular disease; age 57 years, range 41-72; M/F 3/12, months since tracheostomy 22, range 2-68). Recent antibiotic or corticosteroid treatments (< 1 month) were among exclusion criteria. Bacterial counts were assessed in tracheobronchial secretions with the method of serial dilutions. Identification of bacterial strains was performed by routine methods. Albumin, IgG, A, and M were measured in airways secretions with an immunoturbidimetric method. No significant differences were found between the two groups as regards either the quantitative bacterial cultures (RLD 81.4, 2.6-4200 x 10(4); COPD 75.9, 1.0-1530 x 10(4) colony forming units (cfu)/ml, geometric mean, range) or the prevalence of the main bacterial strains, (Pseudomonas species: 38 and 37%, Serratia marcescens: 31 and 23%, Staphylococcus aureus: 14 and 6%, Proteus species: 3 and 8%, for RLD and COPD respectively) as a percentage of total strains isolated (RLD = 26, COPD = 48). Immunoglobulin levels did not show significant differences, apart from being higher in underweight subjects. We conclude that in our series of stable outpatients with chronic tracheostomy, bacteria-host interaction in the airways was not influenced by the clinical history.

  2. Phylogenetic Profiles of In-House Microflora in Drains at a Food Production Facility: Comparison and Biocontrol Implications of Listeria-Positive and -Negative Bacterial Populations

    PubMed Central

    Solomon, Katie; Moore, John E.; Wall, Patrick G.; Fanning, Séamus

    2014-01-01

    Listeria species experience complex interactions with other microorganisms, which may promote growth and colonization of the organism in local environments or negatively affect them. This study investigated the microbial community at a food production facility, examining interactions between Listeria and the associated microbiome. Listeria species can be transferred between zones in the production environment by individuals or equipment, and drains may act as a reservoir for the organism, reflecting the microbial flora potentially in the production environment. Drains that were colonized by Listeria species and those determined to be free of Listeria were examined. In each case, 16S rRNA gene analysis was performed using the PhyloChip platform. Some general similarities in bacterial population structure were observed when Listeria-negative and -positive drain communities were compared, with some distinct differences also noted. These included increased populations of the genera Prevotella and Janthinobacterium associated with the absence of Listeria species, whereas Enterococcus and Rhodococcus were in higher abundance in drains colonized by Listeria species. Based on these results, a selection of bacterial species were grown in coculture biofilm with a Listeria monocytogenes strain identified as having colonized a drain at the facility. Mixed-species biofilm experiments showed that Janthinobacterium inhibited attachment and subsequent biofilm formation of L. monocytogenes; however, Enterococcus gallinarum significantly increased it. The results of this study suggest the microbial community in food processing facilities can impact the colonization of Listeria species and that influencing the microbiome in favor of antilisterial species may reduce the colonization of Listeria species and limit the likelihood of product/process contamination. PMID:24657862

  3. Antimicrobial peptide coatings for hydroxyapatite: electrostatic and covalent attachment of antimicrobial peptides to surfaces.

    PubMed

    Townsend, Leigh; Williams, Richard L; Anuforom, Olachi; Berwick, Matthew R; Halstead, Fenella; Hughes, Erik; Stamboulis, Artemis; Oppenheim, Beryl; Gough, Julie; Grover, Liam; Scott, Robert A H; Webber, Mark; Peacock, Anna F A; Belli, Antonio; Logan, Ann; de Cogan, Felicity

    2017-01-01

    The interface between implanted devices and their host tissue is complex and is often optimized for maximal integration and cell adhesion. However, this also gives a surface suitable for bacterial colonization. We have developed a novel method of modifying the surface at the material-tissue interface with an antimicrobial peptide (AMP) coating to allow cell attachment while inhibiting bacterial colonization. The technology reported here is a dual AMP coating. The dual coating consists of AMPs covalently bonded to the hydroxyapatite surface, followed by deposition of electrostatically bound AMPs. The dual approach gives an efficacious coating which is stable for over 12 months and can prevent colonization of the surface by both Gram-positive and Gram-negative bacteria. © 2017 The Author(s).

  4. The advantages of the application of amnion membrane in the treatment of burns.

    PubMed

    Andonovska, D; Dzokic, Gj; Spasevska, L; Trajkovska, T; Popovska, K; Todorov, I; Petrovski, P; Kondov, G; Sapova, B; Marcikic, G; Atanasova, E; Obocki, E; Ugrinovska, J; Andonovski, D; Andonovski, D; Vasilevska, V; Mircevska-Zogovska, E

    2008-07-01

    A crucial and important factor for successful treatment of burns is the early covering of the burned area with skin substitutes. The covering of the burn requires material that restores the epidermal function and integrates itself into the process of healing. Biological dressings are the golden standard for the temporary covering of burns. All biological skin substitutes are susceptible to early graft reaction and the only exception is the amnion membrane. The importance of the amnion membrane as a biological dressing for burns amounts to: a barrier to bacterial colonization, hastens the epithelisation, and control of water loss. Amnioplasty is a method of application of amnion membrane on the recipient site. In this comparative study, 60 patients with dermal and sub-dermal burns were included. Research was made on an examination group of 30 patients with burns where the method of amnioplasty was applied, and for this amnion membrane conserved in 76% alcohol was used. The control group was made up of 30 patients with burns treated conventionally, and standard methods for the local treatment of burns were applied: exposition, occlusive dressing and initial excision with skin grafting. Pathohistological and microbiological analyses of the bioptical material were made. The degree of the burns was determined through a pathohistological analysis of the bioptical material taken the third day, and in some of the subjects where re-epithelialization was determined on the seventh day, the further re-epithelialization was observed clinically. Pathohistological examination enabled discrimination between bacterial colonization and the invasive bacterial infection. Furthermore, the type of bacterial colonization and infection was determined, which was confirmed with microbiological analysis. The analysis of the results from the microbiological and pathohistological researches of the bioptical material according to the bacterial colonization and infection showed that, although between the examined and the control group there was no statistically important difference, the value of p = 0.067 is close to the statistically important value of p < 0.05. The results of the pathohistological examination of the bioptical material taken the seventh day and analysed according to the re-epithelialization showed that there was a significant difference between the two groups of p < 0.035. It should be mentioned that, although according to the microbiological examinations of the bioptical material a statistically significant difference was not achieved, clinical significance was achieved. The obtained significance of p < 0.035 compared to the re-epithelialization in both groups approved the application of the method of amnioplasty. The histological analysis of the bioptical material not only determines the degree of the burns specifically, but facilitates the choice of method for further treatment, observes the speed of the re-epithelialization and plays an important part in the correct diagnosis and the early start of the specific therapy, important in preventing sepsis. The application of amnion membrane as a biological dressing speeds the re-epithelialization and prevents invasive bacterial infection. Pathohistological examination of the burns is recommended to be established as a standard method in clinical practice.

  5. Human Catestatin Alters Gut Microbiota Composition in Mice

    PubMed Central

    Rabbi, Mohammad F.; Munyaka, Peris M.; Eissa, Nour; Metz-Boutigue, Marie-Hélène; Khafipour, Ehsan; Ghia, Jean Eric

    2017-01-01

    The mammalian intestinal tract is heavily colonized with a dense, complex, and diversified microbial populations. In healthy individuals, an array of epithelial antimicrobial agents is secreted in the gut to aid intestinal homeostasis. Enterochromaffin cells (EC) in the intestinal epithelium are a major source of chromogranin A (CgA), which is a pro-hormone and can be cleaved into many bioactive peptides that include catestatin (CST). This study was carried out to evaluate the possible impact of CST on gut microbiota in vivo using a mouse model. The CST (Human CgA352−372) or normal saline was intrarectally administered in C57BL/6 male mice for 6 days and then sacrificed. Feces and colonic mucosa tissue samples were collected, DNA was extracted, the V4 region of bacterial 16S rRNA gene was amplified and subjected to MiSeq Illumina sequencing. The α-diversity was calculated using Chao 1 and β-diversity was determined using QIIME. Differences at the genus level were determined using partial least square discriminant analysis (PLS-DA). Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) was used to predict functional capacity of bacterial community. CST treatment did not modify bacterial richness in fecal and colonic mucosa-associated microbiota; however, treatment significantly modified bacterial community composition between the groups. Also, CST-treated mice had a significantly lower relative abundance of Firmicutes and higher abundance of Bacteroidetes, observed only in fecal samples. However, at lower phylogenetic levels, PLS-DA analysis revealed that some bacterial taxa were significantly associated with the CST-treated mice in both fecal and colonic mucosa samples. In addition, differences in predicted microbial functional pathways in both fecal and colonic mucosa samples were detected. The results support the hypothesis that CST treatment modulates gut microbiota composition under non-pathophysiological conditions, however, the result of this study needs to be further validated in a larger experiment. The data may open new avenues for the development of a potential new line of antimicrobial peptides and their use as therapeutic agents to treat several inflammatory conditions of the gastrointestinal tract, such as inflammatory bowel disease (IBD), inflammatory bowel syndrome (IBS), or other health conditions. PMID:28144234

  6. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization

    PubMed Central

    Hyre, Amanda N.; Kavanagh, Kylie; Kock, Nancy D.; Donati, George L.

    2016-01-01

    ABSTRACT Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae, in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI. PMID:28031261

  7. Ecological Succession in the Honey Bee Gut: Shift in Lactobacillus Strain Dominance During Early Adult Development.

    PubMed

    Anderson, Kirk E; Rodrigues, Pedro A P; Mott, Brendon M; Maes, Patrick; Corby-Harris, Vanessa

    2016-05-01

    In many vertebrates, social interactions and nutrition can affect the colonization of gut symbionts across generations. In the highly social honey bee, it is unknown to what extent the hive environment and older worker individuals contribute to the generational transmission of core gut bacteria. We used high-throughput sequencing to investigate the effect of nest materials and social contact on the colonization and succession of core hindgut microbiota in workers. With only brief exposure to hive materials following natural eclosion, gut bacterial communities at 3 and 7 days contained phylotypes typically found in the guts of mature adults regardless of treatment. Continuous exposure to nest materials or direct social interactions with mature adults did not affect the diversity or abundance of gut bacterial communities at the scale examined. Similarly, a common pollen supplement fed by beekeepers during pollen dearth had no effect. A consideration of unique OTUs revealed extensive microbial succession independent of treatment. The dominant Lactobacillus strain at 3 days was largely replaced by a different strain at day 7, revealing the colonization signature of a pioneer species. Similar but less pronounced patterns were evident in less abundant OTU's, many of which may influence community succession via alteration of the gut environment. Our results indicate that the process of bacterial community colonization in the hindgut is resilient to changes in the nutritional, hive, and social environment. Greater taxonomic resolution is needed to accurately resolve questions of ecological succession and typical proportional variation within and between core members of the gut bacterial community.

  8. Phosphorylcholine impairs susceptibility to biofilm formation of hydrogel contact lenses.

    PubMed

    Selan, Laura; Palma, Stefano; Scoarughi, Gian Luca; Papa, Rosanna; Veeh, Richard; Di Clemente, Daniele; Artini, Marco

    2009-01-01

    To compare silicone-hydrogel, poly(2-hydroxyethyl methacrylate) (pHEMA), and phosphorylcholine-coated (PC-C) contact lenses in terms of their susceptibility to biofilm formation by Staphylococcus epidermidis and Pseudomonas aeruginosa. Laboratory investigation. Biofilm formation on colonized test lenses was evaluated with confocal microscopy and in vitro antibiotic susceptibility assays. The results of the latter assays were compared with those performed on planktonic cultures of the same organism. For both microorganisms, sessile colonies on silicone-hydrogel and pHEMA lenses displayed lower antibiotic susceptibility than their planktonic counterparts. In contrast, the susceptibility of cultures growing on PC-C lenses was comparable with that for planktonic cultures. In particular, minimum inhibitory concentration for Tazocin (piperacillin plus tazobactam; Wyeth Pharmaceuticals, Aprilia, Italy; S. epidermidis) and gentamicin (P. aeruginosa) was identical, either in the presence of PC-C support or in planktonic cultures (Tazocin,

  9. Variation in local carrying capacity and the individual fate of bacterial colonizers in the phyllosphere

    PubMed Central

    Remus-Emsermann, Mitja N P; Tecon, Robin; Kowalchuk, George A; Leveau, Johan H J

    2012-01-01

    Using a phyllosphere model system, we demonstrated that the term ‘carrying capacity', as it is commonly used in microbial ecology, needs to be understood as the sum of many ‘local carrying capacities' in order to better explain and predict the course and outcome of bacterial colonization of an environment. Using a green fluorescent protein-based bioreporter system for the quantification of reproductive success (RS) in individual Erwinia herbicola cells, we were able to reconstruct the contribution of individual immigrants to bacterial population sizes on leaves. Our analysis revealed that plant foliage represents to bacteria an environment where individual fate is determined by the local carrying capacity of the site where an immigrant cell lands. With increasing inoculation densities, the RS of most immigrants declined, suggesting that local carrying capacity under the tested conditions was linked to local nutrient availability. Fitting the observed experimental data to an adapted model of phyllosphere colonization indicated that there might exist three types of sites on leaves, which differ in their frequency of occurrence and local carrying capacity. Specifically, our data were consistent with a leaf environment that is characterized by few sites where individual immigrants can produce high numbers of offspring, whereas the remainder of the leaf offered an equal number of sites with low and medium RS. Our findings contribute to a bottom–up understanding of bacterial colonization of leaf surfaces, which includes a quantifiable role of chance in the experience at the individual level and in the outcome at the population level. PMID:22258099

  10. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  11. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    PubMed Central

    Dias, Juliana; Marcondes, Marcos I.; Noronha, Melline F.; Resende, Rafael T.; Machado, Fernanda S.; Mantovani, Hilário C.; Dill-McFarland, Kimberly A.; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative anaerobic fungal abundances did not change significantly in response to diet or age, likely due to high inter-animal variation and the low fiber content of starter concentrate. This study provides new insights into the colonization of archaea, bacteria, and anaerobic fungi communities in pre-ruminant calves that may be useful in designing strategies to promote colonization of target communities to improve functional development. PMID:28861065

  12. A Rat Model of Central Venous Catheter to Study Establishment of Long-Term Bacterial Biofilm and Related Acute and Chronic Infections

    PubMed Central

    Chauhan, Ashwini; Lebeaux, David; Decante, Benoit; Kriegel, Irene; Escande, Marie-Christine; Ghigo, Jean-Marc; Beloin, Christophe

    2012-01-01

    Formation of resilient biofilms on medical devices colonized by pathogenic microorganisms is a major cause of health-care associated infection. While in vitro biofilm analyses led to promising anti-biofilm approaches, little is known about their translation to in vivo situations and on host contribution to the in vivo dynamics of infections on medical devices. Here we have developed an in vivo model of long-term bacterial biofilm infections in a pediatric totally implantable venous access port (TIVAP) surgically placed in adult rats. Using non-invasive and quantitative bioluminescence, we studied TIVAP contamination by clinically relevant pathogens, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis, and we demonstrated that TIVAP bacterial populations display typical biofilm phenotypes. In our study, we showed that immunocompetent rats were able to control the colonization and clear the bloodstream infection except for up to 30% that suffered systemic infection and death whereas none of the immunosuppressed rats survived the infection. Besides, we mimicked some clinically relevant TIVAP associated complications such as port-pocket infection and hematogenous route of colonization. Finally, by assessing an optimized antibiotic lock therapy, we established that our in vivo model enables to assess innovative therapeutic strategies against bacterial biofilm infections. PMID:22615964

  13. Defining the bacteroides ribosomal binding site.

    PubMed

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  14. The Salmonella enterica serovar Typhimurium QseB Response Regulator Negatively Regulates Bacterial Motility and Swine Colonization in the Absence of the QseC Sensor Kinase

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica serovar Typhimurium (S. Typhimurium) responds to the catecholamine, norepinephrine by increasing bacterial growth and enhancing motility. In this study, iron with or without the siderophore, ferrioxamine E also enhanced bacterial motility. Iron-enhanced motility was growth-rate ...

  15. The squid-Vibrio symbioses: from demes to genes.

    PubMed

    Kimbell, Jennifer R; McFall-Ngai, Margaret J

    2003-04-01

    The monospecific light organ association between the Hawaiian sepiolid squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri has been used as a model for the study of the most common type of coevolved animal-bacterial interaction; i.e., the association of Gram-negative bacteria with the extracellular apical surfaces of polarized epithelia. Analysis of the squid-vibrio symbiosis has ranged from characterizations of the harvesting mechanisms by which the host ensures colonization by the appropriate symbiont to identification of bacteria-induced changes in host gene expression that accompany the establishment and maintenance of the relationship. Studies of this model have been enhanced by extensive collaboration with microbiologists, who are able to manipulate the genetics of the bacterial symbiont. The results of our studies have indicated that initiation and persistence of the association requires a complex, reciprocal molecular dialogue between these two phylogenetically distant partners.

  16. Lessons from a cooperative, bacterial-animal association: the Vibrio fischeri-Euprymna scolopes light organ symbiosis.

    PubMed

    Ruby, E G

    1996-01-01

    Although the study of microbe-host interactions has been traditionally dominated by an interest in pathogenic associations, there is an increasing awareness of the importance of cooperative symbiotic interactions in the biology of many bacteria and their animal and plant hosts. This review examines a model system for the study of such symbioses, the light organ association between the bobtail squid Euprymna scolopes and the marine luminous bacterium Vibrio fischeri. Specifically, the initiation, establishment, and persistence of the benign bacterial infection of the juvenile host light organ are described, as are efforts to understand the mechanisms underlying this specific colonization program. Using molecular genetic techniques, mutant strains of V. fischeri have been constructed that are defective at specific stages of the development of the association. Some of the lessons that these mutants have begun to teach us about the complex and long-term nature of this cooperative venture are summarized.

  17. Empiric Antibiotic Therapy of Nosocomial Bacterial Infections.

    PubMed

    Reddy, Pramod

    2016-01-01

    Broad-spectrum antibiotics are commonly used by physicians to treat various infections. The source of infection and causative organisms are not always apparent during the initial evaluation of the patient, and antibiotics are often given empirically to patients with suspected sepsis. Fear of attempting cephalosporins and carbapenems in penicillin-allergic septic patients may result in significant decrease in the spectrum of antimicrobial coverage. Empiric antibiotic therapy should sufficiently cover all the suspected pathogens, guided by the bacteriologic susceptibilities of the medical center. It is important to understand the major pharmacokinetic properties of antibacterial agents for proper use and to minimize the development of resistance. In several septic patients, negative cultures do not exclude active infection and positive cultures may not represent the actual infection. This article will review the important differences in the spectrum of commonly used antibiotics for nosocomial bacterial infections with a particular emphasis on culture-negative sepsis and colonization.

  18. Pathogenic bacteria induce colonic PepT1 expression: an implication in host defense response

    PubMed Central

    Nguyen, Hang Thi Thu; Dalmasso, Guillaume; Powell, Kimberly R.; Yan, Yutao; Bhatt, Shantanu; Kalman, Daniel; Sitaraman, Shanthi; Merlin, Didier

    2009-01-01

    Background & Aims Expression of the di/tripeptide transporter PepT1 has been observed in the colon under inflammatory conditions, however, the inducing factors and underlying mechanisms remain unknown. Here, we address the effects of pathogenic bacteria on colonic PepT1 expression together with its functional consequences. Methods Human colonic HT29-Cl.19A cells were infected with the attaching and effacing (A/E) enteropathogenic E. coli (EPEC). Wild-type and PepT1 transgenic mice or cultured colonic tissues derived from these mice were infected with Citrobacter rodentium, a murine A/E pathogen related to EPEC. Results EPEC induced PepT1 expression and activity in HT29-Cl.19A cells by intimately attaching to host cells through lipid rafts. Induction of PepT1 expression by EPEC required the transcription factor Cdx2. PepT1 expression reduced binding of EPEC to lipid rafts, as well as activation of NF-κB and MAP kinase and production of IL-8. Accordingly, ex vivo and in vivo experiments revealed that C. rodentium induced colonic PepT1 expression and that, compared to their wild-type counterparts, PepT1 transgenic mice infected with C. rodentium exhibited decreased bacterial colonization, production of pro-inflammatory cytokines, and neutrophil infiltration into the colon. Conclusions Our findings demonstrate a molecular mechanism underlying the regulation of colonic PepT1 expression under pathological conditions and reveal a novel role for PepT1 in host defense via its capacity to modulate bacterial-epithelial interactions and intestinal inflammation. PMID:19549526

  19. Dysbiosis of the gut microbiota in disease

    PubMed Central

    Carding, Simon; Verbeke, Kristin; Vipond, Daniel T.; Corfe, Bernard M.; Owen, Lauren J.

    2015-01-01

    There is growing evidence that dysbiosis of the gut microbiota is associated with the pathogenesis of both intestinal and extra-intestinal disorders. Intestinal disorders include inflammatory bowel disease, irritable bowel syndrome (IBS), and coeliac disease, while extra-intestinal disorders include allergy, asthma, metabolic syndrome, cardiovascular disease, and obesity. In many of these conditions, the mechanisms leading to disease development involves the pivotal mutualistic relationship between the colonic microbiota, their metabolic products, and the host immune system. The establishment of a ‘healthy’ relationship early in life appears to be critical to maintaining intestinal homeostasis. Whilst we do not yet have a clear understanding of what constitutes a ‘healthy’ colonic microbiota, a picture is emerging from many recent studies identifying particular bacterial species associated with a healthy microbiota. In particular, the bacterial species residing within the mucus layer of the colon, either through direct contact with host cells, or through indirect communication via bacterial metabolites, may influence whether host cellular homeostasis is maintained or whether inflammatory mechanisms are triggered. In addition to inflammation, there is some evidence that perturbations in the gut microbiota is involved with the development of colorectal cancer. In this case, dysbiosis may not be the most important factor, rather the products of interaction between diet and the microbiome. High-protein diets are thought to result in the production of carcinogenic metabolites from the colonic microbiota that may result in the induction of neoplasia in the colonic epithelium. Ever more sensitive metabolomics methodologies reveal a suite of small molecules produced in the microbiome which mimic or act as neurosignallers or neurotransmitters. Coupled with evidence that probiotic interventions may alter psychological endpoints in both humans and in rodent models, these data suggest that CNS-related co-morbidities frequently associated with GI disease may originate in the intestine as a result of microbial dysbiosis. This review outlines the current evidence showing the extent to which the gut microbiota contributes to the development of disease. Based on evidence to date, we can assess the potential to positively modulate the composition of the colonic microbiota and ameliorate disease activity through bacterial intervention. PMID:25651997

  20. A Tad pilus promotes the establishment and resistance of Vibrio vulnificus biofilms to mechanical clearance.

    PubMed

    Pu, Meng; Rowe-Magnus, Dean Allistair

    2018-01-01

    Vibrio vulnificus is autochthonous to estuaries and warm coastal waters. Infection occurs via open wounds or ingestion, where its asymptomatic colonization of seafood, most infamously oysters, provides a gateway into the human food chain. Colonization begins with initial surface contact, which is often mediated by bacterial surface appendages called pili. Type IV Tad pili are widely distributed in the Vibrionaceae, but evidence for a physiological role for these structures is scant. The V. vulnificus genome codes for three distinct tad loci. Recently, a positive correlation was demonstrated between the expression of tad-3 and the phenotypes of a V. vulnificus descendent (NT) that exhibited increased biofilm formation, auto-aggregation, and oyster colonization relative to its parent. However, the mechanism by which tad pilus expression promoted these phenotypes was not determined. Here, we show that deletion of the tad pilin gene ( flp ) altered the near-surface motility profile of NT cells from high curvature, orbital retracing patterns characteristic of cells actively probing the surface to low curvature traces indicative of wandering and diminished bacteria-surface interactions. The NT flp pilin mutant also exhibited decreased initial surface attachment, attenuated auto-aggregation and formed fragile biofilms that disintegrated under hydrodynamic flow. Thus, the tad-3 locus, designated iam , promoted i nitial surface attachment, a uto-aggregation and resistance to m echanical clearance of V. vulnificus biofilms. The prevalence of tad loci in the Vibrionaceae suggests that they may play equally important roles in other family members.

  1. Campylobacter jejuni Colonization in Wild Birds: Results from an Infection Experiment

    PubMed Central

    Waldenström, Jonas; Axelsson-Olsson, Diana; Olsen, Björn; Hasselquist, Dennis; Griekspoor, Petra; Jansson, Lena; Teneberg, Susann; Svensson, Lovisa; Ellström, Patrik

    2010-01-01

    Campylobacter jejuni is a common cause of bacterial gastroenteritis in most parts of the world. The bacterium has a broad host range and has been isolated from many animals and environments. To investigate shedding patterns and putative effects on an avian host, we developed a colonization model in which a wild bird species, the European Robin Erithacus rubecula, was inoculated orally with C. jejuni from either a human patient or from another wild bird species, the Song Thrush Turdus philomelos. These two isolates were genetically distinct from each other and provoked very different host responses. The Song Thrush isolate colonized all challenged birds and colonization lasted 6.8 days on average. Birds infected with this isolate also showed a transient but significant decrease in body mass. The human isolate did not colonize the birds and could be detected only in the feces of the birds shortly after inoculation. European Robins infected with the wild bird isolate generated a specific antibody response to C. jejuni membrane proteins from the avian isolate, which also was cross-reactive to membrane proteins of the human isolate. In contrast, European Robins infected with the human isolate did not mount a significant response to bacterial membrane proteins from either of the two isolates. The difference in colonization ability could indicate host adaptations. PMID:20140204

  2. [Pneumocystis Pneumonia during Adjuvant Chemotherapy for Advanced Colon Cancer - A Case Report].

    PubMed

    Fujiwara, Yushi; Lee, Shigeru; Kishida, Satoru; Hashiba, Ryoya; Gyobu, Ken; Osugi, Harushi

    2015-11-01

    We report a case of pneumocystis pneumonia (PCP) during adjuvant chemotherapy for advanced sigmoid colon cancer. A 70-year-old Japanese man was referred to our hospital after complaining of bloody stools. He was diagnosed with advanced sigmoid colon cancer, T2N2aM1b, Stage IV B. After 3 cycles of mFOLFOX6 plus panitumumab as first-line chemotherapy, he received FOLFIRI plus bevacizumab as second-line chemotherapy because of progressive disease. Aprepitant and steroids were administered as antiemetic agents for a short period during each chemotherapy session. During the 2 cycle of FOLFIRI plus bevacizumab, he developed a high fever without respiratory symptoms. Chest CT revealed ground-glass opacities in both the lungs. We first treated him with antibiotics (PIPC/TAZ plus GRNX), suspecting bacterial pneumonia. However, based on the elevation of serum b -D-glucan (148 pg/mL), we diagnosed PCP and initiated SMX/TMP in addition to PIPC/TAZ. The inflammation promptly decreased, and follow-up chest CT revealed the disappearance of the ground-glass opacities. If a patient develops a fever or respiratory symptoms during a course of chemotherapy, we should consider the possibility of PCP and perform careful examinations.

  3. Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin

    PubMed Central

    Callac, Nolwenn; Rommevaux-Jestin, Céline; Rouxel, Olivier; Lesongeur, Françoise; Liorzou, Céline; Bollinger, Claire; Ferrant, Antony; Godfroy, Anne

    2013-01-01

    Oceanic basalts host diverse microbial communities with various metabolisms involved in C, N, S, and Fe biogeochemical cycles which may contribute to mineral and glass alteration processes at, and below the seafloor. In order to study the microbial colonization on basaltic glasses and their potential biotic/abiotic weathering products, two colonization modules called AISICS (“Autonomous in situ Instrumented Colonization System”) were deployed in hydrothermal deep-sea sediments at the Guaymas Basin for 8 days and 22 days. Each AISICS module contained 18 colonizers (including sterile controls) filled with basaltic glasses of contrasting composition. Chemical analyses of ambient fluids sampled through the colonizers showed a greater contribution of hydrothermal fluids (maximum temperature 57.6°C) for the module deployed during the longer time period. For each colonizer, the phylogenetic diversity and metabolic function of bacterial and archaeal communities were explored using a molecular approach by cloning and sequencing. Results showed large microbial diversity in all colonizers. The bacterial distribution was primarily linked to the deployment duration, as well as the depth for the short deployment time module. Some 16s rRNA sequences formed a new cluster of Epsilonproteobacteria. Within the Archaea the retrieved diversity could not be linked to either duration, depth or substrata. However, mcrA gene sequences belonging to the ANME-1 mcrA-guaymas cluster were found sometimes associated with their putative sulfate-reducers syntrophs depending on the colonizers. Although no specific glass alteration texture was identified, nano-crystals of barite and pyrite were observed in close association with organic matter, suggesting a possible biological mediation. This study gives new insights into the colonization steps of volcanic rock substrates and the capability of microbial communities to exploit new environmental conditions. PMID:23986754

  4. The role of respiratory viruses in the etiology of bacterial pneumonia: An ecological perspective.

    PubMed

    Lee, Kyu Han; Gordon, Aubree; Foxman, Betsy

    2016-02-15

    Pneumonia is the leading cause of death among children less than 5 years old worldwide. A wide range of viral, bacterial and fungal agents can cause pneumonia: although viruses are the most common etiologic agent, the severity of clinical symptoms associated with bacterial pneumonia and increasing antibiotic resistance makes bacterial pneumonia a major public health concern. Bacterial pneumonia can follow upper respiratory viral infection and complicate lower respiratory viral infection. Secondary bacterial pneumonia is a major cause of influenza-related deaths. In this review, we evaluate the following hypotheses: (i) respiratory viruses influence the etiology of pneumonia by altering bacterial community structure in the upper respiratory tract (URT) and (ii) respiratory viruses promote or inhibit colonization of the lower respiratory tract (LRT) by certain bacterial species residing in the URT. We conducted a systematic review of the literature to examine temporal associations between respiratory viruses and bacteria and a targeted review to identify potential mechanisms of interactions. We conclude that viruses both alter the bacterial community in the URT and promote bacterial colonization of the LRT. However, it is uncertain whether changes in the URT bacterial community play a substantial role in pneumonia etiology. The exception is Streptococcus pneumoniae where a strong link between viral co-infection, increased carriage and pneumococcal pneumonia has been established. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  5. Evaluation of the Antimicrobial Activity of Lysostaphin-Coated Hernia Repair Meshes▿

    PubMed Central

    Satishkumar, Rohan; Sankar, Sriram; Yurko, Yuliya; Lincourt, Amy; Shipp, John; Heniford, B. Todd; Vertegel, Alexey

    2011-01-01

    Bacterial infections by antibiotic-resistant Staphylococcus aureus strains are among the most common postoperative complications in surgical hernia repair with synthetic mesh. Surface coating of medical devices/implants using antibacterial peptides and enzymes has recently emerged as a potentially effective method for preventing infections. The objective of this study was to evaluate the in vitro antimicrobial activity of hernia repair meshes coated by the antimicrobial enzyme lysostaphin at different initial concentrations. Lysostaphin was adsorbed on pieces of polypropylene (Ultrapro) mesh with binding yields of ∼10 to 40% at different coating concentrations of between 10 and 500 μg/ml. Leaching of enzyme from the surface of all the samples was studied in 2% (wt/vol) bovine serum albumin in phosphate-buffered saline buffer at 37°C, and it was found that less than 3% of adsorbed enzyme desorbed from the surface after 24 h of incubation. Studies of antibacterial activity against a cell suspension of S. aureus were performed using turbidity assay and demonstrated that the small amount of enzyme leaching from the mesh surface contributes to the lytic activity of the lysostaphin-coated samples. Colony counting data from the broth count (model for bacteria in wound fluid) and wash count (model for colonized bacteria) for the enzyme-coated samples showed significantly decreased numbers of CFU compared to uncoated samples (P < 0.05). A pilot in vivo study showed a dose-dependent efficacy of lysostaphin-coated meshes in a rat model of S. aureus infection. The antimicrobial activity of the lysostaphin-coated meshes suggests that such enzyme-leaching surfaces could be efficient at actively resisting initial bacterial adhesion and preventing subsequent colonization of hernia repair meshes. PMID:21709102

  6. [Submucosal bacterial abscesses of the ascending colon and liver associated with portal and superior mesenteric vein thrombosis due to Enterococcus faecalis infection: a case report].

    PubMed

    Norimura, Daisuke; Takeshima, Fuminao; Satou, Yoshiaki; Nakagoe, Tohru; Ohnita, Ken; Isomoto, Hajime; Nakao, Kazuhiko

    2014-06-01

    A 72-year-old woman with diabetes mellitus was admitted with fever and general fatigue. Blood biochemistry showed elevated hepatic and biliary enzyme levels, abdominal computed tomography showed multiple liver abscesses with portal and superior mesenteric vein thrombosis, and total colonoscopy revealed a submucosal bacterial abscess in the ascending colon. The abscesses were determined to be associated with Enterococcus faecalis infection. The patient was treated conservatively with antibiotics (meropenem) and anticoagulants (warfarin), which led to a gradual amelioration of symptoms and resolution of thrombosis.

  7. Intestinal alkaline phosphatase deficiency leads to dysbiosis and bacterial translocation in the newborn intestine.

    PubMed

    Fawley, Jason; Koehler, Shannon; Cabrera, Susan; Lam, Vy; Fredrich, Katherine; Hessner, Martin; Salzman, Nita; Gourlay, David

    2017-10-01

    Intestinal alkaline phosphatase (IAP) has been shown to help maintain intestinal homeostasis. Decreased expression of IAP has been linked with pediatric intestinal diseases associated with bacterial overgrowth and subsequent inflammation. We hypothesize that the absence of IAP leads to dysbiosis, with increased inflammation and permeability of the newborn intestine. Sprague-Dawley heterozygote IAP cross-matches were bred. Pups were dam fed ad lib and euthanized at weaning. The microbiotas of terminal ileum (TI) and colon was determined by quantitative real-time polymerase chain reaction (qRT-PCR) of subphylum-specific bacterial 16S ribosomal RNA. RT-PCR was performed on TI for inflammatory cytokines. Intestinal permeability was quantified by fluorescein isothiocyanate-dextran permeability and bacterial translocation by qRT-PCR for bacterial 16S ribosomal RNA in mesenteric lymph nodes. Statistical analysis was done by chi-square analysis. All three genotypes had similar concentrations of bacteria in the TI and colon. However, IAP knockout (IAP-KO) had significantly decreased diversity of bacterial species in their colonic stool compared with heterozygous and wild-type (WT). IAP-KO pups had a nonstatistically significant 3.9-fold increased inducible nitric oxide synthase messenger RNA expression compared with WT (IAP-KO, 3.92 ± 1.36; WT, 1.0 ± 0.27; P = 0.03). IAP-KO also had significantly increased bacterial translocation to mesenteric lymph nodes occurred in IAP-KO (IAP-KO, 7625 RFU/g ± 3469; WT, 4957 RFU/g ± 1552; P = 0.04). Furthermore, IAP-KO had increased permeability (IAP-KO, 0.297 mg/mL ± 0.2; WT, 0.189 mg/mL ± 0.15 P = 0.07), but was not statistically significant. Deficiency of IAP in the newborn intestine is associated with dysbiosis and increased inflammation, permeability, and bacterial translocation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. [Effect of normal microflora of female reproductive tract in colonization resistance].

    PubMed

    Cherkasov, S V

    2006-01-01

    The role of female reproductive tract microflora in the maintenance of biotope colonization resistance was described. The role of lactobacilli possessing antagonistic properties in the reproductive tract defense was assessed. Classification of bacterial mechanisms of colonization resistance including block of the adhesion, antagonistic action of normal microflora associated with the production of antibacterial substances and suppression of allochthonous bacteria persistence characteristics was presented. Colonization resistance was considered as a physiological phenomenon of microecological homeostasis being a result of symbiotic relations of a host organism and autochthonous microflora.

  9. Specific Fluorescence in Situ Hybridization (FISH) Test to Highlight Colonization of Xylem Vessels by Xylella fastidiosa in Naturally Infected Olive Trees (Olea europaea L.)

    PubMed Central

    Cardinale, Massimiliano; Luvisi, Andrea; Meyer, Joana B.; Sabella, Erika; De Bellis, Luigi; Cruz, Albert C.; Ampatzidis, Yiannis; Cherubini, Paolo

    2018-01-01

    The colonization behavior of the Xylella fastidiosa strain CoDiRO, the causal agent of olive quick decline syndrome (OQDS), within the xylem of Olea europaea L. is still quite controversial. As previous literature suggests, even if xylem vessel occlusions in naturally infected olive plants were observed, cell aggregation in the formation of occlusions had a minimal role. This observation left some open questions about the whole behavior of the CoDiRO strain and its actual role in OQDS pathogenesis. In order to evaluate the extent of bacterial infection in olive trees and the role of bacterial aggregates in vessel occlusions, we tested a specific fluorescence in situ hybridization (FISH) probe (KO 210) for X. fastidiosa and quantified the level of infection and vessel occlusion in both petioles and branches of naturally infected and non-infected olive trees. All symptomatic petioles showed colonization by X. fastidiosa, especially in the larger innermost vessels. In several cases, the vessels appeared completely occluded by a biofilm containing bacterial cells and extracellular matrix and the frequent colonization of adjacent vessels suggested a horizontal movement of the bacteria. Infected symptomatic trees had 21.6 ± 10.7% of petiole vessels colonized by the pathogen, indicating an irregular distribution in olive tree xylem. Thus, our observations point out the primary role of the pathogen in olive vessel occlusions. Furthermore, our findings indicate that the KO 210 FISH probe is suitable for the specific detection of X. fastidiosa. PMID:29681910

  10. Fusobacterium nucleatum infection of colonic cells stimulates MUC2 mucin and tumor necrosis factor alpha.

    PubMed

    Dharmani, Poonam; Strauss, Jaclyn; Ambrose, Christian; Allen-Vercoe, Emma; Chadee, Kris

    2011-07-01

    The etiology of inflammatory bowel disease is not completely known, but it is influenced by the presence of normal gut microflora as well as yet-unrecognized pathogens. The anaerobic, Gram-negative bacterial species Fusobacterium nucleatum is a common resident of the human mouth and gut and varies in its pathogenic potential. In this study, we demonstrate that highly invasive F. nucleatum isolates derived from the inflamed guts of Crohn's disease patients evoked significantly greater MUC2 and tumor necrosis factor alpha (TNF-α) gene expression than minimally invasive strains isolated from the noninflamed gut in human colonic epithelial cells and in a rat ligated colonic loop model of infection. Only live F. nucleatum induced mucin secretion and TNF-α expression in direct contact with and/or during invasion of colonic cells. In rat colons, mucin secretion was augmented in response to a highly invasive F. nucleatum isolate but was unaffected by treatment with a minimally invasive strain. Taken together, these studies reveal that F. nucleatum may represent a challenging pathogen in the etiology of gut inflammatory diseases and highlight the importance of different pathotypes of candidate bacterial species in disease pathogenesis.

  11. Digestion, absorption, and fermentation of carbohydrates in the newborn.

    PubMed

    Kien, C L

    1996-06-01

    In the newborn, sugars present in human milk and formulas are assimilated by both small intestinal digestion and, especially in the case of lactose, colonic bacterial fermentation. Colonic fermentation of carbohydrate serves three major functions: (1) conservation of a fraction of the metabolizable energy of dietary carbohydrate that is not absorbed in the small intestine; (2) prevention of osmotic diarrhea; and (3) production of short-chain fatty acids that stimulate sodium and water absorption, serve as fuel for colonocytes, and stimulate cell replication in colon and small intestine. Diarrhea produced in association with small bowel malabsorption of sugar may be caused by three, potentially overlapping mechanisms: (1) osmotic effects of unfermented sugar, which may cause secondary disruption of fermentation by purging the bacteria or diluting the bacteria mass; (2) damage to the colon mucosa from excessive fermentation leading to SCFA malabsorption and osmotic diarrhea on this basis; and (3) excessive fermentation leading to lowering of luminal pH and inhibition of bacterial enzymes. Therapy aimed at reducing diarrhea associated with sugar malabsorption might involve either slowing of motility to facilitate fermentation or stimulation of fermentative activity, but such interventions would depend on greater understanding of the mechanisms for colonic dysfunction in this condition.

  12. Maternal influences on fetal microbial colonization and immune development

    PubMed Central

    Romano-Keeler, Joann; Weitkamp, Jörn-Hendrik

    2014-01-01

    While critical for normal development, the exact timing of establishment of the intestinal microbiome is unknown. For example, although preterm labor and birth have been associated with bacterial colonization of the amniotic cavity and fetal membranes for many years, the prevailing dogma of a sterile intrauterine environment during normal term pregnancies has been challenged more recently. While found to be a key contributor of evolution in the animal kingdom, maternal transmission of commensal bacteria may also constitute a critical process during healthy pregnancies in humans with yet unclear developmental importance. Metagenomic sequencing has elucidated a rich placental microbiome in normal term pregnancies likely providing important metabolic and immune contributions to the growing fetus. Conversely, an altered microbial composition during pregnancy may produce aberrant metabolites impairing fetal brain development and life-long neurological outcomes. Here we review the current understanding of microbial colonization at the feto-maternal interface and explain how normal gut colonization drives a balanced neonatal mucosal immune system, while dysbiosis contributes to aberrant immune function early in life and beyond. We discuss how maternal genetics, diet, medications, and probiotics inform the fetal microbiome in preparation for perinatal and postnatal bacterial colonization. PMID:25310759

  13. Biofilm in voice prosthesis: a prospective cohort study and laboratory tests using sonication and SEM analysis.

    PubMed

    Galli, Jacopo; Calo', Lea; Meucci, Duino; Giuliani, Monica; Lucidi, Daniela; Paludetti, Gaetano; Torelli, Riccardo; Sanguinetti, Maurizio; Parrilla, Claudio

    2018-05-16

    The objective of the study was to compare the biofilm growing pattern and its morphological extent on silicone and a teflon-like material using a sonication process and a Scanning Electron Microscope (SEM). A prospective cohort study and a laboratory study. Otolaryngology -Head and Neck surgery Department and the Microbiology Institute. The participants included fifteen laryngectomized patients with phonatory prostheses, which were removed due to device failure, and two different kinds of phonatory prostheses from the laboratory (Provox 2 and ActiValve) that were artificially colonized by Candida albicans. Tracheo-esophageal puncture (TEP) is currently considered the gold standard for post-laryngectomy voice rehabilitation. "Leakage" represents the most common cause of substitution and is generated by biofilm colonization of the prosthesis by mixed mycotic and bacterial agents. New biomaterials have been developed that are deemed to be more resistant to the colonization of micro-organisms and material deformation. The devices showed colonization by mixed bacterial flora (Staphylococci 13%, Streptococci 9%, and H. influenzae 5%) and by yeasts (Candida albicans 12%). Moreover, we observed a different distribution of biofilm layers in Provox ActiValve (22.56%) compared to Provox 2 (56.82%) after experimental colonization by the previous isolated Candida strain. Resident microbiological species from the upper airways unavoidably colonize the polymer surfaces, and no strategies have been effective except for the manipulation of the chemical-physical properties of the device's polymer. Our study confirms that Provox ActiValve, which is made with a fluoroplastic material (teflon-like), is less subject to in vitro colonization by Candida, and thus showed a higher clinical resistance to biofilm and a longer lifespan. The sonication seems to significantly improve the knowledge of bacterial and mycotic flora in biofilm colonization. The design of a device for the daily cleaning capable to reach and brush the esophageal flange of the prosthesis preserving the valve mechanism could represent a practical and simple help in this still unsolved problem. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  14. The complete annotated genome sequences of three Campylobacter jejuni strains isolated from naturally colonized, farm raised chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a leading cause of bacterially derived foodborne illness worldwide. Human illness is commonly associated with handling and consumption of contaminated poultry products. Three C. jejuni strains were isolated from cecal contents of three different naturally colonized, farm rais...

  15. MICROBIAL COLONIZATION, RESPIRATION, AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple (Acer saccharum) leaves at three sites along a stream-marsh continuum. Breakdown rates (-k+-SE) were 0.0284+-0.0045 d-1 for leaves in a high-gradient, non-tida...

  16. MICROBIAL COLONIZATION, RESPIRATION AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    EPA Science Inventory

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple leaves at three sites along a stream-marsh continuum. Breakdown rates were 0.0284+/-0.0045 d-1 for leaves in a high-gradient, non-tidal stream; 0.0112 +/- 0.0...

  17. Previously uncharacterized Salmonella enterica genes required for swarming play a role in seedling colonization

    USDA-ARS?s Scientific Manuscript database

    Incidences of bacterial foodborne illness caused by ingestion of fresh produce are rising. Instead of being a case of incidental contamination, the animal pathogen Salmonella enterica utilizes specific molecular mechanisms to attach to and colonize plants. This work characterizes two S. enterica gen...

  18. Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth.

    PubMed

    Marasco, Ramona; Mapelli, Francesca; Rolli, Eleonora; Mosqueira, Maria J; Fusi, Marco; Bariselli, Paola; Reddy, Muppala; Cherif, Ameur; Tsiamis, George; Borin, Sara; Daffonchio, Daniele

    2016-01-01

    Halophytes classified under the common name of salicornia colonize salty and coastal environments across tidal inundation gradients. To unravel the role of tide-related regimes on the structure and functionality of root associated bacteria, the rhizospheric soil of Salicornia strobilacea (synonym of Halocnemum strobilaceum) plants was studied in a tidal zone of the coastline of Southern Tunisia. Although total counts of cultivable bacteria did not change in the rhizosphere of plants grown along a tidal gradient, significant differences were observed in the diversity of both the cultivable and uncultivable bacterial communities. This observation indicates that the tidal regime is contributing to the bacterial species selection in the rhizosphere. Despite the observed diversity in the bacterial community structure, the plant growth promoting (PGP) potential of cultivable rhizospheric bacteria, assessed through in vitro and in vivo tests, was equally distributed along the tidal gradient. Root colonization tests with selected strains proved that halophyte rhizospheric bacteria (i) stably colonize S. strobilacea rhizoplane and the plant shoot suggesting that they move from the root to the shoot and (ii) are capable of improving plant growth. The versatility in the root colonization, the overall PGP traits and the in vivo plant growth promotion under saline condition suggest that such beneficial activities likely take place naturally under a range of tidal regimes.

  19. Dissolution of Calcite in the Twilight Zone: Bacterial Control of Dissolution of Sinking Planktonic Carbonates Is Unlikely

    PubMed Central

    Bissett, Andrew; Neu, Thomas R.; de Beer, Dirk

    2011-01-01

    We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca2+ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500–1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean. PMID:22102861

  20. Dissolution of calcite in the twilight zone: bacterial control of dissolution of sinking planktonic carbonates is unlikely.

    PubMed

    Bissett, Andrew; Neu, Thomas R; Beer, Dirk de

    2011-01-01

    We investigated the ability of bacterial communities to colonize and dissolve two biogenic carbonates (Foraminifera and oyster shells). Bacterial carbonate dissolution in the upper water column is postulated to be driven by metabolic activity of bacteria directly colonising carbonate surfaces and the subsequent development of acidic microenvironments. We employed a combination of microsensor measurements, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and image analysis and molecular documentation of colonising bacteria to monitor microbial processes and document changes in shell surface topography. Bacterial communities rapidly colonised shell surfaces, forming dense biofilms with extracellular polymeric substance (EPS) deposits. Despite this, we found no evidence of bacterially mediated carbonate dissolution. Dissolution was not indicated by Ca²⁺ microprofiles, nor was changes in shell surface structure related to the presence of colonizing bacteria. Given the short time (days) settling carbonate material is actually in the twilight zone (500-1000 m), it is highly unlikely that microbial metabolic activity on directly colonised shells plays a significant role in dissolving settling carbonates in the shallow ocean.

  1. Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sonny T. M.; Kahn, Stacy A.; Delmont, Tom O.

    Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection and shows promise for treating other medical conditions associated with intestinal dysbioses. However, we lack a sufficient understanding of which microbial populations successfully colonize the recipient gut, and the widely used approaches to study the microbial ecology of FMT experiments fail to provide enough resolution to identify populations that are likely responsible for FMT-derived benefits. Here, we used shotgun metagenomics together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from fecal samples of a single FMT donor. We then used metagenomic mapping to track themore » occurrence and distribution patterns of donor MAGs in two FMT recipients. Our analyses revealed that 22% of the 92 highly complete bacterial MAGs that we identified from the donor successfully colonized and remained abundant in two recipients for at least 8 weeks. Most MAGs with a high colonization rate belonged to the order Bacteroidales. The vast majority of those that lacked evidence of colonization belonged to the order Clostridiales, and colonization success was negatively correlated with the number of genes related to sporulation. Our analysis of 151 publicly available gut metagenomes showed that the donor MAGs that colonized both recipients were prevalent, and the ones that colonized neither were rare across the participants of the Human Microbiome Project. Although our dataset showed a link between taxonomy and the colonization ability of a given MAG, we also identified MAGs that belong to the same taxon with different colonization properties, highlighting the importance of an appropriate level of resolution to explore the functional basis of colonization and to identify targets for cultivation, hypothesis generation, and testing in model systems. Lastly, the analytical strategy adopted in our study can provide genomic insights into bacterial populations that may be critical to the efficacy of FMT due to their success in gut colonization and metabolic properties, and guide cultivation efforts to investigate mechanistic underpinnings of this procedure beyond associations.« less

  2. Tracking microbial colonization in fecal microbiota transplantation experiments via genome-resolved metagenomics

    DOE PAGES

    Lee, Sonny T. M.; Kahn, Stacy A.; Delmont, Tom O.; ...

    2017-05-04

    Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection and shows promise for treating other medical conditions associated with intestinal dysbioses. However, we lack a sufficient understanding of which microbial populations successfully colonize the recipient gut, and the widely used approaches to study the microbial ecology of FMT experiments fail to provide enough resolution to identify populations that are likely responsible for FMT-derived benefits. Here, we used shotgun metagenomics together with assembly and binning strategies to reconstruct metagenome-assembled genomes (MAGs) from fecal samples of a single FMT donor. We then used metagenomic mapping to track themore » occurrence and distribution patterns of donor MAGs in two FMT recipients. Our analyses revealed that 22% of the 92 highly complete bacterial MAGs that we identified from the donor successfully colonized and remained abundant in two recipients for at least 8 weeks. Most MAGs with a high colonization rate belonged to the order Bacteroidales. The vast majority of those that lacked evidence of colonization belonged to the order Clostridiales, and colonization success was negatively correlated with the number of genes related to sporulation. Our analysis of 151 publicly available gut metagenomes showed that the donor MAGs that colonized both recipients were prevalent, and the ones that colonized neither were rare across the participants of the Human Microbiome Project. Although our dataset showed a link between taxonomy and the colonization ability of a given MAG, we also identified MAGs that belong to the same taxon with different colonization properties, highlighting the importance of an appropriate level of resolution to explore the functional basis of colonization and to identify targets for cultivation, hypothesis generation, and testing in model systems. Lastly, the analytical strategy adopted in our study can provide genomic insights into bacterial populations that may be critical to the efficacy of FMT due to their success in gut colonization and metabolic properties, and guide cultivation efforts to investigate mechanistic underpinnings of this procedure beyond associations.« less

  3. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum.

    PubMed

    Mann, Elizabeth R; Bernardo, David; English, Nicholas R; Landy, Jon; Al-Hassi, Hafid O; Peake, Simon T C; Man, Ripple; Elliott, Timothy R; Spranger, Henning; Lee, Gui Han; Parian, Alyssa; Brant, Steven R; Lazarev, Mark; Hart, Ailsa L; Li, Xuhang; Knight, Stella C

    2016-02-01

    Dendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC. Human DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction. A lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-α and interleukin (IL)-1β) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4(+)FoxP3(+)IL-10(+) (regulatory) T cells. There were enhanced proportions of CD103(+)Sirpα(-) DC in the colon, with increased proportions of CD103(+)Sirpα(+) DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103(+)Sirpα(+) DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103(+) DC, in particular CD103(+)Sirpα(+) DC. However, expression of ILT3 was associated with CD103(-) DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells. The regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Treatment of Eczema: Corticosteroids and Beyond.

    PubMed

    Chong, Melanie; Fonacier, Luz

    2016-12-01

    Atopic dermatitis (AD) is a chronic inflammatory skin condition that requires a manifold approach to therapy. The goal of therapy is to restore the function of the epidermal barrier and to reduce skin inflammation. This can be achieved with skin moisturization and topical anti-inflammatory agents, such as topical corticosteroids and calcineurin inhibitors. Furthermore, proactive therapy with twice weekly use of both topical corticosteroids and calcineurin inhibitors in previously affected areas has been found to reduce the time to the next eczematous flare. Adjunctive treatment options include wet wrap therapy, anti-histamines, and vitamin D supplementation. Bacterial colonization, in particular Staphylococcus aureus, can contribute to eczematous flares and overt infection. Use of systemic antibiotics in infected lesions is warranted; however, empiric antibiotics use in uninfected lesions is controversial. Local antiseptic measures (i.e., bleach baths) and topical antimicrobial therapies can be considered in patients with high bacterial colonization. Difficult-to-treat AD is a complex clinical problem that may require re-evaluation of the initial diagnosis of AD, especially if the onset of disease occurs in adulthood. It may also necessitate evaluation for contact, food, and inhaled allergens that may exacerbate the underlying AD. There are a host of systemic therapies that have been successful in patients with difficult-to-treat AD, however, these agents are limited by their side effect profiles. Lastly, with further insight into the pathophysiology of AD, new biological agents have been investigated with promising results.

  5. [Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects].

    PubMed

    Podoprigora, G I; Kafarskaya, L I; Bainov, N A; Shkoporov, A N

    2015-01-01

    Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptorsignalingpathways and cascade ofreactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects theformation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.

  6. Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium

    PubMed Central

    Gorth, Deborah J; Puckett, Sabrina; Ercan, Batur; Webster, Thomas J; Rahaman, Mohamed; Bal, B Sonny

    2012-01-01

    A significant need exists for orthopedic implants that can intrinsically resist bacterial colonization. In this study, three biomaterials that are used in spinal implants – titanium (Ti), polyether-ether-ketone (PEEK), and silicon nitride (Si3N4) – were tested to understand their respective susceptibility to bacterial infection with Staphylococcus epidermidis, Staphlococcus aureus, Pseudomonas aeruginosa, Escherichia coli and Enterococcus. Specifically, the surface chemistry, wettability, and nanostructured topography of respective biomaterials, and the effects on bacterial biofilm formation, colonization, and growth were investigated. Ti and PEEK were received with as-machined surfaces; both materials are hydrophobic, with net negative surface charges. Two surface finishes of Si3N4 were examined: as-fired and polished. In contrast to Ti and PEEK, the surface of Si3N4 is hydrophilic, with a net positive charge. A decreased biofilm formation was found, as well as fewer live bacteria on both the as-fired and polished Si3N4. These differences may reflect differential surface chemistry and surface nanostructure properties between the biomaterials tested. Because protein adsorption on material surfaces affects bacterial adhesion, the adsorption of fibronectin, vitronectin, and laminin on Ti, PEEK, and Si3N4 were also examined. Significantly greater amounts of these proteins adhered to Si3N4 than to Ti or PEEK. The findings of this study suggest that surface properties of biomaterials lead to differential adsorption of physiologic proteins, and that this phenomenon could explain the observed in-vitro differences in bacterial affinity for the respective biomaterials. Intrinsic biomaterial properties as they relate to resistance to bacterial colonization may reflect a novel strategy toward designing future orthopedic implants. PMID:22973102

  7. Bifidobacterium longum D2 enhances microbial degradation of long-chain arabinoxylans in an in vitro model of the proximal colon.

    PubMed

    Truchado, P; Van den Abbeele, P; Rivière, A; Possemiers, S; De Vuyst, L; Van de Wiele, T

    2015-01-01

    Long-chain arabinoxylans (LC-AX) are degraded in the colon by intestinal bacteria possessing AX-degrading enzymes, such as bifidobacteria. Enzymatic activity of intestinal bacterial might vary depending on the composition of the gut microbiota. To compare the enzymatic activities of the bacterial gut communities of two healthy individuals (donors D1 and D2), these bacterial communities were inoculated into in vitro model M-SHIME(®). Differences in xylanase activities and denaturing gradient gel electrophoresis profiles, in particular a DNA-band corresponding with Bifidobacterium longum, were found in the proximal colon vessel. 16S rRNA gene sequencing analysis demonstrated the presence of two different B. longum species in these bacterial communities, showing 99% gene sequence similarity with B. longum NCC2705 and B. longum. subsp. longum KACC 91563, respectively, further referred to as B. longum D1 and B. longum D2. When grown on LC-AX as the sole added energy source, B. longum D2 displayed significantly higher activities of β-xylanase (5.3-fold), β-xylosidase (2.9-fold), and α-arabinofuranosidase (1.5-fold), respectively, compared to B. longum D1. When B. longum D2 was inoculated in the M-SHIME, inoculated with the bacterial gut communities of the individual with low AX-degrading enzyme activities, the β-xylanase activity increased (1.5-fold) in the proximal vessel. We demonstrated the presence of differences in LC-AX degrading enzyme activities of the bacterial gut communities of two individuals in the in vitro M-SHIME model, which could be linked to the presence of a potent AX-degrading B. longum (D2) strain.

  8. The impact of date palm fruits and their component polyphenols, on gut microbial ecology, bacterial metabolites and colon cancer cell proliferation.

    PubMed

    Eid, Noura; Enani, Sumia; Walton, Gemma; Corona, Giulia; Costabile, Adele; Gibson, Glenn; Rowland, Ian; Spencer, Jeremy P E

    2014-01-01

    The fruit of the date palm (Phoenix dactylifera L.) is a rich source of dietary fibre and polyphenols. We have investigated gut bacterial changes induced by the whole date fruit extract (digested date extract; DDE) and its polyphenol-rich extract (date polyphenol extract; DPE) using faecal, pH-controlled, mixed batch cultures mimicking the distal part of the human large intestine, and utilising an array of microbial group-specific 16S rRNA oligonucleotide probes. Fluorescence microscopic enumeration indicated that there was a significant increase in the growth of bifidobacteria in response to both treatments, whilst whole dates also increased bacteroides at 24 h and the total bacterial counts at later fermentation time points when compared with DPE alone. Bacterial metabolism of whole date fruit led to the production of SCFA, with acetate significantly increasing following bacterial incubation with DDE. In addition, the production of flavonoid aglycones (myricetin, luteolin, quercetin and apigenin) and the anthocyanidin petunidin in less than 1 h was also observed. Lastly, the potential of DDE, DPE and metabolites to inhibit Caco-2 cell growth was investigated, indicating that both were capable of potentially acting as antiproliferative agents in vitro, following a 48 h exposure. This potential to inhibit growth was reduced following fermentation. Together these data suggest that consumption of date fruits may enhance colon health by increasing beneficial bacterial growth and inhibiting the proliferation of colon cancer cells. This is an early suggestion that date intake by humans may aid in the maintenance of bowel health and even the reduction of colorectal cancer development.

  9. Bacterial community structure in the drinking water microbiome is governed by filtration processes.

    PubMed

    Pinto, Ameet J; Xi, Chuanwu; Raskin, Lutgarde

    2012-08-21

    The bacterial community structure of a drinking water microbiome was characterized over three seasons using 16S rRNA gene based pyrosequencing of samples obtained from source water (a mix of a groundwater and a surface water), different points in a drinking water plant operated to treat this source water, and in the associated drinking water distribution system. Even though the source water was shown to seed the drinking water microbiome, treatment process operations limit the source water's influence on the distribution system bacterial community. Rather, in this plant, filtration by dual media rapid sand filters played a primary role in shaping the distribution system bacterial community over seasonal time scales as the filters harbored a stable bacterial community that seeded the water treatment processes past filtration. Bacterial taxa that colonized the filter and sloughed off in the filter effluent were able to persist in the distribution system despite disinfection of finished water by chloramination and filter backwashing with chloraminated backwash water. Thus, filter colonization presents a possible ecological survival strategy for bacterial communities in drinking water systems, which presents an opportunity to control the drinking water microbiome by manipulating the filter microbial community. Grouping bacterial taxa based on their association with the filter helped to elucidate relationships between the abundance of bacterial groups and water quality parameters and showed that pH was the strongest regulator of the bacterial community in the sampled drinking water system.

  10. The Intersection Between Colonization Resistance, Antimicrobial Stewardship, and Clostridium difficile.

    PubMed

    Rosa, Rossana; Donskey, Curtis J; Munoz-Price, L Silvia

    2018-06-07

    Colonization resistance refers to the innate defense provided by the indigenous microbiota against colonization by pathogenic organisms. We aim to describe how this line of defense is deployed against Clostridium difficile and what the implications are for interventions directed by Antimicrobial Stewardship Programs. The indigenous microbiota provides colonization resistance through depletion of nutrients, prevention of access to adherence sites within the gut mucosa, production of inhibitory substances, and stimulation of the host's immune system. The ability to quantify colonization resistance could provide information regarding periods of maximal vulnerability to colonization with pathogens and also allow the identification of mechanisms of restoration of colonization resistance. Methods utilized to determine the composition of the gut microbiota include sequencing technologies and measurement of concentration of specific bacterial metabolites. Use of innovations in the quantification of colonization resistance can expand the role of Antimicrobial Stewardship from prevention of disruption of the indigenous microbiota to restoration of colonization resistance.

  11. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling.

    PubMed

    Videvall, Elin; Strandh, Maria; Engelbrecht, Anel; Cloete, Schalk; Cornwallis, Charlie K

    2018-05-01

    The gut microbiomes of birds and other animals are increasingly being studied in ecological and evolutionary contexts. Numerous studies on birds and reptiles have made inferences about gut microbiota using cloacal sampling; however, it is not known whether the bacterial community of the cloaca provides an accurate representation of the gut microbiome. We examined the accuracy with which cloacal swabs and faecal samples measure the microbiota in three different parts of the gastrointestinal tract (ileum, caecum, and colon) using a case study on juvenile ostriches, Struthio camelus, and high-throughput 16S rRNA sequencing. We found that faeces were significantly better than cloacal swabs in representing the bacterial community of the colon. Cloacal samples had a higher abundance of Gammaproteobacteria and fewer Clostridia relative to the gut and faecal samples. However, both faecal and cloacal samples were poor representatives of the microbial communities in the caecum and ileum. Furthermore, the accuracy of each sampling method in measuring the abundance of different bacterial taxa was highly variable: Bacteroidetes was the most highly correlated phylum between all three gut sections and both methods, whereas Actinobacteria, for example, was only strongly correlated between faecal and colon samples. Based on our results, we recommend sampling faeces, whenever possible, as this sample type provides the most accurate assessment of the colon microbiome. The fact that neither sampling technique accurately portrayed the bacterial community of the ileum nor the caecum illustrates the difficulty in noninvasively monitoring gut bacteria located further up in the gastrointestinal tract. These results have important implications for the interpretation of avian gut microbiome studies. © 2017 John Wiley & Sons Ltd.

  12. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization.

    PubMed

    Hyre, Amanda N; Kavanagh, Kylie; Kock, Nancy D; Donati, George L; Subashchandrabose, Sargurunathan

    2017-03-01

    Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae , in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI. Copyright © 2017 American Society for Microbiology.

  13. Bacterial communities of tyre monofill sites: growth on tyre shreds and leachate.

    PubMed

    Vukanti, R; Crissman, M; Leff, L G; Leff, A A

    2009-06-01

    To investigate bacterial communities of tyre monofill sites, colonization of tyre material by bacteria and the effect of tyre leachate on bacteria. Culturable bacteria were isolated from buried tyre shreds and identified using fatty acid methyl ester analysis. Isolates belonged to taxonomic groups such as Bacilli, Actinobacteria, Clostridia, Flavobacteria, beta and gamma-proteobacteria. For tyre material colonization experiments, Bacillus megatarium, Bacillus cereus, Hydrogenophaga flava, Janthinobacterium lividum, Cellulosimicrobium cellulans, Arthrobacter globiformis (isolated from tyre shreds or leachate at the study site); Escherichia coli and Acidithiobacillus ferrooxidans were used. Beakers containing tyre shreds and artificial rain water were inoculated with a given bacterial culture, incubated at room temperature and sampled at regular intervals. 4',6-diamidino-2-phenylindole (DAPI) staining followed by epifluorescent microscopy was used to enumerate bacteria in samples. Of the bacteria tested, B. megatarium, J. lividum, E. coli, C. cellulans and A. globiformis exhibited the most extensive colonization of the tyre shreds. However, the extent of colonization varied among bacteria. Response to tyre leachate was also examined using B. cereus and J. lividum. Both bacteria increased in abundance due to the addition of leachate. Bacteria associated with buried tyre shreds were identified and found to include typical soil and freshwater organisms. The majority of indigenous isolates grew on tyre material (or leachate) suggesting that they play an active role in the ecology of these sites and that their potential role in tyre degradation should be explored. This study provides information on bacterial communities of tyre-waste disposal sites, explores the interaction between tyre material and bacteria and identifies bacteria that could be involved in or employed for recycling tyre-waste.

  14. Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects.

    PubMed

    Windey, Karen; De Preter, Vicky; Huys, Geert; Broekaert, Willem F; Delcour, Jan A; Louat, Thierry; Herman, Jean; Verbeke, Kristin

    2015-01-28

    Wheat bran extract (WBE), containing arabinoxylan-oligosaccharides that are potential prebiotic substrates, has been shown to modify bacterial colonic fermentation in human subjects and to beneficially affect the development of colorectal cancer (CRC) in rats. However, it is unclear whether these changes in fermentation are able to reduce the risk of developing CRC in humans. The aim of the present study was to evaluate the effects of WBE on the markers of CRC risk in healthy volunteers, and to correlate these effects with colonic fermentation. A total of twenty healthy subjects were enrolled in a double-blind, cross-over, randomised, controlled trial in which the subjects ingested WBE (10 g/d) or placebo (maltodextrin, 10 g/d) for 3 weeks, separated by a 3-week washout period. At the end of each study period, colonic handling of NH3 was evaluated using the biomarker lactose[15N, 15N']ureide, colonic fermentation was characterised through a metabolomics approach, and the predominant microbial composition was analysed using denaturing gradient gel electrophoresis. As markers of CRC risk, faecal water genotoxicity was determined using the comet assay and faecal water cytotoxicity using a colorimetric cell viability assay. Intake of WBE induced a shift from urinary to faecal 15N excretion, indicating a stimulation of colonic bacterial activity and/or growth. Microbial analysis revealed a selective stimulation of Bifidobacterium adolescentis. In addition, WBE altered the colonic fermentation pattern and significantly reduced colonic protein fermentation compared with the run-in period. However, faecal water cytotoxicity and genotoxicity were not affected. Although intake of WBE clearly affected colonic fermentation and changed the composition of the microbiota, these changes were not associated with the changes in the markers of CRC risk.

  15. Absence of bacterial colonization of the airways after therapeutic rigid bronchoscopy without stenting.

    PubMed

    Noppen, M; Piérard, D; Meysman, M; Herreweghe, R V; Vincken, W

    2000-12-01

    Following airway stenting, bacterial colonization of the airways with potentially pathogenic micro-organisms occurs within 4 weeks after treatment in the majority of patients. The objective of this study was to prospectively investigate whether nonstenting therapeutic rigid bronchoscopy (using laser, cryotherapy, mechanical dilatation or debridement) is followed by airway colonization or infection. Protected specimen brush sampling of the central airways and quantitative culture were performed immediately prior to, and 4 weeks after nonstenting therapeutic rigid bronchoscopy in 20 consecutive patients with central airway lesions. Prior to therapeutic bronchoscopy, airway colonization/infection was present in nine of 20 (45%) patients. In these nine patients, 10 different potential pathogens were identified: Streptococcus pneumoniae (four cases), Pseudomonas aeruginosa (three), Haemophilus influenzae (two), and Serratia marcescens (one). Eight of these nine patients had a history of postobstructive infections, of which three were currently being treated with antibiotics. Four weeks following therapeutic bronchoscopy, airway colonization/infection was present in five of 20 (25%) patients, each of whom had airway colonization/infection prior to bronchoscopy. In three of these five patients, the same organisms were found 4 weeks after bronchoscopy as at baseline bronchoscopy. In two of five patients new organisms were identified: one case of Streptococcus viridans and one case of Haemophilus parainfluenzae, both considered to be nonpathogens. In four of nine patients with airway colonization/infection prior to bronchoscopy, the airways were clear of micro-organisms after the procedure. The authors conclude that: 1) nonstenting therapeutic rigid bronchoscopy is not complicated by airway colonization or infection by new potential pathogens; and 2) therapeutic rigid bronchoscopy led to clearing of airway colonization/infection in almost half of the patients studied.

  16. NLRP6 inflammasome is a regulator of colonic microbial ecology and risk for colitis

    PubMed Central

    Elinav, Eran; Strowig, Till; Kau, Andrew L.; Henao-Mejia, Jorge; Thaiss, Christoph A.; Booth, Carmen J.; Peaper, David R.; Bertin, John; Eisenbarth, Stephanie C.; Gordon, Jeffrey I.; Flavell, Richard A.

    2011-01-01

    Inflammasomes are multi-protein complexes that function as sensors of endogenous or exogenous damage-associated molecular patterns. Here we show that deficiency of NLRP6 in mouse colonic epithelial cells results in reduced IL-18 levels and altered fecal microbiota characterized by expanded representation of the bacterial phyla Bacteroidetes (Prevotellaceae) and TM7. NLRP6 inflammasome-deficient mice were characterized by spontaneous intestinal hyperplasia, inflammatory cell recruitment, and exacerbation of chemical colitis induced by exposure to dextran sodium sulfate (DSS). Cross-fostering and cohousing experiments revealed that the colitogenic activity of this microbiota is transferable to neonatal or adult wild-type mice, leading to exacerbation of DSS colitis via induction of CCL5. Antibiotic treatment and electron microscopy studies further supported the role of Prevotellaceae as a key representative of this microbiota-associated phenotype. Altogether, perturbations in this inflammasome pathway, including NLRP6, ASC, caspase-1 and IL-18 may constitute a predisposing or initiating event in some cases of human IBD. PMID:21565393

  17. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-09-01

    Host-associated bacterial communities on the skin act as the first line of defence against invading pathogens. Yet, for most natural systems, we lack a clear understanding of how temperature variability affects structure and composition of skin bacterial communities and, in turn, promotes or limits the colonization of opportunistic pathogens. Here, we examine how natural temperature fluctuations might be related to changes in skin bacterial diversity over time in three amphibian populations infected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Our focal host species (Eleutherodactylus coqui) is a direct-developing frog that has suffered declines at some populations in the last 20 years, while others have not experienced any changes. We quantified skin bacterial alpha- and beta-diversity at four sampling time points, a period encompassing two seasons and ample variation in natural infections and environmental conditions. Despite the different patterns of infection across populations, we detected an overall increase in bacterial diversity through time, characterized by the replacement of bacterial operational taxonomic units (OTUs). Increased frog body temperatures possibly allowed the colonization of bacteria as well as the recruitment of a subset of indicator OTUs, which could have promoted the observed changes in diversity patterns. Our results suggest that natural environmental fluctuations might be involved in creating opportunities for bacterial replacement, potentially attenuating pathogen transmission and thus contributing to host persistence in E. coqui populations. © 2017 John Wiley & Sons Ltd.

  18. Pathogenic flora composition and overview of the trends used for bacterial pathogenicity identifications.

    PubMed

    Orji, Frank Anayo; Ugbogu, Ositadinma Chinyere; Ugbogu, Eziuche Amadike; Barbabosa-Pliego, Alberto; Monroy, Jose Cedillo; Elghandour, Mona M M Y; Salem, Abdelfattah Z M

    2018-05-05

    Over 250 species of resident flora in the class of bacteria are known to be associated with humans. These conventional flora compositions is often determined by factors which may not be limited to genetics, age, sex, stress and nutrition of humans. Man is constantly in contact with bacteria through media such as air, water, soil and food. This paper reviews the concept of bacterial pathogenesis from the sequential point of colonization to tissue injury. The paper in addition to examination of the factors which enhance virulence in bacterial pathogens also x-rayed the concept of pathogenicity islands and the next generation approaches or rather current trends/methods used in the bacterial pathogenicity investigations. In terms of pathogenicity which of course is the capacity to cause disease in animals, requires that the attacking bacterial strain is virulent, and has ability to bypass the host immune defensive mechanisms. In order to achieve or exhibit pathogenicity, the virulence factors required by microorganisms include capsule, pigments, enzymes, iron acquisition through siderophores. Bacterial Pathogenicity Islands as a distinct concept in bacterial pathogenesis are just loci on the chromosome or extra chromosomal units which are acquired by horizontal gene transfer within pathogens in a microbial community or biofilm. In the area of laboratory investigations, bacterial pathogenesis was initially carried out using culture dependent approaches, which can only detect about 1% of human and veterinary-important pathogens. However, in the recent paradigms shift, the use of proteomics, metagenomics, phylogenetic tree analyses, spooligotyping, and finger printing etc. have made it possible that 100% of the bacterial pathogens in nature can be extensively studied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Looking Beyond Respiratory Cultures: Microbiome-Cytokine Signatures of Bacterial Pneumonia and Tracheobronchitis in Lung Transplant Recipients.

    PubMed

    Shankar, J; Nguyen, M H; Crespo, M M; Kwak, E J; Lucas, S K; McHugh, K J; Mounaud, S; Alcorn, J F; Pilewski, J M; Shigemura, N; Kolls, J K; Nierman, W C; Clancy, C J

    2016-06-01

    Bacterial pneumonia and tracheobronchitis are diagnosed frequently following lung transplantation. The diseases share clinical signs of inflammation and are often difficult to differentiate based on culture results. Microbiome and host immune-response signatures that distinguish between pneumonia and tracheobronchitis are undefined. Using a retrospective study design, we selected 49 bronchoalveolar lavage fluid samples from 16 lung transplant recipients associated with pneumonia (n = 8), tracheobronchitis (n = 12) or colonization without respiratory infection (n = 29). We ensured an even distribution of Pseudomonas aeruginosa or Staphylococcus aureus culture-positive samples across the groups. Bayesian regression analysis identified non-culture-based signatures comprising 16S ribosomal RNA microbiome profiles, cytokine levels and clinical variables that characterized the three diagnoses. Relative to samples associated with colonization, those from pneumonia had significantly lower microbial diversity, decreased levels of several bacterial genera and prominent multifunctional cytokine responses. In contrast, tracheobronchitis was characterized by high microbial diversity and multifunctional cytokine responses that differed from those of pneumonia-colonization comparisons. The dissimilar microbiomes and cytokine responses underlying bacterial pneumonia and tracheobronchitis following lung transplantation suggest that the diseases result from different pathogenic processes. Microbiomes and cytokine responses had complementary features, suggesting that they are closely interconnected in the pathogenesis of both diseases. © Copyright 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  20. Changes in the composition of the human fecal microbiome following bacteriotherapy for recurrent Clostridium difficile-associated diarrhea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khoruts, A.; Dicksved, J.; Jansson, J.K.

    CDAD is the major known cause of antibiotic-induced diarrhea and colitis, and the disease is thought to result from persistent disruption of commensal gut microbiota. Bacteriotherapy by way of fecal transplantation can be used to treat recurrent CDAD and is thought to re-establish the normal colonic microflora. However, limitations of conventional microbiologic techniques have until recently precluded testing of this idea. In this study we used T-RFLP and 16S rRNA gene sequencing approaches to characterize the bacterial composition of the colonic microflora in a patient suffering from recurrent CDAD, before and after treatment by fecal transplantation from a healthy donor.more » While the patient's residual colonic microbiota, prior to therapy, was deficient in members of the bacterial divisions-Firmicutes and Bacteriodetes, transplantation had a dramatic impact on the composition of the patient's gut microbiota. By 14 days post transplantation, the fecal bacterial composition of the recipient was highly similar to the donor and was dominated by Bacteroides spp. strains and an uncharacterized butyrate producing bacterium. The change in bacterial composition was accompanied by resolution of the patient's symptoms. The striking similarity of the recipient's and donor's intestinal microbiota following bacteriotherapy suggests that the donor's bacteria quickly occupied their requisite niches, resulting in restoration of both the structure and function of the microbial communities present.« less

  1. Relationship between airway colonization, inflammation and exacerbation frequency in COPD.

    PubMed

    Tumkaya, Munir; Atis, Sibel; Ozge, Cengiz; Delialioglu, Nuran; Polat, Gurbuz; Kanik, Arzu

    2007-04-01

    To evaluate bacterial colonization and the airway inflammatory response, and its relationship to the frequency of exacerbation in patients with stable chronic obstructive pulmonary disease (COPD). Quantitative bacteriologic cultures, neutrophil elastase, myeloperoxidase (MPO), tumor necrosis factor alpha (TNF-alpha) and interleukin (IL)-8 were measured in bronchoalveoler lavage (BAL) in 39 patients with stable COPD [19 with frequent exacerbation (> or = 3/year), and 20 with infrequent] and in 18 healthy controls (10 smokers and 8 non-smokers). BAL revealed the microorganisms with potential pathogenicity above the established threshold (> or = 10(3)cfu/ml) in 68.4% of patients with frequent exacerbation, 55% of infrequent exacerbation, 40% of smokers and 12.5% of non-smokers controls (P=0.05). BAL MPO, IL-8 and TNF-alpha levels were found to be significantly higher in COPD as compared to controls (P=0.001). However, only IL-8 level was significantly higher in COPD patients with frequent exacerbation as compared to infrequent (P=0.001). Airway bacterial load correlated with levels of airway inflammation markers in COPD (P<0.05). The bacterial load and airway inflammation contributes to each other in stable COPD. However, there is a link only between interleukine (IL)-8 and frequent exacerbations. Clearly, the relationship between bacterial colonization, airway inflammation and frequent exacerbations is of major importance in understanding of the COPD pathogenesis.

  2. Micrococcus sedentarius bacteraemia presenting with haemophagocytic syndrome in previously healthy boy.

    PubMed

    Kuskonmaz, Baris; Kara, Ates; Ozen, Maide; Cengiz, A Bülent; Ozen, Metehan; Seçmeer, Gülten; Gürgey, Aytemiz

    2006-01-01

    Haemophagocytic syndromes are the clinical manifestation of an increased macrophagic activity with haemophagocytosis. Infection-associated HS was originally described by Risdall in 1979, in viral disease. Since the initial description HS has also been documented in patients with bacterial, parasitic or fungal infections. We describe a case of Micrococcus sedentarius bacteraemia in a previously healthy 10-y-old boy with haemophagocytic syndrome. Species of micrococci are generally considered as non-pathogenic commensals that colonize the skin, mucosae and oropharynx. We report the first case of Microccoccus sedentarius bacteraemia in an immunocompetent host and first case of HS associated with Micrococcus species.

  3. Virulence and the Environment: a Novel Role for Vibrio cholerae Toxin-Coregulated Pili in Biofilm Formation on Chitin

    PubMed Central

    Reguera, Gemma; Kolter, Roberto

    2005-01-01

    The toxin-coregulated pilus (TCP) of Vibrio cholerae is required for intestinal colonization and cholera toxin acquisition. Here we report that TCP mediates bacterial interactions required for biofilm differentiation on chitinaceous surfaces. We also show that undifferentiated TCP− biofilms have reduced ecological fitness and, thus, that chitin colonization may represent an ecological setting outside the host in which selection for a host colonization factor may take place. PMID:15866944

  4. Nasopharyngeal colonization by potentially pathogenic bacteria found in healthy semi-captive wild-born chimpanzees in Uganda.

    PubMed

    Mugisha, Lawrence; Köndgen, Sophie; Kaddu-Mulindwa, Deogratias; Gaffikin, Lynne; Leendertz, Fabian H

    2014-02-01

    Information on the chimpanzee nasopharygeal colonization in captive sanctuaries and in the wild is rare. This study was undertaken to establish the nasopharygeal colonization and potential bacterial pathogens in sanctuary chimpanzees as a basis for improving chimpanzee and employee health. Nasopharygeal colonization of 39 healthy chimpanzees were analyzed by microbiological cultivation method and polymerase chain reaction (PCR) targeting the bacterial 16S rRNA gene. We report four major phyla dominated by Proteobacteria (50%), Fermicutes (35.7%), Bacteriodes (7.1%), and Cynobacteria (7.1%) in healthy semi-captive chimpanzees. Further classification based on 7-base oligomers revealed the following genera: Streptococcus, Veillonella, Neisseria, Prevotella, Kingella and unclassified Cynobacteria, Actinobacillus, Bacteriodes and Pasteurellaceae. On microbiological cultivation we were able to identify and characterize some of the bacteria to species level as Klebsiella pneumonie and Pseudomonas aeruginosa being dominant bacteria with 54.7% and 50% colonization, respectively. Of these, Streptococcus, Neisseria, Klebsiella, and Haemophillus have representatives known to potentially cause severe respiratory disease. Our data present important information on chimpanzee nasopharygeal colonization as a guide to understanding disease processes and pharmaceutical therapies required for improving the health of chimpanzees. The results from this study will guide the processes to improve procedures for routine management of sanctuary chimpanzees and use it as a basis for evaluation of future reintroduction possibilities. © 2013 Wiley Periodicals, Inc.

  5. Decreased microbiota diversity associated with urinary tract infection in a trial of bacterial interference.

    PubMed

    Horwitz, Deborah; McCue, Tyler; Mapes, Abigail C; Ajami, Nadim J; Petrosino, Joseph F; Ramig, Robert F; Trautner, Barbara W

    2015-09-01

    Patients with long-term indwelling catheters are at high risk of catheter-associated urinary tract infection (CAUTI). We hypothesized that colonizing the bladder with a benign Escherichia coli strain (E. coli HU2117, a derivative of E. coli 83972) would prevent CAUTI in older, catheterized adults. Adults with chronic, indwelling urinary catheters received study catheters that had been pre-coated with E. coli HU2117. We monitored the cultivatable organisms in the bladder for 28 days or until loss of E. coli HU2117. Urine from 4 subjects was collected longitudinally for 16S rRNA gene profiling. Eight of the ten subjects (average age 70.9 years) became colonized with E. coli HU2117, with a mean duration of 57.7 days (median: 28.5, range 0-266). All subjects also remained colonized by uropathogens. Five subjects suffered invasive UTI, 3 febrile UTI and 2 urosepsis/bacteremia, all associated with overgrowth of a urinary pathogen. Colonization with E. coli HU2117 did not impact bacterial bladder diversity, but subjects who developed infections had less diverse bladder microbiota. Colonization with E. coli HU2117 did not prevent bladder colonization or subsequent invasive disease by uropathogens. Microbial diversity may play a protective role against invasive infection of the catheterized bladder. ClinicalTrials.gov, NCT00554996 http://clinicaltrials.gov/ct2/show/NCT00554996. Published by Elsevier Ltd.

  6. Poor Results of Pancreatoduodenectomy in High-Risk Patients with Endoscopic Stent and Bile Colonization are Associated with E. coli, Diabetes and Advanced Age.

    PubMed

    Costi, Renato; De Pastena, Matteo; Malleo, Giuseppe; Marchegiani, Giovanni; Butturini, Giovanni; Violi, Vincenzo; Salvia, Roberto; Bassi, Claudio

    2016-07-01

    Endoscopic stenting has spread as bridge management before pancreatoduedenectomy (PD) to resolve jaundice, but its role is nowadays challenged as it is reported to increase morbidity. Although bile sampling is increasingly performed, its clinical role is unclear. The objective of the study is to assess bile colonization's impact on outcome. Results of pancreatoduodenectomy after endoscopic stenting are analyzed in 61 high-risk patients presenting bacterial bile colonization. The impact of 11 demographic, clinical, infectious, and laboratory parameters and outcome, including pancreatic leakage, morbidity, and mortality, is analyzed. All stented patients present bacterial bile colonization and PD mortality approaches 10 %. The presence of E. coli in the bile is significantly related to poor outcome, including 23.5 % mortality (p = 0.034), whereas age (≥70 years) and diabetes present borderline results (p < 0.070 and p < 0.066, respectively). E. coli (p = 0.002) and age (p = 0.017) are also related to grade C pancreatic fistula. In high-risk patients undergoing PD, bile colonization inevitably occurs after endoscopic stenting and is a major risk factor of poor outcome, reaching its maximum in the case of E. coli colonization and elderly patients, where the indication to stent and/or to perform PD should be accurately evaluated. E. coli-targeted antibiotic prophylaxis should be administered.

  7. Ecology of Root Colonizing Massilia (Oxalobacteraceae)

    PubMed Central

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Background Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. Methodology/Principal Findings The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. Conclusions In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche. PMID:22808103

  8. Ecology of root colonizing Massilia (Oxalobacteraceae).

    PubMed

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  9. Bacterial Sialidase

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  10. Chitosan supplementation reduces enteric colonization of Campylobacter jejuni in broiler chickens and down-regulates expression of colonization genes

    USDA-ARS?s Scientific Manuscript database

    Campylobacter is one of the leading causes of foodborne bacterial gastroenteritis worldwide, and poultry is considered as the most common source of human infections. Campylobacter is prevalent in most poultry flocks and a reduction of Campylobacter in poultry would greatly reduce the risk of campylo...

  11. EFFECT OF PHENOTYPIC PLASTICITY ON EPIPHYTIC SURVIVAL AND COLONIZATION BY PSEUDOMONAS SYRINGAE

    EPA Science Inventory

    The bacterial epiphyte Pseudomonas syringas MF714R was cultured on agar or in broth or collected form colonized leaves; it was then inoculated onto greenhouse-grown bean plants incubated in a growth chamber at low relative humidity or in the field or onto field-grown bean plants....

  12. Intracloacal inoculation, an effective screening method for determining the efficacy of probiotic bacterial isolates against Campylobacter colonization in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter is a leading cause of foodborne illness worldwide. It is common in poultry, and human infections are often associated with consumption of contaminated poultry products. One strategy to reduce Campylobacter colonization in poultry is by using oral probiotics. Unfortunately, oral probiot...

  13. Functional anatomy of the colonic bioreactor: Impact of antibiotics and Saccharomyces boulardii on bacterial composition in human fecal cylinders.

    PubMed

    Swidsinski, Alexander; Loening-Baucke, Vera; Schulz, Stefan; Manowsky, Julia; Verstraelen, Hans; Swidsinski, Sonja

    2016-02-01

    Sections of fecal cylinders were analyzed using fluorescence in situ hybridization targeting 180 bacterial groups. Samples were collected from three groups of women (N=20 each) treated for bacterial vaginosis with ciprofloxacin+metronidazole. Group A only received the combined antibiotic regimen, whereas the A/Sb group received concomitant Saccharomyces boulardii CNCM I-745 treatment, and the A_Sb group received S. boulardii prophylaxis following the 14-day antibiotic course. The number of stool cylinders analyzed was 188 out of 228 in group A, 170 out of 228 in group A/Sb, and 172 out of 216 in group A_Sb. The colonic biomass was organized into a separate mucus layer with no bacteria, a 10-30μm broad unstirred transitional layer enriched with bacteria, and a patchy fermentative area that mixed digestive leftovers with bacteria. The antibiotics suppressed bacteria mainly in the fermentative area, whereas abundant bacterial clades retreated to the transitional mucus and survived. As a result, the total concentration of bacteria decreased only by one order. These effects were lasting, since the overall recovery of the microbial mass, bacterial diversity and concentrations were still below pre-antibiotic values 4 months after the end of antibiotic treatment. Sb-prophylaxis markedly reduced antibiotic effects and improved the recovery rates. Since the colon is a sophisticated bioreactor, the study indicated that the spatial anatomy of its biomass was crucial for its function. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Bacterial Shifts in Nutrient Solutions Flowing Through Biofilters Used in Tomato Soilless Culture.

    PubMed

    Renault, David; Déniel, Franck; Vallance, Jessica; Bruez, Emilie; Godon, Jean-Jacques; Rey, Patrice

    2017-11-25

    In soilless culture, slow filtration is used to eliminate plant pathogenic microorganisms from nutrient solutions. The present study focused on the characterization and the potential functions of microbial communities colonizing the nutrient solutions recycled on slow filters during a whole cultivation season of 7 months in a tomato growing system. Bacterial microflora colonizing the solutions before and after they flew through the columns were studied. Two filters were amended with Pseudomonas putida (P-filter) or Bacillus cereus strains (B-filter), and a third filter was a control (C-filter). Biological activation of filter unit through bacterial amendment enhanced very significantly filter efficacy against plant potential pathogens Pythium spp. and Fusarium oxysporum. However, numerous bacteria (10 3 -10 4  CFU/mL) were detected in the effluent solutions. The community-level physiological profiling indicated a temporal shift of bacterial microflora, and the metabolism of nutrient solutions originally oriented towards carbohydrates progressively shifted towards degradation of amino acids and carboxylic acids over the 7-month period of experiment. Single-strand conformation polymorphism fingerprinting profiles showed that a shift between bacterial communities colonizing influent and effluent solutions of slow filters occurred. In comparison with influent, 16S rDNA sequencing revealed that phylotype diversity was low in the effluent of P- and C-filters, but no reduction was observed in the effluent of the B-filter. Suppressive potential of solutions filtered on a natural filter (C-filter), where the proportion of Proteobacteria (α- and β-) increased, whereas the proportion of uncultured candidate phyla rose in P- and B-filters, is discussed.

  15. Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells.

    PubMed

    Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Myszka, Kamila; Borkowska, Monika; Grajek, Włodzimierz

    2010-01-01

    Microbial colonization is an important step in establishing pathogenic or probiotic relations to host cells and in biofilm formation on industrial or medical devices. The aim of this work was to verify the applicability of quantitative PCR (Real-Time PCR) to measure bacterial colonization of epithelial cells. Salmonella enterica and Caco-2 intestinal epithelial cell line was used as a model. To verify sensitivity of the assay a competition of the pathogen cells to probiotic microorganism was tested. The qPCR method was compared to plate count and radiolabel approach, which are well established techniques in this area of research. The three methods returned similar results. The best quantification accuracy had radiolabel method, followed by qPCR. The plate count results showed coefficient of variation two-times higher than this of qPCR. The quantitative PCR proved to be a reliable method for enumeration of microbes in colonization assay. It has several advantages that make it very useful in case of analyzing mixed populations, where several different species or even strains can be monitored at the same time.

  16. Factors that mediate colonization of the human stomach by Helicobacter pylori.

    PubMed

    Dunne, Ciara; Dolan, Brendan; Clyne, Marguerite

    2014-05-21

    Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease.

  17. Factors that mediate colonization of the human stomach by Helicobacter pylori

    PubMed Central

    Dunne, Ciara; Dolan, Brendan; Clyne, Marguerite

    2014-01-01

    Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease. PMID:24914320

  18. Pathogen-mediated manipulation of arthropod microbiota to promote infection

    PubMed Central

    Abraham, Nabil M.; Liu, Lei; Jutras, Brandon Lyon; Yadav, Akhilesh K.; Narasimhan, Sukanya; Gopalakrishnan, Vissagan; Ansari, Juliana M.; Jefferson, Kimberly K.; Cava, Felipe; Jacobs-Wagner, Christine; Fikrig, Erol

    2017-01-01

    Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier—critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal d-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector. PMID:28096373

  19. Relationship between oral motor dysfunction and oral bacteria in bedridden elderly.

    PubMed

    Tada, Akio; Shiiba, Masashi; Yokoe, Hidetaka; Hanada, Nobuhiro; Tanzawa, Hideki

    2004-08-01

    The purpose of this study was to analyze the relationship between oral bacterial colonization and oral motor dysfunction. Oral motor dysfunction (swallowing and speech disorders) and detection of oral bacterial species from dental plaque in 55 elderly persons who had remained hospitalized for more than 3 months were investigated and statistically analyzed. The detection rates of methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, Streptococcus agalactiae, and Stenotrophomonas maltophilia were significantly higher in subjects with than in those without a swallowing disorder. A similar result was found with regard to the presence of a speech disorder. About half of subjects who had oral motor dysfunction and hypoalbuminemia had colonization by MRSA and/or Pseudomonas aeruginosa. These results suggest that the combination of oral motor dysfunction and hypoalbminemia elevated the risk of opportunistic microorganisms colonization in the oral cavity of elderly patients hospitalized over the long term.

  20. A MODEL SYSTEM TO STUDY ANTIMICROBIAL STRATEGIES IN ENDODONTIC BIOFILMS

    PubMed Central

    Estrela, Carlos; Sydney, Gilson Blitzkow; Figueiredo, José Antonio Poli; Estrela, Cyntia Rodrigues de Araújo

    2009-01-01

    The purpose of this work was to develop a model system to study antimicrobial strategies in endodontic biofilms. Enterococcus faecalis suspension was colonized in 10 human root canals. Five milliliters of Brain Heart Infusion (BHI) were mixed with 5 mL of the bacterial inoculums (E. faecalis) and inoculated with sufficient volume to fill the root canal during 60 days. This procedure was repeated every 72 h, always using 24-h pure culture prepared and adjusted to No. 1 MacFarland turbidity standard. Biofilm formation was analyzed by scanning electron microscopy (SEM). E. faecalis consistently adhered to collagen structure, colonized dentin surface, progressed towards the dentinal tubules and formed a biofilm. The proposed biofilm model seems to be viable for studies on antimicrobial strategies, and allows for a satisfactory colonization time of selected bacterial species with virulence and adherence properties. PMID:19274391

  1. Non-invasive SFG spectroscopy: a tool to reveal the conformational change of grafted chains due to bacterial adhesion

    NASA Astrophysics Data System (ADS)

    Bulard, Emilie; Dubost, Henri; Fontaine-Aupart, Marie-Pierre; Zheng, Wanquan; Herry, Jean-Marie; Bellon-Fontaine, Marie-No"lle; Briandet, Romain; Bourguignon, Bernard

    2011-07-01

    In many fields such as biomedical or food industry, surface colonization by micro-organisms leads to biofilms formation that are tridimentional biostructures highly resistant to the action of antimicrobials, by mechanisms still unclear. In order to deepen our understanding of the initial interaction of bacteria cells with a solid surface, we analyze by in situ vibrational Sum Frequency Generation (SFG) spectroscopy the effect of the adhesion of hydrophilic Lactoccocus lactis bacteria and its hydrophobic mutants in distilled water on a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film. When a homogeneous bacterial monolayer is deposited on this ordered surface, SFG spectrum of the ODT SAM shows significant intensity changes from that in air or in water. Its modelling as a function of conformation allows to distinguish optical effects due to the water solution surrounding bacteria from conformational changes of the ODT SAM due to the presence of the bacteria cells. Futhermore, bacterial adhesion induces different measurable effects on the ODT SAM conformation, depending on the hydrophobic / hydrophilic character of the bacterial surface. Such a result deserves to be taken into account for the design of new materials with improved properties or to control biofilm formation.

  2. Temporal changes of the bacterial community colonizing wheat straw in the cow rumen.

    PubMed

    Jin, Wei; Wang, Ying; Li, Yuanfei; Cheng, Yanfen; Zhu, Weiyun

    2018-04-01

    This study used Miseq pyrosequencing and scanning electron microscopy to investigate the temporal changes in the bacterial community tightly attached to wheat straw in the cow rumen. The wheat straw was incubated in the rumens and samples were recovered at various times. The wheat straw degradation exhibited three phases: the first degradation phase occurred within 0.5 h, and the second degradation phase occurred after 6 h, with a stalling phase occurring between 0.5 and 6 h. Scanning electron microscopy revealed the colonization of the microorganisms on the wheat straw over time. The bacterial communities at 0.5, 6, 24, and 72 h were determined, corresponding to the degradation phases. Firmicutes and Bacteroidetes were the two most dominant phyla in the bacterial communities at the four time points. Principal coordinate analysis (PCoA) showed that the bacterial communities at the four time points were distinct from each other. The wheat straw-associated bacteria stabilized at the phylum level after 0.5 h of rumen incubation, and only modest phylum-level and family-level changes were observed for most taxa between 0.5 h and 72 h. The relative abundance of the dominant genera, Butyrivibrio, Coprococcus, Ruminococcus, Succiniclasticum, Clostridium, Prevotella, YRC22, CF231, and Treponema, changed significantly over time (P < .05). However, at the genus level, unclassified taxa accounted for 70.3% ± 6.1% of the relative abundance, indicating their probable importance in the degradation of wheat straw as well as in the temporal changes of the bacterial community. Thus, understanding the function of these unclassified taxa is of great importance for targeted improvement of forage use efficiency in ruminants. Collectively, our results revealed distinct degradation phases of wheat straw and corresponding changes in the colonized bacterial community. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Dynamics of Aspen Roots Colonization by Pseudomonads Reveals Strain-Specific and Mycorrhizal-Specific Patterns of Biofilm Formation

    PubMed Central

    Noirot-Gros, Marie-Francoise; Shinde, Shalaka; Larsen, Peter E.; Zerbs, Sarah; Korajczyk, Peter J.; Kemner, Kenneth M.; Noirot, Philippe H.

    2018-01-01

    Rhizosphere-associated Pseudomonas fluorescens are known plant growth promoting (PGP) and mycorrhizal helper bacteria (MHB) of many plants and ectomycorrhizal fungi. We investigated the spatial and temporal dynamics of colonization of mycorrhizal and non-mycorrhizal Aspen seedlings roots by the P. fluorescens strains SBW25, WH6, Pf0-1, and the P. protegens strain Pf-5. Seedlings were grown in laboratory vertical plates systems, inoculated with a fluorescently labeled Pseudomonas strain, and root colonization was monitored over a period of 5 weeks. We observed unexpected diversity of bacterial assemblies on seedling roots that changed over time and were strongly affected by root mycorrhization. P. fluorescens SBW25 and WH6 stains developed highly structured biofilms with internal void spaces forming channels. On mycorrhizal roots bacteria appeared encased in a mucilaginous substance in which they aligned side by side in parallel arrangements. The different phenotypic classes of bacterial assemblies observed for the four Pseudomonas strains were summarized in a single model describing transitions between phenotypic classes. Our findings also reveal that bacterial assembly phenotypes are driven by interactions with mucilaginous materials present at roots. PMID:29774013

  4. In Vitro Degradation and Fermentation of Three Dietary Fiber Sources by Human Colonic Bacteria

    PubMed Central

    Bliss, Donna Z.; Weimer, Paul J.; Jung, Hans-Joachim G.; Savik, Kay

    2013-01-01

    Although clinical benefits of dietary fiber supplementation seem to depend partially on the extent of fiber degradation and fermentation by colonic bacteria, little is known about the effect of supplemental fiber type on bacterial metabolism. In an experiment using a non-adapted human bacterial population from three normal subjects, extent of in vitro fermentation was greater for gum arabic (GA) than for psyllium (PSY), which was greater than that for carboxymethylcellulose (CMC). In a separate experiment, in vitro incubation with feces from 52 subjects with fecal incontinence, before and after random assignment to and consumption of one of three fiber (GA, PSY, or CMC) supplements or a placebo for 20-21d, indicated that prior consumption of a specific fiber source did not increase its degradation by fecal bacteria. Results suggest that the colonic microbial community enriched on a particular fiber substrate can rapidly adapt to the presentation of a new fiber substrate. Clinical implications of the findings are that intake of a fiber source by humans is not expected to result in bacterial adaptation that would require continually larger and eventually intolerable amounts of fiber to achieve therapeutic benefits. PMID:23556460

  5. In vitro degradation and fermentation of three dietary fiber sources by human colonic bacteria.

    PubMed

    Bliss, Donna Z; Weimer, Paul J; Jung, Hans-Joachim G; Savik, Kay

    2013-05-15

    Although clinical benefits of dietary fiber supplementation seem to depend partially on the extent of fiber degradation and fermentation by colonic bacteria, little is known about the effect of supplemental fiber type on bacterial metabolism. In an experiment using a nonadapted human bacterial population from three normal subjects, the extent of in vitro fermentation was greater for gum arabic (GA) than for psyllium (PSY), which was greater than that for carboxymethylcellulose (CMC). In a separate experiment, in vitro incubation with feces from 52 subjects with fecal incontinence, before and after random assignment to and consumption of one of three fiber (GA, PSY, or CMC) supplements or a placebo for 20-21 days, indicated that prior consumption of a specific fiber source did not increase its degradation by fecal bacteria. Results suggest that the colonic microbial community enriched on a particular fiber substrate can rapidly adapt to the presentation of a new fiber substrate. Clinical implications of the findings are that intake of a fiber source by humans is not expected to result in bacterial adaptation that would require continually larger and eventually intolerable amounts of fiber to achieve therapeutic benefits.

  6. Helminth Colonization Is Associated with Increased Diversity of the Gut Microbiota

    PubMed Central

    Lee, Soo Ching; Tang, Mei San; Lim, Yvonne A. L.; Choy, Seow Huey; Kurtz, Zachary D.; Cox, Laura M.; Gundra, Uma Mahesh; Cho, Ilseung; Bonneau, Richard; Blaser, Martin J.; Chua, Kek Heng; Loke, P'ng

    2014-01-01

    Soil-transmitted helminths colonize more than 1.5 billion people worldwide, yet little is known about how they interact with bacterial communities in the gut microbiota. Differences in the gut microbiota between individuals living in developed and developing countries may be partly due to the presence of helminths, since they predominantly infect individuals from developing countries, such as the indigenous communities in Malaysia we examine in this work. We compared the composition and diversity of bacterial communities from the fecal microbiota of 51 people from two villages in Malaysia, of which 36 (70.6%) were infected by helminths. The 16S rRNA V4 region was sequenced at an average of nineteen thousand sequences per samples. Helminth-colonized individuals had greater species richness and number of observed OTUs with enrichment of Paraprevotellaceae, especially with Trichuris infection. We developed a new approach of combining centered log-ratio (clr) transformation for OTU relative abundances with sparse Partial Least Squares Discriminant Analysis (sPLS-DA) to enable more robust predictions of OTU interrelationships. These results suggest that helminths may have an impact on the diversity, bacterial community structure and function of the gut microbiota. PMID:24851867

  7. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE PAGES

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.; ...

    2018-03-20

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  8. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    PubMed Central

    Moon, JiWon; Veach, Allison M.; Mosher, Jennifer J.; Wymore, Ann M.; van Nostrand, Joy D.; Zhou, Jizhong; Hazen, Terry C.; Arkin, Adam P.; Elias, Dwayne A.

    2018-01-01

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion of the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems. PMID:29558522

  9. Use of in-field bioreactors demonstrate groundwater filtration influences planktonic bacterial community assembly, but not biofilm composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Geoffrey A.; Moon, Ji Won; Veach, Allison M.

    Using in-field bioreactors, we investigated the influence of exogenous microorganisms in groundwater planktonic and biofilm microbial communities as part of the Integrated Field Research Challenge (IFRC). After an acclimation period with source groundwater, bioreactors received either filtered (0.22 μM filter) or unfiltered well groundwater in triplicate and communities were tracked routinely for 23 days after filtration was initiated. To address geochemical influences, the planktonic phase was assayed periodically for protein, organic acids, physico-/geochemical measurements and bacterial community (via 16S rRNA gene sequencing), while biofilms (i.e. microbial growth on sediment coupons) were targeted for bacterial community composition at the completion ofmore » the experiment (23 d). Based on Bray-Curtis distance, planktonic bacterial community composition varied temporally and between treatments (filtered, unfiltered bioreactors). Notably, filtration led to an increase in the dominant genus, Zoogloea relative abundance over time within the planktonic community, while remaining relatively constant when unfiltered. At day 23, biofilm communities were more taxonomically and phylogenetically diverse and substantially different from planktonic bacterial communities; however, the biofilm bacterial communities were similar regardless of filtration. These results suggest that although planktonic communities were sensitive to groundwater filtration, bacterial biofilm communities were stable and resistant to filtration. Bioreactors are useful tools in addressing questions pertaining to microbial community assembly and succession. These data provide a first step in understanding how an extrinsic factor, such as a groundwater inoculation and flux of microbial colonizers, impact how microbial communities assemble in environmental systems.« less

  10. Cathelicidin Signaling via the Toll-Like Receptor Protects Against Colitis in Mice

    PubMed Central

    Koon, Hon Wai; Shih, David Quan; Chen, Jeremy; Bakirtzi, Kyriaki; Hing, Tressia C; Law, Ivy; Ho, Samantha; Ichikawa, Ryan; Zhao, Dezheng; Xu, Hua; Gallo, Richard; Dempsey, Paul; Cheng, Genhong; Targan, Stephan R; Pothoulakis, Charalabos

    2011-01-01

    Background & Aims Cathelicidin (encoded by Camp) is an anti-microbial peptide in the innate immune system. We examined whether macrophages express cathelicidin in colons of mice with experimental colitis and patients with inflammatory bowel disease; we investigated its signaling mechanisms. Methods Quantitative, real-time, reverse transcription PCR, bacterial 16S PCR, immunofluorescence, and small interfering (si)RNA analyses were performed. Colitis was induced in mice using sodium dextran sulfate (DSS); levels of cathelicidin were measured in human primary monocytes. Results Expression of cathelicidin increased in the inflamed colonic mucosa of mice with DSS-induced colitis, compared with controls. Cathelicidin expression localized to mucosal macrophages in inflamed colon tissues of patients and mice. Exposure of human primary monocytes to E coli DNA induced expression of Camp mRNA, which required signaling by ERK; expression was reduced by siRNAs against toll-like receptor (TLR)9 and MyD88. Intracolonic administration of bacterial DNA to wild-type mice induced expression of cathelicidin in colons of control mice and mice with DSS-induced colitis. Colon expression of cathelicidin was significantly reduced in TLR9 −/− mice with DSS-induced colitis. Compared with wild-type mice, Camp −/− mice developed a more severe form of DSS-induced colitis, particularly after intracolonic administration of E coli DNA. Expression of cathelicidin from bone marrow-derived immune cells regulated DSS induction of colitis in transplantation studies in mice. Conclusions Cathelicidin protects against colitis induction in mice. Increased expression of cathelicidin in monocytes and experimental models of colitis involves activation of TLR9–ERK signaling by bacterial DNA. This pathway might be involved in pathogenesis of ulcerative colitis. PMID:21762664

  11. Characterization of Asymptomatic Bacteriuria Escherichia coli Isolates in Search of Alternative Strains for Efficient Bacterial Interference against Uropathogens

    PubMed Central

    Stork, Christoph; Kovács, Beáta; Rózsai, Barnabás; Putze, Johannes; Kiel, Matthias; Dorn, Ágnes; Kovács, Judit; Melegh, Szilvia; Leimbach, Andreas; Kovács, Tamás; Schneider, György; Kerényi, Monika; Emödy, Levente; Dobrindt, Ulrich

    2018-01-01

    Asymptomatic bacterial colonization of the urinary bladder (asymptomatic bacteriuria, ABU) can prevent bladder colonization by uropathogens and thus symptomatic urinary tract infection (UTI). Deliberate bladder colonization with Escherichia coli ABU isolate 83972 has been shown to outcompete uropathogens and prevent symptomatic UTI by bacterial interference. Many ABU isolates evolved from uropathogenic ancestors and, although attenuated, may still be able to express virulence-associated factors. Our aim was to screen for efficient and safe candidate strains that could be used as alternatives to E. coli 83972 for preventive and therapeutic bladder colonization. To identify ABU E. coli strains with minimal virulence potential but maximal interference efficiency, we compared nine ABU isolates from diabetic patients regarding their virulence- and fitness-associated phenotypes in vitro, their virulence in a murine model of sepsis and their genome content. We identified strains in competitive growth experiments, which successfully interfere with colonization of ABU isolate 83972 or uropathogenic E. coli strain 536. Six isolates were able to outcompete E. coli 83972 and two of them also outcompeted UPEC 536 during growth in urine. Superior competitiveness was not simply a result of better growth abilities in urine, but seems also to involve expression of antagonistic factors. Competitiveness in urine did not correlate with the prevalence of determinants coding for adhesins, iron uptake, toxins, and antagonistic factors. Three ABU strains (isolates 61, 106, and 123) with superior competitiveness relative to ABU model strain 83972 display low in vivo virulence in a murine sepsis model, and susceptibility to antibiotics. They belong to different phylogroups and differ in the presence of ExPEC virulence- and fitness-associated genes. Importantly, they all lack marked cytotoxic activity and exhibit a high LD50 value in the sepsis model. These strains represent promising candidates for a more detailed assessment of relevant fitness traits in urine and their suitability for therapeutic bladder colonization. PMID:29491858

  12. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut.

    PubMed

    Roager, Henrik M; Hansen, Lea B S; Bahl, Martin I; Frandsen, Henrik L; Carvalho, Vera; Gøbel, Rikke J; Dalgaard, Marlene D; Plichta, Damian R; Sparholt, Morten H; Vestergaard, Henrik; Hansen, Torben; Sicheritz-Pontén, Thomas; Nielsen, H Bjørn; Pedersen, Oluf; Lauritzen, Lotte; Kristensen, Mette; Gupta, Ramneek; Licht, Tine R

    2016-06-27

    Little is known about how colonic transit time relates to human colonic metabolism and its importance for host health, although a firm stool consistency, a proxy for a long colonic transit time, has recently been positively associated with gut microbial richness. Here, we show that colonic transit time in humans, assessed using radio-opaque markers, is associated with overall gut microbial composition, diversity and metabolism. We find that a long colonic transit time associates with high microbial richness and is accompanied by a shift in colonic metabolism from carbohydrate fermentation to protein catabolism as reflected by higher urinary levels of potentially deleterious protein-derived metabolites. Additionally, shorter colonic transit time correlates with metabolites possibly reflecting increased renewal of the colonic mucosa. Together, this suggests that a high gut microbial richness does not per se imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.

  13. Spatial and temporal features of the growth of a bacterial species colonizing the zebrafish gut.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Burns, Adam R; Hampton, Jennifer S; Rolig, Annah S; Guillemin, Karen; Parthasarathy, Raghuveer

    2014-12-16

    The vertebrate intestine is home to microbial ecosystems that play key roles in host development and health. Little is known about the spatial and temporal dynamics of these microbial communities, limiting our understanding of fundamental properties, such as their mechanisms of growth, propagation, and persistence. To address this, we inoculated initially germ-free zebrafish larvae with fluorescently labeled strains of an Aeromonas species, representing an abundant genus in the zebrafish gut. Using light sheet fluorescence microscopy to obtain three-dimensional images spanning the gut, we quantified the entire bacterial load, as founding populations grew from tens to tens of thousands of cells over several hours. The data yield the first ever measurements of the growth kinetics of a microbial species inside a live vertebrate intestine and show dynamics that robustly fit a logistic growth model. Intriguingly, bacteria were nonuniformly distributed throughout the gut, and bacterial aggregates showed considerably higher growth rates than did discrete individuals. The form of aggregate growth indicates intrinsically higher division rates for clustered bacteria, rather than surface-mediated agglomeration onto clusters. Thus, the spatial organization of gut bacteria both relative to the host and to each other impacts overall growth kinetics, suggesting that spatial characterizations will be an important input to predictive models of host-associated microbial community assembly. Our intestines are home to vast numbers of microbes that influence many aspects of health and disease. Though we now know a great deal about the constituents of the gut microbiota, we understand very little about their spatial structure and temporal dynamics in humans or in any animal: how microbial populations establish themselves, grow, fluctuate, and persist. To address this, we made use of a model organism, the zebrafish, and a new optical imaging technique, light sheet fluorescence microscopy, to visualize for the first time the colonization of a live, vertebrate gut by specific bacteria with sufficient resolution to quantify the population over a range from a few individuals to tens of thousands of bacterial cells. Our results provide unprecedented measures of bacterial growth kinetics and also show the influence of spatial structure on bacterial populations, which can be revealed only by direct imaging. Copyright © 2014 Jemielita et al.

  14. Maternal Antibiotic-Induced Early Changes in Microbial Colonization Selectively Modulate Colonic Permeability and Inducible Heat Shock Proteins, and Digesta Concentrations of Alkaline Phosphatase and TLR-Stimulants in Swine Offspring

    PubMed Central

    Arnal, Marie-Edith; Zhang, Jing; Erridge, Clett; Smidt, Hauke; Lallès, Jean-Paul

    2015-01-01

    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and long-terms. PMID:25689154

  15. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring.

    PubMed

    Arnal, Marie-Edith; Zhang, Jing; Erridge, Clett; Smidt, Hauke; Lallès, Jean-Paul

    2015-01-01

    Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP) are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12) or mothers treated with the antibiotic (ATB) amoxicillin around parturition (n = 11). Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP) and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic digesta AP. In conclusion, our data suggest that early ATB-induced changes in bacterial colonization modulate important aspects of colonic physiology in the short- and long-terms.

  16. Risk factors for infection development after transrectal prostate biopsy and the role of resistant bacteria in colonic flora.

    PubMed

    Eruz, Emine Dilek; Yalci, Aysun; Ozden, Eriz; Aslaner, Halide; Ogucu-Durgun, Suna; Koseoglu-Taymur, Deniz Derya; Memikoglu, Kemal Osman; Erdem, Hakan; Kurt, Halil

    2017-02-28

    In this study, we aimed to identify risk factors for the development of infectious complications after prostate biopsy and to investigate the role of intestinal colonization of bacteria that are resistant to prophylactic antibiotics. A total of 168 patients who had undergone transrectal prostate biopsy (TRPB) under ciprofloxacin and gentamycin prophylaxis were included in the study. Stool cultures and subsequent antibiotic susceptibility testing were performed in all patients before the start of antibiotic prophylaxis. Of the 168 patients, 17 (10.1%) developed urinary tract infection (UTI), while 6 (3.57%) developed sepsis within seven days after biopsy. Ciprofloxacin-resistant bacterial colonization was detected in 81 (48.2%) of the patients. None of the patients with ciprofloxacin-sensitive bacteria in intestinal flora developed a UTI. The colonization of intestinal ciprofloxacin-resistant bacteria increased UTI risk significantly after TRPB (p < 0.0001). Urolithiasis history, presence of permanent urinary catheterization, hospitalization history for more than 48 hours in the last year, and recent antibiotic usage significantly increased UTI risk after TRPB. Development of an infection was more frequent in patients with resistant bacterial colonization. We hope to guide more comprehensive studies designed to find a standard prophylactic regimen for TRPB that can be used all over the world.

  17. Colonic luminal microbiota and bacterial metabolite composition in pregnant Huanjiang mini-pigs: effects of food composition at different times of pregnancy

    PubMed Central

    Kong, Xiang-feng; Ji, Yu-jiao; Li, Hua-wei; Zhu, Qian; Blachier, F.; Geng, Mei-mei; Chen, Wen; Yin, Yu-long

    2016-01-01

    The gut harbours diverse and complex microbiota, which influence body health including nutrient metabolism, immune development, and protection from pathogens. Pregnancy is associated with immune and metabolic changes that might be related to microbiota compositional dynamics. We therefore investigated the colonic luminal bacteria community in Huanjiang mini-pigs fed diets with different nutrient levels from the first to third trimester of pregnancy. The concentrations of intestinal metabolites including short-chain fat acids, NH3-N, indole, skatole, and bioamines were also determined. We found that the colonic bacteria species richness estimators (Chao1 and ACE) decreased with increased gestational age. The dominant phyla identified were Firmicutes and Bacteroidetes; the dominant genera were Lactobacillus, Treponema, Ruminococcus, Clostridium, and Prevotella. In addition, microbiota displayed spatial and temporal heterogeneity in composition, diversity, and species abundance in different colonic segments from the first to third trimester of pregnancy. Furthermore, the bacterial metabolites also changed according to the diet used and the pregnancy stage. These findings suggest that colonic bacteria richness decreased as gestational age increased, and that the higher nutrient level diet increased the production of metabolites related to nitrogen metabolism. However, although the higher nutrient diet was associated with pregnancy syndrome, causal links remain to be determined. PMID:27917879

  18. Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa

    PubMed Central

    Bergstrom, Kirk S. B.; Kissoon-Singh, Vanessa; Gibson, Deanna L.; Ma, Caixia; Montero, Marinieve; Sham, Ho Pan; Ryz, Natasha; Huang, Tina; Velcich, Anna; Finlay, B. Brett; Chadee, Kris; Vallance, Bruce A.

    2010-01-01

    Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic mucosal surface. Such actions limit tissue damage and translocation of pathogenic and commensal bacteria across the epithelium. PMID:20485566

  19. Removal of Group B Streptococci Colonizing the Vagina and Oropharynx of Mice with a Bacteriophage Lytic Enzyme

    PubMed Central

    Cheng, Qi; Nelson, Daniel; Zhu, Shiwei; Fischetti, Vincent A.

    2005-01-01

    Group B streptococci (GBS) are the leading cause of neonatal meningitis and sepsis worldwide. The current treatment strategy is limited to intrapartum antibiotic prophylaxis in pregnant women to prevent early-onset neonatal diseases, but considering the potential for antibiotic resistance, the risk of losing control over the disease is high. To approach this problem, we have developed a bacteriophage (phage) lytic enzyme to remove colonizing GBS. Bacteriophage muralytic enzymes, termed lysins, are highly evolved molecules designed to degrade the cell wall of host bacteria to release phage particles from the bacterial cytoplasm. Several different lysins have been developed to specifically kill bacterial pathogens both on mucosal surfaces and in blood and represent a novel approach to control infection. A lysin cloned from a phage infecting GBS was found to contain two putative catalytic domains and one putative binding domain, which is similar to the domain organization of some staphylococcal phage lysins. The lysin (named PlyGBS) was recombinantly expressed in Escherichia coli, and purified PlyGBS efficiently killed all tested GBS serotypes in vitro. In a mouse model, a single dose of PlyGBS significantly reduced bacterial colonization in both the vagina and oropharynx. As an alternative strategy for intrapartum antibiotic prophylaxis, this approach may be used to reduce vaginal GBS colonization in pregnant women before delivery or to decontaminate newborns, thus reducing the incidence of GBS-associated neonatal meningitis and sepsis. PMID:15616283

  20. Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition.

    PubMed

    Marupakula, Srisailam; Mahmood, Shahid; Jernberg, Johanna; Nallanchakravarthula, Srivathsa; Fahad, Zaenab A; Finlay, Roger D

    2017-11-01

    Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. The impact of bacterial colonization on graft success after total pancreatectomy with autologous islet transplantation: considerations for early definitive surgical intervention.

    PubMed

    Jolissaint, Joshua S; Langman, Linda W; DeBolt, Claire L; Tatum, Jacob A; Martin, Allison N; Wang, Andrew Y; Strand, Daniel S; Zaydfudim, Victor M; Adams, Reid B; Brayman, Kenneth L

    2016-11-01

    The purpose of this study was to determine whether bacterial contamination of islets affects graft success after total pancreatectomy with islet autotransplantation (TPIAT). Factors associated with insulin independence after TPIAT are inconclusive. Although bacterial contamination does not preclude transplantation, the impact of bacterial contamination on graft success is unknown. Patients who received TPIAT at the University of Virginia between January 2007 and January 2016 were reviewed. Patient charts were reviewed for bacterial contamination and patients were prospectively contacted to assess rates of insulin independence. There was no significant difference in demographic or perioperative data between patients who achieved insulin independence and those who did not. However, six of 27 patients analyzed (22.2%) grew bacterial contaminants from culture of the final islet preparations. These patients had significantly lower islet yield and C-peptide at most recent follow-up (P<.05), and none of these patients achieved insulin independence. Islet transplant solutions are often culture positive, likely secondary to preprocurement pancreatic manipulation and introduction of enteric flora. Although autotransplantation of culture-positive islets is safe, it is associated with higher rates of graft failure and poor islet yield. Consideration should be given to identify patients who may develop refractory chronic pancreatitis and offer early operative management to prevent bacterial colonization. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Activities and prevalence of proteobacteria members colonizing Echinacea purpurea fully account for in vitro macrophage activation exhibited by extracts of this botanical

    USDA-ARS?s Scientific Manuscript database

    Evidence supports the theory that the bacterial communities colonizing E. purpurea contribute to the innate immune enhancing activity of this botanical. Previously we reported that only about half of the variation in in vitro monocyte stimulating activity exhibited by E. purpurea extracts could be a...

  3. Activities and prevalence of proteobacteria members colonizing Echinacea purpurea fully account for in vitro macrophage activation exhibited by extracts of this botanical

    USDA-ARS?s Scientific Manuscript database

    Evidence supports the theory that bacterial communities colonizing Echinacea purpurea contribute to the innate immune enhancing activity of this botanical. Previously we reported that only about half of the variation in in vitro monocyte stimulating activity exhibited by E. purpurea extracts could ...

  4. Engineering bacterial thiosulfate and tetrathionate sensors for detecting gut inflammation.

    PubMed

    Daeffler, Kristina N-M; Galley, Jeffrey D; Sheth, Ravi U; Ortiz-Velez, Laura C; Bibb, Christopher O; Shroyer, Noah F; Britton, Robert A; Tabor, Jeffrey J

    2017-04-03

    There is a groundswell of interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we computationally identify the first biological thiosulfate sensor and an improved tetrathionate sensor, both two-component systems from marine Shewanella species, and validate them in laboratory Escherichia coli Then, we port these sensors into a gut-adapted probiotic E. coli strain, and develop a method based upon oral gavage and flow cytometry of colon and fecal samples to demonstrate that colon inflammation (colitis) activates the thiosulfate sensor in mice harboring native gut microbiota. Our thiosulfate sensor may have applications in bacterial diagnostics or therapeutics. Finally, our approach can be replicated for a wide range of bacterial sensors and should thus enable a new class of minimally invasive studies of gut microbiota pathways. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  5. Umbilical Cord Care in the Newborn Infant.

    PubMed

    Stewart, Dan; Benitz, William

    2016-09-01

    Postpartum infections remain a leading cause of neonatal morbidity and mortality worldwide. A high percentage of these infections may stem from bacterial colonization of the umbilicus, because cord care practices vary in reflection of cultural traditions within communities and disparities in health care practices globally. After birth, the devitalized umbilical cord often proves to be an ideal substrate for bacterial growth and also provides direct access to the bloodstream of the neonate. Bacterial colonization of the cord not infrequently leads to omphalitis and associated thrombophlebitis, cellulitis, or necrotizing fasciitis. Various topical substances continue to be used for cord care around the world to mitigate the risk of serious infection. More recently, particularly in high-resource countries, the treatment paradigm has shifted toward dry umbilical cord care. This clinical report reviews the evidence underlying recommendations for care of the umbilical cord in different clinical settings. Copyright © 2016 by the American Academy of Pediatrics.

  6. Fungal Colonization and Biodeterioration of Plasticized Polyvinyl Chloride

    PubMed Central

    Webb, Jeremy S.; Nixon, Marianne; Eastwood, Ian M.; Greenhalgh, Malcolm; Robson, Geoffrey D.; Handley, Pauline S.

    2000-01-01

    Significant substratum damage can occur when plasticized PVC (pPVC) is colonized by microorganisms. We investigated microbial colonization of pPVC in an in situ, longitudinal study. Pieces of pPVC containing the plasticizers dioctyl phthalate and dioctyl adipate (DOA) were exposed to the atmosphere for up to 2 years. Fungal and bacterial populations were quantified, and colonizing fungi were identified by rRNA gene sequencing and morphological characteristics. Aureobasidium pullulans was the principal colonizing fungus, establishing itself on the pPVC between 25 and 40 weeks of exposure. A group of yeasts and yeast-like fungi, including Rhodotorula aurantiaca and Kluyveromyces spp., established themselves on the pPVC much later (after 80 weeks of exposure). Numerically, these organisms dominated A. pullulans after 95 weeks, with a mean viable count ± standard error of 1,000 ± 200 yeast CFU cm−2, compared to 390 ± 50 A. pullulans CFU cm−2. No bacterial colonization was observed. We also used in vitro tests to characterize the deteriogenic properties of fungi isolated from the pPVC. All strains of A. pullulans tested could grow with the intact pPVC formulation as the sole source of carbon, degrade the plasticizer DOA, produce extracellular esterase, and cause weight loss of the substratum during growth in vitro. In contrast, several yeast isolates could not grow on pPVC or degrade DOA. These results suggest that microbial succession may occur during the colonization of pPVC and that A. pullulans is critical to the establishment of a microbial community on pPVC. PMID:10919769

  7. The antimicrobial effect of Octenidine-dihydrochloride coated polymer tracheotomy tubes on Staphylococcus aureus and Pseudomonas aeruginosa colonisation.

    PubMed

    Zumtobel, Michaela; Assadian, Ojan; Leonhard, Matthias; Stadler, Maria; Schneider, Berit

    2009-07-25

    The surface of polymeric tracheotomy tubes is a favourable environment for biofilm formation and therefore represents a potential risk factor for the development of pneumonia after tracheotomy. The aim of this in-vitro study was to develop octenidine-dihydrochloride (OCT) coated polymer tracheotomy tubes and investigate any effects on Staphylococcus (S.) aureus and Pseudomonas (P.) aeruginosa colonization. Additionally the resistance of the OCT coating was tested using reprocessing procedures like brushing, rinsing and disinfection with glutaraldehyde Contamination with S. aureus: Before any reprocessing, OCT coated tracheotomy tubes were colonized with 103 cfu/ml and uncoated tracheotomy tubes with 105 cfu/ml (P = 0.045). After reprocessing, no differences in bacterial concentration between modified and conventional tubes were observed.Contamination with P. aeruginosa: Before reprocessing, OCT coated tubes were colonized with 106 cfu/ml and uncoated tubes with 107 cfu/ml (P = 0.006). After reprocessing, no significant differences were observed. OCT coating initially inhibits S. aureus and P. aeruginosa colonisation on tracheotomy tubes. This effect, however, vanishes quickly after reprocessing of the tubes due to poor adhesive properties of the antimicrobial compound. Despite the known antimicrobial effect of OCT, its use for antimicrobial coating of tracheotomy tubes is limited unless methods are developed to allow sustained attachment to the tube.

  8. Structural Interaction Between GFP-Labeled Diazotrophic Endophytic Bacterium Herbaspirillum seropedicae RAM10 and Pineapple Plantlets ‘VitóRia’

    PubMed Central

    Estrela Borges Baldotto, Lílian; Lopes Olivares, Fábio; Bressan-Smith, Ricardo

    2011-01-01

    The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets ‘Vitória’ were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae. PMID:24031612

  9. Structural Interaction Between GFP-Labeled Diazotrophic Endophytic Bacterium Herbaspirillum seropedicae RAM10 and Pineapple Plantlets 'VitóRia'.

    PubMed

    Estrela Borges Baldotto, Lílian; Lopes Olivares, Fábio; Bressan-Smith, Ricardo

    2011-01-01

    The events involved in the structural interaction between the diazotrophic endophytic bacterium Herbaspirillum seropedicae, strain RAM10, labeled with green fluorescent protein, and pineapple plantlets 'Vitória' were evaluated by means of bright-field and fluorescence microscopy, combined with scanning electron microscopy for 28 days after inoculation. After 6 hours of inoculation, H. seropedicae was already adhered to the roots, colonizing mainly root hair surface and bases, followed by epidermal cell wall junctions. Bacteria adherence in the initial periods occurred mainly in the form of solitary cells and small aggregates with pleomorphic cells. Bacteria infection of root tissue occurred through the cavities caused by the disruption of epidermal cells during the emergence of lateral roots and the endophytic establishment by the colonization of intercellular spaces of the cortical parenchyma. Moreover, within 1 day after inoculation the bacteria were colonizing the shoots. In this region, the preferred sites of epiphytic colonization were epidermal cell wall junctions, peltate scutiform trichomes and non-glandular trichomes. Subsequently, the bacteria occupied the outer periclinal walls of epidermal cells and stomata. The penetration into the shoot occurred passively through stoma aperture followed by the endophytic establishment on the substomatal chambers and spread to the intercellular spaces of spongy chlorenchyma. After 21 days of inoculation, bacterial biofilm were seen at the root hair base and on epidermal cell wall surface of root and leaf, also confirming the epiphytic nature of H. seropedicae.

  10. Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs.

    PubMed

    Ji, Yujiao; Guo, Qiuping; Yin, Yulong; Blachier, Francois; Kong, Xiangfeng

    2018-01-01

    Pregnancy is associated with important changes in gut microbiota composition. Dietary factors may affect the diversity, composition, and metabolic activity of the intestinal microbiota. Among amino acids, proline is known to play important roles in protein metabolism and structure, cell differentiation, conceptus growth and development, and gut microbiota re-equilibration in case of dysbiosis. Dietary supplementation with 1% proline decreased ( P  < 0.05) the amounts of Klebsiella pneumoniae , Peptostreptococcus productus , Pseudomonas , and Veillonella spp. in distal colonic contents than that in the control group. The colonic contents of Butyrivibrio fibrisolvens , Bifidobacterium sp., Clostridium coccoides , Clostridium coccoides-Eubacterium rectale , Clostridium leptum subgroup, Escherichia coli , Faecalibacterium prausnitzii , Fusobacterium prausnitzii , and Prevotella increased ( P  < 0.05) on d 70 of pregnancy as compared with those on d 45 of pregnancy. The colonic concentrations of acetate, total straight-chain fatty acid, and total short-chain fatty acids (SCFA) in the proline-supplemented group were lower ( P  < 0.05), and butyrate level ( P  = 0.06) decreased as compared with the control group. Almost all of the SCFA displayed higher ( P  < 0.05) concentrations in proximal colonic contents on d 70 of pregnancy than those on d 45 of pregnancy. The concentrations of 1,7-heptyl diamine ( P  = 0.09) and phenylethylamine ( P  < 0.05) in proximal colonic contents were higher, while those of spermidine ( P  = 0.05) and total bioamine ( P  = 0.06) tended to be lower in the proline-supplemented group than those in the control group. The concentrations of spermidine, spermine, and total bioamine in colonic contents were higher ( P  < 0.05) on d 70 of pregnancy than those measured on d 45 of pregnancy. In contrast, the concentration of phenylethylamine was lower ( P  < 0.05) on d 70 than on d 45 of pregnancy. These findings indicate that L -proline supplementation modifies both the colonic microbiota composition and the luminal concentrations of several bacterial metabolites. Furthermore, our data show that both the microbiota composition and the concentrations of bacterial metabolites are evolving in the course of pregnancy. These results are discussed in terms of possible implication in terms of luminal environment and consequences for gut physiology and health.

  11. Microgravity

    NASA Image and Video Library

    2004-04-15

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  12. Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats.

    PubMed

    Will, M E; Sylvia, D M

    1990-07-01

    Plants must be established quickly on replenished beaches in order to stabilize the sand and begin the dune-building process. The objective of this research was to determine whether inoculation of sea oats (Uniola paniculata L.) with bacteria (indigenous rhizosphere bacteria and N(2) fixers) alone or in combination with vesicular-arbuscular mycorrhizal fungi would enhance plant growth in beach sand. At two fertilizer-N levels, Klebsiella pneumoniae and two Azospirillum spp. did not provide the plants with fixed atmospheric N; however, K. pneumoniae increased root and shoot growth. When a sparingly soluble P source (CaHPO(4)) was added to two sands, K. pneumoniae increased plant growth in sand with a high P content. The phosphorus content of shoots was not affected by bacterial inoculation, indicating that a mechanism other than bacterially enhanced P availability to plants was responsible for the growth increases. When sea oats were inoculated with either K. pneumoniae or Acaligenes denitrificans and a mixed Glomus inoculum, there was no consistent evidence of a synergistic effect on plant growth. Nonetheless, bacterial inoculation increased root colonization by vesicular-arbuscular mycorrhizal fungi when the fungal inoculum consisted of colonized roots but had no effect on colonization when the inoculum consisted of spores alone. K. pneumoniae was found to increase spore germination and hyphal growth of Glomus deserticola compared with the control. The use of bacterial inoculants to enhance establishment of pioneer dune plants warrants further study.

  13. Sustained prevention of biofilm formation on a novel silicone matrix suitable for medical devices.

    PubMed

    Steffensen, Søren Langer; Vestergaard, Merete Hedemark; Groenning, Minna; Alm, Martin; Franzyk, Henrik; Nielsen, Hanne Mørck

    2015-08-01

    Bacterial colonization and biofilm formation on medical devices constitute major challenges in clinical long-term use of e.g. catheters due to the risk of (re)infection of patients, which would result in additional use of antibiotics risking bacterial resistance development. The aim of the present project was to introduce a novel antibacterial approach involving an advanced composite material applicable for medical devices. The polymeric composites investigated consisted of a hydrogel network of cross-linked poly(2-hydroxyethyl methacrylate) (PHEMA) embedded in a poly(dimethylsiloxane) (PDMS) silicone elastomer produced using supercritical carbon dioxide (scCO2). In these materials, the hydrogel may contain an active pharmaceutical ingredient while the silicone elastomer provides the sufficient mechanical stability of the material. In these conceptual studies, the antimicrobial agent ciprofloxacin was loaded into the polymer matrix by a post-polymerization loading procedure. Sustained release of ciprofloxacin was demonstrated, and the release could be controlled by varying the hydrogel content in the range 13-38% (w/w) and by changing the concentration of ciprofloxacin during loading in the range of 1-20mg/mL. Devices containing 25% (w/w) hydrogel and loaded with ciprofloxacin displayed a strong antibacterial effect against Staphylococcus aureus bacterial colonization and subsequent biofilm formation on the device material was inhibited for 29days. In conclusion, the hydrogel/silicone composite represents a promising candidate material for medical devices that prevent bacterial colonization during long-term use. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Antibiofilm surface functionalization of catheters by magnesium fluoride nanoparticles

    PubMed Central

    Lellouche, Jonathan; Friedman, Alexandra; Lahmi, Roxanne; Gedanken, Aharon; Banin, Ehud

    2012-01-01

    The ability of bacteria to colonize catheters is a major cause of infection. In the current study, catheters were surface-modified with MgF2 nanoparticles (NPs) using a sonochemical synthesis protocol described previously. The one-step synthesis and coating procedure yielded a homogenous MgF2 NP layer on both the inside and outside of the catheter, as analyzed by high resolution scanning electron microscopy and energy dispersive spectroscopy. The coating thickness varied from approximately 750 nm to 1000 nm on the inner walls and from approximately 450 nm to approximately 580 nm for the outer wall. The coating consisted of spherical MgF2 NPs with an average diameter of approximately 25 nm. These MgF2 NP-modified catheters were investigated for their ability to restrict bacterial biofilm formation. Two bacterial strains most commonly associated with catheter infections, Escherichia coli and Staphylococcus aureus, were cultured in tryptic soy broth, artificial urine and human plasma on the modified catheters. The MgF2 NP-coated catheters were able to significantly reduce bacterial colonization for a period of 1 week compared to the uncoated control. Finally, the potential cytotoxicity of MgF2 NPs was also evaluated using human and mammalian cell lines and no significant reduction in the mitochondrial metabolism was observed. Taken together, our results indicate that the surface modification of catheters with MgF2 NPs can be effective in preventing bacterial colonization and can provide catheters with long-lasting self-sterilizing properties. PMID:22419866

  15. A Mesocosm of Lactobacillus johnsonii, Bifidobacterium longum, and Escherichia coli in the mouse gut.

    PubMed

    Denou, Emmanuel; Rezzonico, Enea; Panoff, Jean-Michel; Arigoni, Fabrizio; Brüssow, Harald

    2009-08-01

    The relative contribution of competition and cooperation at the microbe-microbe level is not well understood for the bacteria constituting the gut microbiota. The high number and variability of human gut commensals have hampered the analysis. To get some insight into the question how so many different bacterial species can coexist in the mammalian gut, we studied the interaction between three human gut commensals (Escherichia coli K-12, Lactobacillus johnsonii NCC533, and Bifidobacterium longum NCC2705) in the intestine of gnotobiotic mice. The bacterial titers and their anatomical distribution were studied in the colonized mice. L. johnsonii achieved the highest cell counts in the stomach, while B. longum dominated the colon. The colon was also the intestinal location in which B. longum displayed the highest number of expressed genes, followed by the cecum and the small intestine. Addition of further bacterial strains led to strikingly different results. A Lactobacillus paracasei strain coexisted, while a second B. longum strain was excluded from the system. Notably, this strain lacked an operon involved in the degradation, import, and metabolism of mannosylated glycans. Subsequent introduction of the E. coli Nissle strain resulted in the elimination of L. johnsonii NCC533 and E. coli K-12, while B. longum NCC2705 showed a transient decrease in population size, demonstrating the dynamic nature of microbe-microbe interactions. The study of such simple interacting bacterial systems might help to derive some basic rules governing microbial ecology within the mammalian gut.

  16. Initial oral biofilm formation on titanium implants with different surface treatments: An in vivo study.

    PubMed

    Ferreira Ribeiro, Cyntia; Cogo-Müller, Karina; Franco, Gilson Cesar; Silva-Concílio, Laís Regiane; Sampaio Campos, Márcia; de Mello Rode, Sigmar; Claro Neves, Ana Christina

    2016-09-01

    The aim of this study was to examine in vivo the initial bacterial adhesion on titanium implants with different surface treatments. Ten subjects wore oral splints containing machined pure titanium disks (Ti-M), acid-etched titanium (Ti-AE) and anodized and laser irradiated disks (Ti-AL) for 24h. After this period, disks were removed from the splints and adherent bacteria were quantified by an enzymatic assay to assess total viable bacteria and by Real Time PCR to evaluate total bacteria and Streptococcus oralis levels. Additionally, the initial adherent microorganisms were visualized by scanning electron microscopy (SEM). Titanium surface morphology was verified using SEM, and roughness was evaluated by profilometer analysis. Regarding titanium surface roughness, Ti-AL (1.423±0.397) showed significantly higher Ra values than did Ti-M (0.771±0.182) and Ti-AE (0.735±0.196) (p<0.05, ANOVA - Tahame). Ti-AE and Ti-AL presented roughened micro-structure surfaces characterized by open pores, whereas Ti-M showed long grooves alternating with planed areas. Comparing the Ti-M, Ti-AE and Ti-AL groups for viable bacteria (MTT assay), total bacteria and S. oralis quantification (qPCR), no significant differences were observed among these three groups (p>0.05, ANOVA - Tahame). SEM images showed similar bacterial adhesion on the three titanium surfaces, predominantly characterized by cocci and several bacilli, indicating an initial colonization of the oral biofilm. In conclusion, roughness and microtopography did not stimulate initial biofilm formation on titanium surfaces with different surface treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. In Vitro Continuous Fermentation Model (PolyFermS) of the Swine Proximal Colon for Simultaneous Testing on the Same Gut Microbiota

    PubMed Central

    Tanner, Sabine A.; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation. PMID:24709947

  18. In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota.

    PubMed

    Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.

  19. Host- and microbe determinants that may influence the success of S. aureus colonization

    PubMed Central

    Johannessen, Mona; Sollid, Johanna E.; Hanssen, Anne-Merethe

    2012-01-01

    Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25–30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed. PMID:22919647

  20. Host- and microbe determinants that may influence the success of S. aureus colonization.

    PubMed

    Johannessen, Mona; Sollid, Johanna E; Hanssen, Anne-Merethe

    2012-01-01

    Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25-30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed.

  1. Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria.

    PubMed

    Preedy, Emily; Perni, Stefano; Nipiĉ, Damijan; Bohinc, Klemen; Prokopovich, Polina

    2014-08-12

    It is well-known that a number of surface characteristics affect the extent of adhesion between two adjacent materials. One of such parameters is the surface roughness as surface asperities at the nanoscale level govern the overall adhesive forces. For example, the extent of bacterial adhesion is determined by the surface topography; also, once a bacteria colonizes a surface, proliferation of that species will take place and a biofilm may form, increasing the resistance of bacterial cells to removal. In this study, borosilicate glass was employed with varying surface roughness and coated with bovine serum albumin (BSA) in order to replicate the protein layer that covers orthopedic devices on implantation. As roughness is a scale-dependent process, relevant scan areas were analyzed using atomic force microscope (AFM) to determine Ra; furthermore, appropriate bacterial species were attached to the tip to measure the adhesion forces between cells and substrates. The bacterial species chosen (Staphylococci and Streptococci) are common pathogens associated with a number of implant related infections that are detrimental to the biomedical devices and patients. Correlation between adhesion forces and surface roughness (Ra) was generally better when the surface roughness was measured through scanned areas with size (2 × 2 μm) comparable to bacteria cells. Furthermore, the BSA coating altered the surface roughness without correlation with the initial values of such parameter; therefore, better correlations were found between adhesion forces and BSA-coated surfaces when actual surface roughness was used instead of the initial (nominal) values. It was also found that BSA induced a more hydrophilic and electron donor characteristic to the surfaces; in agreement with increasing adhesion forces of hydrophilic bacteria (as determined through microbial adhesion to solvents test) on BSA-coated substrates.

  2. Metabolic endotoxaemia--a potential novel link between ovarian inflammation and impaired progesterone production.

    PubMed

    Tremellen, Kelton; Syedi, Naeema; Tan, Sze; Pearce, Karma

    2015-04-01

    Medical conditions such as obesity and inflammatory bowel disease are associated with impaired luteal function, menstrual disturbance and infertility. It is proposed that the disturbance in gut wall integrity ("leaky gut") seen in these conditions may result in the passage of bacterial endotoxin (LPS) from the colonic lumen into the circulation that may initiate inflammation in the ovary and subsequently impair hormone production. Quantify the association between systemic levels of LBP, a marker of endotoxin exposure, and levels of inflammation in the ovary (follicular fluid IL-6), plus steroid hormone production in 45 women undergoing IVF treatment. Endotoxaemia (LBP) were positively correlated with plasma CRP and inflammation within the ovary (follicular fluid IL-6). Furthermore, endotoxaemia was negatively correlated with progesterone production. The observed correlations, together with previously published animal studies linking endotoxin exposure to impaired luteal function, suggest that the translocation of bacterial endotoxin from the gut lumen into the circulation has the potential to interfere with progesterone production and result in luteal deficiency.

  3. Epitope mapping of salmonella flagellar hook-associated protein, FlgK, with mass spectrometry-based immuno-capture proteomics using chicken (gallus gallus domesticus] sera

    USDA-ARS?s Scientific Manuscript database

    Salmonella, a Gram-negative rod, is the leading foodborne pathogen associated with human acute bacterial gastroenteritis worldwide. The Salmonella flagellum is responsible for bacterial movement, colonization and invasion in the host gastrointestinal tract. The flagellum has a complex structure, c...

  4. Distribution of bacterial endophytes in peanut seeds obtained from axenic and control plant material under field conditions

    USDA-ARS?s Scientific Manuscript database

    Since endophytic bacteria may play a role in the defense mechanism of peanut from fungal invasion, the internal bacterial colonization of peanut seeds was investigated. Bacteria-free young peanut plants from seed embryos were successfully grown to maturity in the field. Mature seeds from these pla...

  5. DETECTION OF BACTERIAL CYTOTOXIC ACTIVITIES FROM WATER-DAMAGED CEILING TILE MATERIAL FOLLOWING INCUBATION ON BLOOD AGAR

    EPA Science Inventory

    Samples of ceiling tiles with high levels of bacteria exhibited cytotoxic activities on a HEP-2 tissue culture assay. Ceiling tiles containing low levels of bacterial colonization did not show cytotoxic activities on the HEP-2 tissue culture assay. Using a spread plate procedure ...

  6. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.

    PubMed

    Abdoli, Leila; Suo, Xinkun; Li, Hua

    2016-09-01

    Formation of biofilm is usually essential for the development of biofouling and crucially impacts the corrosion of marine structures. Here we report the attachment behaviors of Bacillus sp. bacteria and subsequent formation of bacterial biofilm on stainless steel and thermal sprayed aluminum coatings in artificial seawater. The colonized bacteria accelerate the corrosion of the steel plates, and markedly enhance the anti-corrosion performances of the Al coatings in early growth stage of the bacterial biofilm. After 7days incubation, the biofilm formed on the steel is heterogeneous while exhibits homogeneous feature on the Al coating. Atomic force microscopy examination discloses inception of formation of local pitting on steel plates associated with significantly roughened surface. Electrochemical testing suggests that the impact of the bacterial biofilm on the corrosion behaviors of marine structures is not decided by the biofilm alone, it is instead attributed to synergistic influence by both the biofilm and physicochemical characteristics of the substratum materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A Compositional Look at the Human Gastrointestinal Microbiome and Immune Activation Parameters in HIV Infected Subjects

    PubMed Central

    Mutlu, Ece A.; Keshavarzian, Ali; Losurdo, John; Swanson, Garth; Siewe, Basile; Forsyth, Christopher; French, Audrey; DeMarais, Patricia; Sun, Yan; Koenig, Lars; Cox, Stephen; Engen, Phillip; Chakradeo, Prachi; Abbasi, Rawan; Gorenz, Annika; Burns, Charles; Landay, Alan

    2014-01-01

    HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy. PMID:24586144

  8. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania.

    PubMed

    Coman, Cristian; Drugă, Bogdan; Hegedus, Adriana; Sicora, Cosmin; Dragoş, Nicolae

    2013-05-01

    The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

  9. Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms.

    PubMed

    Harrison, Jesse P; Schratzberger, Michaela; Sapp, Melanie; Osborn, A Mark

    2014-09-23

    Synthetic microplastics (≤5-mm fragments) are emerging environmental contaminants that have been found to accumulate within coastal marine sediments worldwide. The ecological impacts and fate of microplastic debris are only beginning to be revealed, with previous research into these topics having primarily focused on higher organisms and/or pelagic environments. Despite recent research into plastic-associated microorganisms in seawater, the microbial colonization of microplastics in benthic habitats has not been studied. Therefore, we employed a 14-day microcosm experiment to investigate bacterial colonization of low-density polyethylene (LDPE) microplastics within three types of coastal marine sediment from Spurn Point, Humber Estuary, U.K. Bacterial attachment onto LDPE within sediments was demonstrated by scanning electron microscopy and catalyzed reporter deposition fluorescence in situ hybridisation (CARD-FISH). Log-fold increases in the abundance of 16S rRNA genes from LDPE-associated bacteria occurred within 7 days with 16S rRNA gene numbers on LDPE surfaces differing significantly across sediment types, as shown by quantitative PCR. Terminal-restriction fragment length polymorphism (T-RFLP) analysis demonstrated rapid selection of LDPE-associated bacterial assemblages whose structure and composition differed significantly from those in surrounding sediments. Additionally, T-RFLP analysis revealed successional convergence of the LDPE-associated communities from the different sediments over the 14-day experiment. Sequencing of cloned 16S rRNA genes demonstrated that these communities were dominated after 14 days by the genera Arcobacter and Colwellia (totalling 84-93% of sequences). Attachment by Colwellia spp. onto LDPE within sediments was confirmed by CARD-FISH. These results demonstrate that bacteria within coastal marine sediments can rapidly colonize LDPE microplastics, with evidence for the successional formation of plastisphere-specific bacterial assemblages. Although the taxonomic compositions of these assemblages are likely to differ between marine sediments and the water column, both Arcobacter and Colwellia spp. have previously been affiliated with the degradation of hydrocarbon contaminants within low-temperature marine environments. Since hydrocarbon-degrading bacteria have also been discovered on plastic fragments in seawater, our data suggest that recruitment of hydrocarbonoclastic bacteria on microplastics is likely to represent a shared feature between both benthic and pelagic marine habitats.

  10. Isolation of Endophytic Plant Growth-Promoting Bacteria Associated with the Halophyte Salicornia europaea and Evaluation of their Promoting Activity Under Salt Stress.

    PubMed

    Zhao, Shuai; Zhou, Na; Zhao, Zheng-Yong; Zhang, Ke; Wu, Guo-Hua; Tian, Chang-Yan

    2016-10-01

    Several reports have highlighted that many plant growth-promoting endophytic bacteria (PGPE) can assist their host plants in coping with various biotic and abiotic stresses. However, information about the PGPE colonizing in the halophytes is still scarce. This study was designed to isolate and characterize PGPE from salt-accumulating halophyte Salicornia europaea grown under extreme salinity and to evaluate in vitro the bacterial mechanisms related to plant growth promotion. A total of 105 isolates were obtained from the surface-sterilized roots, stems, and assimilation twigs of S. europaea. Thirty-two isolates were initially selected for their ability to produce 1-aminocyclopropane-1-carboxylate deaminase as well as other properties such as production of indole-3-acetic acid and phosphate-solubilizing activities. The 16S rRNA gene-sequencing analysis revealed that these isolates belong to 13 different genera and 19 bacterial species. For these 32 strains, seed germination and seedling growth in axenically grown S. europaea seedlings at different NaCl concentrations (50-500 mM) were quantified. Five isolates possessing significant stimulation of the host plant growth were obtained. The five isolates were identified as Bacillus endophyticus, Bacillus tequilensis, Planococcus rifietoensis, Variovorax paradoxus, and Arthrobacter agilis. All the five strains could colonize and can be reisolated from the host plant interior tissues. These results demonstrate that habitat-adapted PGPE isolated from halophyte could enhance plant growth under saline stress conditions.

  11. O Antigen Modulates Insect Vector Acquisition of the Bacterial Plant Pathogen Xylella fastidiosa

    PubMed Central

    Rapicavoli, Jeannette N.; Kinsinger, Nichola; Perring, Thomas M.; Backus, Elaine A.; Shugart, Holly J.; Walker, Sharon

    2015-01-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. PMID:26386068

  12. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    PubMed

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Dynamic switching enables efficient bacterial colonization in flow.

    PubMed

    Kannan, Anerudh; Yang, Zhenbin; Kim, Minyoung Kevin; Stone, Howard A; Siryaporn, Albert

    2018-05-22

    Bacteria colonize environments that contain networks of moving fluids, including digestive pathways, blood vasculature in animals, and the xylem and phloem networks in plants. In these flow networks, bacteria form distinct biofilm structures that have an important role in pathogenesis. The physical mechanisms that determine the spatial organization of bacteria in flow are not understood. Here, we show that the bacterium P. aeruginosa colonizes flow networks using a cyclical process that consists of surface attachment, upstream movement, detachment, movement with the bulk flow, and surface reattachment. This process, which we have termed dynamic switching, distributes bacterial subpopulations upstream and downstream in flow through two phases: movement on surfaces and cellular movement via the bulk. The model equations that describe dynamic switching are identical to those that describe dynamic instability, a process that enables microtubules in eukaryotic cells to search space efficiently to capture chromosomes. Our results show that dynamic switching enables bacteria to explore flow networks efficiently, which maximizes dispersal and colonization and establishes the organizational structure of biofilms. A number of eukaryotic and mammalian cells also exhibit movement in two phases in flow, which suggests that dynamic switching is a modality that enables efficient dispersal for a broad range of cell types.

  14. Factors Influencing Biofilm Formation in Streams: Bacterial Colonization, Detachment and Transport

    NASA Astrophysics Data System (ADS)

    Leff, L.

    2005-05-01

    Surfaces in aquatic systems develop biofilms containing microorganisms embedded in complex extracellular matrices. Properties of the surface, water, and colonizing organisms impact biofilm formation. Biofilm features, physical disturbance, and interactions between macro- and microscopic organisms, in turn, influence detachment. In spite of the importance of biofilms, much remains unknown about factors controlling biofilms in streams and other natural environments. Experiments were conducted in the laboratory and field to examine factors influencing surface colonization, and subsequent biofilm formation, and detachment. Microscopy methods, fluorescent in situ hybridization and confocal laser microscopy, were used to examine responses, including abundance of different taxa and biofilm depth. From these experiments, we determined that different taxa differ in their colonization ability based on properties like extracellular polysaccharide production and surface features, like hydrophobicity and that water chemistry, such as magnesium concentration, plays an important role. Moreover, detachment varies among taxa and with environmental conditions and may be enhanced by activities of macrofauna. Variation in detachment, in turn, influences bacterial transport and subsequent re-attachment. Overall, examination of attachment, detachment, and interactions in biofilms allows us to begin to understand how environmental conditions may impact the function of these communities in aquatic systems.

  15. Gene expression profiling of Escherichia coli in response to interactions with the lettuce rhizosphere.

    PubMed

    Hou, Z; Fink, R C; Black, E P; Sugawara, M; Zhang, Z; Diez-Gonzalez, F; Sadowsky, M J

    2012-11-01

    The objective of this study was to examine transcriptional changes in Escherichia coli when the bacterium was growing in the lettuce rhizoshpere. A combination of microarray analyses, colonization assays and confocal microscopy was used to gain a more complete understanding of bacterial genes involved in the colonization and growth of E. coli K12 in the lettuce root rhizosphere using a novel hydroponic assay system. After 3 days of interaction with lettuce roots, E. coli genes involved in protein synthesis, stress responses and attachment were up-regulated. Mutants in curli production (crl, csgA) and flagella synthesis (fliN) had a reduced capacity to attach to roots as determined by bacterial counts and by confocal laser scanning microscopy. This study indicates that E. coli K12 has the capability to colonize lettuce roots by using attachment genes and can readily adapt to the rhizosphere of lettuce plants. Results of this study show curli production and biofilm modulation genes are important for rhizosphere colonization and may provide useful targets to disrupt this process. Further studies using pathogenic strains will provide additional information about lettuce-E. coli interactions. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  16. Do swimming goggles limit microbial contamination of contact lenses?

    PubMed

    Wu, Yvonne T; Tran, Jess; Truong, Michelle; Harmis, Najat; Zhu, Hua; Stapleton, Fiona

    2011-04-01

    Wearing goggles over contact lenses while swimming is often recommended by eye care professionals. Limited data are available to assess this recommendation. The purpose of this study was to examine whether wearing goggles while swimming limits bacterial colonization on contact lenses and whether the type of lens worn affects contamination rates. Twenty-three subjects underwent two swimming sessions at an ocean (salt water) pool (Maroubra beach Rock Pool, Sydney, Australia). Silicone hydrogel (Ciba Focus Night and Day) or hydrogel lenses (Ciba Focus Daily) were inserted into subjects' eyes before 30 min of swimming sessions, and subjects used modified goggles to mimic goggled and non-goggled conditions. At the end of each session, lenses were collected for microbial investigation. Viable bacterial colonies were classified as gram positive and gram negative and enumerated. The level of bacterial colonization on contact lenses between goggled and non-goggled conditions and between the two lens materials were compared. The range of colony forming units recovered from goggled lenses were 0 to 930 compared with 0 to 1210 on non-goggled lenses. The majority of subjects (16/23) had more microorganisms in the non-goggled condition than when wearing goggles (p = 0.03). Gram negative organisms were found in three non-goggled lenses. No significant difference was shown in the number of bacteria isolated from silicone hydrogel and hydrogel lenses (p > 0.6) irrespective of wearing goggles. Water samples had consistently higher numbers of bacterial counts than those adhered to the lenses; however, no association was found between the number of bacteria in the water sample and those found on the contact lenses. Consistently, fewer bacterial colonies were found on the goggled contact lens, thus suggesting goggles offer some protection against bacterial colonization of contact lenses while swimming. These data would support the recommendation encouraging lens wearers to use goggles while swimming.

  17. Changes in mouse gastrointestinal microbial ecology with ingestion of kale.

    PubMed

    Uyeno, Y; Katayama, S; Nakamura, S

    2014-09-01

    Kale, a cultivar of Brassica oleracea, has attracted a great deal of attention because of its health-promoting effects, which are thought to be exerted through modulation of the intestinal microbiota. The present study was performed to investigate the effects of kale ingestion on the gastrointestinal microbial ecology of mice. 21 male C57BL/6J mice were divided into three groups and housed in a specific pathogen-free facility. The animals were fed either a control diet or experimental diets supplemented with different commercial kale products for 12 weeks. Contents of the caecum and colon of the mice were processed for the determination of active bacterial populations by a bacterial rRNA-based quantification method and short-chain fatty acids by HPLC. rRNAs of Bacteroides-Prevotella, the Clostridium coccoides-Eubacterium rectale group, and Clostridium leptum subgroup constituted the major fraction of microbiota regardless of the composition of the diet. The ratio of Firmicutes to Bacteroidetes was higher in the colon samples of one of the kale diet groups than in the control. The colonic butyrate level was also higher with the kale-supplemented diet. Overall, the ingestion of kale tended to either increase or decrease the activity of specific bacterial groups in the mouse gastrointestinal tract, however, the effect might vary depending on the nutritional composition.

  18. Host Defense Peptide Resistance Contributes to Colonization and Maximal Intestinal Pathology by Crohn's Disease-Associated Adherent-Invasive Escherichia coli

    PubMed Central

    McPhee, Joseph B.; Small, Cherrie L.; Reid-Yu, Sarah A.; Brannon, John R.; Le Moual, Hervé

    2014-01-01

    Host defense peptides secreted by colonocytes and Paneth cells play a key role in innate host defenses in the gut. In Crohn's disease, the burden of tissue-associated Escherichia coli commonly increases at epithelial surfaces where host defense peptides concentrate, suggesting that this bacterial population might actively resist this mechanism of bacterial killing. Adherent-invasive E. coli (AIEC) is associated with Crohn's disease; however, the colonization determinants of AIEC in the inflamed gut are undefined. Here, we establish that host defense peptide resistance contributes to host colonization by Crohn's-associated AIEC. We identified a plasmid-encoded genomic island (called PI-6) in AIEC strain NRG857c that confers high-level resistance to α-helical cationic peptides and α- and β-defensins. Deletion of PI-6 sensitized strain NRG857c to these host defense molecules, reduced its competitive fitness in a mouse model of infection, and attenuated its ability to induce cecal pathology. This phenotype is due to two genes in PI-6, arlA, which encodes a Mig-14 family protein implicated in defensin resistance, and arlC, an OmpT family outer membrane protease. Implicit in these findings are new bacterial targets whose inhibition might limit AIEC burden and disease in the gut. PMID:24866805

  19. The three-dimensional structure of CFA/I adhesion pili: traveler's diarrhea bacteria hang on by a spring.

    PubMed

    Mu, Xiang-Qi; Savarino, Stephen J; Bullitt, Esther

    2008-02-22

    To survive the harsh environment of a churning intestinal tract, bacteria attach to the host epithelium via thin fibers called pili (or fimbriae). Enterotoxigenic Escherichia coli bacteria expressing colonization factor antigen I (CFA/I) pili and related pili are the most common known bacterial cause of diarrheal disease, including traveler's diarrhea. CFA/I pili, assembled via the alternate chaperone pathway, are essential for binding and colonization of the small bowel by these pathogenic bacteria. Herein, we elucidate unique structural features of CFA/I pili that appear to optimize their function as bacterial tethers in the intestinal tract. Using transmission electron microscopy of negatively stained samples in combination with iterative three-dimensional helical reconstruction methods for image processing, we determined the structure of the CFA/I pilus filament. Our results indicate that strong end-to-end protein interactions and weak interactions between the coils of a sturdy spring-like helix provide the combination of strength, stability, and flexibility required to sustain bacterial adhesion and incite intestinal disease. We propose that CFA/I pili behave like a spring to maintain attachment to the gut lining during vortex mixing and downward flow of the intestinal contents, thereby persisting long enough for these bacteria to colonize the host epithelium and cause enteric disease.

  20. Donor-to-host transmission of bacterial and fungal infections in lung transplantation.

    PubMed

    Ruiz, I; Gavaldà, J; Monforte, V; Len, O; Román, A; Bravo, C; Ferrer, A; Tenorio, L; Román, F; Maestre, J; Molina, I; Morell, F; Pahissa, A

    2006-01-01

    The purpose of this study was to evaluate the incidence and etiology of bacterial and fungal infection or contamination in lung allograft donors and to assess donor-to-host transmission of these infections. Recipients who survived more than 24 h and their respective donors were evaluated. The overall incidence of donor infection was 52% (103 out of 197 donors). Types of donor infection included isolated contamination of preservation fluids (n = 30, 29.1%), graft colonization (n = 65, 63.1%) and bacteremia (n = 8, 7.8%). Donor-to-host transmission of bacterial or fungal infection occurred in 15 lung allograft recipients, 7.6% of lung transplants performed. Among these cases, 2 were due to donor bacteremia and 13 to colonization of the graft. Twenty-five percent of donors with bacteremia and 14.1% of colonized grafts were responsible for transmitting infection. Excluding the five cases without an effective prophylactic regimen, prophylaxis failure occurred in 11 out of 197 procedures (5.58%). Donor-to-host transmission of infection is a frequent event after lung transplantation. Fatal consequences can be avoided with an appropriate prophylactic antibiotic regimen that must be modified according to the microorganisms isolated from cultures of samples obtained from donors, grafts, preservation fluids and recipients.

  1. Motility and Chemotaxis Mediate the Preferential Colonization of Gastric Injury Sites by Helicobacter pylori

    PubMed Central

    Aihara, Eitaro; Closson, Chet; Matthis, Andrea L.; Schumacher, Michael A.; Engevik, Amy C.; Zavros, Yana; Ottemann, Karen M.; Montrose, Marshall H.

    2014-01-01

    Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1) significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB) or chemotaxis (ΔcheY). ΔmotB (106) failed to colonize ulcerated or healthy stomach tissue. ΔcheY (106) colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites, and thereby biases the injured tissue towards sustained gastric damage. PMID:25033386

  2. Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori.

    PubMed

    Aihara, Eitaro; Closson, Chet; Matthis, Andrea L; Schumacher, Michael A; Engevik, Amy C; Zavros, Yana; Ottemann, Karen M; Montrose, Marshall H

    2014-07-01

    Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1) significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB) or chemotaxis (ΔcheY). ΔmotB (10(6)) failed to colonize ulcerated or healthy stomach tissue. ΔcheY (10(6)) colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites, and thereby biases the injured tissue towards sustained gastric damage.

  3. [Congenital skull base defect causing recurrent bacterial meningitis].

    PubMed

    Berliner, Elihay; Bar Meir, Maskit; Megged, Orli

    2012-08-01

    Bacterial meningitis is a life threatening disease. Most patients will experience only one episode throughout life. Children who experience bacterial meningitis more than once, require further immunologic or anatomic evaluation. We report a 9 year old child with five episodes of bacterial meningitis due to a congenital defect of the skull base. A two and a half year old boy first presented to our medical center with pneumococcal meningitis. He was treated with antibiotics and fully recovered. Two months later he presented again with a similar clinical picture. Streptococcus pneumoniae grew in cerebrospinal fluid (CSF) culture. CT scan and later MRI of the brain revealed a defect in the anterior middle fossa floor, with protrusion of brain tissue into the sphenoidal sinus. Corrective surgery was recommended but the parents refused. Three months later, a third episode of pneumococcal meningitis occurred. The child again recovered with antibiotics and this time corrective surgery was performed. Five years later, the boy presented once again with clinical signs and symptoms consistent with bacterial meningitis. CSF culture was positive, but the final identification of the bacteria was conducted by broad spectrum 16S ribosomal RNA PCR (16S rRNA PCR) which revealed a sequence of Neisseria lactamica. CT and MRI showed recurrence of the skull base defect with encephalocele in the sphenoid sinus. The parents again refused neurosurgical intervention. A year later the patient presented with bacterial meningitis. CSF culture obtained after initiation of antibiotics was negative, but actinobacillus was identified in the CSF by 16S rRNA PCR. The patient is scheduled for neurosurgical intervention. In patients with recurrent bacterial meningitis caused by organisms colonizing the oropharynx or nasopharynx, an anatomical defect should be carefully sought and surgically repaired.

  4. Medical-grade honey does not reduce skin colonization at central venous catheter-insertion sites of critically ill patients: a randomized controlled trial

    PubMed Central

    2012-01-01

    Introduction Catheter-related bloodstream infections (CRBSIs) associated with short-term central venous catheters (CVCs) in intensive care unit (ICU) patients are a major clinical problem. Bacterial colonization of the skin at the CVC insertion site is an important etiologic factor for CRBSI. The aim of this study was to assess the efficacy of medical-grade honey in reducing bacterial skin colonization at insertion sites. Methods A prospective, single-center, open-label randomized controlled trial was performed at the ICU of a university hospital in The Netherlands to assess the efficacy of medical-grade honey to reduce skin colonization of insertion sites. Medical-grade honey was applied in addition to standard CVC-site dressing and disinfection with 0.5% chlorhexidine in 70% alcohol. Skin colonization was assessed on a daily basis before CVC-site disinfection. The primary end point was colonization of insertion sites with >100 colony-forming units at the last sampling before removal of the CVC or transfer of the patient from the ICU. Secondary end points were quantitative levels of colonization of the insertion sites and colonization of insertion sites stratified for CVC location. Results Colonization of insertion sites was not affected by the use of medical-grade honey, as 44 (34%) of 129 and 36 (34%) of 106 patients in the honey and standard care groups, respectively, had a positive skin culture (P = 0.98). Median levels of skin colonization at the last sampling were 1 (0 to 2.84) and 1 (0 to 2.70) log colony-forming units (CFUs)/swab for the honey and control groups, respectively (P = 0.94). Gender, days of CVC placement, CVC location, and CVC type were predictive for a positive skin culture. Correction for these variables did not change the effect of honey on skin-culture positivity. Conclusions Medical-grade honey does not affect colonization of the skin at CVC insertion sites in ICU patients when applied in addition to standard disinfection with 0.5% chlorhexidine in 70% alcohol. Trial registration Netherlands Trial Registry, NTR1652. PMID:23111148

  5. Medical-grade honey does not reduce skin colonization at central venous catheter-insertion sites of critically ill patients: a randomized controlled trial.

    PubMed

    Kwakman, Paulus H; Müller, Marcella C; Binnekade, Jan M; van den Akker, Johannes P; de Borgie, Corianne A; Schultz, Marcus J; Zaat, Sebastian A

    2012-10-30

    Catheter-related bloodstream infections (CRBSIs) associated with short-term central venous catheters (CVCs) in intensive care unit (ICU) patients are a major clinical problem. Bacterial colonization of the skin at the CVC insertion site is an important etiologic factor for CRBSI. The aim of this study was to assess the efficacy of medical-grade honey in reducing bacterial skin colonization at insertion sites. A prospective, single-center, open-label randomized controlled trial was performed at the ICU of a university hospital in The Netherlands to assess the efficacy of medical-grade honey to reduce skin colonization of insertion sites. Medical-grade honey was applied in addition to standard CVC-site dressing and disinfection with 0.5% chlorhexidine in 70% alcohol. Skin colonization was assessed on a daily basis before CVC-site disinfection. The primary end point was colonization of insertion sites with >100 colony-forming units at the last sampling before removal of the CVC or transfer of the patient from the ICU. Secondary end points were quantitative levels of colonization of the insertion sites and colonization of insertion sites stratified for CVC location. Colonization of insertion sites was not affected by the use of medical-grade honey, as 44 (34%) of 129 and 36 (34%) of 106 patients in the honey and standard care groups, respectively, had a positive skin culture (P = 0.98). Median levels of skin colonization at the last sampling were 1 (0 to 2.84) and 1 (0 to 2.70) log colony-forming units (CFUs)/swab for the honey and control groups, respectively (P = 0.94). Gender, days of CVC placement, CVC location, and CVC type were predictive for a positive skin culture. Correction for these variables did not change the effect of honey on skin-culture positivity. Medical-grade honey does not affect colonization of the skin at CVC insertion sites in ICU patients when applied in addition to standard disinfection with 0.5% chlorhexidine in 70% alcohol. Netherlands Trial Registry, NTR1652.

  6. Reduction of overall Helicobacter pylori colonization levels in the stomach of Mongolian gerbil by Lactobacillus johnsonii La1 (LC1) and its in vitro activities against H. pylori motility and adherence.

    PubMed

    Isobe, Hirokazu; Nishiyama, Akihito; Takano, Tomomi; Higuchi, Wataru; Nakagawa, Saori; Taneike, Ikue; Fukushima, Yoichi; Yamamoto, Tatsuo

    2012-01-01

    The effects of Lactobacillus johnsonii La1 (LC1) on Helicobacter pylori colonization in the stomach were investigated. H. pylori colonization and gastritis in LC1-inoculated Mongolian gerbils were significantly less intense than those in the control animals. LC1 culture supernatant (>10-kDa fraction) inhibited H. pylori motility and induced bacterial aggregation in human gastric epithelial cells, suggesting the potential of clinical use of LC1 product.

  7. Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota

    PubMed Central

    Chung, Hachung; Pamp, Sünje J.; Hill, Jonathan A.; Surana, Neeraj K.; Edelman, Sanna M.; Troy, Erin B.; Reading, Nicola C.; Villablanca, Eduardo J.; Wang, Sen; Mora, Jorge R.; Umesaki, Yoshinori; Mathis, Diane; Benoist, Christophe; Relman, David A.; Kasper, Dennis L.

    2012-01-01

    SUMMARY Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4+ and CD8+ T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression–all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system. PMID:22726443

  8. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota.

    PubMed

    Martin, Rocio; Makino, Hiroshi; Cetinyurek Yavuz, Aysun; Ben-Amor, Kaouther; Roelofs, Mieke; Ishikawa, Eiji; Kubota, Hiroyuki; Swinkels, Sophie; Sakai, Takafumi; Oishi, Kenji; Kushiro, Akira; Knol, Jan

    2016-01-01

    Colonization of the infant gut is believed to be critically important for a healthy growth as it influences gut maturation, metabolic, immune and brain development in early life. Understanding factors that influence this process is important, since an altered colonization has been associated with a higher risk of diseases later in life. Fecal samples were collected from 108 healthy neonates in the first half year of life. The composition and functionality of the microbiota was characterized by measuring 33 different bacterial taxa by qPCR/RT qPCR, and 8 bacterial metabolites. Information regarding gender, place and mode of birth, presence of siblings or pets; feeding pattern and antibiotic use was collected by using questionnaires. Regression analysis techniques were used to study associations between microbiota parameters and confounding factors over time. Bacterial DNA was detected in most meconium samples, suggesting bacterial exposure occurs in utero. After birth, colonization by species of Bifidobacterium, Lactobacillus and Bacteroides was influenced by mode of delivery, type of feeding and presence of siblings, with differences found at species level and over time. Interestingly, infant-type bifidobacterial species such as B. breve or B. longum subsp infantis were confirmed as early colonizers apparently independent of the factors studied here, while B. animalis subsp. lactis presence was found to be dependent solely on the type of feeding, indicating that it might not be a common infant gut inhabitant. One interesting and rather unexpected confounding factor was gender. This study contributes to our understanding of the composition of the microbiota in early life and the succession process and the evolution of the microbial community as a function of time and events occurring during the first 6 months of life. Our results provide new insights that could be taken into consideration when selecting nutritional supplementation strategies to support the developing infant gut microbiome.

  9. Early-Life Events, Including Mode of Delivery and Type of Feeding, Siblings and Gender, Shape the Developing Gut Microbiota

    PubMed Central

    Cetinyurek Yavuz, Aysun; Ben-Amor, Kaouther; Roelofs, Mieke; Ishikawa, Eiji; Kubota, Hiroyuki; Swinkels, Sophie; Sakai, Takafumi; Oishi, Kenji; Kushiro, Akira; Knol, Jan

    2016-01-01

    Colonization of the infant gut is believed to be critically important for a healthy growth as it influences gut maturation, metabolic, immune and brain development in early life. Understanding factors that influence this process is important, since an altered colonization has been associated with a higher risk of diseases later in life. Fecal samples were collected from 108 healthy neonates in the first half year of life. The composition and functionality of the microbiota was characterized by measuring 33 different bacterial taxa by qPCR/RT qPCR, and 8 bacterial metabolites. Information regarding gender, place and mode of birth, presence of siblings or pets; feeding pattern and antibiotic use was collected by using questionnaires. Regression analysis techniques were used to study associations between microbiota parameters and confounding factors over time. Bacterial DNA was detected in most meconium samples, suggesting bacterial exposure occurs in utero. After birth, colonization by species of Bifidobacterium, Lactobacillus and Bacteroides was influenced by mode of delivery, type of feeding and presence of siblings, with differences found at species level and over time. Interestingly, infant-type bifidobacterial species such as B. breve or B. longum subsp infantis were confirmed as early colonizers apparently independent of the factors studied here, while B. animalis subsp. lactis presence was found to be dependent solely on the type of feeding, indicating that it might not be a common infant gut inhabitant. One interesting and rather unexpected confounding factor was gender. This study contributes to our understanding of the composition of the microbiota in early life and the succession process and the evolution of the microbial community as a function of time and events occurring during the first 6 months of life. Our results provide new insights that could be taken into consideration when selecting nutritional supplementation strategies to support the developing infant gut microbiome. PMID:27362264

  10. Biofilm on the tracheoesophageal voice prosthesis: considerations for oral decontamination.

    PubMed

    Somogyi-Ganss, Eszter; Chambers, Mark S; Lewin, Jan S; Tarrand, Jeffrey J; Hutcheson, Katherine A

    2017-01-01

    The tracheoesophageal puncture (TEP) restores verbal communication after total laryngectomy using a one-way valved voice prosthesis (VP). Microbial colonization can shorten VP device life. Our aims were to investigate patterns of prosthetic and oral colonization, and record changes in VP device life after targeted decontamination. We conducted a retrospective review of TEP clinic patients who underwent microbial analysis of the VP between 01/2003 and 07/2013. Two subgroups were analyzed: (1) patients with microbial analysis of the VP and the mouth were analyzed to identify patterns of common contamination, and (2) patients who were prescribed targeted oral decontamination on the basis of the microbial analysis of the VP were analyzed to evaluate effects on device life. Among 42 patients, 3 patients had only fungal, 5 only bacterial, and 33 had polyspecies fungal and bacterial colonization. In the TEP-oral microflora subgroup (n = 15), 7 had common microorganisms in the mouth and on the VP. Among the decontamination subgroup (n = 23), 6 patients received broad spectrum rinse, 16 antifungal agents and 13 antibiotics, or a combination thereof. After targeted decontamination, the median device life of prostheses improved from 7.89 to 10.82 weeks (p = 0.260). The majority of patients with a suboptimal VP device life in this pilot had polyspecies bacterial and fungal colonization. VPs rarely had fungal contamination alone (3 %), and non-albicans fungal species were more common than expected. For these reasons, we are exploring the use of targeted decontamination regimens that were associated with 1.4-fold improvement in VP duration.

  11. Assessment of bacterial inoculant formulated with Paraburkholderia tropica to enhance wheat productivity.

    PubMed

    Bernabeu, Pamela Romina; García, Sabrina Soledad; López, Ana Clara; Vio, Santiago Adolfo; Carrasco, Natalia; Boiardi, José Luis; Luna, María Flavia

    2018-05-25

    Paraburkholderia tropica is an endophytic nitrogen-fixing bacterium isolated from the rhizosphere, rhizoplane, and internal tissues of sugarcane and corn plants in different geographical regions. Other plant-growth-promoting abilities, such as phosphate solubilization and antifungal activity, have also been reported for this bacterium. With an aim at investigating the potential use of P. tropica as an inoculant for improving the performance of wheat crop, in this work we evaluated an experimental inoculant formulated with P. tropica MTo-293 with respect to root colonization, the practical aspects of its application, and the effects under field conditions when applied to wheat seeds. Bacterial colonization was monitored by culture dependent techniques and the wheat yield determined by quantifying the total grain production in two different seasons. Rhizoplane and endophytic colonization in wheat roots was achieved efficiently (on average, 8 and 4 log colony-forming units/g fresh weight, respectively) even at relatively low concentrations of viable bacteria in the inoculum under controlled conditions. P. tropica was compatible with a widely used fungicide, maintained viability for 48 h once applied to seeds, and was also able to colonize wheat roots efficiently. Furthermore, we were able to formulate an inoculant that maintained bacterial viability for relatively long time periods. Preliminary field assays were realized, and even though the average yields values for the inoculated treatments remained above the uninoculated ones, no significant effects of inoculation were detected with or without fertilization. The correct physiologic behavior of P. tropica suggests the necessity to continue with field experiments under different conditions.

  12. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria.

    PubMed

    Abdelmaksoud, Abdallah A; Koparde, Vishal N; Sheth, Nihar U; Serrano, Myrna G; Glascock, Abigail L; Fettweis, Jennifer M; Strauss, Jerome F; Buck, Gregory A; Jefferson, Kimberly K

    2016-03-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( <1% 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12% 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively.

  13. Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap.

    PubMed

    Gokul, Jarishma K; Hodson, Andrew J; Saetnan, Eli R; Irvine-Fynn, Tristram D L; Westall, Philippa J; Detheridge, Andrew P; Takeuchi, Nozomu; Bussell, Jennifer; Mur, Luis A J; Edwards, Arwyn

    2016-08-01

    Microbial colonization of glacial ice surfaces incurs feedbacks which affect the melting rate of the ice surface. Ecosystems formed as microbe-mineral aggregates termed cryoconite locally reduce ice surface albedo and represent foci of biodiversity and biogeochemical cycling. Consequently, greater understanding the ecological processes in the formation of functional cryoconite ecosystems upon glacier surfaces is sought. Here, we present the first bacterial biogeography of an ice cap, evaluating the respective roles of dispersal, environmental and biotic filtration occurring at local scales in the assembly of cryoconite microbiota. 16S rRNA gene amplicon semiconductor sequencing of cryoconite colonizing a Svalbard ice cap coupled with digital elevation modelling of physical parameters reveals the bacterial community is dominated by a ubiquitous core of generalist taxa, with evidence for a moderate pairwise distance-decay relationship. While geographic position and melt season duration are prominent among environmental predictors of community structure, the core population of taxa appears highly influential in structuring the bacterial community. Taxon co-occurrence network analysis reveals a highly modular community structured by positive interactions with bottleneck taxa, predominantly Actinobacteria affiliated to isolates from soil humus. In contrast, the filamentous cyanobacterial taxon (assigned to Leptolyngbya/Phormidesmis pristleyi) which dominates the community and binds together granular cryoconite are poorly connected to other taxa. While our study targeted one ice cap, the prominent role of generalist core taxa with close environmental relatives across the global cryosphere indicate discrete roles for cosmopolitan Actinobacteria and Cyanobacteria as respective keystone taxa and ecosystem engineers of cryoconite ecosystems colonizing ice caps. © 2016 John Wiley & Sons Ltd.

  14. Diagnosis of nosocomial pneumonia in intubated, intensive care unit patients.

    PubMed

    Salata, R A; Lederman, M M; Shlaes, D M; Jacobs, M R; Eckstein, E; Tweardy, D; Toossi, Z; Chmielewski, R; Marino, J; King, C H

    1987-02-01

    The clinical distinction between bacterial colonization of the tracheobronchial tree and nosocomial pneumonia is difficult, especially in intubated patients. We studied 51 intubated, intensive care unit patients prospectively by serial examinations of tracheal aspirates for elastin fibers, graded Gram's stains, and quantitative bacterial cultures in conjunction with clinical and radiologic observations in an attempt to develop criteria for the early detection of pulmonary infection. Patients with infection had new or progressive pulmonary infiltrates plus 1 of the following: positive blood culture results, radiographic evidence of cavitation, or histologic evidence of pneumonia, or 2 or more of the following: new fever, new leukocytosis, or grossly purulent tracheal aspirates. Twenty-one patients developed infection, 22 remained colonized, and 8 had an uncertain status. Infiltrates developed in 34 patients (21 infected, 8 colonized, 5 uncertain status). Gram-negative bacilli were most commonly isolated and were more frequent in infected patients (81 versus 47%, p less than 0.05); Pseudomonas aeruginosa and Serratia marcescens were most often associated with infection. No differences were observed between infected and colonized patients in demographic features, smoking history, underlying disease, previous antibiotic therapy, days in hospital before intubation, preexisting pneumonia upon intubation, or highest temperature or leukocyte count during course. By univariate analysis, infected patients had a longer duration of intubation (p less than 0.05), higher Gram's stain grading for neutrophils (p less than 0.05) or bacteria (p less than 0.005), higher bacterial colony counts (p less than 0.05), and more frequent detection of elastin fibers in tracheal aspirates (p less than 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Comprehensive Identification of Meningococcal Genes and Small Noncoding RNAs Required for Host Cell Colonization

    PubMed Central

    Capel, Elena; Zomer, Aldert L.; Nussbaumer, Thomas; Bole, Christine; Izac, Brigitte; Frapy, Eric; Meyer, Julie; Bouzinba-Ségard, Haniaa; Bille, Emmanuelle; Jamet, Anne; Cavau, Anne; Letourneur, Franck; Bourdoulous, Sandrine; Rattei, Thomas; Coureuil, Mathieu

    2016-01-01

    ABSTRACT Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia, affecting infants and adults worldwide. N. meningitidis is also a common inhabitant of the human nasopharynx and, as such, is highly adapted to its niche. During bacteremia, N. meningitidis gains access to the blood compartment, where it adheres to endothelial cells of blood vessels and causes dramatic vascular damage. Colonization of the nasopharyngeal niche and communication with the different human cell types is a major issue of the N. meningitidis life cycle that is poorly understood. Here, highly saturated random transposon insertion libraries of N. meningitidis were engineered, and the fitness of mutations during routine growth and that of colonization of endothelial and epithelial cells in a flow device were assessed in a transposon insertion site sequencing (Tn-seq) analysis. This allowed the identification of genes essential for bacterial growth and genes specifically required for host cell colonization. In addition, after having identified the small noncoding RNAs (sRNAs) located in intergenic regions, the phenotypes associated with mutations in those sRNAs were defined. A total of 383 genes and 8 intergenic regions containing sRNA candidates were identified to be essential for growth, while 288 genes and 33 intergenic regions containing sRNA candidates were found to be specifically required for host cell colonization. PMID:27486197

  16. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation.

    PubMed

    Schaffer, Jessica N; Norsworthy, Allison N; Sun, Tung-Tien; Pearson, Melanie M

    2016-04-19

    The catheter-associated uropathogenProteus mirabilisfrequently causes urinary stones, but little has been known about the initial stages of bladder colonization and stone formation. We found thatP. mirabilisrapidly invades the bladder urothelium, but generally fails to establish an intracellular niche. Instead, it forms extracellular clusters in the bladder lumen, which form foci of mineral deposition consistent with development of urinary stones. These clusters elicit a robust neutrophil response, and we present evidence of neutrophil extracellular trap generation during experimental urinary tract infection. We identified two virulence factors required for cluster development: urease, which is required for urolithiasis, and mannose-resistantProteus-like fimbriae. The extracellular cluster formation byP. mirabilisstands in direct contrast to uropathogenicEscherichia coli, which readily formed intracellular bacterial communities but not luminal clusters or urinary stones. We propose that extracellular clusters are a key mechanism ofP. mirabilissurvival and virulence in the bladder.

  17. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes.

    PubMed

    Camilios-Neto, Doumit; Bonato, Paloma; Wassem, Roseli; Tadra-Sfeir, Michelle Z; Brusamarello-Santos, Liziane C C; Valdameri, Glaucio; Donatti, Lucélia; Faoro, Helisson; Weiss, Vinicius A; Chubatsu, Leda S; Pedrosa, Fábio O; Souza, Emanuel M

    2014-05-16

    The rapid growth of the world's population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB. We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes. PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability.

  18. Synthesis, Characterisation, and Evaluation of a Cross-Linked Disulphide Amide-Anhydride-Containing Polymer Based on Cysteine for Colonic Drug Delivery

    PubMed Central

    Lim, Vuanghao; Peh, Kok Khiang; Sahudin, Shariza

    2013-01-01

    The use of disulphide polymers, a low redox potential responsive delivery, is one strategy for targeting drugs to the colon so that they are specifically released there. The objective of this study was to synthesise a new cross-linked disulphide-containing polymer based on the amino acid cysteine as a colon drug delivery system and to evaluate the efficiency of the polymers for colon targeted drug delivery under the condition of a low redox potential. The disulphide cross-linked polymers were synthesised via air oxidation of 1,2-ethanedithiol and 3-mercapto-N-2-(3-mercaptopropionamide)-3-mercapto propionic anhydride (trithiol monomers) using different ratio combinations. Four types of polymers were synthesised: P10, P11, P151, and P15. All compounds synthesised were characterised by NMR, IR, LC-MS, CHNS analysis, Raman spectrometry, SEM-EDX, and elemental mapping. The synthesised polymers were evaluated in chemical reduction studies that were performed in zinc/acetic acid solution. The suitability of each polymer for use in colon-targeted drug delivery was investigated in vitro using simulated conditions. Chemical reduction studies showed that all polymers were reduced after 0.5–1.0 h, but different polymers had different thiol concentrations. The bacterial degradation studies showed that the polymers were biodegraded in the anaerobic colonic bacterial medium. Degradation was most pronounced for polymer P15. This result complements the general consensus that biodegradability depends on the swellability of polymers in an aqueous environment. Overall, these results suggest that the cross-linked disulphide-containing polymers described herein could be used as coatings for drugs delivered to the colon. PMID:24351841

  19. Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system.

    PubMed

    Liu, Ruyin; Zhu, Junge; Yu, Zhisheng; Joshi, DevRaj; Zhang, Hongxun; Lin, Wenfang; Yang, Min

    2014-04-01

    To understand the impacts of different plumbing materials on long-term biofilm formation in water supply system, we analyzed microbial community compositions in the bulk water and biofilms on faucets with two different materials-polyvinyl chloride (PVC) and cast iron, which have been frequently used for more than10 years. Pyrosequencing was employed to describe both bacterial and eukaryotic microbial compositions. Bacterial communities in the bulk water and biofilm samples were significantly different from each other. Specific bacterial populations colonized on the surface of different materials. Hyphomicrobia and corrosion associated bacteria, such as Acidithiobacillus spp., Aquabacterium spp., Limnobacter thiooxidans, and Thiocapsa spp., were the most dominant bacteria identified in the PVC and cast iron biofilms, respectively, suggesting that bacterial colonization on the material surfaces was selective. Mycobacteria and Legionella spp. were common potential pathogenic bacteria occurred in the biofilm samples, but their abundance was different in the two biofilm bacterial communities. In contrast, the biofilm samples showed more similar eukaryotic communities than the bulk water. Notably, potential pathogenic fungi, i.e., Aspergillus spp. and Candida parapsilosis, occurred in similar abundance in both biofilms. These results indicated that microbial community, especially bacterial composition was remarkably affected by the different pipe materials (PVC and cast iron). Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  20. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia.

    PubMed

    Su, Y-L; Feng, J; Li, Y-W; Bai, J-S; Li, A-X

    2016-02-01

    Streptococcus agalactiae has become one of the most important emerging pathogens in the aquaculture industry and has resulted in large economic losses for tilapia farms in China. In this study, three pairs of specific primers were designed and tested for their specificities and sensitivities in quantitative real-time polymerase chain reactions (qPCRs) after optimization of the annealing temperature. The primer pair IGS-s/IGS-a, which targets the 16S-23S rRNA intergenic spacer region, was finally chosen, having a detection limit of 8.6 copies of S. agalactiae DNA in a 20 μL reaction mixture. Bacterial tissue tropism was demonstrated by qPCR in Oreochromis niloticus 5 days post-injection with a virulent S. agalactiae strain. Bacterial loads were detected at the highest level in brain, followed by moderately high levels in kidney, heart, spleen, intestines, and eye. Significantly lower bacterial loads were observed in muscle, gill and liver. In addition, significantly lower bacterial loads were observed in the brain of convalescent O. niloticus 14 days post-injection with several different S. agalactiae strains. The qPCR for the detection of S. agalactiae developed in this study provides a quantitative tool for investigating bacterial tissue tropism in infected fish, as well as for monitoring bacterial colonization in convalescent fish. © 2015 John Wiley & Sons Ltd.

  1. Bacterial Communities Associated with Surfaces of Leafy Greens: Shift in Composition and Decrease in Richness over Time

    PubMed Central

    Lysøe, Erik; Nordskog, Berit; Brurberg, May Bente

    2014-01-01

    The phyllosphere is colonized by a wide variety of bacteria and fungi; it harbors epiphytes, as well as plant-pathogenic bacteria and even human pathogens. However, little is known about how the bacterial community composition on leafy greens develops over time. The bacterial community of the leafy-green phyllosphere obtained from two plantings of rocket salad (Diplotaxis tenuifolia) and three plantings of lettuce (Lactuca sativa) at two farms in Norway were profiled by an Illumina MiSeq-based approach. We found that the bacterial richness of the L. sativa samples was significantly greater shortly (3 weeks) after planting than at harvest (5 to 7 weeks after planting) for plantings 1 and 3 at both farms. For the second planting, the bacterial diversity remained consistent at the two sites. This suggests that the effect on bacterial colonization of leaves, at least in part must, be seasonally driven rather than driven solely by leaf maturity. The distribution of phyllosphere communities varied between D. tenuifolia and L. sativa at harvest. The variability between these species at the same location suggests that the leaf-dwelling bacteria are not only passive inhabitants but interact with the host, which shapes niches favoring the growth of particular taxa. This work contributes to our understanding of host plant-specific microbial community structures and shows how these communities change throughout plant development. PMID:25527554

  2. Assessing the Effect of Litter Species on the Dynamic of Bacterial and Fungal Communities during Leaf Decomposition in Microcosm by Molecular Techniques

    PubMed Central

    Xu, Wenjing; Shi, Lingling; Chan, Onchim; Li, Jiao; Casper, Peter; Zou, Xiaoming

    2013-01-01

    Although bacteria and fungi are well-known to be decomposers of leaf litter, few studies have examined their compositions and diversities during the decomposition process in tropical stream water. Xishuangbanna is a tropical region preserving one of the highest floristic diversity areas in China. In this study, leaf litter of four dominant plant species in Xishuangbanna was incubated in stream water for 42 days during which samples were taken regularly. Following DNA extraction, PCR-DGGE (denaturing gradient gel electrophoresis) and clone-sequencing analyses were performed using bacterial and fungal specific primers. Leaf species have slightly influences on bacterial community rather than fungal community. The richness and diversity of bacteria was higher than that of fungi, which increased towards the end of the 42-day-incubation. The bacterial community was initially more specific upon the type of leaves and gradually became similar at the later stage of decomposition with alpha-proteobacteria as major component. Sequences affiliated to methanotrophs were obtained that indicates potentially occurrence of methane oxidation and methanogenesis. For the fungal community, sequences affiliated to Aspergillus were predominant at the beginning and then shifted to Pleosporales. Our results suggest that the microorganisms colonizing leaf biofilm in tropical stream water were mostly generalists that could exploit the resources of leaves of various species equally well. PMID:24367682

  3. Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession.

    PubMed

    Ortiz-Álvarez, Rüdiger; Fierer, Noah; de Los Ríos, Asunción; Casamayor, Emilio O; Barberán, Albert

    2018-02-20

    Ecologists have long studied primary succession, the changes that occur in biological communities after initial colonization of an environment. Most of this work has focused on succession in plant communities, laying the conceptual foundation for much of what we currently know about community assembly patterns over time. Because of their prevalence and importance in ecosystems, an increasing number of studies have focused on microbial community dynamics during succession. Here, we conducted a meta-analysis of bacterial primary succession patterns across a range of distinct habitats, including the infant gut, plant surfaces, soil chronosequences, and aquatic environments, to determine whether consistent changes in bacterial diversity, community composition, and functional traits are evident over the course of succession. Although these distinct habitats harbor unique bacterial communities, we were able to identify patterns in community assembly that were shared across habitat types. We found an increase in taxonomic and functional diversity with time while the taxonomic composition and functional profiles of communities became less variable (lower beta diversity) in late successional stages. In addition, we found consistent decreases in the rRNA operon copy number and in the high-efficient phosphate assimilation process (Pst system) suggesting that reductions in resource availability during succession select for taxa adapted to low-resource conditions. Together, these results highlight that, like many plant communities, microbial communities also exhibit predictable patterns during primary succession.

  4. Weathering-associated bacteria from the Damma glacier forefield: physiological capabilities and impact on granite dissolution.

    PubMed

    Frey, Beat; Rieder, Stefan R; Brunner, Ivano; Plötze, Michael; Koetzsch, Stefan; Lapanje, Ales; Brandl, Helmut; Furrer, Gerhard

    2010-07-01

    Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH(4)Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas.

  5. Weathering-Associated Bacteria from the Damma Glacier Forefield: Physiological Capabilities and Impact on Granite Dissolution ▿

    PubMed Central

    Frey, Beat; Rieder, Stefan R.; Brunner, Ivano; Plötze, Michael; Koetzsch, Stefan; Lapanje, Ales; Brandl, Helmut; Furrer, Gerhard

    2010-01-01

    Several bacterial strains isolated from granitic rock material in front of the Damma glacier (Central Swiss Alps) were shown (i) to grow in the presence of granite powder and a glucose-NH4Cl minimal medium without additional macro- or micronutrients and (ii) to produce weathering-associated agents. In particular, four bacterial isolates (one isolate each of Arthrobacter sp., Janthinobacterium sp., Leifsonia sp., and Polaromonas sp.) were weathering associated. In comparison to what was observed in abiotic experiments, the presence of these strains caused a significant increase of granite dissolution (as measured by the release of Fe, Ca, K, Mg, and Mn). These most promising weathering-associated bacterial species exhibited four main features rendering them more efficient in mineral dissolution than the other investigated isolates: (i) a major part of their bacterial cells was attached to the granite surfaces and not suspended in solution, (ii) they secreted the largest amounts of oxalic acid, (iii) they lowered the pH of the solution, and (iv) they formed significant amounts of HCN. As far as we know, this is the first report showing that the combined action of oxalic acid and HCN appears to be associated with enhanced elemental release from granite, in particular of Fe. This suggests that extensive microbial colonization of the granite surfaces could play a crucial role in the initial soil formation in previously glaciated mountain areas. PMID:20525872

  6. Dynamic changes in the initial colonization of Actinomyces naeslundii and Streptococcus gordonii using a new animal model.

    PubMed

    Zhang, Xi; Senpuku, Hidenobu

    2013-01-01

    Actinomyces naeslundii and Streptococcus gordonii are the predominant bacteria and initial colonizers of oral microflora. The binding of A. naeslundii and S. gordonii and the interaction between them on the salivary pellicle-coated tooth surface play an important role in the biofilm development. Recently, we reported that NOD/SCID.e2f1(-) mice are a useful model for studying oral biofilm formation by Streptococcus mutans on the tooth surface. In this study, we aimed to determine whether NOD/SCID.e2f1(-) mice can be used for studying oral colonization of A. naeslundii and S. gordonii. Colonization of A. naeslundii in mice fed with 1% sucrose water for 24 h before inoculation was higher than that among mice fed with sucrose water for 1 h. A. naeslundii colonization using mixed species-inoculation was lower than that using single-species inoculation 30-90 min after inoculation; however, the colonization was higher 120-180 min after inoculation. The mixed inoculation induced better colonization of S. gordonii than single-species inoculation 60-180 min after inoculation. Polyclonal and fluorescein isothiocyanate-labeled antibody stained bacteria showed better colonization of S. gordonii when a mixed culture is used in vivo. NOD/SCID.e2f1(-) mice were useful for studying the initial colonization of A. naeslundii and S. gordonii. Long-term supply of sucrose water creates a favorable environment for the initial colonization of A. naeslundii that, in turn, supports the colonization of S. gordonii.

  7. Suppressive Potential of Paenibacillus Strains Isolated from the Tomato Phyllosphere against Fusarium Crown and Root Rot of Tomato

    PubMed Central

    Sato, Ikuo; Yoshida, Shigenobu; Iwamoto, Yutaka; Aino, Masataka; Hyakumachi, Mitsuro; Shimizu, Masafumi; Takahashi, Hideki; Ando, Sugihiro; Tsushima, Seiya

    2014-01-01

    The suppressive potentials of Bacillus and Paenibacillus strains isolated from the tomato phyllosphere were investigated to obtain new biocontrol candidates against Fusarium crown and root rot of tomato. The suppressive activities of 20 bacterial strains belonging to these genera were examined using seedlings and potted tomato plants, and two Paenibacillus strains (12HD2 and 42NP7) were selected as biocontrol candidates against the disease. These two strains suppressed the disease in the field experiment. Scanning electron microscopy revealed that the treated bacterial cells colonized the root surface, and when the roots of the seedlings were treated with strain 42NP7 cells, the cell population was maintained on the roots for at least for 4 weeks. Although the bacterial strains had no direct antifungal activity against the causal pathogen in vitro, an increase was observed in the antifungal activities of acetone extracts from tomato roots treated with the cells of both bacterial strains. Furthermore, RT-PCR analysis verified that the expression of defense-related genes was induced in both the roots and leaves of seedlings treated with the bacterial cells. Thus, the root-colonized cells of the two Paenibacillus strains were considered to induce resistance in tomato plants, which resulted in the suppression of the disease. PMID:24920171

  8. Bacterial colonization of a fumigated alkaline saline soil.

    PubMed

    Bello-López, Juan M; Domínguez-Mendoza, Cristina A; de León-Lorenzana, Arit S; Delgado-Balbuena, Laura; Navarro-Noya, Yendi E; Gómez-Acata, Selene; Rodríguez-Valentín, Analine; Ruíz-Valdiviezo, Victor M; Luna-Guido, Marco; Verhulst, Nele; Govaerts, Bram; Dendooven, Luc

    2014-07-01

    After chloroform fumigating an arable soil, the relative abundance of phylotypes belonging to only two phyla (Actinobacteria and Firmicutes) and two orders [Actinomycetales and Bacillales (mostly Bacillus)] increased in a subsequent aerobic incubation, while it decreased for a wide range of bacterial groups. It remained to be seen if similar bacterial groups were affected when an extreme alkaline saline soil was fumigated. Soil with electrolytic conductivity between 139 and 157 dS m(-1), and pH 10.0 and 10.3 was fumigated and the bacterial community structure determined after 0, 1, 5 and 10 days by analysis of the 16S rRNA gene, while an unfumigated soil served as control. The relative abundance of the Firmicutes increased in the fumigated soil (52.8%) compared to the unfumigated soil (34.2%), while that of the Bacteroidetes decreased from 16.2% in the unfumigated soil to 8.8% in the fumigated soil. Fumigation increased the relative abundance of the genus Bacillus from 14.7% in the unfumigated soil to 25.7%. It was found that phylotypes belonging to the Firmicutes, mostly of the genus Bacillus, were dominant in colonizing the fumigated alkaline saline as found in the arable soil, while the relative abundance of a wide range of bacterial groups decreased.

  9. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment.

    PubMed

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution.

  10. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment

    PubMed Central

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution. PMID:26042091

  11. Predictors of deterioration of lung function in Polish children with cystic fibrosis.

    PubMed

    Olszowiec-Chlebna, Małgorzata; Koniarek-Maniecka, Agnieszka; Stelmach, Włodzimierz; Smejda, Katarzyna; Jerzyńska, Joanna; Majak, Paweł; Białas, Monika; Stelmach, Iwona

    2016-04-01

    Severity of lung disease varies in patients with the same CFTR genotype. It suggests that other factors affect the severity of cystic fibrosis (CF). The aim of the study was to identify risk factors that determine lung function decline in Polish cystic fibrosis children. The follow-up time was no less than 5 years of respiratory status observation based on the forced expiratory volume in 1 s value (FEV1). The socio-economic data, perinatal interview, presence of meconium ileus (MI), time of CF diagnosis, initiation of tobramycin inhalation solution (TIS), pancreatic function, sensitization to Aspergillus fumigatus, presence of impaired glucose tolerance (IGT) or diabetes mellitus, chronic bacterial colonization and number of exacerbations and hospitalizations were assessed. The mean age of 61 included children was 13.3 ±7.6 years. Delta F508 homozygosity was detected in 45.9%, 44.3% were delta F508 heterozygous, and 9.8% had other genotypes. FEV1 decline was observed among 20% of patients; the rest of the patients presented stable values of FEV1 during at least 5 years of observation. The most significant predictors related to the decline of FEV1 were presentation of MI (p = 0.0344), IGT (p = 0.0227), number of exacerbations (p = 0.0288), and early Pseudomonas aeruginosa (PA) chronic colonization (p = 0.0165) followed by late TIS initiation after the first detection of PA (p=0.0071). Neither time of diagnosis nor type of CFTR mutation was statistically significant as a predictor of lung deterioration. The presence of MI, IGT, chronic PA colonization, and number of exacerbations are risk factors for lung function deterioration.

  12. Development and testing of fiber-reinforced composite space maintainers.

    PubMed

    Kulkarni, Gajanan; Lau, Domenic; Hafezi, Sara

    2009-01-01

    The purpose of this study was to develop a clinically acceptable, cheaper, and more expedient alternative to standard stainless steel band and loop space maintainers. Loops of fiber-reinforced composites were constructed using polyethylene fiber (Ribbond) and glass fiber (Sticktech). The loops were bonded on extracted third molars and tested for flexural strength before and after thermocycling and following repair of the appliances after initial stress failure. Bacterial colonization on the appliances was also compared. Conventional stainless steel band and loop space maintainers cemented with Ketac were controls. Ribbond samples demonstrated higher flexural strength than Sticktech and the control (P<.05). No differences were noted among the other samples and the control. The repaired Ribbond samples were statistically comparable in flexural strength to the initial samples. Thermocycling resulted in decreased flexural strength of both Ribbond and Sticktech (P<.05). Thermocycled Ribbond samples were comparable to the control, but a lower flexural strength was noted for Sticktech samples (P<.05). While all space maintainers allowed some bacterial adhesion, Sticktech showed higher Streptococcus mutans counts than Ribbond (P=.06). Ribbond space-maintainers are comparable to the stainless steel in terms of physical strength and biofilm formation. The fiber-reinforced composite space maintainers may be a clinically acceptable and expedient alternative to the conventional band-loop appliance.

  13. Genital Flora, Prolonged Rupture of the Membranes and the Risk of Early Onset Neonatal Septicemia in Qatif Central Hospital, Kingdom of Saudi Arabia.

    ERIC Educational Resources Information Center

    Srair, Hussain Abu; And Others

    1993-01-01

    Evaluated 108 mothers and their newborn babies for bacterial colonization and neonatal septicemia (NNS) after membranes had ruptured for 24 hours or more. Nearly 40% of the babies were already colonized at birth. The three most common bacteria isolated from the babies were Escherichia coli, Group B Streptococcus, and Streptococcus faecalis. (MDM)

  14. The effect of a changed environment on bacterial colonization rates in an established burns centre

    PubMed Central

    Wormald, P. J.

    1970-01-01

    In an established burns centre which moved from an old building to new purpose-designed premises, colonization rates of patients' burns with Staphylococcus aureus, Pseudomonas aeruginosa and other Gram-negative bacilli were not reduced. Colonization rates with Streptococcus pyogenes increased but the increase was mainly due to multiple importations in the new premises of a strain of higher communicability than any seen in the old. In the first 32 months in the new environment 10 patients were found colonized with pseudomonas on admission and 20 became colonized in the unit. A much higher proportion of patients with burns of more than 30% body surface became colonized than of patients with less. About one-third of the above 20 patients became colonized with strains already isolated from another patient; all but one of them had small area burns. Cross-infection was not observed from numerous heavily colonized patients with high percentage burns. This paradox is discussed in detail. Basin outflows in the new premises became colonized with P. aeruginosa of two serotypes not found on patients in this unit. PMID:4993291

  15. The effect of a changed environment on bacterial colonization rates in an established burns centre.

    PubMed

    Wormald, P J

    1970-12-01

    In an established burns centre which moved from an old building to new purpose-designed premises, colonization rates of patients' burns with Staphylococcus aureus, Pseudomonas aeruginosa and other Gram-negative bacilli were not reduced. Colonization rates with Streptococcus pyogenes increased but the increase was mainly due to multiple importations in the new premises of a strain of higher communicability than any seen in the old.In the first 32 months in the new environment 10 patients were found colonized with pseudomonas on admission and 20 became colonized in the unit. A much higher proportion of patients with burns of more than 30% body surface became colonized than of patients with less. About one-third of the above 20 patients became colonized with strains already isolated from another patient; all but one of them had small area burns. Cross-infection was not observed from numerous heavily colonized patients with high percentage burns. This paradox is discussed in detail. Basin outflows in the new premises became colonized with P. aeruginosa of two serotypes not found on patients in this unit.

  16. Optimization of low energy sonication treatment for granular activated carbon colonizing biomass assessment.

    PubMed

    Saccani, G; Bernasconi, M; Antonelli, M

    2014-01-01

    This study is aimed at optimizing a low energy sonication (LES) treatment for granular activated carbon (GAC)-colonizing biomass detachment and determination, evaluating detachment efficiency and the effects of ultrasound exposure on bacterial cell viability. GAC samples were collected from two filters fed with groundwater. Conventional heterotrophic plate count (HPC) and fluorescence microscopy with a double staining method were used to evaluate cell viability, comparing two LES procedures, without and with periodical bulk substitution. A 20 min LES treatment, with bulk substitution after cycles of 5 min as maximum treatment time, allowed to recover 87%/100% of attached biomass, protecting detached bacteria from ultrasound damaging effects. Observed viable cell inactivation rate was 6.5/7.9% cell/min, with membrane-compromised cell damage appearing to be even higher (11.5%/13.1% cell/min). Assessing bacterial detachment and damaging ultrasound effects, fluorescence microscopy turned out to be more sensitive compared to conventional HPC. The optimized method revealed a GAC-colonizing biomass of 9.9 x 10(7) cell/gGAC for plant 1 and 8.8 x 10(7) cell/gGAC for plant 2, 2 log lower than reported in literature. The difference between the two GAC-colonizing biomasses is higher in terms of viable cells (46.3% of total cells in plant 1 GAC-colonizing biomass compared to the 33.3% in plant 2). Studying influent water contamination through multivariate statistical analyses, apossible combined toxic and genotoxic effect of chromium VI and trichloroethylene was suggested as a reason for the lower viable cell fraction observed in plant 2 GAC-colonizing population.

  17. Plasmid Dynamics in KPC-Positive Klebsiella pneumoniae during Long-Term Patient Colonization

    PubMed Central

    Park, Morgan; Deming, Clayton; Thomas, Pamela J.; Young, Alice C.; Coleman, Holly; Sison, Christina; Weingarten, Rebecca A.; Lau, Anna F.; Dekker, John P.; Palmore, Tara N.; Frank, Karen M.

    2016-01-01

    ABSTRACT Carbapenem-resistant Klebsiella pneumoniae strains are formidable hospital pathogens that pose a serious threat to patients around the globe due to a rising incidence in health care facilities, high mortality rates associated with infection, and potential to spread antibiotic resistance to other bacterial species, such as Escherichia coli. Over 6 months in 2011, 17 patients at the National Institutes of Health (NIH) Clinical Center became colonized with a highly virulent, transmissible carbapenem-resistant strain of K. pneumoniae. Our real-time genomic sequencing tracked patient-to-patient routes of transmission and informed epidemiologists’ actions to monitor and control this outbreak. Two of these patients remained colonized with carbapenemase-producing organisms for at least 2 to 4 years, providing the opportunity to undertake a focused genomic study of long-term colonization with antibiotic-resistant bacteria. Whole-genome sequencing studies shed light on the underlying complex microbial colonization, including mixed or evolving bacterial populations and gain or loss of plasmids. Isolates from NIH patient 15 showed complex plasmid rearrangements, leaving the chromosome and the blaKPC-carrying plasmid intact but rearranging the two other plasmids of this outbreak strain. NIH patient 16 has shown continuous colonization with blaKPC-positive organisms across multiple time points spanning 2011 to 2015. Genomic studies defined a complex pattern of succession and plasmid transmission across two different K. pneumoniae sequence types and an E. coli isolate. These findings demonstrate the utility of genomic methods for understanding strain succession, genome plasticity, and long-term carriage of antibiotic-resistant organisms. PMID:27353756

  18. Cultivated vaginal microbiomes alter HIV-1 infection and antiretroviral efficacy in colonized epithelial multilayer cultures.

    PubMed

    Pyles, Richard B; Vincent, Kathleen L; Baum, Marc M; Elsom, Barry; Miller, Aaron L; Maxwell, Carrie; Eaves-Pyles, Tonyia D; Li, Guangyu; Popov, Vsevolod L; Nusbaum, Rebecca J; Ferguson, Monique R

    2014-01-01

    There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB) contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1). The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral.

  19. Influence of sucrose and xylitol on an early Streptococcus mutans biofilm in a dental simulator.

    PubMed

    Salli, K M; Forssten, S D; Lahtinen, S J; Ouwehand, A C

    2016-10-01

    In vitro methods to study dental biofilms are useful in finding ways to support a healthy microbial balance in the oral cavity. The effects of sucrose, xylitol, and their combination on three strains of Streptococcus mutans and one strain of Streptococcus sobrinus were studied using a dental simulator. A simulator was used to mimic the oral cavity environment. It provided a continuous-flow system using artificial saliva (AS), constant temperature, mixing, and hydroxyapatite (HA) surface in which the influence of xylitol was studied. The quantities of planktonic and adhered bacteria were measured by real-time qPCR. Compared against the untreated AS, adding 1% sucrose increased the bacterial colonization of HA (p<0.0001) whereas 2% xylitol decreased it (p<0.05), with the exception of clinical S. mutans isolate 117. The combination of xylitol and sucrose decreased the bacterial quantities within the AS and the colonization on the HA by clinical S. mutans isolate 2366 was reduced (p<0.05). Increasing the concentration (2%-5%) of xylitol caused a reduction in bacterial counts even in the presence of sucrose. The continuous-culture biofilm model showed that within a young biofilm, sucrose significantly promotes whereas xylitol reduces bacterial colonization and proliferation. The results indicate that xylitol affects the ability of certain S. mutans strains to adhere to the HA. Clinical studies have also shown that xylitol consumption decreases caries incidence and reduces the amount of plaque. This study contributes to the understanding of the mechanism behind these clinical observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Randomized Controlled Trial to Reduce Bacterial Colonization of Surgical Drains After Breast and Axillary Operations

    PubMed Central

    Degnim, Amy C.; Scow, Jeffrey S.; Hoskin, Tanya L.; Miller, Joyce P.; Loprinzi, Margie; Boughey, Judy C.; Jakub, James W.; Throckmorton, Alyssa; Patel, Robin; Baddour, Larry M.

    2014-01-01

    Objective To determine if bacterial colonization of drains can be reduced by local antiseptic interventions. Summary Background Drains are a potential source of bacterial entry into surgical wounds and may contribute to surgical site infection (SSI) after breast surgery. Methods Following IRB approval, patients undergoing total mastectomy and/or axillary lymph node dissection were randomized to standard drain care (control) or drain antisepsis (treated). Standard drain care comprised twice daily cleansing with alcohol swabs. Antisepsis drain care included 1) a chlorhexidine disc at the drain exit site and 2) irrigation of the drain bulb twice daily with dilute sodium hypochlorite (Dakin’s) solution. Cultures results of drain fluid and tubing were compared between control and antisepsis groups. Results Overall, 100 patients with 125 drains completed the study with 48 patients (58 drains) in the control group and 52 patients (67 drains) in the antisepsis group. Cultures of drain bulb fluid at one week were positive (1+ or greater growth) in 66% (38/58) of control drains compared to 21% of antisepsis drains (14/67), (p=0.0001). Drain tubing cultures demonstrated >50 CFU in 19% (8/43) of control drains versus 0% (0/53) of treated drains (p=0.004). SSI was diagnosed in 6 patients (6%) - 5 patients in the control group and 1 patient in the antisepsis group (p=0.06). Conclusions Simple and inexpensive local antiseptic interventions with a chlorhexidine disc and hypochlorite solution reduce bacterial colonization of drains. Based on these data, further study of drain antisepsis and its potential impact on SSI rate is warranted. PMID:23518704

  1. Cultivated Vaginal Microbiomes Alter HIV-1 Infection and Antiretroviral Efficacy in Colonized Epithelial Multilayer Cultures

    PubMed Central

    Pyles, Richard B.; Vincent, Kathleen L.; Baum, Marc M.; Elsom, Barry; Miller, Aaron L.; Maxwell, Carrie; Eaves-Pyles, Tonyia D.; Li, Guangyu; Popov, Vsevolod L.; Nusbaum, Rebecca J.; Ferguson, Monique R.

    2014-01-01

    There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB) contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1). The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral. PMID:24676219

  2. Efficacy profiles for different concentrations of Lactobacillus acidophilus in experimental colitis.

    PubMed

    Chen, Lin-Lin; Zou, Yi-You; Lu, Fang-Gen; Li, Fu-Jun; Lian, Guang-Hui

    2013-08-28

    To determine the efficacy profiles of different concentrations of Lactobacillus acidophilus (L. acidophilus) for treating colitis using an experimental murine model. Colitis was established in 64 BALB/c mice by adding 5% dextran sodium sulfate (DSS) to the drinking water and allowing ad libitum access for 7 d. The mice were then randomly divided into the following control and experimental model groups (n = 8 each; day 0): untreated model control; negative-treatment model control (administered gavage of 1 mL/10 g normal saline); experimental-treatment models C4-C8 (administered gavage of 10(4), 10(5), 10(6), 10(7), or 10(8) CFU/10 g L. acidophilus, respectively); positive-treatment model control (administration of the anti-inflammatory agent prednisone acetate at 45 μg/10 g). Eight mice given regular water (no DSS) and no subsequent treatments served as the normal control group. Body weight, fecal traits, and presence of fecal occult blood were assessed daily. All animals were sacrificed on post-treatment day 7 to measure colonic length, perform histological scoring, and quantify the major bacteria in the proximal and distal colon. Intergroup differences were determined by one-way ANOVA and post-hoc Student-Newman-Keuls comparison. All treatments (L. acidophilus and prednisone acetate) protected against colitis-induced weight loss (P < 0.05 vs model and normal control groups). The extent of colitis-induced colonic shortening was significantly reduced by all treatments (prednisone acetate > C4 > C5 > C7 > C8 > C6; P < 0.05 vs untreated model group), and the C6 group showed colonic length similar to that of the normal control group (P > 0.05). The C6 group also had the lowest disease activity index scores among the model groups. The bacterial profiles in the proximal colon were similar between all of the experimental-treatment model groups (all P > 0.05). In contrast, the bacterial profile in the distal colon of the C6 group showed the distinctive features (P < 0.05 vs all other experimental-treatment model groups) of Lactobacillus sp. and Bifidobacterium sp. being the most abundant bacteria and Staphylococcus aureus being the least abundant bacteria. The most therapeutically efficacious concentration of L. acidophilus (10(6) CFU/10 g) may exert its effects by modulating the bacterial profile in the distal colon.

  3. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    PubMed

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple bacterial isolates. This will be a powerful experimental tool facilitating the study of bacterial invasion, drug resistance, and the development of new therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Photochemical coatings for the prevention of bacterial colonization.

    PubMed

    Dunkirk, S G; Gregg, S L; Duran, L W; Monfils, J D; Haapala, J E; Marcy, J A; Clapper, D L; Amos, R A; Guire, P E

    1991-10-01

    Biomaterials are being used with increasing frequency for tissue substitution. Implantable, prosthetic devices are instrumental in the saving of patients' lives and enhancing the quality of life for many others. However, the greatest barrier to expanding the use of biomedical devices is the high probability of bacterial adherence and proliferation, causing very difficult and often untreatable medical-device centered infections. The difficulty in treating such infections results in great danger to the patient, and usually retrieval of the device with considerable pain and suffering. Clearly, development of processes that make biomedical devices resistant to bacterial adherence and colonization would have widespread application in the field of biomedical technology. A photochemical surface modification process is being investigated as a generic means of applying antimicrobial coatings to biomedical devices. The photochemical process results in covalent immobilization of coatings to all classes of medical device polymers. A discussion of the photochemical surface modification process and preliminary results demonstrating the success of photochemical coatings in formulating microbial-resistant surfaces are presented in this paper.

  5. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections

    PubMed Central

    El-Aouar Filho, Rachid A.; Nicolas, Aurélie; De Paula Castro, Thiago L.; Deplanche, Martine; De Carvalho Azevedo, Vasco A.; Goossens, Pierre L.; Taieb, Frédéric; Lina, Gerard; Le Loir, Yves; Berkova, Nadia

    2017-01-01

    Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host. PMID:28589102

  6. Bacterial repopulation of drinking water pipe walls after chlorination.

    PubMed

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water.

  7. PRE-INOCULATION OF URINARY CATHETERS WITH ESCHERICHIA COLI 83972 INHIBITS CATHETER COLONIZATION BY ENTEROCOCCUS FAECALIS

    PubMed Central

    TRAUTNER, BARBARA W.; DAROUICHE, RABIH O.; HULL, RICHARD A.; HULL, SHEILA; THORNBY, JOHN I.

    2010-01-01

    Purpose The capacity of a preexisting coating of Escherichia coli 83972 to reduce catheter colonization by Enterococcus faecalis 210 was investigated. Enterococcus was chosen for these trials since it is a common urinary pathogen in patients with an indwelling urinary catheter. Materials and Methods Each experiment tested 3 growth conditions. Group 1 or E. coli plus Enterococcus catheters were exposed to E. coli 83972 for 24 hours and then to Enterococcus for 30 minutes. Group 2 or E. coli alone catheters were incubated in E. coli for 24 hours and then in sterile broth for 30 minutes. Group 3 or Enterococcus alone catheters did not undergo the initial incubation with E. coli before the 30-minute incubation with Enterococcus: All catheters were then incubated in sterile human urine for 24 hours. Catheters were washed with saline and cut into 5, 1 cm. segments. Each segment was sonicated and the sonication fluid was diluted and plated. The results of each of the 5 segments were averaged and the set of experiments was repeated 7 times. Results A preexisting coating of E. coli 83972 reduced catheter colonization by E. faecalis 210 more than 10-fold. Enterococcus alone catheters had a median of 9.7 × 105 enterococci per cm., whereas E. coli plus Enterococcus catheters had a median of 0.38 × 105 enterococci per cm. (p = 0.016). Conclusions Pre-inoculating urinary catheters with E. coli 83972 significantly impedes catheter colonization by Enterococcus: These promising in vitro results prompt the clinical investigation of this particular application of bacterial interference. PMID:11743359

  8. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population.

    PubMed

    Janowski, Andrew; Newland, Jason

    2017-01-01

    In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with Streptococcus agalactiae . We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis.

  9. Effect of nematodes on rhizosphere colonization by seed-applied bacteria.

    PubMed

    Knox, Oliver G G; Killham, Ken; Artz, Rebekka R E; Mullins, Chris; Wilson, Michael

    2004-08-01

    There is much interest in the use of seed-applied bacteria for biocontrol and biofertilization, and several commercial products are available. However, many attempts to use this strategy fail because the seed-applied bacteria do not colonize the rhizosphere. Mechanisms of rhizosphere colonization may involve active bacterial movement or passive transport by percolating water or plant roots. Transport by other soil biota is likely to occur, but this area has not been well studied. We hypothesized that interactions with soil nematodes may enhance colonization. To test this hypothesis, a series of microcosm experiments was carried out using two contrasting soils maintained under well-defined physical conditions where transport by mass water flow could not occur. Seed-applied Pseudomonas fluorescens SBW25 was capable of rhizosphere colonization at matric potentials of -10 and -40 kPa in soil without nematodes, but colonization levels were substantially increased by the presence of nematodes. Our results suggest that nematodes can have an important role in rhizosphere colonization by bacteria in soil.

  10. A Systems Biology Approach Reveals Differences in the Dynamics of Colonization and Degradation of Grass vs. Hay by Rumen Microbes with Minor Effects of Vitamin E Supplementation

    PubMed Central

    Belanche, Alejandro; Newbold, Charles J.; Lin, Wanchang; Rees Stevens, Pauline; Kingston-Smith, Alison H.

    2017-01-01

    Increasing the efficiency of utilization of fresh and preserved forage is a key target for ruminant science. Vitamin E is often used as additive to improve product quality but its impact of the rumen function is unknown. This study investigated the successional microbial colonization of ryegrass (GRA) vs. ryegrass hay (HAY) in presence of zero or 50 IU/d supplementary vitamin E, using a rumen simulation technique. A holistic approach was used to link the dynamics of feed degradation with the structure of the liquid-associated (LAB) and solid-associated bacteria (SAB). Results showed that forage colonization by SAB was a tri-phasic process highly affected by the forage conservation method: Early colonization (0–2 h after feeding) by rumen microbes was 2× faster for GRA than HAY diets and dominated by Lactobacillus and Prevotella which promoted increased levels of lactate (+56%) and ammonia (+18%). HAY diets had lower DM degradation (-72%) during this interval being Streptococcus particularly abundant. During secondary colonization (4–8 h) the SAB community increased in size and decreased in diversity as the secondary colonizers took over (Pseudobutyrivibrio) promoting the biggest differences in the metabolomics profile between diets. Secondary colonization was 3× slower for HAY vs. GRA diets, but this delay was compensated by a greater bacterial diversity (+197 OTUs) and network complexity resulting in similar feed degradations. Tertiary colonization (>8 h) consisted of a slowdown in the colonization process and simplification of the bacterial network. This slowdown was less evident for HAY diets which had higher levels of tertiary colonizers (Butyrivibrio and Ruminococcus) and may explain the higher DM degradation (+52%) during this interval. The LAB community was particularly active during the early fermentation of GRA and during the late fermentation for HAY diets indicating that the availability of nutrients in the liquid phase reflects the dynamics of feed degradation. Vitamin E supplementation had minor effects but promoted a simplification of the LAB community and a slight acceleration in the SAB colonization sequence which could explain the higher DM degradation during the secondary colonization. Our findings suggest that when possible, grass should be fed instead of hay, in order to accelerate feed utilization by rumen microbes. PMID:28824585

  11. Tracking Bioluminescent ETEC during In vivo BALB/c Mouse Colonization

    PubMed Central

    Rodea, Gerardo E.; Montiel-Infante, Francisco X.; Cruz-Córdova, Ariadnna; Saldaña-Ahuactzi, Zeus; Ochoa, Sara A.; Espinosa-Mazariego, Karina; Hernández-Castro, Rigoberto; Xicohtencatl-Cortes, Juan

    2017-01-01

    Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea worldwide. Adhesion to the human intestinal tract is crucial for colonization. ETEC adhesive structures have been extensively studied; however, colonization dynamics remain uncharacterized. The aim of this study was to track bioluminescent ETEC during in vivo infection. The promoter region of dnaK was fused with the luc gene, resulting in the pRMkluc vector. E. coli K-12 and ETEC FMU073332 strains were electroporated with pRMkluc. E. coli K-12 pRMkluc was bioluminescent; in contrast, the E. coli K-12 control strain did not emit bioluminescence. The highest light emission was measured at 1.9 OD600 (9 h) and quantified over time. The signal was detected starting at time 0 and up to 12 h. Streptomycin-treated BALB/c mice were orogastrically inoculated with either ETEC FMU073332 pRMkluc or E. coli K-12 pRMkluc (control), and bacterial colonization was determined by measuring bacterial shedding in the feces. ETEC FMU073332 pRMkluc shedding started and stopped after inoculation of the control strain, indicating that mouse intestinal colonization by ETEC FMU073332 pRMkluc lasted longer than colonization by the control. The bioluminescence signal of ETEC FMU073332 pRMkluc was captured starting at the time of inoculation until 12 h after inoculation. The bioluminescent signal emitted by ETEC FMU073332 pRMkluc in the proximal mouse ileum was located, and the control signal was identified in the cecum. The detection of maximal light emission and bioluminescence duration allowed us to follow ETEC during in vivo infection. ETEC showed an enhanced colonization and tropism in the mouse intestine compared with those in the control strain. Here, we report the first study of ETEC colonization in the mouse intestine accompanied by in vivo imaging. PMID:28560186

  12. The antimicrobial effect of Octenidine-dihydrochloride coated polymer tracheotomy tubes on Staphylococcus aureus and Pseudomonas aeruginosa colonisation

    PubMed Central

    2009-01-01

    Background The surface of polymeric tracheotomy tubes is a favourable environment for biofilm formation and therefore represents a potential risk factor for the development of pneumonia after tracheotomy. The aim of this in-vitro study was to develop octenidine-dihydrochloride (OCT) coated polymer tracheotomy tubes and investigate any effects on Staphylococcus (S.) aureus and Pseudomonas (P.) aeruginosa colonization. Additionally the resistance of the OCT coating was tested using reprocessing procedures like brushing, rinsing and disinfection with glutaraldehyde Results Contamination with S. aureus: Before any reprocessing, OCT coated tracheotomy tubes were colonized with 103 cfu/ml and uncoated tracheotomy tubes with 105 cfu/ml (P = 0.045). After reprocessing, no differences in bacterial concentration between modified and conventional tubes were observed. Contamination with P. aeruginosa: Before reprocessing, OCT coated tubes were colonized with 106 cfu/ml and uncoated tubes with 107 cfu/ml (P = 0.006). After reprocessing, no significant differences were observed. Conclusion OCT coating initially inhibits S. aureus and P. aeruginosa colonisation on tracheotomy tubes. This effect, however, vanishes quickly after reprocessing of the tubes due to poor adhesive properties of the antimicrobial compound. Despite the known antimicrobial effect of OCT, its use for antimicrobial coating of tracheotomy tubes is limited unless methods are developed to allow sustained attachment to the tube. PMID:19630994

  13. Development of colonic microflora as assessed by pyrosequencing in dairy calves fed waste milk

    USDA-ARS?s Scientific Manuscript database

    The objective of the current study was to examine the effect of pasteurization of waste milk used to feed dairy calves on the bacterial diversity of their lower gut. Using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP), fecal samples from dairy calves aging from 1 week to 6 mon...

  14. The Role of Oligosaccharides in Host-Microbial Interactions for Human Health.

    PubMed

    Ross, Sarah A; Lane, Jonathan A; Marotta, Mariarosaria; Kavanaugh, Devon; Ryan, Joseph Thomas; Joshi, Lokesh; Hickey, Rita M

    Milk oligosaccharides have many associated bioactivities which can contribute to human health and offer protective properties to the host. Such bioactivities include anti-infective properties whereby oligosaccharides interact with bacterial cells and prevent adhesion to the host and subsequent colonization. Milk oligosaccharides have also been shown to alter the glycosylation of intestinal cells, leading to a reduction in pathogenic colonization. In addition, these sugars promote adhesion of commensal bacterial strains to host cells as well as possessing the ability to alter mucin expression in intestinal cells and improve barrier function. The ability of milk oligosaccharides to alter the transcriptome of both commensal bacterial strains and intestinal epithelial cells has also been revealed, indicating the potential of many cell types to detect the presence of milk oligosaccharides and respond accordingly at the genetic level. Interestingly, domestic animal milk may provide a bioactive source of oligosaccharides for formula supplementation with the aim of emulating the gold standard that is human milk. Overall, this review highlights the ability of milk oligosaccharides to promote health in a variety of ways, for example, through direct bacterial interactions, immunomodulatory activities, promotion of gut barrier function, and induction of protective transcriptional responses.

  15. [Urinary catheter biofilm infections].

    PubMed

    Holá, V; Růzicka, F

    2008-04-01

    Urinary tract infections, most of which are biofilm infections in catheterized patients, account for more than 40% of hospital infections. Bacterial colonization of the urinary tract and catheters causes not only infection but also other complications such as catheter blockage by bacterial encrustation, urolithiasis and pyelonephritis. About 50% of long-term catheterized patients face urinary flow obstruction due to catheter encrustation, but no measure is currently available to prevent it. Encrustation has been known either to result from metabolic dysfunction or to be of microbial origin, with urease positive bacterial species implicated most often. Infectious calculi account for about 15-20% of all cases of urolithiasis and are often associated with biofilm colonization of a long-term indwelling urinary catheter or urethral stent. The use of closed catheter systems is helpful in reducing such problems; nevertheless, such a system only delays the inevitable, with infections emerging a little later. Various coatings intended to prevent the bacterial adhesion to the surface of catheters and implants and thus also the emergence of biofilm infections, unfortunately, do not inhibit the microbial adhesion completely and permanently and the only reliable method for biofilm eradication remains the removal of the foreign body from the patient.

  16. The tad locus: postcards from the widespread colonization island.

    PubMed

    Tomich, Mladen; Planet, Paul J; Figurski, David H

    2007-05-01

    The Tad (tight adherence) macromolecular transport system, which is present in many bacterial and archaeal species, represents an ancient and major new subtype of type II secretion. The tad genes are present on a genomic island named the widespread colonization island (WCI), and encode the machinery that is required for the assembly of adhesive Flp (fimbrial low-molecular-weight protein) pili. The tad genes are essential for biofilm formation, colonization and pathogenesis in the genera Aggregatibacter (Actinobacillus), Haemophilus, Pasteurella, Pseudomonas, Yersinia, Caulobacter and perhaps others. Here we review the structure, function and evolution of the Tad secretion system.

  17. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis.

    PubMed

    Ruby, E G; Asato, L M

    1993-01-01

    A pure culture of the luminous bacterium Vibrio fischeri is maintained in the light-emitting organ of the sepiolid squid Euprymna scolopes. When the juvenile squid emerges from its egg it is symbiont-free and, because bioluminescence is part of an anti-predatory behavior, therefore must obtain a bacterial inoculum from the surrounding environment. We document here the kinetics of the process by which newly hatched juvenile squids become infected by symbiosis-competent V. fischeri. When placed in seawater containing as few as 240 colony-forming-units (CFU) per ml, the juvenile became detectably bioluminescent within a few hours. Colonization of the nascent light organ was initiated with as few as 1 to 10 bacteria, which rapidly began to grow at an exponential rate until they reached a population size of approximately 10(5) cells by 12 h after the initial infection. Subsequently, the number of bacteria in the established symbiosis was maintained essentially constant by a combination of both a > 20-fold reduction in bacterial growth rate, and an expulsion of excess bacteria into the surrounding seawater. While V. fischeri cells are normally flagellated and motile, these bacteria did not elaborate these appendages once the symbiosis was established; however, they quickly began to synthesize flagella when they were removed from the light organ environment. Thus, two important biological characteristics, growth rate and flagellation, were modulated during establishment of the association, perhaps as part of a coordinated series of symbiotic responses.

  18. Green kiwifruit modulates the colonic microbiota in growing pigs.

    PubMed

    Han, K S; Balan, P; Molist Gasa, F; Boland, M

    2011-04-01

    To investigate whether green kiwifruit modulates the composition of colonic microbiota in growing pigs. Thirty-two pigs were fed the control diet or one of the three test diets containing either cellulose, freeze-dried kiwifruit or kiwifruit fibre as the sole fibre source for 14-day study. A Ward's dendrogram of similarity cluster analysis on PCR-DGGE gels revealed that inclusion of freeze-dried kiwifruit and kiwifruit fibre into diets altered the bacterial community, indicating the presence of two distinct clusters. Quantification of different bacterial groups by qPCR demonstrated that pigs fed the freeze-dried kiwifruit or kiwifruit fibre diets had a significantly higher number (P < 0·05) of total bacteria and Bacteroides group and a lower number of Enterobacteria and Escherichia coli group, as well as a greater ratio of Lactobacillus to Enterobacteria when compared to pigs fed the control or cellulose diets. Green kiwifruit, mainly because of fibre, modulated the colonic microbiota, leading to an improved intestinal environment in growing pigs. This is the first report regarding the effect of green kiwifruit on gut microbiota using the in vivo pig model. These results provide the first evidence of interaction between green kiwifruit and colonic microbiota. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  19. The type III secretion system is necessary for the development of a pathogenic and endophytic interaction between Herbaspirillum rubrisubalbicans and Poaceae.

    PubMed

    Schmidt, Maria Augusta; Balsanelli, Eduardo; Faoro, Hellison; Cruz, Leonardo M; Wassem, Roseli; de Baura, Valter A; Weiss, Vinícius; Yates, Marshall G; Madeira, Humberto M F; Pereira-Ferrari, Lilian; Fungaro, Maria H P; de Paula, Francine M; Pereira, Luiz F P; Vieira, Luiz G E; Olivares, Fábio L; Pedrosa, Fábio O; de Souza, Emanuel M; Monteiro, Rose A

    2012-06-06

    Herbaspirillum rubrisubalbicans was first identified as a bacterial plant pathogen, causing the mottled stripe disease in sugarcane. H. rubrisubalbicans can also associate with various plants of economic interest in a non pathogenic manner. A 21 kb DNA region of the H. rubrisubalbicans genome contains a cluster of 26 hrp/hrc genes encoding for the type three secretion system (T3SS) proteins. To investigate the contribution of T3SS to the plant-bacterial interaction process we generated mutant strains of H. rubrisubalbicans M1 carrying a Tn5 insertion in both the hrcN and hrpE genes. H. rubrisulbalbicans hrpE and hrcN mutant strains of the T3SS system failed to cause the mottled stripe disease in the sugarcane susceptible variety B-4362. These mutant strains also did not produce lesions on Vigna unguiculata leaves. Oryza sativa and Zea mays colonization experiments showed that mutations in hrpE and hrcN genes reduced the capacity of H. rubrisulbalbicans to colonize these plants, suggesting that hrpE and hrcN genes are involved in the endophytic colonization. Our results indicate that the T3SS of H. rubrisubalbicans is necessary for the development of the mottled stripe disease and endophytic colonization of rice.

  20. GROUP B STREPTOCOCCUS: PREVALENCE IN A NON-OBSTETRIC POPULATION

    PubMed Central

    LECLAIR, Catherine M.; HART, Ashley E.; GOETSCH, Martha F.; CARPENTIER, Heather; JENSEN, Jeffrey T.

    2010-01-01

    Objective: To establish and compare the prevalence of Group B streptococcus (GBS) colonization in the vaginas of non-obstetric women with and without vaginitis. Materials and Methods: Cross-sectional analysis Group B streptococcus vaginal culture status of non-pregnant, estrogen-replete women ≥18 years presenting for annual gynecological exams or vaginal infection. Subjects were classified into 3 groups: no vaginitis (NV) if symptoms were absent and exam was normal, common vaginitis (CV) if microscopic exam revealed yeast, bacterial vaginosis or trichomonads, or inflammatory vaginitis (IV) if exam revealed inflammation and immature squamous cells, but no pathogens. Results: Of the 215 women recruited: 147 (68.4%) showed no evidence of vaginitis, 41 (19.1%) had CV, and 27 (12.6%) showed evidence of IV. The overall prevalence rate of GBS was 22.8%. Vaginitis was associated with a significantly increased risk of GBS colonization [Adjusted OR: CV 2.7 (1.1-6.2); IV 2.9 (1.1-8.0)]. Logistic regression revealed pH >4.5, presence of abnormal discharge on exam and a women's complaint of current symptoms to be significant predicators of the presence of GBS. Conclusion: GBS colonization occurs more commonly in women with vaginitis. This suggests that disruption of the normal vaginal bacterial environment is an important predictor for GBS colonization. PMID:20592549

  1. The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens.

    PubMed

    Matthysse, Ann G; Marry, Mazz; Krall, Leonard; Kaye, Mitchell; Ramey, Bronwyn E; Fuqua, Clay; White, Alan R

    2005-09-01

    Agrobacterium tumefaciens growing in liquid attaches to the surface of tomato and Arabidopsis thaliana roots, forming a biofilm. The bacteria also colonize roots grown in sterile quartz sand. Attachment, root colonization, and biofilm formation all were markedly reduced in celA and chvB mutants, deficient in production of cellulose and cyclic beta-(1,2)-D-glucans, respectively. We have identified two genes (celG and cell) in which mutations result in the overproduction of cellulose as judged by chemical fractionation and methylation analysis. Wild-type and chvB mutant strains carrying a cDNA clone of a cellulose synthase gene from the marine urochordate Ciona savignyi also overproduced cellulose. The overproduction in a wild-type strain resulted in increased biofilm formation on roots, as evaluated by light microscopy, and levels of root colonization intermediate between those of cellulose-minus mutants and the wild type. Overproduction of cellulose by a nonattaching chvB mutant restored biofilm formation and bacterial attachment in microscopic and viable cell count assays and partially restored root colonization. Although attachment to plant surfaces was restored, overproduction of cellulose did not restore virulence in the chvB mutant strain, suggesting that simple bacterial binding to plant surfaces is not sufficient for pathogenesis.

  2. Comparison of Lactobacillus crispatus isolates from Lactobacillus-dominated vaginal microbiomes with isolates from microbiomes containing bacterial vaginosis-associated bacteria

    PubMed Central

    Abdelmaksoud, Abdallah A.; Koparde, Vishal N.; Sheth, Nihar U.; Serrano, Myrna G.; Glascock, Abigail L.; Fettweis, Jennifer M.; Strauss, Jerome F.; Buck, Gregory A.

    2016-01-01

    Vaginal lactobacilli can inhibit colonization by and growth of other bacteria, thereby preventing development of bacterial vaginosis (BV). Amongst the lactobacilli, Lactobacillus crispatus appears to be particularly effective at inhibiting growth of BV-associated bacteria. Nonetheless, some women who are colonized with this species can still develop clinical BV. Therefore, we sought to determine whether strains of L. crispatus that colonize women with lactobacilli-dominated vaginal microbiomes are distinct from strains that colonize women who develop BV. The genomes of L. crispatus isolates from four women with lactobacilli-dominated vaginal microbiomes ( < 1 % 16S rRNA reads above threshold from genera other than Lactobacillus) and four women with microbiomes containing BV-associated bacteria (>12 % 16S rRNA reads from bacterial taxa associated with BV) were sequenced and compared. Lactic acid production by the different strains was quantified. Phage induction in the strains was also analysed. There was considerable genetic diversity between strains, and several genes were exclusive to either the strains from Lactobacillus-dominated microbiomes or those containing BV-associated bacteria. Overall, strains from microbiomes dominated by lactobacilli did not differ from strains from microbiomes containing BV-associated bacteria with respect to lactic acid production. All of the strains contained multiple phage, but there was no clear distinction between the presence or absence of BV-associated bacteria with respect to phage-induced lysis. Genes found to be exclusive to the Lactobacillus-dominated versus BV-associated bacteria-containing microbiomes could play a role in the maintenance of vaginal health and the development of BV, respectively. PMID:26747455

  3. An annotated cDNA library of juvenile Euprymna scolopes with and without colonization by the symbiont Vibrio fischeri

    PubMed Central

    Chun, Carlene K; Scheetz, Todd E; Bonaldo, Maria de Fatima; Brown, Bartley; Clemens, Anik; Crookes-Goodson, Wendy J; Crouch, Keith; DeMartini, Tad; Eyestone, Mari; Goodson, Michael S; Janssens, Bernadette; Kimbell, Jennifer L; Koropatnick, Tanya A; Kucaba, Tamara; Smith, Christina; Stewart, Jennifer J; Tong, Deyan; Troll, Joshua V; Webster, Sarahrose; Winhall-Rice, Jane; Yap, Cory; Casavant, Thomas L; McFall-Ngai, Margaret J; Soares, M Bento

    2006-01-01

    Background Biologists are becoming increasingly aware that the interaction of animals, including humans, with their coevolved bacterial partners is essential for health. This growing awareness has been a driving force for the development of models for the study of beneficial animal-bacterial interactions. In the squid-vibrio model, symbiotic Vibrio fischeri induce dramatic developmental changes in the light organ of host Euprymna scolopes over the first hours to days of their partnership. We report here the creation of a juvenile light-organ specific EST database. Results We generated eleven cDNA libraries from the light organ of E. scolopes at developmentally significant time points with and without colonization by V. fischeri. Single pass 3' sequencing efforts generated 42,564 expressed sequence tags (ESTs) of which 35,421 passed our quality criteria and were then clustered via the UIcluster program into 13,962 nonredundant sequences. The cDNA clones representing these nonredundant sequences were sequenced from the 5' end of the vector and 58% of these resulting sequences overlapped significantly with the associated 3' sequence to generate 8,067 contigs with an average sequence length of 1,065 bp. All sequences were annotated with BLASTX (E-value < -03) and Gene Ontology (GO). Conclusion Both the number of ESTs generated from each library and GO categorizations are reflective of the activity state of the light organ during these early stages of symbiosis. Future analyses of the sequences identified in these libraries promise to provide valuable information not only about pathways involved in colonization and early development of the squid light organ, but also about pathways conserved in response to bacterial colonization across the animal kingdom. PMID:16780587

  4. The microbial ecology of anaerobic cellulose degradation in municipal waste landfill sites: evidence of a role for fibrobacters.

    PubMed

    McDonald, James E; Houghton, James N I; Rooks, David J; Allison, Heather E; McCarthy, Alan J

    2012-04-01

    Cellulose is reputedly the most abundant organic polymer in the biosphere, yet despite the fundamental role of cellulolytic microorganisms in global carbon cycling and as potential sources of novel enzymes for biotechnology, their identity and ecology is not well established. Cellulose is a major component of landfill waste and its degradation is therefore a key feature of the anaerobic microbial decomposition process. Here, we targeted a number of taxa containing known cellulolytic anaerobes (members of the bacterial genus Fibrobacter, lineages of Clostridium clusters I, III, IV and XIV, and anaerobic fungi of the Neocallimastigales) in landfill leachate and colonized cellulose 'baits' via PCR and quantitative PCR (qPCR). Fibrobacter spp. and Clostridium clusters III, IV and XIV were detected in almost all leachate samples and cluster III and XIV clostridia were the most abundant (1-6% and 1-17% of total bacterial 16S rRNA gene copies respectively). Two landfill leachate microcosms were constructed to specifically assess those microbial communities that colonize and degrade cellulose substrates in situ. Scanning electron microscopy (SEM) of colonized cotton revealed extensive cellulose degradation in one microcosm, and Fibrobacter spp. and Clostridium cluster III represented 29% and 17%, respectively, of total bacterial 16S rRNA gene copies in the biofilm. Visible cellulose degradation was not observed in the second microcosm, and this correlated with negligible relative abundances of Clostridium cluster III and Fibrobacter spp. (≤ 0.1%), providing the first evidence that the novel fibrobacters recently detected in landfill sites and other non-gut environments colonize and degrade cellulose substrates in situ. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut.

    PubMed

    Wang, Xiaoxin; Lu, Huifang; Feng, Zhou; Cao, Jie; Fang, Chao; Xu, Xianming; Zhao, Liping; Shen, Jian

    2017-01-01

    Human breast milk is recognized as one of multiple important sources of commensal bacteria for infant gut. Previous studies searched for the bacterial strains shared between breast milk and infant feces by isolating bacteria and performing strain-level bacterial genotyping, but only limited number of milk bacteria were identified to colonize infant gut, including bacteria from Bifidobacterium , Staphylococcus , Lactobacillus , and Escherichia / Shigella . Here, to identify the breast milk bacteria capable of colonizing gut without the interference of bacteria of origins other than the milk or the necessity to analyze infant feces, normal chow-fed germ-free mice were orally inoculated with the breast milk collected from a mother 2 days after vaginal delivery. According to 16S rRNA gene-based denaturant gradient gel electrophoresis and Illumina sequencing, bacteria at >1% abundance in the milk inoculum were only Streptococcus (56.0%) and Staphylococcus (37.4%), but in the feces of recipient mice were Streptococcus (80.3 ± 2.3%), Corynebacterium (10.0 ± 2.6 %), Staphylococcus (7.6 ± 1.6%), and Propionibacterium (2.1 ± 0.5%) that were previously shown as dominant bacterial genera in the meconium of C-section-delivered human babies; the abundance of anaerobic gut-associated bacteria, Faecalibacterium , Prevotella , Roseburia , Ruminococcus , and Bacteroides , was 0.01-1% in the milk inoculum and 0.003-0.01% in mouse feces; the abundance of Bifidobacterium spp. was below the detection limit of Illumina sequencing in the milk but at 0.003-0.01% in mouse feces. The human breast milk microbiota-associated mouse model may be used to identify additional breast milk bacteria that potentially colonize infant gut.

  6. Uropathogenic E. coli Exploit CEA to Promote Colonization of the Urogenital Tract Mucosa

    PubMed Central

    Muenzner, Petra; Kengmo Tchoupa, Arnaud; Klauser, Benedikt; Brunner, Thomas; Putze, Johannes; Dobrindt, Ulrich; Hauck, Christof R.

    2016-01-01

    Attachment to the host mucosa is a key step in bacterial pathogenesis. On the apical surface of epithelial cells, members of the human carcinoembryonic antigen (CEA) family are abundant glycoproteins involved in cell-cell adhesion and modulation of cell signaling. Interestingly, several gram-negative bacterial pathogens target these receptors by specialized adhesins. The prototype of a CEACAM-binding pathogen, Neisseria gonorrhoeae, utilizes colony opacity associated (Opa) proteins to engage CEA, as well as the CEA-related cell adhesion molecules CEACAM1 and CEACAM6 on human epithelial cells. By heterologous expression of neisserial Opa proteins in non-pathogenic E. coli we find that the Opa protein-CEA interaction is sufficient to alter gene expression, to increase integrin activity and to promote matrix adhesion of infected cervical carcinoma cells and immortalized vaginal epithelial cells in vitro. These CEA-triggered events translate in suppression of exfoliation and improved colonization of the urogenital tract by Opa protein-expressing E. coli in CEA-transgenic compared to wildtype mice. Interestingly, uropathogenic E. coli expressing an unrelated CEACAM-binding protein of the Afa/Dr adhesin family recapitulate the in vitro and in vivo phenotype. In contrast, an isogenic strain lacking the CEACAM-binding adhesin shows reduced colonization and does not suppress epithelial exfoliation. These results demonstrate that engagement of human CEACAMs by distinct bacterial adhesins is sufficient to blunt exfoliation and to promote host infection. Our findings provide novel insight into mucosal colonization by a common UPEC pathotype and help to explain why human CEACAMs are a preferred epithelial target structure for diverse gram-negative bacteria to establish a foothold on the human mucosa. PMID:27171273

  7. The Effect of Therapeutic Clowning on Handwashing Technique and Microbial Colonization in Preschool Children.

    PubMed

    Arıkan, Duygu; Gürarslan Baş, Nazan; Kurudirek, Fatma; Baştopcu, Ayşe; Uslu, Hakan

    2018-05-15

    This study aimed to determine the effect of therapeutic clowning on handwashing technique and microbial colonization in preschool children. This randomized controlled trial was conducted using pre-test and post-test experimental and control groups. The study was conducted between March and June 2016 in two kindergartens in eastern Turkey. The study was completed with a total of 195 students, including 90 students in the experimental group and 105 students in the control group. A questionnaire was used for data collection. This questionnaire included sections about the subjects' descriptive characteristics and the results of the bacterial cultures of their hand swabs. For the collection of these swabs, the subjects were informed in advance, and samples were collected at predetermined times. The swabs were analyzed to determine the bacterial colonization of the subjects' hands. Clowns and video activities were used as intervention tools in the study. In the post-test, the microbial growth was ≤10 3 in 68.9% and >10 3 in 31.1% of the subjects in the experimental group. In contrast, the growth was ≤10 3 in 34.3% and >10 3 in 65.7% of the control group subjects. The difference in the post-test microbial growths of the two groups was statistically significant (p < .000). The hygienic handwashing technique taught in the therapeutic clowning and videos reduced the bacterial colonization on the preschool children's hands by 50%. Moreover, this method was effective in reducing the growth rate of coliform bacteria that indicate undesirable, poor hygiene of the hands. Considering these results, we recommend that pediatric healthcare professionals use entertaining methods such as those involving clowns to teach and guide children regarding hygienic handwashing techniques. © 2018 Sigma Theta Tau International.

  8. Bacterial contamination hypothesis: a new concept in endometriosis.

    PubMed

    Khan, Khaleque N; Fujishita, Akira; Hiraki, Koichi; Kitajima, Michio; Nakashima, Masahiro; Fushiki, Shinji; Kitawaki, Jo

    2018-04-01

    Endometriosis is a multifactorial disease that mainly affects women of reproductive age. The exact pathogenesis of this disease is still debatable. The role of bacterial endotoxin (lipopolysaccharide, LPS) and Toll-like receptor 4 (TLR4) in endometriosis were investigated and the possible source of endotoxin in the pelvic environment was examined. The limulus amoebocyte lysate test was used to measure the endotoxin levels in the menstrual fluid and peritoneal fluid and their potential role in the growth of endometriosis was investigated. Menstrual blood and endometrial samples were cultured for the presence of microbes. The effect of gonadotrophin-releasing hormone agonist (GnRHa) treatment on intrauterine microbial colonization (IUMC) and the occurrence of endometritis was investigated. Lipopolysaccharide regulates the pro-inflammatory response in the pelvis and growth of endometriosis via the LPS/TLR4 cascade. The menstrual blood was highly contaminated with Escherichea coli and the endometrial samples were colonized with other microbes. A cross-talk between inflammation and ovarian steroids or the stress reaction also was observed in the pelvis. Treatment with GnRHa further worsens intrauterine microbial colonization, with the consequent occurrence of endometritis in women with endometriosis. For the first time, a new concept called the "bacterial contamination hypothesis" is proposed in endometriosis. This study's findings of IUMC in women with endometriosis could hold new therapeutic potential in addition to the conventional estrogen-suppressing agent.

  9. Two Types of Threonine-Tagged Lipopeptides Synergize in Host Colonization by Pathogenic Burkholderia Species.

    PubMed

    Thongkongkaew, Tawatchai; Ding, Wei; Bratovanov, Evgeni; Oueis, Emilia; Garcı A-Altares, Marı A; Zaburannyi, Nestor; Harmrolfs, Kirsten; Zhang, Youming; Scherlach, Kirstin; Müller, Rolf; Hertweck, Christian

    2018-05-18

    Bacterial infections of agriculturally important mushrooms and plants pose a major threat to human food sources worldwide. However, structures of chemical mediators required by the pathogen for host colonization and infection remain elusive in most cases. Here, we report two types of threonine-tagged lipopeptides conserved among mushroom and rice pathogenic Burkholderia species that facilitate bacterial infection of hosts. Genome mining, metabolic profiling of infected mushrooms, and heterologous expression of orphan gene clusters allowed the discovery of these unprecedented metabolites in the mushroom pathogen Burkholderia gladioli (haereogladin, burriogladin) and the plant pathogen Burkholderia glumae (haereoglumin and burrioglumin). Through targeted gene deletions, the molecular basis of lipopeptide biosynthesis by nonribosomal peptide synthetases was revealed. Surprisingly, both types of lipopeptides feature unusual threonine tags, which yield longer peptide backbones than one would expect based on the canonical colinearity of the NRPS assembly lines. Both peptides play an indirect role in host infection as biosurfactants that enable host colonization by mediating swarming and biofilm formation abilities. Moreover, MALDI imaging mass spectrometry was applied to investigate the biological role of the lipopeptides. Our results shed light on conserved mechanisms that mushroom and plant pathogenic bacteria utilize for host infection and expand current knowledge on bacterial virulence factors that may represent a new starting point for the targeted development of crop protection measures in the future.

  10. Biocontrol of Bacterial Fruit Blotch by Bacillus subtilis 9407 via Surfactin-Mediated Antibacterial Activity and Colonization

    PubMed Central

    Fan, Haiyan; Zhang, Zhanwei; Li, Yan; Zhang, Xun; Duan, Yongming; Wang, Qi

    2017-01-01

    In this study, Bacillus subtilis 9407 showed a strong antibacterial activity against Acidovorax citrulli in vitro and 61.7% biocontrol efficacy on melon seedlings 4 days post inoculation under greenhouse conditions. To understand the biocontrol mechanism of B. subtilis 9407, identify the primary antibacterial compound and determine its role in controlling bacterial fruit blotch (BFB), a srfAB deletion mutant (ΔsrfAB) was constructed. The ΔsrfAB which was deficient in production of surfactin, not only showed almost no ability to inhibit growth of A. citrulli but also decreased biofilm formation and reduced swarming motility. Colonization assay demonstrated that B. subtilis 9407 could conlonize on melon roots and leaves in a large population, while ΔsrfAB showed a four- to ten-fold reduction in colonization of melon roots and leaves. Furthermore, a biocontrol assay showed that ΔsrfAB lost the biocontrol efficacy. In summary, our results indicated that surfactin, which consists of C13- to C16-surfactin A was the primary antibacterial compound of B. subtilis 9407, and it played a major role in biofilm formation, swarming motility, colonization and suppressing BFB. We propose that the biocontrol activity of B. subtilis 9407 is the results of the coordinated action of surfactin-mediated antibacterial activity and colonization. This study reveals for the first time that the use of a B. subtilis strain as a potential biological control agent could efficiently control BFB by producing surfactin. PMID:29075242

  11. Biocontrol of Bacterial Fruit Blotch by Bacillus subtilis 9407 via Surfactin-Mediated Antibacterial Activity and Colonization.

    PubMed

    Fan, Haiyan; Zhang, Zhanwei; Li, Yan; Zhang, Xun; Duan, Yongming; Wang, Qi

    2017-01-01

    In this study, Bacillus subtilis 9407 showed a strong antibacterial activity against Acidovorax citrulli in vitro and 61.7% biocontrol efficacy on melon seedlings 4 days post inoculation under greenhouse conditions. To understand the biocontrol mechanism of B. subtilis 9407, identify the primary antibacterial compound and determine its role in controlling bacterial fruit blotch (BFB), a srfAB deletion mutant (Δ srfAB ) was constructed. The Δ srfAB which was deficient in production of surfactin, not only showed almost no ability to inhibit growth of A. citrulli but also decreased biofilm formation and reduced swarming motility. Colonization assay demonstrated that B. subtilis 9407 could conlonize on melon roots and leaves in a large population, while Δ srfAB showed a four- to ten-fold reduction in colonization of melon roots and leaves. Furthermore, a biocontrol assay showed that Δ srfAB lost the biocontrol efficacy. In summary, our results indicated that surfactin, which consists of C13- to C16-surfactin A was the primary antibacterial compound of B. subtilis 9407, and it played a major role in biofilm formation, swarming motility, colonization and suppressing BFB. We propose that the biocontrol activity of B. subtilis 9407 is the results of the coordinated action of surfactin-mediated antibacterial activity and colonization. This study reveals for the first time that the use of a B. subtilis strain as a potential biological control agent could efficiently control BFB by producing surfactin.

  12. Prolonged restraint stressor exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and short chain fatty acids.

    PubMed

    Maltz, Ross M; Keirsey, Jeremy; Kim, Sandra C; Mackos, Amy R; Gharaibeh, Raad Z; Moore, Cathy C; Xu, Jinyu; Bakthavatchalu, Vasudevan; Somogyi, Arpad; Bailey, Michael T

    2018-01-01

    Stressor-exposure has been shown to exacerbate inflammation and change the composition of the gastrointestinal microbiota; however stressor-induced effects on microbiota-derived metabolites and their receptors are unknown. Thus, bacterial-produced short chain fatty acids (SCFAs), as well as microbial community composition, were assessed in the colons of mice exposed to stress during infection with Citrobacter rodentium. Mice were exposed to overnight restraint on 7 consecutive nights, or left undisturbed as a control. After the first exposure of restraint, mice were orally challenged with C. rodentium or with vehicle. Microbial community composition was assessed using 16S rRNA gene sequencing and SCFA levels measured using gas chromatography-mass spectrometry (GC-MS). Pathogen levels and colonic inflammation were also assessed 6 days post-infection. Results demonstrated that the microbial community structure and SCFA production were significantly affected by both stressor exposure and C. rodentium-infection. Exposure to prolonged restraint in the absence of infection significantly reduced SCFAs (acetic acid, butyric acid, and propionic acid). Multiple bacterial taxa were affected by stressor exposure, with the relative abundance of Lactobacillus being significantly reduced and directly correlated with propionic acid. Lactobacillus abundances were inversely correlated with colonic inflammation, supporting the contention that Lactobacillus helps to regulate mucosal inflammatory responses. Our data indicates that restraint stressor can have significant effects on pathogen-induced colonic inflammation and suggest that stressor-induced changes in the microbiota, microbial-produced SCFAs and their receptors may be involved.

  13. Alterations in the Colonic Microbiota of Pigs Associated with Feeding Distillers Dried Grains with Solubles.

    PubMed

    Burrough, Eric R; Arruda, Bailey L; Patience, John F; Plummer, Paul J

    2015-01-01

    In an effort to reduce feed costs, many pork producers have increased their use of coproducts of biofuel production in commercial pig diets, including increased feeding of distiller's dried grains with solubles (DDGS). The inclusion of DDGS increases the insoluble fiber content in the ration, which has the potential to impact the colonic microbiota considerably as the large intestine contains a dynamic microenvironment with tremendous interplay between microorganisms. Any alteration to the physical or chemical properties of the colonic contents has the potential to impact the resident bacterial population and potentially favor or inhibit the establishment of pathogenic species. In the present study, colonic contents collected at necropsy from pigs fed either 30% or no DDGS were analyzed to examine the relative abundance of bacterial taxa associated with feeding this ingredient. No difference in alpha diversity (richness) was detected between diet groups. However, the beta diversity was significantly different between groups with feeding of DDGS being associated with a decreased Firmicutes:Bacteriodetes ratio (P = .004) and a significantly lower abundance of Lactobacillus spp. (P = .016). Predictive functional profiling of the microbiota revealed more predicted genes associated with carbohydrate metabolism, protein digestion, and degradation of glycans in the microbiota of pigs fed DDGS. Taken together, these findings confirm that alterations in dietary insoluble fiber significantly alter the colonic microbial profile of pigs and suggest the resultant microbiome may predispose to the development of colitis.

  14. Bacterial Colonization and Tissue Compatibility of Denture Base Resins.

    PubMed

    Olms, Constanze; Yahiaoui-Doktor, Maryam; Remmerbach, Torsten W; Stingu, Catalina Suzana

    2018-06-15

    Currently, there is minimal clinical data regarding biofilm composition on the surface of denture bases and the clinical tissue compatibility. Therefore, the aim of this experimental study was to compare the bacterial colonization and the tissue compatibility of a hypoallergenic polyamide with a frequently used PMMA resin tested intraorally in a randomized split-mouth design. Test specimens made of polyamide ( n = 10) and PMMA ( n = 10) were attached over a molar band appliance in oral cavity of 10 subjects. A cytological smear test was done from palatal mucosa at baseline and after four weeks. The monolayers were inspected for micronuclei. After four weeks in situ, the appliance was removed. The test specimens were immediately cultivated on non-selective and selective nutrient media. All growing colonies were identified using VITEK-MS. The anonymized results were analyzed descriptively. A total of 110 different bacterial species could be isolated, including putative pathogens. An average of 17.8 different bacterial species grew on the PMMA specimens, and 17.3 on the polyamide specimens. The highest number of different bacterial species was n = 24, found on a PMMA specimen. On the two specimens, a similar bacterial distribution was observed. Micronuclei, as a marker for genotoxic potential of dental materials, were not detected. This study indicates that the composition of bacterial biofilm developed on these resins after four weeks is not influenced by the type of resin itself. The two materials showed no cytological differences. This investigation suggests that polyamide and PMMA are suitable for clinical use as denture base material.

  15. Changes in soil bacterial community structure with increasing disturbance frequency.

    PubMed

    Kim, Mincheol; Heo, Eunjung; Kang, Hojeong; Adams, Jonathan

    2013-07-01

    Little is known of the responsiveness of soil bacterial community structure to disturbance. In this study, we subjected a soil microcosm to physical disturbance, sterilizing 90 % of the soil volume each time, at a range of frequencies. We analysed the bacterial community structure using 454 pyrosequencing of the 16S rRNA gene. Bacterial diversity was found to decline with the increasing disturbance frequencies. Total bacterial abundance was, however, higher at intermediate and high disturbance frequencies, compared to low and no-disturbance treatments. Changing disturbance frequency also led to changes in community composition, with changes in overall species composition and some groups becoming abundant at the expense of others. Some phylogenetic groups were found to be relatively more disturbance-sensitive or tolerant than others. With increasing disturbance frequency, phylogenetic species variability (an index of community composition) itself became more variable from one sample to another, suggesting a greater role of chance in community composition. Compared to the tightly clustered community of the original undisturbed soil, in all the aged disturbed soils the lists of most abundant operational taxonomic units (OTUs) in each replicate were very different, suggesting a possible role of stochasticity in resource colonization and exploitation in the aged and disturbed soils. For example, colonization may be affected by whichever localized concentrations of bacterial populations happen to survive the last disturbance and be reincorporated in abundance into each pot. Overall, it appears that the soil bacterial community is very sensitive to physical disturbance, losing diversity, and that certain groups have identifiable 'high disturbance' vs. 'low disturbance' niches.

  16. The structure of the Brassica napus seed microbiome is cultivar-dependent and affects the interactions of symbionts and pathogens.

    PubMed

    Rybakova, Daria; Mancinelli, Riccardo; Wikström, Mariann; Birch-Jensen, Ann-Sofie; Postma, Joeke; Ehlers, Ralf-Udo; Goertz, Simon; Berg, Gabriele

    2017-09-01

    Although the plant microbiome is crucial for plant health, little is known about the significance of the seed microbiome. Here, we studied indigenous bacterial communities associated with the seeds in different cultivars of oilseed rape and their interactions with symbiotic and pathogenic microorganisms. We found a high bacterial diversity expressed by tight bacterial co-occurrence networks within the rape seed microbiome, as identified by llumina MiSeq amplicon sequencing. In total, 8362 operational taxonomic units (OTUs) of 40 bacterial phyla with a predominance of Proteobacteria (56%) were found. The three cultivars that were analyzed shared only one third of the OTUs. The shared core of OTUs consisted mainly of Alphaproteobacteria (33%). Each cultivar was characterized by having its own unique bacterial structure, diversity, and proportion of unique microorganisms (25%). The cultivar with the lowest bacterial abundance, diversity, and the highest predicted bacterial metabolic activity rate contained the highest abundance of potential pathogens within the seed. This data corresponded with the observation that seedlings belonging to this cultivar responded more strongly to the seed treatments with bacterial inoculants than other cultivars. Cultivars containing higher indigenous diversity were characterized as having a higher colonization resistance against beneficial and pathogenic microorganisms. Our results were confirmed by microscopic images of the seed microbiota. The structure of the seed microbiome is an important factor in the development of colonization resistance against pathogens. It also has a strong influence on the response of seedlings to biological seed treatments. These novel insights into seed microbiome structure will enable the development of next generation strategies combining both biocontrol and breeding approaches to address world agricultural challenges.

  17. Salivary bacterial leakage into implant-abutment connections: preliminary results of an in vitro study.

    PubMed

    Mencio, F; Papi, P; Di Carlo, S; Pompa, G

    2016-06-01

    The occurrence of bacterial leakage in the internal surface of implants, through implant-abutment interface (IAI), is one of the parameters for analyzing the fabrication quality of the connections. The aim of this in vitro study is to evaluate two different types of implant-abutment connections: the screwed connection (Group 1) and the cemented connection (Group 2), analyzing the permeability of the IAI to bacterial colonization, using human saliva as culture medium. A total of twelve implants were tested, six in each experimental group. Five healthy patients were enrolled in this study. Two milliliters of non-stimulated saliva were collected from each subject and mixed in a test tube. After 14 days of incubation of the bacteria sample in the implant fixtures, a PCR-Real Time analysis was performed. Fisher's exact test was used to compare the proportions of implant-abutment assembled structures detected with bacterial leakage. Differences in the bacterial counts of the two groups were compared using the Mann-Whitney U test. A p value < 0.05 was considered significant. The results showed a decreased stability with the screwed implant-abutment connections compared to the cemented implant-abutment connections. A mean total bacterial count of 1.2E+07 (± 0.25E+07) for Group 1 and of 7.2E+04 (± 14.4E+04) for Group 2 was found, with a high level of significance, p = .0001. Within the limitations of this study it can be concluded that bacterial species from human saliva may penetrate along the implant-abutment interface in both connections, however the cemented connection implants showed the lowest amount of bacterial colonization.

  18. Cloacolithiasis and intestinal lymphosarcoma in an African black-footed penguin (Spheniscus demersus).

    PubMed

    Jones, Krista L; Field, Cara L; Stedman, Nancy L; MacLean, Robert A

    2014-06-01

    A 13-yr-old male African black-footed penguin (Spheniscus demersus) presented thrice over 7 mo with gastrointestinal obstruction secondary to cloacolithiasis. Clinical signs consistently resolved with cloacolith removal and supportive care. However, 10 mo after initial presentation, it presented with similar signs, plus significant weight loss. No cloacolith was found, and it subsequently died. Significant gross findings included bilateral cecal masses, colonic perforation, and marked secondary coelomitis, multifocal tan to pale hepatic nodules, and pale kidneys with miliary white foci. Histopathologic diagnoses were intestinal lymphosarcoma with hepatic and renal metastases, secondary intestinal rupture, and subacute severe bacterial coelomitis. To the authors' knowledge, this is the first full report of either cloacolithiasis or lymphosarcoma in a penguin.

  19. Bacterial biofilm under flow: First a physical struggle to stay, then a matter of breathing.

    PubMed

    Thomen, Philippe; Robert, Jérôme; Monmeyran, Amaury; Bitbol, Anne-Florence; Douarche, Carine; Henry, Nelly

    2017-01-01

    Bacterial communities attached to surfaces under fluid flow represent a widespread lifestyle of the microbial world. Through shear stress generation and molecular transport regulation, hydrodynamics conveys effects that are very different by nature but strongly coupled. To decipher the influence of these levers on bacterial biofilms immersed in moving fluids, we quantitatively and simultaneously investigated physicochemical and biological properties of the biofilm. We designed a millifluidic setup allowing to control hydrodynamic conditions and to monitor biofilm development in real time using microscope imaging. We also conducted a transcriptomic analysis to detect a potential physiological response to hydrodynamics. We discovered that a threshold value of shear stress determined biofilm settlement, with sub-piconewton forces sufficient to prevent biofilm initiation. As a consequence, distinct hydrodynamic conditions, which set spatial distribution of shear stress, promoted distinct colonization patterns with consequences on the growth mode. However, no direct impact of mechanical forces on biofilm growth rate was observed. Consistently, no mechanosensing gene emerged from our differential transcriptomic analysis comparing distinct hydrodynamic conditions. Instead, we found that hydrodynamic molecular transport crucially impacts biofilm growth by controlling oxygen availability. Our results shed light on biofilm response to hydrodynamics and open new avenues to achieve informed design of fluidic setups for investigating, engineering or fighting adherent communities.

  20. Extracellular DNA Is Essential for Maintaining Bordetella Biofilm Integrity on Abiotic Surfaces and in the Upper Respiratory Tract of Mice

    PubMed Central

    Deora, Rajendar

    2011-01-01

    Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the Gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA). In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs. PMID:21347299

Top