Measuring health systems strength and its impact: experiences from the African Health Initiative.
Sherr, Kenneth; Fernandes, Quinhas; Kanté, Almamy M; Bawah, Ayaga; Condo, Jeanine; Mutale, Wilbroad
2017-12-21
Health systems are essential platforms for accessible, quality health services, and population health improvements. Global health initiatives have dramatically increased health resources; however, funding to strengthen health systems has not increased commensurately, partially due to concerns about health system complexity and evidence gaps demonstrating health outcome improvements. In 2009, the African Health Initiative of the Doris Duke Charitable Foundation began supporting Population Health Implementation and Training Partnership projects in five sub-Saharan African countries (Ghana, Mozambique, Rwanda, Tanzania, and Zambia) to catalyze significant advances in strengthening health systems. This manuscript reflects on the experience of establishing an evaluation framework to measure health systems strength, and associate measures with health outcomes, as part of this Initiative. Using the World Health Organization's health systems building block framework, the Partnerships present novel approaches to measure health systems building blocks and summarize data across and within building blocks to facilitate analytic procedures. Three Partnerships developed summary measures spanning the building blocks using principal component analysis (Ghana and Tanzania) or the balanced scorecard (Zambia). Other Partnerships developed summary measures to simplify multiple indicators within individual building blocks, including health information systems (Mozambique), and service delivery (Rwanda). At the end of the project intervention period, one to two key informants from each Partnership's leadership team were asked to list - in rank order - the importance of the six building blocks in relation to their intervention. Though there were differences across Partnerships, service delivery and information systems were reported to be the most common focus of interventions, followed by health workforce and leadership and governance. Medical products, vaccines and technologies, and health financing, were the building blocks reported to be of lower focus. The African Health Initiative experience furthers the science of evaluation for health systems strengthening, highlighting areas for further methodological development - including the development of valid, feasible measures sensitive to interventions in multiple contexts (particularly in leadership and governance) and describing interactions across building blocks; in developing summary statistics to facilitate testing intervention effects on health systems and associations with health status; and designing appropriate analytic models for complex, multi-level open health systems.
NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig E. Barnes
2013-03-05
A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosingmore » the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).« less
An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition
NASA Astrophysics Data System (ADS)
Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni
2010-08-01
This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).
Interactive graphic editing tools in bioluminescent imaging simulation
NASA Astrophysics Data System (ADS)
Li, Hui; Tian, Jie; Luo, Jie; Wang, Ge; Cong, Wenxiang
2005-04-01
It is a challenging task to accurately describe complicated biological tissues and bioluminescent sources in bioluminescent imaging simulation. Several graphic editing tools have been developed to efficiently model each part of the bioluminescent simulation environment and to interactively correct or improve the initial models of anatomical structures or bioluminescent sources. There are two major types of graphic editing tools: non-interactive tools and interactive tools. Geometric building blocks (i.e. regular geometric graphics and superquadrics) are applied as non-interactive tools. To a certain extent, complicated anatomical structures and bioluminescent sources can be approximately modeled by combining a sufficient large number of geometric building blocks with Boolean operators. However, those models are too simple to describe the local features and fine changes in 2D/3D irregular contours. Therefore, interactive graphic editing tools have been developed to facilitate the local modifications of any initial surface model. With initial models composed of geometric building blocks, interactive spline mode is applied to conveniently perform dragging and compressing operations on 2D/3D local surface of biological tissues and bioluminescent sources inside the region/volume of interest. Several applications of the interactive graphic editing tools will be presented in this article.
DNA-Templated Polymerization of Side-Chain-Functionalized Peptide Nucleic Acid Aldehydes
Kleiner, Ralph E.; Brudno, Yevgeny; Birnbaum, Michael E.; Liu, David R.
2009-01-01
The DNA-templated polymerization of synthetic building blocks provides a potential route to the laboratory evolution of sequence-defined polymers with structures and properties not necessarily limited to those of natural biopolymers. We previously reported the efficient and sequence-specific DNA-templated polymerization of peptide nucleic acid (PNA) aldehydes. Here, we report the enzyme-free, DNA-templated polymerization of side-chain-functionalized PNA tetramer and pentamer aldehydes. We observed that the polymerization of tetramer and pentamer PNA building blocks with a single lysine-based side chain at various positions in the building block could proceed efficiently and sequence-specifically. In addition, DNA-templated polymerization also proceeded efficiently and in a sequence-specific manner with pentamer PNA aldehydes containing two or three lysine side chains in a single building block to generate more densely functionalized polymers. To further our understanding of side-chain compatibility and expand the capabilities of this system, we also examined the polymerization efficiencies of 20 pentamer building blocks each containing one of five different side-chain groups and four different side-chain regio- and stereochemistries. Polymerization reactions were efficient for all five different side-chain groups and for three of the four combinations of side-chain regio- and stereochemistries. Differences in the efficiency and initial rate of polymerization correlate with the apparent melting temperature of each building block, which is dependent on side-chain regio- and stereochemistry, but relatively insensitive to side-chain structure among the substrates tested. Our findings represent a significant step towards the evolution of sequence-defined synthetic polymers and also demonstrate that enzyme-free nucleic acid-templated polymerization can occur efficiently using substrates with a wide range of side-chain structures, functionalization positions within each building block, and functionalization densities. PMID:18341334
Strategies to integrate patient and family education into patient care redesign.
Yingling, L; Trocino, L
1997-05-01
This article discusses five strategies to effectively integrate patient and family education into patient care redesign. The strategies include building the plan, building a shared mission and vision, building involvement, building collaboration through initiatives, and building accountability. Each strategy or "building block" is vital to the resulting structure of patient and family education. Effective results of the strategies are discussed as milestones. The process must be ongoing to ensure continuous improvement in quality patient care outcomes, consumer satisfaction and cost-effectiveness.
General synthesis of inorganic single-walled nanotubes
Ni, Bing; Liu, Huiling; Wang, Peng-peng; He, Jie; Wang, Xun
2015-01-01
The single-walled nanotube (SWNT) is an interesting nanostructure for fundamental research and potential applications. However, very few inorganic SWNTs are available to date due to the lack of efficient fabrication methods. Here we synthesize four types of SWNT: sulfide; hydroxide; phosphate; and polyoxometalate. Each type of SWNT possesses essentially uniform diameters. Detailed studies illustrate that the formation of SWNTs is initiated by the self-coiling of the corresponding ultrathin nanostructure embryo/building blocks on the base of weak interactions between them, which is not limited to specific compounds or crystal structures. The interactions between building blocks can be modulated by varying the solvents used, thus multi-walled tubes can also be obtained. Our results reveal that the generalized synthesis of inorganic SWNTs can be achieved by the self-coiling of ultrathin building blocks under the proper weak interactions. PMID:26510862
47 CFR 22.947 - Five year build-out period.
Code of Federal Regulations, 2011 CFR
2011-10-01
... MOBILE SERVICES Cellular Radiotelephone Service § 22.947 Five year build-out period. Except for systems...-out period, the licensee of the first cellular system on each channel block in each market may enter...-out period begins on the date the initial authorization for the first cellular system is granted, and...
A “fullerene-carbon nanotube” structure with tunable mechanical properties
NASA Astrophysics Data System (ADS)
Ji, W. M.; Zhang, L. W.; Liew, K. M.
2018-03-01
Carbon-based nanostructures have drawn tremendous research interest and become promising building blocks for the new generation of smart sensors and devices. Utilizing a bottom-up strategy, the chemical interconnecting sp 3 covalent bond between carbon building blocks is an efficient way to enhance its Young's modulus and ductility. The formation of sp 3 covalent bond, however, inevitably degrades its ultimate tensile strength caused by stress concentration at the junction. By performing a molecular dynamics simulation of tensile deformation for a fullerene-carbon nanotube (FCNT) structure, we propose a tunable strategy in which fullerenes with various angle energy absorption capacities are utilized as building blocks to tune their ductile behavior, while still maintaining a good ultimate tensile strength of the carbon building blocks. A higher ultimate tensile strength is revealed with the reduction of stress concentration at the junction. A brittle-to-ductile transition during the tensile deformation is detected through the structural modification. The development of ductile behavior is attributed to the improvement of energy propagation ability during the fracture initiation, in which the released energy from bonds fracture is mitigated properly, leading to the further development of mechanical properties.
Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks
NASA Astrophysics Data System (ADS)
Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.
2015-12-01
Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.
Molecular dynamics simulation of square graphene-nanoflake oscillator on graphene nanoribbon.
Kang, Jeong Won; Lee, Kang Whan
2014-12-01
Graphene nanoflakes (GNFs) have been of interest for a building block in order to develop electromechanical devices on a nanometer scale. Here, we present the oscillation motions of a square GNF oscillator on graphene nanoribbon (GNR) in the retracting-motions by performing classical molecular dynamics simulations. The simulation results showed that the GNF oscillators can be considered as a building block for nanoelectromechanical systems such as carbon-nanotube (CNT) oscillators. The oscillation dynamics of the GNF oscillator were similar to those of the CNT oscillators. When the square GNF had an initial velocity as impulse dynamics, its oscillation motions on the GNR were achieved from its self-retracting van der Waals force. For low initial velocity, its translational motions were dominant in its motions rather than its rotational motions. The kinetic energy damping ratio rapidly decreased as initial velocity increased and the kinetic energy for the translational motion of the GNF oscillator rapidly transferred into that for its rotational motion. The oscillation frequency of the GNF oscillator was dependent on its initial velocity.
Composability-Centered Convolutional Neural Network Pruning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Xipeng; Guan, Hui; Lim, Seung-Hwan
This work studies the composability of the building blocks ofstructural CNN models (e.g., GoogleLeNet and Residual Networks) in thecontext of network pruning. We empirically validate that a networkcomposed of pre-trained building blocks (e.g. residual blocks andInception modules) not only gives a better initial setting fortraining, but also allows the training process to converge at asignificantly higher accuracy in much less time. Based on thatinsight, we propose a {\\em composability-centered} design for CNNnetwork pruning. Experiments show that this new scheme shortens theconfiguration process in CNN network pruning by up to 186.8X forResNet-50 and up to 30.2X for Inception-V3, and meanwhile, themore » modelsit finds that meet the accuracy requirement are significantly morecompact than those found by default schemes.« less
Traveling With Success: How Local Governments Use Intelligent Transportation Systems
DOT National Transportation Integrated Search
1995-01-01
The federal government, through the U.S. Department of Transportation, has launched a national campaign to integrate application of Intelligent Transportation Systems (ITS) technologies. This initiative provides the building blocks needed to combine ...
Coalition, partnership, and constituency building by a state public health agency: a retrospective.
Kimbrell, J D
2000-03-01
This article is a retrospective that traces the development of an evolutionary process for a state health agency in addressing the challenge of implementing core public health functions and the provision of essential services. Coalition, partnership, and constituency building were critical elements in the process. Various initiatives are described and their importance as building blocks to a larger process of organizational change is explained. Key lessons from the process are outlined.
Fuel-Mediated Transient Clustering of Colloidal Building Blocks.
van Ravensteijn, Bas G P; Hendriksen, Wouter E; Eelkema, Rienk; van Esch, Jan H; Kegel, Willem K
2017-07-26
Fuel-driven assembly operates under the continuous influx of energy and results in superstructures that exist out of equilibrium. Such dissipative processes provide a route toward structures and transient behavior unreachable by conventional equilibrium self-assembly. Although perfected in biological systems like microtubules, this class of assembly is only sparsely used in synthetic or colloidal analogues. Here, we present a novel colloidal system that shows transient clustering driven by a chemical fuel. Addition of fuel causes an increase in hydrophobicity of the building blocks by actively removing surface charges, thereby driving their aggregation. Depletion of fuel causes reappearance of the charged moieties and leads to disassembly of the formed clusters. This reassures that the system returns to its initial, equilibrium state. By taking advantage of the cyclic nature of our system, we show that clustering can be induced several times by simple injection of new fuel. The fuel-mediated assembly of colloidal building blocks presented here opens new avenues to the complex landscape of nonequilibrium colloidal structures, guided by biological design principles.
Toward Applications for DNA Nanotechnology-More Bricks To Build With.
Dietz, Hendrik
2016-06-16
Another brick in the wall: DNA nanotechnology has come a long way since its initial beginnings. This would not be possible without the continued development of methods for DNA assembly and new uses for DNA as a material. This Special Issue highlights some of the newest building blocks for nanodevices based on DNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-01-01
Background Millions of dollars are invested annually under the umbrella of national health systems strengthening. Global health initiatives provide funding for low- and middle-income countries through disease-oriented programmes while maintaining that the interventions simultaneously strengthen systems. However, it is as yet unclear which, and to what extent, system-level interventions are being funded by these initiatives, nor is it clear how much funding they allocate to disease-specific activities – through conventional ‘vertical-programming’ approach. Such funding can be channelled to one or more of the health system building blocks while targeting disease(s) or explicitly to system-wide activities. Methods We operationalized the World Health Organization health system framework of the six building blocks to conduct a detailed assessment of Global Fund health system investments. Our application of this framework framework provides a comprehensive quantification of system-level interventions. We applied this systematically to a random subset of 52 of the 139 grants funded in Round 8 of the Global Fund to Fight AIDS, Tuberculosis and Malaria (totalling approximately US$1 billion). Results According to the analysis, 37% (US$ 362 million) of the Global Fund Round 8 funding was allocated to health systems strengthening. Of that, 38% (US$ 139 million) was for generic system-level interventions, rather than disease-specific system support. Around 82% of health systems strengthening funding (US$ 296 million) was allocated to service delivery, human resources, and medicines & technology, and within each of these to two to three interventions. Governance, financing, and information building blocks received relatively low funding. Conclusions This study shows that a substantial portion of Global Fund’s Round 8 funds was devoted to health systems strengthening. Dramatic skewing among the health system building blocks suggests opportunities for more balanced investments with regard to governance, financing, and information system related interventions. There is also a need for agreement, by researchers, recipients, and donors, on keystone interventions that have the greatest system-level impacts for the cost-effective use of funds. Effective health system strengthening depends on inter-agency collaboration and country commitment along with concerted partnership among all the stakeholders working in the health system. PMID:23889824
Warren, Ashley E; Wyss, Kaspar; Shakarishvili, George; Atun, Rifat; de Savigny, Don
2013-07-26
Millions of dollars are invested annually under the umbrella of national health systems strengthening. Global health initiatives provide funding for low- and middle-income countries through disease-oriented programmes while maintaining that the interventions simultaneously strengthen systems. However, it is as yet unclear which, and to what extent, system-level interventions are being funded by these initiatives, nor is it clear how much funding they allocate to disease-specific activities - through conventional 'vertical-programming' approach. Such funding can be channelled to one or more of the health system building blocks while targeting disease(s) or explicitly to system-wide activities. We operationalized the World Health Organization health system framework of the six building blocks to conduct a detailed assessment of Global Fund health system investments. Our application of this framework framework provides a comprehensive quantification of system-level interventions. We applied this systematically to a random subset of 52 of the 139 grants funded in Round 8 of the Global Fund to Fight AIDS, Tuberculosis and Malaria (totalling approximately US$1 billion). According to the analysis, 37% (US$ 362 million) of the Global Fund Round 8 funding was allocated to health systems strengthening. Of that, 38% (US$ 139 million) was for generic system-level interventions, rather than disease-specific system support. Around 82% of health systems strengthening funding (US$ 296 million) was allocated to service delivery, human resources, and medicines & technology, and within each of these to two to three interventions. Governance, financing, and information building blocks received relatively low funding. This study shows that a substantial portion of Global Fund's Round 8 funds was devoted to health systems strengthening. Dramatic skewing among the health system building blocks suggests opportunities for more balanced investments with regard to governance, financing, and information system related interventions. There is also a need for agreement, by researchers, recipients, and donors, on keystone interventions that have the greatest system-level impacts for the cost-effective use of funds. Effective health system strengthening depends on inter-agency collaboration and country commitment along with concerted partnership among all the stakeholders working in the health system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westervelt, E.T.; Northrup, G.R.; Allen, E.O.
1988-07-01
This report describes the initial and continuing efforts in a project demonstrating the energy performance of theoretically-based retrofit packages on as-found, standard-design Army buildings. Four standard building designs are being investigated: a motor-vehicle repair shop, the Type 64 (L-shaped) barracks, an enlisted-personnel mess hall, and a two-company, rolling-pin-shaped barracks for enlisted personnel. The Army has over 840 of these particular buildings. The objective of the project is to test the energy and cost performance of the retrofit packages, which include such measures as installing wall or ceiling insulation, replacing and/or blocking windows, partitioning areas of differing temperature, modifying air-handling equipment,more » modifying boiler controls, replacing lights, etc. To this end, energy data has been gathered from retrofitted and identical but nonretrofitted buildings for a test/reference comparison.« less
Urciuolo, F; Garziano, A; Imparato, G; Panzetta, V; Fusco, S; Casale, C; Netti, P A
2016-01-29
The fabrication of functional tissue units is one of the major challenges in tissue engineering due to their in vitro use in tissue-on-chip systems, as well as in modular tissue engineering for the construction of macrotissue analogs. In this work, we aim to engineer dermal tissue micromodules obtained by culturing human dermal fibroblasts into porous gelatine microscaffold. We proved that such stromal cells coupled with gelatine microscaffolds are able to synthesize and to assemble an endogenous extracellular matrix (ECM) resulting in tissue micromodules, which evolve their biophysical features over the time. In particular, we found a time-dependent variation of oxygen consumption kinetic parameters, of newly formed ECM stiffness and of micromodules self-aggregation properties. As consequence when used as building blocks to fabricate larger tissues, the initial tissue micromodules state strongly affects the ECM organization and maturation in the final macrotissue. Such results highlight the role of the micromodules properties in controlling the formation of three-dimensional macrotissue in vitro, defining an innovative design criterion for selecting tissue-building blocks for modular tissue engineering.
Professional Learning Communities That Initiate Improvement in Student Achievement
ERIC Educational Resources Information Center
Royer, Suzanne M.
2012-01-01
Quality teaching requires a strong practice of collaboration, an essential building block for educators to improve student achievement. Researchers have theorized that the implementation of a professional learning community (PLC) with resultant collaborative practices among teachers sustains academic improvement. The problem addressed specifically…
NASA Technical Reports Server (NTRS)
1979-01-01
Cost data generated for the evolutionary power module concepts selected are reported. The initial acquisition costs (design, development, and protoflight unit test costs) were defined and modeled for the baseline 25 kW power module configurations. By building a parametric model of this initial building block, the cost of the 50 kW and the 100 kW power modules were derived by defining only their configuration and programmatic differences from the 25 kW baseline module. Variations in cost for the quantities needed to fulfill the mission scenarios were derived by applying appropriate learning curves.
SRA Real Math Building Blocks PreK. What Works Clearinghouse Intervention Report
ERIC Educational Resources Information Center
What Works Clearinghouse, 2007
2007-01-01
"SRA Real Math Building Blocks PreK" (also referred to as "Building Blocks for Math") is a supplemental mathematics curriculum designed to develop preschool children's early mathematical knowledge through various individual and small- and large-group activities. It uses "Building Blocks for Math PreK" software,…
Reference Specifications for SAVOIR Avionics Elements
NASA Astrophysics Data System (ADS)
Hult, Torbjorn; Lindskog, Martin; Roques, Remi; Planche, Luc; Brunjes, Bernhard; Dellandrea, Brice; Terraillon, Jean-Loup
2012-08-01
Space industry and Agencies have been recognizing already for quite some time the need to raise the level of standardisation in the spacecraft avionics systems in order to increase efficiency and reduce development cost and schedule. This also includes the aspect of increasing competition in global space business, which is a challenge that European space companies are facing at all stages of involvement in the international markets.A number of initiatives towards this vision are driven both by the industry and ESA’s R&D programmes. However, today an intensified coordination of these activities is required in order to achieve the necessary synergy and to ensure they converge towards the shared vision. It has been proposed to federate these initiatives under the common Space Avionics Open Interface Architecture (SAVOIR) initiative. Within this initiative, the approach based on reference architectures and building blocks plays a key role.Following the principles outlined above, the overall goal of the SAVOIR is to establish a streamlined onboard architecture in order to standardize the development of avionics systems for space programmes. This reflects the need to increase efficiency and cost-effectiveness in the development process as well as account the trend towards more functionality implemented by the onboard building blocks, i.e. HW and SW components, and more complexity for the overall space mission objectives.
Digital Alchemy for Materials Design: Colloids and Beyond
NASA Astrophysics Data System (ADS)
van Anders, Greg; Klotsa, Daphne; Karas, Andrew; Dodd, Paul; Glotzer, Sharon
Starting with the early alchemists, a holy grail of science has been to make desired materials by manipulating basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this versatility means that connecting building-block attributes to bulk structure is both necessary for rationally engineering materials and difficult because building block attributes can be altered in many ways. We show how to exploit the malleability of colloidal nanoparticle ``elements'' to quantitatively link building-block attributes to bulk structure through a statistical thermodynamic framework we term ``digital alchemy''. We use this framework to optimize building blocks for a given target structure and to determine which building-block attributes are most important to control for self-assembly, through a set of novel thermodynamic response functions. We thereby establish direct links between the attributes of colloidal building blocks and the bulk structures they form. Moreover, our results give concrete solutions to the more general conceptual challenge of optimizing emergent behaviors in nature and can be applied to other types of matter.
Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.
Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M
2011-10-01
Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.
ERIC Educational Resources Information Center
Murphy, Stephen H.
2009-01-01
Stonington High School in Pawcatuck, Connecticut, adopted an alternating day (A/B) block schedule in 1998. The shift in schedule has resulted in less movement throughout the building and fewer instances of disruptive behaviors. In addition, the initiatives that Stonington has been able to implement have caused the daily attendance rate to increase…
Li, Hongze; Gao, Xiang; Luo, Yingwu
2016-04-07
Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device.
Catalyst–substrate interaction and growth delay in vapor–liquid–solid nanowire growth
NASA Astrophysics Data System (ADS)
Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš
2018-05-01
Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.
Catalyst-substrate interaction and growth delay in vapor-liquid-solid nanowire growth.
Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš
2018-05-18
Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.
Data Policy Construction Set - Building Blocks from Childhood Constructions
NASA Astrophysics Data System (ADS)
Fleischer, Dirk; Paul-Stueve, Thilo; Jobmann, Alexandra; Farrenkopf, Stefan
2016-04-01
A complete construction set of building blocks usually comes with instructions and these instruction include building stages. The products of these building stages usually build from very general parts become highly specialized building parts for very unique features of the whole construction model. This sounds very much like the construction or organization of an interdisciplinary research project, institution or association, doesn't it! The creation process of an overarching data policy for a project group or institution is exactly the combination of individual interests with the common goal of a collaborative data policy and can be compared with the building stages of a construction set of building blocks and the building instructions. Keeping this in mind we created the data policy construction set of textual building blocks. This construction set is subdivided into several building stages or parts each containing multiple building blocks as text blocks. By combining building blocks of all subdivisions it is supposed to create a cascading data policy document. Cascading from the top level as a construction set provider for all further down existing levels such as project, themes, work packages or Universities, faculties, institutes down to the working level of working groups. The working groups are picking from the remaining building blocks in the provided construction set the suitable blocks for its working procedures to create a very specific policy from the available construction set provided by the top level community. Nevertheless, if a working group realized that there are missing building blocks or worse that there are missing building parts, then they have the chance to add the missing pieces to the construction set of direct an future use. This cascading approach enables project or institution wide application of the encoded rules from the textual level on access to data storage infrastructure. This structured approach is flexible enough to allow for the fact that interdisciplinary research projects always bring together very diverse amount of working habits, methods and requirements. All these need to be considered for the creation of the general document on data sharing and research data management. This approach focused on the recommendation of the RDA practical policy working group to implement practical policies derived from the textual level. Therefore it aims to move the data policy creation procedure and implementation towards the consortium or institutional formation with all the benefits of an existing data policy construction set already during the proposal creation and proposal review. Picking up the metaphor of real building blocks in context of data policies provides also the insight that existing building blocks and building parts can be reused as they are, but also can be redesigned with very little changes or a full overhaul.
Renaissance architecture for Ground Data Systems
NASA Technical Reports Server (NTRS)
Perkins, Dorothy C.; Zeigenfuss, Lawrence B.
1994-01-01
The Mission Operations and Data Systems Directorate (MO&DSD) has embarked on a new approach for developing and operating Ground Data Systems (GDS) for flight mission support. This approach is driven by the goals of minimizing cost and maximizing customer satisfaction. Achievement of these goals is realized through the use of a standard set of capabilities which can be modified to meet specific user needs. This approach, which is called the Renaissance architecture, stresses the engineering of integrated systems, based upon workstation/local area network (LAN)/fileserver technology and reusable hardware and software components called 'building blocks.' These building blocks are integrated with mission specific capabilities to build the GDS for each individual mission. The building block approach is key to the reduction of development costs and schedules. Also, the Renaissance approach allows the integration of GDS functions that were previously provided via separate multi-mission facilities. With the Renaissance architecture, the GDS can be developed by the MO&DSD or all, or part, of the GDS can be operated by the user at their facility. Flexibility in operation configuration allows both selection of a cost-effective operations approach and the capability for customizing operations to user needs. Thus the focus of the MO&DSD is shifted from operating systems that we have built to building systems and, optionally, operations as separate services. Renaissance is actually a continuous process. Both the building blocks and the system architecture will evolve as user needs and technology change. Providing GDS on a per user basis enables this continuous refinement of the development process and product and allows the MO&DSD to remain a customer-focused organization. This paper will present the activities and results of the MO&DSD initial efforts toward the establishment of the Renaissance approach for the development of GDS, with a particular focus on both the technical and process implications posed by Renaissance to the MO&DSD.
Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui
2018-01-01
Children's block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children's block building performance. Chinese preschoolers ( N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children's block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation.
Good Moments in Gestalt Therapy: A Descriptive Analysis of Two Perls Sessions.
ERIC Educational Resources Information Center
Boulet, Donald; And Others
1993-01-01
Analyzed two Gestalt therapy sessions conducted by Fritz Perls using category system for identifying in-session client behaviors valued by Gestalt therapists. Four judges independently rated 210 client statements. Found common pattern of therapeutic movement: initial phase dominated by building block good moments and second phase characterized by…
ERIC Educational Resources Information Center
Roberts, Ros; Gott, Richard; Glaesser, Judith
2010-01-01
This paper investigates the respective roles of substantive and procedural understanding with regard to students' ability to carry out an open-ended science investigation. The research is a case study centred on an intervention in which undergraduate initial teacher training students are taught the basic building blocks of procedural…
Patterning nanofibrils through the templated growth of multiple modified amyloid peptides
Sakai, Hiroki; Watanabe, Ken; Kudoh, Fuki; Kamada, Rui; Chuman, Yoshiro; Sakaguchi, Kazuyasu
2016-01-01
There has been considerable interest in the patterning of functionalized nanowires because of the potential applications of these materials to the construction of nanodevices. A variety of biomolecular building blocks containing amyloid peptides have been used to functionalize nanowires. However, the patterning of self-assembled nanowires can be challenging because of the difficulties associated with controlling the self-assembly of these functionalized building blocks. Herein, we present a versatile approach for the patterning of nanowires based on the combination of templated fibril growth with a versatile functionalization method using our structure-controllable amyloid peptides (SCAPs). Using this approach, we have succeeded in the formation of multi-type nanowires with tandem domain structures in high yields. Given that the mixing-SCAP method can lead to the formation of tandem fibrils, it is noteworthy that our method allowed us to control the initiation of fibril formation from the gold nanoparticles, which were attached to a short fibril as initiation points. This approach could be used to prepare a wide variety of fibril patterns, and therefore holds great potential for the development of novel self-assembled nanodevices. PMID:27559011
Analog Building Blocks for Communications Modems.
1977-01-01
x*—*- A0-A039 82b ELECTRONIC COMMUNICATIONS INC ST PETERSBURG FLA F/6 9/5 ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS .(U) JAN 77 B BLACK...F33615-7<t-C-1120 UNCLASSIFIED AFAL-TR-76-29 NL ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS ELECTRONIC COMMUNICATIONS INC. A SUBSIDIARY OF...Idantltr Or Mac* numb*,; Avionics Building-Block modules Frequency Synthesize* Costas Demodulator Amplifier Modem Frequency Multiplier ’ -^ « TRACT
Fault-tolerant computer study. [logic designs for building block circuits
NASA Technical Reports Server (NTRS)
Rennels, D. A.; Avizienis, A. A.; Ercegovac, M. D.
1981-01-01
A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed.
ERIC Educational Resources Information Center
Casey, Beth M.; Pezaris, Elizabeth E.; Bassi, Julie
2012-01-01
Two studies were conducted on block building in adolescents, assessing middle school (Study 1) and high school students (Study 2). Students were asked to build something interesting with blocks. In both samples, the same pattern of gender differences were found; boys built taller structures than girls, and balanced a larger number of blocks on a…
NASA Astrophysics Data System (ADS)
Mola Ebrahimi, S.; Arefi, H.; Rasti Veis, H.
2017-09-01
Our paper aims to present a new approach to identify and extract building footprints using aerial images and LiDAR data. Employing an edge detector algorithm, our method first extracts the outer boundary of buildings, and then by taking advantage of Hough transform and extracting the boundary of connected buildings in a building block, it extracts building footprints located in each block. The proposed method first recognizes the predominant leading orientation of a building block using Hough transform, and then rotates the block according to the inverted complement of the dominant line's angle. Therefore the block poses horizontally. Afterwards, by use of another Hough transform, vertical lines, which might be the building boundaries of interest, are extracted and the final building footprints within a block are obtained. The proposed algorithm is implemented and tested on the urban area of Zeebruges, Belgium(IEEE Contest,2015). The areas of extracted footprints are compared to the corresponding areas in the reference data and mean error is equal to 7.43 m2. Besides, qualitative and quantitative evaluations suggest that the proposed algorithm leads to acceptable results in automated precise extraction of building footprints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeigler, Kristine E.; Ferguson, Blythe A.
2012-07-01
The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials andmore » condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors installed on the P Reactor Building blocks define the baseline materials condition of the P Reactor ISD external concrete structure. Continued monitoring of the blocks will enable evaluation of the effects of aging on the P Reactor ISD structure. The collected data will support validation of the material degradation model and assessment of the condition of the ISD structure over time. The following are recommendations for continued development of the ISD Sensor Network Test Bed: - Establish a long-term monitoring program using the concrete blocks with existing sensor and/or additional sensors for trending the concrete materials and structural condition; - Continue development of a stand-alone test bed sensor system that is self-powered and provides wireless transmission of data to a user-accessible dashboard; - Develop and implement periodic NDE/DE characterization of the concrete blocks to provide verification and validation for the measurements obtained through the sensor system and concrete degradation model(s). (authors)« less
Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik
2013-12-18
Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.
Deming, Timothy J
2014-01-01
There have been many recent advances in the controlled polymerization of α-amino acid-N-carboxyanhydride (NCA) monomers into well-defined block copolypeptides. Transition metal initiating systems allow block copolypeptide synthesis with excellent control over number and lengths of block segments, chain length distribution, and chain-end functionality. Using this and other methods, block copolypeptides of controlled dimensions have been prepared and their self-assembly into organized structures studied by many research groups. The ability of well-defined block copolypeptides to assemble into supramolecular copolypeptide vesicles and hydrogels has led to the development of these materials for use in biological and medical applications. These assemblies have been found to possess unique properties that are derived from the amino acid building blocks and ordered conformations of the polypeptide segments. Recent work on the incorporation of active and stimulus-responsive functionality in these materials has tremendously increased their potential for use in biological and medical studies. © 2014 Wiley Periodicals, Inc.
Engineering the formation of secondary building blocks within hollow interiors.
Li, Xiaobo; Liu, Xiao; Ma, Yi; Li, Mingrun; Zhao, Jiao; Xin, Hongchuan; Zhang, Lei; Yang, Yan; Li, Can; Yang, Qihua
2012-03-15
Secondary building blocks within the cavities of primary silica-architecture building blocks are successfully engineered. The immobilized surfactant directs the selective dissolution and reassembly of dissolved silicate species for the formation of secondary building blocks (hollow nanospheres/nanorods; see figure). Supported TiO(2) on nanostructures with multilevel interiors is shown to exhibit significantly enhanced activity in photocatalytic H(2) production. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Heggy, E.; Palmer, E. M.; Kofman, W. W.; Herique, A.; El Maarry, M. R.
2017-12-01
Rosetta's two-year orbital mission at comet 67P/Churyumov-Gerasimenko significantly improved our understanding of the Radar properties of cometary bodies and how they can be used to constrain the ambiguities associated to the dynamical formation of 67P by setting an upper limit on the size of the comet's initial building blocks using the CONSERT, VIRTIS and OSIRIS observations. We present here in an updated post-rendezvous three-dimensional dielectric, textural and structural model of the comet's surface and subsurface at VHF-, X- and S-band radar frequencies. We assess the radar properties of potential structural heterogeneities observed in the upper meters of the shallow subsurface as well as deeper structures across the comet head. We use CONSERT's bistatic radar sounding measurements of the nucleus `head' interior to constrain the dielectric properties and structure of the interior; VIRTIS' multi-spectral observations to constrain the surface mineralogy and the distribution of water-ice on the surface and the implications of the above on the spatial variability of the surface and shallow subsurface dielectric properties. Surface and shallow subsurface structural elements are derived from the OSIRIS' images of exposed outcrops and pit walls. Our dielectric analysis showing the lack of sufficient dielectric contrast correlated with the lack of signal broadening in the 90-MHz radar echoes observed by CONSERT suggests that the the apparent meter-sized inhomogeneities in the walls of deep pits originally interpreted as cometesimals forming the comet's primordial blocks, could be localized evolutionary features of high centered polygons caused by seasonal modifications to the near-subsurface ice formed through thermal expansion and contraction and may not be continuous through the head. Considering the three-dimensional dielectric variability of 67P as derived from CONSERT, VIRTIS, Arecibo observations and laboratory measurement we set an upper limit on the size of the comet's initial building blocks.
Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui
2018-01-01
Children’s block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children’s block building performance. Chinese preschoolers (N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children’s block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation. PMID:29441031
Manyazewal, Tsegahun
2017-01-01
Acknowledging the health system strengthening agenda, the World Health Organization (WHO) has formulated a health systems framework that describes health systems in terms of six building blocks. This study aimed to determine the current status of the six WHO health system building blocks in public healthcare facilities in Ethiopia. A quantitative, cross-sectional study was conducted in five public hospitals in central Ethiopia which were in a post-reform period. A self-administered, structured questionnaire which covered the WHO's six health system building blocks was used to collect data on healthcare professionals who consented. Data was analyzed using IBM SPSS version 20. The overall performance of the public hospitals was 60% when weighed against the WHO building blocks which, in this procedure, needed a minimum of 80% score. For each building block, performance scores were: information 53%, health workforce 55%, medical products and technologies 58%, leadership and governance 61%, healthcare financing 62%, and service delivery 69%. There existed a significant difference in performance among the hospitals ( p < .001). The study proved that the WHO's health system building blocks are useful for assessing the process of strengthening health systems in Ethiopia. The six blocks allow identifying different improvement opportunities in each one of the hospitals. There was no contradiction between the indicators of the WHO building blocks and the health sustainable development goal (SDG) objectives. However, such SDG objectives should not be a substitute for strategies to strengthen health systems.
The Building Blocks of Geology.
ERIC Educational Resources Information Center
Gibson, Betty O.
2001-01-01
Discusses teaching techniques for teaching about rocks, minerals, and the differences between them. Presents a model-building activity that uses plastic building blocks to build crystal and rock models. (YDS)
GABBs: Cyberinfrastructure for Self-Service Geospatial Data Exploration, Computation, and Sharing
NASA Astrophysics Data System (ADS)
Song, C. X.; Zhao, L.; Biehl, L. L.; Merwade, V.; Villoria, N.
2016-12-01
Geospatial data are present everywhere today with the proliferation of location-aware computing devices. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. In addressing these needs, the Geospatial data Analysis Building Blocks (GABBs) project aims at building geospatial modeling, data analysis and visualization capabilities in an open source web platform, HUBzero. Funded by NSF's Data Infrastructure Building Blocks initiative, GABBs is creating a geospatial data architecture that integrates spatial data management, mapping and visualization, and interfaces in the HUBzero platform for scientific collaborations. The geo-rendering enabled Rappture toolkit, a generic Python mapping library, geospatial data exploration and publication tools, and an integrated online geospatial data management solution are among the software building blocks from the project. The GABBS software will be available through Amazon's AWS Marketplace VM images and open source. Hosting services are also available to the user community. The outcome of the project will enable researchers and educators to self-manage their scientific data, rapidly create GIS-enable tools, share geospatial data and tools on the web, and build dynamic workflows connecting data and tools, all without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the GABBs architecture, toolkits and libraries, and showcase the scientific use cases that utilize GABBs capabilities, as well as the challenges and solutions for GABBs to interoperate with other cyberinfrastructure platforms.
Role of step edges on the structure formation of α-6T on Ag(441)
NASA Astrophysics Data System (ADS)
Wagner, Thorsten; Fritz, Daniel Roman; Rudolfová, Zdena; Zeppenfeld, Peter
2018-01-01
Controlling the orientation of organic molecules on surfaces is important in order to tune the physical properties of the organic thin films and, thereby, increase the performance of organic thin film devices. Here, we present a scanning tunneling microscopy (STM) and photoelectron emission microscopy (PEEM) study of the deposition of the organic dye pigment α-sexithiophene (α-6T) on the vicinal Ag(441) surface. In the presence of the steps on the Ag(441) surface, the α-6T molecules exclusively align parallel to the step edges oriented along the [1 1 bar0]-direction of the substrate. The STM results further reveal that the adsorption of the α-6T molecules is accompanied by various restructuring of the substrate surface: Initially, the molecules prefer the Ag(551) building blocks of the Ag(441) surface. The Ag(551) termination of the terraces is then changed to a predominately Ag(331) one upon completion of the first α-6T monolayer. When closing the two layer thick wetting layer, the original ratio of Ag(331) and Ag(551) building blocks ( ≈ 1:1) is recovered, but a phase separation into microfacets, which are composed either of Ag(331) or of Ag(551) building blocks, is found.
SOA Governance: A Critical SOA Success Factor
2010-04-01
Software Perspective Service Consumer Service Providers Interface Optimize tomorrow today. ® Building Blocks...of a SOA Service – Software implemented capability that is well-defined, self contained and does not depend on context or state of other services ... Service Consumer – Service , application or other software component that requires a specific service . – Located through registry – Initiates service
Functionalized Helical Building Blocks for Nanoelectronics.
Khokhlov, Khrystofor; Schuster, Nathaniel J; Ng, Fay; Nuckolls, Colin
2018-04-06
Molecular building blocks are designed and created for the cis- and trans-dibrominated perylenediimides. The syntheses are simple and provide these useful materials on the gram scale. To demonstrate their synthetic versatility, these building blocks were used to create new dimeric perylenediimide helixes. Two of these helical dimers are twistacenes, and one is a helicene. Crucially, each possesses regiochemically defined functionality that allows the dimer helix to be elaborated into higher oligomers. It would be very difficult to prepare these helical PDI building blocks regioselectively without the methods described.
Performance of the Defense Acquisition System. 2014 Annual Report
2014-06-13
for Goods and Services Competition—or at least creating competitive environments—is a central tenet of our Better Buying Power initiatives...percentages despite our stated goals. Various Better Buying Power initiatives have been established to turn this trend around. Table 2-1 provided a...64E New Build JASSM/JASSM-ER MQ-1C Gray Eagle JASSM/JASSM Baseline SBIRS High/Block Buy (GEO 5-6) AIM-9X Blk II JDAM AEHF/AEHF SV 5-6 WIN-T Inc 3 SDB
The 10 building blocks of high-performing primary care.
Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin
2014-01-01
Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements-engaged leadership, data-driven improvement, empanelment, and team-based care-that assist the implementation of the other 6 building blocks-patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement.
Two innovative solutions based on fibre concrete blocks designed for building substructure
NASA Astrophysics Data System (ADS)
Pazderka, J.; Hájek, P.
2017-09-01
Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.
Development of Test Article Building Block (TABB) for deployable platform systems
NASA Technical Reports Server (NTRS)
Greenberg, H. S.; Barbour, R. T.
1984-01-01
The concept of a Test Article Building Block (TABB) is described. The TABB is a ground test article that is representative of a future building block that can be used to construct LEO and GEO deployable space platforms for communications and scientific payloads. This building block contains a main housing within which the entire structure, utilities, and deployment/retraction mechanism are stowed during launch. The end adapter secures the foregoing components to the housing during launch. The main housing and adapter provide the necessary building-block-to-building-block attachments for automatically deployable platforms. Removal from the shuttle cargo bay can be accomplished with the remote manipulator system (RMS) and/or the handling and positioning aid (HAPA). In this concept, all the electrical connections are in place prior to launch with automatic latches for payload attachment provided on either the end adapters or housings. The housings also can contain orbiter docking ports for payload installation and maintenance.
NASA Astrophysics Data System (ADS)
Nose, Kazuhito; Hatake, Shuhei
2016-06-01
Massive earthquake named "Tonankai Massive earthquake" is predicted to occur in the near future and is feared to cause severe damage in Kinki District . "Hanshin-Awaji Massive Earthquake" in 1995 destroyed most of the buildings constructed before 1981 and not complying with the latest earthquake resistance standards. Collapsed buildings blocked roads, obstructed evacuation, rescue and firefighting operations and inflicted further damages.To alleviate the damages, it is important to predict the points where collapsed buildings are likely block the roads and to take precautions in advance. But big cities have an expanse of urban areas with densely-distributed buildings, and it requires time and cost to check each and every building whether or not it will block the road. In order to reduce blocked roads when a disaster strikes, we made a study and confirmed that the risk of road blocking can be determined easily by means of the latest technologies of survey and geographical information.
Plastic Fibre Reinforced Soil Blocks as a Sustainable Building Material
NASA Astrophysics Data System (ADS)
Prasad, C. K. Subramania; Nambiar, E. K. Kunhanandan; Abraham, Benny Mathews
2012-10-01
Solid waste management, especially the huge quantity of waste plastics, is one of the major environmental concerns nowadays. Their employability in block making in the form of fibres, as one of the methods of waste management, can be investigated through a fundamental research. This paper highlights the salient observations from a systematic investigation on the effect of embedded fibre from plastic waste on the performance of stabilised mud blocks. Stabilisation of the soil was done by adding cement, lime and their combination. Plastic fibre in chopped form from carry bags and mineral water bottles were added (0.1% & 0.2% by weight of soil) as reinforcement. The blocks were tested for density, and compressive strength, and observed failure patterns were analysed. Blocks with 0.1% of plastic fibres showed an increase in strength of about 3 to 10%. From the observations of failure pattern it can be concluded that benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propogation after its initial formation.
Vibration Analysis of Beam and Block Precast Slab System due to Human Vibrations
NASA Astrophysics Data System (ADS)
Chik, T. N. T.; Kamil, M. R. H.; Yusoff, N. A.
2018-04-01
Beam and block precast slabs system are very efficient which generally give maximum structural performance where their voids based on the design of the unit soffit block allow a significant reduction of the whole slab self-weight. Initially for some combinations of components or the joint connection of the structural slab, this structural system may be susceptible to excessive vibrations that could effects the performance and also serviceability. Dynamic forces are excited from people walking and jumping which produced vibrations to the slab system in the buildings. Few studies concluded that human induced vibration on precast slabs system may be harmful to structural performance and mitigate the human comfort level. This study will investigate the vibration analysis of beam and block precast slab by using finite element method at the school building. Human activities which are excited from jumping and walking will induce the vibrations signal to the building. Laser Doppler Vibrometer (LDV) was used to measure the dynamic responses of slab towards the vibration sources. Five different points were assigned specifically where each of location will determine the behaviour of the entire slabs. The finite element analyses were developed in ABAQUS software and the data was further processed in MATLAB ModalV to assess the vibration criteria. The results indicated that the beam and block precast systems adequate enough to the vibration serviceability and human comfort criteria. The overall vibration level obtained was fell under VC-E curve which it is generally under the maximum permissible level of vibrations. The vibration level on the slab is acceptable within the limit that have been used by Gordon.
The Development of Spatial Skills through Interventions Involving Block Building Activities
ERIC Educational Resources Information Center
Casey, Beth M.; Andrews, Nicole; Schindler, Holly; Kersh, Joanne E.; Samper, Alexandra; Copley, Juanita
2008-01-01
This study investigated the use of block-building interventions to develop spatial-reasoning skills in kindergartners. Two intervention conditions and a control condition were included to determine, first, whether the block building activities themselves benefited children's spatial skills, and secondly, whether a story context further improved…
Water Partitioning in Planetary Embryos and Protoplanets with Magma Oceans
NASA Astrophysics Data System (ADS)
Ikoma, M.; Elkins-Tanton, L.; Hamano, K.; Suckale, J.
2018-06-01
The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.
The LSST metrics analysis framework (MAF)
NASA Astrophysics Data System (ADS)
Jones, R. L.; Yoachim, Peter; Chandrasekharan, Srinivasan; Connolly, Andrew J.; Cook, Kem H.; Ivezic, Željko; Krughoff, K. S.; Petry, Catherine; Ridgway, Stephen T.
2014-07-01
We describe the Metrics Analysis Framework (MAF), an open-source python framework developed to provide a user-friendly, customizable, easily-extensible set of tools for analyzing data sets. MAF is part of the Large Synoptic Survey Telescope (LSST) Simulations effort. Its initial goal is to provide a tool to evaluate LSST Operations Simulation (OpSim) simulated surveys to help understand the effects of telescope scheduling on survey performance, however MAF can be applied to a much wider range of datasets. The building blocks of the framework are Metrics (algorithms to analyze a given quantity of data), Slicers (subdividing the overall data set into smaller data slices as relevant for each Metric), and Database classes (to access the dataset and read data into memory). We describe how these building blocks work together, and provide an example of using MAF to evaluate different dithering strategies. We also outline how users can write their own custom Metrics and use these within the framework.
See, R.B.; Reddy, M.M.; Martin, R.G.
1988-01-01
Three moisture sensors were tested as a means for determining the surface wetness on carbonate building stones exposed to conditions that produce deposition of moisture. A relative-humidity probe, a gypsum-coated circuit grid, and a limestone-block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for eight weeks at Newcomb, NY. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated with water. However, the rates of drying indicated by the sensors after an initial saturation were inversely related to the relative humidity. On-site testing of the relative-humidity probe and the gypsum-coated ciruit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone-block resistor responded only to rainfall.
Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zhaoming; Pan, Haihua; Zhu, Genxing
2016-07-19
Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurementsmore » of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.« less
NASA Technical Reports Server (NTRS)
Stensrud, Kjell C.; Hamm, Dustin
2007-01-01
NASA's Johnson Space Center (JSC) / Flight Design and Dynamics Division (DM) has prototyped the use of Open Source middleware technology for building its next generation spacecraft mission support system. This is part of a larger initiative to use open standards and open source software as building blocks for future mission and safety critical systems. JSC is hoping to leverage standardized enterprise architectures, such as Java EE, so that its internal software development efforts can be focused on the core aspects of their problem domain. This presentation will outline the design and implementation of the Trajectory system and the lessons learned during the exercise.
Wu, S.-S.; Wang, L.; Qiu, X.
2008-01-01
This article presents a deterministic model for sub-block-level population estimation based on the total building volumes derived from geographic information system (GIS) building data and three census block-level housing statistics. To assess the model, we generated artificial blocks by aggregating census block areas and calculating the respective housing statistics. We then applied the model to estimate populations for sub-artificial-block areas and assessed the estimates with census populations of the areas. Our analyses indicate that the average percent error of population estimation for sub-artificial-block areas is comparable to those for sub-census-block areas of the same size relative to associated blocks. The smaller the sub-block-level areas, the higher the population estimation errors. For example, the average percent error for residential areas is approximately 0.11 percent for 100 percent block areas and 35 percent for 5 percent block areas.
Understanding of Protein Synthesis in a Living Cell
ERIC Educational Resources Information Center
Mustapha, Y.; Muhammad, S.
2006-01-01
The assembly of proteins takes place in the cytoplasm of a cell. There are three main steps. In initiation, far left, all the necessary parts of the process are brought together by a small molecule called a ribosome. During elongation, amino acids, the building blocks of proteins, are joined to one another in a long chain. The sequence in which…
Building Blocks: Enmeshing Technology and Creativity with Artistic Pedagogical Technologies
ERIC Educational Resources Information Center
Janzen, Katherine J.; Perry, Beth; Edwards, Margaret
2017-01-01
Using the analogy of children's building blocks, the reader is guided through the results of a research study that explored the use of three Artistic Pedagogical Technologies (APTs). "Building blocks" was the major theme that emerged from the data. Sub-themes included developing community, enhancing creativity, and risk taking. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werpy, Todd A.; Holladay, John E.; White, James F.
2004-11-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, themore » report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.« less
ERIC Educational Resources Information Center
Dillon, Randy K.
This paper explores behavior patterns that inhibit effective communication in everyday, educational, and business cross-cultural settings. Opportunities to change these inhibiting patterns, metaphorically referred to as "stumbling blocks," into building blocks or tools for successful intercultural understandings are discussed in the…
BCube: A Broker Framework for Next Generation Geoscience
NASA Astrophysics Data System (ADS)
Khalsa, S. S.; Pearlman, J.; Nativi, S.
2013-12-01
EarthCube is an NSF initiative that aims to transform the conduct of research through the creation of community-guided cyberinfrastructure enabling the integration information and data across the geosciences. Following an initial phase of concept and community development activities, NSF has made awards for the development of cyberinfrastructure 'building blocks.' In this talk we describe the goals and methods for one of these projects - BCube, for Brokering Building Blocks. BCube addresses the need for effective and efficient multi-disciplinary collaboration and interoperability through the introduction of brokering technologies. Brokers, as information systems middleware, have existed for many years and are found in diverse domains and industries such as financial systems, business-to-business interfaces, medicine and the automotive industry, to name a few. However, the emergence of brokers in science is relatively new and is now being piloted with great promise in cyberinfrastructure and science communities in the U.S., Europe, and elsewhere. Brokers act as intermediaries between information systems that implement well-defined interfaces, providing a bridge between communities using different specifications. The BCube project is helping to build a truly cross-disciplinary, global platform for data providers, cyberinfrastructure developers, and data users to make data more available and interoperable through a brokering framework. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including * Expanded semantic brokering * Business Model support for work flows * Automated metadata generation * Automated linking to services discovered via web crawling * Plug and play for most community service buses * Credential passing for seamless access to data * Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. Our research is initially focused on four disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.
ERIC Educational Resources Information Center
Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.
2016-01-01
Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…
The Building Blocks of Life Move from Ground to Tree to Animal and Back to Ground
NASA Astrophysics Data System (ADS)
Davidson, E. A.
2015-12-01
I generally use combinations of big words to describe my science, such as biogeochemistry, ecosystem ecology, nutrient cycling, stoichiometry, tropical deforestation, land-use change, agricultural intensification, eutrophication, greenhouse gas emissions, and sustainable development. I didn't expect to use any of these words, but I was surprised that I couldn't use some others that seem simple enough to me, such as farm, plant, soil, and forest. I landed on "building blocks" as my metaphor for the forms of carbon, nitrogen, phosphorus, and other elements that I study as they cycle through and among ecosystems. I study what makes trees and other kinds of life grow. We all know that they need the sun and that they take up water from the ground, but what else do trees need from the ground? What do animals that eat leaves and wood get from the trees? Just as we need building blocks to grow our bodies, trees and animals also need building blocks for growing their bodies. Trees get part of their building blocks from the ground and animals get theirs from what they eat. When animals poop and when leaves fall, some of their building blocks return to the ground. When they die, their building blocks also go back to the ground. I also study what happens to the ground, the water, and the air when we cut down trees, kill or shoo away the animals, and make fields to grow our food. Can we grow enough food and still keep the ground, water, and air clean? I think the answer is yes, but it will take better understanding of how all of those building blocks fit together and move around, from ground to tree to animal and back to ground.
Building Curriculum during Block Play
ERIC Educational Resources Information Center
Andrews, Nicole
2015-01-01
Blocks are not just for play! In this article, Nicole Andrews describes observing the interactions of three young boys enthusiastically engaged in the kindergarten block center of their classroom, using blocks in a building project that displayed their ability to use critical thinking skills, physics exploration, and the development of language…
The 10 Building Blocks of High-Performing Primary Care
Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin
2014-01-01
Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements—engaged leadership, data-driven improvement, empanelment, and team-based care—that assist the implementation of the other 6 building blocks—patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement. PMID:24615313
BCube: Building a Geoscience Brokering Framework
NASA Astrophysics Data System (ADS)
Jodha Khalsa, Siri; Nativi, Stefano; Duerr, Ruth; Pearlman, Jay
2014-05-01
BCube is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. As a prototype "building block" for NSF's EarthCube cyberinfrastructure initiative, BCube is demonstrating how a broker can serve as an intermediary between information systems that implement well-defined interfaces, thereby providing a bridge between communities that employ different specifications. Building on the GEOSS Discover and Access Broker (DAB), BCube will develop new modules and services including: • Expanded semantic brokering capabilities • Business Model support for work flows • Automated metadata generation • Automated linking to services discovered via web crawling • Credential passing for seamless access to data • Ranking of search results from brokered catalogs Because facilitating cross-discipline research involves cultural and well as technical challenges, BCube is also addressing the sociological and educational components of infrastructure development. We are working, initially, with four geoscience disciplines: hydrology, oceans, polar and weather, with an emphasis on connecting existing domain infrastructure elements to facilitate cross-domain communications.
NASA Astrophysics Data System (ADS)
Schmitz, Oliver; de Jong, Kor; Karssenberg, Derek
2017-04-01
There is an increasing demand to run environmental models on a big scale: simulations over large areas at high resolution. The heterogeneity of available computing hardware such as multi-core CPUs, GPUs or supercomputer potentially provides significant computing power to fulfil this demand. However, this requires detailed knowledge of the underlying hardware, parallel algorithm design and the implementation thereof in an efficient system programming language. Domain scientists such as hydrologists or ecologists often lack this specific software engineering knowledge, their emphasis is (and should be) on exploratory building and analysis of simulation models. As a result, models constructed by domain specialists mostly do not take full advantage of the available hardware. A promising solution is to separate the model building activity from software engineering by offering domain specialists a model building framework with pre-programmed building blocks that they combine to construct a model. The model building framework, consequently, needs to have built-in capabilities to make full usage of the available hardware. Developing such a framework providing understandable code for domain scientists and being runtime efficient at the same time poses several challenges on developers of such a framework. For example, optimisations can be performed on individual operations or the whole model, or tasks need to be generated for a well-balanced execution without explicitly knowing the complexity of the domain problem provided by the modeller. Ideally, a modelling framework supports the optimal use of available hardware whichsoever combination of model building blocks scientists use. We demonstrate our ongoing work on developing parallel algorithms for spatio-temporal modelling and demonstrate 1) PCRaster, an environmental software framework (http://www.pcraster.eu) providing spatio-temporal model building blocks and 2) parallelisation of about 50 of these building blocks using the new Fern library (https://github.com/geoneric/fern/), an independent generic raster processing library. Fern is a highly generic software library and its algorithms can be configured according to the configuration of a modelling framework. With manageable programming effort (e.g. matching data types between programming and domain language) we created a binding between Fern and PCRaster. The resulting PCRaster Python multicore module can be used to execute existing PCRaster models without having to make any changes to the model code. We show initial results on synthetic and geoscientific models indicating significant runtime improvements provided by parallel local and focal operations. We further outline challenges in improving remaining algorithms such as flow operations over digital elevation maps and further potential improvements like enhancing disk I/O.
Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings
NASA Astrophysics Data System (ADS)
Venkrbec, Václav; Nováková, Iveta; Henková, Svatava
2017-10-01
Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.
2018-02-15
address the problem that probabilistic inference algorithms are diÿcult and tedious to implement, by expressing them in terms of a small number of...building blocks, which are automatic transformations on probabilistic programs. On one hand, our curation of these building blocks reflects the way human...reasoning with low-level computational optimization, so the speed and accuracy of the generated solvers are competitive with state-of-the-art systems. 15
1. John C. Garner, Jr., Photographer 1967 PRINCIPAL (NORTH) SIDE, ...
1. John C. Garner, Jr., Photographer 1967 PRINCIPAL (NORTH) SIDE, FROM NORTHWEST. THE RIGHT END OF THE BLOCK IS THE E.S. WOOD BUILDING; THE BUILDING WITH A FIRE ESCAPE IS THE ROSENFIELD BUILDING; THE T.W. HOUSE BUILDING IS TO THE LEFT OF THE PRECEDING BUILDING; JOHN BERLOCHER BUILDING IS AT THE LEFT END OF THE BLOCK. - Strand Historic District, Wood-Rosenfield-House-Berlocher Buildings, 2213-2223 Strand, Galveston, Galveston County, TX
NASA Technical Reports Server (NTRS)
Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.
2001-01-01
To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.
Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L
2018-06-07
Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2004-08-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werpy, T.; Petersen, G.
2004-08-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.
Kuang, Hua; Ma, Wei; Xu, Liguang; Wang, Libing; Xu, Chuanlai
2013-11-19
Polymerase chain reaction (PCR) is an essential tool in biotechnology laboratories and is becoming increasingly important in other areas of research. Extensive data obtained over the last 12 years has shown that the combination of PCR with nanoscale dispersions can resolve issues in the preparation DNA-based materials that include both inorganic and organic nanoscale components. Unlike conventional DNA hybridization and antibody-antigen complexes, PCR provides a new, effective assembly platform that both increases the yield of DNA-based nanomaterials and allows researchers to program and control assembly with predesigned parameters including those assisted and automated by computers. As a result, this method allows researchers to optimize to the combinatorial selection of the DNA strands for their nanoparticle conjugates. We have developed a PCR approach for producing various nanoscale assemblies including organic motifs such as small molecules, macromolecules, and inorganic building blocks, such as nanorods (NRs), metal, semiconductor, and magnetic nanoparticles (NPs). We start with a nanoscale primer and then modify that building block using the automated steps of PCR-based assembly including initialization, denaturation, annealing, extension, final elongation, and final hold. The intermediate steps of denaturation, annealing, and extension are cyclic, and we use computer control so that the assembled superstructures reach their predetermined complexity. The structures assembled using a small number of PCR cycles show a lower polydispersity than similar discrete structures obtained by direct hybridization between the nanoscale building blocks. Using different building blocks, we assembled the following structural motifs by PCR: (1) discrete nanostructures (NP dimers, NP multimers including trimers, pyramids, tetramers or hexamers, etc.), (2) branched NP superstructures and heterochains, (3) NP satellite-like superstructures, (4) Y-shaped nanostructures and DNA networks, (5) protein-DNA co-assembly structures, and (6) DNA block copolymers including trimers and pentamers. These results affirm that this method can produce a variety of chemical structures and in yields that are tunable. Using PCR-based preparation of DNA-bridged nanostructures, we can program the assembly of the nanoscale blocks through the adjustment of the primer intensity on the assembled units, the number of PCR cycles, or both. The resulting structures are highly complex and diverse and have interesting dynamics and collective properties. Potential applications of these materials include chirooptical materials, probe fabrication, and environmental and biomedical sensors.
Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A
2008-10-01
One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.
Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.
2013-01-01
One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281
Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.
2014-01-01
The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233
COMPRESSOR BUILDING, TRA626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING ...
COMPRESSOR BUILDING, TRA-626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING HOUSED COMPRESSORS FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENTS. MTR-626-IDO-2S, 3/1952. INL INDEX NO. 531-0626-00-396-110535, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Maritime Action Groups: The Expeditionary Building Block of the Future
1993-03-10
attack submarine, and an alert P-3 aircraft. Captain Robert Crawshaw , USN, Commodore of the initial Sixth Fleet Maritime Action Group emphasizes that...services and our coalition partners. Captain Crawshaw stated that: -the MAG operates as a single force exercising with allied navies throughout the...Less intimidating than a carrier battle group, the MAG has been received eagerly by allied navies throughout the Mediterranean.’ Captain Crawshaw and
1968-01-01
This cutaway drawing shows the S-IVB stage in its Saturn IB configuration. As a part of the Marshall Space Flight Center's (MSFC) "building block" approach to the Saturn development, the S-IVB stage was utilized in the Saturn IB launch vehicle as a second stage and, later, the Saturn V launch vehicle as a third stage. The stage was powered by a single J-2 engine, initially capable of 200,000 pounds of thrust.
Beaulieu, Pierre L; Gillard, James; Bailey, Murray D; Boucher, Colette; Duceppe, Jean-Simon; Simoneau, Bruno; Wang, Xiao-Jun; Zhang, Li; Grozinger, Karl; Houpis, Ioannis; Farina, Vittorio; Heimroth, Heidi; Krueger, Thomas; Schnaubelt, Jürgen
2005-07-22
(1R,2S)-1-Amino-2-vinylcyclopropanecarboxylic acid (vinyl-ACCA) is a key building block in the synthesis of potent inhibitors of the hepatitis C virus NS3 protease such as BILN 2061, which was recently shown to dramatically reduce viral load after administration to patients infected with HCV genotype 1. We have developed a scalable process that delivers derivatives of this unusual amino acid in >99% ee. The strategy was based on the dialkylation of a glycine Schiff base using trans-1,4-dibromo-2-butene as an electrophile to produce racemic vinyl-ACCA, which was subsequently resolved using a readily available, inexpensive esterase enzyme (Alcalase 2.4L). Factors that affect diastereoselection in the initial dialkylation steps were examined and the conditions optimized to deliver the desired diastereomer selectively. Product inhibition, which was encountered during the enzymatic resolution step, initially resulted in prolonged cycle times. Enrichment of racemic vinyl-ACCA through a chemical resolution via diastereomeric salt formation or the use of forcing conditions in the enzymatic reaction both led to improvements in throughput and the development of a viable process. The chemistry described herein was scaled up to produce multikilogram quantities of this building block.
Lin, Yen Ting; Chylek, Lily A; Lemons, Nathan W; Hlavacek, William S
2018-06-21
The chemical kinetics of many complex systems can be concisely represented by reaction rules, which can be used to generate reaction events via a kinetic Monte Carlo method that has been termed network-free simulation. Here, we demonstrate accelerated network-free simulation through a novel approach to equation-free computation. In this process, variables are introduced that approximately capture system state. Derivatives of these variables are estimated using short bursts of exact stochastic simulation and finite differencing. The variables are then projected forward in time via a numerical integration scheme, after which a new exact stochastic simulation is initialized and the whole process repeats. The projection step increases efficiency by bypassing the firing of numerous individual reaction events. As we show, the projected variables may be defined as populations of building blocks of chemical species. The maximal number of connected molecules included in these building blocks determines the degree of approximation. Equation-free acceleration of network-free simulation is found to be both accurate and efficient.
Schmidtgall, Boris; Höbartner, Claudia; Ducho, Christian
2015-01-01
Modifications of the nucleic acid backbone are essential for the development of oligonucleotide-derived bioactive agents. The NAA-modification represents a novel artificial internucleotide linkage which enables the site-specific introduction of positive charges into the otherwise polyanionic backbone of DNA oligonucleotides. Following initial studies with the introduction of the NAA-linkage at T-T sites, it is now envisioned to prepare NAA-modified oligonucleotides bearing the modification at X-T motifs (X = A, C, G). We have therefore developed the efficient and stereoselective synthesis of NAA-linked 'dimeric' A-T phosphoramidite building blocks for automated DNA synthesis. Both the (S)- and the (R)-configured NAA-motifs were constructed with high diastereoselectivities to furnish two different phosphoramidite reagents, which were employed for the solid phase-supported automated synthesis of two NAA-modified DNA oligonucleotides. This represents a significant step to further establish the NAA-linkage as a useful addition to the existing 'toolbox' of backbone modifications for the design of bioactive oligonucleotide analogues.
Okesola, Babatunde O; Mata, Alvaro
2018-05-21
Nature is enriched with a wide variety of complex, synergistic, and highly functional protein-based multicomponent assemblies. As such, nature has served as a source of inspiration for using multicomponent self-assembly as a platform to create highly ordered, complex, and dynamic protein and peptide-based nanostructures. Such an assembly system relies on the initial interaction of distinct individual building blocks leading to the formation of a complex that subsequently assembles into supramolecular architectures. This approach not only serves as a powerful platform for gaining insight into how proteins co-assemble in nature but also offers huge opportunities to harness new properties not inherent in the individual building blocks. In the past decades, various multicomponent self-assembly strategies have been used to extract synergistic properties from proteins and peptides. This review highlights the updates in the field of multicomponent self-assembly of proteins and peptides and summarizes various strategies, including covalent conjugation, ligand-receptor interactions, templated/directed assembly and non-specific co-assembly, for driving the self-assembly of multiple proteins and peptide-based building blocks into functional materials. In particular, we focus on peptide- or protein-containing multicomponent systems that, upon self-assembly, enable the emergence of new properties or phenomena. The ultimate goal of this review is to highlight the importance of multicomponent self-assembly in protein and peptide engineering, and to advocate its growth in the fields of materials science and nanotechnology.
Mathematical modeling of HIV-like particle assembly in vitro.
Liu, Yuewu; Zou, Xiufen
2017-06-01
In vitro, the recombinant HIV-1 Gag protein can generate spherical particles with a diameter of 25-30 nm in a fully defined system. It has approximately 80 building blocks, and its intermediates for assembly are abundant in geometry. Accordingly, there are a large number of nonlinear equations in the classical model. Therefore, it is difficult to compute values of geometry parameters for intermediates and make the mathematical analysis using the model. In this work, we develop a new model of HIV-like particle assembly in vitro by using six-fold symmetry of HIV-like particle assembly to decrease the number of geometry parameters. This method will greatly reduce computational costs and facilitate the application of the model. Then, we prove the existence and uniqueness of the positive equilibrium solution for this model with 79 nonlinear equations. Based on this model, we derive the interesting result that concentrations of all intermediates at equilibrium are independent of three important parameters, including two microscopic on-rate constants and the size of nucleating structure. Before equilibrium, these three parameters influence the concentration variation rates of all intermediates. We also analyze the relationship between the initial concentration of building blocks and concentrations of all intermediates. Furthermore, the bounds of concentrations of free building blocks and HIV-like particles are estimated. These results will be helpful to guide HIV-like particle assembly experiments and improve our understanding of the assembly dynamics of HIV-like particles in vitro. Copyright © 2017 Elsevier Inc. All rights reserved.
Preservation of adobe buildings. Study of materials
NASA Astrophysics Data System (ADS)
Velosa, A.; Rocha, F.; Costa, C.; Varum, H.
2012-04-01
Adobe buildings are common in the central region of Portugal due to the lack of natural stone in the surrounding area. This type of construction technique lasted until the 20th Century, at which time cementitious materials, with faster hardening and greater structural capacity substituted traditional materials and techniques. Currently, a significant percentage of these buildings is vacant and many are degraded and in need of conservation actions. Adobes from central Portugal are distinctive as they are lightly coloured and made from air lime and quarry sand. Although some adobes were manufactured locally, most were produced almost 'industrially' and sold to nearby regions. In order to preserve this heritage, conservation actions must be undertaken. So as to ensure the adequacy of these actions and compatibility between original materials and new ones, a thorough study of adobe compostion is mandatory. The current study is an initial step in the characterization of earth based construction materials from central Portugal. Adobe samples were collected from residential buildings in two different locations. The determination of the composition of adobe blocks encompassed the determination of the binder fraction and of their chemical composition and also the particle size analysis of the aggregate. For this purpose FRX analysis, acid dissolution and dry sieving were performed. Methylene blue test was also executed in order to determine the clay fraction. Additionally, the mineral composition of powder samples and oriented samples was performed using XRD analysis in order to determine the clay minerals present in the blocks. As adobe blocks are extremely prone to the action of water the Geelong test was undertaken in order to provide information in terms of durability. It was concluded that air lime was generally used in adobe compositions. However, the clay content varies in adobes from different regions, providing distinct durability characteristics to these materials.
Zhang, Huabin; Lin, Ping; Chen, Erxia; Tan, Yanxi; Wen, Tian; Aldalbahi, Ali; Alshehri, Saad M; Yamauchi, Yusuke; Du, Shaowu; Zhang, Jian
2015-03-23
The first example of an inorganic-organic composite framework with an interpenetrated diamondoid inorganic building block, featuring unique {InNa}n helices and {In12 Na16 } nano-rings, has been constructed and structurally characterized. This framework also represents a unique example of encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
23. The Stroud Building beard the 'Temme Springs' advertisement. Westfacing ...
23. The Stroud Building beard the 'Temme Springs' advertisement. West-facing windows of the entire block are protected from the afternoon sun by awnings. The north-facing windows of the second-story restaurant were later blocked by an adjacent two-story building. Circa 1914. Credit PPL. - Stroud Building, 31-33 North Central Avenue, Phoenix, Maricopa County, AZ
Polymer-based platform for microfluidic systems
Benett, William [Livermore, CA; Krulevitch, Peter [Pleasanton, CA; Maghribi, Mariam [Livermore, CA; Hamilton, Julie [Tracy, CA; Rose, Klint [Boston, MA; Wang, Amy W [Oakland, CA
2009-10-13
A method of forming a polymer-based microfluidic system platform using network building blocks selected from a set of interconnectable network building blocks, such as wire, pins, blocks, and interconnects. The selected building blocks are interconnectably assembled and fixedly positioned in precise positions in a mold cavity of a mold frame to construct a three-dimensional model construction of a microfluidic flow path network preferably having meso-scale dimensions. A hardenable liquid, such as poly (dimethylsiloxane) is then introduced into the mold cavity and hardened to form a platform structure as well as to mold the microfluidic flow path network having channels, reservoirs and ports. Pre-fabricated elbows, T's and other joints are used to interconnect various building block elements together. After hardening the liquid the building blocks are removed from the platform structure to make available the channels, cavities and ports within the platform structure. Microdevices may be embedded within the cast polymer-based platform, or bonded to the platform structure subsequent to molding, to create an integrated microfluidic system. In this manner, the new microfluidic platform is versatile and capable of quickly generating prototype systems, and could easily be adapted to a manufacturing setting.
Building Blocks for Sustainable Communities: Assistance from Grantees
EPA awarded Building Blocks for Sustainable Communities grants to four nonprofit organizations with extensive expertise in community sustainability. These organizations deliver technical assistance to communities.
ERIC Educational Resources Information Center
Trawick-Smith, Jeffrey; Swaminathan, Sudha; Baton, Brooke; Danieluk, Courtney; Marsh, Samantha; Szarwacki, Monika
2017-01-01
Block play has been included in early childhood classrooms for over a century, yet few studies have examined its effects on learning. Several previous investigations indicate that the complexity of block building is associated with math ability, but these studies were often conducted in adult-guided, laboratory settings. In the present…
Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki
2017-01-01
The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.
Big Questions: The Ultimate Building Blocks of Matter
Lincoln, Don
2018-01-16
The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.
Building Blocks for Personal Brands
ERIC Educational Resources Information Center
Thomas, Lisa Carlucci
2011-01-01
In this article, the author discusses the four essential building blocks for personal brands: (1) name; (2) message; (3) channels; and (4) bridges. However, outstanding building materials can only take a person so far. The author emphasizes that vision, determination, faith, a sense of humor, and humility are also required.
1967-01-01
Workmen secure a J-2 engine onto the S-IVB (second) stage thrust structure. As part of Marshall Space Center's "building block" approach to the Saturn development, the S-IVB was utilized in the Saturn IBC launch vehicle as a second stage and the Saturn V launch vehicle as a third stage. The booster, built for NASA by McDornell Douglas Corporation, was powered by a single J-2 engine, initially capable of 200,000 pounds of thrust.
CFD validation experiments for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1992-01-01
A roadmap for CFD code validation is introduced. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments could provide new validation data.
Shaping Crystal-Crystal Phase Transitions
NASA Astrophysics Data System (ADS)
Du, Xiyu; van Anders, Greg; Dshemuchadse, Julia; Glotzer, Sharon
Previous computational and experimental studies have shown self-assembled structure depends strongly on building block shape. New synthesis techniques have led to building blocks with reconfigurable shape and it has been demonstrated that building block reconfiguration can induce bulk structural reconfiguration. However, we do not understand systematically how this transition happens as a function of building block shape. Using a recently developed ``digital alchemy'' framework, we study the thermodynamics of shape-driven crystal-crystal transitions. We find examples of shape-driven bulk reconfiguration that are accompanied by first-order phase transitions, and bulk reconfiguration that occurs without any thermodynamic phase transition. Our results suggest that for well-chosen shapes and structures, there exist facile means of bulk reconfiguration, and that shape-driven bulk reconfiguration provides a viable mechanism for developing functional materials.
Automate Your Physical Plant Using the Building Block Approach.
ERIC Educational Resources Information Center
Michaelson, Matt
1998-01-01
Illustrates how Mount Saint Vincent University (Halifax), by upgrading the control and monitoring of one building or section of the school at a time, could produce savings in energy and operating costs and improve the environment. Explains a gradual, "building block" approach to facility automation that provides flexibility without a…
ERIC Educational Resources Information Center
Burkhart, Jerry
2009-01-01
Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…
2. OBLIQUE VIEW LOOKING NORTHWEST FROM 21ST STREET VIADUCT TOWARDS ...
2. OBLIQUE VIEW LOOKING NORTHWEST FROM 21ST STREET VIADUCT TOWARDS 2000 BLOCK OF MORRIS AVENUE WITH HEAVIEST CORNER ON EARTH BUILDINGS (TOP LEFT) AND COMER BUILDING (TOP RIGHT) - Morris Avenue Warehouse District, 2000-2400 blocks of Morris Avenue & 2100-2500 blocks of First Avenue, North, Birmingham, Jefferson County, AL
Nokami, Toshiki; Isoda, Yuta; Sasaki, Norihiko; Takaiso, Aki; Hayase, Shuichi; Itoh, Toshiyuki; Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-ichi
2015-03-20
The anomeric arylthio group and the hydroxyl-protecting groups of thioglycosides were optimized to construct carbohydrate building blocks for automated electrochemical solution-phase synthesis of oligoglucosamines having 1,4-β-glycosidic linkages. The optimization study included density functional theory calculations, measurements of the oxidation potentials, and the trial synthesis of the chitotriose trisaccharide. The automated synthesis of the protected potential N,N,N-trimethyl-d-glucosaminylchitotriomycin precursor was accomplished by using the optimized building block.
Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-ichi
2017-01-01
The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block. PMID:28684973
Strategies for Controlled Placement of Nanoscale Building Blocks
2007-01-01
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185
and leptons seem to be the fundamental building blocks - but perhaps there is something even smaller properties of the fundamental building blocks of our universe, there are untold mysteries still to solve
Mutale, Wilbroad; Bond, Virginia; Mwanamwenge, Margaret Tembo; Mlewa, Susan; Balabanova, Dina; Spicer, Neil; Ayles, Helen
2013-08-01
The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia's MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating communities seemed to lack the capacity to hold health workers accountable for the drugs and services. The study has shown that building block specific weaknesses had cross cutting effect in other health system building blocks. These linkages emphasised the need to use system wide approaches in assessing the performance of health system strengthening interventions.
Pearsall, Matthew J; Ellis, Aleksander P J; Bell, Bradford S
2010-01-01
The primary purpose of this study was to extend theory and research regarding the emergence of mental models and transactive memory in teams. Utilizing Kozlowski, Gully, Nason, and Smith's (1999) model of team compilation, we examined the effect of role identification behaviors and posited that such behaviors represent the initial building blocks of team cognition during the role compilation phase of team development. We then hypothesized that team mental models and transactive memory would convey the effects of these behaviors onto team performance in the team compilation phase of development. Results from 60 teams working on a command-and-control simulation supported our hypotheses. Copyright 2009 APA, all rights reserved.
Zhang, Zheng; Wu, Yuyang; Yu, Feng; Niu, Chaoqun; Du, Zhi; Chen, Yong; Du, Jie
2017-10-01
The construction and self-assembly of DNA building blocks are the foundation of bottom-up development of three-dimensional DNA nanostructures or hydrogels. However, most self-assembly from DNA components is impeded by the mishybridized intermediates or the thermodynamic instability. To enable rapid production of complicated DNA objects with high yields no need for annealing process, herein different DNA building blocks (Y-shaped, L- and L'-shaped units) were assembled in presence of a cationic comb-type copolymer, poly (L-lysine)-graft-dextran (PLL-g-Dex), under physiological conditions. The results demonstrated that PLL-g-Dex not only significantly promoted the self-assembly of DNA blocks with high efficiency, but also stabilized the assembled multi-level structures especially for promoting the complicated 3D DNA hydrogel formation. This study develops a novel strategy for rapid and high-yield production of DNA hydrogel even derived from instable building blocks at relatively low DNA concentrations, which would endow DNA nanotechnology for more practical applications.
Oberbichler, S; Hackl, W O; Hörbst, A
2017-10-18
Long-term data collection is a challenging task in the domain of medical research. Many effects in medicine require long periods of time to become traceable e.g. the development of secondary malignancies based on a given radiotherapeutic treatment of the primary disease. Nevertheless, long-term studies often suffer from an initial lack of available information, thus disallowing a standardized approach for their approval by the ethics committee. This is due to several factors, such as the lack of existing case report forms or an explorative research approach in which data elements may change over time. In connection with current medical research and the ongoing digitalization in medicine, Long Term Medical Data Registries (MDR-LT) have become an important means of collecting and analyzing study data. As with any clinical study, ethical aspects must be taken into account when setting up such registries. This work addresses the problem of creating a valid, high-quality ethics committee proposal for medical registries by suggesting groups of tasks (building blocks), information sources and appropriate methods for collecting and analyzing the information, as well as a process model to compile an ethics committee proposal (EsPRit). To derive the building blocks and associated methods software and requirements engineering approaches were utilized. Furthermore, a process-oriented approach was chosen, as information required in the creating process of ethics committee proposals remain unknown in the beginning of planning an MDR-LT. Here, we derived the needed steps from medical product certification. This was done as the medical product certification itself also communicates a process-oriented approach rather than merely focusing on content. A proposal was created for validation and inspection of applicability by using the proposed building blocks. The proposed best practice was tested and refined within SEMPER (Secondary Malignoma - Prospective Evaluation of the Radiotherapeutics dose distribution as the cause for induction) as a case study. The proposed building blocks cover the topics of "Context Analysis", "Requirements Analysis", "Requirements Validation", "Electronic Case Report (eCRF) Design" and "Overall Concept Creation". Additional methods are attached with regards to each topic. The goals of each block can be met by applying those methods. The proposed methods are proven methods as applied in e.g. existing Medical Data Registry projects, as well as in software or requirements engineering. Several building blocks and attached methods could be identified in the creation of a generic ethics committee proposal. Hence, an Ethics Committee can make informed decisions on the suggested study via said blocks, using the suggested methods such as "Defining Clinical Questions" within the Context Analysis. The study creators have to confirm that they adhere to the proposed procedure within the ethic proposal statement. Additional existing Medical Data Registry projects can be compared to EsPRit for conformity to the proposed procedure. This allows for the identification of gaps, which can lead to amendments requested by the ethics committee.
15. WEST SIDE OF 1900 BLOCK, PACIFIC AVE. FROM RIGHT; ...
15. WEST SIDE OF 1900 BLOCK, PACIFIC AVE. FROM RIGHT; 1920-22 PACIFIC AVE., WIEGAL COMPANY CANDY FACTORY (1904); 1924-26 PACIFIC AVE., CAMPBELL BUILDING (DAVIS BUILDING) (1890); 1928-30 PACIFIC AVE., REESE-CRANDALL & REDMAN BUILDING, (1890); 1932-36 PACIFIC AVE., MC DONALD & SMITH BUILDING (1890); 1938-48 PACIFIC AVE., F.S. HARMON COMPANY WAREHOUSE (1908), DESIGNED BY CARL AUGUST DARMER. - Union Depot Area Study, Tacoma, Pierce County, WA
NASA Astrophysics Data System (ADS)
Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary
2017-11-01
Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.
QWIP products and building blocks for high performance systems
NASA Astrophysics Data System (ADS)
Costard, E.; Bois, Ph.; Marcadet, X.; Nedelcu, A.
2005-10-01
Standard GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are coming out from the laboratory. In this paper we demonstrate that production and research cannot be dissociated in order to make the new generation of thermal imagers benefit as fast as possible from the building blocks developed by researchers. Since 2002, the THALES group has been manufacturing sensitive arrays using QWIP technology based on GaAs techniques through THALES Research and Technology Laboratory. This QWIP technology allows the realization of large staring arrays for thermal imagers (TI) working in the IR band III (8-12 μm). A review of the current QWIP products is presented. In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and was the key parameter for the production initiation. Another advantage widely claimed also for QWIPs was the so-called band-gap engineering, allowing the custom design of quantum structure to fulfill the requirements of specific applications like very long wavelength or multispectral detection. In this paper, we present the performances for Middle Wavelength InfraRed (MWIR) detections and demonstrate the ability of QWIP's to cover the two spectral ranges (3-5 μm and 8-20 μm). Last but not least, the versatility of the GaAs processing appeared for QWIPs as an important gift. This assumption was well founded. We give here some results achieved on building blocks for two color QWIP pixels. We also report the expected performances of focal plane arrays that we are currently developing with the CEA-LETI-SLIR.
NASA Astrophysics Data System (ADS)
Könning, Tobias; Bayer, Andreas; Plappert, Nora; Faßbender, Wilhelm; Dürsch, Sascha; Küster, Matthias; Hubrich, Ralf; Wolf, Paul; Köhler, Bernd; Biesenbach, Jens
2018-02-01
A novel 3-dimensional arrangement of mirrors is used to re-arrange beams from 1-D and 2-D high power diode laser arrays. The approach allows for a variety of stacking geometries, depending on individual requirements. While basic building blocks, including collimating optics, always remain the same, most adaptations can be realized by simple rearrangement of a few optical components. Due to fully automated alignment processes, the required changes can be realized in software by changing coordinates, rather than requiring customized mechanical components. This approach minimizes development costs due to its flexibility, while reducing overall product cost by using similar building blocks for a variety of products and utilizing a high grade of automation. The modules can be operated with industrial grade water, lowering overall system and maintenance cost. Stackable macro coolers are used as the smallest building block of the system. Each cooler can hold up to five diode laser bars. Micro optical components, collimating the beam, are mounted directly to the cooler. All optical assembly steps are fully automated. Initially, the beams from all laser bars propagate in the same direction. Key to the concept is an arrangement of deflectors, which re-arrange the beams into a 2-D array of the desired shape and high fill factor. Standard multiplexing techniques like polarization- or wavelengths-multiplexing have been implemented as well. A variety of fiber coupled modules ranging from a few hundred watts of optical output power to multiple kilowatts of power, as well as customized laser spot geometries like uniform line sources, have been realized.
A CFD validation roadmap for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1992-01-01
A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.
A CFD validation roadmap for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, Joseph G.
1993-01-01
A roadmap for computational fluid dynamics (CFD) code validation is developed. The elements of the roadmap are consistent with air-breathing vehicle design requirements and related to the important flow path components: forebody, inlet, combustor, and nozzle. Building block and benchmark validation experiments are identified along with their test conditions and measurements. Based on an evaluation criteria, recommendations for an initial CFD validation data base are given and gaps identified where future experiments would provide the needed validation data.
How Crossover Speeds up Building Block Assembly in Genetic Algorithms.
Sudholt, Dirk
2017-01-01
We reinvestigate a fundamental question: How effective is crossover in genetic algorithms in combining building blocks of good solutions? Although this has been discussed controversially for decades, we are still lacking a rigorous and intuitive answer. We provide such answers for royal road functions and OneMax, where every bit is a building block. For the latter, we show that using crossover makes every ([Formula: see text]+[Formula: see text]) genetic algorithm at least twice as fast as the fastest evolutionary algorithm using only standard bit mutation, up to small-order terms and for moderate [Formula: see text] and [Formula: see text]. Crossover is beneficial because it can capitalize on mutations that have both beneficial and disruptive effects on building blocks: crossover is able to repair the disruptive effects of mutation in later generations. Compared to mutation-based evolutionary algorithms, this makes multibit mutations more useful. Introducing crossover changes the optimal mutation rate on OneMax from [Formula: see text] to [Formula: see text]. This holds both for uniform crossover and k-point crossover. Experiments and statistical tests confirm that our findings apply to a broad class of building block functions.
Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie
2017-07-25
Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.
Single molecule magnets from magnetic building blocks
NASA Astrophysics Data System (ADS)
Kroener, W.; Paretzki, A.; Cervetti, C.; Hohloch, S.; Rauschenbach, S.; Kern, K.; Dressel, M.; Bogani, L.; M&üLler, P.
2013-03-01
We provide a basic set of magnetic building blocks that can be rationally assembled, similar to magnetic LEGO bricks, in order to create a huge variety of magnetic behavior. Using rare-earth centers and multipyridine ligands, fine-tuning of intra and intermolecular exchange interaction is demonstrated. We have investigated a series of molecules with monomeric, dimeric and trimeric lanthanide centers using SQUID susceptometry and Hall bar magnetometry. A home-made micro-Hall-probe magnetometer was used to measure magnetic hysteresis loops at mK temperatures and fields up to 17 T. All compounds show hysteresis below blocking temperatures of 3 to 4 K. The correlation of the assembly of the building blocks with the magnetic properties will be discussed.
Embeddable Reconfigurable Neuroprocessors
NASA Technical Reports Server (NTRS)
Daud, Taher; Duong, Tuan; Langenbacher, Harry; Tran, Mua; Thakoor, Anil
1993-01-01
Reconfigurable and cascadable building block neural network chips, fabricated using analog VLSI design tools, are interfaced to a PC. The building block chip designs, the cascadability and the hardware-in-the-loop supervised learning aspects of these chips are described.
Tops as building blocks for G 2 manifolds
NASA Astrophysics Data System (ADS)
Braun, Andreas P.
2017-10-01
A large number of examples of compact G 2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes. In particular, this enables us to prove combinatorial formulas for the Hodge numbers and other relevant topological data.
Origami-inspired building block and parametric design for mechanical metamaterials
NASA Astrophysics Data System (ADS)
Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo
2016-08-01
An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.
Large space erectable structures - building block structures study
NASA Technical Reports Server (NTRS)
Armstrong, W. H.; Skoumal, D. E.; Straayer, J. W.
1977-01-01
A modular planar truss structure and a long slender boom concept identified as building block approaches to construction of large spacecraft configurations are described. The concepts are compatible in weight and volume goals with the Space Transportation System, use standard structural units, and represent high on-orbit productivity in terms of structural area or beam length. Results of structural trade studies involving static and dynamic analyses of a single module and rigid body deployment analyses to assess kinetics and kinematics of automatic deployment of the building block modules are presented.
Han, Youngkyu; Ahn, Suk-Kyun; Zhang, Zhe; ...
2015-05-15
The nano-sized and shape-tunable molecular building blocks can provide great opportunities for the fabrication of precisely controlled nanostructures. In this work, we have fabricated a molecular building block of single-walled carbon nanotubes (SWNTs) coated by PPO-PEO-PPO block copolymers whose encapsulation structure can be controlled via temperature or addition of small molecules. The structure and optical properties of SWNT-block copolymers have been investigated by small angle neutron scattering (SANS), ultraviolet-visible (UV-vis) spectroscopy, atomic force microscopy (AFM), and molecular dynamics (MD) simulation. The structure of the hydrated block copolymer layer surrounding SWNT can be controlled reversibly by varying temperature as well asmore » by irreversibly adding 5-methylsalicylic acid (5MS). Increasing hydrophobicity of the polymers with temperature and strong tendency of 5MS to interact with both block copolymers and orbitals of the SWNTs are likely to be responsible for the significant structural change of the block copolymer encapsulation layer, from loose corona shell to tightly encapsulating compact shell. These result shows an efficient and simple way to fabricate and manipulate carbon-based nano building blocks in aqueous systems with tunable structure.« less
Lin, Mouhong; Huang, Haoliang; Liu, Zuotao; Liu, Yingju; Ge, Junbin; Fang, Yueping
2013-12-10
Magnetic nanoparticle clusters (MNCs) are a class of secondary structural materials that comprise chemically defined nanoparticles assembled into clusters of defined size. Herein, MNCs are fabricated through a one-pot solvothermal reaction featuring self-limiting assembly of building blocks and the controlled reorganization process. Such growth-dissolution-regrowth fabrication mechanism overcomes some limitations of conventional solvothermal fabrication methods with regard to restricted available feature size and structural complexity, which can be extended to other oxides (as long as one can be chelated by EDTA-2Na). Based on this method, the nanoparticle size of MNCs is tuned between 6.8 and 31.2 nm at a fixed cluster diameter of 120 nm, wherein the critical size for superparamagnetic-ferromagnetic transition is estimated from 13.5 to 15.7 nm. Control over the nature and secondary structure of MNCs gives an excellent model system to understand the nanoparticle size-dependent magnetic properties of MNCs. MNCs have potential applications in many different areas, while this work evaluates their cytotoxicity and Pb(2+) adsorption capacity as initial application study.
View of the southwest guard tower, cell blocks seven and ...
View of the southwest guard tower, cell blocks seven and eight, administration building west tower, and Fairmount Avenue, looking from the administration building facing west - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA
Woerly, Eric M; Roy, Jahnabi; Burke, Martin D
2014-06-01
The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.
NASA Astrophysics Data System (ADS)
Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.
2014-06-01
The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.
Expanding the biomass derived chemical space
Brun, Nicolas; Hesemann, Peter
2017-01-01
Biorefinery aims at the conversion of biomass and renewable feedstocks into fuels and platform chemicals, in analogy to conventional oil refinery. In the past years, the scientific community has defined a number of primary building blocks that can be obtained by direct biomass decomposition. However, the large potential of this “renewable chemical space” to contribute to the generation of value added bio-active compounds and materials still remains unexplored. In general, biomass derived building blocks feature a diverse range of chemical functionalities. In order to be integrated into value-added compounds, they require additional functionalization and/or covalent modification thereby generating secondary building blocks. The latter can be thus regarded as functional components of bio-active molecules or materials and represent an expansion of the renewable chemical space. This perspective highlights the most recent developments and opportunities for the synthesis of secondary biomass derived building blocks and their application to the preparation of value added products. PMID:28959397
2013-01-01
Background Integrated into the work in health systems strengthening (HSS) is a growing focus on the importance of ensuring quality of the services delivered and systems which support them. Understanding how to define and measure quality in the different key World Health Organization building blocks is critical to providing the information needed to address gaps and identify models for replication. Description of approaches We describe the approaches to defining and improving quality across the five country programs funded through the Doris Duke Charitable Foundation African Health Initiative. While each program has independently developed and implemented country-specific approaches to strengthening health systems, they all included quality of services and systems as a core principle. We describe the differences and similarities across the programs in defining and improving quality as an embedded process essential for HSS to achieve the goal of improved population health. The programs measured quality across most or all of the six WHO building blocks, with specific areas of overlap in improving quality falling into four main categories: 1) defining and measuring quality; 2) ensuring data quality, and building capacity for data use for decision making and response to quality measurements; 3) strengthened supportive supervision and/or mentoring; and 4) operational research to understand the factors associated with observed variation in quality. Conclusions Learning the value and challenges of these approaches to measuring and improving quality across the key components of HSS as the projects continue their work will help inform similar efforts both now and in the future to ensure quality across the critical components of a health system and the impact on population health. PMID:23819662
A VLSI decomposition of the deBruijn graph
NASA Technical Reports Server (NTRS)
Collins, O.; Dolinar, S.; Mceliece, R.; Pollara, F.
1990-01-01
A new Viterbi decoder for convolutional codes with constraint lengths up to 15, called the Big Viterbi Decoder, is under development for the Deep Space Network. It will be demonstrated by decoding data from the Galileo spacecraft, which has a rate 1/4, constraint-length 15 convolutional encoder on board. Here, the mathematical theory underlying the design of the very-large-scale-integrated (VLSI) chips that are being used to build this decoder is explained. The deBruijn graph B sub n describes the topology of a fully parallel, rate 1/v, constraint length n+2 Viterbi decoder, and it is shown that B sub n can be built by appropriately wiring together (i.e., connecting together with extra edges) many isomorphic copies of a fixed graph called a B sub n building block. The efficiency of such a building block is defined as the fraction of the edges in B sub n that are present in the copies of the building block. It is shown, among other things, that for any alpha less than 1, there exists a graph G which is a B sub n building block of efficiency greater than alpha for all sufficiently large n. These results are illustrated by describing a special hierarchical family of deBruijn building blocks, which has led to the design of the gate-array chips being used in the Big Viterbi Decoder.
A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.
ERIC Educational Resources Information Center
Templin, Mark A.; Fetters, Marcia K.
2002-01-01
Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)
Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.
Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin
2014-01-21
A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.
2013-01-01
Background The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia’s MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. Methods A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. Results The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating communities seemed to lack the capacity to hold health workers accountable for the drugs and services. Conclusion The study has shown that building block specific weaknesses had cross cutting effect in other health system building blocks. These linkages emphasised the need to use system wide approaches in assessing the performance of health system strengthening interventions. PMID:23902601
Sui, Yuanyuan; Ou, Yang; Yan, Baixing; Xu, Xiaohong; Rousseau, Alain N; Zhang, Yu
2016-01-01
Micro-basin tillage is a soil and water conservation practice that requires building individual earth blocks along furrows. In this study, plot experiments were conducted to assess the efficiency of micro-basin tillage on sloping croplands between 2012 and 2013 (5°and 7°). The conceptual, optimal, block interval model was used to design micro-basins which are meant to capture the maximum amount of water per unit area. Results indicated that when compared to the up-down slope tillage, micro-basin tillage could increase soil water content and maize yield by about 45% and 17%, and reduce runoff, sediment and nutrients loads by about 63%, 96% and 86%, respectively. Meanwhile, micro-basin tillage could reduce the peak runoff rates and delay the initial runoff-yielding time. In addition, micro-basin tillage with the optimal block interval proved to be the best one among all treatments with different intervals. Compared with treatments of other block intervals, the optimal block interval treatments increased soil moisture by around 10% and reduced runoff rate by around 15%. In general, micro-basin tillage with optimal block interval represents an effective soil and water conservation practice for sloping farmland of the black soil region.
Sui, Yuanyuan; Ou, Yang; Yan, Baixing; Xu, Xiaohong; Rousseau, Alain N.; Zhang, Yu
2016-01-01
Micro-basin tillage is a soil and water conservation practice that requires building individual earth blocks along furrows. In this study, plot experiments were conducted to assess the efficiency of micro-basin tillage on sloping croplands between 2012 and 2013 (5°and 7°). The conceptual, optimal, block interval model was used to design micro-basins which are meant to capture the maximum amount of water per unit area. Results indicated that when compared to the up-down slope tillage, micro-basin tillage could increase soil water content and maize yield by about 45% and 17%, and reduce runoff, sediment and nutrients loads by about 63%, 96% and 86%, respectively. Meanwhile, micro-basin tillage could reduce the peak runoff rates and delay the initial runoff-yielding time. In addition, micro-basin tillage with the optimal block interval proved to be the best one among all treatments with different intervals. Compared with treatments of other block intervals, the optimal block interval treatments increased soil moisture by around 10% and reduced runoff rate by around 15%. In general, micro-basin tillage with optimal block interval represents an effective soil and water conservation practice for sloping farmland of the black soil region. PMID:27031339
2016-04-01
characterization has just started. The hybrids that we have synthesized are based on plasmonic gold and silver nanoparticles (NPs) but the concept is...AFRL-AFOSR-UK-TR-2016-0010 Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials Bertrand...2015 4. TITLE AND SUBTITLE Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials 5a. CONTRACT
Tian, Dan; Chen, Qiang; Li, Yue; Zhang, Ying-Hui; Chang, Ze; Bu, Xian-He
2014-01-13
A mixed molecular building block (MBB) strategy for the synthesis of double-walled cage-based porous metal-organic frameworks (MOFs) is presented. By means of this method, two isostructural porous MOFs built from unprecedented double-walled metal-organic octahedron were obtained by introducing two size-matching C3 -symmetric molecular building blocks with different rigidities. With their unique framework structures, these MOFs provide, to the best of our knowledge, the first examples of double-walled octahedron-based MOFs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Three dimensional Origami-based metamaterial
NASA Astrophysics Data System (ADS)
Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan; High Performance Materials; Structures Labratory Team
We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson's ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.
PERTS: A Prototyping Environment for Real-Time Systems
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.
1991-01-01
We discuss an ongoing project to build a Prototyping Environment for Real-Time Systems, called PERTS. PERTS is a unique prototyping environment in that it has (1) tools and performance models for the analysis and evaluation of real-time prototype systems, (2) building blocks for flexible real-time programs and the support system software, (3) basic building blocks of distributed and intelligent real time applications, and (4) an execution environment. PERTS will make the recent and future theoretical advances in real-time system design and engineering readily usable to practitioners. In particular, it will provide an environment for the use and evaluation of new design approaches, for experimentation with alternative system building blocks and for the analysis and performance profiling of prototype real-time systems.
NASA Technical Reports Server (NTRS)
Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara
1994-01-01
The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inners, J.D.; Sevon, W.D.; Moore, M.E.
1993-03-01
Imposing hilltop rock-cities developed from widely jointed outcrops of Olean conglomerate (Lower Pennsylvanian) create picturesque scenery on the Allegheny High Plateau in Warren Co., Pa. At least six such rock cities 2 to 5 acres in extent are associated with the Late Wisconsinan glacial border in the northern half of the county. Farther to the south, jumbled Olean and Knapp (Lower Mississippian) joint blocks occur on steep slopes below valley-wall cliffs. The rock cities and accumulations of displaced joint blocks are largely relics of Late Wisconsinan periglacial mass-wasting. Frost splitting initiated opening of bedrock joints to form buildings. Gravity, soilmore » wedging, and possibly gelifluction then widened the fissures into streets. Gelifluction moved blocks downslope and oriented their long axes parallel with slope (Warren Rocks). Forward toppling of high, unstable blocks contributed to mass-movement on some steep slopes (Rimrock). Today, rock cities and downslope blocks are stable in areas of gentle (less than 10 percent) slopes, but toppling, solifluction, creep, and debris flows cause continued slow movement of large blocks on moderately steep to steep (greater than 30 percent) slopes. Blocks of Olean and Knapp conglomerate have both stratabound pitting and intricate honeycomb weathering. Deep pitting is controlled largely by variations in silica cementation. Honeycomb weathering is most evident in sandy layers and results from patterns of iron-oxide impregnation. Both are Holocene surface-weathering processes.« less
HPMA copolymers: Origins, early developments, present, and future☆
Kopeček, Jindřich; Kopečková, Pavla
2010-01-01
The overview covers the discovery of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers, initial studies on their synthesis, evaluation of biological properties, and explorations of their potential as carriers of biologically active compounds in general and anticancer drugs in particular. The focus is on the research in the authors’ laboratory – the development of macromolecular therapeutics for the treatment of cancer and musculoskeletal diseases. In addition, the evaluation of HPMA (co)polymers as building blocks of mod and new biomaterials is presented: the utilization of semitelechelic poly(HPMA) and HPMA copolymers for the modification of biomaterial and protein surfaces and the design of hybrid block and graft HPMA copolymers that self-assemble into smart hydrogels. Finally, suggestions for the design of second-generation macromolecular therapeutics are portrayed. PMID:19919846
Hydration effects on the electronic properties of eumelanin building blocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assis Oliveira, Leonardo Bruno; Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO; Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO
2016-08-28
Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in themore » electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.« less
Hydration effects on the electronic properties of eumelanin building blocks.
Assis Oliveira, Leonardo Bruno; L Fonseca, Tertius; Costa Cabral, Benedito J; Coutinho, Kaline; Canuto, Sylvio
2016-08-28
Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.
Hydration effects on the electronic properties of eumelanin building blocks
NASA Astrophysics Data System (ADS)
Assis Oliveira, Leonardo Bruno; L. Fonseca, Tertius; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio
2016-08-01
Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.
Movement planning reflects skill level and age changes in toddlers
Chen, Yu-ping; Keen, Rachel; Rosander, Kerstin; von Hofsten, Claes
2010-01-01
Kinematic measures of children’s reaching were found to reflect stable differences in skill level for planning for future actions. Thirty-five toddlers (18–21 months) were engaged in building block towers (precise task) and in placing blocks into an open container (imprecise task). Sixteen children were re-tested on the same tasks a year later. Longer deceleration as the hand approached the block for pickup was found in the tower task compared to the imprecise task, indicating planning for the second movement. More skillful toddlers who could build high towers had a longer deceleration phase when placing blocks on the tower than toddlers who built low towers. Kinematic differences between the groups remained a year later when all children could build high towers. PMID:21077868
Andriollo, Paolo; Hind, Charlotte K; Picconi, Pietro; Nahar, Kazi S; Jamshidi, Shirin; Varsha, Amrit; Clifford, Melanie; Sutton, J Mark; Rahman, Khondaker Miraz
2018-02-09
Antimicrobial resistance has become a major global concern. Development of novel antimicrobial agents for the treatment of infections caused by multidrug resistant (MDR) pathogens is an urgent priority. Pyrrolobenzodiazepines (PBDs) are a promising class of antibacterial agents initially discovered and isolated from natural sources. Recently, C8-linked PBD biaryl conjugates have been shown to be active against some MDR Gram-positive strains. To explore the role of building block orientations on antibacterial activity and obtain structure activity relationship (SAR) information, four novel structures were synthesized in which the building blocks of previously reported compounds were inverted, and their antibacterial activity was studied. The compounds showed minimum inhibitory concentrations (MICs) in the range of 0.125-32 μg/mL against MDR Gram-positive strains with a bactericidal mode of action. The results showed that a single inversion of amide bonds reduces the activity while the double inversion restores the activity against MDR pathogens. All inverted compounds did not stabilize DNA and lacked eukaryotic toxicity. The compounds inhibit DNA gyrase in vitro, and the most potent compound was equally active against both wild-type and mutant DNA gyrase in a biochemical assay. The observed activity of the compounds against methicillin resistant S. aureus (MRSA) strains with equivalent gyrase mutations is consistent with gyrase inhibition being the mechanism of action in vivo, although this has not been definitively confirmed in whole cells. This conclusion is supported by a molecular modeling study showing interaction of the compounds with wild-type and mutant gyrases. This study provides important SAR information about this new class of antibacterial agents.
ERIC Educational Resources Information Center
Fernelius, W. Conrad, Ed.; And Others
1979-01-01
The value of ethylene, as the organic chemical industry's most important building block, is discussed. The discussion focuses on the source of ethylene, its various forms and functions, and the ways in which the forms are made. (SA)
Two integrator loop quadrature oscillators: A review.
Soliman, Ahmed M
2013-01-01
A review of the two integrator loop oscillator circuits providing two quadrature sinusoidal output voltages is given. All the circuits considered employ the minimum number of capacitors namely two except one circuit which uses three capacitors. The circuits considered are classified to four different classes. The first class includes floating capacitors and floating resistors and the active building blocks realizing these circuits are the Op Amp or the OTRA. The second class employs grounded capacitors and includes floating resistors and the active building blocks realizing these circuits are the DCVC or the unity gain cells or the CFOA. The third class employs grounded capacitors and grounded resistors and the active building blocks realizing these circuits are the CCII. The fourth class employs grounded capacitors and no resistors and the active building blocks realizing these circuits are the TA. Transformation methods showing the generation of different classes from each other is given in details and this is one of the main objectives of this paper.
Building Blocks of Psychology: on Remaking the Unkept Promises of Early Schools.
Gozli, Davood G; Deng, Wei Sophia
2018-03-01
The appeal and popularity of "building blocks", i.e., simple and dissociable elements of behavior and experience, persists in psychological research. We begin our assessment of this research strategy with an historical review of structuralism (as espoused by E. B. Titchener) and behaviorism (espoused by J. B. Watson and B. F. Skinner), two movements that held the assumption in their attempts to provide a systematic and unified discipline. We point out the ways in which the elementism of the two schools selected, framed, and excluded topics of study. After the historical review, we turn to contemporary literature and highlight the persistence of research into building blocks and the associated framing and exclusions in psychological research. The assumption that complex categories of human psychology can be understood in terms of their elementary components and simplest forms seems indefensible. In specific cases, therefore, reliance on the assumption requires justification. Finally, we review alternative strategies that bypass the commitment to building blocks.
Toward Generalization of Iterative Small Molecule Synthesis
Lehmann, Jonathan W.; Blair, Daniel J.; Burke, Martin D.
2018-01-01
Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the “building block approach”, i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach. PMID:29696152
NASA Astrophysics Data System (ADS)
Unzueta, Ugutz; Serna, Naroa; Sánchez-García, Laura; Roldán, Mónica; Sánchez-Chardi, Alejandro; Mangues, Ramón; Villaverde, Antonio; Vázquez, Esther
2017-12-01
The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.
ERIC Educational Resources Information Center
Groenewoud, A. Stef; van Exel, N. Job A.; Berg, Marc; Huijsman, Robbert
2008-01-01
Purpose: This article reports on a study to identify "building blocks" for quality report cards for geriatric care. Its aim is to present (a) the results of the study and (b) the innovative step-by-step approach that was developed to arrive at these results. Design and Methods: We used Concept Mapping/Structured Conceptualization to…
Kaiser Permanente's performance improvement system, Part 4: Creating a learning organization.
Schilling, Lisa; Dearing, James W; Staley, Paul; Harvey, Patti; Fahey, Linda; Kuruppu, Francesca
2011-12-01
In 2006, recognizing variations in performance in quality, safety, service, and efficiency, Kaiser Permanente leaders initiated the development of a performance improvement (PI) system. Kaiser Permanente has implemented a strategy for creating the systemic capacity for continuous improvement that characterizes a learning organization. Six "building blocks" were identified to enable Kaiser Permanente to make the transition to becoming a learning organization: real-time sharing of meaningful performance data; formal training in problem-solving methodology; workforce engagement and informal knowledge sharing; leadership structures, beliefs, and behaviors; internal and external benchmarking; and technical knowledge sharing. Putting each building block into place required multiple complex strategies combining top-down and bottom-up approaches. Although the strategies have largely been successful, challenges remain. The demand for real-time meaningful performance data can conflict with prioritized changes to health information systems. It is an ongoing challenge to teach PI, change management, innovation, and project management to all managers and staff without consuming too much training time. Challenges with workforce engagement include low initial use of tools intended to disseminate information through virtual social networking. Uptake of knowledge-sharing technologies is still primarily by innovators and early adopters. Leaders adopt new behaviors at varying speeds and have a range of abilities to foster an environment that is psychologically safe and stimulates inquiry. A learning organization has the capability to improve, and it develops structures and processes that facilitate the acquisition and sharing of knowledge.
Building blocks for subleading helicity operators
Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.
2016-05-24
On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. In conclusion, we also describe an interesting angular momentum selection rule that restricts how these building blocks canmore » be assembled.« less
Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties
NASA Astrophysics Data System (ADS)
Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan
2017-04-01
We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments.
Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties
Kamrava, Soroush; Mousanezhad, Davood; Ebrahimi, Hamid; Ghosh, Ranajay; Vaziri, Ashkan
2017-01-01
We present a novel cellular metamaterial constructed from Origami building blocks based on Miura-ori fold. The proposed cellular metamaterial exhibits unusual properties some of which stemming from the inherent properties of its Origami building blocks, and others manifesting due to its unique geometrical construction and architecture. These properties include foldability with two fully-folded configurations, auxeticity (i.e., negative Poisson’s ratio), bistability, and self-locking of Origami building blocks to construct load-bearing cellular metamaterials. The kinematics and force response of the cellular metamaterial during folding were studied to investigate the underlying mechanisms resulting in its unique properties using analytical modeling and experiments. PMID:28387345
Schindler, Corinna S; Carreira, Erick M
2009-11-01
This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).
Recent advances in synthesis of bacterial rare sugar building blocks and their applications.
Emmadi, Madhu; Kulkarni, Suvarn S
2014-07-01
Covering: 1964 to 2013. Bacteria have unusual glycans on their surfaces which distinguish them from the host cells. These unique structures offer avenues for targeting bacteria with specific therapeutics and vaccine. However, these rare sugars are not accessible in acceptable purity and amounts by isolation from natural sources. Thus, procurement of orthogonally protected rare sugar building blocks through efficient chemical synthesis is regarded as a crucial step towards the development of glycoconjugate vaccines. This Highlight focuses on recent advances in the synthesis of the bacterial deoxy amino hexopyranoside building blocks and their application in constructing various biologically important bacterial O-glycans.
Kabbour, Houria; Cario, Laurent
2006-03-20
We have designed new compounds within the homologous series Ae2F2M(1+n)X(3+n) (Ae = Sr, Ba; M = main group metal; n = integer) built up from the stacking of 2D building blocks of rock salt and fluorite types. By incrementally increasing the size of the rock salt 2D building blocks, we have obtained two new n = 1 members of this homologous series, namely, Sr2F2Sb2Se4 and Ba2F2Sb2Se4. We then succeeded in synthesizing these compounds using a high-temperature ceramic method. The structure refinements from the powder or single-crystal X-ray diffraction data confirmed presence of the expected alternating stacking of fluorite [Ae2F2] (Ae = Sr, Ba) and rock salt [Sb2Se4] 2D building blocks. However the Ba derivative shows a strong distortion of the [Sb2Se4] block and a concomitant change of the Sb atom coordination likely related to the lone-pair activity.
Michalak, Karol; Wicha, Jerzy
2011-08-19
An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.
Multiresonant Composite Optical Nanoantennas by Out-of-plane Plasmonic Engineering.
Song, Junyeob; Zhou, Wei
2018-06-27
Optical nanoantennas can concentrate light and enhance light-matter interactions in subwavelength domain, which is useful for photodetection, light emission, optical biosensing, and spectroscopy. However, conventional optical nanoantennas operating at a single wavelength band are not suitable for multiband applications. Here, we propose and exploit an out-of-plane plasmonic engineering strategy to design and create composite optical nanoantennas that can support multiple nanolocalized modes at different resonant wavelengths. These multiresonant composite nanoantennas are composed of vertically stacked building blocks of metal-insulator-metal loop nanoantennas. Studies of multiresonant composite nanoantennas demonstrate that the number of supported modes depends on the number of vertically stacked building blocks and the resonant wavelengths of individual modes are tunable by controlling the out-of-plane geometries of their building blocks. In addition, numerical studies show that the resonant wavelengths of individual modes in composite nanoantennas can deviate from the optical response of building blocks due to hybridization of magnetic modes in neighboring building blocks. Using Au nanohole arrays as deposition masks to fabricate arrays of multilayered composite nanoantennas, we experimentally demonstrate their multiresonant optical properties in good agreement with theory predictions. These studies show that out-of-plane engineered multiresonant composite nanoantennas can provide new opportunities for fundamental nanophotonics research and practical applications involving optical multiband operations, such as multiphoton process, broadband solar energy conversion, and wavelength-multiplexed optical system.
Branching patterns in leaf starches from Arabidopsis mutants deficient in diverse starch synthases.
Zhu, Fan; Bertoft, Eric; Szydlowski, Nicolas; d'Hulst, Christophe; Seetharaman, Koushik
2015-01-12
This is the first report on the cluster structure of transitory starch from Arabidopsis leaves. In addition to wild type, the molecular structures of leaf starch from mutants deficient in starch synthases (SS) including single enzyme mutants ss1-, ss2-, or ss3-, and also double mutants ss1-ss2- and ss1-ss3- were characterized. The mutations resulted in increased amylose content. Clusters from whole starch were isolated by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens. The clusters were then further hydrolyzed with concentrated α-amylase of B. amyloliquefaciens to produce building blocks (α-limit dextrins). Structures of the clusters and their building blocks were characterized by chromatography of samples before and after debranching treatment. While the mutations increased the size of clusters, the reasons were different as reflected by the composition of their unit chains and building blocks. In general, all mutants contained more of a-chains that preferentially increased the number of small building blocks with only two chains. The clusters of the double mutant ss1-ss3- were very large and possessed also more of large building blocks with four or more chains. The results from transitory starch are compared with those from agriculturally important crops in the context that to what extent the Arabidopsis can be a true biotechnological reflection for starch modifications through genetic means. Copyright © 2014 Elsevier Ltd. All rights reserved.
Texter, Karen; Davis, Jo Ann M; Phelps, Christina; Cheatham, Sharon; Cheatham, John; Galantowicz, Mark; Feltes, Timothy F
2017-07-01
With increasing survival of children with HLHS and other single ventricle lesions, the complexity of medical care for these patients is substantial. Establishing and adhering to best practice models may improve outcome, but requires careful coordination and monitoring. In 2013 our Heart Center began a process to build a comprehensive Single Ventricle Team designed to target these difficult issues. Comprehensive Single Ventricle Team in 2014 was begun, to standardize care for children with single ventricle heart defects from diagnosis to adulthood within our institution. The team is a multidisciplinary group of providers committed to improving outcomes and quality of life for children with single ventricle heart defects, all functioning within the medical home of our heart center. Standards of care were developed and implemented in five target areas to standardize medical management and patient and family support. Under the team 100 patients have been cared for. Since 2014 a decrease in interstage mortality for HLHS were seen. Using a team approach and the tools of Quality Improvement they have been successful in reaching high protocol compliance for each of these areas. This article describes the process of building a successful Single Ventricle team, our initial results, and lessons learned. Additional study is ongoing to demonstrate the effects of these interventions on patient outcomes. © 2017 Wiley Periodicals, Inc.
Alq3 nanorods: promising building blocks for optical devices.
Chen, Wei; Peng, Qing; Li, Yadong
2008-07-17
Monodisperse Alq3 nanorods with hexagonal-prism-like morphology are produced via a facile, emulsion based synthesis route. The photoluminescence of individual nanorods differs from the bulk material. These nanorods are promising building blocks for novel optical devices. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017-06-01
importantly, it examines the methodology used to build the class IX block embarked on ship prior to deployment. The class IX block is defined as a repository...compared to historical data to evaluate model and simulation outputs. This thesis provides recommendations on improving the methodology implemented in...improving the level of organic support available to deployed units. More importantly, it examines the methodology used to build the class IX block
Xu, Long; Zhao, Zhiyuan; Xiao, Mingchao; Yang, Jie; Xiao, Jian; Yi, Zhengran; Wang, Shuai; Liu, Yunqi
2017-11-22
The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and F 4 IVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PF 4 IVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions. In comparison to PIVI2T, the fluorinated PF 4 IVI2T exhibits stronger intra- and intermolecular interactions, lower HOMO/LUMO energy levels up to -5.74/-4.17 eV, and more ordered molecular packing with a smaller π-π stacking distance of up to 3.53 Å, resulting in an excellent ambipolar transporting behavior and a promising application in logic circuits for PF 4 IVI2T in ambient with hole and electron mobilities of up to 1.03 and 1.82 cm 2 V -1 s -1 , respectively. The results reveal that F 4 IVI is a promising and strong electron-deficient building unit to construct high-performance semiconducting polymers, which provides an insight into the structure-property relationships for the exploration and molecular engineering of excellent electron-deficient building blocks in the field of organic electronics.
Letter of intent for KM3NeT 2.0
NASA Astrophysics Data System (ADS)
Adrián-Martínez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E.; Andre, M.; Androulakis, G.; Anghinolfi, M.; Anton, G.; Ardid, M.; Avgitas, T.; Barbarino, G.; Barbarito, E.; Baret, B.; Barrios-Martí, J.; Belhorma, B.; Belias, A.; Berbee, E.; van den Berg, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Biagioni, A.; Billault, M.; Bondì, M.; Bormuth, R.; Bouhadef, B.; Bourlis, G.; Bourret, S.; Boutonnet, C.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Buis, E.; Busto, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Cecchini, S.; Celli, S.; Champion, C.; Cherkaoui El Moursli, R.; Cherubini, S.; Chiarusi, T.; Circella, M.; Classen, L.; Cocimano, R.; Coelho, J. A. B.; Coleiro, A.; Colonges, S.; Coniglione, R.; Cordelli, M.; Cosquer, A.; Coyle, P.; Creusot, A.; Cuttone, G.; D'Amico, A.; De Bonis, G.; De Rosa, G.; De Sio, C.; Di Capua, F.; Di Palma, I.; Díaz García, A. F.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti-Hasankiadeh, Q.; Drakopoulou, E.; Drouhin, D.; Drury, L.; Durocher, M.; Eberl, T.; Eichie, S.; van Eijk, D.; El Bojaddaini, I.; El Khayati, N.; Elsaesser, D.; Enzenhöfer, A.; Fassi, F.; Favali, P.; Fermani, P.; Ferrara, G.; Filippidis, C.; Frascadore, G.; Fusco, L. A.; Gal, T.; Galatà, S.; Garufi, F.; Gay, P.; Gebyehu, M.; Giordano, V.; Gizani, N.; Gracia, R.; Graf, K.; Grégoire, T.; Grella, G.; Habel, R.; Hallmann, S.; van Haren, H.; Harissopulos, S.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernández-Rey, J. J.; Hevinga, M.; Hofestädt, J.; Hugon, C. M. F.; Illuminati, G.; James, C. W.; Jansweijer, P.; Jongen, M.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U. F.; Keller, P.; Kieft, G.; Kießling, D.; Koffeman, E. N.; Kooijman, P.; Kouchner, A.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Leisos, A.; Leonora, E.; Clark, M. Lindsey; Liolios, A.; Llorens Alvarez, C. D.; Lo Presti, D.; Löhner, H.; Lonardo, A.; Lotze, M.; Loucatos, S.; Maccioni, E.; Mannheim, K.; Margiotta, A.; Marinelli, A.; Mariş, O.; Markou, C.; Martínez-Mora, J. A.; Martini, A.; Mele, R.; Melis, K. W.; Michael, T.; Migliozzi, P.; Migneco, E.; Mijakowski, P.; Miraglia, A.; Mollo, C. M.; Mongelli, M.; Morganti, M.; Moussa, A.; Musico, P.; Musumeci, M.; Navas, S.; Nicolau, C. A.; Olcina, I.; Olivetto, C.; Orlando, A.; Papaikonomou, A.; Papaleo, R.; Păvălaş, G. E.; Peek, H.; Pellegrino, C.; Perrina, C.; Pfutzner, M.; Piattelli, P.; Pikounis, K.; Poma, G. E.; Popa, V.; Pradier, T.; Pratolongo, F.; Pühlhofer, G.; Pulvirenti, S.; Quinn, L.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rapidis, P.; Razis, P.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rossi, C.; Rovelli, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sánchez García, A.; Sánchez Losa, A.; Sanguineti, M.; Santangelo, A.; Santonocito, D.; Sapienza, P.; Schimmel, F.; Schmelling, J.; Sciacca, V.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Siotis, I.; Sipala, V.; Spisso, B.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stellacci, S. M.; Stransky, D.; Taiuti, M.; Tayalati, Y.; Tézier, D.; Theraube, S.; Thompson, L.; Timmer, P.; Tönnis, C.; Trasatti, L.; Trovato, A.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Vicini, P.; Viola, S.; Vivolo, D.; Volkert, M.; Voulgaris, G.; Wiggers, L.; Wilms, J.; de Wolf, E.; Zachariadou, K.; Zornoza, J. D.; Zúñiga, J.
2016-08-01
The main objectives of the KM3NeT Collaboration are (i) the discovery and subsequent observation of high-energy neutrino sources in the Universe and (ii) the determination of the mass hierarchy of neutrinos. These objectives are strongly motivated by two recent important discoveries, namely: (1) the high-energy astrophysical neutrino signal reported by IceCube and (2) the sizable contribution of electron neutrinos to the third neutrino mass eigenstate as reported by Daya Bay, Reno and others. To meet these objectives, the KM3NeT Collaboration plans to build a new Research Infrastructure consisting of a network of deep-sea neutrino telescopes in the Mediterranean Sea. A phased and distributed implementation is pursued which maximises the access to regional funds, the availability of human resources and the synergistic opportunities for the Earth and sea sciences community. Three suitable deep-sea sites are selected, namely off-shore Toulon (France), Capo Passero (Sicily, Italy) and Pylos (Peloponnese, Greece). The infrastructure will consist of three so-called building blocks. A building block comprises 115 strings, each string comprises 18 optical modules and each optical module comprises 31 photo-multiplier tubes. Each building block thus constitutes a three-dimensional array of photo sensors that can be used to detect the Cherenkov light produced by relativistic particles emerging from neutrino interactions. Two building blocks will be sparsely configured to fully explore the IceCube signal with similar instrumented volume, different methodology, improved resolution and complementary field of view, including the galactic plane. One building block will be densely configured to precisely measure atmospheric neutrino oscillations.
Integrated homeland security system with passive thermal imaging and advanced video analytics
NASA Astrophysics Data System (ADS)
Francisco, Glen; Tillman, Jennifer; Hanna, Keith; Heubusch, Jeff; Ayers, Robert
2007-04-01
A complete detection, management, and control security system is absolutely essential to preempting criminal and terrorist assaults on key assets and critical infrastructure. According to Tom Ridge, former Secretary of the US Department of Homeland Security, "Voluntary efforts alone are not sufficient to provide the level of assurance Americans deserve and they must take steps to improve security." Further, it is expected that Congress will mandate private sector investment of over $20 billion in infrastructure protection between 2007 and 2015, which is incremental to funds currently being allocated to key sites by the department of Homeland Security. Nearly 500,000 individual sites have been identified by the US Department of Homeland Security as critical infrastructure sites that would suffer severe and extensive damage if a security breach should occur. In fact, one major breach in any of 7,000 critical infrastructure facilities threatens more than 10,000 people. And one major breach in any of 123 facilities-identified as "most critical" among the 500,000-threatens more than 1,000,000 people. Current visible, nightvision or near infrared imaging technology alone has limited foul-weather viewing capability, poor nighttime performance, and limited nighttime range. And many systems today yield excessive false alarms, are managed by fatigued operators, are unable to manage the voluminous data captured, or lack the ability to pinpoint where an intrusion occurred. In our 2006 paper, "Critical Infrastructure Security Confidence Through Automated Thermal Imaging", we showed how a highly effective security solution can be developed by integrating what are now available "next-generation technologies" which include: Thermal imaging for the highly effective detection of intruders in the dark of night and in challenging weather conditions at the sensor imaging level - we refer to this as the passive thermal sensor level detection building block Automated software detection for creating initial alerts - we refer to this as software level detection, the next level building block Immersive 3D visual assessment for situational awareness and to manage the reaction process - we refer to this as automated intelligent situational awareness, a third building block Wide area command and control capabilities to allow control from a remote location - we refer to this as the management and process control building block integrating together the lower level building elements. In addition, this paper describes three live installations of complete, total systems that incorporate visible and thermal cameras as well as advanced video analytics. Discussion of both system elements and design is extensive.
Eliminating the major tornado threat in Tornado Alley
NASA Astrophysics Data System (ADS)
Tao, R.
2014-06-01
The 2013 devastating tornadoes in Oklahoma, Illinois and other states in Tornado Alley raise an important question: Can we do something to eliminate the major tornado threats in Tornado Alley? Violent tornadoes in Tornado Alley start from the clash-between northbound warm air flow and southbound cold air flow. As there is no mountain in Tornado Alley ranging from west to east to weaken or block the air flows, some clashes are violent, creating vortex turbulence called supercells. These supercells are initially in horizontal spinning motion at the lower atmosphere and then tilt as the air turns to rise in the storm's updraft, creating a component of spin around a vertical axis. About 30% of supercells develop into tornadoes, causing tremendous damages. Here we show that if we build three east-west great walls in the American Midwest, 300 m high and 50 m wide, one in North Dakota, one passing Oklahoma to east and the third one in the south Texas and Louisiana, we will weaken or block such air mass clashes and therefore diminish the major tornado threat in the Tornado Alley forever. We may also first build such great walls locally at some areas with frequent devastating tornado outbreaks and then gradually extend them.
Concept of Operations for the NASA Weather Accident Prevention (WxAP) Project. Version 2.0
NASA Technical Reports Server (NTRS)
Green, Walter S.; Tsoucalas, George; Tanger, Thomas
2003-01-01
The Weather Accident Prevention Concept of Operations (CONOPS) serves as a decision-making framework for research and technology development planning. It is intended for use by the WxAP members and other related programs in NASA and the FAA that support aircraft accident reduction initiatives. The concept outlines the project overview for program level 3 elements-such as AWIN, WINCOMM, and TPAWS (Turbulence)-that develop the technologies and operating capabilities to form the building blocks for WxAP. Those building blocks include both retrofit of equipment and systems and development of new aircraft, training technologies, and operating infrastructure systems and capabilities. This Concept of operations document provides the basis for the WxAP project to develop requirements based on the operational needs ofthe system users. It provides the scenarios that the flight crews, airline operations centers (AOCs), air traffic control (ATC), and flight service stations (FSS) utilize to reduce weather related accidents. The provision to the flight crew of timely weather information provides awareness of weather situations that allows replanning to avoid weather hazards. The ability of the flight crew to locate and avoid weather hazards, such as turbulence and hail, contributes to safer flight practices.
Programmable and Shape-Memorizing Information Carriers.
Li, Wenbing; Liu, Yanju; Leng, Jinsong
2017-12-27
Shape memory polymers (SMPs) are expected to play more and more important roles in space-deployable structures, smart actuators, and other high-tech areas. Nevertheless, because of the difficulties in fabrication and the programmability of temporary shape recovery, SMPs have not yet been widely applied in real fields. It is ideal to incorporate the different independent functional building blocks into a material. Herein, we designed a simple method to incorporate four functional building blocks: a neat epoxy-based shape memory (neat SMEP) resin, an SMEP composited with Fe 3 O 4 (SMEP-Fe 3 O 4 ), an SMEP composited with multiwalled carbon nanotubes, and an SMEP composited with p-aminodiphenylimide into a multicomposite, in which the four region surfaces could be programmed with different language code patterns according to a preset command by imprint lithography. Then, we aimed to reprogram the initially raised code patterns into temporary flat patterns using programming mold that, when triggered by a preset stimulus process such as an alternating magnetic field, radiofrequency field, 365 nm UV, and direct heating, could transform these language codes into the information passed by the customer. The concept introduced here will be applied to other available SMPs and provide a practical method to realize the information delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozolins, Vidvuds
Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues relatedmore » to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO 2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.« less
NASA Astrophysics Data System (ADS)
Ryu, Won-Hee; Lim, Sung-Jin; Kim, Won-Keun; Kwon, HyukSang
2014-07-01
Dumbbell-like microsphere carbonate precursors including multi-transition metal components (Ni1/3Mn1/3Co1/3CO3) assembled with nano-building blocks were synthesized by urea-assisted solvo/hydrothermal method, and layered cathode materials (LiNi1/3Mn1/3Co1/3O2) were subsequently prepared using the similarly shaped carbonate precursors for Li-ion batteries. For the synthesis of hierarchical microsphere structures, the partial addition of viscous organic solvent (e.g. ethylene glycol) in aqueous solution played a crucial role, not only in suppressing the sudden particle growth but also in regulating the directional crystallization of carbonate particles on the surface. The dumbbell-like LiNi1/3Mn1/3Co1/3O2 assembled with nanocubes prepared via the urea-assisted solvo/hydrothermal method exhibited better electrochemical characteristics, such as initial discharge capacity, cyclic performance, and rate-capability as a cathode material of Li-ion batteries, compared with the LiNi1/3Mn1/3Co1/3O2 materials prepared via the conventional co-precipitation method.
NASA Astrophysics Data System (ADS)
Congy, T.; Ivanov, S. K.; Kamchatnov, A. M.; Pavloff, N.
2017-08-01
We consider the space-time evolution of initial discontinuities of depth and flow velocity for an integrable version of the shallow water Boussinesq system introduced by Kaup. We focus on a specific version of this "Kaup-Boussinesq model" for which a flat water surface is modulationally stable, we speak below of "positive dispersion" model. This model also appears as an approximation to the equations governing the dynamics of polarisation waves in two-component Bose-Einstein condensates. We describe its periodic solutions and the corresponding Whitham modulation equations. The self-similar, one-phase wave structures are composed of different building blocks, which are studied in detail. This makes it possible to establish a classification of all the possible wave configurations evolving from initial discontinuities. The analytic results are confirmed by numerical simulations.
Congy, T; Ivanov, S K; Kamchatnov, A M; Pavloff, N
2017-08-01
We consider the space-time evolution of initial discontinuities of depth and flow velocity for an integrable version of the shallow water Boussinesq system introduced by Kaup. We focus on a specific version of this "Kaup-Boussinesq model" for which a flat water surface is modulationally stable, we speak below of "positive dispersion" model. This model also appears as an approximation to the equations governing the dynamics of polarisation waves in two-component Bose-Einstein condensates. We describe its periodic solutions and the corresponding Whitham modulation equations. The self-similar, one-phase wave structures are composed of different building blocks, which are studied in detail. This makes it possible to establish a classification of all the possible wave configurations evolving from initial discontinuities. The analytic results are confirmed by numerical simulations.
Determining Possible Building Blocks of the Earth and Mars
NASA Technical Reports Server (NTRS)
Burbine, T. H.; OBrien, K. M.
2004-01-01
One of the fundamental questions concerning planetary formation is exactly what material did the planets form from? All the planets in our solar system are believed to have formed out of material from the solar nebula. Chondritic meteorites appear to sample this primitive material. Chondritic meteorites are generally classified into 13 major groups, which have a variety of compositions. Detailed studies of possible building blocks of the terrestrial planets require samples that can be used to estimate the bulk chemistry of these bodies. This study will focus on trying to determine possible building blocks of Earth and Mars since samples of these two planets can be studied in detail in the laboratory.
Business Re-Engineering: Lessons Learned from the U.S. Army Corps of Engineers Modernization Program
1992-06-01
and Management, Vol 7, 1984. Yang, Dori "Boeing Knocks Down the Wall Between the Dreamers and the Doers", Business Week, 28 Oct 1991, p. 12 0 . "The...Management (CIM) Initiative that have lead to a number of tools such as Activity Based Costing (ABC) and IDEF that may be used as building blocks for a re...Tung X. Bui 646-2630 AS/BD DD FORM 1473.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE All other editions are
1960-01-01
S-IVB-505 and S-IVB-211, the flight version of the S-IVB stages, in the McDornell Douglas' S-IVB Assembly and Checkout Tower in Huntington Beach, California. As a part of the Marshall Space Flight Center `s "building block" approach to the Saturn vehicle development, the S-IVB stage, in its 200 series, was utilized as the Saturn IB launch vehicle's second stage, and, in its 500 series, the Saturn V's third stage. The S-IVB was powered by a single J-2 engine, initially capable of 200,000 pounds of thrust.
LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants
Lind, Kara R.; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico
2014-01-01
LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil. PMID:24963716
LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.
Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico
2014-01-01
LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.
Building Blocks and Cognitive Building Blocks: Playing to Know the World Mathematically
ERIC Educational Resources Information Center
Sarama, Julie; Clements, Douglas H.
2009-01-01
The authors explore how children's play can support the development of the foundations of mathematics learning and how adults can support children's representation of--and thus the "mathematization" of--their play. The authors review research about the amount and nature of mathematics found in the free play of children. They briefly…
Trainer's Guide to Building Blocks for Teaching Preschoolers with Special Needs [CD-ROM
ERIC Educational Resources Information Center
Joseph, Gail E.; Sandall, Susan R.; Schwartz, Ilene S.
2010-01-01
An essential teaching companion for instructors of pre-K educators, this convenient CD-ROM is a vivid blueprint for effective inclusive education using the popular "Building Blocks" approach. Following the structure of the bestselling textbook, this comprehensive guide helps teacher educators provide effective instruction on the three types of…
1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING ...
1. NORTHWEST FRONT AND SOUTHWEST SIDE, SHOWING LOCATION OF BUILDING 0520 WEST OF FIRING CONTOL BLOCK HOUSE (BLDG. 0545), BETWEEN SLED TRACK AND CAMERA ACCESS ROAD. - Edwards Air Force Base, South Base Sled Track, Observation Block House, Station "O" area, east end of Sled Track, Lancaster, Los Angeles County, CA
Building an Early Childhood Parent-Teacher Resource Center.
ERIC Educational Resources Information Center
Holloway, Mary A.
This manual is a guidebook to the development of the Project Enlightenment Parent-Teacher Resource Center and serves as a reference for the replication of this type of center in other communities. The manual consists of three chapters that are conceptualized as building blocks, because they are sequential, incremental, and independent. Block A…
Effects of a Preschool Mathematics Curriculum: Summative Research on the "Building Blocks" Project
ERIC Educational Resources Information Center
Clements, Douglas H.; Sarama, Julie
2007-01-01
This study evaluated the efficacy of a preschool mathematics program based on a comprehensive model of developing research-based software and print curricula. Building Blocks, funded by the National Science Foundation, is a curriculum development project focused on creating research-based, technology-enhanced mathematics materials for pre-K…
PBF Reactor Building (PER620). Detail of arrangement of highdensity blocks ...
PBF Reactor Building (PER-620). Detail of arrangement of high-density blocks and other basement shielding. Date: February 1966. Ebasco Services 1205 PER/PBF 620-A-7. INEEL index no. 761-0620-00-205-123070 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
University Education in Ontario: Shared Goals & Building Blocks.
ERIC Educational Resources Information Center
Council of Ontario Universities, Toronto.
This brochure suggests five goals that are likely to be shared by the people of Ontario, their government, and the province's publicly funded universities for a strong university system, and identifies the building blocks and resource-related commitments that would enable Ontario universities to achieve these goals. The goals are: (1) all…
Stereoselective total synthesis of Oxylipin from open chain gluco-configured building block.
Borkar, Santosh Ramdas; Aidhen, Indrapal Singh
2017-04-18
Total synthesis of naturally occurring Oxylipin has been achieved from open chain gluco-configured building block which is readily assembled from inexpensive and commercially available D-(+)-gluconolactone. Grignard reaction and Wittig olefination reactions are key steps for the requisite CC bond formation. Copyright © 2017. Published by Elsevier Ltd.
Patterning nonisometric origami in nematic elastomer sheets
NASA Astrophysics Data System (ADS)
Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik
Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.
PCB remediation in schools: a review.
Brown, Kathleen W; Minegishi, Taeko; Cummiskey, Cynthia Campisano; Fragala, Matt A; Hartman, Ross; MacIntosh, David L
2016-02-01
Growing awareness of polychlorinated biphenyls (PCBs) in legacy caulk and other construction materials of schools has created a need for information on best practices to control human exposures and comply with applicable regulations. A concise review of approaches and techniques for management of building-related PCBs is the focus of this paper. Engineering and administrative controls that block pathways of PCB transport, dilute concentrations of PCBs in indoor air or other exposure media, or establish uses of building space that mitigate exposure can be effective initial responses to identification of PCBs in a building. Mitigation measures also provide time for school officials to plan a longer-term remediation strategy and to secure the necessary resources. These longer-term strategies typically involve removal of caulk or other primary sources of PCBs as well as nearby masonry or other materials contaminated with PCBs by the primary sources. The costs of managing PCB-containing building materials from assessment through ultimate disposal can be substantial. Optimizing the efficacy and cost-effectiveness of remediation programs requires aligning a thorough understanding of sources and exposure pathways with the most appropriate mitigation and abatement methods.
Design options analysis for a zero energy block of flats in Athens, Greece
NASA Astrophysics Data System (ADS)
Soulti, Eleni
Human activities and to a smaller degree other reasons have led to climate change. This is evident in meteorological phenomena and natural procedures which are constantly subject to modifications. Recent studies prove that a great percentage of the CO2 emissions, which are partly responsible for the climate change, are produced by buildings. In fact, a big part of them belongs to the residential sector. Countries like UK are quite aware of this problem, its causes, its consequences, as well as of some remedies that can at least limit the damage. Therefore, they develop the appropriate legislation, in an effort to decrease the problems and limit its causes. Greece, on the other hand, has been quite ineffective until now. Hopefully the new legislation will constrain the causes of the problem, in all sectors, including the building domain. This study involves designing a zero energy block of flats in Athens, with climatic data and environmental parameters taken into consideration from the initial steps of the design procedure. Appropriate software has been used in order to observe the improvement of thermal comfort conditions by changing the building design and using various strategies for passive cooling and heating. The predicted consumption of electricity, heating and cooling loads have been calculated and renewable sources of energy have been used in order to meet those needs. The economical analysis demonstrated that this type of building, is not only energy efficient and thermally comfortable for its occupants, but also economically profitable, especially with regard to the benefit of the occupants and the environment. In fact, it is only 11.2% more expensive to construct such a building, while its energy performance reduces the amount of CO2 emissions. The aim is to widely implement this type of buildings, which can have a significant effect on environmental, economical and social development related issues.
Structure of clusters and building blocks in amylopectin from African rice accessions.
Gayin, Joseph; Abdel-Aal, El-Sayed M; Marcone, Massimo; Manful, John; Bertoft, Eric
2016-09-05
Enzymatic hydrolysis in combination with gel-permeation and anion-exchange chromatography techniques were employed to characterise the composition of clusters and building blocks of amylopectin from two African rice (Oryza glaberrima) accessions-IRGC 103759 and TOG 12440. The samples were compared with one Asian rice (Oryza sativa) sample (cv WITA 4) and one O. sativa×O. glaberrima cross (NERICA 4). The average DP of clusters from the African rice accessions (ARAs) was marginally larger (DP=83) than in WITA 4 (DP=81). However, regarding average number of chains, clusters from the ARAs represented both the smallest and largest clusters. Overall, the result suggested that the structure of clusters in TOG 12440 was dense with short chains and high degree of branching, whereas the situation was the opposite in NERICA 4. IRGC 103759 and WITA 4 possessed clusters with intermediate characteristics. The commonest type of building blocks in all samples was group 2 (single branched dextrins) representing 40.3-49.4% of the blocks, while groups 3-6 were found in successively lower numbers. The average number of building blocks in the clusters was significantly larger in NERICA 4 (5.8) and WITA 4 (5.7) than in IRGC 103759 and TOG 12440 (5.1 and 5.3, respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels).
Yu, Hongtao; Brock, Stephanie L
2008-08-01
We demonstrate the effect of differently shaped CdSe nanoscale building blocks (dots, rods, branched nanoparticles, and hyperbranched nanoparticles) on the morphologies, surface characteristics, and optical properties of resultant porous CdSe nanostructured aerogels. Monolithic CdSe aerogels were produced by controlled oxidative removal of surface thiolate ligands from differently shaped CdSe nanoparticles to yield a wet gel, followed by CO(2) supercritical drying. The X-ray diffraction data show that the resultant CdSe aerogels maintain the crystalline phase of the building blocks without significant grain growth. However, the transmission electron microscopy images indicate that the morphology of CdSe aerogels changes from a colloid-type morphology to a polymer-type morphology when the building block changes from dot to rod or the branched nanoparticle. The morphology of the CdSe aerogel assembled from hyperbranched nanoparticles appears to be intermediate between the colloid-type and the polymer-type. Nitrogen physisorption measurements suggest that the surface areas and porosity are a direct function of the shape of the primary building blocks, with aerogels formed from rods or branched particles exhibiting the greatest surface areas (>200 m(2)/g) and those prepared from hyperbranched nanoparticles exhibiting the least (<100 m(2)/g). Band gap measurements and photoluminescence studies show that the as-prepared CdSe aerogels retain to a large extent the intrinsic quantum confinement of the differently shaped building blocks, despite being connected into a 3D network.
Thermoelectric converter for SP-100 space reactor power system
NASA Technical Reports Server (NTRS)
Terrill, W. R.; Haley, V. F.
1986-01-01
Conductively coupling the thermoelectric converter to the heat source and the radiator maximizes the utilization of the reactor and radiator temperatures and thereby minimizes the power system weight. This paper presents the design for the converter and the individual thermoelectric cells that are the building block modules for the converter. It also summarizes progress on the fabrication of initial cells and the results obtained from the preparation of a manufacturing plan. The design developed for the SP-100 system utilizes thermally conductive compliant pads that can absorb the displacement and distortion caused by the combinations of temperatures and thermal expansion coefficients. The converter and cell designs provided a 100 kWe system which met the system requirements. Initial cells were fabricated and tested.
Effective Light Directed Assembly of Building Blocks with Microscale Control.
Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung
2017-06-01
Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
SynTrack: DNA Assembly Workflow Management (SynTrack) v2.0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
MENG, XIANWEI; SIMIRENKO, LISA
2016-12-01
SynTrack is a dynamic, workflow-driven data management system that tracks the DNA build process: Management of the hierarchical relationships of the DNA fragments; Monitoring of process tasks for the assembly of multiple DNA fragments into final constructs; Creations of vendor order forms with selectable building blocks. Organizing plate layouts barcodes for vendor/pcr/fusion/chewback/bioassay/glycerol/master plate maps (default/condensed); Creating or updating Pre-Assembly/Assembly process workflows with selected building blocks; Generating Echo pooling instructions based on plate maps; Tracking of building block orders, received and final assembled for delivering; Bulk updating of colony or PCR amplification information, fusion PCR and chewback results; Updating with QA/QCmore » outcome with .csv & .xlsx template files; Re-work assembly workflow enabled before and after sequencing validation; and Tracking of plate/well data changes and status updates and reporting of master plate status with QC outcomes.« less
Building Trades. Block II. Foundations.
ERIC Educational Resources Information Center
Texas A and M Univ., College Station. Vocational Instructional Services.
Twelve informational lessons and eleven manipulative lessons are provided on foundations as applied to the building trades. Informational lessons cover land measurements; blueprint reading; level instruments; building and site planning; building site preparation; laying out building lines; soil preparation and special evacuation; concrete forms;…
ERIC Educational Resources Information Center
Dezuanni, Michael
2015-01-01
This article outlines the knowledge and skills students develop when they engage in digital media production and analysis in school settings. The metaphor of "digital building blocks" is used to describe the material practices, conceptual understandings and production of knowledge that lead to the development of digital media literacy.…
ERIC Educational Resources Information Center
Ohio State Univ., Columbus. National Center for Research in Vocational Education.
These military-developed curriculum materials consist of a course description, course chart, plan of instruction, lesson plans, study guides, and workbooks for use in training plumbing specialists II and III. Covered in the course blocks are building waste systems and exterior and interior supply systems. Course block II, on building waste…
Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry
ERIC Educational Resources Information Center
Geyer, Michael J.
2017-01-01
A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…
Functionalized coronenes: synthesis, solid structure, and properties.
Wu, Di; Zhang, Hua; Liang, Jinhua; Ge, Haojie; Chi, Chunyan; Wu, Jishan; Liu, Sheng Hua; Yin, Jun
2012-12-21
The construction of coronenes using simple building blocks is a challenging task. In this work, triphenylene was used as a building block to construct functionalized coronenes, and their solid structures and optoelectronic properties were investigated. The single crystal structures showed that coronenes have different packing motifs. Their good solubility and photostability make them potential solution-processable candidates for organic devices.
The Development of Logico-Mathematical Knowledge in a Block-Building Activity at Ages 1-4
ERIC Educational Resources Information Center
Kamii, Constance; Miyakawa, Yoko; Kato, Yasuhiko
2004-01-01
To study the developmental interrelationships among various aspects of logico-mathematical knowledge, 80 one- to 4-year-olds were individually asked to build "something tall" with 20 blocks. Percentages of new and significant behaviors increased with age and were analyzed in terms of the development of logico-mathematical relationships. It was…
ERIC Educational Resources Information Center
Mehdiabadi, Amir Hedayati; Seo, Gaeun; Huang, Wenhao David; Han, Seung-hyun Caleb
2017-01-01
Human resource development is known to encapsulate a collection of social science disciplines including communications, psychology, and economics. Since these and other similar areas are the cornerstones of HRD, the changing nature of HRD demands constant reflections on the value and building blocks of contemporary HRD inquiries. This article…
Globalisation Reflected onto Architecture: Tall Buildings of Ankara-Turkey
NASA Astrophysics Data System (ADS)
Tanju Gültekin, Ahmet
2017-10-01
Policy switching, radical socioeconomic changes, integration and globalisation were started in 1980s. New urban space developments have been accelerated in 1990s and provided urban space identity policies in 2000s. Luxurious shopping malls, hotels, and ultra-posh residences within the city and gated communities on city peripheries have been formed. Thus, the urban geography, urban silhouette and urban identity are being converted through tall buildings that signify the created prestige, status, and power in competition with the global capital. By the globalisation foresight the cities which have gotten ahead of the nation-state was seen. The buildings that converted into a symbolic (iconic) global product leads to an advantage in the race for attracting global investments and tourism, on behalf of the cities/urban districts. This process, which was initiated haphazardly in Turkey in the 1980s, has been on-going throughout the 1990s and especially in 2000s by means of the re-structuring of the government on a neo-liberal basis. The process is concurrently observable through the tall buildings and/or building blocks which match with urban regeneration projects, urban zoning plan revisions and fragmented zoning plans. In this study, the new global world order is evaluated by their status and architectural properties of selected tall and iconic/ultra-modern buildings in Ankara.
Elliot, Samuel G; Tolborg, Søren; Sádaba, Irantzu; Taarning, Esben; Meier, Sebastian
2017-07-21
The future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities. An NMR approach was used to identify, quantify, and optimize the formation of these building blocks in the Sn-Beta-catalyzed transformation of abundant carbohydrates. Record yields of the target molecules can be achieved by obstructing competing reactions through solvent selection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Orlov, Alexandr; Chubarkina, Irina
2018-03-01
The paper is dedicated to main modern trends in the area of high-rise construction. The classification of buildings and structures by height is given. Functional distribution by the height of buildings is presented. A review of positive and negative aspects of high-rise construction from the economic point of view is given. On the basis of the data obtained, it is proposed to build up residential microdistricts in the form of urban blocks. A plan of microdistricts development is presented. It takes into account urban blocks and includes their main characteristics. An economic and mathematical model was developed to carry out a comprehensive assessment of the effectiveness of high-rise construction projects.
Chen, Yun; Nielsen, Jens
2013-12-01
Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.
An Ap-Structure with Finslerian Flavor I:. the Principal Idea
NASA Astrophysics Data System (ADS)
Wanas, M. I.
A geometric structure (FAP-structure), having both absolute parallelism and Finsler properties, is constructed. The building blocks of this structure are assumed to be functions of position and direction. A nonlinear connection emerges naturally and is defined in terms of the building blocks of the structure. Two linear connections, one of Berwald type and the other of the Cartan type, are defined using the nonlinear connection of the FAP. Both linear connections are nonsymmetric and consequently admit torsion. A metric tensor is defined in terms of the building blocks of the structure. The condition for this metric to be a Finslerian one is obtained. Also, the condition for an FAP-space to be an AP-one is given.
NASA Astrophysics Data System (ADS)
Aleina, Sara Cresto; Viola, Nicole; Fusaro, Roberta; Saccoccia, Giorgio
2017-10-01
Exploration technology roadmaps have been developed by ESA in the past few years and the latest edition has been released in 2015. Scope of these technology roadmaps, elaborated in consultation with the different ESA stakeholders (e.g. European Industries and Research Entities), is to provide a powerful tool for strategic, programmatic and technical decisions in support of the European role within an International Space Exploration context. In the context of preparation for possible future European Moon exploration initiatives, the technology roadmaps have been used to highlight the role of technology within Missions, Building Blocks and Operational Capabilities of relevance. In particular, as part of reference missions to the Moon that would fit in the time frame 2020 to 2030, ESA has addressed the definition of lunar surface exploration missions in line with its space exploration strategy, with the common mission goals of returning samples from the Moon and Mars and expanding human presence to these destinations in a step-wise approach. The roadmaps for the procurement of technologies required for the first mission elements of the above strategy have been elaborated through their main building blocks, i.e. Visual navigation, Hazard detection and avoidance; Sample acquisition, processing and containment system; Surface mobility elements; Tele-robotic and autonomous control systems; and Storable propulsion modules and equipment. Technology prioritization methodologies have been developed in support of the ESA Exploration Technology Roadmaps, in order to provide logical and quantitative instruments to verify choices of prioritization that can be carried out based on important, but non-quantitative factors. These methodologies, which are thoroughly described in the first part of the paper, proceed through subsequent steps. First, technology prioritization's criteria are selected; then decision trees are developed to highlight all feasible paths of combination of technology prioritization's criteria and to assess the final achievement of each path, i.e. the cost-effectiveness. The risk associated to each path is also evaluated. In the second part of the paper, these prioritization methodologies have been applied to some of the building blocks of relevance for the mission concepts under evaluation at ESA (such as Tele-robotic and autonomous control systems; Storable propulsion modules and equipment) and the results are presented to highlight the approach for an effective TRL increase. Eventually main conclusions are drawn.
Mars habitat modules: launch, scaling and functional design considerations.
Bell, Larry; Hines, Gerald D
2005-07-01
The Sasakawa International Center for Space Architecture (SICSA) is undertaking a multi-year research, planning and design study that is exploring near- and long-term commercial space development opportunities. The central goal of this activity is to conceptualize a scenario of sequential, integrated private enterprise initiatives that can carry humankind forward to Mars. Each development stage is planned as a building block to provide the economic foundation, technology advancements and operational infrastructure to support others that follow. This report presents fundamental issues and requirements associated with planning human Mars initiatives that can transfer crews, habitats and equipment from Earth to Mars orbit, deliver them to the planet's surface, and return people and samples safely back to Earth. The study builds in part upon previous studies which are summarized in SICSA's: Commercial Space Development Plan and the Artificial Gravity Science and Excursion Vehicle reports. Information and conclusions produced in this study provide assumptions and a conceptual foundation for a subsequent report titled The First Mars Outpost: Planning and Concepts. c2005 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... restrictive block conditions stopping distance in advance. 236.502 Section 236.502 Transportation Other... Cab Signal Systems Standards § 236.502 Automatic brake application, initiation by restrictive block... initiate an automatic brake application at least stopping distance from the entrance to a block, wherein...
Blockbusters: Ideas for the Block Center.
ERIC Educational Resources Information Center
Adams, Polly K.; Nesmith, Jaynie
1996-01-01
Goals of block building in early childhood classrooms focus on physical, social, cognitive, and emotional development. Reports survey results of the value teachers place on block play. Offers illustrations of task cards to use with blocks in math, language arts, social studies, and science. Discusses guidelines and suggests idea cards and sentence…
Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A
2018-01-09
Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.
Statistical analysis of atmospheric turbulence about a simulated block building
NASA Technical Reports Server (NTRS)
Steely, S. L., Jr.
1981-01-01
An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, P.L.
As the Oct. 31 deadline for an initial design review approaches, the four participants in the Energy Research and Development Administration's (ERDA) industrial process hot water program are putting the final touches to plans for solar systems that will supplement conventional energy sources in the textile, food processing, concrete block and cleaning industries. Participating in the project are AAI Corp., Baltimore, which designed a solar hot water system for the concrete block curing operation of York Building Products Co., Harrisburg, Pa.; Acurex Corp., Mountain View, Calif., which designed a solar hot water system for a can washing line at themore » Campbell Soup Co. plant in Sacramento, Calif.; General Electric Co., Philadelphia, which designed a solar hot water system for Riegel Textile Corp., La France, S.C.; and Jacobs Engineering Co., Pasadena, Calif., which designed a solar hot water and steam system for commercial laundry use at American Linen Supply in El Centro., Calif. (MCW)« less
"Looking through the Eyes of the Learner": Implementation of Building Blocks for Student Engagement
ERIC Educational Resources Information Center
D'Annolfo, Suzanne Cordier; Schumann, Jeffrey A.
2012-01-01
The Building Blocks for Student Engagement (BBSE) protocol was designed to provide a consistent framework of common language and a visual point of reference shared among students, teachers and school leaders to keep a laser-like focus on the instructional core and student engagement. Grounded in brain-based learning and implemented in urban,…
Oligomers and Polymers Based on Pentacene Building Blocks
Lehnherr, Dan; Tykwinski, Rik R.
2010-01-01
Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.
Public Opinion on Youth, Crime and Race: A Guide for Advocates. Building Blocks for Youth.
ERIC Educational Resources Information Center
Soler, Mark
This guide summarizes public opinion research on youth and juvenile justice issues from the Building Blocks for Youth focus groups and various national polls. Overall, the public is less fearful about crime than in the past but believes juvenile crime is increasing. There is serious public concern about the effectiveness of the juvenile justice…
Matsidik, Rukiya; Martin, Johannes; Schmidt, Simon; Obermayer, Johannes; Lombeck, Florian; Nübling, Fritz; Komber, Hartmut; Fazzi, Daniele; Sommer, Michael
2015-01-16
Pd-catalyzed direct arylation (DA) reaction conditions have been established for unsubstituted furan (Fu) and thiophene (Th) with three popular acceptor building blocks to be used in materials for organic electronics, namely 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2), N,N′-dialkylated 2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) (NDIBr2), and 1,4-dibromotetrafluorobenzene (F4Br2). Reactions with BTBr2, F4Br2, and NDIBr2 require different solvents to obtain high yields. The use of dimethylacetamide (DMAc) is essential for the successful coupling of BTBr2 and F4Br2, but detrimental for NDIBr2, as the electron-deficient NDI core is prone to nucleophilic core substitution in DMAc as solvent but not in toluene. NDIFu2 is much more planar compared to NDITh2, resulting in an enhanced charge-transfer character, which makes it an interesting building block for conjugated systems designed for organic electronics. This study highlights direct arylation as a simple and inexpensive method to construct a series of important donor–acceptor–donor building blocks to be further used for the preparation of a variety of conjugated materials.
De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.
Schneider, G; Lee, M L; Stahl, M; Schneider, P
2000-07-01
An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.
Gruber, Steffen; Schwab, Helmut; Koefinger, Petra
2015-12-25
The Gram-negative bacterium Escherichia coli is currently the most efficient and widely used prokaryotic host for recombinant protein and metabolite production. However, due to some limitations and to various interesting features of other Gram-negative bacteria efficient vector systems applicable to a broad range are desired. Basic building blocks for plasmid-based vectors include besides the need for a suitable selection marker in the first line a proper replication and maintenance system. In addition to these basic requirements, further elements are needed for Gram-negative bacteria beyond E. coli, such as Pseudomonas pudita, Ralstonia eutropha, Burkholderia glumae or Acinetobacter sp.. Established building blocks have to be adapted and new building blocks providing the desired functions need to be identified and exploited. This minireview addresses so far described and used genetic elements for broad host range replication, efficient plasmid maintenance, and conjugative plasmid transfer as well as expression elements and protein secretion signals. The industrially important bacterium R. eutropha H16 was chosen as a model organism to provide specific data on the effectivity and utility of building blocks based on such genetic elements. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kozono, Y.; Takahashi, T.; Sakuraba, M.; Nojima, K.
2016-12-01
A lot of debris by tsunami, such as cars, ships and collapsed buildings were generated in the 2011 Tohoku tsunami. It is useful for rescue and recovery after tsunami disaster to predict the amount and final position of disaster debris. The transport form of disaster debris varies as drifting, rolling and sliding. These transport forms need to be considered comprehensively in tsunami simulation. In this study, we focused on the following three points. Firstly, the numerical model considering various transport forms of disaster debris was developed. The proposed numerical model was compared with the hydraulic experiment by Okubo et al. (2004) in order to verify transport on the bottom surface such as rolling and sliding. Secondly, a numerical experiment considering transporting on the bottom surface and drifting was studied. Finally, the numerical model was applied for Kesennuma city where serious damage occurred by the 2011 Tohoku tsunami. In this model, the influence of disaster debris was considered as tsunami flow energy loss. The hydraulic experiments conducted in a water tank which was 10 m long by 30 cm wide. The gate confined water in a storage tank, and acted as a wave generator. A slope was set at downstream section. The initial position of a block (width: 3.2 cm, density: 1.55 g/cm3) assuming the disaster debris was placed in front of the slope. The proposed numerical model simulated well the maximum transport distance and the final stop position of the block. In the second numerical experiment, the conditions were the same as the hydraulic experiment, except for the density of the block. The density was set to various values (from 0.30 to 4.20 g/cm3). This model was able to estimate various transport forms including drifting and sliding. In the numerical simulation of the 2011 Tohoku tsunami, the condition of buildings was modeled as follows: (i)the resistance on the bottom using Manning roughness coefficient (conventional method), and (ii)structure of buildings with collapsing and washing-away due to tsunami wave pressure. In this calculation, disaster debris of collapsed buildings, cars and ships was considered. As a result, the proposed model showed that it is necessary to take the disaster debris into account in order to predict tsunami inundation accurately.
13. A southeastward view of buildings #3 (on the right), ...
13. A southeastward view of buildings #3 (on the right), building #5 ( to the immediate left of building #3), and buildings #6-B (low building on the far left) and #6 ( to the immediate rear of #6-B). - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
1. Historic American Buildings Survey E. W. Russell, Photographer, October ...
1. Historic American Buildings Survey E. W. Russell, Photographer, October 17, 1935 51-69 Government St. BLOCK OF BUILDINGS ON GOVERNMENT ST. (S. SIDE) BETWEEN WATER AND ROYAL STREETS - 51-69 Government Street (Commercial Building), Mobile, Mobile County, AL
Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Neil P.; Sheffler, William; Sawaya, Michael R.
2015-09-17
We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method canmore » be used to design a wide variety of self-assembling protein nanomaterials.« less
Expressivism, Relativism, and the Analytic Equivalence Test
Frápolli, Maria J.; Villanueva, Neftalí
2015-01-01
The purpose of this paper is to show that, pace (Field, 2009), MacFarlane’s assessment relativism and expressivism should be sharply distinguished. We do so by arguing that relativism and expressivism exemplify two very different approaches to context-dependence. Relativism, on the one hand, shares with other contemporary approaches a bottom–up, building block, model, while expressivism is part of a different tradition, one that might include Lewis’ epistemic contextualism and Frege’s content individuation, with which it shares an organic model to deal with context-dependence. The building-block model and the organic model, and thus relativism and expressivism, are set apart with the aid of a particular test: only the building-block model is compatible with the idea that there might be analytically equivalent, and yet different, propositions. PMID:26635690
Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei
2017-03-13
A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.
Mission building blocks for outer solar system exploration.
NASA Technical Reports Server (NTRS)
Herman, D.; Tarver, P.; Moore, J.
1973-01-01
Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.
2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND ...
2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
Block Play: Practical Suggestions for Common Dilemmas
ERIC Educational Resources Information Center
Tunks, Karyn Wellhousen
2009-01-01
Learning materials and teaching methods used in early childhood classrooms have fluctuated greatly over the past century. However, one learning tool has stood the test of time: Wood building blocks, often called unit blocks, continue to be a source of pleasure and learning for young children at play. Wood blocks have the unique capacity to engage…
Emerging biomedical applications of synthetic biology.
Weber, Wilfried; Fussenegger, Martin
2011-11-29
Synthetic biology aims to create functional devices, systems and organisms with novel and useful functions on the basis of catalogued and standardized biological building blocks. Although they were initially constructed to elucidate the dynamics of simple processes, designed devices now contribute to the understanding of disease mechanisms, provide novel diagnostic tools, enable economic production of therapeutics and allow the design of novel strategies for the treatment of cancer, immune diseases and metabolic disorders, such as diabetes and gout, as well as a range of infectious diseases. In this Review, we cover the impact and potential of synthetic biology for biomedical applications.
Local Gaussian operations can enhance continuous-variable entanglement distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Shengli; Loock, Peter van; Institute of Theoretical Physics I, Universitaet Erlangen-Nuernberg, Staudtstrasse 7/B2, DE-91058 Erlangen
2011-12-15
Entanglement distillation is a fundamental building block in long-distance quantum communication. Though known to be useless on their own for distilling Gaussian entangled states, local Gaussian operations may still help to improve non-Gaussian entanglement distillation schemes. Here we show that by applying local squeezing operations both the performance and the efficiency of existing distillation protocols can be enhanced. We find that such an enhancement through local Gaussian unitaries can be obtained even when the initially shared Gaussian entangled states are mixed, as, for instance, after their distribution through a lossy-fiber communication channel.
Signal replication in a DNA nanostructure
NASA Astrophysics Data System (ADS)
Mendoza, Oscar; Houmadi, Said; Aimé, Jean-Pierre; Elezgaray, Juan
2017-01-01
Logic circuits based on DNA strand displacement reaction are the basic building blocks of future nanorobotic systems. The circuits tethered to DNA origami platforms present several advantages over solution-phase versions where couplings are always diffusion-limited. Here we consider a possible implementation of one of the basic operations needed in the design of these circuits, namely, signal replication. We show that with an appropriate preparation of the initial state, signal replication performs in a reproducible way. We also show the existence of side effects concomitant to the high effective concentrations in tethered circuits, such as slow leaky reactions and cross-activation.
Theoretical and technological building blocks for an innovation accelerator
NASA Astrophysics Data System (ADS)
van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.
2012-11-01
Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate not only the core scientific process, but also accommodate other stakeholders such science policy makers, industrial innovators, and the general public. We first describe the current state of the scientific system together with up to a dozen new key initiatives, including an analysis of the role of science as an innovation accelerator. Our brief survey will show that there exist many separate ideas and concepts and diverse stand-alone demonstrator systems for different components of the ecosystem with many parts are still unexplored, and overall integration lacking. By analyzing a matrix of stakeholders vs. functionalities, we identify the required innovations. We (non-exhaustively) discuss a few of them: Publications that are meaningful to machines, innovative reviewing processes, data publication, workflow archiving and reuse, alternative impact metrics, tools for the detection of trends, community formation and emergence, as well as modular publications, citation objects and debate graphs. To summarize, the core idea behind the Innovation Accelerator is to develop new incentive models, rules, and interaction mechanisms to stimulate true innovation, revolutionizing the way in which we create knowledge and disseminate information.
Statistical molecular design of balanced compound libraries for QSAR modeling.
Linusson, A; Elofsson, M; Andersson, I E; Dahlgren, M K
2010-01-01
A fundamental step in preclinical drug development is the computation of quantitative structure-activity relationship (QSAR) models, i.e. models that link chemical features of compounds with activities towards a target macromolecule associated with the initiation or progression of a disease. QSAR models are computed by combining information on the physicochemical and structural features of a library of congeneric compounds, typically assembled from two or more building blocks, and biological data from one or more in vitro assays. Since the models provide information on features affecting the compounds' biological activity they can be used as guides for further optimization. However, in order for a QSAR model to be relevant to the targeted disease, and drug development in general, the compound library used must contain molecules with balanced variation of the features spanning the chemical space believed to be important for interaction with the biological target. In addition, the assays used must be robust and deliver high quality data that are directly related to the function of the biological target and the associated disease state. In this review, we discuss and exemplify the concept of statistical molecular design (SMD) in the selection of building blocks and final synthetic targets (i.e. compounds to synthesize) to generate information-rich, balanced libraries for biological testing and computation of QSAR models.
Building blocks for protein interaction devices
Grünberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis
2010-01-01
Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general–purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them. PMID:20215443
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ascherl, Laura; Sick, Torben; Margraf, Johannes
Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guidedmore » the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.« less
Emergent mechanics of biological structures
Dumont, Sophie; Prakash, Manu
2014-01-01
Mechanical force organizes life at all scales, from molecules to cells and tissues. Although we have made remarkable progress unraveling the mechanics of life's individual building blocks, our understanding of how they give rise to the mechanics of larger-scale biological structures is still poor. Unlike the engineered macroscopic structures that we commonly build, biological structures are dynamic and self-organize: they sculpt themselves and change their own architecture, and they have structural building blocks that generate force and constantly come on and off. A description of such structures defies current traditional mechanical frameworks. It requires approaches that account for active force-generating parts and for the formation of spatial and temporal patterns utilizing a diverse array of building blocks. In this Perspective, we term this framework “emergent mechanics.” Through examples at molecular, cellular, and tissue scales, we highlight challenges and opportunities in quantitatively understanding the emergent mechanics of biological structures and the need for new conceptual frameworks and experimental tools on the way ahead. PMID:25368421
NASA Astrophysics Data System (ADS)
Ascherl, Laura; Sick, Torben; Margraf, Johannes T.; Lapidus, Saul H.; Calik, Mona; Hettstedt, Christina; Karaghiosoff, Konstantin; Döblinger, Markus; Clark, Timothy; Chapman, Karena W.; Auras, Florian; Bein, Thomas
2016-04-01
Covalent organic frameworks (COFs) formed by connecting multidentate organic building blocks through covalent bonds provide a platform for designing multifunctional porous materials with atomic precision. As they are promising materials for applications in optoelectronics, they would benefit from a maximum degree of long-range order within the framework, which has remained a major challenge. We have developed a synthetic concept to allow consecutive COF sheets to lock in position during crystal growth, and thus minimize the occurrence of stacking faults and dislocations. Hereby, the three-dimensional conformation of propeller-shaped molecular building units was used to generate well-defined periodic docking sites, which guided the attachment of successive building blocks that, in turn, promoted long-range order during COF formation. This approach enables us to achieve a very high crystallinity for a series of COFs that comprise tri- and tetradentate central building blocks. We expect this strategy to be transferable to a broad range of customized COFs.
Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio
2018-02-01
Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gilani, S. A. N.; Awrangjeb, M.; Lu, G.
2015-03-01
Building detection in complex scenes is a non-trivial exercise due to building shape variability, irregular terrain, shadows, and occlusion by highly dense vegetation. In this research, we present a graph based algorithm, which combines multispectral imagery and airborne LiDAR information to completely delineate the building boundaries in urban and densely vegetated area. In the first phase, LiDAR data is divided into two groups: ground and non-ground data, using ground height from a bare-earth DEM. A mask, known as the primary building mask, is generated from the non-ground LiDAR points where the black region represents the elevated area (buildings and trees), while the white region describes the ground (earth). The second phase begins with the process of Connected Component Analysis (CCA) where the number of objects present in the test scene are identified followed by initial boundary detection and labelling. Additionally, a graph from the connected components is generated, where each black pixel corresponds to a node. An edge of a unit distance is defined between a black pixel and a neighbouring black pixel, if any. An edge does not exist from a black pixel to a neighbouring white pixel, if any. This phenomenon produces a disconnected components graph, where each component represents a prospective building or a dense vegetation (a contiguous block of black pixels from the primary mask). In the third phase, a clustering process clusters the segmented lines, extracted from multispectral imagery, around the graph components, if possible. In the fourth step, NDVI, image entropy, and LiDAR data are utilised to discriminate between vegetation, buildings, and isolated building's occluded parts. Finally, the initially extracted building boundary is extended pixel-wise using NDVI, entropy, and LiDAR data to completely delineate the building and to maximise the boundary reach towards building edges. The proposed technique is evaluated using two Australian data sets: Aitkenvale and Hervey Bay, for object-based and pixel-based completeness, correctness, and quality. The proposed technique detects buildings larger than 50 m2 and 10 m2 in the Aitkenvale site with 100% and 91% accuracy, respectively, while in the Hervey Bay site it performs better with 100% accuracy for buildings larger than 10 m2 in area.
ERIC Educational Resources Information Center
Pirrone, Concetta; Tienken, Christopher H.; Pagano, Tatiana; Di Nuovo, Santo
2018-01-01
In an experimental study to explain the effect of structured Building Block Play with LEGO™ bricks on 6-year-old student mathematics achievement and in the areas of logical thinking, divergent thinking, nonverbal reasoning, and mental imagery, students in the experimental group scored significantly higher (p = 0.05) in mathematics achievement and…
Novel single photon sources for new generation of quantum communications
2017-06-13
be used as building blocks for quantum cryptography and quantum key distribution There were numerous important achievements for the projects in the...single photon sources that will be used as build- ing blocks for quantum cryptography and quantum key distribution There were numerous im- portant...and enable absolutely secured information transfer between distant nodes – key prerequisite for quantum cryptography . Experiment: the experimental
Building Blocks for Transport-Class Hybrid and Turboelectric Vehicles
NASA Technical Reports Server (NTRS)
Jankovsky, Amy; Bowman, Cheryl; Jansen, Ralph
2016-01-01
NASA has been investing in research efforts to define potential vehicles that use hybrid and turboelectric propulsion to enable savings in fuel burn and carbon usage. This paper overviews the fundamental building blocks that have been derived from those studies and details what key performance parameters have been defined, what key ground and flight tests need to occur, and highlights progress toward each.
2016 Summer Series - Kenneth Cheung: Building Blocks for Aerospace Structures
2016-06-16
Strong, ultra-lightweight materials are expected to play a key role in the design of future aircraft and space vehicles. Lower structural mass leads to improved performance, maneuverability, efficiency, range and payload capacity. Dr. Kenneth Cheung is developing cellular composite building blocks, or digital materials, to create transformable aerostructures. In his presentation, Dr. Cheung will discuss the implications of the digital materials and morphing structures.
Supramolecular Lego assembly towards three-dimensional multi-responsive hydrogels.
Ma, Chunxin; Li, Tiefeng; Zhao, Qian; Yang, Xuxu; Wu, Jingjun; Luo, Yingwu; Xie, Tao
2014-08-27
Inspired by the assembly of Lego toys, hydrogel building blocks with heterogeneous responsiveness are assembled utilizing macroscopic supramolecular recognition as the adhesion force. The Lego hydrogel provides 3D transformation upon pH variation. After disassembly of the building blocks by changing the oxidation state, they can be re-assembled into a completely new shape. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Damage of modern building materials by microscopic fungi].
Chuenko, A I; Karpenko, Iu V
2011-01-01
Resistance of three materials, produced on the basis of concrete compounds to the action of microscopic fungi, isolated from damaged living buildings, has been first investigated. It has been shown that samples of froth-block and thermoeffective block had low fungal resistance, in contrast to samples of cellular polystyrene concrete, which were resistant to fungal action, that can be associated with peculiarities of their component composition.
ERIC Educational Resources Information Center
US Department of Health and Human Services, Head Start Bureau, 2004
2004-01-01
Nearly 30 years ago, leading child psychologist Michael E. Lamb reminded us that fathers are the "forgotten contributors to child development." Since then, much work has been done to explore the ways fathers uniquely contribute to the healthy development of their children. Scholars now know that boys and girls who grow up with an involved father,…
Highly crystalline covalent organic frameworks from flexible building blocks.
Xu, Liqian; Ding, San-Yuan; Liu, Junmin; Sun, Junliang; Wang, Wei; Zheng, Qi-Yu
2016-03-28
Two novel 2D covalent organic frameworks (TPT-COF-1 and TPT-COF-2) were synthesized from the flexible 2,4,6-triaryloxy-1,3,5-triazine building blocks on a gram scale, which show high crystallinity and large surface area. The controllable formation of highly ordered frameworks is mainly attributed to the self-assembly Piedfort unit of 2,4,6-triaryloxy-1,3,5-triazine.
2010-10-21
Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F...long chain fluorinated alkyl groups ranging from 6-12 carbon atoms in length. Herein, a disilanol perfluoroalkyl polyhedral oligomeric...FUNCTIONAL PERFLUOROALKYL POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (F-POSS): BUILDING BLOCKS FOR LOW SURFACE ENERGY MATERIA LS Sean M Rami,.e:, Yvonne Dia
Results of Outdoor to Indoor Propagation Measurements from 5-32GHz
NASA Technical Reports Server (NTRS)
Houts, Jacquelynne R.; McDonough, Ryan S.
2016-01-01
The demand for wireless services has increased exponentially in the last few years and shows no signs of slowing in the near future. In order for the next generation wireless to provide seamless access, whether the user is indoors or out, a thorough understanding and validation of models describing the impact of building entry loss (BEL) is required. This information is currently lacking and presents a challenge for most system designers. For this reason empirical data is needed to assess the impact of BEL at frequencies that are being explored for future mobile broadband applications This paper present the results of measurements of outdoor-to-indoor propagation from 5-32 GHz in three different buildings. The first is a newer building that is similar in construction to modern residential home. The second is an older commercial office building. The last building is a very new commercial office building built using modern green building techniques. These three buildings allow for the measurement of propagation losses through both modern and older materials; such as glass windows and exterior block and siding. Initial results found that at particular spatial locations the BEL could be less than 1dB or more than 70dB with free space losses discounted (this is likely influenced by multipath). Additionally, it was observed that the PDF distributions of a majority of the measurements trended toward log-normal with means and standard deviations ranging from 8-38dB and 6-14dB, respectively.
NASA Technical Reports Server (NTRS)
Wohlen, R. L.
1976-01-01
Techniques are presented for the solution of structural dynamic systems on an electronic digital computer using FORMA (FORTRAN Matrix Analysis). FORMA is a library of subroutines coded in FORTRAN 4 for the efficient solution of structural dynamics problems. These subroutines are in the form of building blocks that can be put together to solve a large variety of structural dynamics problems. The obvious advantage of the building block approach is that programming and checkout time are limited to that required for putting the blocks together in the proper order.
NASA Astrophysics Data System (ADS)
Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi
2017-02-01
We developed a new type of silicon MOSFET Quantum Well transistor, coupling both electronic and optical properties which should overcome the indirect silicon bandgap constraint, and serve as a future light emitting device in the range 0.8-2μm, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such Quantum Well structure enables discrete energy levels for light recombination. Model and simulations of both optical and electric properties are presented pointing out the influence of the channel thickness and the drain voltage on the optical emission spectrum.
Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds
Rios, Orlando; Chen, Jihua; Li, Yuzhan; ...
2016-06-01
Functional polymers are intelligent materials that can respond to a variety of external stimuli. However, these materials have not yet found widespread real world applications because of the difficulties in fabrication and the limited number of functional building blocks that can be incorporated into a material. Here, we demonstrate a simple route to incorporate three functional building blocks (azobenzene chromophores, liquid crystals, and dynamic covalent bonds) into an epoxy-based liquid crystalline network (LCN), in which an azobenzene-based epoxy monomer is polymerized with an aliphatic dicarboxylic acid to create exchangeable ester bonds that can be thermally activated. Lastly, all three functionalmore » building blocks exhibited good compatibility, and the resulting materials exhibits various photomechanical, shape memory, and self-healing properties because of the azobenzene molecules, liquid crystals, and dynamic ester bonds, respectively.« less
NASA Astrophysics Data System (ADS)
Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg
2017-02-01
Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.
7. Historic American Buildings Survey Verlin Berry, Photographer November 10, ...
7. Historic American Buildings Survey Verlin Berry, Photographer November 10, 1977 FIRST FLOOR, VIEW OF PRESSED TIN CEILING WITH WOOD BLOCKING AT CROWN MOLDING - 111 West First Street (Commercial Building), Mishawaka, St. Joseph County, IN
Main-chain supramolecular block copolymers.
Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus
2011-01-01
Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.
Die Tübinger Südstadt. 20 Jahre Nutzungsmischung im Neubau
NASA Astrophysics Data System (ADS)
Pätz, Andreas
2017-09-01
Since the 90s, many cities have convert developed conversion areas into new housing. One of the most ambitious projects in Germany is Tubingen's south side. Creating a lively and attractive neighborhood was the goal of developing this neighborhood, and a wide variety of citizens took part in the process. The essential building blocks for the process were allocating the properties to building associations, mixed use, density, quality of the public spaces and participation. This neighborhood's social diversity was reflected in the various kinds of housing, business, and in the social and cultural infrastructure. The city provided the "hardware", the creation of free spaces and opportunities for participation. And the "software", the willingness to get involved, came from the citizens as builders, residents, entrepreneurs, and members of the initiative. The vibrancy and urbanity of the neighborhood is a testament to the feasibility of creating mix-use neighborhoods under certain conditions.
GENERAL VIEW OF TYPE HB54s (BUILDINGS T1088 TO T1093) & ...
GENERAL VIEW OF TYPE HB-54s (BUILDINGS T-1088 TO T-1093) & CONVERTED TYPE HB-54S (BUILDINGS T-1094 TO T-1096), LOOKING SOUTHWEST; BUILDING T-1088 AT LEFT, BUILDING T-1096 AT RIGHT - Fort McCoy, Building No. T-1096, South side of South Ninth Avenue, Block 10, Sparta, Monroe County, WI
Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua
2015-08-12
Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ostras, Konstantin S; Gorobets, Nikolay Yu; Desenko, Sergey M; Musatov, Vladimir I
2006-08-01
A new one-stage fast multicomponent synthesis of title compounds leads to products in 21-55% isolated yields under both conventional and microwave conditions. The primary amino group in the building blocks can be easily acylated by various usual electophilic agents that can be utilized in the synthesis of diverse heterocylic compounds libraries.
Li, Jun-Ying; Hu, Yuan-Man; Chen, Wei; Liu, Miao; Hu, Jian-Bo; Zhong, Qiao-Lin; Lu, Ning
2012-06-01
Population is the most active factor affecting city development. To understand the distribution characteristics of urban population is of significance for making city policy decisions and for optimizing the layout of various urban infrastructures. In this paper, the information of the residential buildings in Shenyang urban area was extracted from the QuickBird remote sensing images, and the spatial distribution characteristics of the population within the Third-Ring Road of the City were analyzed, according to the social and economic statistics data. In 2010, the population density in different types of residential buildings within the Third-Ring Road of the City decreased in the order of high-storey block, mixed block, mixed garden, old multi-storey building, high-storey garden, multi-storey block, multi-storey garden, villa block, shanty, and villa garden. The vacancy rate of the buildings within the Third-Ring Road was more than 30%, meaning that the real estate market was seriously overstocked. Among the five Districts of Shenyang City, Shenhe District had the highest potential population density, while Tiexi District and Dadong District had a lower one. The gravity center of the City and its five Districts was also analyzed, which could provide basic information for locating commercial facilities and planning city infrastructure.
Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy
2015-01-01
Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W−1 due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications. PMID:26066737
Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy
2015-06-11
Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W(-1) due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications.
Alauddin, Mohammad; Gloaguen, Eric; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel; Zehnacker-Rentien, Anne; Declerck, Valérie; Aitken, David J
2015-11-09
This work describes the use of conformer-selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four-membered ring cyclic β-amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans-substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen-atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen-bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis-substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zobin, V. M.; Cruz-Bravo, A. A.; Ventura-Ramírez, F.
2010-06-01
A macroseismic methodology of seismic risk microzonation in a low-rise city based on the vulnerability of residential buildings is proposed and applied to Colima city, Mexico. The seismic risk microzonation for Colima consists of two elements: the mapping of residential blocks according to their vulnerability level and the calculation of an expert-opinion based damage probability matrix (DPM) for a given level of earthquake intensity and a given type of residential block. A specified exposure time to the seismic risk for this zonation is equal to the interval between two destructive earthquakes. The damage probability matrices were calculated for three types of urban buildings and five types of residential blocks in Colima. It was shown that only 9% of 1409 residential blocks are able to resist to the Modify Mercalli (MM) intensity VII and VIII earthquakes without significant damage. The proposed DPM-2007 is in good accordance with the experimental damage curves based on the macroseismic evaluation of 3332 residential buildings in Colima that was carried out after the 21 January 2003 intensity MM VII earthquake. This methodology and the calculated PDM-2007 curves may be applied also to seismic risk microzonation for many low-rise cities in Latin America, Asia, and Africa.
NASA Technical Reports Server (NTRS)
Bekey, I.; Mayer, H. L.; Wolfe, M. G.
1976-01-01
The methodology of alternate world future scenarios is utilized for selecting a plausible, though not advocated, set of future scenarios each of which results in a program plan appropriate for the respective environment. Each such program plan gives rise to different building block and technology requirements, which are analyzed for common need between the NASA and the DoD for each of the alternate world scenarios. An essentially invariant set of system, building block, and technology development plans is presented at the conclusion, intended to allow protection of most of the options for system concepts regardless of what the actual future world environment turns out to be. Thus, building block and technology needs are derived which support: (1) each specific world scenario; (2) all the world scenarios identified in this study; or (3) generalized scenarios applicable to almost any future environment. The output included in this volume consists of the building blocks, i.e.: transportation vehicles, orbital support vehicles, and orbital support facilities; the technology required to support the program plans; identification of their features which could support the DoD and NASA in common; and a complete discussion of the planning methodology.
Making Your Own Hollow Blocks. What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
The procedures needed to make hollow blocks from palay hull, sawdust, soil, or sand are outlined in this module. Also outlined are the procedures needed to construct the wooden molds used to make the blocks. The hollow blocks can be used in building a one story house where the roof does not rest on the hollow block wall, an additional room to the…
On the Impact Origin of Phobos and Deimos. I. Thermodynamic and Physical Aspects
NASA Astrophysics Data System (ADS)
Hyodo, Ryuki; Genda, Hidenori; Charnoz, Sébastien; Rosenblatt, Pascal
2017-08-01
Phobos and Deimos are the two small moons of Mars. Recent works have shown that they can accrete within an impact-generated disk. However, the detailed structure and initial thermodynamic properties of the disk are poorly understood. In this paper, we perform high-resolution SPH simulations of the Martian moon-forming giant impact that can also form the Borealis basin. This giant impact heats up the disk material (around ˜2000 K in temperature) with an entropy increase of ˜1500 J K-1 kg-1. Thus, the disk material should be mostly molten, though a tiny fraction of disk material (< 5 % ) would even experience vaporization. Typically, a piece of molten disk material is estimated to be meter sized owing to the fragmentation regulated by their shear velocity and surface tension during the impact process. The disk materials initially have highly eccentric orbits (e ˜ 0.6-0.9), and successive collisions between meter-sized fragments at high impact velocity (˜1-5 km s-1) can grind them down to ˜100 μm sized particles. On the other hand, a tiny amount of vaporized disk material condenses into ˜0.1 μm sized grains. Thus, the building blocks of the Martian moons are expected to be a mixture of these different sized particles from meter-sized down to ˜100 μm sized particles and ˜0.1 μm sized grains. Our simulations also suggest that the building blocks of Phobos and Deimos contain both impactor and Martian materials (at least 35%), most of which come from the Martian mantle (50-150 km in depth; at least 50%). Our results will give useful information for planning a future sample return mission to Martian moons, such as JAXA’s MMX (Martian Moons eXploration) mission.
Mapping from Space - Ontology Based Map Production Using Satellite Imageries
NASA Astrophysics Data System (ADS)
Asefpour Vakilian, A.; Momeni, M.
2013-09-01
Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83%. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7%. Results showed that vegetation cover and water features have been extracted completely (100%) and about 71% of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.
Mapping from Space - Ontology Based Map Production Using Satellite Imageries
NASA Astrophysics Data System (ADS)
Asefpour Vakilian, A.; Momeni, M.
2013-09-01
Determination of the maximum ability for feature extraction from satellite imageries based on ontology procedure using cartographic feature determination is the main objective of this research. Therefore, a special ontology has been developed to extract maximum volume of information available in different high resolution satellite imageries and compare them to the map information layers required in each specific scale due to unified specification for surveying and mapping. ontology seeks to provide an explicit and comprehensive classification of entities in all sphere of being. This study proposes a new method for automatic maximum map feature extraction and reconstruction of high resolution satellite images. For example, in order to extract building blocks to produce 1 : 5000 scale and smaller maps, the road networks located around the building blocks should be determined. Thus, a new building index has been developed based on concepts obtained from ontology. Building blocks have been extracted with completeness about 83 %. Then, road networks have been extracted and reconstructed to create a uniform network with less discontinuity on it. In this case, building blocks have been extracted with proper performance and the false positive value from confusion matrix was reduced by about 7 %. Results showed that vegetation cover and water features have been extracted completely (100 %) and about 71 % of limits have been extracted. Also, the proposed method in this article had the ability to produce a map with largest scale possible from any multi spectral high resolution satellite imagery equal to or smaller than 1 : 5000.
EarthCube GeoLink: Semantics and Linked Data for the Geosciences
NASA Astrophysics Data System (ADS)
Arko, R. A.; Carbotte, S. M.; Chandler, C. L.; Cheatham, M.; Fils, D.; Hitzler, P.; Janowicz, K.; Ji, P.; Jones, M. B.; Krisnadhi, A.; Lehnert, K. A.; Mickle, A.; Narock, T.; O'Brien, M.; Raymond, L. M.; Schildhauer, M.; Shepherd, A.; Wiebe, P. H.
2015-12-01
The NSF EarthCube initiative is building next-generation cyberinfrastructure to aid geoscientists in collecting, accessing, analyzing, sharing, and visualizing their data and knowledge. The EarthCube GeoLink Building Block project focuses on a specific set of software protocols and vocabularies, often characterized as the Semantic Web and "Linked Data", to publish data online in a way that is easily discoverable, accessible, and interoperable. GeoLink brings together specialists from the computer science, geoscience, and library science domains, and includes data from a network of NSF-funded repositories that support scientific studies in marine geology, marine ecosystems, biogeochemistry, and paleoclimatology. We are working collaboratively with closely-related Building Block projects including EarthCollab and CINERGI, and solicit feedback from RCN projects including Cyberinfrastructure for Paleogeosciences (C4P) and iSamples. GeoLink has developed a modular ontology that describes essential geoscience research concepts; published data from seven collections (to date) on the Web as geospatially-enabled Linked Data using this ontology; matched and mapped data between collections using shared identifiers for investigators, repositories, datasets, funding awards, platforms, research cruises, physical specimens, and gazetteer features; and aggregated the results in a shared knowledgebase that can be queried via a standard SPARQL endpoint. Client applications have been built around the knowledgebase, including a Web/map-based data browser using the Leaflet JavaScript library and a simple query service using the OpenSearch format. Future development will include extending and refining the GeoLink ontology, adding content from additional repositories, developing semi-automated algorithms to enhance metadata, and further work on client applications.
Shrimali, Bina Patel; Luginbuhl, Jessica; Malin, Christina; Flournoy, Rebecca; Siegel, Anita
2014-02-01
Too many children are born into poverty, often living in disinvested communities without adequate opportunities to be healthy and thrive. Two complementary frameworks-health equity and life course-propose new approaches to these challenges. Health equity strategies seek to improve community conditions that influence health. The life course perspective focuses on key developmental periods that can shift a person's trajectory over the life course, and highlights the importance of ensuring that children have supports in place that set them up for long-term success and health. Applying these frameworks, the Alameda County Public Health Department launched the Building Blocks Collaborative (BBC), a countywide multi-sector initiative to engage community partners in improving neighborhood conditions in low-income communities, with a focus on young children. A broad cross-section of stakeholders, called to action by the state of racial and economic inequities in children's health, came together to launch the BBC and develop a Bill of Rights that highlights the diverse factors that contribute to children's health. BBC partners then began working together to improve community conditions by learning and sharing ideas and strategies, and incubating new collaborative projects. Supportive health department leadership; dedicated staff; shared vision and ownership; a flexible partnership structure; and broad collective goals that build on partners' strengths and priorities have been critical to the growth of the BBC. Next steps include institutionalizing BBC projects into existing infrastructure, ongoing partner engagement, and continued project innovation-to achieve a common vision that all babies have the best start in life.
17. A southward view of buildings #6B and #6 in ...
17. A southward view of buildings #6-B and #6 in the left background and buildings #5 (center) and #3 (right of center). - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
Streambank Protection Guidelines,
1983-10-01
the types of rubble suitable for dumping on an eroding bank include broken pavement, bricks, building blocks , slag , and quarry waste. Large flat slabs...not provide any long-termn protection. blocks , and house brick. I rfbiae omrilgbo akt Completed gabion revetment made from prefabricated baskets...prevent pressure buildup that could cause revetment failure. BLOCKS . Precast cellular blocks can be ypi i .,, p no- , ,,, ,hag ,.,.,,,,t
Rockfall vulnerability assessment for masonry buildings
NASA Astrophysics Data System (ADS)
Mavrouli, Olga
2015-04-01
The methodologies for the quantitative risk assessment vary in function of the application scale and the available data. For fragmental rockfalls, risk calculation requires data for the expected damage of the exposed elements due to potential rock block impacts with a range of trajectories, magnitudes and intensities. Although the procedures for the quantification of the rock block characteristics in terms of magnitude-frequency relationships are well established, there are few methodologies for the calculation of the vulnerability, and these are usually empirical or judgmental. The response of buildings to rock block impacts using analytical methods has been mainly realised so far for reinforced concrete buildings, and some fragility curves have been calculated with the results, indicating the potential damage for a range of rock block characteristics. Masonry buildings, as a common structural typology in mountainous areas, are in many cases impacted by rock blocks during rockfalls. Their response presents some peculiarities in comparison with reinforced-concrete structures given the non-homogeneity and variability of the compound materials (blocks and mortar), their orthotropy, low strength in tension, the statically indeterminate load-bearing system and the non-monolithic connections. To this purpose, analytical procedures which are specifically adapted to masonry structures should be used for the evaluation of the expected damage due to rock impacts. In this contribution we discuss the application of the analytical approach for the assessment of the expected damage in rockfall prone areas and the simulation assumptions that can be made concerning the materials, geometry, loading and the relevant simplifications. The amount of uncertainties introduced during their analytical simulation is high due to the dispersion of the data for material mechanical properties and the construction techniques and quality and thus a probabilistic assessment is suggested. The random nature of the rockfall as far as it concerns the magnitude and the intensity of the rock blocks can also be introduced using parametric analyses.
GENIUS: A tool for multi-disciplinary and multi-scalar databases
NASA Astrophysics Data System (ADS)
Bonhomme, M.; Masson, V.; Adolphe, L.; Faraut, S.
2013-12-01
Cities are responsible for the majority of energy consumption on the planet. As a consequence, researches regarding energy use in urban context have been increasing for the last decades. Recently the interrelationship between city, energy consumption and urban microclimate appeared as a key component of urban sustainability. To be accurate, those studies must take into account a multidisciplinary urban context and modelling tools need high definition data. Nevertheless, at the city scale, input data is either imprecise or only available for small areas. In particular, there is a lack of information about buildings footprints, roofs sloping, envelope materials, etc. Moreover, the existing data do not allow researchers to explore prospective issues such as climate change or future urban development. In this sense, we developed a new tool called GENIUS (GENerator of Interactive Urban blockS) to build high definition and evolutionary maps from available databases. GENIUS creates maps composed of archetypical neighbourhood coming as shape-files of polygons with additional information (height, age, use, thermal insulation, etc.). Those archetypical neighbourhoods come to seven types of urban blocks that can be found in most European cities. Those types can be compared with Stewart and Oke Local Climate Zones (LCZ). The first step of our method is to transform an existing map into an 'archetypical map'. To do this, the urban database of the IGN (French Geographical Institute) was used. The maps were divided into cells of 250 meters resolution. For each cell, about 40 morphological indicators were calculated. Seven groups of blocks were then identified by means of Principal Component Analysis. GENIUS databases are also able to evolve through time. As a matter of fact, the initial map is transformed, year after year, by taking into account changes in density and urban history. In that sense, GENIUS communicates with NEDUM, a model developed by the CIRED (International Centre for Environment and Development), that simulates the spread of the city and provides information on build density. Under the influence of those density evolutions and of different urban planning scenarios, GENIUS changes the type of urban blocks and their parameters (height, plot ratio, thermal properties, etc.). The paper will present the validation of GENIUS and its application on the French city of Toulouse. Six scenarios have been designed taking into account demographic evolutions, economic contexts and urban planning policies. For each of those scenarios, we generated maps of the city and its surroundings from 2010 to 2100. The obtained maps enabled us to come up with simulations of Toulouse energy consumptions and microclimate both present and future.
NASA Astrophysics Data System (ADS)
Duraj, Miloš; Cheng, Xianfeng; Niemiec, Dominik; Arencibia Montero, Orlando; Koleňák, Petr
2017-10-01
The post-war Czechoslovakia needed to deal with a complex and urgent problem of rebuilding the destroyed industry after the Second World War. The complicated circumstances shortly after the war divided Europe into two antagonistic units. The former Czechoslovakia fell under the influence of the Soviet Union. Apart from the political and many other changes, the influence of this power also affected the style of the contemporary architecture. A new style called social realism (sorela) evolved and dominated also the culture and arts. The initial ornateness and exaggerated grandeur of the buildings gradually faded out due to economic reasons. The classical ornamental sorela is irregularly represented in many localities of the former Czechoslovakia. It takes form of discrete buildings or whole blocks. Among the most interesting and extensive units to house tens of thousands of citizens employed in mining and metallurgy, there are the buildings in Ostrava-Poruba and Havířov. The localities are nowadays conservation zones due to their significance.
Design and synthesis of unnatural heparosan and chondroitin building blocks
Bera, Smritilekha; Linhardt, Robert J.
2011-01-01
Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620
PBF Reactor Building (PER620). After lowering reactor vessel onto blocks, ...
PBF Reactor Building (PER-620). After lowering reactor vessel onto blocks, it is rolled on logs into PBF. Metal framework under vessel is handling device. Various penetrations in reactor bottom were for instrumentation, poison injection, drains. Large one, below center "manhole" was for primary coolant. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-736 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
11. VIEW OF INTERIOR OF BUILDING 220 FIRST FLOOR, CELL ...
11. VIEW OF INTERIOR OF BUILDING 220 FIRST FLOOR, CELL BLOCK 'A' (SOLITARY CONFINEMENT CELL BLOCK), TYPICAL SOLITARY CONFINEMENT CELL. THE CELL SHOWN IN CENTER OF PHOTO, HAS A 2-1/2' THICK STEEL DOOR. THE CELL SHOWN IN THE LEFT OF PHOTO, HAS A 3/4' DIAMETER IRON GRILLE DOOR. - U.S. Naval Base, Pearl Harbor, Brig, Neville Way near Ninth Street at Marine Barracks, Pearl City, Honolulu County, HI
Advanced information processing system: Local system services
NASA Technical Reports Server (NTRS)
Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter
1989-01-01
The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.
Effector-Triggered Self-Replication in Coupled Subsystems.
Komáromy, Dávid; Tezcan, Meniz; Schaeffer, Gaël; Marić, Ivana; Otto, Sijbren
2017-11-13
In living systems processes like genome duplication and cell division are carefully synchronized through subsystem coupling. If we are to create life de novo, similar control over essential processes such as self-replication need to be developed. Here we report that coupling two dynamic combinatorial subsystems, featuring two separate building blocks, enables effector-mediated control over self-replication. The subsystem based on the first building block shows only self-replication, whereas that based on the second one is solely responsive toward a specific external effector molecule. Mixing the subsystems arrests replication until the effector molecule is added, resulting in the formation of a host-effector complex and the liberation of the building block that subsequently engages in self-replication. The onset, rate and extent of self-replication is controlled by the amount of effector present. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Laboratory testing of a building envelope segment based on cellular concrete
NASA Astrophysics Data System (ADS)
Fořt, Jan; Pavlík, Zbyšek; Černý, Robert
2016-07-01
Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.
Synthesis of Triamino Acid Building Blocks with Different Lipophilicities
Maity, Jyotirmoy; Honcharenko, Dmytro; Strömberg, Roger
2015-01-01
To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis. PMID:25876040
Tandem Repeat Proteins Inspired By Squid Ring Teeth
NASA Astrophysics Data System (ADS)
Pena-Francesch, Abdon
Proteins are large biomolecules consisting of long chains of amino acids that hierarchically assemble into complex structures, and provide a variety of building blocks for biological materials. The repetition of structural building blocks is a natural evolutionary strategy for increasing the complexity and stability of protein structures. However, the relationship between amino acid sequence, structure, and material properties of protein systems remains unclear due to the lack of control over the protein sequence and the intricacies of the assembly process. In order to investigate the repetition of protein building blocks, a recently discovered protein from squids is examined as an ideal protein system. Squid ring teeth are predatory appendages located inside the suction cups that provide a strong grasp of prey, and are solely composed of a group of proteins with tandem repetition of building blocks. The objective of this thesis is the understanding of sequence, structure and property relationship in repetitive protein materials inspired in squid ring teeth for the first time. Specifically, this work focuses on squid-inspired structural proteins with tandem repeat units in their sequence (i.e., repetition of alternating building blocks) that are physically cross-linked via beta-sheet structures. The research work presented here tests the hypothesis that, in these systems, increasing the number of building blocks in the polypeptide chain decreases the protein network defects and improves the material properties. Hence, the sequence, nanostructure, and properties (thermal, mechanical, and conducting) of tandem repeat squid-inspired protein materials are examined. Spectroscopic structural analysis, advanced materials characterization, and entropic elasticity theory are combined to elucidate the structure and material properties of these repetitive proteins. This approach is applied not only to native squid proteins but also to squid-inspired synthetic polypeptides that allow for a fine control of the sequence and network morphology. The results provided in this work establish a clear dependence between the repetitive building blocks, the network morphology, and the properties of squid-inspired repetitive protein materials. Increasing the number of tandem repeat units in SRT-inspired proteins led to more effective protein networks with superior properties. Through increasing tandem repetition and optimization of network morphology, highly efficient protein materials capable of withstanding deformations up to 400% of their original length, with MPa-GPa modulus, high energy absorption (50 MJ m-3), peak proton conductivity of 3.7 mS cm-1 (at pH 7, highest reported to date for biological materials), and peak thermal conductivity of 1.4 W m-1 K -1 (which exceeds that of most polymer materials) were developed. These findings introduce new design rules in the engineering of proteins based on tandem repetition and morphology control, and provide a novel framework for tailoring and optimizing the properties of protein-based materials.
Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.
Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier
2018-04-17
The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational spectroscopy, to ascertain features about the constituent superatomic building blocks, such as the charge of the cluster cores, by analysis of bond distances from the SCXRD data. The combination of atomic precision and intercluster interactions in these SACs produces novel collective properties, including tunable electrical transport, crystalline thermal conductivity, and ferromagnetism. In addition, we have developed a synthetic strategy to insert redox-active guests into the superstructure of SACs via single-crystal-to-single-crystal intercalation. This intercalation process allows us to tune the optical and electrical transport properties of the superatomic crystal host. These properties are explored using a host of techniques, including Raman spectroscopy, SQUID magnetometry, electrical transport measurements, electronic absorption spectroscopy, differential scanning calorimetry, and frequency-domain thermoreflectance. Superatomic crystals have proven to be both robust and tunable, representing a new method of materials design and architecture. This Account demonstrates how precisely controlling the structure and properties of nanoscale building blocks is key in developing the next generation of functional materials; several examples are discussed and detailed herein.
Building a Case for Blocks as Kindergarten Mathematics Learning Tools
ERIC Educational Resources Information Center
Kinzer, Cathy; Gerhardt, Kacie; Coca, Nicole
2016-01-01
Kindergarteners need access to blocks as thinking tools to develop, model, test, and articulate their mathematical ideas. In the current educational landscape, resources such as blocks are being pushed to the side and being replaced by procedural worksheets and academic "seat time" in order to address standards. Mathematics research…
Revisit Pattern Blocks to Develop Rational Number Sense
ERIC Educational Resources Information Center
Champion, Joe; Wheeler, Ann
2014-01-01
Pattern blocks are inexpensive wooden, foam, or plastic manipulatives developed in the 1960s to help students build an understanding of shapes, proportions, equivalence, and fractions (EDC 1968). The colorful collection of basic shapes in classic pattern block kits affords opportunities for amazing puzzle-like problem-solving tasks and for…
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Luo, Xuan; Duan, Yuanling; Huang, Yanping; Zhang, Nanxi; Zhao, Liyan; Wu, Jie
2017-08-01
Two new inorganic-organic hybrid materials [Cu(enMe)2]2{(As2Mo6O26) [Cu(enMe)2]}·4H2O (1) and [As2Mo6(OH)2O24][Cu(H2O)2(phen)]2 (2) (enMe = 1,2'-propanediamine, phen = 1,10'-phenanthroline) based on [As2Mo6O26]6- building blocks, denoted as [As2Mo6], have been obtained by hydrothermal methods. 1 shows a 1-D straight chain structure constructed form [As2Mo6] building blocks and [Cu(enMe)2] complexes, and then extended to 3-D supramolecular network by lattice water via hydrogen bonds interactions. 2 exhibits a new 1-D covalent ribbon with large rectangular grids formed from [As2Mo6] building blocks connected by [Cu(H2O)2(phen)] complexes, then extended into 3-D supramolecular network via hydrogen bonds and π···π interactions. In additional, the photocatalytic activity for methylene blue degradation under visible-light irradiation of 2 was investigated.
Topological classification of periodic orbits in the Kuramoto-Sivashinsky equation
NASA Astrophysics Data System (ADS)
Dong, Chengwei
2018-05-01
In this paper, we systematically research periodic orbits of the Kuramoto-Sivashinsky equation (KSe). In order to overcome the difficulties in the establishment of one-dimensional symbolic dynamics in the nonlinear system, two basic periodic orbits can be used as basic building blocks to initialize cycle searching, and we use the variational method to numerically determine all the periodic orbits under parameter ν = 0.02991. The symbolic dynamics based on trajectory topology are very successful for classifying all short periodic orbits in the KSe. The current research can be conveniently adapted to the identification and classification of periodic orbits in other chaotic systems.
Living fungal hyphae-templated porous gold microwires using nanoparticles as building blocks
NASA Astrophysics Data System (ADS)
Rehman, Asma; Majeed, Muhammad Irfan; Ihsan, Ayesha; Hussain, Syed Zajif; Saif-ur-Rehman; Ghauri, Muhammad Afzal; Khalid, Zafar M.; Hussain, Irshad
2011-12-01
A simple and environmentally benign green method is reported to decorate growing fungal hyphae with high loading of gold nanoparticles, which were initially produced using aqueous tea extract as a sole reducing/stabilizing agent. Inoculation of fungal spores in aqueous suspension of nanoparticles led to the growth of intensely red-coloured fungal hyphae due to the accumulation of gold nanoparticles. Heat treatment of these hybrid materials led to the formation of porous gold microwires. This report is thus an interesting example of using green and sustainable approach to produce nanostructured materials which have potential applications in catalysis, sensing and electronics.
NASA Technical Reports Server (NTRS)
Feldman, S. M.; Blake, D. F.; Sarrazin, P.; Bish, D. L.; Chipera, S. J.; Vaniman, D. T.; Collins, S.
2004-01-01
The search for evidence of habitability, or of extant or extinct life on Mars, will initially be a search for evidence of past or present conditions supportive of life. The three key requirements for the emergence of life are thought to be liquid water; a suitable energy source; and chemical building blocks. CheMin is a miniaturized XRD/XRF (X-Ray diffraction / X-ray fluorescence) instrument which has been developed for definitive mineralogic analysis of soils and rocks on the Martian surface. The CheMin instrument can provide information that is highly relevant to each of these habitability requirements as summarized below.
NASA Astrophysics Data System (ADS)
Ferwerda, Cameron; Lipan, Ovidiu
2016-11-01
Akin to electric circuits, we construct biocircuits that are manipulated by cutting and assembling channels through which stochastic information flows. This diagrammatic manipulation allows us to create a method which constructs networks by joining building blocks selected so that (a) they cover only basic processes; (b) it is scalable to large networks; (c) the mean and variance-covariance from the Pauli master equation form a closed system; and (d) given the initial probability distribution, no special boundary conditions are necessary to solve the master equation. The method aims to help with both designing new synthetic signaling pathways and quantifying naturally existing regulatory networks.
Controlling self-assembly of microtubule spools via kinesin motor density
Lam, A.T.; Curschellas, C.; Krovvidi, D.; Hess, H.
2014-01-01
Active self-assembly, in which non-thermal energy is consumed by the system to put together building blocks, allows the creation of non-equilibrium structures and active materials. Microtubule spools assembled in gliding assays are one example of such non-equilibrium structures, capable of storing bending energies on the order of 105 kT. Although these structures arise spontaneously in experiments, the origin of microtubule spooling has long been debated. Here, using a stepwise kinesin gradient, we demonstrate that spool assembly can be controlled by the surface density of kinesin motors, showing that pinning of microtubules due to dead motors plays a dominant role in spool initiation. PMID:25269076
Controlling self-assembly of microtubule spools via kinesin motor density.
Lam, A T; Curschellas, C; Krovvidi, D; Hess, H
2014-11-21
Active self-assembly, in which non-thermal energy is consumed by the system to put together building blocks, allows the creation of non-equilibrium structures and active materials. Microtubule spools assembled in gliding assays are one example of such non-equilibrium structures, capable of storing bending energies on the order of 10(5) kT. Although these structures arise spontaneously in experiments, the origin of microtubule spooling has long been debated. Here, using a stepwise kinesin gradient, we demonstrate that spool assembly can be controlled by the surface density of kinesin motors, showing that pinning of microtubules due to dead motors plays a dominant role in spool initiation.
NASA Astrophysics Data System (ADS)
Grason, Gregory M.
2017-12-01
The spontaneous assembly of particulate or molecular 'building blocks' into larger architectures underlies structure formation in many biological and synthetic materials. Shape frustration of ill-fitting blocks holds a surprising key to more regular assemblies.
Door in west wall of the center block, positioned near ...
Door in west wall of the center block, positioned near the detached kitchen/bake house building. - Lazaretto Quarantine Station, Wanamaker Avenue and East Second Street, Essington, Delaware County, PA
A crown-like heterometallic unit as the building block for a 3D In-Ge-S framework.
Han, Xiaohui; Wang, Zhenqing; Xu, Jin; Liu, Dan; Wang, Cheng
2015-12-14
Supertetrahedral clusters are the most common building blocks in constructing Group 13/14/16 microporous metal chalcogenide materials while other types of clusters are yet scarcely explored. Herein, a new crown-like building unit [In3Ge3S16] has been obtained. The units assemble into a 3D framework [C6H14NO]4[In6Ge3S17]·1.5H2O (1) via a dual-connection mode and a SrSi2 (srs)-type topology could be achieved by treating each unit as a tri-connected node.
PERTS: A Prototyping Environment for Real-Time Systems
NASA Technical Reports Server (NTRS)
Liu, Jane W. S.; Lin, Kwei-Jay; Liu, C. L.
1993-01-01
PERTS is a prototyping environment for real-time systems. It is being built incrementally and will contain basic building blocks of operating systems for time-critical applications, tools, and performance models for the analysis, evaluation and measurement of real-time systems and a simulation/emulation environment. It is designed to support the use and evaluation of new design approaches, experimentations with alternative system building blocks, and the analysis and performance profiling of prototype real-time systems.
VLSI architecture for a Reed-Solomon decoder
NASA Technical Reports Server (NTRS)
Hsu, In-Shek (Inventor); Truong, Trieu-Kie (Inventor)
1992-01-01
A basic single-chip building block for a Reed-Solomon (RS) decoder system is partitioned into a plurality of sections, the first of which consists of a plurality of syndrome subcells each of which contains identical standard-basis finite-field multipliers that are programmable between 10 and 8 bit operation. A desired number of basic building blocks may be assembled to provide a RS decoder of any syndrome subcell size that is programmable between 10 and 8 bit operation.
Exploring endoperoxides as a new entry for the synthesis of branched azasugars
Domeyer, Svenja; Bjerregaard, Mark; Johansson, Henrik
2017-01-01
A new class of nitrogen-containing endoperoxides were synthesised by a photochemical [4 + 2]-cycloaddition between a diene and singlet oxygen. The endoperoxides were dihydroxylated and protected to provide a series of endoperoxide building blocks for organic synthesis, with potential use as precursors for the synthesis of branched azasugars. Preliminary exploration of the chemistry of these building blocks provided access to a variety of derivatives including tetrahydrofurans, epoxides and protected amino-tetraols. PMID:28487758
Cascaded VLSI neural network architecture for on-line learning
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P. (Inventor); Duong, Tuan A. (Inventor); Daud, Taher (Inventor)
1992-01-01
High-speed, analog, fully-parallel, and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A computation intensive feature classification application was demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as an application specific coprocessor for solving real world problems at extremely high data rates.
Schäffer, Christian; Todea, Ana Maria; Gouzerh, Pierre; Müller, Achim
2012-01-11
The addition of dinuclear {Mo(2)} units to a dynamic library containing molybdates results in the spontaneous self-assembly of a giant spherical metal-oxide species of the type {(Mo)Mo(5)}(12){Mo(2)}(30) while the required pentagonal {(Mo)Mo(5)} building blocks are "immediately" formed. This journal is © The Royal Society of Chemistry 2012
Zhang, Ying; Zhan, Tian-Guang; Zhou, Tian-You; Qi, Qiao-Yan; Xu, Xiao-Na; Zhao, Xin
2016-06-18
A two-dimensional (2D) supramolecular organic framework (SOF) has been constructed through the co-assembly of a triphenylamine-based building block and cucurbit[8]uril (CB[8]). Fluorescence turn-on of the non-emissive building block was observed upon the formation of the 2D SOF, which displayed highly selective and sensitive recognition of picric acid over a variety of nitroaromatics.
Cascaded VLSI neural network architecture for on-line learning
NASA Technical Reports Server (NTRS)
Duong, Tuan A. (Inventor); Daud, Taher (Inventor); Thakoor, Anilkumar P. (Inventor)
1995-01-01
High-speed, analog, fully-parallel and asynchronous building blocks are cascaded for larger sizes and enhanced resolution. A hardware-compatible algorithm permits hardware-in-the-loop learning despite limited weight resolution. A comparison-intensive feature classification application has been demonstrated with this flexible hardware and new algorithm at high speed. This result indicates that these building block chips can be embedded as application-specific-coprocessors for solving real-world problems at extremely high data rates.
Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie
2012-07-17
Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.
Wang, Zhenming; Jia, Zhanrong; Jiang, Yanan; Li, Pengfei; Han, Lu; Lu, Xiong; Ren, Fuzeng; Wang, Kefeng; Yuan, Huiping
2017-08-03
The assembly of nano-building blocks is an effective way to produce artificial extracellular matrix microenvironments with hierarchical micro/nano structures. However, it is hard to assemble different types of nano-building blocks, to form composite coatings with multiple functions, by traditional layer-by-layer (LbL) self-assembly methods. Inspired by the mussel adhesion mechanism, we developed polydopamine (PDA)-decorated bovine serum albumin microspheres (BSA-MS) and nano-hydroxyapatite (nano-HA), and assembled them to form bioactive coatings with micro/nano structures encapsulating bone morphogenetic protein-2 (BMP-2). First, PDA-decorated nano-HA (nano-pHA) was obtained by oxidative polymerization of dopamine on nano-HA. Second, BMP-2-encapsulated BSA microspheres were prepared through desolvation, and then were also decorated by PDA (pBSA-MS). Finally, the nano-pHA and pBSA-MS were assembled using the adhesive properties of PDA. Bone marrow stromal cell cultures and in vivo implantation, showed that the pHA/pBSA (BMP-2) coatings can promote cell adhesion, proliferation, and benefited for osteoinductivity. PDA decoration was also applied to assemble various functional nanoparticles, such as nano-HA, polystyrene, and Fe 3 O 4 nanoparticles. In summary, this study provides a novel strategy for the assembly of biofunctional nano-building blocks, which surpasses traditional LbL self-assembly of polyelectrolytes, and can find broad applications in bioactive agents delivery or multi-functional coatings.
Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach
NASA Technical Reports Server (NTRS)
Fisher, David; Thomas, Flint O.; Nelson, Robert C.
1996-01-01
Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.
Single-trabecula building block for large-scale finite element models of cancellous bone.
Dagan, D; Be'ery, M; Gefen, A
2004-07-01
Recent development of high-resolution imaging of cancellous bone allows finite element (FE) analysis of bone tissue stresses and strains in individual trabeculae. However, specimen-specific stress/strain analyses can include effects of anatomical variations and local damage that can bias the interpretation of the results from individual specimens with respect to large populations. This study developed a standard (generic) 'building-block' of a trabecula for large-scale FE models. Being parametric and based on statistics of dimensions of ovine trabeculae, this building block can be scaled for trabecular thickness and length and be used in commercial or custom-made FE codes to construct generic, large-scale FE models of bone, using less computer power than that currently required to reproduce the accurate micro-architecture of trabecular bone. Orthogonal lattices constructed with this building block, after it was scaled to trabeculae of the human proximal femur, provided apparent elastic moduli of approximately 150 MPa, in good agreement with experimental data for the stiffness of cancellous bone from this site. Likewise, lattices with thinner, osteoporotic-like trabeculae could predict a reduction of approximately 30% in the apparent elastic modulus, as reported in experimental studies of osteoporotic femora. Based on these comparisons, it is concluded that the single-trabecula element developed in the present study is well-suited for representing cancellous bone in large-scale generic FE simulations.
NASA Astrophysics Data System (ADS)
Pavlík, Zbyšek; Jerman, Miloš; Fořt, Jan; Černý, Robert
2015-03-01
Hollow brick blocks have found widespread use in the building industry during the last decades. The increasing requirements to the thermal insulation properties of building envelopes given by the national standards in Europe led the brick producers to reduce the production of common solid bricks. Brick blocks with more or less complex systems of internal cavities replaced the traditional bricks and became dominant on the building ceramics market. However, contrary to the solid bricks where the thermal conductivity can easily be measured by standard methods, the complex geometry of hollow brick blocks makes the application of common techniques impossible. In this paper, a steady-state technique utilizing a system of two climatic chambers separated by a connecting tunnel for sample positioning is used for the determination of the thermal conductivity, thermal resistance, and thermal transmittance ( U value) of hollow bricks with the cavities filled by air, two different types of mineral wool, polystyrene balls, and foam polyurethane. The particular brick block is provided with the necessary temperature- and heat-flux sensors and thermally insulated in the tunnel. In the climatic chambers, different temperatures are set. After steady-state conditions are established in the measuring system, the effective thermal properties of the brick block are calculated using the measured data. Experimental results show that the best results are achieved with hydrophilic mineral wool as a cavity filler; the worst performance exhibits the brick block with air-filled cavities.
The early Earth atmosphere and early life catalysts.
Ramírez Jiménez, Sandra Ignacia
2014-01-01
Homochirality is a property of living systems on Earth. The time, the place, and the way in which it appeared are uncertain. In a prebiotic scenario two situations are of interest: either an initial small bias for handedness of some biomolecules arouse and progressed with life, or an initial slight excess led to the actual complete dominance of the known chiral molecules. A definitive answer can probably never be given, neither from the fields of physics and chemistry nor biology. Some arguments can be advanced to understand if homochirality is necessary for the initiation of a prebiotic homochiral polymer chemistry, if this homochirality is suggesting a unique origin of life, or if a chiral template such as a mineral surface is always required to result in an enantiomeric excess. A general description of the early Earth scenario will be presented in this chapter, followed by a general description of some clays, and their role as substrates to allow the concentration and amplification of some of the building blocks of life.
Tsyshevsky, Roman V; Sharia, Onise; Kuklja, Maija M
2016-02-19
This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.
Tsyshevsky, Roman; Sharia, Onise; Kuklja, Maija
2016-02-19
Our review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our ownmore » first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Lastly, our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.« less
Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges
Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; da Silva, Thiago Cruvinel; Honório, Heitor Marques; Rios, Daniela
2017-01-01
This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges. PMID:28817591
Susceptibility of bovine dental enamel with initial erosion lesion to new erosive challenges.
Oliveira, Gabriela Cristina de; Tereza, Guida Paola Genovez; Boteon, Ana Paula; Ferrairo, Brunna Mota; Gonçalves, Priscilla Santana Pinto; Silva, Thiago Cruvinel da; Honório, Heitor Marques; Rios, Daniela
2017-01-01
This in vitro study evaluated the impact of initial erosion on the susceptibility of enamel to further erosive challenge. Thirty bovine enamel blocks were selected by surface hardness and randomized into two groups (n = 15): GC- group composed by enamel blocks without erosion lesion and GT- group composed by enamel blocks with initial erosion lesion. The baseline profile of each block was determined using the profilometer. The initial erosion was produced by immersing the blocks into HCl 0.01 M, pH 2.3 for 30 seconds, under stirring. The erosive cycling consisted of blocks immersion in hydrochloric acid (0.01 M, pH 2.3) for 2 minutes, followed by immersion in artificial saliva for 120 minutes. This procedure was repeated 4 times a day for 5 days, and the blocks were kept in artificial saliva overnight. After erosive cycling, final profile measurement was performed. Profilometry measured the enamel loss by the superposition of initial and final profiles. Data were analyzed by t-test (p<0.05). The result showed no statistically significant difference between groups (GS = 14.60±2.86 and GE = .14.69±2.21 μm). The presence of initial erosion on bovine dental enamel does not enhance its susceptibility to new erosive challenges.
A bipedal DNA motor that travels back and forth between two DNA origami tiles.
Liber, Miran; Tomov, Toma E; Tsukanov, Roman; Berger, Yaron; Nir, Eyal
2015-02-04
In this work, the successful operation of a dynamic DNA device constructed from two DNA origami building blocks is reported. The device includes a bipedal walker that strides back and forth between the two origami tiles. Two different DNA origami tiles are first prepared separately; they are then joined together in a controlled manner by a set of DNA strands to form a stable track in high yield as confirmed by single-molecule fluorescence (SMF). Second, a bipedal DNA motor, initially attached to one of the two origami units and operated by sequential interaction with "fuel" and "antifuel" DNA strands, moves from one origami tile to another and then back again. The operational yield, measured by SMF, was similar to that of a motor operating on a similar track embedded in a single origami tile, confirming that the transfer across the junction from one tile to the other does not result in dissociation that is any more than that of steps on a single tile. These results demonstrate that moving parts can reliably travel from one origami unit to another, and it demonstrates the feasibility of dynamic DNA molecular machines that are made of more than a single origami building block. This study is a step toward the development of motors that can stride over micrometer distances. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Meyer, Pablo; Hoeng, Julia; Rice, J. Jeremy; Norel, Raquel; Sprengel, Jörg; Stolle, Katrin; Bonk, Thomas; Corthesy, Stephanie; Royyuru, Ajay; Peitsch, Manuel C.; Stolovitzky, Gustavo
2012-01-01
Motivation: Analyses and algorithmic predictions based on high-throughput data are essential for the success of systems biology in academic and industrial settings. Organizations, such as companies and academic consortia, conduct large multi-year scientific studies that entail the collection and analysis of thousands of individual experiments, often over many physical sites and with internal and outsourced components. To extract maximum value, the interested parties need to verify the accuracy and reproducibility of data and methods before the initiation of such large multi-year studies. However, systematic and well-established verification procedures do not exist for automated collection and analysis workflows in systems biology which could lead to inaccurate conclusions. Results: We present here, a review of the current state of systems biology verification and a detailed methodology to address its shortcomings. This methodology named ‘Industrial Methodology for Process Verification in Research’ or IMPROVER, consists on evaluating a research program by dividing a workflow into smaller building blocks that are individually verified. The verification of each building block can be done internally by members of the research program or externally by ‘crowd-sourcing’ to an interested community. www.sbvimprover.com Implementation: This methodology could become the preferred choice to verify systems biology research workflows that are becoming increasingly complex and sophisticated in industrial and academic settings. Contact: gustavo@us.ibm.com PMID:22423044
NASA Astrophysics Data System (ADS)
Hu, Yu-Peng; Lin, Shu-Yi; Huang, Cheng-Yen; Zulueta, Medel Manuel L.; Liu, Jing-Yuan; Chang, Wen; Hung, Shang-Cheng
2011-07-01
Cell surface carbohydrates play significant roles in a number of biologically important processes. Heparan sulfate, for instance, is a ubiquitously distributed polysulfated polysaccharide that is involved, among other things, in the initial step of herpes simplex virus type 1 (HSV-1) infection. The virus interacts with cell-surface heparan sulfate to facilitate host-cell attachment and entry. 3-O-Sulfonated heparan sulfate has been found to function as an HSV-1 entry receptor. Achieving a complete understanding of these interactions requires the chemical synthesis of such oligosaccharides, but this remains challenging. Here, we present a convenient approach for the synthesis of two irregular 3-O-sulfonated heparan sulfate octasaccharides, making use of a key disaccharide intermediate to acquire different building blocks for the oligosaccharide chain assembly. Despite substantial structural differences, the prepared 3-O-sulfonated sugars blocked viral infection in a dosage-dependent manner with remarkable similarity to one another.
NASA Astrophysics Data System (ADS)
He, Y.; He, Y.
2018-04-01
Urban shanty towns are communities that has contiguous old and dilapidated houses with more than 2000 square meters built-up area or more than 50 households. This study makes attempts to extract shanty towns in Nanning City using the product of Census and TripleSat satellite images. With 0.8-meter high-resolution remote sensing images, five texture characteristics (energy, contrast, maximum probability, and inverse difference moment) of shanty towns are trained and analyzed through GLCM. In this study, samples of shanty town are well classified with 98.2 % producer accuracy of unsupervised classification and 73.2 % supervised classification correctness. Low-rise and mid-rise residential blocks in Nanning City are classified into 4 different types by using k-means clustering and nearest neighbour classification respectively. This study initially establish texture feature descriptions of different types of residential areas, especially low-rise and mid-rise buildings, which would help city administrator evaluate residential blocks and reconstruction shanty towns.
A Novel Latin Hypercube Algorithm via Translational Propagation
Pan, Guang; Ye, Pengcheng
2014-01-01
Metamodels have been widely used in engineering design to facilitate analysis and optimization of complex systems that involve computationally expensive simulation programs. The accuracy of metamodels is directly related to the experimental designs used. Optimal Latin hypercube designs are frequently used and have been shown to have good space-filling and projective properties. However, the high cost in constructing them limits their use. In this paper, a methodology for creating novel Latin hypercube designs via translational propagation and successive local enumeration algorithm (TPSLE) is developed without using formal optimization. TPSLE algorithm is based on the inspiration that a near optimal Latin Hypercube design can be constructed by a simple initial block with a few points generated by algorithm SLE as a building block. In fact, TPSLE algorithm offers a balanced trade-off between the efficiency and sampling performance. The proposed algorithm is compared to two existing algorithms and is found to be much more efficient in terms of the computation time and has acceptable space-filling and projective properties. PMID:25276844
Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina
2015-03-24
The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.
ETR BUILDING, TRA642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ...
ETR BUILDING, TRA-642. SOUTH SIDE VIEW INCLUDES SOUTH SIDES OF ETR BUILDING (HIGH ROOF LINE); ELECTRICAL BUILDING (ONE-STORY, MADE OF PUMICE BLOCKS), TRA-648; AND HEAT EXCHANGER BUILDING (WITH BUILDING NUMBERS), TRA-644. NOTE PROJECTION OF ELECTRICAL BUILDING AT LEFT EDGE OF VIEW. CAMERA FACES NORTH. INL NEGATIVE NO. HD46-37-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Lunn, David J.; Gould, Oliver E. C.; Whittell, George R.; Armstrong, Daniel P.; Mineart, Kenneth P.; Winnik, Mitchell A.; Spontak, Richard J.; Pringle, Paul G.; Manners, Ian
2016-01-01
Anisotropic nanoparticles prepared from block copolymers are of growing importance as building blocks for the creation of synthetic hierarchical materials. However, the assembly of these structural units is generally limited to the use of amphiphilic interactions. Here we report a simple, reversible coordination-driven hierarchical self-assembly strategy for the preparation of micron-scale fibres and macroscopic films based on monodisperse cylindrical block copolymer micelles. Coordination of Pd(0) metal centres to phosphine ligands immobilized within the soluble coronas of block copolymer micelles is found to induce intermicelle crosslinking, affording stable linear fibres comprised of micelle subunits in a staggered arrangement. The mean length of the fibres can be varied by altering the micelle concentration, reaction stoichiometry or aspect ratio of the micelle building blocks. Furthermore, the fibres aggregate on drying to form robust, self-supporting macroscopic micelle-based thin films with useful mechanical properties that are analogous to crosslinked polymer networks, but on a longer length scale. PMID:27538877
Electrophoretic deposition of fluorescent Cu and Au sheets for light-emitting diodes
NASA Astrophysics Data System (ADS)
Liu, Jiale; Wu, Zhennan; Li, Tingting; Zhou, Ding; Zhang, Kai; Sheng, Yu; Cui, Jianli; Zhang, Hao; Yang, Bai
2015-12-01
Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets.Electrophoretic deposition (EPD) is a conventional method for fabricating film materials from nanometer-sized building blocks, and exhibits the advantages of low-cost, high-efficiency, wide-range thickness adjustment, and uniform deposition. Inspired by the interest in the application of two-dimensional (2D) nanomaterials, the EPD technique has been recently extended to building blocks with 2D features. However, the studies are mainly focused on simplex building blocks. The utilization of multiplex building blocks is rarely reported. In this work, we demonstrate a controlled EPD of Cu and Au sheets, which are 2D assemblies of luminescent Cu and Au nanoclusters. Systematic investigations reveal that both the deposition efficiency and the thickness are determined by the lateral size of the sheets. For Cu sheets with a large lateral size, a high ζ-potential and strong face-to-face van der Waals interactions facilitate the deposition with high efficiency. However, for Au sheets, the small lateral size and ζ-potential limit the formation of a thick film. To solve this problem, the deposition dynamics are controlled by increasing the concentration of the Au sheets and adding acetone. This understanding permits the fabrication of a binary EPD film by the stepwise deposition of Cu and Au sheets, thus producing a luminescent film with both Cu green emission and Au red emission. A white light-emitting diode prototype with color coordinates (x, y) = (0.31, 0.36) is fabricated by employing the EPD film as a color conversion layer on a 365 nm GaN clip and further tuning the amount of deposited Cu and Au sheets. Electronic supplementary information (ESI) available: Additional experimental information, and SEM images of Cu EPD films. See DOI: 10.1039/c5nr06599b
Streambank Protection Guidelines for Landowners and Local Governments,
1983-10-01
building blocks , slag , and quarry waste. UNCHE SON / / Large flat slabs should be broken up into /smaller pieces. Garbage, vegetation, scrap lumber...concrete blocks , and house brick. but will not provide any long-term protection. Preabrfirated commercial gabion basket. Completed gabion revetment made...prevent pressure buildup that could cause revetment failure. BLOCKS . Precast cellular blocks can be *,-’e : Typi.tal sa.d- e, .t bag r ’etment
44. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE ...
44. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE COMPANY FACTORY AND WAREHOUSE AND DUBUQUE SEED COMPANY WAREHOUSE IN BACKGROUND. VIEW TO SOUTHWEST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA
43. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE ...
43. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE COMPANY FACTORY AND WAREHOUSE AND DUBUQUE SEED COMPANY WAREHOUSE IN BACKGROUND. VIEW TO SOUTHWEST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA
42. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE ...
42. RAILROAD TRACKS, WITH BISHOP'S BLOCK, MCFADDEN COFFEE AND SPICE COMPANY FACTORY AND WAREHOUSE AND DUBUQUE SEED COMPANY WAREHOUSE IN BACKGROUND. VIEW TO SOUTHWEST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA
12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) ...
12. SOUTHWEST VIEW OF BUILDING 25C (SUBSONIC AERODYNAMICS TEST FACILITY) (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
NASA Astrophysics Data System (ADS)
Macher, H.; Grussenmeyer, P.; Landes, T.; Halin, G.; Chevrier, C.; Huyghe, O.
2017-08-01
The French collection of Plan-Reliefs, scale models of fortified towns, constitutes a precious testimony of the history of France. The aim of the URBANIA project is the valorisation and the diffusion of this Heritage through the creation of virtual models. The town scale model of Strasbourg at 1/600 currently exhibited in the Historical Museum of Strasbourg was selected as a case study. In this paper, the photogrammetric recording of this scale model is first presented. The acquisition protocol as well as the data post-processing are detailed. Then, the modelling of the city and more specially building blocks is investigated. Based on point clouds of the scale model, the extraction of roof elements is considered. It deals first with the segmentation of the point cloud into building blocks. Then, for each block, points belonging to roofs are identified and the extraction of chimney point clouds as well as roof ridges and roof planes is performed. Finally, the 3D parametric modelling of the building blocks is studied by considering roof polygons and polylines describing chimneys as input. In a future works section, the semantically enrichment and the potential usage scenarios of the scale model are envisaged.
ERIC Educational Resources Information Center
Wierwille, Jennifer; Parker, Lynn; Henchy, Geraldine; Driscoll, Christin M.; Tingling-Clemmons, Michele
The provision of quality before- and after-school child care is a major challenge facing educators. This guide from the Food Research and Action Center's Building Blocks Project provides information to providers of before and after school programs on using the federal Child and Adult Care Food Program (CACFP) to provide snacks and meals. Following…
Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.
Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay
2016-01-26
A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds.
Hari, Durga Prasad; Waser, Jerome
2017-06-28
Enantioselective catalytic methods allowing the addition of both a nucleophile and an electrophile onto diazo compounds give a fast access into important building blocks. Herein, we report the highly enantioselective oxyalkynylation of diazo compounds using ethynylbenziodoxol-(on)e reagents and a simple copper bisoxazoline catalyst. The obtained α-benzoyloxy propargylic esters are useful building blocks, which are difficult to synthesize in enantiopure form using other methods. The obtained products could be efficiently transformed into vicinal diols and α-hydroxy propargylic esters without loss in enantiopurity.
Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.
van der Meulen, Machteld I; Petkov, Nikolay; Morris, Michael A; Kazakova, Olga; Han, Xinhai; Wang, Kang L; Jacob, Ajey P; Holmes, Justin D
2009-01-01
Magnetically doped Si and Ge nanowires have potential application in future nanowire spin-based devices. Here, we report a supercritical fluid method for producing single crystalline Mn-doped Ge nanowires with a Mn-doping concentration of between 0.5-1.0 atomic % that display ferromagnetism above 300 K and a superior performance with respect to the hole mobility of around 340 cm(2)/Vs, demonstrating the potential of using these nanowires as building blocks for electronic devices.
4. Historic American Buildings Survey Nathaniel R. Ewan, Photographer January ...
4. Historic American Buildings Survey Nathaniel R. Ewan, Photographer January 6, 1939 INTERIOR - END CARRIAGE 'BLOCK AND DOGS' - McMurtry's Saw Mill, Hardscrabble Road, Basking Ridge, Somerset County, NJ
Historic American Buildings Survey PHOTOCOPY OF MEASURED DRAWING BY DIETER ...
Historic American Buildings Survey PHOTOCOPY OF MEASURED DRAWING BY DIETER SENGLER, 1964 CROSS SECTION AND ORIGINAL JACKSON BOULEVARD ELEVATION - Monadnock Block, 53 West Jackson Boulevard, Chicago, Cook County, IL
Modular Assembly of Hierarchically Structured Polymers
NASA Astrophysics Data System (ADS)
Leophairatana, Porakrit
The synthesis of macromolecules with complex yet highly controlled molecular architectures has attracted significant attention in the past few decades due to the growing demand for specialty polymers that possess novel properties. Despite recent efforts, current synthetic routes lack the ability to control several important architectural variables while maintaining low polydispersity index. This dissertation explores a new synthetic scheme for the modular assembly of hierarchically structured polymers (MAHP) that allows virtually any complex polymer to be assembled from a few basic molecular building blocks using a single common coupling chemistry. Complex polymer structures can be assembled from a molecular toolkit consisting of (1) copper-catalyzed azide-alkyne cycloaddition (CuAAC), (2) linear heterobifunctional macromonomers, (3) a branching heterotrifunctional molecule, (4) a protection/deprotection strategy, (5) "click" functional solid substrates, and (6) functional and responsive polymers. This work addresses the different challenges that emerged during the development of this synthetic scheme, and presents strategies to overcome those challenges. Chapter 3 investigates the alkyne-alkyne (i.e. Glaser) coupling side reactions associated with the atom transfer radical polymerization (ATRP) synthesis of alkyne-functional macromonomers, as well as with the CuAAC reaction of alkyne functional building blocks. In typical ATRP synthesis of unprotected alkyne functional polymers, Glaser coupling reactions can significantly compromise the polymer functionality and undermine the success of subsequent click reactions in which the polymers are used. Two strategies are reported that effectively eliminate these coupling reactions: (1) maintaining low temperature post-ATRP upon exposure to air, followed by immediate removal of copper catalyst; and (2) adding excess reducing agents post-ATRP, which prevents the oxidation of Cu(I) catalyst required by the Glaser coupling mechanism. Post-ATRP Glaser coupling was also influenced by the ATRP synthesis ligand used. The order of ligand activity for catalyzing Glaser coupling was: linear bidentate > tridentate > tetradentate. Glaser coupling can also occur for alkynes held under CuAAC reaction conditions but again can be eliminated by adding appropriate reducing agents. With the strategy presented in Chapter 3, alkyne-terminated polymers of high-functionality were produced without the need for alkyne protecting groups. These "click" functional building blocks were employed to investigate the overall efficiency of the CuAAC "click" coupling reactions between alkyne- and azide-terminated macromonomers as discussed in Chapter 4. Quantitative convolution modeling of the entire molecular weight distribution post-CuAAC indicates a CuAAC efficiency of about 94% and an azide substitution efficiency of >99%. However, incomplete functionality of the azide-terminated macromonomer (˜92%) proves to be the largest factor compromising the overall efficacy of the coupling reactions, and is attributed primarily to the loss of bromine functionality during synthesis by ATRP. To address this issue, we discuss in Chapter 6 the development of a new set of molecular building blocks consisting of alkyne functional substrates and heterobifunctional degradable linkers that allow the growth and subsequent detachment of polymers from the solid substrate. Complex polymeric structures are created by progressive cycles of CuAAC and deprotection reactions that add building blocks to the growing polymer chain ends. We demonstrate that these building blocks were completely stable under both CuAAC and deprotection reaction conditions. Since the desired product is covalently bound to the solid surface, the unreacted monomers/macromonomers and by-products (i.e. non-functional building blocks) can be easily separated from the product via removal of the polymer-tethered solid substrate in one step. Chapter 5 discusses how MAHP was employed to prepare a variety of hierarchically structured polymers and copolymers with controlled branching architectures. alpha-azido,o-TIPS-alkyne-heterobifunctional and heterotrifunctional building blocks were first prepared via ATRP and organic synthesis. Preliminary NMR and SEC studies demonstrated that these building blocks all satisfied the criteria necessary for MAHP: (1) the TIPS protecting group is stable during ATRP and CuAAC, (2) the "click" functionality is completely regenerated during the deprotection step, and (3) the CuAAC reaction of branching macromonomers is quantitative (>94%). To demonstrate the concept, poly(n-butyl acrylate)-b-dipolystyrene- b-dipoly(tert-butyl acrylate) penta-block branching copolymacromer was prepared via MAHP and quantitively characterized with SEC and NMR. (Abstract shortened by ProQuest.).
Development of volume deposition on cast iron by additive manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sridharan, Niyanth; Dehoff, Ryan R.; Jordan, Brian H.
2016-11-10
ORNL partnered with Cummins to demonstrate the feasibility of using additive manufacturing techniques to help develop repair techniques for refurbished cast iron engine blocks. Cummins is interested in the refurbished engine business due to the increased cost savings and reduced emissions. It is expected that by refurbishing engines could help reduce the green house gas emissions by as much as 85%. Though such repair techniques are possible in principle there has been no major industry in the automotive sector that has deployed this technology. Therefore phase-1 would seek to evaluate the feasibility of using the laser directed energy deposition techniquemore » to repair cast iron engine blocks. The objective of the phase-1 would be to explore various strategies and understand the challenges involved. During phase-1 deposits were made using Inconel-718, Nickel, Nr-Cr-B braze filler. Inconel 718 builds showed significant cracking in the heat-affected zone in the cast iron. Nickel was used to reduce the cracking in the cast iron substrate, however the Ni builds did not wet the substrate sufficiently resulting in poor dimensional tolerance. In order to increase wetting the Ni was alloyed with the Ni-Cr-B braze to decrease the surface tension of Ni. This however resulted in significant cracks in the build due to shrinkage stresses associated with multiple thermal cycling. Hence to reduce the residual stresses in the builds the DMD-103D equipment was modified and the cast iron block was pre heated using cartridge heaters. Inconel-718 alloyed with Ni was deposited on the engine block. The pre-heated deposits showed a reduced susceptibility to cracking. If awarded the phase-2 of the project would aim to develop process parameters to achieve a crack free deposit engine block.« less
Leung, Alison C.; Asch, David A.; Lozada, Kirkland N.; Saynisch, Olivia B.; Asch, Jeremy M.; Becker, Nora; Griffis, Heather M.; Shofer, Frances; Hershey, John C.; Hill, Shawndra; Branas, Charles C.; Nichol, Graham; Becker, Lance B.; Merchant, Raina M.
2013-01-01
Objectives Automated external defibrillators (AEDs) are lifesaving, but little is known about where they are located or how to find them. We sought to locate AEDs in high employment areas of Philadelphia and characterize the process of door-to-door surveying to identify these devices. Methods Block groups representing approximately the top 3rd of total primary jobs in Philadelphia were identified using the US Census Local Employment Dynamics database. All buildings within these block groups were surveyed during regular working hours over six weeks during July-August 2011. Buildings were characterized as publically accessible or inaccessible. For accessible buildings, address, location type, and AED presence were collected. Total devices, location description and prior use were gathered in locations with AEDs. Process information (total people contacted, survey duration) was collected for all buildings. Results Of 1420 buildings in 17 block groups, 949 (67%) were accessible, but most 834 (88%) did not have an AED. 283 AEDs were reported in 115 buildings (12%). 81 (29%) were validated through visualization and 68 (24%) through photo because employees often refused access. In buildings with AEDs, several employees (median 2; range 1–8) were contacted to ascertain information, which required several minutes (mean 4; range 1–55). Conclusions Door-to-door surveying is a feasible, but time-consuming method for identifying AEDs in high employment areas. Few buildings reported having AEDs and few permitted visualization, which raises concerns about AED access. To improve cardiac arrest outcomes, efforts are needed to improve the availability of AEDs, awareness of their location and access to them. PMID:23357702
Leung, Alison C; Asch, David A; Lozada, Kirkland N; Saynisch, Olivia B; Asch, Jeremy M; Becker, Nora; Griffis, Heather M; Shofer, Frances; Hershey, John C; Hill, Shawndra; Branas, Charles C; Nichol, Graham; Becker, Lance B; Merchant, Raina M
2013-07-01
Automated external defibrillators (AEDs) are lifesaving, but little is known about where they are located or how to find them. We sought to locate AEDs in high employment areas of Philadelphia and characterize the process of door-to-door surveying to identify these devices. Block groups representing approximately the top 3rd of total primary jobs in Philadelphia were identified using the US Census Local Employment Dynamics database. All buildings within these block groups were surveyed during regular working hours over six weeks during July-August 2011. Buildings were characterized as publically accessible or inaccessible. For accessible buildings, address, location type, and AED presence were collected. Total devices, location description and prior use were gathered in locations with AEDs. Process information (total people contacted, survey duration) was collected for all buildings. Of 1420 buildings in 17 block groups, 949 (67%) were accessible, but most 834 (88%) did not have an AED. 283 AEDs were reported in 115 buildings (12%). 81 (29%) were validated through visualization and 68 (24%) through photo because employees often refused access. In buildings with AEDs, several employees (median 2; range 1-8) were contacted to ascertain information, which required several minutes (mean 4; range 1-55). Door-to-door surveying is a feasible, but time-consuming method for identifying AEDs in high employment areas. Few buildings reported having AEDs and few permitted visualization, which raises concerns about AED access. To improve cardiac arrest outcomes, efforts are needed to improve the availability of AEDs, awareness of their location and access to them. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cerqueira, N. A.; Choe, D.; Alexandre, J.; Azevedo, A. R. G.; Xavier, C. G.; Souza, V. B.
Building work requires optimization of materials and labor, so that the execution of its subsystems contribute to the quality, reduce costs, decrease waste in buildings, productivity, practicality and especially agility. Thus, the fitting blocks can contribute in this direction. This work therefore consists of physical characterization (determination of fitness levels, grain size and bulk density), chemical (EDX) and thermal (DTA and TGA) sample clay Campos dos Goytacazes-RJ and waste rock ornamental Cachoeiro de Itapemirim-ES, to verify potential for producing red ceramic blocks, pressed and burned, male and female type. The output of block will be with different pe rcentages of incorporation of residues of ornamental rocks (0%, 5% and 10%). With the results obtained, it was found that the raw materials under consideration has the potential for application in the production of ceramic articles.
Abbott, G W
2014-02-15
Unanticipated complexity of drug-target interactions creates a headache for those attempting to rationalize and create simple models of antiarrhythmic action, but can also introduce opportunities for increased drug specificity, or for potentially advantageous spatial and temporal variation in drug effects. The newest findings reported by Kisselbach et al. in this issue are a case in point. Building upon previous pioneering work demonstrating that neuronal K 2P 2.1 potassium-selective "background" channels can become permeable to sodium ions depending upon alternative translation initiation (ATI) (Thomas et al., 2008), the Thomas lab now shows that ATI of K 2P 2.1 and K 2P 10.1, which are also expressed in the heart, can cause a fivefold shift in sensitivity to block by the β-receptor (and potassium channel) antagonist, carvedilol (Kisselbach et al., 2014). This article is protected by copyright. All rights reserved.
Evaluation of Sunshine Duration around a Building in an Urban Area
NASA Astrophysics Data System (ADS)
Kang, J. E.; Kim, J.
2017-12-01
In this study, sunshine duration around a building in a building-congested district in Busan, Korea was analyzed using a numerical model. This model considers sunshine duration blocking caused by topography and buildings and it is properly applicable to evaluation of sunshine duration environment in urban areas. The 2 km Í 2 km area where the building with 45-m height was located at the center was selected as a target area. We selected the target period from December 21 to December 23, 2015, considering the winter solstice (December 22, 2015) when it is expected to have the largest effect of sunshine blocking due to buildings. We validated the calculated solar altitude and azimuth angles against those provided by Korea astronomy and space science institute (KASI) and the calculated results gave very good agreement with those provided by KASI. Topography and buildings used as the input data of the model were constructed using a geographic information system (GIS) data. In order to analyze, in detail, the change in sunshine duration caused by the construction of the building, the sunshine duration on the roof and walls (eastern, western, southern, northern side) were investigated before and after the construction.
Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents
NASA Astrophysics Data System (ADS)
Huang, Yi-Lin; Bode, Jeffrey W.
2014-10-01
Microbial fermentation can rapidly provide potent compounds that can be easily screened for biological activity, and the active components can be isolated. Its success in drug discovery has inspired extensive efforts to modulate and control the products. In this Article, we document a ‘synthetic fermentation’ of bioactive, unnatural peptides ‘grown’ from small building blocks in water using amide-forming ligations. No organisms, enzymes or reagents are needed. The sequences, structures and compositions of the products can be modulated by adjusting the building blocks and conditions. No specialized knowledge of organic chemistry or handling of toxic material is required to produce complex organic molecules. The ‘fermentations’ can be conducted in arrays and screened for biological activity without isolation or workup. As a proof-of-concept, about 6,000 unnatural peptides were produced from just 23 building blocks, from which a hepatitis C virus NS3/4A protease inhibitor with a half-maximum inhibitory concentration of 1.0 μM was identified and characterized.
A triaxial supramolecular weave
NASA Astrophysics Data System (ADS)
Lewandowska, Urszula; Zajaczkowski, Wojciech; Corra, Stefano; Tanabe, Junki; Borrmann, Ruediger; Benetti, Edmondo M.; Stappert, Sebastian; Watanabe, Kohei; Ochs, Nellie A. K.; Schaeublin, Robin; Li, Chen; Yashima, Eiji; Pisula, Wojciech; Müllen, Klaus; Wennemers, Helma
2017-11-01
Despite recent advances in the synthesis of increasingly complex topologies at the molecular level, nano- and microscopic weaves have remained difficult to achieve. Only a few diaxial molecular weaves exist—these were achieved by templation with metals. Here, we present an extended triaxial supramolecular weave that consists of self-assembled organic threads. Each thread is formed by the self-assembly of a building block comprising a rigid oligoproline segment with two perylene-monoimide chromophores spaced at 18 Å. Upon π stacking of the chromophores, threads form that feature alternating up- and down-facing voids at regular distances. These voids accommodate incoming building blocks and establish crossing points through CH-π interactions on further assembly of the threads into a triaxial woven superstructure. The resulting micrometre-scale supramolecular weave proved to be more robust than non-woven self-assemblies of the same building block. The uniform hexagonal pores of the interwoven network were able to host iridium nanoparticles, which may be of interest for practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiefei; Zhong, Yong; Wang, Liang
The design and engineering of the size, shape, and chemistry of photoactive building blocks enables the fabrication of functional nanoparticles for applications in light harvesting, photocatalytic synthesis, water splitting, phototherapy, and photodegradation. Here, we report the synthesis of such nanoparticles through a surfactant-assisted interfacial self-assembly process using optically active porphyrin as a functional building block. The self-assembly process relies on specific interactions such as π–π stacking and metalation (metal atoms and ligand coordination) between individual porphyrin building blocks. Depending on the kinetic conditions and type of surfactants, resulting structures exhibit well-defined one- to three-dimensional morphologies such as nanowires, nanooctahedra, andmore » hierarchically ordered internal architectures. Specifically, electron microscopy and X-ray diffraction results indicate that these nanoparticles exhibit stable single-crystalline and nanoporous frameworks. In conclusion, due to the hierarchical ordering of the porphyrins, the nanoparticles exhibit collective optical properties resulted from coupling of molecular porphyrins and photocatalytic activities such as photodegradation of methyl orange (MO) pollutants and hydrogen production.« less
Bouvier, León A.; Cámara, María de los Milagros; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.
2013-01-01
The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted. PMID:24205392
Robust excitons inhabit soft supramolecular nanotubes
Eisele, Dörthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.
2014-01-01
Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature’s efficient systems, it is important to elucidate the role of each level of hierarchy: from molecule, to supramolecular building block, to close-packed building blocks. Here, we study the impact of hierarchical structure. We present a model system that mirrors nature’s complexity: cylinders self-assembled from cyanine-dye molecules. Our work reveals that even though close-packing may alter the cylinders’ soft mesoscopic structure, robust delocalized excitons are retained: Internal order and strong excitation-transfer interactions—prerequisites for efficient energy transport—are both maintained. Our results suggest that the cylindrical geometry strongly favors robust excitons; it presents a rational design that is potentially key to nature’s high efficiency, allowing construction of efficient light-harvesting devices even from soft, supramolecular materials. PMID:25092336
Hwang, Sung Hoon; Miller, Joseph B; Shahsavari, Rouzbeh
2017-10-25
Many natural materials, such as nacre and dentin, exhibit multifunctional mechanical properties via structural interplay between compliant and stiff constituents arranged in a particular architecture. Herein, we present, for the first time, the bottom-up synthesis and design of strong, tough, and self-healing composite using simple but universal spherical building blocks. Our composite system is composed of calcium silicate porous nanoparticles with unprecedented monodispersity over particle size, particle shape, and pore size, which facilitate effective loading and unloading with organic sealants, resulting in 258% and 307% increases in the indentation hardness and elastic modulus of the compacted composite. Furthermore, heating the damaged composite triggers the controlled release of the nanoconfined sealant into the surrounding area, enabling moderate recovery in strength and toughness. This work paves the path towards fabricating a novel class of biomimetic composites using low-cost spherical building blocks, potentially impacting bone-tissue engineering, insulation, refractory and constructions materials, and ceramic matrix composites.
Wang, Jiefei; Zhong, Yong; Wang, Liang; ...
2016-09-12
The design and engineering of the size, shape, and chemistry of photoactive building blocks enables the fabrication of functional nanoparticles for applications in light harvesting, photocatalytic synthesis, water splitting, phototherapy, and photodegradation. Here, we report the synthesis of such nanoparticles through a surfactant-assisted interfacial self-assembly process using optically active porphyrin as a functional building block. The self-assembly process relies on specific interactions such as π–π stacking and metalation (metal atoms and ligand coordination) between individual porphyrin building blocks. Depending on the kinetic conditions and type of surfactants, resulting structures exhibit well-defined one- to three-dimensional morphologies such as nanowires, nanooctahedra, andmore » hierarchically ordered internal architectures. Specifically, electron microscopy and X-ray diffraction results indicate that these nanoparticles exhibit stable single-crystalline and nanoporous frameworks. In conclusion, due to the hierarchical ordering of the porphyrins, the nanoparticles exhibit collective optical properties resulted from coupling of molecular porphyrins and photocatalytic activities such as photodegradation of methyl orange (MO) pollutants and hydrogen production.« less
McCoy, Kimberly; Uchida, Masaki; Lee, Byeongdu; Douglas, Trevor
2018-04-24
Bottom-up construction of mesoscale materials using biologically derived nanoscale building blocks enables engineering of desired physical properties using green production methods. Virus-like particles (VLPs) are exceptional building blocks due to their monodispersed sizes, geometric shapes, production ease, proteinaceous composition, and our ability to independently functionalize the interior and exterior interfaces. Here a VLP, derived from bacteriophage P22, is used as a building block for the fabrication of a protein macromolecular framework (PMF), a tightly linked 3D network of functional protein cages that exhibit long-range order and catalytic activity. Assembly of PMFs was electrostatically templated, using amine-terminated dendrimers, then locked into place with a ditopic cementing protein that binds to P22. Long-range order is preserved on removal of the dendrimer, leaving a framework material composed completely of protein. Encapsulation of β-glucosidase enzymes inside of P22 VLPs results in formation of stable, condensed-phase materials with high local concentration of enzymes generating catalytically active PMFs.
Designed synthesis of double-stage two-dimensional covalent organic frameworks
Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Xu, Hong; Hayashi, Taku; Xu, Fei; Huang, Ning; Irle, Stephan; Jiang, Donglin
2015-01-01
Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays. PMID:26456081
Engineering cell factories for producing building block chemicals for bio-polymer synthesis.
Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko
2016-01-21
Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.
Yazaki, A; Ohno, S
1983-01-01
Within the published 2,168-base-long mouse C mu gene of Ig heavy chain consisting of four coding and four noncoding segments, 2 base decamers, 8 nonomers, and 39 octamers recurred. Recurring base heptamers (about 100) and hexamers (about 350) were simply too numerous to merit individual identification. In spite of extensive overlaps between these recurring base decamers to hexamers, they occupied nearly the entire length of mouse Ig C mu gene. As with other genes of the beta-sheet-forming beta 2-microglobulin family, the Ig C mu gene (flanking and intervening noncoding sequences included) is not a unique sequence but rather it is degenerate repeats of the 45-base-long primordial building-block sequence uniquely its own. This primordial building block must originally have specified the 15-amino-acid-residue-long primordial arm of beta-sheet-forming loops, the characteristics of the beta 2-microglobulin family of polypeptides. PMID:6403948
Zwickel, Jan; White, Sarah J; Coniston, Devorah; Senju, Atsushi; Frith, Uta
2011-10-01
Individuals with autism spectrum disorders have highly characteristic impairments in social interaction and this is true also for those with high functioning autism or Asperger syndrome (AS). These social cognitive impairments are far from global and it seems likely that some of the building blocks of social cognition are intact. In our first experiment, we investigated whether high functioning adults who also had a diagnosis of AS would be similar to control participants in terms of their eye movements when watching animated triangles in short movies that normally evoke mentalizing. They were. Our second experiment using the same movies, tested whether both groups would spontaneously adopt the visuo-spatial perspective of a triangle protagonist. They did. At the same time autistic participants differed in their verbal accounts of the story line underlying the movies, confirming their specific difficulties in on-line mentalizing. In spite of this difficulty, two basic building blocks of social cognition appear to be intact: spontaneous agency perception and spontaneous visual perspective taking.
Appendices for the Space Applications program, 1974
NASA Technical Reports Server (NTRS)
1974-01-01
To achieve truly low cost system design with direct evolution for inorbit shuttle resupply, a modular building block approach has been adopted. The heart of the modular building block concept lies in the ability to use a common set of nonoptimized subsystems in such a way that a wide variety of missions can be flown with no detrimental impact on performance. By standardizing the mechanical configurations and electrical interfaces of the subsystem modules, and by designing each of them to be structurally and thermally independent entities, it is possible to cluster these building blocks or modules about an instrument system so as to adequately perform the mission without the need for subsystem redevelopments for each mission. This system concept offers the following capabilities: (1) the ability to launch and orbit the observatory by either the Delta, the Titan, or the space shuttle. (2) the ability to completely reconfigure the spacecraft subsystems for different launch vehicles, and (3) the ability to perform in-orbit resupply and/or emergency retrieval of the observatory.
Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assembly.
Ju, Guannan; Cheng, Mengjiao; Guo, Fengli; Zhang, Qian; Shi, Feng
2018-05-30
Macroscopic supramolecular assembly (MSA) is a recent progress in supramolecular chemistry to associate visible building blocks through non-covalent interactions in a multivalent manner. Although various substrates (e. g. hydrogels, rigid materials) have been used, a general design rule of building blocks in MSA systems and interpretation of the assembly mechanism are still lacking and urgently in demand. Here we design three model systems with varied modulus and correlated the MSA probability with the elasticity. Based on the effects of substrate deformability on multivalency, we have proposed an elastic-modulus-dependent rule that building blocks below a critical modulus of 2.5 MPa can achieve MSA for the used host/guest system. Moreover, this MSA rule applies well to the design of materials applicable for fast underwater adhesion: Soft substrates (0.5 MPa) can achieve underwater adhesion within 10 s with one magnitude higher strength than that of rigid substrates (2.5 MPa). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Loeffler, Felix F; Foertsch, Tobias C; Popov, Roman; Mattes, Daniela S; Schlageter, Martin; Sedlmayr, Martyna; Ridder, Barbara; Dang, Florian-Xuan; von Bojničić-Kninski, Clemens; Weber, Laura K; Fischer, Andrea; Greifenstein, Juliane; Bykovskaya, Valentina; Buliev, Ivan; Bischoff, F Ralf; Hahn, Lothar; Meier, Michael A R; Bräse, Stefan; Powell, Annie K; Balaban, Teodor Silviu; Breitling, Frank; Nesterov-Mueller, Alexander
2016-06-14
Laser writing is used to structure surfaces in many different ways in materials and life sciences. However, combinatorial patterning applications are still limited. Here we present a method for cost-efficient combinatorial synthesis of very-high-density peptide arrays with natural and synthetic monomers. A laser automatically transfers nanometre-thin solid material spots from different donor slides to an acceptor. Each donor bears a thin polymer film, embedding one type of monomer. Coupling occurs in a separate heating step, where the matrix becomes viscous and building blocks diffuse and couple to the acceptor surface. Furthermore, we can consecutively deposit two material layers of activation reagents and amino acids. Subsequent heat-induced mixing facilitates an in situ activation and coupling of the monomers. This allows us to incorporate building blocks with click chemistry compatibility or a large variety of commercially available non-activated, for example, posttranslationally modified building blocks into the array's peptides with >17,000 spots per cm(2).
Designed synthesis of double-stage two-dimensional covalent organic frameworks
NASA Astrophysics Data System (ADS)
Chen, Xiong; Addicoat, Matthew; Jin, Enquan; Xu, Hong; Hayashi, Taku; Xu, Fei; Huang, Ning; Irle, Stephan; Jiang, Donglin
2015-10-01
Covalent organic frameworks (COFs) are an emerging class of crystalline porous polymers in which organic building blocks are covalently and topologically linked to form extended crystalline polygon structures, constituting a new platform for designing π-electronic porous materials. However, COFs are currently synthesised by a few chemical reactions, limiting the access to and exploration of new structures and properties. The development of new reaction systems that avoid such limitations to expand structural diversity is highly desired. Here we report that COFs can be synthesised via a double-stage connection that polymerises various different building blocks into crystalline polygon architectures, leading to the development of a new type of COFs with enhanced structural complexity and diversity. We show that the double-stage approach not only controls the sequence of building blocks but also allows fine engineering of pore size and shape. This strategy is widely applicable to different polymerisation systems to yield hexagonal, tetragonal and rhombus COFs with predesigned pores and π-arrays.
"Science SQL" as a Building Block for Flexible, Standards-based Data Infrastructures
NASA Astrophysics Data System (ADS)
Baumann, Peter
2016-04-01
We have learnt to live with the pain of separating data and metadata into non-interoperable silos. For metadata, we enjoy the flexibility of databases, be they relational, graph, or some other NoSQL. Contrasting this, users still "drown in files" as an unstructured, low-level archiving paradigm. It is time to bridge this chasm which once was technologically induced, but today can be overcome. One building block towards a common re-integrated information space is to support massive multi-dimensional spatio-temporal arrays. These "datacubes" appear as sensor, image, simulation, and statistics data in all science and engineering domains, and beyond. For example, 2-D satellilte imagery, 2-D x/y/t image timeseries and x/y/z geophysical voxel data, and 4-D x/y/z/t climate data contribute to today's data deluge in the Earth sciences. Virtual observatories in the Space sciences routinely generate Petabytes of such data. Life sciences deal with microarray data, confocal microscopy, human brain data, which all fall into the same category. The ISO SQL/MDA (Multi-Dimensional Arrays) candidate standard is extending SQL with modelling and query support for n-D arrays ("datacubes") in a flexible, domain-neutral way. This heralds a new generation of services with new quality parameters, such as flexibility, ease of access, embedding into well-known user tools, and scalability mechanisms that remain completely transparent to users. Technology like the EU rasdaman ("raster data manager") Array Database system can support all of the above examples simultaneously, with one technology. This is practically proven: As of today, rasdaman is in operational use on hundreds of Terabytes of satellite image timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Therefore, Array Databases offering SQL/MDA constitute a natural common building block for next-generation data infrastructures. Being initiator and editor of the standard we present principles, implementation facets, and application examples as a basis for further discussion. Further, we highlight recent implementation progress in parallelization, data distribution, and query optimization showing their effects on real-life use cases.
Xu, Feng; Miras, Haralampos N.; Scullion, Rachel A.; Long, De-Liang; Thiel, Johannes; Cronin, Leroy
2012-01-01
Molecular self-assembly has often been suggested as the ultimate route for the bottom-up construction of building blocks atom-by-atom for functional nanotechnology, yet structural design or prediction of nanomolecular assemblies is still far from reach. Whereas nature uses complex machinery such as the ribosome, chemists use painstakingly engineered step-by-step approaches to build complex molecules but the size and complexity of such molecules, not to mention the accessible yields, can be limited. Herein we present the discovery of a palladium oxometalate {Pd84}-ring cluster 3.3 nm in diameter; [Pd84O42(OAc)28(PO4)42]70- ({Pd84} ≡ {Pd12}7) that is formed in water just by mixing two reagents at room temperature, giving crystals of the compound in just a few days. The structure of the {Pd84}-ring has sevenfold symmetry, comprises 196 building blocks, and we also show, using mass spectrometry, that a large library of other related nanostructures is present in solution. Finally, by analysis of the symmetry and the building block library that construct the {Pd84} we show that the correlation of the symmetry, subunit number, and overall cluster nuclearity can be used as a “Rosetta Stone” to rationalize the “magic numbers” defining a number of other systems. This is because the discovery of {Pd84} allows the relationship between seemingly unrelated families of molecular inorganic nanosystems to be decoded from the overall cluster magic-number nuclearity, to the symmetry and building blocks that define such structures allowing the prediction of other members of these nanocluster families. PMID:22753516
Uav Photogrammetry: Block Triangulation Comparisons
NASA Astrophysics Data System (ADS)
Gini, R.; Pagliari, D.; Passoni, D.; Pinto, L.; Sona, G.; Dosso, P.
2013-08-01
UAVs systems represent a flexible technology able to collect a big amount of high resolution information, both for metric and interpretation uses. In the frame of experimental tests carried out at Dept. ICA of Politecnico di Milano to validate vector-sensor systems and to assess metric accuracies of images acquired by UAVs, a block of photos taken by a fixed wing system is triangulated with several software. The test field is a rural area included in an Italian Park ("Parco Adda Nord"), useful to study flight and imagery performances on buildings, roads, cultivated and uncultivated vegetation. The UAV SenseFly, equipped with a camera Canon Ixus 220HS, flew autonomously over the area at a height of 130 m yielding a block of 49 images divided in 5 strips. Sixteen pre-signalized Ground Control Points, surveyed in the area through GPS (NRTK survey), allowed the referencing of the block and accuracy analyses. Approximate values for exterior orientation parameters (positions and attitudes) were recorded by the flight control system. The block was processed with several software: Erdas-LPS, EyeDEA (Univ. of Parma), Agisoft Photoscan, Pix4UAV, in assisted or automatic way. Results comparisons are given in terms of differences among digital surface models, differences in orientation parameters and accuracies, when available. Moreover, image and ground point coordinates obtained by the various software were independently used as initial values in a comparative adjustment made by scientific in-house software, which can apply constraints to evaluate the effectiveness of different methods of point extraction and accuracies on ground check points.
Sun, Xiaojun; Guo, Zhimou; Yu, Mengqi; Lin, Chao; Sheng, Anran; Wang, Zhiyu; Linhardt, Robert J; Chi, Lianli
2017-01-06
Low molecular weight heparins (LMWHs) are important anticoagulant drugs that are prepared through depolymerization of unfractionated heparin. Based on the types of processing reactions and the structures of the products, LMWHs can be divided into different classifications. Enoxaparin is prepared by benzyl esterification and alkaline depolymerization, while dalteparin and nadroparin are prepared through nitrous acid depolymerization followed by borohydride reduction. Compositional analysis of their basic building blocks is an effective way to provide structural information on heparin and LMWHs. However, most current compositional analysis methods have been limited to heparin and enoxaparin. A sensitive and comprehensive approach is needed for detailed investigation of the structure of LMWHs prepared through nitrous acid depolymerization, especially their characteristic saturated non-reducing end (NRE) and 2,5-anhydro-d-mannitol reducing end (RE). A maltose modified hydrophilic interaction column offers improved separation of complicated mixtures of acidic disaccharides and oligosaccharides. A total of 36 basic building blocks were unambiguously identified by high-resolution tandem mass spectrometry (MS). Multiple reaction monitoring (MRM) MS/MS quantification was developed and validated in the analysis of dalteparin and nadroparin samples. Each group of building blocks revealed different aspects of the properties of LMWHs, such as functional motifs required for anticoagulant activity, the structure of heparin starting materials, cleavage sites in the depolymerization reaction, and undesired structural modifications resulting from side reactions. Copyright © 2016 Elsevier B.V. All rights reserved.
Modular and Orthogonal Synthesis of Hybrid Polymers and Networks
Liu, Shuang; Dicker, Kevin T.; Jia, Xinqiao
2015-01-01
Biomaterials scientists strive to develop polymeric materials with distinct chemical make-up, complex molecular architectures, robust mechanical properties and defined biological functions by drawing inspirations from biological systems. Salient features of biological designs include (1) repetitive presentation of basic motifs; and (2) efficient integration of diverse building blocks. Thus, an appealing approach to biomaterials synthesis is to combine synthetic and natural building blocks in a modular fashion employing novel chemical methods. Over the past decade, orthogonal chemistries have become powerful enabling tools for the modular synthesis of advanced biomaterials. These reactions require building blocks with complementary functionalities, occur under mild conditions in the presence of biological molecules and living cells and proceed with high yield and exceptional selectivity. These chemistries have facilitated the construction of complex polymers and networks in a step-growth fashion, allowing facile modulation of materials properties by simple variations of the building blocks. In this review, we first summarize features of several types of orthogonal chemistries. We then discuss recent progress in the synthesis of step growth linear polymers, dendrimers and networks that find application in drug delivery, 3D cell culture and tissue engineering. Overall, orthogonal reactions and modulular synthesis have not only minimized the steps needed for the desired chemical transformations but also maximized the diversity and functionality of the final products. The modular nature of the design, combined with the potential synergistic effect of the hybrid system, will likely result in novel hydrogel matrices with robust structures and defined functions. PMID:25572255
Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures
NASA Astrophysics Data System (ADS)
Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A.; Park, Jiwoong
2017-10-01
High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides--which represent one- and three-atom-thick two-dimensional building blocks, respectively--have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.
Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures.
Kang, Kibum; Lee, Kan-Heng; Han, Yimo; Gao, Hui; Xie, Saien; Muller, David A; Park, Jiwoong
2017-10-12
High-performance semiconductor films with vertical compositions that are designed to atomic-scale precision provide the foundation for modern integrated circuitry and novel materials discovery. One approach to realizing such films is sequential layer-by-layer assembly, whereby atomically thin two-dimensional building blocks are vertically stacked, and held together by van der Waals interactions. With this approach, graphene and transition-metal dichalcogenides-which represent one- and three-atom-thick two-dimensional building blocks, respectively-have been used to realize previously inaccessible heterostructures with interesting physical properties. However, no large-scale assembly method exists at present that maintains the intrinsic properties of these two-dimensional building blocks while producing pristine interlayer interfaces, thus limiting the layer-by-layer assembly method to small-scale proof-of-concept demonstrations. Here we report the generation of wafer-scale semiconductor films with a very high level of spatial uniformity and pristine interfaces. The vertical composition and properties of these films are designed at the atomic scale using layer-by-layer assembly of two-dimensional building blocks under vacuum. We fabricate several large-scale, high-quality heterostructure films and devices, including superlattice films with vertical compositions designed layer-by-layer, batch-fabricated tunnel device arrays with resistances that can be tuned over four orders of magnitude, band-engineered heterostructure tunnel diodes, and millimetre-scale ultrathin membranes and windows. The stacked films are detachable, suspendable and compatible with water or plastic surfaces, which will enable their integration with advanced optical and mechanical systems.
NASA Astrophysics Data System (ADS)
Brown-Steiner, B.
2017-12-01
I study the air and the sky, which can get really, really confusing. When you cup your hands and catch some air, you are holding many hundreds of hundreds of hundreds (do this about ten more times) of really tiny building blocks that keep hitting (and changing) one another every second of every day. We need some of these tiny building blocks to live and breathe, but there are many tiny building blocks that can hurt us - or even kill us. Right now, the way we live - how we make power, how we make food, how we get from place to place - adds a lot of bad building blocks to our air and our sky, and is changing our world in ways we do not really understand. As we learn more about the air and the sky, we get better at knowing how things are changing, but it is also really important to think about the things we do not know, and the things we do not understand. I study our air and our sky by thinking hard not only about the things that we know, but also about the things we do not know, and I try to use what I learn to help us make more sense out of the really confusing stuff. I want to share some of what I have learned with you.
NASA Astrophysics Data System (ADS)
Yu, Yunfang; Wei, Yongqin; Broer, Ria; Sa, Rongjian; Wu, Kechen
2008-03-01
Novel mononuclear, trinuclear, and hetero-trinuclear supermolecular complexes, [Co(phen) 2(H 2O)(HTST)]·2H 2O ( 1), [Co 3(phen) 6(H 2O) 2(TST) 2]·7H 2O ( 2), and [Co 2Cu(phen) 6(H 2O) 2(TST) 2]·10H 2O ( 3), have been synthesized by the reactions of a new tri-sulfonate ligand (2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, H 3TST) with the M2+ ( M=Co, Cu) and the second ligand 1,10-phenanthroline (phen). Complex 1 contains a cis-Co(II)(phen) 2 building block and an HTST as monodentate ligand; complex 2 consists of two TST as bidentate ligands connecting one trans- and two cis-Co(II)(phen) 2 building blocks; complex 3 is formed by replacing the trans-Co(II)(phen) 2 in 2 with a trans-Cu(II)(phen) 2, which is the first reported hetero-trinuclear supramolecular complex containing both the Co(II)(phen) 2 and Cu(II)(phen) 2 as building blocks. The study shows the flexible multifunctional self-assembly capability of the H 3TST ligands presenting in these supramolecular complexes through coordinative, H-bonding and even π- π stacking interactions. The photoluminescent optical properties of these complexes are also investigated and discussed as well as the second-order nonlinear optical properties of 1.
NASA Technical Reports Server (NTRS)
Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace
2012-01-01
The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.
Genetics Home Reference: phenylketonuria
... that increases the levels of a substance called phenylalanine in the blood. Phenylalanine is a building block of proteins ( an amino ... some artificial sweeteners. If PKU is not treated, phenylalanine can build up to harmful levels in the ...
Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen
2012-10-22
Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Holographic entanglement and Poincaré blocks in three-dimensional flat space
NASA Astrophysics Data System (ADS)
Hijano, Eliot; Rabideau, Charles
2018-05-01
We propose a covariant prescription to compute holographic entanglement entropy and Poincaré blocks (Global BMS blocks) in the context of three-dimensional Einstein gravity in flat space. We first present a prescription based on worldline methods in the probe limit, inspired by recent analog calculations in AdS/CFT. Building on this construction, we propose a full extrapolate dictionary and use it to compute holographic correlators and blocks away from the probe limit.
1967-01-01
Workers at McDornel-Douglas install the Saturn IB S-IVB (second) stage for the Apollo-Soyuz mission into the company's S-IVB assembly and checkout tower in Huntington Beach, California. The Saturn IB launch vehicle was developed by the Marshall Space Flight Center (MSFC) as an interim vehicle in its "building block" approach to Saturn rocket development. This vehicle utilized the Saturn I technology to further develop and refine the capabilities of a larger booster and the Apollo spacecraft required for the manned lunar missions. The S-IVB stage, later used as the third stage of the Saturn V launch vehicle, was powered by a single J-2 engine initially capable of 200,000 pounds of thrust.
8. Historic view of the building: 'Warren Street from State ...
8. Historic view of the building: 'Warren Street from State Street' ca. 1890. Courtesy of the Trenton Free Public Library. This shows the building before the True American's renovations of 1893. It is the three-story buildings, flanked by lower ones in the middle of the block. At the time of the photograph, the brick exterior was painted a light color and dark-colored louvered shutters flanked all the upper story windows. - 14 North Warren Street (Commercial Building), True American Building, Trenton, Mercer County, NJ
16. A southward view of buildings #6B, #6, #6A, #7, ...
16. A southward view of buildings #6-B, #6, #6-A, #7, #8-A, and #8. The water tower is situated directly behind building #8. To the right ia the eastern wall of the five-storied building #5. In the center background is part of the north face of building #9. All structures to the north of building #9 are to be demolished. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
1. EXTERIOR VIEW OF BUILDING 25A (COLD CHAMBER), LOOKING NORTHEAST, ...
1. EXTERIOR VIEW OF BUILDING 25A (COLD CHAMBER), LOOKING NORTHEAST, WITH WIND TUNNEL IN BACKGROUND (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH
Building Our Children's Future: An Interdisciplinary Curriculum for Grades K-12.
ERIC Educational Resources Information Center
Mumma, Tracy; Gant, Shaun; Stone, Laura Armstrong; Harnish, Chris; Fowle, Abigail
This interdisciplinary curriculum provides students with the opportunity to learn about the connection between natural resources and buildings while practicing skills in language arts, math, science, social studies, and visual arts. The learning activities are divided by topic into 15 Building Blocks (units). These units cover such topics as…
The Master Clock Building at USNO Infrastructure
2008-12-01
type finish on top of about 3.5 inches of foam insulation. This along with cinder block, fiber glass insulation, and 5/8-inch-X drywall provides a...keep the building on temperature. The outside surface of the building is an “Exterior Finish Insulation Systems” (EFIS). This is made up of a stucco
47 CFR 52.20 - Thousands-block number pooling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... separated into ten sequential blocks of 1,000 numbers each (thousands-blocks), and allocated separately... required to participate in thousands-block number pooling shall donate thousands-blocks with ten percent or... ten percent or less contaminated, as an initial block or footprint block. (d) Thousands-Block Pooling...
LPT. Elevations of low power test building (TAN640 and 641). ...
LPT. Elevations of low power test building (TAN-640 and -641). West and south elevations show stepped shield wall. South and east elevations show pumice block passageway on south side. Reactor cell walls are concrete. One-story parts are pumice block. Metal rollup doors. Ralph M. Parsons 1229-12 ANP/GE-7-640-A-2. November 1956. Approved by INEEL Classification Office for public release. INEEL index code no. 038-0640-00-693-107275 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
A building block for hardware belief networks.
Behin-Aein, Behtash; Diep, Vinh; Datta, Supriyo
2016-07-21
Belief networks represent a powerful approach to problems involving probabilistic inference, but much of the work in this area is software based utilizing standard deterministic hardware based on the transistor which provides the gain and directionality needed to interconnect billions of them into useful networks. This paper proposes a transistor like device that could provide an analogous building block for probabilistic networks. We present two proof-of-concept examples of belief networks, one reciprocal and one non-reciprocal, implemented using the proposed device which is simulated using experimentally benchmarked models.
Engineering of M13 Bacteriophage for Development of Tissue Engineering Materials.
Jin, Hyo-Eon; Lee, Seung-Wuk
2018-01-01
M13 bacteriophages have several qualities that make them attractive candidates as building blocks for tissue regenerating scaffold materials. Through genetic engineering, a high density of functional peptides and proteins can be simultaneously displayed on the M13 bacteriophage's outer coat proteins. The resulting phage can self-assemble into nanofibrous network structures and can guide the tissue morphogenesis through proliferation, differentiation and apoptosis. In this manuscript, we will describe methods to develop major coat-engineered M13 phages as a basic building block and aligned tissue-like matrices to develop regenerative nanomaterials.
Shi, Lei; Tuzer, T Umut; Fenollosa, Roberto; Meseguer, Francisco
2012-11-20
A new dielectric metamaterial building block based on high refractive index silicon spherical nanocavities with Mie resonances appearing in the near infrared optical region is prepared and characterized. It is demonstrated both experimentally and theoretically that a single silicon nanocavity supports well-defined and robust magnetic resonances, even in a liquid medium environment, at wavelength values up to six times larger than the cavity radius. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thiophene-based covalent organic frameworks
Bertrand, Guillaume H. V.; Michaelis, Vladimir K.; Ong, Ta-Chung; Griffin, Robert G.; Dincă, Mircea
2013-01-01
We report the synthesis and characterization of covalent organic frameworks (COFs) incorporating thiophene-based building blocks. We show that these are amenable to reticular synthesis, and that bent ditopic monomers, such as 2,5-thiophenediboronic acid, are defect-prone building blocks that are susceptible to synthetic variations during COF synthesis. The synthesis and characterization of an unusual charge transfer complex between thieno[3,2-b]thiophene-2,5-diboronic acid and tetracyanoquinodimethane enabled by the unique COF architecture is also presented. Together, these results delineate important synthetic advances toward the implementation of COFs in electronic devices. PMID:23479656
7. Historic American Buildings Survey, August, 1966 EXTERIOR STAIR TO ...
7. Historic American Buildings Survey, August, 1966 EXTERIOR STAIR TO SECOND FLOOR, SHOWING PASSAGE BETWEEN MAIN BLOCK AND REAR ELL. - Andrews-Taylor House, State Route 43, Farm Road 2862 Vicinity, Karnack, Harrison County, TX
ASBESTOS RELEASE DURING BUILDING DEMOLITION ACTIVITIES
The U.S. Environmental Protection Agency's (EPA) Risk Reduction Engineering Laboratory (RREL) monitored block-wide building demolition and debris disposal activities at Santa Cruz and Watsonsville, California following the 1989 earthquake; an implosion demolition of a 26-story bu...
Preschoolers' Thinking during Block Play
ERIC Educational Resources Information Center
Piccolo, Diana L.; Test, Joan
2010-01-01
Children build foundations for mathematical thinking in early play and exploration. During the preschool years, children enjoy exploring mathematical concepts--such as patterns, shape, spatial relationships, and measurement--leading them to spontaneously engage in mathematical thinking during play. Block play is one common example that engages…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The final design, performance analysis, and economic analysis of a solar hot water system for curing concrete blocks at the new Rotoclave block fabricating plant being built by the York Building Products Co. Inc. at Harrisburg, Pa. are presented. The system will use AAI Corporation's 24/1 concentrating collectors. (WHK)
NASA Astrophysics Data System (ADS)
Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.
2017-09-01
Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.
Comparison of heat exchanger and solar block wall in a swine nursery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D.D.; Friday, W.H.; Thieme, R.H.
1984-01-01
A pig nursery building was divided into two equal rooms, one with a heat exchanger and one with a solar block wall. The average air inlet temperatures were 16.4/sup 0/C in the heat exchanger room and 11.9/sup 0/C in the solar heated room. Supplemental heating costs were 67% higher in the solar block wall room.
A truly Lego®-like modular microfluidics platform
NASA Astrophysics Data System (ADS)
Vittayarukskul, Kevin; Lee, Abraham Phillip
2017-03-01
Ideally, a modular microfluidics platform should be simple to assemble and support 3D configurations for increased versatility. The modular building blocks should also be mass producible like electrical components. These are fundamental features of world-renowned Legos® and why Legos® inspire many existing modular microfluidics platforms. In this paper, a truly Lego®-like microfluidics platform is introduced, and its basic feasibility is demonstrated. Here, PDMS building blocks resembling 2 × 2 Lego® bricks are cast from 3D-printed master molds. The blocks are pegged and stacked on a traditional Lego® plate to create simple, 3D microfluidic networks, such as a single basket weave. Characteristics of the platform, including reversible sealing and automatic alignment of channels, are also analyzed and discussed in detail.
Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian
2015-01-01
Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527
Economic aspects of interlocking hollow brick system designed for industrialized building system
NASA Astrophysics Data System (ADS)
Tahir, Mahmood Md.; Saggaff, Anis; Ngian, Shek Poi; Sulaiman, Arizu
2017-11-01
Construction industry has moved forward into a technology driven where a transition is in progress from conventional method to a more advanced and mechanised system known as the Industrialised Building System (IBS). However, the need to implement the IBS should be well understood by all construction players such as designer, architect, contraction, erectors and construction workers. Therefore, there is a need to educate all these construction players which should be spearheaded by authorities such as Construction Industrial Development Board where enforcement trough building by laws as well as initiative to those that adopt the IBS in their construction. This paper reports on economic aspects of using interlocking hollow brick system in construction as an alternative method offered for Industrialized Building System. The main objective is to address the economic aspects of using interlocking block system in terms of time, costs, and utilization of manpower and to present some of the experimental tests results related to Interlocking Hollow Brick System (IHBS). Example of savings from the use of IHBS is presented in this paper by comparing the construction of two storey terrace house with build-up area of about 200 square meter with conventional construction method of typical reinforced concrete construction (RCC) compared to IHBS. The comparison shows that the implementation of IHBS can reduce construction time, cost, and utilization of man power up to 26.6% compared to the conventional method. Moreover, the construction time using IHBS can also be reduced by up to 50% as compared to the conventional construction.
Perspectives of the KM3NeT project
NASA Astrophysics Data System (ADS)
Margiotta, A.; KM3NeT Collaboration
2016-10-01
KM3NeT is a large distributed research infrastructure that comprises a network of deep-sea neutrino telescopes in the Mediterranean Sea with user ports for Earth and Sea sciences. The main objectives of KM3NeT are the discovery and subsequent observation of high-energy neutrino sources in the Universe (ARCA) and the determination of the mass hierarchy of neutrinos (ORCA). Technically, the network of telescopes will consist of building blocks of 115 vertical detection units anchored at the seabed and connected to shore via a deep sea electro-optical cable. Each detection unit carries 18 optical modules equipped with 31 3; photomultipliers. Two configurations for the building blocks are defined to optimally detect neutrinos in different ranges of energy. The modular technical design of the KM3NeT telescope allows for a progressive implementation and for data taking even with an incomplete detector. The first phase of implementation has started. The next phase foresees the installation of three building blocks: two building blocks, for a total instrumented volume of 1 km3 (ARCA), at the KM3NeT-It site, at a depth of 3500 m, about 100 km offshore Capo Passero, Sicily. The main scientific goals of the ARCA detector is the exploration of the neutrino sky with unprecedented resolution, searching for neutrinos coming from defined sources or sky regions, like the Galactic Plane. It will also look for diffuse high energy neutrino fluxes following the indication provided by the IceCube signal. The third building block, with a more compact distribution of the optical modules, will be deployed at the KM3NeT-Fr site, 40 km offshore Toulon at a depth of 2500 m (ORCA). The main objective of ORCA is studying the neutrino mass-hierarchy problem and exploring the low energy region of the spectrum. The status of the first phase of the KM3NeT implementation is described and a survey of the physics potentiality of the telescope is given in this contribution, with particular emphasis on the high energy studies.
Building blocks for social accountability: a conceptual framework to guide medical schools.
Preston, Robyn; Larkins, Sarah; Taylor, Judy; Judd, Jenni
2016-08-26
This paper presents a conceptual framework developed from empirical evidence, to guide medical schools aspiring towards greater social accountability. Using a multiple case study approach, seventy-five staff, students, health sector representatives and community members, associated with four medical schools, participated in semi-structured interviews. Two schools were in Australia and two were in the Philippines. These schools were selected because they were aspiring to be socially accountable. Data was collected through on-site visits, field notes and a documentary review. Abductive analysis involved both deductive and inductive iterative theming of the data both within and across cases. The conceptual framework for socially accountable medical education was built from analyzing the internal and external factors influencing the selected medical schools. These factors became the building blocks that might be necessary to assist movement to social accountability. The strongest factor was the demands of the local workforce situation leading to innovative educational programs established with or without government support. The values and professional experiences of leaders, staff and health sector representatives, influenced whether the organizational culture of a school was conducive to social accountability. The wider institutional environment and policies of their universities affected this culture and the resourcing of programs. Membership of a coalition of socially accountable medical schools created a community of learning and legitimized local practice. Communities may not have recognized their own importance but they were fundamental for socially accountable practices. The bedrock of social accountability, that is, the foundation for all building blocks, is shared values and aspirations congruent with social accountability. These values and aspirations are both a philosophical understanding for innovation and a practical application at the health systems and education levels. While many of these building blocks are similar to those conceptualized in social accountability theory, this conceptual framework is informed by what happens in practice - empirical evidence rather than prescriptions. Consequently it is valuable in that it puts some theoretical thinking around everyday practice in specific contexts; addressing a gap in the medical education literature. The building blocks framework includes guidelines for social accountable practice that can be applied at policy, school and individual levels.
Historic American Buildings Survey PHOTOCOPY OF MEASURED DRAWING BY DIETER ...
Historic American Buildings Survey PHOTOCOPY OF MEASURED DRAWING BY DIETER SENGLER, 1964 ELEVATION, PLAN AND SECTION OF TYPICAL BAY SHOWING SECOND, THIRD, FIFTEENTH AND SIXTEENTH FLOORS - Monadnock Block, 53 West Jackson Boulevard, Chicago, Cook County, IL
5. Within building #5, the forming of chain from wire, ...
5. Within building #5, the forming of chain from wire, as well as other operations, was powered by such belt-driven wheels and shafts. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
626628 North Eutaw Street (Commercial Building), 626628 North Eutaw Street ...
626-628 North Eutaw Street (Commercial Building), 626-628 North Eutaw Street & 400-412 Druid Hill Avenue on a block bounded by North Eutaw Street, George Street, Jaspar Street, & Druid Hill Avenue, Baltimore, Independent City, MD
Hsiao, Amy Y; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji
2015-01-01
The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.
Hsiao, Amy Y.; Okitsu, Teru; Onoe, Hiroaki; Kiyosawa, Mahiro; Teramae, Hiroki; Iwanaga, Shintaroh; Kazama, Tomohiko; Matsumoto, Taro; Takeuchi, Shoji
2015-01-01
The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments. PMID:25734774
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and facesheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
Empty Tissue Boxes: Considering Poverty in Diversity Discourse
ERIC Educational Resources Information Center
Cuthrell, Kristen; Ledford, Carolyn; Stapleton, Joy
2007-01-01
A preservice teacher doing her internship overhears some of her students asking a classmate why he regularly takes home empty tissue boxes. The boy replies that he builds cities and bridges with his empty boxes. His classmates then ask why he does not just build a city with Legos or building blocks. The preservice teacher listens intently as the…
Building Blocks for Building Skills: An Inventory of Adult Learning Models and Innovations
ERIC Educational Resources Information Center
Klein-Collins, Rebecca
2006-01-01
The skills of the workforce are an important contributor to the economic vitality of any region, leading economic developers to consider how to connect their efforts to workforce development and help to build the skills of adults generally. This report, produced for the U.S. Department of Labor's Workforce Innovation in Regional Economic…
Sariyar, Murat; Hoffmann, Isabell; Binder, Harald
2014-02-26
Molecular data, e.g. arising from microarray technology, is often used for predicting survival probabilities of patients. For multivariate risk prediction models on such high-dimensional data, there are established techniques that combine parameter estimation and variable selection. One big challenge is to incorporate interactions into such prediction models. In this feasibility study, we present building blocks for evaluating and incorporating interactions terms in high-dimensional time-to-event settings, especially for settings in which it is computationally too expensive to check all possible interactions. We use a boosting technique for estimation of effects and the following building blocks for pre-selecting interactions: (1) resampling, (2) random forests and (3) orthogonalization as a data pre-processing step. In a simulation study, the strategy that uses all building blocks is able to detect true main effects and interactions with high sensitivity in different kinds of scenarios. The main challenge are interactions composed of variables that do not represent main effects, but our findings are also promising in this regard. Results on real world data illustrate that effect sizes of interactions frequently may not be large enough to improve prediction performance, even though the interactions are potentially of biological relevance. Screening interactions through random forests is feasible and useful, when one is interested in finding relevant two-way interactions. The other building blocks also contribute considerably to an enhanced pre-selection of interactions. We determined the limits of interaction detection in terms of necessary effect sizes. Our study emphasizes the importance of making full use of existing methods in addition to establishing new ones.
Metabolomics analysis: Finding out metabolic building blocks
2017-01-01
In this paper we propose a new methodology for the analysis of metabolic networks. We use the notion of strongly connected components of a graph, called in this context metabolic building blocks. Every strongly connected component is contracted to a single node in such a way that the resulting graph is a directed acyclic graph, called a metabolic DAG, with a considerably reduced number of nodes. The property of being a directed acyclic graph brings out a background graph topology that reveals the connectivity of the metabolic network, as well as bridges, isolated nodes and cut nodes. Altogether, it becomes a key information for the discovery of functional metabolic relations. Our methodology has been applied to the glycolysis and the purine metabolic pathways for all organisms in the KEGG database, although it is general enough to work on any database. As expected, using the metabolic DAGs formalism, a considerable reduction on the size of the metabolic networks has been obtained, specially in the case of the purine pathway due to its relative larger size. As a proof of concept, from the information captured by a metabolic DAG and its corresponding metabolic building blocks, we obtain the core of the glycolysis pathway and the core of the purine metabolism pathway and detect some essential metabolic building blocks that reveal the key reactions in both pathways. Finally, the application of our methodology to the glycolysis pathway and the purine metabolism pathway reproduce the tree of life for the whole set of the organisms represented in the KEGG database which supports the utility of this research. PMID:28493998
NASA Astrophysics Data System (ADS)
Bristol, S.
2014-12-01
In 2007, the U.S. Geological Survey (USGS) published a science strategy that resulted in an organizational pivot toward more focused attention on societal challenges and our ability to predict changes and study mitigation and resilience. The strategy described a number of global dynamics including climate and resource-related critical zone (CZ) impacts and emphasized the need for data integration as a significant underpinning for all of the science questions raised in the report. Organizational changes that came about as a result of the science strategy sparked a new entity called Core Science Systems, which has set as its mission the creation of a Modular Science Framework designed to seamlessly organize and integrate all data, information, and knowledge from the CZ. A part of this grand challenge is directly within the purview of the USGS mission and our science programs, while the data integration framework itself is part of a much larger global scientific cyberinfrastructure. This talk describes current research and development in pursuit of the USGS Modular Science Framework and how the work is being conducted in the context of the broader earth system sciences. Communities of practice under the banner of the Earth Science Information Partners are fostering working relationships vital to cohesion and interoperability between contributing institutions. The National Science Foundation's EarthCube and Cyberinfrastructure for the 21st Century initiatives are providing some of the necessary building blocks through foundational informatics and data science research. The U.S. Group on Earth Observations is providing leadership and coordination across agencies who operate earth observation systems. The White House Big Data Initiative is providing long term research and development vision to set the stage for sustainable, long term infrastructure across government data agencies. The end result will be a major building block of CZ science.
49 CFR 387.301 - Surety bond, certificate of insurance, or other securities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... in bulk. Cement, building blocks. Charcoal. Chemical fertilizer. Cinder blocks. Cinders, coal. Coal. Coke. Commercial fertilizer. Concrete materials and added mixtures. Corn cobs. Cottonseed hulls... nitrate of soda. Anhydrous ammonia—used as a fertilizer only. Ashes, wood or coal. Bituminous concrete...
BLOCKING OSCILLATOR DOUBLE PULSE GENERATOR CIRCUIT
Haase, J.A.
1961-01-24
A double-pulse generator, particuiarly a double-pulse generator comprising a blocking oscillator utilizing a feedback circuit to provide means for producing a second pulse within the recovery time of the blocking oscillator, is described. The invention utilized a passive network which permits adjustment of the spacing between the original pulses derived from the blocking oscillator and further utilizes the original pulses to trigger a circuit from which other pulses are initiated. These other pulses are delayed and then applied to the input of the blocking oscillator, with the result that the output from the oscillator circuit contains twice the number of pulses originally initiated by the blocking oscillator itself.
Assessing the Potential of Folded Globular Polyproteins As Hydrogel Building Blocks
2016-01-01
The native states of proteins generally have stable well-defined folded structures endowing these biomolecules with specific functionality and molecular recognition abilities. Here we explore the potential of using folded globular polyproteins as building blocks for hydrogels. Photochemically cross-linked hydrogels were produced from polyproteins containing either five domains of I27 ((I27)5), protein L ((pL)5), or a 1:1 blend of these proteins. SAXS analysis showed that (I27)5 exists as a single rod-like structure, while (pL)5 shows signatures of self-aggregation in solution. SANS measurements showed that both polyprotein hydrogels have a similar nanoscopic structure, with protein L hydrogels being formed from smaller and more compact clusters. The polyprotein hydrogels showed small energy dissipation in a load/unload cycle, which significantly increased when the hydrogels were formed in the unfolded state. This study demonstrates the use of folded proteins as building blocks in hydrogels, and highlights the potential versatility that can be offered in tuning the mechanical, structural, and functional properties of polyproteins. PMID:28006103
Insights into Inverse Materials Design from Phase Transitions in Shape Space
NASA Astrophysics Data System (ADS)
Cersonsky, Rose; van Anders, Greg; Dodd, Paul M.; Glotzer, Sharon C.
In designing new materials for synthesis, the inverse materials design approach posits that, given a structure, we can predict a building block optimized for self- assembly. How does that building block change as pressure is varied to maintain the same crystal structure? We address this question for entropically stabilized colloidal crystals by working in a generalized statistical thermodynamic ensemble where an alchemical potential variable is fixed and its conjugate variable, particle shape, is allowed to fluctuate. We show that there are multiple regions of shape behavior and phase transitions in shape space between these regions. Furthermore, while past literature has looked towards packing arguments for proposing shape-filling candidate building blocks for structure formation, we show that even at very high pressures, a structure will attain lowest free energy by modifying these space-filling shapes. U.S. Army Research Office under Grant Award No. W911NF-10-1-0518, Emerging Frontiers in Research and Innovation Award EFRI-1240264, National Science Foundation Grant Number ACI- 1053575, XSEDE award DMR 140129, Rackham Merit Fellowship Program.
Exploiting three kinds of interface propensities to identify protein binding sites.
Liu, Bin; Wang, Xiaolong; Lin, Lei; Dong, Qiwen; Wang, Xuan
2009-08-01
Predicting the binding sites between two interacting proteins provides important clues to the function of a protein. In this study, we present a building block of proteins called order profiles to use the evolutionary information of the protein sequence frequency profiles and apply this building block to produce a class of propensities called order profile interface propensities. For comparisons, we revisit the usage of residue interface propensities and binary profile interface propensities for protein binding site prediction. Each kind of propensities combined with sequence profiles and accessible surface areas are inputted into SVM. When tested on four types of complexes (hetero-permanent complexes, hetero-transient complexes, homo-permanent complexes and homo-transient complexes), experimental results show that the order profile interface propensities are better than residue interface propensities and binary profile interface propensities. Therefore, order profile is a suitable profile-level building block of the protein sequences and can be widely used in many tasks of computational biology, such as the sequence alignment, the prediction of domain boundary, the designation of knowledge-based potentials and the protein remote homology detection.
McClements, David Julian; Decker, Eric Andrew; Park, Yeonhwa; Weiss, Jochen
2009-06-01
There have been major advances in the design and fabrication of structured delivery systems for the encapsulation of nutraceutical and functional food components. A wide variety of delivery systems is now available, each with its own advantages and disadvantages for particular applications. This review begins by discussing some of the major nutraceutical and functional food components that need to be delivered and highlights the main limitations to their current utilization within the food industry. It then discusses the principles underpinning the rational design of structured delivery systems: the structural characteristics of the building blocks; the nature of the forces holding these building blocks together; and, the different ways of assembling these building blocks into structured delivery systems. Finally, we review the major types of structured delivery systems that are currently available to food scientists: lipid-based (simple, multiple, multilayer, and solid lipid particle emulsions); surfactant-based (simple micelles, mixed micelles, vesicles, and microemulsions) and biopolymer-based (soluble complexes, coacervates, hydrogel droplets, and particles). For each type of delivery system we describe its preparation, properties, advantages, and limitations.
Building blocks toward contemporary trauma theory: Ferenczi 's paradigm shift.
Mészáros, Judit
2010-12-01
In laying down the building blocks of contemporary trauma theory, Ferenczi asserted that trauma is founded on real events and that it occurs in the interpersonal and intersubjective dynamics of object relations. He stressed the significance of the presence or lack of a trusted person in the post-traumatic situation. After the trauma, the loneliness and later the isolation of the victim represent a serious pathogenic source. In the traumatic situation, the victim and the persecutor/aggressor operate differing ego defense mechanisms. Ferenczi was the first to describe the ego defense mechanism of identification with the aggressor. Ferenczi pointed out the characteristic features of the role of analyst/therapist with which (s)he may assist the patient in working through the trauma, among them being the development of a therapeutic atmosphere based on trust, so that the traumatic experiences can be relived, without which effective therapeutic change cannot be achieved. For the analyst, countertransference, as part of authentic communication, is incorporated into the therapeutic process. These are the key building blocks that are laid down by Ferenczi in his writings and appear in later works on trauma theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paik, Taejong; Yun, Hongseok; Fleury, Blaise
We demonstrate the fabrication of hierarchical materials by controlling the structure of highly ordered binary nanocrystal superlattices (BNSLs) on multiple length scales. Combinations of magnetic, plasmonic, semiconducting, and insulating colloidal nanocrystal (NC) building blocks are self-assembled into BNSL membranes via the liquid–interfacial assembly technique. Free-standing BNSL membranes are transferred onto topographically structured poly(dimethylsiloxane) molds via the Langmuir–Schaefer technique and then deposited in patterns onto substrates via transfer printing. BNSLs with different structural motifs are successfully patterned into various meso- and microstructures such as lines, circles, and even three-dimensional grids across large-area substrates. A combination of electron microscopy and grazing incidencemore » small-angle X-ray scattering (GISAXS) measurements confirm the ordering of NC building blocks in meso- and micropatterned BNSLs. This technique demonstrates structural diversity in the design of hierarchical materials by assembling BNSLs from NC building blocks of different composition and size by patterning BNSLs into various size and shape superstructures of interest for a broad range of applications.« less
1. AERIAL VIEW OF WEST/FRONT AND NORTH/SIDE FACADES, LOOKING SOUTHEAST ...
1. AERIAL VIEW OF WEST/FRONT AND NORTH/SIDE FACADES, LOOKING SOUTHEAST (FROM LEFT TO RIGHT): VA-1272 Ball Building, 1437 N. Court House Road. VA-1273 Jesse Building, 1423-27 N. Court House Road. VA-1276 Jesse-Hosmer Building, 1419 N. Court House Road. VA-1275 Moncure (Adams, Porter, Radigan) Building, N. 1415 Court House Road. VA-1274 Rucker Building, N. 1403 Court House Road. - Lawyers' Row Block, North Court House Road between Fourteenth & Fifteenth Streets, Arlington, Arlington County, VA
14. A westward view of building #5 in the background, ...
14. A westward view of building #5 in the background, low buildings #22 and #23 in the center and supports for the water tower. The roadway was previously rail service to buildings #3, #5, and #9. The trackage had been mostly covered with fill, representing the transition from rail to truck service. The two enclosed passageways to the left of center carried semi-processed tire chain from building #9, on the left, to buildings #3 and #5. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
8. This metal chute in building #3 carried the cloth ...
8. This metal chute in building #3 carried the cloth bags full of finished tire chains from upper floors to the warehouse on the first floor. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
NASA Astrophysics Data System (ADS)
Fernandez-Gonzalez, Rodrigo; Deschamps, Thomas; Idica, Adam; Malladi, Ravikanth; Ortiz de Solorzano, Carlos
2003-07-01
In this paper we present a scheme for real time segmentation of histological structures in microscopic images of normal and neoplastic mammary gland sections. Paraffin embedded or frozen tissue blocks are sliced, and sections are stained with hematoxylin and eosin (H&E). The sections are then imaged using conventional bright field microscopy. The background of the images is corrected by arithmetic manipulation using a "phantom." Then we use the fast marching method with a speed function that depends on the brightness gradient of the image to obtain a preliminary approximation to the boundaries of the structures of interest within a region of interest (ROI) of the entire section manually selected by the user. We use the result of the fast marching method as the initial condition for the level set motion equation. We run this last method for a few steps and obtain the final result of the segmentation. These results can be connected from section to section to build a three-dimensional reconstruction of the entire tissue block that we are studying.
A Geomorphologically Driven Conditional Assessment for the Study of Urban Stone Decay
NASA Astrophysics Data System (ADS)
Johnston, Brian; McKinley, Jennifer; Warke, Patricia; Ruffell, Alastair
2017-04-01
Much of humanity's legacy is within the built environment and therefore in the stones that have been used for its construction. This means that targeted building conservation strategies are vital when considering the maintenance of this heritage. Conditional assessments play a major part in these efforts by classifying blocks based upon their visual state of decay. However, as these tools were developed with the purpose of informing decision making by professionals in the construction and conservation industries, limitations exist when considering them as part of studies with a geomorphological focus. Links between the decay of stonework and spatially variable control factors, such as material properties, microclimatic conditions and pollutant distribution, have been well documented in past studies, with observations of decay on wall sections supporting this concept. For example, the distribution of weathering features can indicate that certain blocks are more susceptible than others to decay. Additionally, adjoining blocks can exhibit similar processes, suggestive of interaction between the blocks, indicating a linkage between individual block scale decay and processes acting at a wider wall scale. These observations have led to comparisons between the weathering of rock outcrops and building façades, with mortar joints playing the role of fractures or bedding. This comparison has highlighted the necessity to not simply consider decay in terms of architecture or engineering, but also in terms of the geomorphological processes taking place. The patterns of decay created at a wall scale, whilst being visually chaotic, can provide clues to the controlling factors acting upon this system, if they are subjected to informed scrutiny. Despite such discussions, the focus of surveys towards remediation have created limitations when applying the results of these surveys towards the understanding of processes acting between blocks at a wall scale. This work aims to take into consideration these limitations by undertaking two conditional assessments, using differing techniques, of wall sections at Fitzroy Presbyterian Church in Belfast. These assessments will be undertaken using a classification system focusing upon percentage of surface alteration. Initially, an assessment was carried out focussing on classifying each block individually. This was then followed by observations in a regular grid of 10x10cm squares across the wall sections. Results suggest that decay features develop beyond the extents of a single stone when situated within a larger built structure, with mortar and blocks providing both interconnectivity and barriers that influence the spread of decay. The results suggest the presence of three wall scale processes; urban microclimatic influencing capillary rise of ground water, architectural features creating a barrier and the passage of moisture through deteriorating mortar. Probe permeametry, GPR and 3D modelling of the wall sections were used to provide support for these findings. For the conservationist, application of a gridded observation approach is time consuming and of little use when deciding upon the remediation of individual blocks. However, in geomorphologically focused studies it facilitates a greater understanding of processes that extend beyond a single block, particularly when considering sites where the development of decay appears to be spatially complex.
MTR BUILDING, TRA603. SOUTHEAST CORNER, EAST SIDE FACING TOWARD RIGHT ...
MTR BUILDING, TRA-603. SOUTHEAST CORNER, EAST SIDE FACING TOWARD RIGHT OF VIEW. CAMERA FACING NORTHWEST. LIGHT-COLORED PROJECTION AT LEFT IS ENGINEERING SERVICES BUILDING, TRA-635. SMALL CONCRETE BLOCK BUILDING AT CENTER OF VIEW IS FAST CHOPPER DETECTOR HOUSE, TRA-665. INL NEGATIVE NO. HD46-43-3. Mike Crane, Photographer, 4/2005 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
11. A westward view within building #8A of space used ...
11. A westward view within building #8-A of space used as a foreman's office, as storage, and for rectifiers (converters of alternating current to direct current for the zinc-electro-plating equipment). Buildings #6-A and #8-A were the enclosed outside spaces between the outer walls of buildings #6 and #7, and #8 and #7 respectively. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
On the Road to Quality: Turning Stumbling Blocks into Stepping Stones.
ERIC Educational Resources Information Center
Bonstingl, John Jay
1996-01-01
W. Edwards Deming's quality philosophy can help organizations develop collaborative, community-building leadership practices. This article outlines five personal practices of quality based on personal leadership, partnerships, a systems focus, a process orientation, and constant dedication to continuous improvement. Stumbling blocks can be…
45. OVERALL VIEW OF 100 AND 200 BLOCKS OF IOWA ...
45. OVERALL VIEW OF 100 AND 200 BLOCKS OF IOWA STREET WITH MCFADDEN SPICE AND COFFEE COMPANY FACTORY AND WAREHOUSE AT LEFT, DUBUQUE SEED COMPANY IN CENTER, AND DUBUQUE PAPER COMPANY WAREHOUSE AT RIGHT. VIEW TO NORTHEAST. - Dubuque Commercial & Industrial Buildings, Dubuque, Dubuque County, IA
Using triggered operations to offload collective communication operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Brian W.; Hemmert, K. Scott; Underwood, Keith Douglas
2010-04-01
Efficient collective operations are a major component of application scalability. Offload of collective operations onto the network interface reduces many of the latencies that are inherent in network communications and, consequently, reduces the time to perform the collective operation. To support offload, it is desirable to expose semantic building blocks that are simple to offload and yet powerful enough to implement a variety of collective algorithms. This paper presents the implementation of barrier and broadcast leveraging triggered operations - a semantic building block for collective offload. Triggered operations are shown to be both semantically powerful and capable of improving performance.
RHIC on "How the Universe Works"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisa, Mike
2014-08-11
If you want to know how the universe works, part of the answer lies in understanding the building blocks of matter—before they became inextricably bound within the protons, neutrons, and atoms that make up everything visible in our universe today. That’s why producers for the Science Channel’s documentary series “How the Universe Works” made a point of stopping by the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, where physicists recreate post-Big Bang “primal matter” millions of times each day. Learn about RHIC’s role in exploring the building blocks of matter by watching this segment.
Road map to adaptive optimal control. [jet engine control
NASA Technical Reports Server (NTRS)
Boyer, R.
1980-01-01
A building block control structure leading toward adaptive, optimal control for jet engines is developed. This approach simplifies the addition of new features and allows for easier checkout of the control by providing a baseline system for comparison. Also, it is possible to eliminate certain features that do not have payoff by being selective in the addition of new building blocks to be added to the baseline system. The minimum risk approach specifically addresses the need for active identification of the plant to be controlled in real time and real time optimization of the control for the identified plant.
NASA Astrophysics Data System (ADS)
Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris
2015-05-01
Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.
Baier, André
2013-12-01
A group of engineering students at the Technical University of Berlin, Germany, designed a course on engineering ethics. The core element of the developed Blue Engineering course are self-contained teaching-units, "building blocks". These building blocks typically cover one complex topic and make use of various teaching methods using moderators who lead discussions, rather than experts who lecture. Consequently, the students themselves started to offer the credited course to their fellow students who take an active role in further developing the course themselves.
Kumar, Girijesh; Gupta, Rajeev
2013-10-07
The present work shows the utilization of Co(3+) complexes appended with either para- or meta-arylcarboxylic acid groups as the molecular building blocks for the construction of three-dimensional {Co(3+)-Zn(2+)} and {Co(3+)-Cd(2+)} heterobimetallic networks. The structural characterizations of these networks show several interesting features including well-defined pores and channels. These networks function as heterogeneous and reusable catalysts for the regio- and stereoselective ring-opening reactions of various epoxides and size-selective cyanation reactions of assorted aldehydes.
Li, Junqi; Grillo, Anthony S; Burke, Martin D
2015-08-18
The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules using a linear-to-cyclized strategy, in which Csp(3) boronate building blocks are iteratively assembled into linear precursors that are then cyclized into the cyclic frameworks found in many natural products and natural product-like structures. Enabled by the serendipitous discovery of a catch-and-release protocol for generally purifying MIDA boronate intermediates, the platform has been automated. The synthesis of 14 distinct classes of small molecules, including pharmaceuticals, materials components, and polycyclic natural products, has been achieved using this new synthesis machine. It is anticipated that the scope of small molecules accessible by this platform will continue to expand via further developments in building block synthesis, Csp(3) cross-coupling methodologies, and cyclization strategies. Achieving these goals will enable the more generalized synthesis of small molecules and thereby help shift the rate-limiting step in small molecule science from synthesis to function.
Fort Belvoir’s Engineer Replacement Training Center
2011-12-01
investing in permanent buildings of brick and tile. Makers of concrete and cinder blocks, cement siding, structural steel, and asbestos sheeting...in 1917. Hundreds of temporary wooden buildings and other structures , lining a central parade/training ground, were quickly built at a new...typical barracks building was considered significant because of the new technologies employed, including the standardization of plans, prefabrication of
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
Current trends in architectural design and construction are described which may affect the prefinishing of exterior building components. Contents include--(1) prefinishing of ferrous metals, (2) prefinishing of nonferrous metals, (3) prefinishing of wood and composition board, (4) prefinishing of masonry concrete block, (5) prefinishing of…
PBF Reactor Building (PER620). Camera facing north toward south facade. ...
PBF Reactor Building (PER-620). Camera facing north toward south facade. Note west-wing siding on concrete block; high-bay siding of metal. Excavation and forms for signal and cable trenches proceed from building. Photographer: Kirsh. Date August 20, 1968. INEEL negative no. 68-3332 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Modeling lift operations with SASmacr Simulation Studio
NASA Astrophysics Data System (ADS)
Kar, Leow Soo
2016-10-01
Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-07
... economically dynamic regional innovation cluster focused on energy efficient buildings technologies and systems... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... February 8, 2010, titled the Energy Efficient Building Systems Regional Innovation Cluster Initiative. A...
Retrofit Audits and Cost Estimates. A Look at Quality and Consistency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenberg, L.; Shapiro, C.; Fleischer, W.
Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community-based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low-and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC: Block bymore » Block program.« less
Retrofit Audits and Cost Estimates: A Look at Quality and Consistency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisenberg, L.; Shapiro, C.; Fleischer, W.
Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low- and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC:more » Block by Block program.« less
ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...
ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Progress of the European Assistive Technology Information Network.
Gower, Valerio; Andrich, Renzo
2015-01-01
The European Assistive Technology Information Network (EASTIN), launched in 2005 as the result of a collaborative EU project, provides information on Assistive Technology products and related material through the website www.eastin.eu. In the past few years several advancements have been implemented on the EASTIN website thanks to the contribution of EU funded projects, including a multilingual query processing component for supporting non expert users, a user rating and comment facility, and a detailed taxonomy for the description of ICT based assistive products. Recently, within the framework of the EU funded project Cloud4All, the EASTIN information system has also been federated with the Unified Listing of assistive products, one of the building blocks of the Global Public Inclusive Infrastructure initiative.
Toward the renewables - A natural gas/solar energy transition strategy
NASA Technical Reports Server (NTRS)
Hanson, J. A.; Escher, W. J. D.
1979-01-01
The inevitability of an energy transition from today's non-renewable fossil base toward a renewable energy base is considered from the viewpoint of the need for a national transition strategy. Then, one such strategy is offered. Its technological building blocks are described in terms of both energy use and energy supply. The strategy itself is then sketched at four points in its implementation; (1) initiation, (2) early transition, (3) late transition, and (4) completion. The transition is assumed to evolve from a heavily natural gas-dependent energy economy. It then proceeds through its transition toward a balanced, hybrid energy system consisting of both centralized and dispersed energy supply technologies supplying hydrogen and electricity from solar energy. Related institutional, environmental and economic factors are examined briefly.
HOST turbine heat transfer program summary
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.; Simoneau, Robert J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena and to assess and improve the analytical methods used to predict the flow and heat transfer in high temperature gas turbines. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. A building-block approach was utilized and the research ranged from the study of fundamental phenomena and modeling to experiments in simulated real engine environments. Experimental research accounted for approximately 75 percent of the funding with the remainder going to analytical efforts. A healthy government/industry/university partnership, with industry providing almost half of the research, was created to advance the turbine heat transfer design technology base.
Coherence properties of nanofiber-trapped cesium atoms.
Reitz, D; Sayrin, C; Mitsch, R; Schneeweiss, P; Rauschenbeutel, A
2013-06-14
We experimentally study the ground state coherence properties of cesium atoms in a nanofiber-based two-color dipole trap, localized ∼ 200 nm away from the fiber surface. Using microwave radiation to coherently drive the clock transition, we record Ramsey fringes as well as spin echo signals and infer a reversible dephasing time of T(2)(*) = 0.6 ms and an irreversible dephasing time of T(2)(') = 3.7 ms. By modeling the signals, we find that, for our experimental parameters, T(2)(*) and T(2)(') are limited by the finite initial temperature of the atomic ensemble and the heating rate, respectively. Our results represent a fundamental step towards establishing nanofiber-based traps for cold atoms as a building block in an optical fiber quantum network.
NASA Astrophysics Data System (ADS)
Lu, Ke; Li, Yi; He, Wei-Fan; Chen, Jia; Zhou, Ya-Xiong; Duan, Nian; Jin, Miao-Miao; Gu, Wei; Xue, Kan-Hao; Sun, Hua-Jun; Miao, Xiang-Shui
2018-06-01
Memristors have emerged as promising candidates for artificial synaptic devices, serving as the building block of brain-inspired neuromorphic computing. In this letter, we developed a Pt/HfO x /Ti memristor with nonvolatile multilevel resistive switching behaviors due to the evolution of the conductive filaments and the variation in the Schottky barrier. Diverse state-dependent spike-timing-dependent-plasticity (STDP) functions were implemented with different initial resistance states. The measured STDP forms were adopted as the learning rule for a three-layer spiking neural network which achieves a 75.74% recognition accuracy for MNIST handwritten digit dataset. This work has shown the capability of memristive synapse in spiking neural networks for pattern recognition application.
Health workforce competencies needed for a digital world.
Hovenga, Evelyn J S
2013-01-01
The health workforce constitutes a very significant health system building block. As such it needs to have the capacity to influence how health data are captured, processed and used at all levels of decision making. This requires a national strategy that ensures all new health professional graduates are adequately prepared and that the existing workforce is developed to make the best possible use of all available digital technologies. This chapter provides an argument for why and how the health workforce should be contributing to health information governance, followed by an historical overview of various initiatives undertaken, the results achieved and issues identified during these processes. It concludes with an exploration of strategies that may be adopted to bring about change and achieve improvements.
An optical/digital processor - Hardware and applications
NASA Technical Reports Server (NTRS)
Casasent, D.; Sterling, W. M.
1975-01-01
A real-time two-dimensional hybrid processor consisting of a coherent optical system, an optical/digital interface, and a PDP-11/15 control minicomputer is described. The input electrical-to-optical transducer is an electron-beam addressed potassium dideuterium phosphate (KD2PO4) light valve. The requirements and hardware for the output optical-to-digital interface, which is constructed from modular computer building blocks, are presented. Initial experimental results demonstrating the operation of this hybrid processor in phased-array radar data processing, synthetic-aperture image correlation, and text correlation are included. The applications chosen emphasize the role of the interface in the analysis of data from an optical processor and possible extensions to the digital feedback control of an optical processor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Carl
In the summer of 2006 the Green Institute started the study for the RockTenn paper mill that would evaluate the economics and supply chain reliability of wood waste and other clean biomass as a fuel for the facility. The Green Institute obtained sponsorship from a broad coalition representing the community and the project team included other consultants and university researchers specializing in biomass issues. The final product from the project was a report to: 1) assess the availability of clean biomass fuel for use at the Rock-Tenn site; 2) roughly estimate costs at various annual usage quantities; and 3) developmore » the building blocks for a supply chain procurement plan. The initial report was completed and public presentations on the results were completed in spring of 2007.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
... DEPARTMENT OF ENERGY Energy Efficient Building Systems Regional Innovation Cluster Initiative... Energy Efficient Building Systems Regional Innovation Cluster Initiative. A single proposal submitted by... systems design. The DOE funded Energy Efficient Building Systems Design Hub (the ``Hub'') will serve as a...
Creative Curriculum Integration in Atlantic Canada: A "MindShift"
ERIC Educational Resources Information Center
Warner, Alan; de Vreede, Cate
2011-01-01
Curriculum integration through block programs has not taken hold in Atlantic Canada, but another approach has blossomed in Nova Scotia that is achieving some of the key benefits--interdisciplinary, holistic and problem-based learning, student engagement, community building, collaborative relationships, and real-world experiences. If block programs…
DOT National Transportation Integrated Search
2010-04-01
This publication is a resource designed to enable transportation planners and their planning partners to build a transportation plan that includes operations objectives, performance measures, and strategies that are relevant to their region, that ref...
Interior, detail view of last original windows and filed in ...
Interior, detail view of last original windows and filed in wall arches, also concrete block wall of beryllum/uranium labs to left, looking southwest near center of west elevation, main building. - Watertown Arsenal, Building No. 312, Wooley Avenue, Watertown, Middlesex County, MA
Knowledge Gateways: The Building Blocks.
ERIC Educational Resources Information Center
Hawkins, Donald T.; And Others
1988-01-01
Discusses the need for knowledge gateway systems to provide access to scattered information and the use of technologies in gateway building, including artificial intelligence and expert systems, networking, online retrieval systems, optical storage, and natural language processing. The status of four existing gateways is described. (20 references)…
Building Learning into the Teaching Job.
ERIC Educational Resources Information Center
Renyi, Judith
1998-01-01
A two-year study of professional development recommended that schools build professional development into school life via flexible scheduling and extended time blocks; help teachers assume responsibility for their own professional development; find common ground with the community via resource sharing; and find revenues to support professional…
POSSIBLE ROLES OF FUNGAL HEMOLYSINS IN SICK BUILDING SYNDROME
The World Health Organization (WHO) definition of SBS includes such symptoms in the occupants as headache, distraction, dizziness, fatigue, watery eyes, runny or blocked or bleeding nose, dry or sore throat and skin irritation. The WHO has set a criterion for a healthy building ...
Building an Understanding of Functions: A Series of Activities for Pre-Calculus
ERIC Educational Resources Information Center
Carducci, Olivia M.
2008-01-01
Building block toys can be used to illustrate various concepts connected with functions including graphs and rates of change of linear and exponential functions, piecewise functions, and composition of functions. Five brief activities suitable for a pre-calculus course are described.
Photocopy of War Department drawing (original located at Fort McCoy, ...
Photocopy of War Department drawing (original located at Fort McCoy, Wisconsin). FOUNDATION SETTING (PLAN, DETAILS),PLAN NUMBER 6150-20-B - Fort McCoy, Building No. T-10127, Northwest of Hospital Boiler House, Building T-10111, Block 10, Sparta, Monroe County, WI
Gigadalton-scale shape-programmable DNA assemblies
NASA Astrophysics Data System (ADS)
Wagenbauer, Klaus F.; Sigl, Christian; Dietz, Hendrik
2017-12-01
Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.
Gigadalton-scale shape-programmable DNA assemblies.
Wagenbauer, Klaus F; Sigl, Christian; Dietz, Hendrik
2017-12-06
Natural biomolecular assemblies such as molecular motors, enzymes, viruses and subcellular structures often form by self-limiting hierarchical oligomerization of multiple subunits. Large structures can also assemble efficiently from a few components by combining hierarchical assembly and symmetry, a strategy exemplified by viral capsids. De novo protein design and RNA and DNA nanotechnology aim to mimic these capabilities, but the bottom-up construction of artificial structures with the dimensions and complexity of viruses and other subcellular components remains challenging. Here we show that natural assembly principles can be combined with the methods of DNA origami to produce gigadalton-scale structures with controlled sizes. DNA sequence information is used to encode the shapes of individual DNA origami building blocks, and the geometry and details of the interactions between these building blocks then control their copy numbers, positions and orientations within higher-order assemblies. We illustrate this strategy by creating planar rings of up to 350 nanometres in diameter and with atomic masses of up to 330 megadaltons, micrometre-long, thick tubes commensurate in size to some bacilli, and three-dimensional polyhedral assemblies with sizes of up to 1.2 gigadaltons and 450 nanometres in diameter. We achieve efficient assembly, with yields of up to 90 per cent, by using building blocks with validated structure and sufficient rigidity, and an accurate design with interaction motifs that ensure that hierarchical assembly is self-limiting and able to proceed in equilibrium to allow for error correction. We expect that our method, which enables the self-assembly of structures with sizes approaching that of viruses and cellular organelles, can readily be used to create a range of other complex structures with well defined sizes, by exploiting the modularity and high degree of addressability of the DNA origami building blocks used.
Synthesis of orthogonally protected bacterial, rare-sugar and D-glycosamine building blocks.
Emmadi, Madhu; Kulkarni, Suvarn S
2013-10-01
Bacterial glycoconjugates comprise atypical deoxy amino sugars that are not present on the human cell surface, making them good targets for drug discovery and carbohydrate-based vaccine development. Unfortunately, they cannot be isolated with sufficient purity in acceptable amounts, and therefore chemical synthesis is a crucial step toward the development of these products. Here we describe a detailed protocol for the synthesis of orthogonally protected bacterial deoxy amino hexopyranoside (2,4-diacetamido-2,4,6-trideoxyhexose (DATDH), D-bacillosamine, D-fucosamine, and 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (AAT)), D-glucosamine and D-galactosamine building blocks starting from β-D-thiophenylmannoside. Readily available β-D-thiophenylmannoside was first converted into the corresponding 2,4-diols via deoxygenation or silylation at C6, followed by O3 acylation. The 2,4-diols were converted into 2,4-bis-trifluoromethanesulfonates, which underwent highly regioselective, one-pot, double-serial and double-parallel displacements by azide, phthalimide, acetate and nitrite ions as nucleophiles. Thus, D-rhamnosyl- and D-mannosyl 2,4-diols can be efficiently transformed into various rare sugars and D-galactosamine, respectively, as orthogonally protected thioglycoside building blocks on a gram scale in 1-2 d, in 54-85% overall yields, after a single chromatographic purification. This would otherwise take 1-2 weeks. D-Glucosamine building blocks can be prepared from β-D-thiophenylmannoside in four steps via C2 displacement of triflates by azide in 2 d and in 66-70% overall yields. These procedures have been applied to the synthesis of L-serine-linked trisaccharide of Neisseria meningitidis and a rare disaccharide fragment of the zwitterionic polysaccharide (ZPS) A1 (ZPS A1) of Bacteroides fragilis.
Perszyk, Danielle R; Waxman, Sandra R
2016-08-01
Well before they understand their first words, infants have begun to link language and cognition. This link is initially broad: At 3months, listening to both human and nonhuman primate vocalizations supports infants' object categorization, a building block of cognition. But by 6months, the link has narrowed: Only human vocalizations support categorization. What mechanisms underlie this rapid tuning process? Here, we document the crucial role of infants' experience as infants tune this link to cognition. Merely exposing infants to nonhuman primate vocalizations permits them to preserve, rather than sever, the link between these signals and categorization. Exposing infants to backward speech-a signal that fails to support categorization in the first year of life-does not have this advantage. This new evidence illuminates the central role of early experience as infants specify which signals, from an initially broad set, they will continue to link to core cognitive capacities. Copyright © 2016 Elsevier B.V. All rights reserved.
Physical controls on directed virus assembly at nanoscale chemical templates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, C L; Chung, S; Chatterji, A
2006-05-10
Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, andmore » drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.« less
Review and assessment of the HOST turbine heat transfer program
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.
1988-01-01
The objectives of the HOST Turbine Heat Transfer subproject were to obtain a better understanding of the physics of the aerothermodynamic phenomena occurring in high-performance gas turbine engines and to assess and improve the analytical methods used to predict the fluid dynamics and heat transfer phenomena. At the time the HOST project was initiated, an across-the-board improvement in turbine design technology was needed. Therefore, a building-block approach was utilized, with research ranging from the study of fundamental phenomena and analytical modeling to experiments in simulated real-engine environments. Experimental research accounted for 75 percent of the project, and analytical efforts accounted for approximately 25 percent. Extensive experimental datasets were created depicting the three-dimensional flow field, high free-stream turbulence, boundary-layer transition, blade tip region heat transfer, film cooling effects in a simulated engine environment, rough-wall cooling enhancement in a rotating passage, and rotor-stator interaction effects. In addition, analytical modeling of these phenomena was initiated using boundary-layer assumptions as well as Navier-Stokes solutions.
Building damage assessment from PolSAR data using texture parameters of statistical model
NASA Astrophysics Data System (ADS)
Li, Linlin; Liu, Xiuguo; Chen, Qihao; Yang, Shuai
2018-04-01
Accurate building damage assessment is essential in providing decision support for disaster relief and reconstruction. Polarimetric synthetic aperture radar (PolSAR) has become one of the most effective means of building damage assessment, due to its all-day/all-weather ability and richer backscatter information of targets. However, intact buildings that are not parallel to the SAR flight pass (termed oriented buildings) and collapsed buildings share similar scattering mechanisms, both of which are dominated by volume scattering. This characteristic always leads to misjudgments between assessments of collapsed buildings and oriented buildings from PolSAR data. Because the collapsed buildings and the intact buildings (whether oriented or parallel buildings) have different textures, a novel building damage assessment method is proposed in this study to address this problem by introducing texture parameters of statistical models. First, the logarithms of the estimated texture parameters of different statistical models are taken as a new texture feature to describe the collapse of the buildings. Second, the collapsed buildings and intact buildings are distinguished using an appropriate threshold. Then, the building blocks are classified into three levels based on the building block collapse rate. Moreover, this paper also discusses the capability for performing damage assessment using texture parameters from different statistical models or using different estimators. The RADARSAT-2 and ALOS-1 PolSAR images are used to present and analyze the performance of the proposed method. The results show that using the texture parameters avoids the problem of confusing collapsed and oriented buildings and improves the assessment accuracy. The results assessed by using the K/G0 distribution texture parameters estimated based on the second moment obtain the highest extraction accuracies. For the RADARSAT-2 and ALOS-1 data, the overall accuracy (OA) for these three types of buildings is 73.39% and 68.45%, respectively.
Matriarch: A Python Library for Materials Architecture.
Giesa, Tristan; Jagadeesan, Ravi; Spivak, David I; Buehler, Markus J
2015-10-12
Biological materials, such as proteins, often have a hierarchical structure ranging from basic building blocks at the nanoscale (e.g., amino acids) to assembled structures at the macroscale (e.g., fibers). Current software for materials engineering allows the user to specify polypeptide chains and simple secondary structures prior to molecular dynamics simulation, but is not flexible in terms of the geometric arrangement of unequilibrated structures. Given some knowledge of a larger-scale structure, instructing the software to create it can be very difficult and time-intensive. To this end, the present paper reports a mathematical language, using category theory, to describe the architecture of a material, i.e., its set of building blocks and instructions for combining them. While this framework applies to any hierarchical material, here we concentrate on proteins. We implement this mathematical language as an open-source Python library called Matriarch. It is a domain-specific language that gives the user the ability to create almost arbitrary structures with arbitrary amino acid sequences and, from them, generate Protein Data Bank (PDB) files. In this way, Matriarch is more powerful than commercial software now available. Matriarch can be used in tandem with molecular dynamics simulations and helps engineers design and modify biologically inspired materials based on their desired functionality. As a case study, we use our software to alter both building blocks and building instructions for tropocollagen, and determine their effect on its structure and mechanical properties.
Dynamics of a magnetic skyrmionium driven by spin waves
NASA Astrophysics Data System (ADS)
Li, Sai; Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Kang, Wang; Liu, Xiaoxi; Zhou, Yan; Zhao, Weisheng
2018-04-01
A magnetic skyrmionium is a skyrmion-like structure, but carries a zero net skyrmion number which can be used as a building block for non-volatile information processing devices. Here, we study the dynamics of a magnetic skyrmionium driven by propagating spin waves. It is found that the skyrmionium can be effectively driven into motion by spin waves showing a tiny skyrmion Hall effect, whose mobility is much better than that of the skyrmion at the same condition. We also show that the skyrmionium mobility depends on the nanotrack width and the damping coefficient and can be controlled by an external out-of-plane magnetic field. In addition, we demonstrate that the skyrmionium motion driven by spin waves is inertial. Our results indicate that the skyrmionium is a promising building block for building spin-wave spintronic devices.
GPS Space Service Volume: Ensuring Consistent Utility Across GPS Design Builds for Space Users
NASA Technical Reports Server (NTRS)
Bauer, Frank H.; Parker, Joel Jefferson Konkl; Valdez, Jennifer Ellen
2015-01-01
GPS availability and signal strength originally specified for users on or near surface of Earth with transmitted power levels specified at edge-of-Earth, 14.3 degrees. Prior to the SSV specification, on-orbit performance of GPS varied from block build to block build (IIA, IIRM, IIF) due to antenna gain and beam width variances. Unstable on-orbit performance results in significant risk to space users. Side-lobe signals, although not specified, were expected to significantly boost GPS signal availability for users above the constellation. During GPS III Phase A, NASA noted significant discrepancies in power levels specified in GPS III specification documents, and measured on-orbit performance. To stabilize the signal for high altitude space users, NASA DoD team in 2003-2005 led the creation of new Space Service Volume (SSV) definition and specifications.
Programmable resistive-switch nanowire transistor logic circuits.
Shim, Wooyoung; Yao, Jun; Lieber, Charles M
2014-09-10
Programmable logic arrays (PLA) constitute a promising architecture for developing increasingly complex and functional circuits through nanocomputers from nanoscale building blocks. Here we report a novel one-dimensional PLA element that incorporates resistive switch gate structures on a semiconductor nanowire and show that multiple elements can be integrated to realize functional PLAs. In our PLA element, the gate coupling to the nanowire transistor can be modulated by the memory state of the resistive switch to yield programmable active (transistor) or inactive (resistor) states within a well-defined logic window. Multiple PLA nanowire elements were integrated and programmed to yield a working 2-to-4 demultiplexer with long-term retention. The well-defined, controllable logic window and long-term retention of our new one-dimensional PLA element provide a promising route for building increasingly complex circuits with nanoscale building blocks.
Selective positioning and integration of individual single-walled carbon nanotubes.
Jiao, Liying; Xian, Xiaojun; Wu, Zhongyun; Zhang, Jin; Liu, Zhongfan
2009-01-01
We present a general selective positioning and integration technique for fabricating single-walled carbon nanotube (SWNT) circuits with preselected individual SWNTs as building blocks by utilizing poly(methyl methacrylate) (PMMA) thin film as a macroscopically handlable mediator. The transparency and marker-replicating capability of PMMA mediator allow the selective placement of chirality-specific nanotubes onto predesigned patterned surfaces with a resolution of ca. 1 mum. This technique is compatible with multiple operations and p-n conversion by chemical doping, which enables the construction of complex and logic circuits. As demonstrations of building SWNTs circuits, we fabricated a field effect inverter, a 2 x 2 all-SWNT crossbar field effect transistor (FET), and flexible FETs on plastic with this technique. This selective positioning approach can also be extended to construct purpose-directed architecture with various nanoscale building blocks.
The Initial Appearance of Ashlar Stone in Cyprus. éssues of Provenance and Use
NASA Astrophysics Data System (ADS)
Philokyprou, M.
In Cyprus stone was the primary building material, either as rubble or in a dressed form (called ashlar), since the Neolithic period. Initially stone was used only as rubble but later during the Late Brone Age ashlar stone appeared for the first time on the island. The aim of this paper is the presentation of the results of a systematic research regarding the different types and uses of ashlar stone and the techniques followed during the Late Bronze Age in Cyprus in comparison with other Mediterranean areas. The macroscopic and microscopic examination of selected samples showed that sedimentary rocks of various geological formations were used as ashlars. One, two or even three different types of stones were transported from the quarries nearest to the settlements. Some characteristic methods of stone dressing, such as finishing only the visible faces and creating drafted margins around the face of the ashlar blocks, are to be found not only in Late Bronze Age settlements but also in more recent examples from the last two centuries. The choice of ashlar and the methods of construction can be related to social, religious and political factors and were not only based on aesthetic criteria and practical issues. Thus, the most impressive structural solutions were followed in the construction of temples and public buildings, whereas more simple methods can be observed in residential complexes.
Engineering aqueous fiber assembly into silk-elastin-like protein polymers.
Zeng, Like; Jiang, Linan; Teng, Weibing; Cappello, Joseph; Zohar, Yitshak; Wu, Xiaoyi
2014-07-01
Self-assembled peptide/protein nanofibers are valuable 1D building blocks for creating complex structures with designed properties and functions. It is reported that the self-assembly of silk-elastin-like protein polymers into nanofibers or globular aggregates in aqueous solutions can be modulated by tuning the temperature of the protein solutions, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model is proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores--affected by the size of the silk blocks and the charge of the elastin blocks--plays a critical role in the assembly of silk-elastin nanofibers. Furthermore, enhanced hydrophobic interactions between the elastin blocks at elevated temperatures greatly influence the nanoscale features of silk-elastin nanofibers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Multipoint propagators for non-Gaussian initial conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardeau, Francis; Sefusatti, Emiliano; Crocce, Martin
2010-10-15
We show here how renormalized perturbation theory calculations applied to the quasilinear growth of the large-scale structure can be carried on in presence of primordial non-Gaussian (PNG) initial conditions. It is explicitly demonstrated that the series reordering scheme proposed in Bernardeau, Crocce, and Scoccimarro [Phys. Rev. D 78, 103521 (2008)] is preserved for non-Gaussian initial conditions. This scheme applies to the power spectrum and higher-order spectra and is based on a reorganization of the contributing terms into the sum of products of multipoint propagators. In case of PNG, new contributing terms appear, the importance of which is discussed in themore » context of current PNG models. The properties of the building blocks of such resummation schemes, the multipoint propagators, are then investigated. It is first remarked that their expressions are left unchanged at one-loop order irrespective of statistical properties of the initial field. We furthermore show that the high-momentum limit of each of these propagators can be explicitly computed even for arbitrary initial conditions. They are found to be damped by an exponential cutoff whose expression is directly related to the moment generating function of the one-dimensional displacement field. This extends what had been established for multipoint propagators for Gaussian initial conditions. Numerical forms of the cutoff are shown for the so-called local model of PNG.« less
Kangaroo mother care: a multi-country analysis of health system bottlenecks and potential solutions.
Vesel, Linda; Bergh, Anne-Marie; Kerber, Kate J; Valsangkar, Bina; Mazia, Goldy; Moxon, Sarah G; Blencowe, Hannah; Darmstadt, Gary L; de Graft Johnson, Joseph; Dickson, Kim E; Ruiz Peláez, Juan; von Xylander, Severin; Lawn, Joy E
2015-01-01
Preterm birth is now the leading cause of under-five child deaths worldwide with one million direct deaths plus approximately another million where preterm is a risk factor for neonatal deaths due to other causes. There is strong evidence that kangaroo mother care (KMC) reduces mortality among babies with birth weight <2000 g (mostly preterm). KMC involves continuous skin-to-skin contact, breastfeeding support, and promotion of early hospital discharge with follow-up. The World Health Organization has endorsed KMC for stabilised newborns in health facilities in both high-income and low-resource settings. The objectives of this paper are to: (1) use a 12-country analysis to explore health system bottlenecks affecting the scale-up of KMC; (2) propose solutions to the most significant bottlenecks; and (3) outline priority actions for scale-up. The bottleneck analysis tool was applied in 12 countries in Africa and Asia as part of the Every Newborn Action Plan process. Country workshops involved technical experts to complete the survey tool, which is designed to synthesise and grade health system "bottlenecks", factors that hinder the scale-up, of maternal-newborn intervention packages. We used quantitative and qualitative methods to analyse the bottleneck data, combined with literature review, to present priority bottlenecks and actions relevant to different health system building blocks for KMC. Marked differences were found in the perceived severity of health system bottlenecks between Asian and African countries, with the former reporting more significant or very major bottlenecks for KMC with respect to all the health system building blocks. Community ownership and health financing bottlenecks were significant or very major bottlenecks for KMC in both low and high mortality contexts, particularly in South Asia. Significant bottlenecks were also reported for leadership and governance and health workforce building blocks. There are at least a dozen countries worldwide with national KMC programmes, and we identify three pathways to scale: (1) champion-led; (2) project-initiated; and (3) health systems designed. The combination of all three pathways may lead to more rapid scale-up. KMC has the potential to save lives, and change the face of facility-based newborn care, whilst empowering women to care for their preterm newborns.
Kangaroo mother care: a multi-country analysis of health system bottlenecks and potential solutions
2015-01-01
Background Preterm birth is now the leading cause of under-five child deaths worldwide with one million direct deaths plus approximately another million where preterm is a risk factor for neonatal deaths due to other causes. There is strong evidence that kangaroo mother care (KMC) reduces mortality among babies with birth weight <2000 g (mostly preterm). KMC involves continuous skin-to-skin contact, breastfeeding support, and promotion of early hospital discharge with follow-up. The World Health Organization has endorsed KMC for stabilised newborns in health facilities in both high-income and low-resource settings. The objectives of this paper are to: (1) use a 12-country analysis to explore health system bottlenecks affecting the scale-up of KMC; (2) propose solutions to the most significant bottlenecks; and (3) outline priority actions for scale-up. Methods The bottleneck analysis tool was applied in 12 countries in Africa and Asia as part of the Every Newborn Action Plan process. Country workshops involved technical experts to complete the survey tool, which is designed to synthesise and grade health system "bottlenecks", factors that hinder the scale-up, of maternal-newborn intervention packages. We used quantitative and qualitative methods to analyse the bottleneck data, combined with literature review, to present priority bottlenecks and actions relevant to different health system building blocks for KMC. Results Marked differences were found in the perceived severity of health system bottlenecks between Asian and African countries, with the former reporting more significant or very major bottlenecks for KMC with respect to all the health system building blocks. Community ownership and health financing bottlenecks were significant or very major bottlenecks for KMC in both low and high mortality contexts, particularly in South Asia. Significant bottlenecks were also reported for leadership and governance and health workforce building blocks. Conclusions There are at least a dozen countries worldwide with national KMC programmes, and we identify three pathways to scale: (1) champion-led; (2) project-initiated; and (3) health systems designed. The combination of all three pathways may lead to more rapid scale-up. KMC has the potential to save lives, and change the face of facility-based newborn care, whilst empowering women to care for their preterm newborns. PMID:26391115
3. DETAIL OF NORTHEAST CORNER; OPENING AT TOP WAS INTAKE ...
3. DETAIL OF NORTHEAST CORNER; OPENING AT TOP WAS INTAKE FOR CATTLE; CANTILEVERED HOG RUN (BUILDING 147) OBSCURES A PORTION OF THE BEEF KILL'S ORIGINAL GLASS BLOCK WALLS - Rath Packing Company, Beef Killing Building, Sycamore Street between Elm & Eighteenth Streets, Waterloo, Black Hawk County, IA
Photocopy of War Department drawing (original located at Fort McCoy, ...
Photocopy of War Department drawing (original located at Fort McCoy, Wisconsin. SHELTER FOR VACUUM PUMPS, PLAN NUMBER 700-249 - Fort McCoy, Building No. 10128, Southwest Corner of Two Enclosed Walkways Connecting Buildings T-10113 & T-10111, Block 10, Sparta, Monroe County, WI
Photocopy of War Department drawing (original located at Fort McCoy, ...
Photocopy of War Department drawing (original located at Fort McCoy, Wisconsin). FOUNDATION SETTING (FRAMING ELEVATIONS, DETAILS, PLAN NUMBER 6150-21-B - Fort McCoy, Building No. T-10127, Northwest of Hospital Boiler House, Building T-10111, Block 10, Sparta, Monroe County, WI
Photocopy of War Department drawing (original located at Fort McCoy, ...
Photocopy of War Department drawing (original located at Fort McCoy, Wisconsin. CONDENSATION PUMP ROOM, PLAN NUMBER 6150-25-D - Fort McCoy, Building No. 10128, Southwest Corner of Two Enclosed Walkways Connecting Buildings T-10113 & T-10111, Block 10, Sparta, Monroe County, WI
3. This machine in building #7 plated the hooks used ...
3. This machine in building #7 plated the hooks used on the cross chains in tire chains, by the 'pean' or mechanical process. This process was replaced when coated wire was introduced. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGee, E.S.
The Salem Limestone and the Shelburne Marble are representative of limestones and marbles commonly used in buildings and monuments. Both stones are composed predominantly of calcite. The Salem Limestone is homogeneous in composition and mineralogic characteristics throughout the test block. The Shelburne Marble has compositionally homogeneous mineral phases, but the distribution of those phases within the test block is random. The mineralogy and physical characteristics of the Shelburne Marble and Salem Limestone test blocks described in the study provide a baseline for future studies of the weathering behavior of these stones. Because the Shelburne Marble and the Salem Limestone aremore » representative of typical commercial marbles and limestones, they are likely to be useful in a consortium study of the effects of acid precipitation on these two types of building stones.« less
High-performance thermoelectric nanocomposites from nanocrystal building blocks
Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu
2016-01-01
The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K. PMID:26948987
The Ettention software package.
Dahmen, Tim; Marsalek, Lukas; Marniok, Nico; Turoňová, Beata; Bogachev, Sviatoslav; Trampert, Patrick; Nickels, Stefan; Slusallek, Philipp
2016-02-01
We present a novel software package for the problem "reconstruction from projections" in electron microscopy. The Ettention framework consists of a set of modular building-blocks for tomographic reconstruction algorithms. The well-known block iterative reconstruction method based on Kaczmarz algorithm is implemented using these building-blocks, including adaptations specific to electron tomography. Ettention simultaneously features (1) a modular, object-oriented software design, (2) optimized access to high-performance computing (HPC) platforms such as graphic processing units (GPU) or many-core architectures like Xeon Phi, and (3) accessibility to microscopy end-users via integration in the IMOD package and eTomo user interface. We also provide developers with a clean and well-structured application programming interface (API) that allows for extending the software easily and thus makes it an ideal platform for algorithmic research while hiding most of the technical details of high-performance computing. Copyright © 2015 Elsevier B.V. All rights reserved.
High-performance thermoelectric nanocomposites from nanocrystal building blocks.
Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V; Cabot, Andreu
2016-03-07
The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.
Ribozyme-catalysed RNA synthesis using triplet building blocks.
Attwater, James; Raguram, Aditya; Morgunov, Alexey S; Gianni, Edoardo; Holliger, Philipp
2018-05-15
RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit '+' and '-' strands in segments and assemble them into a new active ribozyme. © 2018, Attwater et al.
NASA Technical Reports Server (NTRS)
Bird, R. Keith; Atherton, Todd S.
2010-01-01
Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate an Inconel 718 bulk block deposit. Room temperature tensile properties were measured as a function of orientation and location within the block build. This study is a follow-on activity to previous work on Inconel 718 EBF3 deposits that were too narrow to allow properties to be measured in more than one orientation
Power Block Geometry Applied to the Building of Power Electronics Converters
ERIC Educational Resources Information Center
dos Santos, E. C., Jr.; da Silva, E. R. C.
2013-01-01
This paper proposes a new methodology, Power Block Geometry (PBG), for the presentation of power electronics topologies that process ac voltage. PBG's strategy uses formal methods based on a geometrical representation with particular rules and defines a universe with axioms and conjectures to establish a formation law. It allows power…
ERIC Educational Resources Information Center
Smith, Brandy A.; Cline, Jane E.
2016-01-01
This study considered how arts integration impacted preschoolers concerning the students' acquisition, understanding, and retention of information about animal habitats. This current investigation used control and experimental conditions to determine the effects of art integration during students' block building of animal habitats and their…
Binding Blocks: Building the Universe One Nucleus at a Time
ERIC Educational Resources Information Center
Diget, C. Aa.; Pastore, A.; Leech, K.; Haylett, T.; Lock, S.; Sanders, T.; Shelley, M.; Willett, H. V.; Keegans, J.; Sinclair, L.; Simpson, E. C.
2017-01-01
We present a new teaching and outreach activity based around the construction of a three-dimensional chart of isotopes using LEGO® bricks. The activity, "binding blocks", demonstrates nuclear and astrophysical processes through a seven-meter chart of all nuclear isotopes, built from over 26000 LEGO® bricks. It integrates A-Level and GCSE…
PBF contextual view shows relationship between PBF Control Building (PER619, ...
PBF contextual view shows relationship between PBF Control Building (PER-619, in foreground at right) and SPERT-I Control Building (PER-601). Walkway with railing connects to waste reduction operations support building (PER-632), built in 1981. Note paneled stucco siding applied to PER-619 after 1980. Original concrete block is exposed at corner. Date: July 2004. INEEL negative no. HD-41-9-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID