Mina, Elin G; Marques, Cláudia N H
2016-08-10
Persister cells, a tolerant cell sub-population, are commonly associated with chronic and recurrent infections. However, little is known about their ability to actually initiate or establish an infection, become virulent and cause pathogenicity within a host. Here we investigated whether Staphylococcus aureus persister cells initiate an infection and are recognized by macrophages, while in a persister cell status, and upon awakening due to exposure to cis-2-decenoic acid (cis-DA). Our results show that S. aureus persister cells are not able to initiate infections in A. thaliana and present significantly reduced virulence towards C. elegans compared to total populations. In contrast, awakened S. aureus persister cells are able to initiate infections in A. thaliana and in C. elegans albeit, with lower mortality than total population. Furthermore, exposure of S. aureus persister cells to cis-DA led to a loss of tolerance to ciprofloxacin, and an increase of the bacterial fluorescence to levels found in total population. In addition, macrophage engulfment of persister cells was significantly lower than engulfment of total population, both before and following awakening. Overall our findings indicate that upon awakening of a persister population the cells regain their ability to infect hosts despite the absence of an increased immune response.
Evidence for label-retaining tumour-initiating cells in human glioblastoma
Deleyrolle, Loic P.; Harding, Angus; Cato, Kathleen; Siebzehnrubl, Florian A.; Rahman, Maryam; Azari, Hassan; Olson, Sarah; Gabrielli, Brian; Osborne, Geoffrey; Vescovi, Angelo
2011-01-01
Individual tumour cells display diverse functional behaviours in terms of proliferation rate, cell–cell interactions, metastatic potential and sensitivity to therapy. Moreover, sequencing studies have demonstrated surprising levels of genetic diversity between individual patient tumours of the same type. Tumour heterogeneity presents a significant therapeutic challenge as diverse cell types within a tumour can respond differently to therapies, and inter-patient heterogeneity may prevent the development of general treatments for cancer. One strategy that may help overcome tumour heterogeneity is the identification of tumour sub-populations that drive specific disease pathologies for the development of therapies targeting these clinically relevant sub-populations. Here, we have identified a dye-retaining brain tumour population that displays all the hallmarks of a tumour-initiating sub-population. Using a limiting dilution transplantation assay in immunocompromised mice, label-retaining brain tumour cells display elevated tumour-initiation properties relative to the bulk population. Importantly, tumours generated from these label-retaining cells exhibit all the pathological features of the primary disease. Together, these findings confirm dye-retaining brain tumour cells exhibit tumour-initiation ability and are therefore viable targets for the development of therapeutics targeting this sub-population. PMID:21515906
Identification of cells initiating human melanomas
Schatton, Tobias; Murphy, George F.; Frank, Natasha Y.; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M.; Weishaupt, Carsten; Fuhlbrigge, Robert C.; Kupper, Thomas S.; Sayegh, Mohamed H.; Frank, Markus H.
2012-01-01
Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies1,2 and solid cancers3–6. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5− bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ sub-populations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5− progeny, whereas ABCB5− tumour populations give rise, at lower rates, exclusively to ABCB5− cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy. PMID:18202660
Analysis of gene expression as relevant to cancer cells and circulating tumour cells.
Friel, Anne M; Crown, John; O'Driscoll, Lorraine
2011-01-01
Current literature provides significant evidence to support the concept that there are limited subpopulations of cells within a solid tumour that have increased tumour-initiating potential relative to the total tumour population. Such tumour-initiating cells have been identified in leukaemia and in a variety of solid tumours using different combinations of cell surface markers, suggesting that a tumour-initiating cell heterogeneity exists for each specific tumour. These studies have been extended to endometrial cancer; and herein we present several experimental approaches, both in vitro and in vivo, that can be used to determine whether such populations exist, and if so, to characterize them. These methods are adaptable to the investigation of tumour-initiating cells from other tumour types.
Identification of cells initiating human melanomas.
Schatton, Tobias; Murphy, George F; Frank, Natasha Y; Yamaura, Kazuhiro; Waaga-Gasser, Ana Maria; Gasser, Martin; Zhan, Qian; Jordan, Stefan; Duncan, Lyn M; Weishaupt, Carsten; Fuhlbrigge, Robert C; Kupper, Thomas S; Sayegh, Mohamed H; Frank, Markus H
2008-01-17
Tumour-initiating cells capable of self-renewal and differentiation, which are responsible for tumour growth, have been identified in human haematological malignancies and solid cancers. If such minority populations are associated with tumour progression in human patients, specific targeting of tumour-initiating cells could be a strategy to eradicate cancers currently resistant to systemic therapy. Here we identify a subpopulation enriched for human malignant-melanoma-initiating cells (MMIC) defined by expression of the chemoresistance mediator ABCB5 (refs 7, 8) and show that specific targeting of this tumorigenic minority population inhibits tumour growth. ABCB5+ tumour cells detected in human melanoma patients show a primitive molecular phenotype and correlate with clinical melanoma progression. In serial human-to-mouse xenotransplantation experiments, ABCB5+ melanoma cells possess greater tumorigenic capacity than ABCB5- bulk populations and re-establish clinical tumour heterogeneity. In vivo genetic lineage tracking demonstrates a specific capacity of ABCB5+ subpopulations for self-renewal and differentiation, because ABCB5+ cancer cells generate both ABCB5+ and ABCB5- progeny, whereas ABCB5- tumour populations give rise, at lower rates, exclusively to ABCB5- cells. In an initial proof-of-principle analysis, designed to test the hypothesis that MMIC are also required for growth of established tumours, systemic administration of a monoclonal antibody directed at ABCB5, shown to be capable of inducing antibody-dependent cell-mediated cytotoxicity in ABCB5+ MMIC, exerted tumour-inhibitory effects. Identification of tumour-initiating cells with enhanced abundance in more advanced disease but susceptibility to specific targeting through a defining chemoresistance determinant has important implications for cancer therapy.
Dorrell, Craig; Tarlow, Branden; Wang, Yuhan; Canaday, Pamela S; Haft, Annelise; Schug, Jonathan; Streeter, Philip R; Finegold, Milton J; Shenje, Lincoln T; Kaestner, Klaus H; Grompe, Markus
2014-01-01
Pancreatic Lgr5 expression has been associated with organoid-forming epithelial progenitor populations but the identity of the organoid-initiating epithelial cell subpopulation has remained elusive. Injury causes the emergence of an Lgr5+ organoid-forming epithelial progenitor population in the adult mouse liver and pancreas. Here, we define the origin of organoid-initiating cells from mouse pancreas and liver prior to Lgr5 activation. This clonogenic population was defined as MIC1-1C3+/CD133+/CD26− in both tissues and the frequency of organoid initiation within this population was approximately 5% in each case. The transcriptomes of these populations overlapped extensively and showed enrichment of epithelial progenitor-associated regulatory genes such as Sox9 and FoxJ1. Surprisingly, pancreatic organoid cells also had the capacity to generate hepatocyte-like cells upon transplantation to Fah-/- mice, indicating a differentiation capacity similar to hepatic organoids. Although spontaneous endocrine differentiation of pancreatic progenitors was not observed in culture, adenoviral delivery of fate-specifying factors Pdx1, Neurog3 and MafA induced insulin expression without glucagon or somatostatin. Pancreatic organoid cultures therefore preserve many key attributes of progenitor cells while allowing unlimited expansion, facilitating the study of fate determination. PMID:25151611
Tirino, Virginia; Camerlingo, Rosa; Franco, Renato; Malanga, Donatella; La Rocca, Antonello; Viglietto, Giuseppe; Rocco, Gaetano; Pirozzi, Giuseppe
2009-09-01
Emerging evidence suggests that specific sub-populations of cancer cells with stem cell characteristics within the bulk of tumours are implicated in the pathogenesis of heterogeneous malignant tumours. The cells that drive tumour growth have been denoted cancer-initiating cells or cancer stem cells (hereafter CSCs). CSCs have been isolated initially from leukaemias and subsequently from several solid tumours including brain, breast, prostate, colon and lung cancer. This study aimed at isolating and characterising the population of tumour-initiating cells in non-small-cell lung cancer (NSCLC). Specimens of NSCLC obtained from 89 patients undergoing tumour resection at the Cancer National Institute of Naples were analysed. Three methods to isolate the tumour-initiating cells were used: (1) flow cytometry analysis for identification of positive cells for surface markers such as CD24, CD29, CD31, CD34, CD44, CD133 and CD326; (2) Hoechst 33342 dye exclusion test for the identification of a side-population characteristic for the presence of stem cells; (3) non-adherent culture condition able to form spheres with stem cell-like characteristics. Definition of the tumourigenic potential of the cells through soft agar assay and injection into NOD/SCID mice were used to functionally define (in vitro and in vivo) putative CSCs isolated from NSCLC samples. Upon flow cytometry analysis of NSCLC samples, CD133-positive cells were found in 72% of 89 fresh specimens analysed and, on average, represented 6% of the total cells. Moreover, the number of CD133-positive cells increased markedly when the cells, isolated from NSCLC specimens, were grown as spheres in non-adherent culture conditions. Cells from NSCLC, grown as spheres, when assayed in soft agar, give rise to a 3.8-fold larger number of colonies in culture and are more tumourigenic in non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice compared with the corresponding adherent cells. We have isolated and characterised a population of CD133-positive cells from NSCLC that is able to give rise to spheres and can act as tumour-initiating cells.
[Effect of BRL 25000 (clavulanic acid-amoxicillin) on bacterial flora in human feces].
Motohiro, T; Tanaka, K; Koga, T; Shimada, Y; Tomita, N; Sakata, Y; Fujimoto, T; Nishiyama, T; Kuda, N; Ishimoto, K
1985-02-01
BRL 25000 (187.5 and 375 mg tablets), a formulation of CVA-K and AMPC in the ratio of 1:2, and AMPC (as control drug) were administered to healthy volunteers, aged 20 approximately 28 years and weighing 60 approximately 85 kg (68.8 kg, on average). Each drug was administered 3 times a day (after meals) for 5 days and the volunteers were separated into 3 groups of 4 subjects each. The effect on the fecal flora was studied before dosage, during administration (day 3 and 5) and day 3 and 5 after the administration course was completed. Studies were undertaken to isolate C. difficile on the last day of administration and 3 and 5 days after administration had ceased. Fecal concentrations and the susceptibility of the isolates to AMPC, CVA-K and BRL 25000 were measured. Side effects and laboratory findings were studied. The results obtained were as follows: 1. In BRL 25000 (187.5 mg X 3/day) group, the population of E. coli was on average, 1 X 10(6) approximately 9 X 10(6) cells/g feces before initiation of administration and it increased by 2 logarithms 3 and 5 days after initiation of administration. By 3 and 5 days after end of administration, the E. coli population was similar to the initial population. The population of Klebsiella sp. was 1 X 10(6) approximately 9 X 10(6) cells/g feces on average before commencement of dosage and it increased by 2 logarithms 3 days after initiation of administration but there was no consistent change in the Klebsiella sp. population thereafter. The Enterobacter sp., population was not consistent neither was the population of other Enterobacteriaceae. In total, the mean Enterobacteriaceae population was 1 X 10(7) approximately 9 X 10(7) cells/g feces before initiation of administration and increased by 2 logarithms 3 days after initiation of administration, and then returned to the initial level 5 days after end of administration. No consistent changes in population were noted for the other Gram-negative bacilli. The Staphylococcus sp. population was 1 X 10(6) approximately 9 X 10(6) cells/g feces on average before initiation of administration. This organism was detected in only 1 case 3 days after initiation of administration and in another 5 days after initiation of administration, thereafter, the population was similar to the initial population.(ABSTRACT TRUNCATED AT 400 WORDS)
Effects of developmental variability on the dynamics and self-organization of cell populations
NASA Astrophysics Data System (ADS)
Prabhakara, Kaumudi H.; Gholami, Azam; Zykov, Vladimir S.; Bodenschatz, Eberhard
2017-11-01
We report experimental and theoretical results for spatiotemporal pattern formation in cell populations, where the parameters vary in space and time due to mechanisms intrinsic to the system, namely Dictyostelium discoideum (D.d.) in the starvation phase. We find that different patterns are formed when the populations are initialized at different developmental stages, or when populations at different initial developmental stages are mixed. The experimentally observed patterns can be understood with a modified Kessler-Levine model that takes into account the initial spatial heterogeneity of the cell populations and a developmental path introduced by us, i.e. the time dependence of the various biochemical parameters. The dynamics of the parameters agree with known biochemical studies. Most importantly, the modified model reproduces not only our results, but also the observations of an independent experiment published earlier. This shows that pattern formation can be used to understand and quantify the temporal evolution of the system parameters.
Kim, Soyoung; Goel, Shruti; Alexander, Caroline M.
2011-01-01
There is a paradox offered up by the cancer stem cell hypothesis. How are the mixed populations that are characteristic of heterogeneous solid tumors maintained at constant proportion, given their high, and different, mitotic indices? In this study, we evaluate a well-characterized mouse model of human basaloid tumors (induced by the oncogene Wnt1), which comprise mixed populations of mammary epithelial cells resembling their normal basal and luminal counterparts. We show that these cell types are substantially inter-dependent, since the MMTV LTR drives expression of Wnt1 ligand in luminal cells, whereas the functional Wnt1-responsive receptor (Lrp5) is expressed by basal cells, and both molecules are necessary for tumor growth. There is a robust tumor initiating activity (tumor stem cell) in the basal cell population, which is associated with the ability to differentiate into luminal and basal cells, to regenerate the oncogenic paracrine signaling cell pair. However, we found an additional tumor stem cell activity in the luminal cell population. Knowing that tumors depend upon Wnt1-Lrp5, we hypothesized that this stem cell must express Lrp5, and found that indeed, all the stem cell activity could be retrieved from the Lrp5-positive cell population. Interestingly, this reflects post-transcriptional acquisition of Lrp5 protein expression in luminal cells. Furthermore, this plasticity of molecular expression is reflected in plasticity of cell fate determination. Thus, in vitro, Wnt1-expressing luminal cells retro-differentiate to basal cell types, and in vivo, tumors initiated with pure luminal cells reconstitute a robust basal cell subpopulation that is indistinguishable from the populations initiated by pure basal cells. We propose this is an important proof of concept, demonstrating that bipotential tumor stem cells are essential in tumors where oncogenic ligand-receptor pairs are separated into different cell types, and suggesting that Wnt-induced molecular and fate plasticity can close paracrine loops that are usually separated into distinct cell types. PMID:21541292
Tumor-Initiating Cells and Methods of Use
NASA Technical Reports Server (NTRS)
Hlatky, Lynn (Inventor)
2014-01-01
Provided herein are an isolated or enriched population of tumor initiating cells derived from normal cells, cells susceptible to neoplasia, or neoplastic cells. Methods of use of the cells for screening for anti-hyperproliferative agents, and use of the cells for animal models of hyperproliferative disorders including metastatic cancer, diagnostic methods, and therapeutic methods are provided.
The Effect of Initial Cell Concentration on Xylose Fermentation by Pichia stipitis
NASA Astrophysics Data System (ADS)
Agbogbo, Frank K.; Coward-Kelly, Guillermo; Torry-Smith, Mads; Wenger, Kevin; Jeffries, Thomas W.
Xylose was fermented using Pichia stipitis CBS 6054 at different initial cell concentrations. A high initial cell concentration increased the rate of xylose utilization, ethanol formation, and the ethanol yield. The highest ethanol concentration of 41.0 g/L and a yield of 0.38 g/g was obtained using an initial cell concentration of 6.5 g/L. Even though more xylitol was produced when the initial cell concentrations were high, cell density had no effect on the final ethanol yield. A two-parameter mathematical model was used to predict the cell population dynamics at the different initial cell concentrations. The model parameters, a and b correlate with the initial cell concentrations used with an R 2 of 0.99.
Stochastic Switching Induced Adaptation in a Starved Escherichia coli Population
Ito, Yoichiro; Ying, Bei-Wen; Yomo, Tetsuya
2011-01-01
Population adaptation can be determined by stochastic switching in living cells. To examine how stochastic switching contributes to the fate decision for a population under severe stress, we constructed an Escherichia coli strain crucially dependent on the expression of a rewired gene. The gene essential for tryptophan biosynthesis, trpC, was removed from the native regulatory unit, the Trp operon, and placed under the extraneous control of the lactose utilisation network. Bistability of the network provided the cells two discrete phenotypes: the induced and suppressed level of trpC. The two phenotypes permitted the cells to grow or not, respectively, under conditions of tryptophan depletion. We found that stochastic switching between the two states allowed the initially suppressed cells to form a new population with induced trpC in response to tryptophan starvation. However, the frequency of the transition from suppressed to induced state dropped off dramatically in the starved population, in comparison to that in the nourished population. This reduced switching rate was compensated by increasing the initial population size, which probably provided the cell population more chances to wait for the rarely appearing fit cells from the unfit cells. Taken together, adaptation of a starved bacterial population because of stochasticity in the gene rewired from the ancient regulon was experimentally confirmed, and the nutritional status and the population size played a great role in stochastic adaptation. PMID:21931628
Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris; Nevoigt, Elke; Ariño, Joaquín
2015-11-01
It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Fernández-Niño, Miguel; Marquina, Maribel; Swinnen, Steve; Rodríguez-Porrata, Boris
2015-01-01
It was shown recently that individual cells of an isogenic Saccharomyces cerevisiae population show variability in acetic acid tolerance, and this variability affects the quantitative manifestation of the trait at the population level. In the current study, we investigated whether cell-to-cell variability in acetic acid tolerance could be explained by the observed differences in the cytosolic pHs of individual cells immediately before exposure to the acid. Results obtained with cells of the strain CEN.PK113-7D in synthetic medium containing 96 mM acetic acid (pH 4.5) showed a direct correlation between the initial cytosolic pH and the cytosolic pH drop after exposure to the acid. Moreover, only cells with a low initial cytosolic pH, which experienced a less severe drop in cytosolic pH, were able to proliferate. A similar correlation between initial cytosolic pH and cytosolic pH drop was also observed in the more acid-tolerant strain MUCL 11987-9. Interestingly, a fraction of cells in the MUCL 11987-9 population showed initial cytosolic pH values below the minimal cytosolic pH detected in cells of the strain CEN.PK113-7D; consequently, these cells experienced less severe drops in cytosolic pH. Although this might explain in part the difference between the two strains with regard to the number of cells that resumed proliferation, it was observed that all cells from strain MUCL 11987-9 were able to proliferate, independently of their initial cytosolic pH. Therefore, other factors must also be involved in the greater ability of MUCL 11987-9 cells to endure strong drops in cytosolic pH. PMID:26341199
Oncogenic Kras initiates leukemia in hematopoietic stem cells.
Sabnis, Amit J; Cheung, Laurene S; Dail, Monique; Kang, Hio Chung; Santaguida, Marianne; Hermiston, Michelle L; Passegué, Emmanuelle; Shannon, Kevin; Braun, Benjamin S
2009-03-17
How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs) and leukemias. We investigated the effects of expressing oncogenic Kras(G12D) from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by Kras(G12D) expression in a highly restricted population enriched for hematopoietic stem cells (HSCs), but not in common myeloid progenitors. Kras(G12D) HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. Kras(G12D) expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted Kras(G12D) HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in Kras(G12D) mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression.
Selection of G1 Phase Yeast Cells for Synchronous Meiosis and Sporulation.
Stuart, David T
2017-01-01
Centrifugal elutriation is a procedure that allows the fractionation of cell populations based upon their size and shape. This allows cells in distinct cell cycle stages can be captured from an asynchronous population. The technique is particularly helpful when performing an experiment to monitor the progression of cells through the cell cycle or meiosis. Yeast sporulation like gametogenesis in other eukaryotes initiates from the G1 phase of the cell cycle. Conveniently, S. cerevisiae arrest in G1 phase when starved for nutrients and so withdrawal of nitrogen and glucose allows cells to abandon vegetative growth in G1 phase before initiating the sporulation program. This simple starvation protocol yields a partial synchronization that has been used extensively in studies of progression through meiosis and sporulation. By using centrifugal elutriation it is possible to isolate a homogeneous population of G1 phase cells and induce them to sporulate synchronously, which is beneficial for investigating progression through meiosis and sporulation. An additionally benefit of this protocol is that cell populations can be isolated based upon size and both large and small cell populations can be tested for progression through meiosis and sporulation. Here we present a protocol for purification of G1 phase diploid cells for examining synchronous progression through meiosis and sporulation.
CD133+ tumor initiating cells in a syngenic murine model of pancreatic cancer respond to Minnelide.
Banerjee, Sulagna; Nomura, Alice; Sangwan, Veena; Chugh, Rohit; Dudeja, Vikas; Vickers, Selwyn M; Saluja, Ashok
2014-05-01
Pancreatic adenocarcinoma is the fourth leading cause for cancer-related mortality with a survival rate of less than 5%. Late diagnosis and lack of effective chemotherapeutic regimen contribute to these grim survival statistics. Relapse of any tumor is largely attributed to the presence of tumor-initiating cells (TIC) or cancer stem cells (CSC). These cells are considered as hurdles to cancer therapy as no known chemotherapeutic compound is reported to target them. Thus, there is an urgent need to develop a TIC-targeted therapy for pancreatic cancer. We isolated CD133(+) cells from a spontaneous pancreatic ductal adenocarcinoma mouse model and studied both surface expression, molecular markers of pancreatic TICs. We also studied tumor initiation properties by implanting low numbers of CD133(+) cells in immune competent mice. Effect of Minnelide, a drug currently under phase I clinical trial, was studied on the tumors derived from the CD133(+) cells. Our study showed for the first time that CD133(+) population demonstrated all the molecular markers for pancreatic TIC. These cells initiated tumors in immunocompetent mouse models and showed increased expression of prosurvival and proinvasive proteins compared to the CD133(-) non-TIC population. Our study further showed that Minnelide was very efficient in downregulating both CD133(-) and CD133(+) population in the tumors, resulting in a 60% decrease in tumor volume compared with the untreated ones. As Minnelide is currently under phase I clinical trial, its evaluation in reducing tumor burden by decreasing TIC as well as non-TIC population suggests its potential as an effective therapy. ©2014 AACR.
Messal, Hendrik A.; Andersson, Agneta B.; Ruiz, E. Josue; Gerling, Marco; Douagi, Iyadh; Spencer-Dene, Bradley; Musch, Alexandra; Mitter, Richard; Bhaw, Leena; Stone, Richard; Bornhorst, Dorothee; Sesay, Abdul K.; Jonkers, Jos; Stamp, Gordon; Malanchi, Ilaria; Toftgård, Rune; Behrens, Axel
2018-01-01
The mammary gland is composed of a complex cellular hierarchy with unusual postnatal plasticity. The identities of stem/progenitor cell populations, as well as tumour-initiating cells that give rise to breast cancer, are incompletely understood. Here we show that Lgr6 marks rare populations of cells in both basal and luminal mammary gland compartments in mice. Lineage tracing analysis showed that Lgr6+ cells are unipotent progenitors, which expand clonally during puberty but diminish in adulthood. In pregnancy or upon stimulation with ovarian hormones, adult Lgr6+ cells regained proliferative potency and their progeny formed alveoli over repeated pregnancies. Oncogenic mutations in Lgr6+ cells resulted in expansion of luminal cells, culminating in mammary gland tumours. Conversely, depletion of Lgr6+ cells in the MMTV-PyMT model of mammary tumourigenesis significantly impaired tumour growth. Thus, Lgr6 marks mammary gland progenitor cells that can initiate tumours, and cells of luminal breast tumours required for efficient tumour maintenance. PMID:27798604
NASA Astrophysics Data System (ADS)
Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.
2016-03-01
We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.
Variability in Beta-Adrenergic Receptor Population in Cultured Chicken Muscle Cells
NASA Technical Reports Server (NTRS)
Young, Ronald B; Bridge, Kristin Y.; Vaughn, Jeffrey R.
1998-01-01
Investigations into expression of the beta-adrenergic receptor (bAR) in chicken skeletal muscle cells in culture were initiated because several beta-adrenergic receptor agonists are known to increase skeletal muscle protein deposition in avian and mammalian species. During initial attempts to study the bAR population on the surface of chicken skeletal muscle cells, we observed a high degree of variability that was later found to be the result of using different batches of horse serum in the cell culture media. The separation between total binding and nonspecific binding in cells grown in two serum samples was approximately two-fold The number of nuclei within multinucleated myotubes was not significantly different in cells grown in the two serum samples. To investigate whether these two sera had an effect on coupling efficiency between bAR population and cAMP production, the ability of these cells to synthesize cAMP was also assessed. Despite the two-fold difference in receptor population, the ability of these cells to synthesize cAMP was not significantly different. Because of the possible link between bAR population and muscle protein, we also determined if the quantity of the major skeletal muscle protein, myosin, was affected by conditions that so drastically affected the bAR population. The quantity of myosin heavy chain was not significantly different.
Virant-Klun, Irma; Stimpfel, Martin
2016-01-01
Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in “healthy” ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from “healthy” ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans. PMID:27703207
Shmelkov, Sergey V.; Butler, Jason M.; Hooper, Andrea T.; Hormigo, Adilia; Kushner, Jared; Milde, Till; St. Clair, Ryan; Baljevic, Muhamed; White, Ian; Jin, David K.; Chadburn, Amy; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; D’Angelica, Michael; Kemeny, Nancy; Lyden, David; Rafii, Shahin
2008-01-01
Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10–/–CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133– population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133– metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133– cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24–), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133– subset, which is also capable of tumor initiation in NOD/SCID mice. PMID:18497886
Temporal morphologic changes in human colorectal carcinomas following xenografting.
Barkla, D H; Tutton, P J
1983-03-01
The temporal morphologic changes of human colorectal carcinomas following xenografting into immunosuppressed mice were investigated by the use of light and transmission electron microscopy. The results show that colorectal carcinomas undergo a series of morphologic changes during the initial 30-day period following transplantation. During the initial 1-5-day period the majority of tumor cells die, and during the following 5-10-day period the necrotic debris created during the 1-5-day period is removed by host-supplied inflammatory cells. Only small groups of peripherally placed tumor cells survived at the end of the first 10 days. During the 10-20-day period the tumor cell populations of xenografts were reestablished by a morphologically heterogeneous population of tumor cells, and during the 20-30 day period consolidation of this process continued and some xenografts showed macroscopic evidence of growth. The authors hypothesize that human colorectal carcinomas, like the antecedent epithelium, contain subpopulations of undifferentiated cells that give rise to populations of more-differentiated cells.
A hierarchy of self-renewing tumor-initiating cell types in glioblastoma.
Chen, Ruihuan; Nishimura, Merry C; Bumbaca, Stephanie M; Kharbanda, Samir; Forrest, William F; Kasman, Ian M; Greve, Joan M; Soriano, Robert H; Gilmour, Laurie L; Rivers, Celina Sanchez; Modrusan, Zora; Nacu, Serban; Guerrero, Steve; Edgar, Kyle A; Wallin, Jeffrey J; Lamszus, Katrin; Westphal, Manfred; Heim, Susanne; James, C David; VandenBerg, Scott R; Costello, Joseph F; Moorefield, Scott; Cowdrey, Cynthia J; Prados, Michael; Phillips, Heidi S
2010-04-13
The neural stem cell marker CD133 is reported to identify cells within glioblastoma (GBM) that can initiate neurosphere growth and tumor formation; however, instances of CD133(-) cells exhibiting similar properties have also been reported. Here, we show that some PTEN-deficient GBM tumors produce a series of CD133(+) and CD133(-) self-renewing tumor-initiating cell types and provide evidence that these cell types constitute a lineage hierarchy. Our results show that the capacities for self-renewal and tumor initiation in GBM need not be restricted to a uniform population of stemlike cells, but can be shared by a lineage of self-renewing cell types expressing a range of markers of forebrain lineage. Copyright 2010 Elsevier Inc. All rights reserved.
Recognition and killing of brain tumor stem-like initiating cells by CD8+ cytolytic T cells.
Brown, Christine E; Starr, Renate; Martinez, Catalina; Aguilar, Brenda; D'Apuzzo, Massimo; Todorov, Ivan; Shih, Chu-Chih; Badie, Behnam; Hudecek, Michael; Riddell, Stanley R; Jensen, Michael C
2009-12-01
Solid tumors contain a subset of stem-like cells that are resistant to the cytotoxic effects of chemotherapy/radiotherapy, but their susceptibility to cytolytic T lymphocyte (CTL) effector mechanisms has not been well characterized. Using a panel of early-passage human brain tumor stem/initiating cell (BTSC) lines derived from high-grade gliomas, we show that BTSCs are subject to immunologic recognition and elimination by CD8(+) CTLs. Compared with serum-differentiated CD133(low) tumor cells and established glioma cell lines, BTSCs are equivalent with respect to expression levels of HLA class I and ICAM-1, similar in their ability to trigger degranulation and cytokine synthesis by antigen-specific CTLs, and equally susceptible to perforin-dependent CTL-mediated cytolysis. BTSCs are also competent in the processing and presentation of antigens as evidenced by the killing of these cells by CTL when antigen is endogenously expressed. Moreover, we show that CTLs can eliminate all BTSCs with tumor-initiating activity in an antigen-specific manner in vivo. Current models predict that curative therapies for many cancers will require the elimination of the stem/initiating population, and these studies lay the foundation for developing immunotherapeutic approaches to eradicate this tumor population.
At the Crossroads of Cancer Stem Cells, Radiation Biology, and Radiation Oncology.
Gerweck, Leo E; Wakimoto, Hiroaki
2016-03-01
Reports that a small subset of tumor cells initiate and sustain tumor growth, are resistant to radiation and drugs, and bear specific markers have led to an explosion of cancer stem cell research. These reports imply that the evaluation of therapeutic response by changes in tumor volume is misleading, as volume changes reflect the response of the sensitive rather than the resistant tumorigenic cell population. The reports further suggest that the marker-based selection of the tumor cell population will facilitate the development of radiation treatment schedules, sensitizers, and drugs that specifically target the resistant tumorigenic cells that give rise to treatment failure. This review presents evidence that contests the observations that cancer stem cell markers reliably identify the subset of tumor cells that sustain tumor growth and that the marker-identified population is radioresistant relative to the marker-negative cells. Experimental studies show that cells and tumors that survive large radiation doses are not more radioresistant than unirradiated cells and tumors, and also show that the intrinsic radiosensitivity of unsorted colony-forming tumor cells, in combination with the fraction of unsorted tumor cells that are tumor initiating, predicts tumor radiocurability. ©2016 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Rae-Kwon; Yoon, Chang-Hwan; Hyun, Kyung-Hwan
2010-11-26
Research highlights: {yields} Activation of Lymphocyte-specific protein tyrosine kinase (LCK) is involved in the fractionated radiation-induced expansion of glioma stem-like cells. {yields} Inhibition of LCK prevents acquisition of fractionated radiation-induced resistance to chemotherapeutic treatment. {yields} LCK activity is critical for the maintenance of self-renewal in glioma stem-like cells. -- Abstract: Brain cancers frequently recur or progress as focal masses after treatment with ionizing radiation. Radiation used to target gliomas may expand the cancer stem cell population and enhance the aggressiveness of tumors; however, the mechanisms underlying the expansion of cancer stem cell population after radiation have remained unclear. In thismore » study, we show that LCK (lymphocyte-specific protein tyrosine kinase) is involved in the fractionated radiation-induced expansion of the glioma-initiating cell population and acquisition of resistance to anticancer treatments. Fractionated radiation caused a selective increase in the activity of LCK, a Src family non-receptor tyrosine kinase. The activities of other Src family kinases Src, Fyn, and Lyn were not significantly increased. Moreover, knockdown of LCK expression with a specific small interfering RNA (siRNA) effectively blocked fractionated radiation-induced expansion of the CD133{sup +} cell population. siRNA targeting of LCK also suppressed fractionated radiation-induced expression of the glioma stem cell marker proteins CD133, Nestin, and Musashi. Expression of the known self-renewal-related proteins Notch2 and Sox2 in glioma cells treated with fractionated radiation was also downregulated by LCK inhibition. Moreover, siRNA-mediated knockdown of LCK effectively restored the sensitivity of glioma cells to cisplatin and etoposide. These results indicate that the non-receptor tyrosine kinase LCK is critically involved in fractionated radiation-induced expansion of the glioma-initiating cell population and decreased cellular sensitivity to anticancer treatments. These findings may provide pivotal insights in the context of fractionated radiation-based therapeutic interventions in brain cancer.« less
Promotion of Tumor-Initiating Cells in Primary and Recurrent Breast Tumors
2014-10-01
confer stemness . We hypothesize that inhibition of IKK/NF-κB will reduce or eliminate breast camcer TICs, blocking tumorigenesis. Furthermore, we...Korkaya H, Liu S, Wicha MS. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest. 2011 Oct;121(10):3804-9. Review...cells and sub- population of cells termed cancer stem cells or tumor-initiating cells (TICs).1 The primary characteristic of TICs is their ability to
An Emerging Allee Effect Is Critical for Tumor Initiation and Persistence
Böttger, Katrin; Hatzikirou, Haralambos; Voss-Böhme, Anja; Cavalcanti-Adam, Elisabetta Ada; Herrero, Miguel A.; Deutsch, Andreas
2015-01-01
Tumor cells develop different strategies to cope with changing microenvironmental conditions. A prominent example is the adaptive phenotypic switching between cell migration and proliferation. While it has been shown that the migration-proliferation plasticity influences tumor spread, it remains unclear how this particular phenotypic plasticity affects overall tumor growth, in particular initiation and persistence. To address this problem, we formulate and study a mathematical model of spatio-temporal tumor dynamics which incorporates the microenvironmental influence through a local cell density dependence. Our analysis reveals that two dynamic regimes can be distinguished. If cell motility is allowed to increase with local cell density, any tumor cell population will persist in time, irrespective of its initial size. On the contrary, if cell motility is assumed to decrease with respect to local cell density, any tumor population below a certain size threshold will eventually extinguish, a fact usually termed as Allee effect in ecology. These results suggest that strategies aimed at modulating migration are worth to be explored as alternatives to those mainly focused at keeping tumor proliferation under control. PMID:26335202
Loss of p19Arf in a Rag1−/− B-cell precursor population initiates acute B-lymphoblastic leukemia
Hauer, Julia; Mullighan, Charles; Morillon, Estelle; Wang, Gary; Bruneau, Julie; Brousse, Nicole; Lelorc'h, Marc; Romana, Serge; Boudil, Amine; Tiedau, Daniela; Kracker, Sven; Bushmann, Frederic D.; Borkhardt, Arndt; Fischer, Alain; Hacein-Bey-Abina, Salima
2011-01-01
In human B-acute lymphoblastic leukemia (B-ALL), RAG1-induced genomic alterations are important for disease progression. However, given that biallelic loss of the RAG1 locus is observed in a subset of cases, RAG1's role in the development of B-ALL remains unclear. We chose a p19Arf−/−Rag1−/− mouse model to confirm the previously published results concerning the contribution of CDKN2A (p19ARF /INK4a) and RAG1 copy number alterations in precursor B cells to the initiation and/or progression to B-acute lymphoblastic leukemia (B-ALL). In this murine model, we identified a new, Rag1-independent leukemia-initiating mechanism originating from a Sca1+CD19+ precursor cell population and showed that Notch1 expression accelerates the cells' self-renewal capacity in vitro. In human RAG1-deficient BM, a similar CD34+CD19+ population expressed p19ARF. These findings suggest that combined loss of p19Arf and Rag1 results in B-cell precursor leukemia in mice and may contribute to the progression of precursor B-ALL in humans. PMID:21622646
Hart-Matyas, M; Gareau, A J; Hirsch, G M; Lee, T D G
2015-01-01
Allospecific memory T cells are a recognized threat to the maintenance of solid-organ transplants. Limited information exists regarding the development of alloreactive memory T cells when post-transplant immunosuppression is present. The clinical practice of delaying calcineurin inhibitor (CNI) initiation post-transplant may permit the development of a de novo allospecific memory population. We investigated the development of de novo allospecific memory CD8+ T cells following the introduction of CNI immunosuppression in a murine model using allogeneic cell priming. Recipient mice alloprimed with splenocytes from fully mismatched donors received cyclosporine (CyA), initiated at 0, 2, 6, or 10days post-prime. Splenocytes from recipients were analyzed by flow cytometry or enzyme-linked immunosorbent assay for evidence of memory cell formation. Memory and effector CD8+ T cell development was prevented when CyA was initiated at 0day or 2days post-prime (p<0.001), but not 6days post-prime. Following a boost challenge, these memory CD8+ T cells were capable of producing a similarly sized population of secondary effectors as recipients not treated with CyA (p>0.05). Delaying CyA up to 6days or later post-prime permits the development of functional de novo allospecific memory CD8+ T cells. The development of this potentially detrimental T cell population in patients could be prevented by starting CNI immunosuppression early post-transplant. Copyright © 2014 Elsevier B.V. All rights reserved.
de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J
2017-03-01
An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. © 2015 John Wiley & Sons Ltd.
Feedback amplification loop drives malignant growth in epithelial tissues.
Muzzopappa, Mariana; Murcia, Lada; Milán, Marco
2017-08-29
Interactions between cells bearing oncogenic mutations and the surrounding microenvironment, and cooperation between clonally distinct cell populations, can contribute to the growth and malignancy of epithelial tumors. The genetic techniques available in Drosophila have contributed to identify important roles of the TNF-α ligand Eiger and mitogenic molecules in mediating these interactions during the early steps of tumor formation. Here we unravel the existence of a tumor-intrinsic-and microenvironment-independent-self-reinforcement mechanism that drives tumor initiation and growth in an Eiger-independent manner. This mechanism relies on cell interactions between two functionally distinct cell populations, and we present evidence that these cell populations are not necessarily genetically different. Tumor-specific and cell-autonomous activation of the tumorigenic JNK stress-activated pathway drives the expression of secreted signaling molecules and growth factors to delaminating cells, which nonautonomously promote proliferative growth of the partially transformed epithelial tissue. We present evidence that cross-feeding interactions between delaminating and nondelaminating cells increase each other's sizes and that these interactions can explain the unlimited growth potential of these tumors. Our results will open avenues toward our molecular understanding of those social cell interactions with a relevant function in tumor initiation in humans.
Single CA3 pyramidal cells trigger sharp waves in vitro by exciting interneurones.
Bazelot, Michaël; Teleńczuk, Maria T; Miles, Richard
2016-05-15
The CA3 hippocampal region generates sharp waves (SPW), a population activity associated with neuronal representations. The synaptic mechanisms responsible for the generation of these events still require clarification. Using slices maintained in an interface chamber, we found that the firing of single CA3 pyramidal cells triggers SPW like events at short latencies, similar to those for the induction of firing in interneurons. Multi-electrode records from the CA3 stratum pyramidale showed that pyramidal cells triggered events consisting of putative interneuron spikes followed by field IPSPs. SPW fields consisted of a repetition of these events at intervals of 4-8 ms. Although many properties of induced and spontaneous SPWs were similar, the triggered events tended to be initiated close to the stimulated cell. These data show that the initiation of SPWs in vitro is mediated via pyramidal cell synapses that excite interneurons. They do not indicate why interneuron firing is repeated during a SPW. Sharp waves (SPWs) are a hippocampal population activity that has been linked to neuronal representations. We show that SPWs in the CA3 region of rat hippocampal slices can be triggered by the firing of single pyramidal cells. Single action potentials in almost one-third of pyramidal cells initiated SPWs at latencies of 2-5 ms with probabilities of 0.07-0.76. Initiating pyramidal cells evoked field IPSPs (fIPSPs) at similar latencies when SPWs were not initiated. Similar spatial profiles for fIPSPs and middle components of SPWs suggested that SPW fields reflect repeated fIPSPs. Multiple extracellular records showed that the initiated SPWs tended to start near the stimulated pyramidal cell, whereas spontaneous SPWs could emerge at multiple sites. Single pyramidal cells could initiate two to six field IPSPs with distinct amplitude distributions, typically preceeded by a short-duration extracellular action potential. Comparison of these initiated fields with spontaneously occurring inhibitory field motifs allowed us to identify firing in different interneurones during the spread of SPWs. Propagation away from an initiating pyramidal cell was typically associated with the recruitment of interneurones and field IPSPs that were not activated by the stimulated pyramidal cell. SPW fields initiated by single cells were less variable than spontaneous events, suggesting that more stereotyped neuronal ensembles were activated, although neither the spatial profiles of fields, nor the identities of interneurone firing were identical for initiated events. The effects of single pyramidal cell on network events are thus mediated by different sequences of interneurone firing. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Temporal morphologic changes in human colorectal carcinomas following xenografting.
Barkla, D. H.; Tutton, P. J.
1983-01-01
The temporal morphologic changes of human colorectal carcinomas following xenografting into immunosuppressed mice were investigated by the use of light and transmission electron microscopy. The results show that colorectal carcinomas undergo a series of morphologic changes during the initial 30-day period following transplantation. During the initial 1-5-day period the majority of tumor cells die, and during the following 5-10-day period the necrotic debris created during the 1-5-day period is removed by host-supplied inflammatory cells. Only small groups of peripherally placed tumor cells survived at the end of the first 10 days. During the 10-20-day period the tumor cell populations of xenografts were reestablished by a morphologically heterogeneous population of tumor cells, and during the 20-30 day period consolidation of this process continued and some xenografts showed macroscopic evidence of growth. The authors hypothesize that human colorectal carcinomas, like the antecedent epithelium, contain subpopulations of undifferentiated cells that give rise to populations of more-differentiated cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:6829710
The Dynamics of HPV Infection and Cervical Cancer Cells.
Asih, Tri Sri Noor; Lenhart, Suzanne; Wise, Steven; Aryati, Lina; Adi-Kusumo, F; Hardianti, Mardiah S; Forde, Jonathan
2016-01-01
The development of cervical cells from normal cells infected by human papillomavirus into invasive cancer cells can be modeled using population dynamics of the cells and free virus. The cell populations are separated into four compartments: susceptible cells, infected cells, precancerous cells and cancer cells. The model system of differential equations also has a free virus compartment in the system, which infect normal cells. We analyze the local stability of the equilibrium points of the model and investigate the parameters, which play an important role in the progression toward invasive cancer. By simulation, we investigate the boundary between initial conditions of solutions, which tend to stable equilibrium point, representing controlled infection, and those which tend to unbounded growth of the cancer cell population. Parameters affected by drug treatment are varied, and their effect on the risk of cancer progression is explored.
Targeting Cell Polarity Machinery to Exhaust Breast Cancer Stem Cells
2017-10-01
resemble normal stem cells, specifically in the ability to infinitely give rise to the bulk of a tumor as the “seed” of the cancer, account for cancer...infinitely give rise to the bulk of a tumor as the “seed” of the cancer, account for cancer initiation, progression, recurrence, and chemo...cell population that can infinitely give rise to the bulk of a tumor as the “seed” of the cancer, account for cancer initiation, progression, radio
Metastatic potential of tumor-initiating cells in solid tumors.
Adhikari, Amit S; Agarwal, Neeraj; Iwakuma, Tomoo
2011-01-01
The lethality of cancer is mainly caused by its properties of metastasis, drug resistance, and subsequent recurrence. Understanding the mechanisms governing these properties and developing novel strategies to overcome them will greatly improve the survival of cancer patients. Recent findings suggest that tumors are comprised of heterogeneous cell populations, and only a small fraction of these are tumorigenic with the ability to self-renew and produce phenotypically diverse tumor cell populations. Cells in this fraction are called tumor-initiating cells (TICs) or cancer stem cells (CSCs). TICs have been identified from many types of cancer. They share several similarities with normal adult stem cells including sphere-forming ability, self-renewability, and expression of stem cell surface markers and transcription factors. TICs have also been proposed to be responsible for cancer metastasis, however, scarce evidence for their metastatic potential has been provided. In this review article, we have attempted to summarize the studies which have examined the metastatic potential of TICs in solid tumors.
Halim, Noor Hanis Abu; Zakaria, Norashikin; Satar, Nazilah Abdul; Yahaya, Badrul Hisham
2016-01-01
Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.
Identification of a new stem cell population that generates Drosophila flight muscles.
Gunage, Rajesh D; Reichert, Heinrich; VijayRaghavan, K
2014-08-18
How myoblast populations are regulated for the formation of muscles of different sizes is an essentially unanswered question. The large flight muscles of Drosophila develop from adult muscle progenitor (AMP) cells set-aside embryonically. The thoracic segments are all allotted the same small AMP number, while those associated with the wing-disc proliferate extensively to give rise to over 2500 myoblasts. An initial amplification occurs through symmetric divisions and is followed by a switch to asymmetric divisions in which the AMPs self-renew and generate post-mitotic myoblasts. Notch signaling controls the initial amplification of AMPs, while the switch to asymmetric division additionally requires Wingless, which regulates Numb expression in the AMP lineage. In both cases, the epidermal tissue of the wing imaginal disc acts as a niche expressing the ligands Serrate and Wingless. The disc-associated AMPs are a novel muscle stem cell population that orchestrates the early phases of adult flight muscle development.
Tome-Garcia, Jessica; Tejero, Rut; Nudelman, German; Yong, Raymund L; Sebra, Robert; Wang, Huaien; Fowkes, Mary; Magid, Margret; Walsh, Martin; Silva-Vargas, Violeta; Zaslavsky, Elena; Friedel, Roland H; Doetsch, Fiona; Tsankova, Nadejda M
2017-05-09
Characterization of non-neoplastic and malignant human stem cell populations in their native state can provide new insights into gliomagenesis. Here we developed a purification strategy to directly isolate EGFR +/- populations from human germinal matrix (GM) and adult subventricular zone autopsy tissues, and from de novo glioblastoma (GBM) resections, enriching for cells capable of binding EGF ligand ( LB EGFR + ), and uniquely compared their functional and molecular properties. LB EGFR + populations in both GM and GBM encompassed all sphere-forming cells and displayed proliferative stem cell properties in vitro. In xenografts, LB EGFR + GBM cells showed robust tumor initiation and progression to high-grade, infiltrative gliomas. Whole-transcriptome sequencing analysis confirmed enrichment of proliferative pathways in both developing and neoplastic freshly isolated EGFR + populations, and identified both unique and shared sets of genes. The ability to prospectively isolate stem cell populations using native ligand-binding capacity opens new doors onto understanding both normal human development and tumor cell biology. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.
Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A
2017-07-07
The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.
Chiba, Tetsuhiro; Kita, Kaoru; Zheng, Yun-Wen; Yokosuka, Osamu; Saisho, Hiromitsu; Iwama, Atsushi; Nakauchi, Hiromitsu; Taniguchi, Hideki
2006-07-01
Recent advances in stem cell biology enable us to identify cancer stem cells in solid tumors as well as putative stem cells in normal solid organs. In this study, we applied side population (SP) cell analysis and sorting to established hepatocellular carcinoma (HCC) cell lines to detect subpopulations that function as cancer stem cells and to elucidate their roles in tumorigenesis. Among four cell lines analyzed, SP cells were detected in Huh7 (0.25%) and PLC/PRF/5 cells (0.80%), but not in HepG2 and Huh6 cells. SP cells demonstrated high proliferative potential and anti-apoptotic properties compared with those of non-SP cells. Immunocytochemistry examination showed that SP fractions contain a large number of cells presenting characteristics of both hepatocyte and cholangiocyte lineages. Non-obese diabetic/severe combined immunodeficiency (NOD/SCID) xenograft transplant experiments showed that only 1 x 10(3) SP cells were sufficient for tumor formation, whereas an injection of 1 x 10(6) non-SP cells did not initiate tumors. Re-analysis of SP cell-derived tumors showed that SP cells generated both SP and non-SP cells and tumor-initiating potential was maintained only in SP cells in serial transplantation. Microarray analysis discriminated a differential gene expression profile between SP and non-SP cells, and several so-called "stemness genes" were upregulated in SP cells in HCC cells. In conclusion, we propose that a minority population, detected as SP cells in HCC cells, possess extreme tumorigenic potential and provide heterogeneity to the cancer stem cell system characterized by distinct hierarchy.
Cancer dormancy and criticality from a game theory perspective.
Wu, Amy; Liao, David; Kirilin, Vlamimir; Lin, Ke-Chih; Torga, Gonzalo; Qu, Junle; Liu, Liyu; Sturm, James C; Pienta, Kenneth; Austin, Robert
2018-01-01
The physics of cancer dormancy, the time between initial cancer treatment and re-emergence after a protracted period, is a puzzle. Cancer cells interact with host cells via complex, non-linear population dynamics, which can lead to very non-intuitive but perhaps deterministic and understandable progression dynamics of cancer and dormancy. We explore here the dynamics of host-cancer cell populations in the presence of (1) payoffs gradients and (2) perturbations due to cell migration. We determine to what extent the time-dependence of the populations can be quantitively understood in spite of the underlying complexity of the individual agents and model the phenomena of dormancy.
The many ways to make a luminal cell and a prostate cancer cell.
Strand, Douglas W; Goldstein, Andrew S
2015-12-01
Research in the area of stem/progenitor cells has led to the identification of multiple stem-like cell populations implicated in prostate homeostasis and cancer initiation. Given that there are multiple cells that can regenerate prostatic tissue and give rise to prostate cancer, our focus should shift to defining the signaling mechanisms that drive differentiation and progenitor self-renewal. In this article, we will review the literature, present the evidence and raise important unanswered questions that will help guide the field forward in dissecting critical mechanisms regulating stem-cell differentiation and tumor initiation. © 2015 Society for Endocrinology.
Harnessing the apoptotic programs in cancer stem-like cells
Wang, Ying-Hua; Scadden, David T
2015-01-01
Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population. PMID:26253117
Brown, Christine E; Starr, Renate; Aguilar, Brenda; Shami, Andrew F; Martinez, Catalina; D'Apuzzo, Massimo; Barish, Michael E; Forman, Stephen J; Jensen, Michael C
2012-04-15
To evaluate IL13Rα2 as an immunotherapeutic target for eliminating glioma stem-like cancer initiating cells (GSC) of high-grade gliomas, with particular focus on the potential of genetically engineered IL13Rα2-specific primary human CD8(+) CTLs (IL13-zetakine(+) CTL) to target this therapeutically resistant glioma subpopulation. A panel of low-passage GSC tumor sphere (TS) and serum-differentiated glioma lines were expanded from patient glioblastoma specimens. These glioblastoma lines were evaluated for expression of IL13Rα2 and for susceptibility to IL13-zetakine(+) CTL-mediated killing in vitro and in vivo. We observed that although glioma IL13Rα2 expression varies between patients, for IL13Rα2(pos) cases this antigen was detected on both GSCs and more differentiated tumor cell populations. IL13-zetakine(+) CTL were capable of efficient recognition and killing of both IL13Rα2(pos) GSCs and IL13Rα2(pos) differentiated cells in vitro, as well as eliminating glioma-initiating activity in an orthotopic mouse tumor model. Furthermore, intracranial administration of IL13-zetakine(+) CTL displayed robust antitumor activity against established IL13Rα2(pos) GSC TS-initiated orthotopic tumors in mice. Within IL13Rα2 expressing high-grade gliomas, this receptor is expressed by GSCs and differentiated tumor populations, rendering both targetable by IL13-zetakine(+) CTLs. Thus, our results support the potential usefullness of IL13Rα2-directed immunotherapeutic approaches for eradicating therapeutically resistant GSC populations. ©2012 AACR.
NASA Astrophysics Data System (ADS)
Lambrou, George I.; Chatziioannou, Aristotelis; Vlahopoulos, Spiros; Moschovi, Maria; Chrousos, George P.
Biological systems are dynamic and possess properties that depend on two key elements: initial conditions and the response of the system over time. Conceptualizing this on tumor models will influence conclusions drawn with regard to disease initiation and progression. Alterations in initial conditions dynamically reshape the properties of proliferating tumor cells. The present work aims to test the hypothesis of Wolfrom et al., that proliferation shows evidence for deterministic chaos in a manner such that subtle differences in the initial conditions give rise to non-linear response behavior of the system. Their hypothesis, tested on adherent Fao rat hepatoma cells, provides evidence that these cells manifest aperiodic oscillations in their proliferation rate. We have tested this hypothesis with some modifications to the proposed experimental setup. We have used the acute lymphoblastic leukemia cell line CCRF-CEM, as it provides an excellent substrate for modeling proliferation dynamics. Measurements were taken at time points varying from 24h to 48h, extending the assayed populations beyond that of previous published reports that dealt with the complex dynamic behavior of animal cell populations. We conducted flow cytometry studies to examine the apoptotic and necrotic rate of the system, as well as DNA content changes of the cells over time. The cells exhibited a proliferation rate of nonlinear nature, as this rate presented oscillatory behavior. The obtained data have been fit in known models of growth, such as logistic and Gompertzian growth.
Cancer Stem Cells: Dynamic Entities in an Ever-Evolving Paradigm.
Lopez-Bertoni, Hernando; Li, Yunqing; Laterra, John
2015-11-01
The cancer stem cell (CSC) hypothesis postulates that there is a hierarchy of cellular differentiation within cancers and that the bulk population of tumor cells is derived from a relatively small population of multi-potent neoplastic stem-like cells (CSCs). This tumor-initiating cell population plays an important role in maintaining tumor growth through their unlimited self-renewal, therapeutic resistance, and capacity to propagate tumors through asymmetric cell division. Recent findings from multiple laboratories show that cancer progenitor cells have the capacity to de-differentiate and acquire a stem-like phenotype in response to either genetic manipulation or environmental cues. These findings suggest that CSCs and relatively differentiated progenitors coexist in dynamic equilibrium and are subject to bidirectional conversion. In this review, we discuss emerging concepts regarding the stem-like phenotype, its acquisition by cancer progenitor cells, and the molecular mechanisms involved. Understanding the dynamic equilibrium between CSCs and cancer progenitor cells is critical for the development of novel therapeutic strategies that focus on depleting tumors of their tumor-propagating cell population.
Metformin selectively affects human glioblastoma tumor-initiating cell viability
Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio
2013-01-01
Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107
Logsdon, Michelle M; Aldridge, Bree B
2018-01-01
Model bacteria, such as E. coli and B. subtilis , tightly regulate cell cycle progression to achieve consistent cell size distributions and replication dynamics. Many of the hallmark features of these model bacteria, including lateral cell wall elongation and symmetric growth and division, do not occur in mycobacteria. Instead, mycobacterial growth is characterized by asymmetric polar growth and division. This innate asymmetry creates unequal birth sizes and growth rates for daughter cells with each division, generating a phenotypically heterogeneous population. Although the asymmetric growth patterns of mycobacteria lead to a larger variation in birth size than typically seen in model bacterial populations, the cell size distribution is stable over time. Here, we review the cellular mechanisms of growth, division, and cell cycle progression in mycobacteria in the face of asymmetry and inherent heterogeneity. These processes coalesce to control cell size. Although Mycobacterium smegmatis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) utilize a novel model of cell size control, they are similar to previously studied bacteria in that initiation of DNA replication is a key checkpoint for cell division. We compare the regulation of DNA replication initiation and strategies used for cell size homeostasis in mycobacteria and model bacteria. Finally, we review the importance of cellular organization and chromosome segregation relating to the physiology of mycobacteria and consider how new frameworks could be applied across the wide spectrum of bacterial diversity.
USDA-ARS?s Scientific Manuscript database
The human population is growing and, globally, we must meet the challenge of increased protein needs required to feed this population. Single cell proteins (SCP), when coupled to aquaculture production, offers a means to ensure future protein needs can be met without direct competition with food for...
The founder-cell transcriptome in the Arabidopsis apetala1 cauliflower inflorescence meristem.
Frerichs, Anneke; Thoma, Rahere; Abdallah, Ali Taleb; Frommolt, Peter; Werr, Wolfgang; Chandler, John William
2016-11-03
Although the pattern of lateral organ formation from apical meristems establishes species-specific plant architecture, the positional information that confers cell fate to cells as they transit to the meristem flanks where they differentiate, remains largely unknown. We have combined fluorescence-activated cell sorting and RNA-seq to characterise the cell-type-specific transcriptome at the earliest developmental time-point of lateral organ formation using DORNRÖSCHEN-LIKE::GFP to mark founder-cell populations at the periphery of the inflorescence meristem (IM) in apetala1 cauliflower double mutants, which overproliferate IMs. Within the lateral organ founder-cell population at the inflorescence meristem, floral primordium identity genes are upregulated and stem-cell identity markers are downregulated. Additional differentially expressed transcripts are involved in polarity generation and boundary formation, and in epigenetic and post-translational changes. However, only subtle transcriptional reprogramming within the global auxin network was observed. The transcriptional network of differentially expressed genes supports the hypothesis that lateral organ founder-cell specification involves the creation of polarity from the centre to the periphery of the IM and the establishment of a boundary from surrounding cells, consistent with bract initiation. However, contrary to the established paradigm that sites of auxin response maxima pre-pattern lateral organ initiation in the IM, auxin response might play a minor role in the earliest stages of lateral floral initiation.
Influence of Algae Age and Population on the Response to TiO₂ Nanoparticles.
Metzler, David M; Erdem, Ayca; Huang, Chin Pao
2018-03-25
This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO₂ NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3-4.2 × 10⁶ cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO₂ NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae.
Influence of Algae Age and Population on the Response to TiO2 Nanoparticles
Metzler, David M.; Erdem, Ayca; Huang, Chin Pao
2018-01-01
This work shows the influence of algae age (at the time of the exposure) and the initial algae population on the response of green algae Raphidocelis subcapitata to titanium dioxide nanoparticles (TiO2 NPs). The different algae age was obtained by changes in flow rate of continually stirred tank reactors prior to NP exposure. Increased algae age led to a decreased growth, variations in chlorophyll content, and an increased lipid peroxidation. Increased initial algae population (0.3−4.2 × 106 cells/mL) at a constant NP concentration (100 mg/L) caused a decline in the growth of algae. With increased initial algae population, the lipid peroxidation and chlorophyll both initially decreased and then increased. Lipid peroxidation had 4× the amount of the control at high and low initial population but, at mid-ranged initial population, had approximately half the control value. Chlorophyll a results also showed a similar trend. These results indicate that the physiological state of the algae is important for the toxicological effect of TiO2 NPs. The condition of algae and exposure regime must be considered in detail when assessing the toxicological response of NPs to algae. PMID:29587381
Evolutionary Game Theory Analysis of Tumor Progression
NASA Astrophysics Data System (ADS)
Wu, Amy; Liao, David; Sturm, James; Austin, Robert
2014-03-01
Evolutionary game theory applied to two interacting cell populations can yield quantitative prediction of the future densities of the two cell populations based on the initial interaction terms. We will discuss how in a complex ecology that evolutionary game theory successfully predicts the future densities of strains of stromal and cancer cells (multiple myeloma), and discuss the possible clinical use of such analysis for predicting cancer progression. Supported by the National Science Foundation and the National Cancer Institute.
Differential Regulation of Mouse B Cell Development by Transforming Growth Factor β1
Kaminski, Denise A.; Letterio, John J.; Burrows, Peter D.
2002-01-01
Transforming growth factor β (TGFβ) can inhibit the in vitro proliferation, survival and differentiation of B cell progenitors, mature B lymphocytes and plasma cells. Here we demonstrate unexpected, age-dependent reductions in the bone marrow (BM) B cell progenitors and immature B cells in TGFβ1-/- mice. To evaluate TGFβ responsiveness during normal B lineage development, cells were cultured in interleukin 7 (IL7)±TGFβ. Picomolar doses of TGFβ1 reduced pro-B cell recoveries at every timepoint. By contrast, the pre-B cells were initially reduced in number, but subsequently increased compared to IL7 alone, resulting in a 4-fold increase in the growth rate for the pre-B cell population. Analysis of purified BM sub-populations indicated that pro-B cells and the earliest BP1- pre-B cells were sensitive to the inhibitory effects of TGFβ1. However, the large BP1+ pre-B cells, although initially reduced, were increased in number at days 5 and 7 of culture. These results indicate that TGFβ1 is important for normal B cell development in vivo, and that B cell progenitors are differentially affected by the cytokine according to their stage of differentiation. PMID:12739785
Woodruff, Matthew C.; Heesters, Balthasar A.; Herndon, Caroline N.; Groom, Joanna R.; Thomas, Paul G.; Luster, Andrew D.; Turley, Shannon J.
2014-01-01
Dendritic cells (DCs) are well established as potent antigen-presenting cells critical to adaptive immunity. In vaccination approaches, appropriately stimulating lymph node–resident DCs (LNDCs) is highly relevant to effective immunization. Although LNDCs have been implicated in immune response, their ability to directly drive effective immunity to lymph-borne antigen remains unclear. Using an inactive influenza vaccine model and whole node imaging approaches, we observed surprising responsiveness of LNDC populations to vaccine arrival resulting in a transnodal repositioning into specific antigen collection sites within minutes after immunization. Once there, LNDCs acquired viral antigen and initiated activation of viral specific CD4+ T cells, resulting in germinal center formation and B cell memory in the absence of skin migratory DCs. Together, these results demonstrate an unexpected stimulatory role for LNDCs where they are capable of rapidly locating viral antigen, driving early activation of T cell populations, and independently establishing functional immune response. PMID:25049334
Rodrigues, Cláudia M; Matias, Bruna F; Murta, Eddie F C; Michelin, Márcia A
2011-01-01
Cancer stems from mutations in specific genes that induce uncontrolled cell proliferation. Dendritic cells (DCs) are important immunologic cells and play a crucial role in the induction of an antitumour response. We examined the immune response mediated by T lymphocytes, helper T cells, cytotoxic T cells, and regulatory T cells, as well as the cytokines [interleukin (IL)-2, IL-12, interferon (IFN)-γ, tumour necrosis factor (TNF)-α and IL-10], produced by these cell populations, in cancer patients (N = 7) undergoing immunotheraphy with autologous DCs. We observed an initial increase in T helper cells (CD4+) expressing IL-2, IFN-γ, IL-12, TNF-α, and IL-10 after initiation of treatment, with statistically significant for the cytokines IL-2, TNF-α and IL-10. A similar significant effect was observed for IL-2-expressing cytotoxic T cells (CD8+). The percentage of total T cells (CD3+) remained elevated throughout immunotherapy. Regulatory T cells (CD25+/FOXP3+) only showed high percentage of their maximum value when analyzed the pretreatment levels, with statistically significant. Immunotherapy with DCs stimulated the immune response, as evidenced by an increase in percent fluorescence of most cell populations investigated during the specified treatment period.
Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirano; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio
2013-01-01
Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.
Wang, Nidan; Li, Yijia; Han, Yang; Xie, Jing; Li, Taisheng
2017-06-01
The association between baseline human immunodeficiency virus (HIV) sequence diversity and HIV DNA decay after the initiation of antiretroviral therapy (ART) remains uncharacterized during the early stages of HIV infection. Samples were obtained from a cohort of 17 patients with early HIV infection (<6 months after infection) who initiated ART, and the C2V5 region of the HIV-1 envelope (env) gene was amplified via single genome amplification (SGA) to determine the peripheral plasma HIV quasispecies. We categorized HIV quasispecies into two groups according to baseline viral sequence genetic distance, which was determined by the Poisson-Fitter tool. Total HIV DNA in peripheral blood mononuclear cells (PBMCs), viral load, and T cell subsets were measured prior to and after the initiation of ART. The median SGA sequence number was 17 (range 6-28). At baseline, we identified 7 patients with homogeneous viral populations (designated the Homogeneous group) and 10 patients with heterogeneous viral populations (designated the Heterogeneous group) based on SGA sequences. Both groups exhibited similar HIV DNA decay rates during the first 6 months of ART (P > 0.99), but the Homogenous group experienced more prominent decay than the Heterogeneous group after 6 months (P = 0.037). The Heterogeneous group had higher CD4 cell counts after ART initiation; however, both groups had comparable recovery in terms of CD4/CD8 ratios and CD8 T cell activation levels. Viral population homogeneity upon the initiation of ART is associated with a decrease in HIV DNA levels during ART. J. Med. Virol. 89:982-988, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Long-Boyle, Janel R; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J; Dvorak, Christopher C
2015-04-01
Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared with conventional dose guidelines. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration at steady state) and implement a simple model-based tool for the initial dosing of busulfan in children undergoing hematopoietic cell transplantation. Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone hematopoietic cell transplantation with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the nonlinear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Modeling of busulfan time-concentration data indicates that busulfan clearance displays nonlinearity in children, decreasing up to approximately 20% between the concentrations of 250-2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan clearance were actual body weight and age. The percentage of individuals achieving a therapeutic concentration at steady state was significantly higher in subjects receiving initial doses based on the population PK model (81%) than in historical controls dosed on conventional guidelines (52%) (P = 0.02). When compared with the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults.
Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf
2015-11-24
DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance.
Rohnalter, Verena; Roth, Katrin; Finkernagel, Florian; Adhikary, Till; Obert, Julia; Dorzweiler, Kristina; Bensberg, Maike; Müller-Brüsselbach, Sabine; Müller, Rolf
2015-01-01
DNA-damaging drugs induce a plethora of molecular and cellular alterations in tumor cells, but their interrelationship is largely obscure. Here, we show that carboplatin treatment of human ovarian carcinoma SKOV3 cells triggers an ordered sequence of events, which precedes the emergence of mitotic chemoresistant cells. The initial phase of cell death after initiation of carboplatin treatment is followed around day 14 by the emergence of a mixed cell population consisting of cycling, cell cycle-arrested and senescent cells. At this stage, giant cells make up >80% of the cell population, p21 (CDKN1A) in strongly induced, and cell numbers remain nearly static. Subsequently, cell death decreases, p21 expression drops to a low level and cell divisions increase, including regular mitoses of giant cells and depolyploidization by multi-daughter divisions. These events are accompanied by the upregulation of stemness markers and a pro-inflammatory secretory phenotype, peaking after approximately 14 days of treatment. At the same time the cells initiate epithelial to mesenchymal transition, which over the subsequent weeks continuously increases, concomitantly with the emergence of highly proliferative, migratory, dedifferentiated, pro-inflammatory and chemoresistant cells (SKOV3-R). These cells are anchorage-independent and grow in a 3D collagen matrix, while cells on day 14 do not survive under these conditions, indicating that SKOV3-R cells were generated thereafter by the multi-stage process described above. This process was essentially recapitulated with the ovarian carcinoma cell line IGROV-1. Our observations suggest that transitory cells characterized by polyploidy, features of stemness and a pro-inflammatory secretory phenotype contribute to the acquisition of chemoresistance. PMID:26503466
A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease
Zhou, Vivian; Agle, Kimberle; Chen, Xiao; Beres, Amy; Komorowski, Richard; Belle, Ludovic; Taylor, Carolyn; Zhu, Fenlu; Haribhai, Dipica; Williams, Calvin B.; Verbsky, James; Blumenschein, Wendy; Sadekova, Svetlana; Bowman, Eddie; Ballantyne, Christie; Weaver, Casey; Serody, David A.; Vincent, Benjamin; Serody, Jonathan; Cua, Daniel J.; Drobyski, William R.
2016-01-01
Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers. PMID:27500496
Population differences in the rate of proliferation of international HapMap cell lines.
Stark, Amy L; Zhang, Wei; Zhou, Tong; O'Donnell, Peter H; Beiswanger, Christine M; Huang, R Stephanie; Cox, Nancy J; Dolan, M Eileen
2010-12-10
The International HapMap Project is a resource for researchers containing genotype, sequencing, and expression information for EBV-transformed lymphoblastoid cell lines derived from populations across the world. The expansion of the HapMap beyond the four initial populations of Phase 2, referred to as Phase 3, has increased the sample number and ethnic diversity available for investigation. However, differences in the rate of cellular proliferation between the populations can serve as confounders in phenotype-genotype studies using these cell lines. Within the Phase 2 populations, the JPT and CHB cell lines grow faster (p < 0.0001) than the CEU or YRI cell lines. Phase 3 YRI cell lines grow significantly slower than Phase 2 YRI lines (p < 0.0001), with no widespread genetic differences based on common SNPs. In addition, we found significant growth differences between the cell lines in the Phase 2 ASN populations and the Han Chinese from the Denver metropolitan area panel in Phase 3 (p < 0.0001). Therefore, studies that separate HapMap panels into discovery and replication sets must take this into consideration. Copyright © 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Curtis, S. B.; Luebeck, E. G.; Hazelton, W. D.; Moolgavkar, S. H.
When applied to the Colorado Plateau miner population, the two-stage clonal expansion (TSCE) model of radiation carcinogenesis predicts that radiation-induced promotion dominates radiation-induced initiation. Thus, according to the model, at least for alpha-particle radiation from inhaled radon daughters, lung cancer induction over long periods of protracted irradiation appears to be dominated by radiation-induced modification of the proliferation kinetics of already-initiated cells rather than by direct radiation-induced initiation (i.e., mutation) of normal cells. We explore the possible consequences of this result for radiation exposures to space travelers on long missions. Still unknown is the LET dependence of this effect. Speculations of the cause of this phenomenon include the suggestion that modification of cell kinetics is caused by a "bystander" effect, i.e., the traversal of normal cells by alpha particles, followed by the signaling of these cells to nearby initiated cells which then modify their proliferation kinetics.
Rodrigues, Cláudia M.; Matias, Bruna F.; Murta, Eddie F.C.; Michelin, Márcia A.
2011-01-01
Introduction: Cancer stems from mutations in specific genes that induce uncontrolled cell proliferation. Dendritic cells (DCs) are important immunologic cells and play a crucial role in the induction of an antitumour response. Patients and methods: We examined the immune response mediated by T lymphocytes, helper T cells, cytotoxic T cells, and regulatory T cells, as well as the cytokines [interleukin (IL)-2, IL-12, interferon (IFN)-γ, tumour necrosis factor (TNF)-α and IL-10], produced by these cell populations, in cancer patients (N = 7) undergoing immunotheraphy with autologous DCs. Results: We observed an initial increase in T helper cells (CD4+) expressing IL-2, IFN-γ, IL-12, TNF-α, and IL-10 after initiation of treatment, with statistically significant for the cytokines IL-2, TNF-α and IL-10. A similar significant effect was observed for IL-2-expressing cytotoxic T cells (CD8+). The percentage of total T cells (CD3+) remained elevated throughout immunotherapy. Regulatory T cells (CD25+/FOXP3+) only showed high percentage of their maximum value when analyzed the pretreatment levels, with statistically significant. Conclusion: Immunotherapy with DCs stimulated the immune response, as evidenced by an increase in percent fluorescence of most cell populations investigated during the specified treatment period. PMID:21603246
EFFECTS OF PLATING DENSITY AND CULTURE TIME ON BONE MARROW STROMAL CELL CHARACTERISTICS
Neuhuber, Birgit; Swanger, Sharon A.; Howard, Linda; Mackay, Alastair; Fischer, Itzhak
2008-01-01
Objective Bone marrow stromal cells (MSC) are multipotent adult stem cells that have emerged as promising candidates for cell therapy in disorders including cardiac infarction, stroke and spinal cord injury. While harvesting methods used by different laboratories are relatively standard, MSC culturing protocols vary widely. This study is aimed at evaluating the effects of initial plating density and total time in culture on proliferation, cell morphology, and differentiation potential of heterogeneous MSC cultures and more homogeneous cloned subpopulations. Methods Rat MSC were plated at 20, 200 and 2000 cells/cm2 and grown to 50% confluency. The numbers of population doublings and doubling times were determined within and across multiple passages. Changes in cell morphology and differentiation potential to adipogenic, chondrogenic, and osteogenic lineages were evaluated and compared among early, intermediate and late passages, as well as between heterogeneous and cloned MSC populations. Results We found optimal cell growth at a plating density of 200 cells/cm2. Cultures derived from all plating densities developed increased proportions of flat cells over time. Assays for chondrogenesis, osteogenesis and adipogenesis showed that heterogeneous MSC plated at all densities sustained the potential for all three mesenchymal phenotypes through at least passage 5; the flat subpopulation lost adipogenic and chondrogenic potential. Conclusion Our findings suggest that the initial plating density is not critical for maintaining a well-defined, multipotent MSC population. Time in culture, however, affects cell characteristics, suggesting that cell expansion should be limited, especially until the specific characteristics of different MSC subpopulations are better understood. PMID:18495329
NASA Astrophysics Data System (ADS)
Muzzio, N. E.; Carballido, M.; Pasquale, M. A.; González, P. H.; Azzaroni, O.; Arvia, A. J.
2018-07-01
The epidermal growth factor (EGF) plays a key role in physiological and pathological processes. This work reports on the influence of EGF concentration (c EGF) on the modulation of individual cell phenotype and cell colony kinetics with the aim of perturbing the colony front roughness fluctuations. For this purpose, HeLa cell colonies that remain confluent along the whole expansion process with initial quasi-radial geometry and different initial cell populations, as well as colonies with initial quasi-linear geometry and large cell population, are employed. Cell size and morphology as well as its adhesive characteristics depend on c EGF. Quasi-radial colonies (QRC) expansion kinetics in EGF-containing medium exhibits a complex behavior. Namely, at the first stages of growth, the average QRC radius evolution can be described by a t 1/2 diffusion term coupled with exponential growth kinetics up to a critical time, and afterwards a growth regime approaching constant velocity. The extension of each regime depends on c EGF and colony history. In the presence of EGF, the initial expansion of quasi-linear colonies (QLCs) also exhibits morphological changes at both the cell and the colony levels. In these cases, the cell density at the colony border region becomes smaller than in the absence of EGF and consequently, the extension of the effective rim where cell duplication and motility contribute to the colony expansion increases. QLC front displacement velocity increases with c EGF up to a maximum value in the 2–10 ng ml‑1 range. Individual cell velocity is increased by EGF, and an enhancement in both the persistence and the ballistic characteristics of cell trajectories can be distinguished. For an intermediate c EGF, collective cell displacements contribute to the roughening of the colony contours. This global dynamics becomes compatible with the standard Kardar–Parisi–Zhang growth model, although a faster colony roughness saturation in EGF-containing medium than in the control medium is observed.
Woodward, Wendy Ann; Bristow, Robert Glen
2009-04-01
Mounting evidence suggests that parallels between normal stem cell biology and cancer biology may provide new targets for cancer therapy. Prospective identification and isolation of cancer-initiating cells from solid tumors has promoted the descriptive and functional identification of these cells allowing for characterization of their response to contemporary cancer therapies, including chemotherapy and radiation. In clinical radiation therapy, the failure to clinically eradicate all tumor cells (eg, a lack of response, partial response, or nonpermanent complete response by imaging) is considered a treatment failure. As such, biologists have explored the characteristics of the small population of clonogenic cancer cells that can survive and are capable of repopulating the tumor after subcurative therapy. Herein, we discuss the convergence of these clonogenic studies with contemporary radiosensitivity studies that use cell surface markers to identify cancer-initiating cells. Implications for and uncertainties regarding incorporation of these concepts into the practice of modern radiation oncology are discussed.
CD271 Defines a Stem Cell-Like Population in Hypopharyngeal Cancer
Imai, Takayuki; Tamai, Keiichi; Oizumi, Sayuri; Oyama, Kyoko; Yamaguchi, Kazunori; Sato, Ikuro; Satoh, Kennichi; Matsuura, Kazuto; Saijo, Shigeru; Sugamura, Kazuo; Tanaka, Nobuyuki
2013-01-01
Cancer stem cells contribute to the malignant phenotypes of a variety of cancers, but markers to identify human hypopharyngeal cancer (HPC) stem cells remain poorly understood. Here, we report that the CD271+ population sorted from xenotransplanted HPCs possesses an enhanced tumor-initiating capability in immunodeficient mice. Tumors generated from the CD271+ cells contained both CD271+ and CD271− cells, indicating that the population could undergo differentiation. Immunohistological analyses of the tumors revealed that the CD271+ cells localized to a perivascular niche near CD34+ vasculature, to invasive fronts, and to the basal layer. In accordance with these characteristics, a stemness marker, Nanog, and matrix metalloproteinases (MMPs), which are implicated in cancer invasion, were significantly up-regulated in the CD271+ compared to the CD271− cell population. Furthermore, using primary HPC specimens, we demonstrated that high CD271 expression was correlated with a poor prognosis for patients. Taken together, our findings indicate that CD271 is a novel marker for HPC stem-like cells and for HPC prognosis. PMID:23626764
Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios.
Hoppe, Philipp S; Schwarzfischer, Michael; Loeffler, Dirk; Kokkaliaris, Konstantinos D; Hilsenbeck, Oliver; Moritz, Nadine; Endele, Max; Filipczyk, Adam; Gambardella, Adriana; Ahmed, Nouraiz; Etzrodt, Martin; Coutu, Daniel L; Rieger, Michael A; Marr, Carsten; Strasser, Michael K; Schauberger, Bernhard; Burtscher, Ingo; Ermakova, Olga; Bürger, Antje; Lickert, Heiko; Nerlov, Claus; Theis, Fabian J; Schroeder, Timm
2016-07-14
The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic-erythroid and granulocytic-monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic-erythroid versus granulocytic-monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.
Distinctive properties of metastasis-initiating cells
Celià-Terrassa, Toni; Kang, Yibin
2016-01-01
Primary tumors are known to constantly shed a large number of cancer cells into systemic dissemination, yet only a tiny fraction of these cells is capable of forming overt metastases. The tremendous rate of attrition during the process of metastasis implicates the existence of a rare and unique population of metastasis-initiating cells (MICs). MICs possess advantageous traits that may originate in the primary tumor but continue to evolve during dissemination and colonization, including cellular plasticity, metabolic reprogramming, the ability to enter and exit dormancy, resistance to apoptosis, immune evasion, and co-option of other tumor and stromal cells. Better understanding of the molecular and cellular hallmarks of MICs will facilitate the development and deployment of novel therapeutic strategies. PMID:27083997
Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?
Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia
2010-01-01
The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420
Celià-Terrassa, Toni; Meca-Cortés, Óscar; Mateo, Francesca; Martínez de Paz, Alexia; Rubio, Nuria; Arnal-Estapé, Anna; Ell, Brian J.; Bermudo, Raquel; Díaz, Alba; Guerra-Rebollo, Marta; Lozano, Juan José; Estarás, Conchi; Ulloa, Catalina; ρlvarez-Simón, Daniel; Milà, Jordi; Vilella, Ramón; Paciucci, Rosanna; Martínez-Balbás, Marian; García de Herreros, Antonio; Gomis, Roger R.; Kang, Yibin; Blanco, Jerónimo; Fernández, Pedro L.; Thomson, Timothy M.
2012-01-01
Malignant progression in cancer requires populations of tumor-initiating cells (TICs) endowed with unlimited self renewal, survival under stress, and establishment of distant metastases. Additionally, the acquisition of invasive properties driven by epithelial-mesenchymal transition (EMT) is critical for the evolution of neoplastic cells into fully metastatic populations. Here, we characterize 2 human cellular models derived from prostate and bladder cancer cell lines to better understand the relationship between TIC and EMT programs in local invasiveness and distant metastasis. The model tumor subpopulations that expressed a strong epithelial gene program were enriched in highly metastatic TICs, while a second subpopulation with stable mesenchymal traits was impoverished in TICs. Constitutive overexpression of the transcription factor Snai1 in the epithelial/TIC-enriched populations engaged a mesenchymal gene program and suppressed their self renewal and metastatic phenotypes. Conversely, knockdown of EMT factors in the mesenchymal-like prostate cancer cell subpopulation caused a gain in epithelial features and properties of TICs. Both tumor cell subpopulations cooperated so that the nonmetastatic mesenchymal-like prostate cancer subpopulation enhanced the in vitro invasiveness of the metastatic epithelial subpopulation and, in vivo, promoted the escape of the latter from primary implantation sites and accelerated their metastatic colonization. Our models provide new insights into how dynamic interactions among epithelial, self-renewal, and mesenchymal gene programs determine the plasticity of epithelial TICs. PMID:22505459
NASA Technical Reports Server (NTRS)
Dugan, Lawrence C.; Bedford, Joel S.
2003-01-01
Radiation-induced genomic instability has been proposed as a very early, if not an initiating, step in radiation carcinogenesis. Numerous studies have established the occurrence of radiation-induced chromosomal instability in various cells of both human and rodent origin. In many of these studies, however, the cells were not "normal" initially, and in many cases they involved tumor-derived cell lines. The phenomenon clearly would be of even greater interest if it were shown to occur generally in cells that are normal at the outset, rather than cells that may have been "selected" because of a pre-existing susceptibility to induced instability. As a test of the generality of the phenomenon, we studied low-passage normal diploid human fibroblasts (AG1521A) to determine whether they are susceptible to the induction of chromosomal instability in the progeny of surviving cells after exposure in G(0) to low- and high-LET radiation. Cytogenetic assays for instability were performed on both mixed populations of cells and clones of cells surviving exposure. We found no evidence for the induction of such instability as a result of radiation exposure, though we observed a senescence-related chromosomal instability in the progeny of both irradiated and unirradiated cell populations. Copyright 2003 by Radiation Research Society.
Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells.
Saijo, Atsuro; Goto, Hisatsugu; Nakano, Mayuri; Mitsuhashi, Atsushi; Aono, Yoshinori; Hanibuchi, Masaki; Ogawa, Hirohisa; Uehara, Hisanori; Kondo, Kazuya; Nishioka, Yasuhiko
2018-05-01
Cancer stem cells (CSCs) represent a minor population that have clonal tumor initiation and self-renewal capacity and are responsible for tumor initiation, metastasis, and therapeutic resistance. CSCs reside in niches, which are composed of diverse types of stromal cells and extracellular matrix components. These stromal cells regulate CSC-like properties by providing secreted factors or by physical contact. Fibrocytes are differentiated from bone marrow-derived CD14 + monocytes and have features of both macrophages and fibroblasts. Accumulating evidence has suggested that stromal fibrocytes might promote cancer progression. However, the role of fibrocytes in the CSC niches has not been revealed. We herein report that human fibrocytes enhanced the CSC-like properties of lung cancer cells through secreted factors, including osteopontin, CC-chemokine ligand 18, and plasminogen activator inhibitor-1. The PIK3K/AKT pathway was critical for fibrocytes to mediate the CSC-like functions of lung cancer cells. In human lung cancer specimens, the number of tumor-infiltrated fibrocytes was correlated with high expression of CSC-associated protein in cancer cells. These results suggest that fibrocytes may be a novel cell population that regulates the CSC-like properties of lung cancer cells in the CSC niches. Copyright © 2018. Published by Elsevier B.V.
Reid, D. T.; Reyes, J. L.; McDonald, B. A.; Vo, T.; Reimer, R. A.; Eksteen, B.
2016-01-01
Non-alcoholic fatty liver disease has become the leading liver disease in North America and is associated with the progressive inflammatory liver disease non-alcoholic steatohepatitis (NASH). Considerable effort has been made to understand the role of resident and recruited macrophage populations in NASH however numerous questions remain. Our goal was to characterize the dynamic changes in liver macrophages during the initiation of NASH in a murine model. Using the methionine-choline deficient diet we found that liver-resident macrophages, Kupffer cells were lost early in disease onset followed by a robust infiltration of Ly-6C+ monocyte-derived macrophages that retained a dynamic phenotype. Genetic profiling revealed distinct patterns of inflammatory gene expression between macrophage subsets. Only early depletion of liver macrophages using liposomal clodronate prevented the development of NASH in mice suggesting that Kupffer cells are critical for the orchestration of inflammation during experimental NASH. Increased understanding of these dynamics may allow us to target potentially harmful populations whilst promoting anti-inflammatory or restorative populations to ultimately guide the development of effective treatment strategies. PMID:27454866
Human Uterine Leiomyoma Stem/Progenitor Cells Expressing CD34 and CD49b Initiate Tumors In Vivo
Ono, Masanori; Moravek, Molly B.; Coon, John S.; Navarro, Antonia; Monsivais, Diana; Dyson, Matthew T.; Druschitz, Stacy A.; Malpani, Saurabh S.; Serna, Vanida A.; Qiang, Wenan; Chakravarti, Debabrata; Kim, J. Julie; Bulun, Serdar E.
2015-01-01
Context: Uterine leiomyoma is the most common benign tumor in reproductive-age women. Using a dye-exclusion technique, we previously identified a side population of leiomyoma cells exhibiting stem cell characteristics. However, unless mixed with mature myometrial cells, these leiomyoma side population cells did not survive or grow well in vitro or in vivo. Objective: The objective of this study was to identify cell surface markers to isolate leiomyoma stem/progenitor cells. Design: Real-time PCR screening was used to identify cell surface markers preferentially expressed in leiomyoma side population cells. In vitro colony-formation assay and in vivo tumor-regeneration assay were used to demonstrate functions of leiomyoma stem/progenitor cells. Results: We found significantly elevated CD49b and CD34 gene expression in side population cells compared with main population cells. Leiomyoma cells were sorted into three populations based on the expression of CD34 and CD49b: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b− cells, with the majority of the side population cells residing in the CD34+/CD49b+ fraction. Of these populations, CD34+/CD49b+ cells expressed the lowest levels of estrogen receptor-α, progesterone receptor, and α-smooth muscle actin, but the highest levels of KLF4, NANOG, SOX2, and OCT4, confirming their more undifferentiated status. The stemness of CD34+/CD49b+ cells was also demonstrated by their strongest in vitro colony-formation capacity and in vivo tumor-regeneration ability. Conclusions: CD34 and CD49b are cell surface markers that can be used to enrich a subpopulation of leiomyoma cells possessing stem/progenitor cell properties; this technique will accelerate efforts to develop new therapies for uterine leiomyoma. PMID:25658015
Mitsutake, Norisato; Iwao, Atsuhiko; Nagai, Kazuhiro; Namba, Hiroyuki; Ohtsuru, Akira; Saenko, Vladimir; Yamashita, Shunichi
2007-04-01
There is increasing evidence that cancers contain their own stem-like cells called cancer stem cells (CSCs). A small subset of cells, termed side population (SP), has been identified using flow cytometric analysis. The SP cells have the ability to exclude the DNA binding dye, Hoechst33342, and are highly enriched for stem cells in many kinds of normal tissues. Because CSCs are thought to be drug resistant, SP cells in cancers might contain CSCs. We initially examined the presence of SP cells in several human thyroid cancer cell lines. A small percentage of SP cells were found in ARO (0.25%), FRO (0.1%), NPA (0.06%), and WRO (0.02%) cells but not TPC1 cells. After sorting, the SP cells generated both SP and non-SP cells in culture. The clonogenic ability of SP cells was significantly higher than that of non-SP cells. Moreover, the SP prevalence was dependent on cell density in culture, suggesting that SP cells preferentially survived at lower cell density. Microarray experiment revealed differential gene expression profile between SP and non-SP cells, and several genes related to stemness were up-regulated. However, non-SP population also contained cells that were tumorigenic in nude mice, and non-SP cells generated a small number of SP cells. These results suggest that cancer stem-like cells are partly, but not exclusively, enriched in SP population. Clarifying the key tumorigenic population might contribute to the establishment of a novel therapy for thyroid cancer.
An Empirically Calibrated Model of Cell Fate Decision Following Viral Infection
NASA Astrophysics Data System (ADS)
Coleman, Seth; Igoshin, Oleg; Golding, Ido
The life cycle of the virus (phage) lambda is an established paradigm for the way genetic networks drive cell fate decisions. But despite decades of interrogation, we are still unable to theoretically predict whether the infection of a given cell will result in cell death or viral dormancy. The poor predictive power of current models reflects the absence of quantitative experimental data describing the regulatory interactions between different lambda genes. To address this gap, we are constructing a theoretical model that captures the known interactions in the lambda network. Model assumptions and parameters are calibrated using new single-cell data from our lab, describing the activity of lambda genes at single-molecule resolution. We began with a mean-field model, aimed at exploring the population averaged gene-expression trajectories under different initial conditions. Next, we will develop a stochastic formulation, to capture the differences between individual cells within the population. The eventual goal is to identify how the post-infection decision is driven by the interplay between network topology, initial conditions, and stochastic effects. The insights gained here will inform our understanding of cell fate choices in more complex cellular systems.
Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B.; Igoshin, Oleg A.
2016-01-01
Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher’s equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase–a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics. PMID:27362260
Patra, Pintu; Kissoon, Kimberley; Cornejo, Isabel; Kaplan, Heidi B; Igoshin, Oleg A
2016-06-01
Myxococcus xanthus, a model organism for studies of multicellular behavior in bacteria, moves exclusively on solid surfaces using two distinct but coordinated motility mechanisms. One of these, social (S) motility is powered by the extension and retraction of type IV pili and requires the presence of exopolysaccharides (EPS) produced by neighboring cells. As a result, S motility requires close cell-to-cell proximity and isolated cells do not translocate. Previous studies measuring S motility by observing the colony expansion of cells deposited on agar have shown that the expansion rate increases with initial cell density, but the biophysical mechanisms involved remain largely unknown. To understand the dynamics of S motility-driven colony expansion, we developed a reaction-diffusion model describing the effects of cell density, EPS deposition and nutrient exposure on the expansion rate. Our results show that at steady state the population expands as a traveling wave with a speed determined by the interplay of cell motility and growth, a well-known characteristic of Fisher's equation. The model explains the density-dependence of the colony expansion by demonstrating the presence of a lag phase-a transient period of very slow expansion with a duration dependent on the initial cell density. We propose that at a low initial density, more time is required for the cells to accumulate enough EPS to activate S-motility resulting in a longer lag period. Furthermore, our model makes the novel prediction that following the lag phase the population expands at a constant rate independent of the cell density. These predictions were confirmed by S motility experiments capturing long-term expansion dynamics.
Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J
2016-09-01
Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary.
Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J
2016-01-01
Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary. PMID:27785389
Myers, Julie E; Xia, Qiang; Torian, Lucia V; Irvine, Mary; Harriman, Graham; Sepkowitz, Kent A; Shepard, Colin W
2016-03-01
The evidence has begun to mount for diminishing the frequency of CD4 count testing. To determine whether these observations were applicable to an urban US population, we used New York City (NYC) surveillance data to explore CD4 testing among stable patients in NYC, 2007-2013. We constructed a population-based retrospective open cohort analysis of NYC HIV surveillance data. HIV+ patients aged ≥ 13 years with stable viral suppression (≥ 1 viral load the previous year; all <400 copies per milliliter) and immune status (≥ 1 CD4 the previous year; all ≥ 200 cells per cubic millimeter) entered the cohort the following year beginning January 1, 2007. Each subsequent year, eligible patients not previously included entered the cohort on January 1. Outcomes were annual frequency of CD4 monitoring and probability of maintaining CD4 ≥ 200 cells per cubic millimeter. A multivariable Cox model identified factors associated with maintaining CD4 ≥ 200 cells per cubic millimeter. During 1.9 years of observation (median), 62,039 patients entered the cohort. The mean annual number of CD4 measurements among stable patients was 2.8 and varied little by year or characteristic. Two years after entering, 93.4% and 97.8% of those with initial CD4 350-499 and CD4 ≥ 500 cells per cubic millimeter, respectively, maintained CD4 ≥ 200 cells per cubic millimeter. Compared to those with initial CD4 ≥ 500 cells per cubic millimeter, those with CD4 200-349 cells per cubic millimeter and CD4 350-499 cells per cubic millimeter were more likely to have a CD4 <200 cells per cubic millimeter, controlling for sex, race, age, HIV risk group, and diagnosis year. In a population-based US cohort with well-controlled HIV, the probability of maintaining CD4 ≥ 200 cells per cubic millimeter for ≥ 2 years was >90% among those with initial CD4 ≥ 350 cells per cubic millimeter, suggesting that limited CD4 monitoring in these patients is appropriate.
Laurent, M; Clémancey-Marcille, G; Hollard, D
1980-03-01
Leukaemic human bone marrow and peripheral blood cells were cultured for 25 d in diffusion chambers implanted into cyclophosphamide treated mice. Normal bone marrow cells were cultured simultaneously. These cells were studied both morphologically and functionally (CFU-C). The leukaemic cells behaved heterogeneously, 2 groups being distinguishable in accordance with their initial in vitro growth pattern (1: no growth or microcluster growth. 2: macrocluster growth). Group I showed progressive cellular death with a diminution of granulocytic progenitors and the appearance of a predominantly macrophagic population. This behaviour resembled that of the control group. The initial microcluster growth pattern remained identical throughout the entire culture period. Group 2, after considerable cellular death up to d 5, showed an explosive proliferation of the granulocytic progenitors and incomplete differentiation (up to myelocyte). The initial macrocluster growth pattern remained identical.
Cheeseman, Bevan L.; Zhang, Dongcheng; Binder, Benjamin J.; Newgreen, Donald F.; Landman, Kerry A.
2014-01-01
Cell lineage tracing is a powerful tool for understanding how proliferation and differentiation of individual cells contribute to population behaviour. In the developing enteric nervous system (ENS), enteric neural crest (ENC) cells move and undergo massive population expansion by cell division within self-growing mesenchymal tissue. We show that single ENC cells labelled to follow clonality in the intestine reveal extraordinary and unpredictable variation in number and position of descendant cells, even though ENS development is highly predictable at the population level. We use an agent-based model to simulate ENC colonization and obtain agent lineage tracing data, which we analyse using econometric data analysis tools. In all realizations, a small proportion of identical initial agents accounts for a substantial proportion of the total final agent population. We term these individuals superstars. Their existence is consistent across individual realizations and is robust to changes in model parameters. This inequality of outcome is amplified at elevated proliferation rate. The experiments and model suggest that stochastic competition for resources is an important concept when understanding biological processes which feature high levels of cell proliferation. The results have implications for cell-fate processes in the ENS. PMID:24501272
Network state-dependent inhibition of identified hippocampal CA3 axo-axonic cells in vivo
Tukker, John J; Klausberger, Thomas; Somogyi, Peter
2015-01-01
Hippocampal sharp waves are population discharges initiated by an unknown mechanism in pyramidal cell networks of CA3. Axo-axonic cells (AACs) regulate action potential generation through GABAergic synapses on the axon initial segment. We found that CA3 AACs in anesthetized rats and AACs in freely moving rats stopped firing during sharp waves, when pyramidal cells fire most. AACs fired strongly and rhythmically around the peak of theta oscillations, when pyramidal cells fire at low probability. Distinguishing AACs from other parvalbumin-expressing interneurons by their lack of detectable SATB1 transcription factor immunoreactivity, we discovered a somatic GABAergic input originating from the medial septum that preferentially targets AACs. We recorded septo-hippocampal GABAergic cells that were activated during hippocampal sharp waves and projected to CA3. We hypothesize that inhibition of AACs, and the resulting subcellular redistribution of inhibition from the axon initial segment to other pyramidal cell domains, is a necessary condition for the emergence of sharp waves promoting memory consolidation. PMID:24141313
Diensthuber, Marc; Oshima, Kazuo; Heller, Stefan
2009-06-01
Nonmammalian vertebrates regenerate lost sensory hair cells by means of asymmetric division of supporting cells. Inner ear or lateral line supporting cells in birds, amphibians, and fish consequently serve as bona fide stem cells resulting in high regenerative capacity of hair cell-bearing organs. Hair cell regeneration does not happen in the mammalian cochlea, but cells with proliferative capacity can be isolated from the neonatal cochlea. These cells have the ability to form clonal floating colonies, so-called spheres, when cultured in nonadherent conditions. We noticed that the sphere population derived from mouse cochlear sensory epithelium cells was heterogeneous, consisting of morphologically distinct sphere types, hereby classified as solid, transitional, and hollow. Cochlear sensory epithelium-derived stem/progenitor cells initially give rise to small solid spheres, which subsequently transition into hollow spheres, a change that is accompanied by epithelial differentiation of the majority of sphere cells. Only solid spheres, and to a lesser extent, transitional spheres, appeared to harbor self-renewing stem cells, whereas hollow spheres could not be consistently propagated. Solid spheres contained significantly more rapidly cycling Pax-2-expressing presumptive otic progenitor cells than hollow spheres. Islet-1, which becomes upregulated in nascent sensory patches, was also more abundant in solid than in hollow spheres. Likewise, hair cell-like cells, characterized by the expression of multiple hair cell markers, differentiated in significantly higher numbers in cell populations derived from solid spheres. We conclude that cochlear sensory epithelium cell populations initially give rise to small solid spheres that have self-renewing capacity before they subsequently convert into hollow spheres, a process that is accompanied by loss of stemness and reduced ability to spontaneously give rise to hair cell-like cells. Solid spheres might, therefore, represent the most suitable sphere type for cell-based assays or animal model transplantation studies aimed at development of cell replacement therapies.
USDA-ARS?s Scientific Manuscript database
The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...
Effects of acute hypoxia/acidosis on intracellular pH in differentiating neural progenitor cells.
Nordström, Tommy; Jansson, Linda C; Louhivuori, Lauri M; Akerman, Karl E O
2012-06-21
The response of differentiating mouse neural progenitor cells, migrating out from neurospheres, to conditions simulating ischemia (hypoxia and extracellular or intracellular acidosis) was studied. We show here, by using BCECF and single cell imaging to monitor intracellular pH (pH(i)), that two main populations can be distinguished by exposing migrating neural progenitor cells to low extracellular pH or by performing an acidifying ammonium prepulse. The cells dominating at the periphery of the neurosphere culture, which were positive for neuron specific markers MAP-2, calbindin and NeuN had lower initial resting pH(i) and could also easily be further acidified by lowering the extracellular pH. Moreover, in this population, a more profound acidification was seen when the cells were acidified using the ammonium prepulse technique. However, when the cell population was exposed to depolarizing potassium concentrations no alterations in pH(i) took place in this population. In contrast, depolarization caused an increase in pH(i) (by 0.5 pH units) in the cell population closer to the neurosphere body, which region was positive for the radial cell marker (GLAST). This cell population, having higher resting pH(i) (pH 6.9-7.1) also responded to acute hypoxia. During hypoxic treatment the resting pH(i) decreased by 0.1 pH units and recovered rapidly after reoxygenation. Our results show that migrating neural progenitor cells are highly sensitive to extracellular acidosis and that irreversible damage becomes evident at pH 6.2. Moreover, our results show that a response to acidosis clearly distinguishes two individual cell populations probably representing neuronal and radial cells. Copyright © 2012 Elsevier B.V. All rights reserved.
Transcription termination factor Rho and microbial phenotypic heterogeneity.
Bidnenko, Elena; Bidnenko, Vladimir
2018-06-01
Populations of genetically identical microorganisms exhibit high degree of cell-to-cell phenotypic diversity even when grown in uniform environmental conditions. Heterogeneity is a genetically determined trait, which ensures bacterial adaptation and survival in the ever changing environmental conditions. Fluctuations in gene expression (noise) at the level of transcription initiation largely contribute to cell-to-cell variability within population. Not surprisingly, the analyses of the mechanisms driving phenotypic heterogeneity are mainly focused on the activity of promoters and transcriptional factors. Less attention is currently given to a role of intrinsic and factor-dependent transcription terminators. Here, we discuss recent advances in understanding the regulatory role of the multi-functional transcription termination factor Rho, the major inhibitor of pervasive transcription in bacteria and the emerging global regulator of gene expression. We propose that termination activity of Rho might be among the mechanisms by which cells manage the intensity of transcriptional noise, thus affecting population heterogeneity.
Generation of diverse neuronal subtypes in cloned populations of stem-like cells
Varga, Balázs V; Hádinger, Nóra; Gócza, Elen; Dulberg, Vered; Demeter, Kornél; Madarász, Emília; Herberth, Balázs
2008-01-01
Background The central nervous tissue contains diverse subtypes of neurons with characteristic morphological and physiological features and different neurotransmitter phenotypes. The generation of neurons with defined neurotransmitter phenotypes seems to be governed by factors differently expressed along the anterior-posterior and dorsal-ventral body axes. The mechanisms of the cell-type determination, however, are poorly understood. Selected neuronal phenotypes had been generated from embryonic stem (ES) cells, but similar results were not obtained on more restricted neural stem cells, presumably due to the lack of homogeneous neural stem cell populations as a starting material. Results In the presented work, the establishment of different neurotransmitter phenotypes was investigated in the course of in vitro induced neural differentiation of a one-cell derived neuroectodermal cell line, in conjunction with the activation of various region-specific genes. For comparison, similar studies were carried out on the R1 embryonic stem (ES) and P19 multipotent embryonic carcinoma (EC) cells. In response to a short treatment with all-trans retinoic acid, all cell lines gave rise to neurons and astrocytes. Non-induced neural stem cells and self-renewing cells persisting in differentiated cultures, expressed "stemness genes" along with early embryonic anterior-dorsal positional genes, but did not express the investigated CNS region-specific genes. In differentiating stem-like cell populations, on the other hand, different region-specific genes, those expressed in non-overlapping regions along the body axes were activated. The potential for diverse regional specifications was induced in parallel with the initiation of neural tissue-type differentiation. In accordance with the wide regional specification potential, neurons with different neurotransmitter phenotypes developed. Mechanisms inherent to one-cell derived neural stem cell populations were sufficient to establish glutamatergic and GABAergic neuronal phenotypes but failed to manifest cathecolaminergic neurons. Conclusion The data indicate that genes involved in positional determination are activated along with pro-neuronal genes in conditions excluding any outside influences. Interactions among progenies of one cell derived neural stem cells are sufficient for the activation of diverse region specific genes and initiate different routes of neuronal specification. PMID:18808670
Bychkovskaia, I B; Fedortseva, R F
2014-01-01
The study presents the results of many-years research conducted using biological objects of different organization level. It demonstrates special species-nonspecific form of weak external signals negative effect to cells life expectancy reduction caused by program damage of cells populations. This effect is detected after weak radiation, radio-chemical and thermal influences. It leads to faster extinction of postmitotic populations which can be a reason for life expectancy reduction of multicellular organisms. A possibility of such effect inheritance in the asexual and sexual reproduction is shown. Epigenetic mechanisms of this phenomenon are assumed.
Phenotypic bistability in Escherichia coli's central carbon metabolism
Kotte, Oliver; Volkmer, Benjamin; Radzikowski, Jakub L; Heinemann, Matthias
2014-01-01
Fluctuations in intracellular molecule abundance can lead to distinct, coexisting phenotypes in isogenic populations. Although metabolism continuously adapts to unpredictable environmental changes, and although bistability was found in certain substrate-uptake pathways, central carbon metabolism is thought to operate deterministically. Here, we combine experiment and theory to demonstrate that a clonal Escherichia coli population splits into two stochastically generated phenotypic subpopulations after glucose-gluconeogenic substrate shifts. Most cells refrain from growth, entering a dormant persister state that manifests as a lag phase in the population growth curve. The subpopulation-generating mechanism resides at the metabolic core, overarches the metabolic and transcriptional networks, and only allows the growth of cells initially achieving sufficiently high gluconeogenic flux. Thus, central metabolism does not ensure the gluconeogenic growth of individual cells, but uses a population-level adaptation resulting in responsive diversification upon nutrient changes. PMID:24987115
Oncogenic transformation through the cell cycle and the LET dependent inverse dose rate effect
NASA Technical Reports Server (NTRS)
Geard, C. R.; Miller, R. C.; Brenner, D. J.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)
1994-01-01
Synchronised populations of mouse C3H/10T-1/2 cells were obtained by a stringent mitotic dislodgment procedure. Mitotic cells rapidly attach and progress sequentially through the cell cycle. Irradiation (3 Gy of X rays) was carried out at intervals from 0 to 18 h after initiating cell cycle progression of the mitotic cells. Oncogenic transformation was enhanced 10-fold over cells irradiated soon after replating (G1 and S phases) for cells in a near 2 h period corresponding to cells in G2 phase but not in mitosis. The cell surviving fraction had a 2-1/2-fold variation with resistant peaks corresponding to the late G1 and late S phases. These findings provide experimental support for the hypothesis initiated by Rossi and Kellerer and developed by Brenner and Hall to explain the LET dependent inverse dose rate effect for oncogenic transformation.
Development of a Model System for Tick-Borne Flavivirus Persistence in HEK 293T Cells
Mlera, Luwanika; Offerdahl, Danielle K.; Martens, Craig; Porcella, Stephen F.; Melik, Wessam
2015-01-01
ABSTRACT We devised a model system to study persistent infection by the tick-borne flavivirus Langat virus (LGTV) in 293T cells. Infection with a molecularly cloned LGTV strain produced an acute lytic crisis that left few surviving cells. The culture was repopulated by cells that were ~90% positive for LGTV E protein, thus initiating a persistent infection that was maintained for at least 35 weeks without additional lytic crises. Staining of cells for viral proteins and ultrastructural analysis revealed only minor differences from the acute phase of infection. Infectious LGTV decreased markedly over the study period, but the number of viral genomes remained relatively constant, suggesting the development of defective interfering particles (DIPs). Viral genome changes were investigated by RNA deep sequencing. At the initiation of persistent infection, levels of DIPs were below the limit of detection at a coverage depth of 11,288-fold, implying that DIPs are not required for initiation of persistence. However, after 15 passages, DIPs constituted approximately 34% of the total LGTV population (coverage of 1,293-fold). Furthermore, at this point, one specific DIP population predominated in which nucleotides 1058 to 2881 had been deleted. This defective genome specified an intact polyprotein that coded for a truncated fusion protein containing 28 N-terminal residues of E and 134 C-terminal residues of NS1. Such a fusion protein has not previously been described, and a possible function in persistent infection is uncertain. DIPs are not required for the initiation of persistent LGTV infection but may play a role in the maintenance of viral persistence. PMID:26045539
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, Kazuyo; Hirohashi, Yoshihiko, E-mail: hirohash@sapmed.ac.jp; Kuroda, Takafumi
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as small subpopulation of cancer cells that are endowed with higher tumor-initiating ability. CSCs/CICs are resistant to standard cancer therapies including chemotherapy and radiotherapy, and they are thus thought to be responsible for cancer recurrence and metastasis. Therefore, elucidation of molecular mechanisms of CSCs/CICs is essential to cure cancer. In this study, we analyzed the gene expression profiles of gynecological CSCs/CICs isolated as aldehyde dehydrogenase high (ALDH{sup high}) cells, and found that MAPK13, PTTG1IP, CAPN1 and UBQLN2 were preferentially expressed in CSCs/CICs. MAPK13 is expressed in uterine, ovary, stomach, colon, liver andmore » kidney cancer tissues at higher levels compared with adjacent normal tissues. MAPK13 gene knockdown using siRNA reduced the ALDH{sup high} population and abrogated the tumor-initiating ability. These results indicate that MAPK13 is expressed in gynecological CSCs/CICs and has roles in the maintenance of CSCs/CICs and tumor-initiating ability, and MAPK13 might be a novel molecular target for treatment-resistant CSCs/CICs.« less
Miyashita, Shuhei; Kishino, Hirohisa
2010-02-01
Genetic bottlenecks facilitate the fixation and extinction of variants in populations, and viral populations are no exception to this theory. To examine the existence of genetic bottlenecks in cell-to-cell movement of plant RNA viruses, we prepared constructs for Soil-borne wheat mosaic virus RNA2 vectors carrying two different fluorescent proteins, yellow fluorescent protein (YFP) and cyan fluorescent protein (CFP). Coinoculation of host plant leaves with the two RNA2 vectors and the wild-type RNA1 showed separation of the two vector RNA2s, mostly within seven to nine cell-to-cell movements from individual initially coinfected cells. Our statistical analysis showed that the number of viral RNA genomes establishing infection in adjacent cells after the first cell-to-cell movement from an initially infected cell was 5.97 +/- 0.22 on average and 5.02 +/- 0.29 after the second cell-to-cell movement. These results indicate that plant RNA viruses may generally face narrow genetic bottlenecks in every cell-to-cell movement. Furthermore, our model suggests that, rather than suffering from fitness losses caused by the bottlenecks, the plant RNA viruses are utilizing the repeated genetic bottlenecks as an essential element of rapid selection of their adaptive variants in trans-acting genes or elements to respond to host shifting and changes in the growth conditions of the hosts.
Egen, Jackson G; Rothfuchs, Antonio Gigliotti; Feng, Carl G; Winter, Nathalie; Sher, Alan; Germain, Ronald N
2008-02-01
Granulomas play a key role in host protection against mycobacterial pathogens, with their breakdown contributing to exacerbated disease. To better understand the initiation and maintenance of these structures, we employed both high-resolution multiplex static imaging and intravital multiphoton microscopy of Mycobacterium bovis BCG-induced liver granulomas. We found that Kupffer cells directly capture blood-borne bacteria and subsequently nucleate formation of a nascent granuloma by recruiting both uninfected liver-resident macrophages and blood-derived monocytes. Within the mature granuloma, these myeloid cell populations formed a relatively immobile cellular matrix that interacted with a highly dynamic effector T cell population. The efficient recruitment of these T cells was highly dependent on TNF-alpha-derived signals, which also maintained the granuloma structure through preferential effects on uninfected macrophage populations. By characterizing the migration of both innate and adaptive immune cells throughout the process of granuloma development, these studies provide a new perspective on the cellular events involved in mycobacterial containment and escape.
The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells
2011-01-01
Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells. PMID:21284861
The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells.
Zhang, Chunhua; Halsey, Leah E; Szymanski, Daniel B
2011-02-01
The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal) cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.
Population-expression models of immune response
NASA Astrophysics Data System (ADS)
Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya
2013-06-01
The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.
Josefsson, Lina; von Stockenstrom, Susanne; Faria, Nuno R.; Sinclair, Elizabeth; Bacchetti, Peter; Killian, Maudi; Epling, Lorrie; Tan, Alice; Ho, Terence; Lemey, Philippe; Shao, Wei; Hunt, Peter W.; Somsouk, Ma; Wylie, Will; Douek, Daniel C.; Loeb, Lisa; Custer, Jeff; Hoh, Rebecca; Poole, Lauren; Deeks, Steven G.; Hecht, Frederick; Palmer, Sarah
2013-01-01
The source and dynamics of persistent HIV-1 during long-term combinational antiretroviral therapy (cART) are critical to understanding the barriers to curing HIV-1 infection. To address this issue, we isolated and genetically characterized HIV-1 DNA from naïve and memory T cells from peripheral blood and gut-associated lymphoid tissue (GALT) from eight patients after 4–12 y of suppressive cART. Our detailed analysis of these eight patients indicates that persistent HIV-1 in peripheral blood and GALT is found primarily in memory CD4+ T cells [CD45RO+/CD27(+/−)]. The HIV-1 infection frequency of CD4+ T cells from peripheral blood and GALT was higher in patients who initiated treatment during chronic compared with acute/early infection, indicating that early initiation of therapy results in lower HIV-1 reservoir size in blood and gut. Phylogenetic analysis revealed an HIV-1 genetic change between RNA sequences isolated before initiation of cART and intracellular HIV-1 sequences from the T-cell subsets after 4–12 y of suppressive cART in four of the eight patients. However, evolutionary rate analyses estimated no greater than three nucleotide substitutions per gene region analyzed during all of the 4–12 y of suppressive therapy. We also identified a clearly replication-incompetent viral sequence in multiple memory T cells in one patient, strongly supporting asynchronous cell replication of a cell containing integrated HIV-1 DNA as the source. This study indicates that persistence of a remarkably stable population of infected memory cells will be the primary barrier to a cure, and, with little evidence of viral replication, this population could be maintained by homeostatic cell proliferation or other processes. PMID:24277811
Cell lineage patterns in the shoot meristem of the sunflower embryo in the dry seed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jegla, D.E.; Sussex, I.M.
1989-01-01
We mapped the fate of cells in the shoot meristem of the dry-seed embryo of sunflower, Helianthus annuus L. cv. Peredovic, using irradiation-induced somatic sectors. We analyzed 249 chlorophyll-deficient or glabrous (hairless) sectors generated in 236 plants. Most sectors observed in the inflorescence extended into vegetative nodes. Thus cell lineages that ultimately gave rise to reproductive structures also contributed to vegetative structures. No single sector extended the entire length of the shoot. Thus the shoot is not derived from one or a few apical initials. Rather, the position, vertical extent, and width of the sectors at different levels of themore » shoot suggest that the shoot is derived from three to four circumferential populations of cells in each of three cell layers of the embryo meristem. Sectors had no common boundaries even in plants with two or three independent sectors, but varied in extent and overlapped along the length of the shoot. Thus individual cells in a single circumferential population behaved independently to contribute lineages of different vertical extents to the growing shoot. The predicted number of circumferential populations of cells as well as the apparent cell number in each population was consistent with the actual number of cells in the embryo meristem observed in histological sections.« less
Sultan, Mohammad; Vidovic, Dejan; Paine, Arianne S; Huynh, Thomas T; Coyle, Krysta M; Thomas, Margaret L; Cruickshank, Brianne M; Dean, Cheryl A; Clements, Derek R; Kim, Youra; Lee, Kristen; Gujar, Shashi A; Weaver, Ian C G; Marcato, Paola
2018-05-01
Avoiding detection and destruction by immune cells is key for tumor initiation and progression. The important role of cancer stem cells (CSCs) in tumor initiation has been well established, yet their ability to evade immune detection and targeting is only partly understood. To investigate the ability of breast CSCs to evade immune detection, we identified a highly tumorigenic population in a spontaneous murine mammary tumor based on increased aldehyde dehydrogenase activity. We performed tumor growth studies in immunocompetent and immunocompromised mice. In immunocompetent mice, growth of the spontaneous mammary tumor was restricted; however, the Aldefluor + population was expanded, suggesting inherent resistance mechanisms. Gene expression analysis of the sorted tumor cells revealed that the Aldefluor + tumor cells has decreased expression of transporter associated with antigen processing (TAP) genes and co-stimulatory molecule CD80, which would decrease susceptibility to T cells. Similarly, the Aldefluor + population of patient tumors and 4T1 murine mammary cells had decreased expression of TAP and co-stimulatory molecule genes. In contrast, breast CSCs identified by CD44 + CD24 - do not have decreased expression of these genes, but do have increased expression of C-X-C chemokine receptor type 4. Decitabine treatment and bisulfite pyrosequencing suggests that DNA hypermethylation contributes to decreased TAP gene expression in Aldefluor + CSCs. TAP1 knockdown resulted in increased tumor growth of 4T1 cells in immunocompetent mice. Together, this suggests immune evasion mechanisms in breast CSCs are marker specific and epigenetic silencing of TAP1 in Aldefluor + breast CSCs contributes to their enhanced survival under immune pressure. Stem Cells 2018;36:641-654. © AlphaMed Press 2018.
Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations.
Grasso, Carole; Anaka, Matthew; Hofmann, Oliver; Sompallae, Ramakrishna; Broadley, Kate; Hide, Winston; Berridge, Michael V; Cebon, Jonathan; Behren, Andreas; McConnell, Melanie J
2016-09-09
The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.
The developing cancer stem-cell model: clinical challenges and opportunities.
Vermeulen, Louis; de Sousa e Melo, Felipe; Richel, Dick J; Medema, Jan Paul
2012-02-01
During the past decade, a stem-cell-like subset of cancer cells has been identified in many malignancies. These cells, referred to as cancer stem cells (CSCs), are of particular interest because they are believed to be the clonogenic core of the tumour and therefore represent the cell population that drives growth and progression. Many efforts have been made to design therapies that specifically target the CSC population, since this was predicted to be the crucial population to eliminate. However, recent insights have complicated the initial elegant model, by showing a dominant role for the tumour microenvironment in determining CSC characteristics within a malignancy. This is particularly important since dedifferentiation of non-tumorigenic tumour cells towards CSCs can occur, and therefore the CSC population in a neoplasm is expected to vary over time. Moreover, evidence suggests that not all tumours are driven by rare CSCs, but might instead contain a large population of tumorigenic cells. Even though these results suggest that specific targeting of the CSC population might not be a useful therapeutic strategy, research into the hierarchical cellular organisation of malignancies has provided many important new insights in the biology of tumours. In this Personal View, we highlight how the CSC concept is developing and influences our thinking on future treatment for solid tumours, and recommend ways to design clinical trials to assess drugs that target malignant disease in a rational fashion. Copyright © 2012 Elsevier Ltd. All rights reserved.
Atherosclerosis as a disease of failed endogenous repair
Zenovich, Andrey G.; Taylor, Doris A.
2009-01-01
As coronary artery disease (CAD) continues to be the primary cause of mortality, a more in-depth understanding of pathophysiology and novel treatments are being sought. The past two decades have established inflammation as a driving force behind CAD – from endothelial dysfunction to heart failure. Recent advances in stem/progenitor cell biology have led to initial applications of progenitor cells in CAD continuum and have revealed that atherosclerosis is, at least in part, a disease of failed endogenous vascular repair. Several key progenitor cell populations including endothelial progenitor cells (AC133+/CD34+ population), vascular progenitors (CD31+/CD45low population), KDR+ cells and other bone marrow subtypes are mobilized for vascular repair. However, age and risk factors negatively impact these cells even prior to clinical CAD. Sex-based differences in progenitor cell capacity for repair have emerged as a new research focus that may offer mechanistic insights into clinical CAD discrepancies between men and women. Quantifying injury and cell-based repair and better defining their interactions should enable us to halt or even prevent CAD by enhancing the repair side of the repair/injury equation. PMID:18508460
Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L
2016-09-06
Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayashi, S.; Tanaka, J.; Okada, S.
Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP)more » cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.« less
Selective Susceptibility of Human Skin Antigen Presenting Cells to Productive Dengue Virus Infection
Cerny, Daniela; Haniffa, Muzlifah; Shin, Amanda; Bigliardi, Paul; Tan, Bien Keem; Lee, Bernett; Poidinger, Michael; Tan, Ern Yu; Ginhoux, Florent; Fink, Katja
2014-01-01
Dengue is a growing global concern with 390 million people infected each year. Dengue virus (DENV) is transmitted by mosquitoes, thus host cells in the skin are the first point of contact with the virus. Human skin contains several populations of antigen-presenting cells which could drive the immune response to DENV in vivo: epidermal Langerhans cells (LCs), three populations of dermal dendritic cells (DCs), and macrophages. Using samples of normal human skin we detected productive infection of CD14+ and CD1c+ DCs, LCs and dermal macrophages, which was independent of DC-SIGN expression. LCs produced the highest viral titers and were less sensitive to IFN-β. Nanostring gene expression data showed significant up-regulation of IFN-β, STAT-1 and CCL5 upon viral exposure in susceptible DC populations. In mice infected intra-dermally with DENV we detected parallel populations of infected DCs originating from the dermis and migrating to the skin-draining lymph nodes. Therefore dermal DCs may simultaneously facilitate systemic spread of DENV and initiate the adaptive anti-viral immune response. PMID:25474532
USDA-ARS?s Scientific Manuscript database
The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...
Tumor-initiating CD49f cells are a hallmark of chemoresistant triple negative breast cancer.
Gomez-Miragaya, Jorge; González-Suárez, Eva
2017-01-01
Taxanes are mainstay treatment of triple negative breast cancer (TNBC) patients but resistance often develops. Using TNBC patient-derived orthoxenografts (PDX) we have recently discovered that a CD49f+ chemoresistant population with tumor-initiating ability is present in sensitive tumors and expands in tumors that have acquired resistance. Importantly, sensitivity to taxanes is recovered after long-term drug interruption. The characterization of this chemoresistant CD49f+ cells provides a unique opportunity to identify novel targets for the treatment of chemoresistant TNBC.
Alvero, Ayesha B; Visintin, Irene
2011-01-01
Recurrent ovarian cancer is resistant to conventional chemotherapy. A sub-population of ovarian cancer cells, the epithelial ovarian cancer stem cells (EOC stem cells) have stemness properties, constitutive NFκB activity, and represent the chemoresistant population. Currently, there is no effective treatment that targets these cells. Aurora-A kinase (Aurora-A) is associated with tumor initiation and progression and is overexpressed in numerous malignancies. The aim of this study is to determine the effect of Aurora-A inhibition in EOC stem cells. EOC stem cells were treated with the Aurora-A inhibitor, MK-5108. Cell growth was monitored by Incucyte real-time imaging system, cell viability was measured using the Celltiter 96 assay and cytokine levels were quantified using xMAP technology. The intracellular changes associated with MK-5108 treatment are: (1) polyploidy and cell cycle arrest; (2) inhibition of NFκB activity; (3) decreased cytokine production; and (4) nuclear accumulation of IκBα. Thus, inhibition of Aurora-A decreases cell proliferation in the EOC stem cells by inducing cell cycle arrest and affecting the NFκB pathway. As EOC stem cells represent a source of recurrence and chemoresistance, these results suggest that Aurora-A inhibition may effectively target the cancer stem cell population in ovarian cancer. PMID:21623171
Characterization of multi-drug tolerant persister cells in Streptococcus suis.
Willenborg, Jörg; Willms, Daniela; Bertram, Ralph; Goethe, Ralph; Valentin-Weigand, Peter
2014-05-12
Persister cells constitute a subpopulation of dormant cells within a microbial population which are genetically identical but phenotypically different to regular cells. Notably, persister cells show an elevated tolerance to antimicrobial agents. Thus, they are considered to represent a microbial 'bet-hedging' strategy and are of particular importance in pathogenic bacteria. We studied the ability of the zoonotic pathogen Streptococcus (S.) suis to form multi-drug tolerant variants and identified persister cells dependent on the initial bacterial growth phase. We observed lower numbers of persisters in exponential phase cultures than in stationary growth phase populations. S. suis persister cells showed a high tolerance to a variety of antibiotics, and the phenotype was not inherited as tested with four passages of S. suis populations. Furthermore, we provide evidence that the persister phenotype is related to expression of genes involved in general metabolic pathways since we found higher numbers of persister cells in a mutant strain defective in the catabolic arginine deiminase system as compared to its parental wild type strain. Finally, we observed persister cell formation also in other S. suis strains and pathogenic streptococcal species. Taken together, this is the first study that reports multi-drug tolerant persister cells in the zoonotic pathogen S. suis.
Mullally, Ann; Lane, Steven W; Ball, Brian; Megerdichian, Christine; Okabe, Rachel; Al-Shahrour, Fatima; Paktinat, Mahnaz; Haydu, J Erika; Housman, Elizabeth; Lord, Allegra M; Wernig, Gerlinde; Kharas, Michael G; Mercher, Thomas; Kutok, Jeffery L; Gilliland, D Gary; Ebert, Benjamin L
2010-06-15
We report a Jak2V617F knockin mouse myeloproliferative neoplasm (MPN) model resembling human polycythemia vera (PV). The MPN is serially transplantable and we demonstrate that the hematopoietic stem cell (HSC) compartment has the unique capacity for disease initiation but does not have a significant selective competitive advantage over wild-type HSCs. In contrast, myeloid progenitor populations are expanded and skewed toward the erythroid lineage, but cannot transplant the disease. Treatment with a JAK2 kinase inhibitor ameliorated the MPN phenotype, but did not eliminate the disease-initiating population. These findings provide insights into the consequences of JAK2 activation on HSC differentiation and function and have the potential to inform therapeutic approaches to JAK2V617F-positive MPN. Copyright 2010 Elsevier Inc. All rights reserved.
A compound chimeric antigen receptor strategy for targeting multiple myeloma.
Chen, K H; Wada, M; Pinz, K G; Liu, H; Shuai, X; Chen, X; Yan, L E; Petrov, J C; Salman, H; Senzel, L; Leung, E L H; Jiang, X; Ma, Y
2018-02-01
Current clinical outcomes using chimeric-antigen receptors (CARs) against multiple myeloma show promise in the eradication of bulk disease. However, these anti-BCMA (CD269) CARs observe relapse as a common phenomenon after treatment due to the reemergence of either antigen-positive or -negative cells. Hence, the development of improvements in CAR design to target antigen loss and increase effector cell persistency represents a critical need. Here, we report on the anti-tumor activity of a CAR T-cell possessing two complete and independent CAR receptors against the multiple myeloma antigens BCMA and CS1. We determined that the resulting compound CAR (cCAR) T-cell possesses consistent, potent and directed cytotoxicity against each target antigen population. Using multiple mouse models of myeloma and mixed cell populations, we are further able to show superior in vivo survival by directed cytotoxicity against multiple populations compared to a single-expressing CAR T-cell. These findings indicate that compound targeting of BCMA and CS1 on myeloma cells can potentially be an effective strategy for augmenting the response against myeloma bulk disease and for initiation of broader coverage CAR therapy.
Bird, Gregory A.; Polsky, Avital; Estes, Patricia; Hanlon, Teri; Hamilton, Haley; Morton, John J.; Gutman, Jonathan; Jimeno, Antonio
2014-01-01
The long-term repopulating hematopoietic stem cell (HSC) population can self-renew in vivo, support hematopoiesis for the lifetime of the individual, and is of critical importance in the context of bone marrow stem cell transplantation. The mechanisms that regulate the expansion of HSCs in vivo and in vitro remain unclear to date. Since the current set of surface markers only allow for the identification of a population of cells that is highly enriched for HSC activity, we will refer to the population of cells we expand as Hematopoietic Stem and Progenitor cells (HSPCs). We describe here a novel approach to expand a cytokine-dependent Hematopoietic Stem and Progenitor Cell (HSPC) population ex vivo by culturing primary adult human or murine HSPCs with fusion proteins including the protein transduction domain of the HIV-1 transactivation protein (Tat) and either MYC or Bcl-2. HSPCs obtained from either mouse bone marrow, human cord blood, human G-CSF mobilized peripheral blood, or human bone marrow were expanded an average of 87 fold, 16.6 fold, 13.6 fold, or 10 fold, respectively. The expanded cell populations were able to give rise to different types of colonies in methylcellulose assays in vitro, as well as mature hematopoietic populations in vivo upon transplantation into irradiated mice. Importantly, for both the human and murine case, the ex vivo expanded cells also gave rise to a self-renewing cell population in vivo, following initial transplantation, that was able to support hematopoiesis upon serial transplantation. Our results show that a self-renewing cell population, capable of reconstituting the hematopoietic compartment, expanded ex vivo in the presence of Tat-MYC and Tat-Bcl-2 suggesting that this may be an attractive approach to expand human HSPCs ex vivo for clinical use. PMID:25170611
Range expansion of heterogeneous populations.
Reiter, Matthias; Rulands, Steffen; Frey, Erwin
2014-04-11
Risk spreading in bacterial populations is generally regarded as a strategy to maximize survival. Here, we study its role during range expansion of a genetically diverse population where growth and motility are two alternative traits. We find that during the initial expansion phase fast-growing cells do have a selective advantage. By contrast, asymptotically, generalists balancing motility and reproduction are evolutionarily most successful. These findings are rationalized by a set of coupled Fisher equations complemented by stochastic simulations.
Cell of Origin and Cancer Stem Cells in Tumor Suppressor Mouse Models of Glioblastoma.
Alcantara Llaguno, Sheila R; Xie, Xuanhua; Parada, Luis F
2016-01-01
The cellular origins and the mechanisms of progression, maintenance of tumorigenicity, and therapeutic resistance are central questions in the glioblastoma multiforme (GBM) field. Using tumor suppressor mouse models, our group recently reported two independent populations of adult GBM-initiating central nervous system progenitors. We found different functional and molecular subtypes depending on the tumor-initiating cell lineage, indicating that the cell of origin is a driver of GBM subtype diversity. Using an in vivo model, we also showed that GBM cancer stem cells (CSCs) or glioma stem cells (GSCs) contribute to resistance to chemotherapeutic agents and that genetic ablation of GSCs leads to a delay in tumor progression. These studies are consistent with the cell of origin and CSCs as critical regulators of the pathogenesis of GBM. © 2016 Alcantara Llaguno et al; Published by Cold Spring Harbor Laboratory Press.
Innate lymphoid cells in the initiation, regulation and resolution of inflammation
Sonnenberg, Gregory F.; Artis, David
2016-01-01
A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans, and found to profoundly influence the induction, regulation and resolution of inflammation. ILCs play an important role in these processes in murine models of infection, inflammatory disease and tissue repair. Further, disease association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review, we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be employed to selectively modulate ILC responses and limit chronic inflammatory diseases in patients. PMID:26121198
Second Cancers After Fractionated Radiotherapy: Stochastic Population Dynamics Effects
NASA Technical Reports Server (NTRS)
Sachs, Rainer K.; Shuryak, Igor; Brenner, David; Fakir, Hatim; Hahnfeldt, Philip
2007-01-01
When ionizing radiation is used in cancer therapy it can induce second cancers in nearby organs. Mainly due to longer patient survival times, these second cancers have become of increasing concern. Estimating the risk of solid second cancers involves modeling: because of long latency times, available data is usually for older, obsolescent treatment regimens. Moreover, modeling second cancers gives unique insights into human carcinogenesis, since the therapy involves administering well characterized doses of a well studied carcinogen, followed by long-term monitoring. In addition to putative radiation initiation that produces pre-malignant cells, inactivation (i.e. cell killing), and subsequent cell repopulation by proliferation can be important at the doses relevant to second cancer situations. A recent initiation/inactivation/proliferation (IIP) model characterized quantitatively the observed occurrence of second breast and lung cancers, using a deterministic cell population dynamics approach. To analyze ifradiation-initiated pre-malignant clones become extinct before full repopulation can occur, we here give a stochastic version of this I I model. Combining Monte Carlo simulations with standard solutions for time-inhomogeneous birth-death equations, we show that repeated cycles of inactivation and repopulation, as occur during fractionated radiation therapy, can lead to distributions of pre-malignant cells per patient with variance >> mean, even when pre-malignant clones are Poisson-distributed. Thus fewer patients would be affected, but with a higher probability, than a deterministic model, tracking average pre-malignant cell numbers, would predict. Our results are applied to data on breast cancers after radiotherapy for Hodgkin disease. The stochastic IIP analysis, unlike the deterministic one, indicates: a) initiated, pre-malignant cells can have a growth advantage during repopulation, not just during the longer tumor latency period that follows; b) weekend treatment gaps during radiotherapy, apart from decreasing the probability of eradicating the primary cancer, substantially increase the risk of later second cancers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevska, Tanya
This is the first code, designed to run on a desktop, which models the intracellular replication and the cell-to-cell infection and demonstrates virus evolution at the molecular level. This code simulates the infection of a population of "idealized biological cells" (represented as objects that do not divide or have metabolism) with "virus" (represented by its genetic sequence), the replication and simultaneous mutation of the virus which leads to evolution of the population of genetically diverse viruses. The code is built to simulate single-stranded RNA viruses. The input for the code is 1. the number of biological cells in the culture,more » 2. the initial composition of the virus population, 3. the reference genome of the RNA virus, 4. the coordinates of the genome regions and their significance and, 5. parameters determining the dynamics of virus replication, such as the mutation rate. The simulation ends when all cells have been infected or when no more infections occurs after a given number of attempts. The code has the ability to simulate the evolution of the virus in serial passage of cell "cultures", i.e. after the end of a simulation, a new one is immediately scheduled with a new culture of infected cells. The code outputs characteristics of the resulting virus population dynamics and genetic composition of the virus population, such as the top dominant genomes, percentage of a genome with specific characteristics.« less
Extra-virgin olive oil contains a metabolo-epigenetic inhibitor of cancer stem cells
Corominas-Faja, Bruna; Cuyàs, Elisabet; Lozano-Sánchez, Jesús; Cufí, Sílvia; Verdura, Sara; Fernández-Arroyo, Salvador; Borrás-Linares, Isabel; Martin-Castillo, Begoña; Martin, Ángel G; Lupu, Ruth; Nonell-Canals, Alfons; Micol, Vicente; Joven, Jorge; Segura-Carretero, Antonio; Menendez, Javier A
2018-01-01
Abstract Targeting tumor-initiating, drug-resistant populations of cancer stem cells (CSC) with phytochemicals is a novel paradigm for cancer prevention and treatment. We herein employed a phenotypic drug discovery approach coupled to mechanism-of-action profiling and target deconvolution to identify phenolic components of extra virgin olive oil (EVOO) capable of suppressing the functional traits of CSC in breast cancer (BC). In vitro screening revealed that the secoiridoid decarboxymethyl oleuropein aglycone (DOA) could selectively target subpopulations of epithelial-like, aldehyde dehydrogenase (ALDH)-positive and mesenchymal-like, CD44+CD24−/low CSC. DOA could potently block the formation of multicellular tumorspheres generated from single-founder stem-like cells in a panel of genetically diverse BC models. Pretreatment of BC populations with noncytotoxic doses of DOA dramatically reduced subsequent tumor-forming capacity in vivo. Mice orthotopically injected with CSC-enriched BC-cell populations pretreated with DOA remained tumor-free for several months. Phenotype microarray-based screening pointed to a synergistic interaction of DOA with the mTOR inhibitor rapamycin and the DNA methyltransferase (DNMT) inhibitor 5-azacytidine. In silico computational studies indicated that DOA binds and inhibits the ATP-binding kinase domain site of mTOR and the S-adenosyl-l-methionine (SAM) cofactor-binding pocket of DNMTs. FRET-based Z-LYTE™ and AlphaScreen-based in vitro assays confirmed the ability of DOA to function as an ATP-competitive mTOR inhibitor and to block the SAM-dependent methylation activity of DNMTs. Our systematic in vitro, in vivo and in silico approaches establish the phenol-conjugated oleoside DOA as a dual mTOR/DNMT inhibitor naturally occurring in EVOO that functionally suppresses CSC-like states responsible for maintaining tumor-initiating cell properties within BC populations. PMID:29452350
Quarmyne, Maa-Ohui; Dong, Wei; Theodore, Rodney; Anand, Sonia; Barry, Vaughn; Adisa, Olufolake; Buchanan, Iris D.; Bost, James; Brown, Robert C.; Joiner, Clinton H.; Lane, Peter A.
2016-01-01
The clinical efficacy of hydroxyurea in patients with sickle cell anemia (SCA) has been well established. However, data about its clinical effectiveness in practice is limited. We evaluated the clinical effectiveness of hydroxyurea in a large pediatric population using a retrospective cohort, pre-post treatment study design to control for disease severity selection bias. The cohort included children with SCA (SS, S β 0thalassemia) who received care at Children's Healthcare of Atlanta (CHOA) and who initiated hydroxyurea in 2009-2011. Children on chronic transfusions, or children with inadequate follow up data and/or children who had taken hydroxyurea in the 3 years prior were excluded. For each patient, healthcare utilization, laboratory values and clinical outcomes for the 2-year period prior to hydroxyurea initiation were compared to those 2 years after initiation. Of 211 children with SCA who initiated hydroxyurea in 2009-2011, 134 met eligibility criteria. After initiation of hydroxyurea, rates of hospitalizations, pain encounters, and emergency department visits were reduced by 47% (<0.0001), 36% (p=0.0001) and 43% (p<0.0001), respectively. Average hemoglobin levels increased by 0.7g/dl (p<0.0001). Hydroxyurea effectiveness was similar across gender, insurance types and age, although there was a slightly greater reduction in hospitalizations in younger children. PMID:27761932
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanakura, Y.; Thompson, H.; Nakano, T.
1988-09-01
Mouse peritoneal mast cells (PMC) express a connective tissue-type mast cell (CTMC) phenotype, including reactivity with the heparin-binding fluorescent dye berberine sulfate and incorporation of (35S) sulfate predominantly into heparin proteoglycans. When PMC purified to greater than 99% purity were cultured in methylcellulose with IL-3 and IL-4, approximately 25% of the PMC formed colonies, all of which contained both berberine sulfate-positive and berberine sulfate-negative mast cells. When these mast cells were transferred to suspension culture, they generated populations that were 100% berberine sulfate-negative, a characteristic similar to that of mucosal mast cells (MMC), and that synthesized predominantly chondroitin sulfate (35S)more » proteoglycans. When ''MMC-like'' cultured mast cells derived from WBB6F1-+/+ PMC were injected into the peritoneal cavities of mast cell-deficient WBB6F1-W/Wv mice, the adoptively transferred mast cell population became 100% berberine sulfate-positive. In methylcellulose culture, these ''second generation PMC'' formed clonal colonies containing both berberine sulfate-positive and berberine sulfate-negative cells, but exhibited significantly less proliferative ability than did normal +/+ PMC. Thus, clonal mast cell populations initially derived from single PMC exhibited multiple and bidirectional alterations between CTMC-like and MMC-like phenotypes. However, this process was associated with a progressive diminution of the mast cells' proliferative ability.« less
Okano, Yutaka; Hristova, Krassimira R; Leutenegger, Christian M; Jackson, Louise E; Denison, R Ford; Gebreyesus, Binyam; Lebauer, David; Scow, Kate M
2004-02-01
Ammonium oxidation by autotrophic ammonia-oxidizing bacteria (AOB) is a key process in agricultural and natural ecosystems and has a large global impact. In the past, the ecology and physiology of AOB were not well understood because these organisms are notoriously difficult to culture. Recent applications of molecular techniques have advanced our knowledge of AOB, but the necessity of using PCR-based techniques has made quantitative measurements difficult. A quantitative real-time PCR assay targeting part of the ammonia-monooxygenase gene (amoA) was developed to estimate AOB population size in soil. This assay has a detection limit of 1.3 x 10(5) cells/g of dry soil. The effect of the ammonium concentration on AOB population density was measured in soil microcosms by applying 0, 1.5, or 7.5 mM ammonium sulfate. AOB population size and ammonium and nitrate concentrations were monitored for 28 days after (NH4)2SO4 application. AOB populations in amended treatments increased from an initial density of approximately 4 x 10(6) cells/g of dry soil to peak values (day 7) of 35 x 10(6) and 66 x 10(6) cells/g of dry soil in the 1.5 and 7.5 mM treatments, respectively. The population size of total bacteria (quantified by real-time PCR with a universal bacterial probe) remained between 0.7 x 10(9) and 2.2 x 10(9) cells/g of soil, regardless of the ammonia concentration. A fertilization experiment was conducted in a tomato field plot to test whether the changes in AOB density observed in microcosms could also be detected in the field. AOB population size increased from 8.9 x 10(6) to 38.0 x 10(6) cells/g of soil by day 39. Generation times were 28 and 52 h in the 1.5 and 7.5 mM treatments, respectively, in the microcosm experiment and 373 h in the ammonium treatment in the field study. Estimated oxidation rates per cell ranged initially from 0.5 to 25.0 fmol of NH4+ h(-1) cell(-1) and decreased with time in both microcosms and the field. Growth yields were 5.6 x 10(6), 17.5 x 10(6), and 1.7 x 10(6) cells/mol of NH4+ in the 1.5 and 7.5 mM microcosm treatments and the field study, respectively. In a second field experiment, AOB population size was significantly greater in annually fertilized versus unfertilized soil, even though the last ammonium application occurred 8 months prior to measurement, suggesting a long-term effect of ammonium fertilization on AOB population size.
Sayed, Blayne A; Christy, Alison L; Walker, Margaret E; Brown, Melissa A
2010-06-15
Mast cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis, a rodent model of the human demyelinating disease multiple sclerosis. Yet their site and mode of action is unknown. In both diseases, myelin-specific T cells are initially activated in peripheral lymphoid organs. However, for disease to occur, these cells must enter the immunologically privileged CNS through a breach in the relatively impermeable blood-brain barrier. In this study, we demonstrate that a dense population of resident mast cells in the meninges, structures surrounding the brain and spinal cord, regulate basal CNS barrier function, facilitating initial T cell CNS entry. Through the expression of TNF, mast cells recruit an early wave of neutrophils to the CNS. We propose that neutrophils in turn promote the blood-brain barrier breach and together with T cells lead to further inflammatory cell influx and myelin damage. These findings provide specific targets for intervention in multiple sclerosis as well as other immune-mediated CNS diseases.
Zhang, Yaqing; Velez-Delgado, Ashley; Mathew, Esha; Li, Dongjun; Mendez, Flor M; Flannagan, Kevin; Rhim, Andrew D; Simeone, Diane M; Beatty, Gregory L; Pasca di Magliano, Marina
2017-01-01
Background Pancreatic cancer is characterised by the accumulation of a fibro-inflammatory stroma. Within this stromal reaction, myeloid cells are a predominant population. Distinct myeloid subsets have been correlated with tumour promotion and unmasking of anti-tumour immunity. Objective The goal of this study was to determine the effect of myeloid cell depletion on the onset and progression of pancreatic cancer and to understand the relationship between myeloid cells and T cell-mediated immunity within the pancreatic cancer microenvironment. Methods Primary mouse pancreatic cancer cells were transplanted into CD11b-diphtheria toxin receptor (DTR) mice. Alternatively, the iKras* mouse model of pancreatic cancer was crossed into CD11b-DTR mice. CD11b+ cells (mostly myeloid cell population) were depleted by diphtheria toxin treatment during tumour initiation or in established tumours. Results Depletion of myeloid cells prevented KrasG12D-driven pancreatic cancer initiation. In pre-established tumours, myeloid cell depletion arrested tumour growth and in some cases, induced tumour regressions that were dependent on CD8+ T cells. We found that myeloid cells inhibited CD8+ T-cell anti-tumour activity by inducing the expression of programmed cell death-ligand 1 (PD-L1) in tumour cells in an epidermal growth factor receptor (EGFR)/mitogen-activated protein kinases (MAPK)-dependent manner. Conclusion Our results show that myeloid cells support immune evasion in pancreatic cancer through EGFR/MAPK-dependent regulation of PD-L1 expression on tumour cells. Derailing this crosstalk between myeloid cells and tumour cells is sufficient to restore anti-tumour immunity mediated by CD8+ T cells, a finding with implications for the design of immune therapies for pancreatic cancer. PMID:27402485
Pode-Shakked, Naomi; Pleniceanu, Oren; Gershon, Rotem; Shukrun, Rachel; Kanter, Itamar; Bucris, Efrat; Pode-Shakked, Ben; Tam, Gal; Tam, Hadar; Caspi, Revital; Pri-Chen, Sara; Vax, Einav; Katz, Guy; Omer, Dorit; Harari-Steinberg, Orit; Kalisky, Tomer; Dekel, Benjamin
2016-03-29
When assembling a nephron during development a multipotent stem cell pool becomes restricted as differentiation ensues. A faulty differentiation arrest in this process leads to transformation and initiation of a Wilms' tumor. Mapping these transitions with respective surface markers affords accessibility to specific cell subpopulations. NCAM1 and CD133 have been previously suggested to mark human renal progenitor populations. Herein, using cell sorting, RNA sequencing, in vitro studies with serum-free media and in vivo xenotransplantation we demonstrate a sequential map that links human kidney development and tumorigenesis; In nephrogenesis, NCAM1(+)CD133(-) marks SIX2(+) multipotent renal stem cells transiting to NCAM1(+)CD133(+) differentiating segment-specific SIX2(-) epithelial progenitors and NCAM1(-)CD133(+) differentiated nephron cells. In tumorigenesis, NCAM1(+)CD133(-) marks SIX2(+) blastema that includes the ALDH1(+) WT cancer stem/initiating cells, while NCAM1(+)CD133(+) and NCAM1(-)CD133(+) specifying early and late epithelial differentiation, are severely restricted in tumor initiation capacity and tumor self-renewal. Thus, negative selection for CD133 is required for defining NCAM1(+) nephron stem cells in normal and malignant nephrogenesis.
Karunarathne, W. K. Ajith; Giri, Lopamudra; Patel, Anilkumar K.; Venkatesh, Kareenhalli V.; Gautam, N.
2013-01-01
There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein–coupled receptor network control of other cell behaviors. PMID:23569254
Karunarathne, W K Ajith; Giri, Lopamudra; Patel, Anilkumar K; Venkatesh, Kareenhalli V; Gautam, N
2013-04-23
There is a dearth of approaches to experimentally direct cell migration by continuously varying signal input to a single cell, evoking all possible migratory responses and quantitatively monitoring the cellular and molecular response dynamics. Here we used a visual blue opsin to recruit the endogenous G-protein network that mediates immune cell migration. Specific optical inputs to this optical trigger of signaling helped steer migration in all possible directions with precision. Spectrally selective imaging was used to monitor cell-wide phosphatidylinositol (3,4,5)-triphosphate (PIP3), cytoskeletal, and cellular dynamics. A switch-like PIP3 increase at the cell front and a decrease at the back were identified, underlying the decisive migratory response. Migration was initiated at the rapidly increasing switch stage of PIP3 dynamics. This result explains how a migratory cell filters background fluctuations in the intensity of an extracellular signal but responds by initiating directionally sensitive migration to a persistent signal gradient across the cell. A two-compartment computational model incorporating a localized activator that is antagonistic to a diffusible inhibitor was able to simulate the switch-like PIP3 response. It was also able simulate the slow dissipation of PIP3 on signal termination. The ability to independently apply similar signaling inputs to single cells detected two cell populations with distinct thresholds for migration initiation. Overall the optical approach here can be applied to understand G-protein-coupled receptor network control of other cell behaviors.
Schmitner, Nicole; Kohno, Kenji
2017-01-01
ABSTRACT The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b. In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells. PMID:28138096
Long, Hua; Li, Jing; Li, You-You; Xie, De-Yu; Peng, Qing-Zhong; Li, Li
2016-12-01
Huperzia serrata is a medicinal plant used in Traditional Chinese Medicine, which has been used to prevent against aging diseases. It is mainly propagated by spores and grows extremely slowly. Due to severe harvest, it is a highly endangered species. In this report, we characterize ontogenesis of sporangia and spores that are associated with propagation. A wild population of H. serrata plants is localized in western Hunan province, China and protected by Chinese Government to study its development (e.g. sporangia and spores) and ecology. Both field and microscopic observations were conducted for a few of years. The development of sporangia from their initiation to maturation took nearly 1 year. Microscopic observations showed that the sporangial walls were developed from epidermal cells via initiation, cell division, and maturation. The structure of the mature sporangial wall is composed of one layer of epidermis, two middle layers of cells, and one layer of tapetum. Therefore, the sporangium is the eusporangium type. Spore development is characterized into six stages, initiation from epidermal cell and formation of sporogenous cells, primary sporogenous cell, secondary sporogenous cell, spore mother cell, tetrad, and maturation. The sporangial development of H. serrata belongs to the eusporangium type. The development takes approximately 1 year period from the initiation to the maturation. These data are useful for improving propagation of this medicinal plant in the future.
Xin, Hong-Wu; Hari, Danielle M.; Mullinax, John E.; Ambe, Chenwi M.; Koizumi, Tomotake; Ray, Satyajit; Anderson, Andrew J.; Wiegand, Gordon W.; Garfield, Susan H.; Thorgeirsson, Snorri S.; Avital, Itzhak
2012-01-01
Label-retaining cells (LRCs) have been proposed to represent adult tissue stem cells. LRCs are hypothesized to result from either slow cycling or asymmetric cell division (ACD). However, the stem cell nature and whether LRC undergo ACD remain controversial. Here, we demonstrate label-retaining cancer cells (LRCCs) in several gastrointestinal (GI) cancers including fresh surgical specimens. Using a novel method for isolation of live LRCC, we demonstrate that a subpopulation of LRCC is actively dividing and exhibits stem cells and pluripotency gene expression profiles. Using real-time confocal microscopic cinematography, we show live LRCC undergoing asymmetric nonrandom chromosomal cosegregation LRC division. Importantly, LRCCs have greater tumor-initiating capacity than non-LRCCs. Based on our data and that cancers develop in tissues that harbor normal-LRC, we propose that LRCC might represent a novel population of GI stem-like cancer cells. LRCC may provide novel mechanistic insights into the biology of cancer and regenerative medicine and present novel targets for cancer treatment. PMID:22331764
Mathematical Modelling as a Tool to Understand Cell Self-renewal and Differentiation.
Getto, Philipp; Marciniak-Czochra, Anna
2015-01-01
Mathematical modeling is a powerful technique to address key questions and paradigms in a variety of complex biological systems and can provide quantitative insights into cell kinetics, fate determination and development of cell populations. The chapter is devoted to a review of modeling of the dynamics of stem cell-initiated systems using mathematical methods of ordinary differential equations. Some basic concepts and tools for cell population dynamics are summarized and presented as a gentle introduction to non-mathematicians. The models take into account different plausible mechanisms regulating homeostasis. Two mathematical frameworks are proposed reflecting, respectively, a discrete (punctuated by division events) and a continuous character of transitions between differentiation stages. Advantages and constraints of the mathematical approaches are presented on examples of models of blood systems and compared to patients data on healthy hematopoiesis.
Bankhead, Armand; Magnuson, Nancy S; Heckendorn, Robert B
2007-06-07
A computer simulation is used to model ductal carcinoma in situ, a form of non-invasive breast cancer. The simulation uses known histological morphology, cell types, and stochastic cell proliferation to evolve tumorous growth within a duct. The ductal simulation is based on a hybrid cellular automaton design using genetic rules to determine each cell's behavior. The genetic rules are a mutable abstraction that demonstrate genetic heterogeneity in a population. Our goal was to examine the role (if any) that recently discovered mammary stem cell hierarchies play in genetic heterogeneity, DCIS initiation and aggressiveness. Results show that simpler progenitor hierarchies result in greater genetic heterogeneity and evolve DCIS significantly faster. However, the more complex progenitor hierarchy structure was able to sustain the rapid reproduction of a cancer cell population for longer periods of time.
Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells.
Wang, Jianyu; Sun, Zhiwei; Liu, Yongli; Kong, Liangsheng; Zhou, Shixia; Tang, Junlin; Xing, Hongmei Rosie
2017-11-14
Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.
Chi, Woo; Wu, Eleanor; Morgan, Bruce A.
2013-01-01
Although the hair shaft is derived from the progeny of keratinocyte stem cells in the follicular epithelium, the growth and differentiation of follicular keratinocytes is guided by a specialized mesenchymal population, the dermal papilla (DP), that is embedded in the hair bulb. Here we show that the number of DP cells in the follicle correlates with the size and shape of the hair produced in the mouse pelage. The same stem cell pool gives rise to hairs of different sizes or types in successive hair cycles, and this shift is accompanied by a corresponding change in DP cell number. Using a mouse model that allows selective ablation of DP cells in vivo, we show that DP cell number dictates the size and shape of the hair. Furthermore, we confirm the hypothesis that the DP plays a crucial role in activating stem cells to initiate the formation of a new hair shaft. When DP cell number falls below a critical threshold, hair follicles with a normal keratinocyte compartment fail to generate new hairs. However, neighbouring follicles with a few more DP cells can re-enter the growth phase, and those that do exploit an intrinsic mechanism to restore both DP cell number and normal hair growth. These results demonstrate that the mesenchymal niche directs stem and progenitor cell behaviour to initiate regeneration and specify hair morphology. Degeneration of the DP population in mice leads to the types of hair thinning and loss observed during human aging, and the results reported here suggest novel approaches to reversing hair loss. PMID:23487317
Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells.
Ahmed, Mehreen; Chaudhari, Kritika; Babaei-Jadidi, Roya; Dekker, Lodewijk V; Shams Nateri, Abdolrahman
2017-04-01
Increasing evidence suggests that cancer cell populations contain a small proportion of cells that display stem-like cell properties and which may be responsible for overall tumor maintenance. These cancer stem-like cells (CSCs) appear to have unique tumor-initiating ability and innate survival mechanisms that allow them to resist cancer therapies, consequently promoting relapses. Selective targeting of CSCs may provide therapeutic benefit and several recent reports have indicated this may be possible. In this article, we review drugs targeting CSCs, in selected epithelial cell-derived cancers. Stem Cells 2017;35:839-850. © 2017 AlphaMed Press.
The response rate to immune checkpoint inhibitor therapy for non-small-cell lung cancer (NSCLC) is just 20%. To improve this figure, several early phase clinical trials combining novel immunotherapeutics with immune checkpoint blockade have been initiated. Unfortunately, these trials have been designed without a strong foundational knowledge of the immune landscape present in NSCLC. Here, we use a flow cytometry panel capable of measuring 51 immune cell populations to comprehensively identify the immune cell composition and function in NSCLC.
Plasmacytoid pre-dendritic cells (pDC): from molecular pathways to function and disease association.
Alculumbre, Solana; Raieli, Salvatore; Hoffmann, Caroline; Chelbi, Rabie; Danlos, François-Xavier; Soumelis, Vassili
2018-02-19
Plasmacytoid pre-dendritic cells (pDC) are a specialized DC population with a great potential to produce large amounts of type I interferon (IFN). pDC are involved in the initiation of antiviral immune responses through their interaction with innate and adaptive immune cell populations. In a context-dependent manner, pDC activation can induce their differentiation into mature DC able to induce both T cell activation or tolerance. In this review, we described pDC functions during immune responses and their implication in the clearance or pathogenicity of human diseases during infection, autoimmunity, allergy and cancer. We discuss recent advances in the field of pDC biology and their implication for future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin
2017-01-01
Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657
Qin, Jichao; Liu, Xin; Laffin, Brian; Chen, Xin; Choy, Grace; Jeter, Collene; Calhoun-Davis, Tammy; Li, Hangwen; Palapattu, Ganesh S.; Pang, Shen; Lin, Kevin; Huang, Jiaoti; Ivanov, Ivan; Li, Wei; Suraneni, Mahipal V.; Tang, Dean G.
2012-01-01
SUMMARY Prostate cancer (PCa) is heterogeneous and contains both differentiated and undifferentiated tumor cells, but the relative functional contribution of these two cell populations remains unclear. Here we report distinct molecular, cellular, and tumor-propagating properties of PCa cells that express high (PSA+) and low (PSA−/lo) levels of the differentiation marker PSA. PSA−/lo PCa cells are quiescent and refractory to stresses including androgen deprivation, exhibit high clonogenic potential, and possess long-term tumor-propagating capacity. They preferentially express stem cell genes and can undergo asymmetric cell division generating PSA+ cells. Importantly, PSA−/lo PCa cells can initiate robust tumor development and resist androgen ablation in castrated hosts, and harbor highly tumorigenic castration-resistant PCa cells that can be prospectively enriched using ALDH+CD44+α2β1+ phenotype. In contrast, PSA+ PCa cells possess more limited tumor-propagating capacity, undergo symmetric division and are sensitive to castration. Together, our study suggests PSA−/lo cells may represent a critical source of castration-resistant PCa cells. PMID:22560078
Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L
2017-02-01
Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Meng-Yu; Nestvold, Janne, E-mail: j.m.nestvold@medisin.uio.no; Rekdal, Øystein
Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cellmore » marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. - Highlights: • Spontaneously transformed rat MSCs (rTMSCs) share characteristics with normal MSCs. • rTMSCs possess a side population, enriched with tumorigenic cells. • rTMSCs model fibrosarcoma in vivo.« less
Chapman, Mark A.; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David
2017-01-01
Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173–183, 2009; Kjaer M. Physiol Rev 84: 649–98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins—fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. PMID:27881411
Characterization of multi-drug tolerant persister cells in Streptococcus suis
2014-01-01
Background Persister cells constitute a subpopulation of dormant cells within a microbial population which are genetically identical but phenotypically different to regular cells. Notably, persister cells show an elevated tolerance to antimicrobial agents. Thus, they are considered to represent a microbial ‘bet-hedging’ strategy and are of particular importance in pathogenic bacteria. Results We studied the ability of the zoonotic pathogen Streptococcus (S.) suis to form multi-drug tolerant variants and identified persister cells dependent on the initial bacterial growth phase. We observed lower numbers of persisters in exponential phase cultures than in stationary growth phase populations. S. suis persister cells showed a high tolerance to a variety of antibiotics, and the phenotype was not inherited as tested with four passages of S. suis populations. Furthermore, we provide evidence that the persister phenotype is related to expression of genes involved in general metabolic pathways since we found higher numbers of persister cells in a mutant strain defective in the catabolic arginine deiminase system as compared to its parental wild type strain. Finally, we observed persister cell formation also in other S. suis strains and pathogenic streptococcal species. Conclusions Taken together, this is the first study that reports multi-drug tolerant persister cells in the zoonotic pathogen S. suis. PMID:24885389
Rinehart, C A; Mayben, J P; Butler, T D; Haskill, J S; Kaufman, D G
1992-01-01
The normal genomic stability of human cells is reversed during neoplastic transformation. The SV40 large T antigen alters the DNA content in human endometrial stromal cells in a manner that relates to neoplastic progression. Human endometrial stromal cells were transfected with a plasmid containing the A209 temperature-sensitive mutant of SV40 (tsSV40), which is also defective in the viral origin of replication. Ninety-seven clonal transfectants from seven different primary cell strains were isolated. Initial analysis revealed that 20% of the clonal populations (19/97) had an apparent diploid DNA content, 35% (34/97) had an apparent tetraploid DNA content, and the remainder were mixed populations of diploid and tetraploid cells. No aneuploid populations were observed. Diploid tsSV40 transformed cells always give rise to a population of cells with a tetraploid DNA content when continuously cultured at the permissive temperature. The doubling of DNA content can be vastly accelerated by the sudden reintroduction of large T antigen activity following a shift from non-permissive to permissive temperature. Tetraploid tsSV40 transfected cells have a lower capacity for anchorage-independent growth and earlier entry into 'crisis' than diploid cells. These results indicate that during the pre-crisis, extended lifespan phase of growth, the SV40 large T antigen causes a doubling of DNA content. This apparent doubling of DNA content does not confer growth advantage during the extended lifespan that precedes 'crisis'.
Selection of Brain Metastasis-Initiating Breast Cancer Cells Determined by Growth on Hard Agar
Guo, Lixia; Fan, Dominic; Zhang, Fahao; Price, Janet E.; Lee, Ju-Seog; Marchetti, Dario; Fidler, Isaiah J.; Langley, Robert R.
2011-01-01
An approach that facilitates rapid isolation and characterization of tumor cells with enhanced metastatic potential is highly desirable. Here, we demonstrate that plating GI-101A human breast cancer cells on hard (0.9%) agar selects for the subpopulation of metastasis-initiating cells. The agar-selected cells, designated GI-AGR, were homogeneous for CD44+ and CD133+ and five times more invasive than the parental GI-101A cells. Moreover, mice injected with GI-AGR cells had significantly more experimental brain metastases and shorter overall survival than did mice injected with GI-101A cells. Comparative gene expression analysis revealed that GI-AGR cells were markedly distinct from the parental cells but shared an overlapping pattern of gene expression with the GI-101A subline GI-BRN, which was generated by repeated in vivo recycling of GI-101A cells in an experimental brain metastasis model. Data mining on 216 genes shared between GI-AGR and GI-BRN breast cancer cells suggested that the molecular phenotype of these cells is consistent with that of cancer stem cells and the aggressive basal subtype of breast cancer. Collectively, these results demonstrate that analysis of cell growth in a hard agar assay is a powerful tool for selecting metastasis-initiating cells in a heterogeneous population of breast cancer cells, and that such selected cells have properties similar to those of tumor cells that are selected based on their potential to form metastases in mice. PMID:21514446
Vitamin D is a determinant of mouse intestinal Lgr5 stem cell functions.
Peregrina, Karina; Houston, Michele; Daroqui, Cecilia; Dhima, Elena; Sellers, Rani S; Augenlicht, Leonard H
2015-01-01
Lgr5+ intestinal crypt base columnar cells function as stem cells whose progeny populate the villi, and Lgr5+ cells in which Apc is inactivated can give rise to tumors. Surprisingly, these Lgr5+ stem cell properties were abrogated by the lower dietary vitamin D and calcium in a semi-purified diet that promotes both genetically initiated and sporadic intestinal tumors. Inactivation of the vitamin D receptor in Lgr5+ cells established that compromise of Lgr5 stem cell function was a rapid, cell autonomous effect of signaling through the vitamin D receptor. The loss of Lgr5 stem cell function was associated with presence of Ki67 negative Lgr5+ cells at the crypt base. Therefore, vitamin D, a common nutrient and inducer of intestinal cell maturation, is an environmental factor that is a determinant of Lgr5+ stem cell functions in vivo. Since diets used in reports that establish and dissect mouse Lgr5+ stem cell activity likely provided vitamin D levels well above the range documented for human populations, the contribution of Lgr5+ cells to intestinal homeostasis and tumor formation in humans may be significantly more limited, and variable in the population, then suggested by published rodent studies. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Takeda, Norifumi; Jain, Rajan; LeBoeuf, Matthew R.; Padmanabhan, Arun; Wang, Qiaohong; Li, Li; Lu, Min Min; Millar, Sarah E.; Epstein, Jonathan A.
2013-01-01
The mammalian hair follicle relies on adult resident stem cells and their progeny to fuel and maintain hair growth throughout the life of an organism. The cyclical and initially synchronous nature of hair growth makes the hair follicle an ideal system with which to define homeostatic mechanisms of an adult stem cell population. Recently, we demonstrated that Hopx is a specific marker of intestinal stem cells. Here, we show that Hopx specifically labels long-lived hair follicle stem cells residing in the telogen basal bulge. Hopx+ cells contribute to all lineages of the mature hair follicle and to the interfollicular epidermis upon epidermal wounding. Unexpectedly, our analysis identifies a previously unappreciated progenitor population that resides in the lower hair bulb of anagen-phase follicles and expresses Hopx. These cells co-express Lgr5, do not express Shh and escape catagen-induced apoptosis. They ultimately differentiate into the cytokeratin 6-positive (K6) inner bulge cells in telogen, which regulate the quiescence of adjacent hair follicle stem cells. Although previous studies have suggested that K6+ cells arise from Lgr5-expressing lower outer root sheath cells in anagen, our studies indicate an alternative origin, and a novel role for Hopx-expressing lower hair bulb progenitor cells in contributing to stem cell homeostasis. PMID:23487314
Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein
2017-03-15
Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Peterson, Shelby C; Eberl, Markus; Vagnozzi, Alicia N; Belkadi, Abdelmadjid; Veniaminova, Natalia A; Verhaegen, Monique E; Bichakjian, Christopher K; Ward, Nicole L; Dlugosz, Andrzej A; Wong, Sunny Y
2015-04-02
Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as "hot spots" for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.
Peterson, Shelby C.; Eberl, Markus; Vagnozzi, Alicia N.; Belkadi, Abdelmadjid; Veniaminova, Natalia A.; Verhaegen, Monique E.; Bichakjian, Christopher K.; Ward, Nicole L.; Dlugosz, Andrzej A.; Wong, Sunny Y.
2015-01-01
SUMMARY Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well-established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as “hot spots” for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. PMID:25842978
Visualization of CD44 and CD133 in Normal Pancreas and Pancreatic Ductal Adenocarcinomas
Immervoll, Heike; Hoem, Dag; Steffensen, Ole Johnny; Miletic, Hrvoje; Molven, Anders
2011-01-01
Tumor-initiating cells of pancreatic ductal adenocarcinoma (PDAC) have been isolated based on expression of either CD133 or CD44. The authors aimed to visualize pancreatic cells simultaneously expressing both these cell surface markers by employing the same antibodies commonly used in cell-sorting studies. Normal and diseased pancreatic tissue, including 51 PDAC cases, were analyzed. CD44 and CD133 expression was determined by immunohistochemical double staining on formalin-fixed material and subcellular protein distribution evaluated by immunofluorescence/confocal microscopy. In the normal pancreas, CD44 and CD133 were coexpressed in the centroacinar regions but in non-overlapping subcellular compartments. As expected, CD44 was found mainly basolaterally, whereas CD133 was present on the apical/endoluminal membrane. This was also the case in chronically inflamed/atrophic pancreatic tissue and in PDAC. In some malignant ducts, CD44 was found at the apical cell membrane adjacent to but never overlapping with CD133 expression. CD44 level was significantly associated with the patient’s lymph node status. In conclusion, a CD44+/CD133+ cell population does exist in the normal and neoplastic pancreas. The preferentially centroacinar localization of the doubly positive cells in the normal parenchyma suggests that this population could be of particular interest in attempts to identify tumor-initiating cells in PDAC. This article contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. PMID:21411814
Azzam, Diana J; Zhao, Dekuang; Sun, Jun; Minn, Andy J; Ranganathan, Prathibha; Drews-Elger, Katherine; Han, Xiaoqing; Picon-Ruiz, Manuel; Gilbert, Candace A; Wander, Seth A; Capobianco, Anthony J; El-Ashry, Dorraya; Slingerland, Joyce M
2013-01-01
Increasing evidence suggests that stem-like cells mediate cancer therapy resistance and metastasis. Breast tumour-initiating stem cells (T-ISC) are known to be enriched in CD44+CD24neg/low cells. Here, we identify two T-ISC subsets within this population in triple negative breast cancer (TNBC) lines and dissociated primary breast cancer cultures: CD44+CD24low+ subpopulation generates CD44+CD24neg progeny with reduced sphere formation and tumourigenicity. CD44+CD24low+ populations contain subsets of ALDH1+ and ESA+ cells, yield more frequent spheres and/or T-ISC in limiting dilution assays, preferentially express metastatic gene signatures and show greater motility, invasion and, in the MDA-MB-231 model, metastatic potential. CD44+CD24low+ but not CD44+CD24neg express activated Notch1 intracellular domain (N1-ICD) and Notch target genes. We show N1-ICD transactivates SOX2 to increase sphere formation, ALDH1+ and CD44+CD24low+cells. Gamma secretase inhibitors (GSI) reduced sphere formation and xenograft growth from CD44+CD24low+ cells, but CD44+CD24neg were resistant. While GSI hold promise for targeting T-ISC, stem cell heterogeneity as observed herein, could limit GSI efficacy. These data suggest a breast T-ISC hierarchy in which distinct pathways drive developmentally related subpopulations with different anti-cancer drug responsiveness. PMID:23982961
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blazek, Ed R.; Foutch, Jennifer L.; Maki, Guitta
2007-01-01
Purpose: Primary medulloblastoma and glioblastoma multiforme tumor cells that express the surface marker CD133 are believed to be enriched for brain tumor stem cells because of their unique ability to initiate or reconstitute tumors in immunodeficient mice. This study sought to characterize the radiobiological properties and marker expression changes of CD133+ vs. CD133- cells of an established medulloblastoma cell line. Methods and Materials: Daoy and D283 Med cell lines were stained with fluorescently labeled anti-CD133 antibody and sorted into CD133+ and CD133- populations. The effect of oxygen (2% vs. 20%) on CD133 expression was measured. Both populations were analyzed formore » marker stability, cell cycle distribution, and radiosensitivity. Results: CD133+ Daoy cells restored nearly native CD133+ and CD133- populations within 18 days, whereas CD133- cells remained overwhelmingly CD133-. Culturing Daoy cells in 2% oxygen rather than the standard 20% oxygen increased their CD133 expression 1.6-fold. CD133+ Daoy cells were radioresistant via the {beta}-parameter of the linear-quadratic model relative to CD133- Daoy cells, although their {alpha}-parameters and cell cycle distributions were identical. Conclusions: Restoration of the original CD133+ and CD133- populations from CD133+ Daoy cells in serum is further evidence that CD133+ cells are functionally distinct from CD133- cells. The radioresistance of CD133+ compared with CD133- Daoy cells is consistent with better repair of sublethal damage. Enlargement of the CD133+ sector is a new feature of the hypoxic response.« less
Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors.
Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F; Shieh, Jae-Hung; Moore, Malcolm A; van den Brink, Marcel R M; Kusunoki, Yoichiro
2016-01-01
It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34(+)Lin(-)) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34(+)Lin(-) cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34(+)Lin(-) cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34(+)Lin(-) cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels.
Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors
Kyoizumi, Seishi; Kubo, Yoshiko; Misumi, Munechika; Kajimura, Junko; Yoshida, Kengo; Hayashi, Tomonori; Imai, Kazue; Ohishi, Waka; Nakachi, Kei; Young, Lauren F.; Shieh, Jae-Hung; Moore, Malcolm A.; van den Brink, Marcel R. M.; Kusunoki, Yoichiro
2016-01-01
It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34+Lin− ) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34+Lin− cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34+Lin− cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34+Lin− cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels. PMID:26720799
Becht, Etienne; Simoni, Yannick; Coustan-Smith, Elaine; Maximilien, Evrard; Cheng, Yang; Ng, Lai Guan; Campana, Dario; Newell, Evan
2018-06-21
Recent flow and mass cytometers generate datasets of dimensions 20 to 40 and a million single cells. From these, many tools facilitate the discovery of new cell populations associated with diseases or physiology. These new cell populations require the identification of new gating strategies, but gating strategies become exponentially more difficult to optimize when dimensionality increases. To facilitate this step, we developed Hypergate, an algorithm which given a cell population of interest identifies a gating strategy optimized for high yield and purity. Hypergate achieves higher yield and purity than human experts, Support Vector Machines and Random-Forests on public datasets. We use it to revisit some established gating strategies for the identification of innate lymphoid cells, which identifies concise and efficient strategies that allow gating these cells with fewer parameters but higher yield and purity than the current standards. For phenotypic description, Hypergate's outputs are consistent with fields' knowledge and sparser than those from a competing method. Hypergate is implemented in R and available on CRAN. The source code is published at http://github.com/ebecht/hypergate under an Open Source Initiative-compliant licence. Supplementary data are available at Bioinformatics online.
Phosphorylation of Nanog is Essential to Regulate Bmi1 and Promote Tumorigenesis
Xie, Xiujie; Piao, Longzhu; Cavey, Greg S.; Old, Matthew; Teknos, Theodoros N.; Mapp, Anna K; Pan, Quintin
2014-01-01
Emerging evidence indicates that Nanog is intimately involved in tumorigenesis in part through regulation of the cancer initiating cell population. However, the regulation and role of Nanog in tumorigenesis are still poorly understood. In this study, human Nanog was identified to be phosphorylated by human PKCε at multiple residues including T200 and T280. Our work indicated that phosphorylation at T200 and T280 modulates Nanog function through several regulatory mechanisms. Results with phosphorylation-insensitive and phosphorylation-mimetic mutant Nanog revealed that phosphorylation at T200 and T280 enhance Nanog protein stability. Moreover, phosphorylation-insensitive T200A and T280A mutant Nanog had a dominant-negative function to inhibit endogenous Nanog transcriptional activity. Inactivation of Nanog was due to impaired homodimerization, DNA binding, promoter occupancy, and p300, a transcriptional co-activator, recruitment resulting in a defect in target gene promoter activation. Ectopic expression of phosphorylation-insensitive T200A or T280A mutant Nanog reduced cell proliferation, colony formation, invasion, migration, and the cancer initiating cell population in head and neck squamous cell carcinoma (HNSCC) cells. The in vivo cancer initiating ability was severely compromised in HNSCC cells expressing phosphorylation-insensitive T200A or T280A mutant Nanog; 87.5% (14/16), 12.5% (1/8), and 0% (0/8) for control, T200A, and T280A, respectively. Nanog occupied the Bmi1 promoter to directly transactivate and regulate Bmi1. Genetic ablation and rescue experiments demonstrated that Bmi1 is a critical downstream signaling node for the pleiotropic, pro-oncogenic effects of Nanog. Taken together, our study revealed, for the first time, that post-translational phosphorylation of Nanog is essential to regulate Bmi1 and promote tumorigenesis. PMID:23708658
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra
Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67,more » EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black-Right-Pointing-Pointer Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential.« less
Ford, R M; Lauffenburger, D A
1992-05-01
An individual cell-based mathematical model of Rivero et al. provides a framework for determining values of the chemotactic sensitivity coefficient chi 0, an intrinsic cell population parameter that characterizes the chemotactic response of bacterial populations. This coefficient can theoretically relate the swimming behavior of individual cells to the resulting migration of a bacterial population. When this model is applied to the commonly used capillary assay, an approximate solution can be obtained for a particular range of chemotactic strengths yielding a very simple analytical expression for estimating the value of chi 0, [formula: see text] from measurements of cell accumulation in the capillary, N, when attractant uptake is negligible. A0 and A infinity are the dimensionless attractant concentrations initially present at the mouth of the capillary and far into the capillary, respectively, which are scaled by Kd, the effective dissociation constant for receptor-attractant binding. D is the attractant diffusivity, and mu is the cell random motility coefficient. NRM is the cell accumulation in the capillary in the absence of an attractant gradient, from which mu can be determined independently as mu = (pi/4t)(NRM/pi r2bc)2, with r the capillary tube radius and bc the bacterial density initially in the chamber. When attractant uptake is significant, a slightly more involved procedure requiring a simple numerical integration becomes necessary. As an example, we apply this approach to quantitatively characterize, in terms of the chemotactic sensitivity coefficient chi 0, data from Terracciano indicating enhanced chemotactic responses of Escherichia coli to galactose when cultured under growth-limiting galactose levels in a chemostat.
Analysis of antigen-specific B-cell memory directly ex vivo.
McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G
2004-01-01
Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.
Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration.
Ryall, James G
2013-09-01
Adult skeletal muscle contains a resident population of stem cells, termed satellite cells, that exist in a quiescent state. In response to an activating signal (such as physical trauma), satellite cells enter the cell cycle and undergo multiple rounds of proliferation, followed by differentiation, fusion, and maturation. Over the last 10-15 years, our understanding of the transcriptional regulation of this stem cell population has greatly expanded, but there remains a dearth of knowledge with regard to the initiating signal leading to these changes in transcription. The recent renewed interest in the metabolic regulation of both cancer and stem cells, combined with previous findings indicating that satellite cells preferentially colocalize with blood vessels, suggests that satellite cell function may be regulated by changes in cellular metabolism. This review aims to describe what is currently known about satellite cell metabolism during changes in cell fate, as well as to describe some of the exciting findings in other cell types and how these might relate to satellite cells. © 2013 The Author Journal compilation © 2013 FEBS.
ABCB5 maintains melanoma-initiating cells through a pro-inflammatory cytokine signaling circuit
Wilson, Brian J.; Saab, Karim R.; Ma, Jie; Schatton, Tobias; Pütz, Pablo; Zhan, Qian; Murphy, George F.; Gasser, Martin; Waaga-Gasser, Ana Maria; Frank, Natasha Y.; Frank, Markus H.
2014-01-01
The drug efflux transporter ABCB5 identifies cancer stem-like cells (CSC) in diverse human malignancies, where its expression is associated with clinical disease progression and tumor recurrence. ABCB5 confers therapeutic resistance but other functions in tumorigenesis independent of drug efflux have not been described that might help explain why it is so broadly overexpressed in human cancer. Here we show that in melanoma-initiating cells ABCB5 controls IL-1β secretion which serves to maintain slow-cycling, chemoresistant cells through an IL-1β/IL8/CXCR1 cytokine signaling circuit. This CSC maintenance circuit involved reciprocal paracrine interactions with ABCB5-negative cancer cell populations. ABCB5 blockade induced cellular differentiation, reversed resistance to multiple chemotherapeutic agents, and impaired tumor growth in vivo. Together, our results defined a novel function for ABCB5 in CSC maintenance and tumor growth. PMID:24934811
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santamaria-Martinez, Albert; Universitat de Barcelona, Barcelona; Barquinero, Jordi
2009-10-15
Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture andmore » sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.« less
Santamaria-Martínez, Albert; Barquinero, Jordi; Barbosa-Desongles, Anna; Hurtado, Antoni; Pinós, Tomàs; Seoane, Joan; Poupon, Marie-France; Morote, Joan; Reventós, Jaume; Munell, Francina
2009-10-15
Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45(-), CD81(+) and Sca-1(+)). We also demonstrated that SP clonal cells secrete transforming growth factor beta1 (TGF-beta1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-beta1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.
The Impact of Different Sources of Fluctuations on Mutual Information in Biochemical Networks
Chevalier, Michael; Venturelli, Ophelia; El-Samad, Hana
2015-01-01
Stochastic fluctuations in signaling and gene expression limit the ability of cells to sense the state of their environment, transfer this information along cellular pathways, and respond to it with high precision. Mutual information is now often used to quantify the fidelity with which information is transmitted along a cellular pathway. Mutual information calculations from experimental data have mostly generated low values, suggesting that cells might have relatively low signal transmission fidelity. In this work, we demonstrate that mutual information calculations might be artificially lowered by cell-to-cell variability in both initial conditions and slowly fluctuating global factors across the population. We carry out our analysis computationally using a simple signaling pathway and demonstrate that in the presence of slow global fluctuations, every cell might have its own high information transmission capacity but that population averaging underestimates this value. We also construct a simple synthetic transcriptional network and demonstrate using experimental measurements coupled to computational modeling that its operation is dominated by slow global variability, and hence that its mutual information is underestimated by a population averaged calculation. PMID:26484538
Quarmyne, Maa-Ohui; Dong, Wei; Theodore, Rodney; Anand, Sonia; Barry, Vaughn; Adisa, Olufolake; Buchanan, Iris D; Bost, James; Brown, Robert C; Joiner, Clinton H; Lane, Peter A
2017-01-01
The clinical efficacy of hydroxyurea in patients with sickle cell anemia (SCA) has been well established. However, data about its clinical effectiveness in practice is limited. We evaluated the clinical effectiveness of hydroxyurea in a large pediatric population using a retrospective cohort, pre-post treatment study design to control for disease severity selection bias. The cohort included children with SCA (SS, Sβ 0 thalassemia) who received care at Children's Healthcare of Atlanta (CHOA) and who initiated hydroxyurea in 2009-2011. Children on chronic transfusions, or children with inadequate follow up data and/or children who had taken hydroxyurea in the 3 years prior were excluded. For each patient healthcare utilization, laboratory values, and clinical outcomes for the 2-year period prior to hydroxyurea initiation were compared to those 2 years after initiation. Of 211 children with SCA who initiated hydroxyurea in 2009-2011, 134 met eligibility criteria. After initiation of hydroxyurea, rates of hospitalizations, pain encounters, and emergency department visits were reduced by 47% (<0.0001), 36% (P = 0.0001) and 43% (P < 0.0001), respectively. Average hemoglobin levels increased by 0.7 g/dl (P < 0.0001). Hydroxyurea effectiveness was similar across gender, insurance types and age, although there was a slightly greater reduction in hospitalizations in younger children. Am. J. Hematol. 92:77-81, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Identification of Newly Committed Pancreatic Cells in the Adult Mouse Pancreas.
Socorro, Mairobys; Criscimanna, Angela; Riva, Patricia; Tandon, Manuj; Prasadan, Krishna; Guo, Ping; Humar, Abhinav; Husain, Sohail Z; Leach, Steven D; Gittes, George K; Esni, Farzad
2017-12-13
Multipotent epithelial cells with high Aldehyde dehydrogenase activity have been previously reported to exist in the adult pancreas. However, whether they represent true progenitor cells remains controversial. In this study, we isolated and characterized cells with ALDH activity in the adult mouse or human pancreas during physiological conditions or injury. We found that cells with ALDH activity are abundant in the mouse pancreas during early postnatal growth, pregnancy, and in mouse models of pancreatitis and type 1 diabetes (T1D). Importantly, a similar population of cells is found abundantly in healthy children, or in patients with pancreatitis or T1D. We further demonstrate that cells with ALDH activity can commit to either endocrine or acinar lineages, and can be divided into four sub-populations based on CD90 and Ecadherin expression. Finally, our in vitro and in vivo studies show that the progeny of ALDH1 + /CD90 - /Ecad - cells residing in the adult mouse pancreas have the ability to initiate Pancreatic and duodenal homeobox (Pdx1) expression for the first time. In summary, we provide evidence for the existence of a sortable population of multipotent non-epithelial cells in the adult pancreas that can commit to the pancreatic lineage following proliferation and mesenchymal to epithelial transition (MET).
Beta-Adrenergic Receptor Expression in Muscle Cells
NASA Technical Reports Server (NTRS)
Young, Ronald B.; Bridge, K.; Vaughn, J. R.
1999-01-01
beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.
T-cell stimuli independently sum to regulate an inherited clonal division fate
Marchingo, J. M.; Prevedello, G.; Kan, A.; Heinzel, S.; Hodgkin, P. D.; Duffy, K. R.
2016-01-01
In the presence of antigen and costimulation, T cells undergo a characteristic response of expansion, cessation and contraction. Previous studies have revealed that population-level reproducibility is a consequence of multiple clones exhibiting considerable disparity in burst size, highlighting the requirement for single-cell information in understanding T-cell fate regulation. Here we show that individual T-cell clones resulting from controlled stimulation in vitro are strongly lineage imprinted with highly correlated expansion fates. Progeny from clonal families cease dividing in the same or adjacent generations, with inter-clonal variation producing burst-size diversity. The effects of costimulatory signals on individual clones sum together with stochastic independence; therefore, the net effect across multiple clones produces consistent, but heterogeneous population responses. These data demonstrate that substantial clonal heterogeneity arises through differences in experience of clonal progenitors, either through stochastic antigen interaction or by differences in initial receptor sensitivities. PMID:27869196
Frost, S D; McLean, A R
1994-03-01
To investigate the roles of mutation, competition and population dynamics in the emergence of drug resistant mutants during zidovudine therapy. A mathematical model of the population dynamics of the viral quasispecies during zidovudine therapy was investigated. The model was used to simulate changes in the numbers of uninfected and infected cells and the composition of the viral quasispecies in the years following initiation of therapy. Resulting scenarios in asymptomatic and AIDS patients were compared. The model was also used to investigate the efficacy of a treatment regimen involving alternating zidovudine and dideoxyinosine therapy. The behaviour of the model can be divided into three stages. Before therapy, mutation maintains a small pool of resistant mutants, outcompeted to very low levels by sensitive strains. When therapy begins there is a dramatic fall in the total viral load and resistant strains suddenly have the competitive advantage. Thus, it is resistant strains that infect the rising number of uninfected CD4+ cells. During this second stage the rapid effects of population dynamics swamp any effects of mutation between strains. When the populations of infected and uninfected cells approach their treatment equilibrium levels, mutation again becomes important in the slow generation of highly resistant strains. The short-term reduction in viral replication at the initiation of therapy generates a pool of uninfected cells which cause the eventual increase in viral burden. This increase is associated with (but not caused by) a rise in frequency of resistant strains which are at a competitive advantage in the presence of the drug. When therapy is ceased, reversion of resistance is slow as resistant strains are nearly as fit as sensitive strains in the absence of drug.
Sabaawy, Hatem E
2013-11-18
The efficacy of targeted therapies in leukemias and solid tumors depends upon the accurate detection and sustained targeting of initial and evolving driver mutations and/or aberrations in cancer cells. Tumor clonal evolution of the diverse populations of cancer cells during cancer progression contributes to the longitudinal variations of clonal, morphological, anatomical, and molecular heterogeneity of tumors. Moreover, drug-resistant subclones present at initiation of therapy or emerging as a result of targeted therapies represent major challenges for achieving success of personalized therapies in providing meaningful improvement in cancer survival rates. Here, I briefly portray tumor cell clonal evolution at the cellular and molecular levels, and present the multiple types of genetic heterogeneity in tumors, with a focus on their impact on the implementation of personalized or precision cancer medicine.
Vortex Lattice UXO Mobility Model Integration
2015-03-01
law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB...predictions of the fate and transport of a broad-field UXO population are extremely sensitive to the initial state of that population, specifically: the...limit the model’s computational domain. This revised model software was built on the concept of interconnected geomorphic control cells consisting of
Wang, Shunyou; Tran, Linh M.; Goldstein, Andrew S.; Lawson, Devon; Chen, Donghui; Li, Yunfeng; Guo, Changyong; Zhang, Baohui; Fazli, Ladan; Gleave, Martin; Witte, Owen N.; Garraway, Isla P.; Wu, Hong
2012-01-01
New therapies for late stage and castration resistant prostate cancer (CRPC) depend on defining unique properties and pathways of cell sub-populations capable of sustaining the net growth of the cancer. One of the best enrichment schemes for isolating the putative stem/progenitor cell from the murine prostate gland is Lin-;Sca1+;CD49fhi (LSChi), which results in a more than 10-fold enrichment for in vitro sphere-forming activity. We have shown previously that the LSChi subpopulation is both necessary and sufficient for cancer initiation in the Pten-null prostate cancer model. To further improve this enrichment scheme, we searched for cell surface molecules upregulated upon castration of murine prostate and identified CD166 as a candidate gene. CD166 encodes a cell surface molecule that can further enrich sphere-forming activity of WT LSChi and Pten null LSChi. Importantly, CD166 could enrich sphere-forming ability of benign primary human prostate cells in vitro and induce the formation of tubule-like structures in vivo. CD166 expression is upregulated in human prostate cancers, especially CRPC samples. Although genetic deletion of murine CD166 in the Pten null prostate cancer model does not interfere with sphere formation or block prostate cancer progression and CRPC development, the presence of CD166 on prostate stem/progenitors and castration resistant sub-populations suggest that it is a cell surface molecule with the potential for targeted delivery of human prostate cancer therapeutics. PMID:22880034
PERSPECTIVES ON CANCER STEM CELLS IN OSTEOSARCOMA
Basu-Roy, Upal; Basilico, Claudio; Mansukhani, Alka
2012-01-01
Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer. PMID:22659734
Wang, Liyun; Keatch, Robert; Zhao, Qi; Wright, John A; Bryant, Clare E; Redmann, Anna L; Terentjev, Eugene M
2018-01-12
Biofilm formation on abiotic surfaces in food and medical industry can cause severe contamination and infection, yet how biological and physical factors determine cellular architecture of early biofilms and bacterial behavior of the constituent cells remains largely unknown. In this study we examine the specific role of type-I fimbriae in nascent stages of biofilm formation and the response of micro-colonies to environmental flow shear at single-cell resolution. The results show that type-I fimbriae are not required for reversible adhesion from plankton, but critical for irreversible adhesion of Escherichia coli ( E.coli ) MG1655 forming biofilms on polyethylene terephthalate (PET) surfaces. Besides establishing a firm cell-surface contact, the irreversible adhesion seems necessary to initiate the proliferation of E.coli on the surface. After application of shear stress, bacterial retention is dominated by the 3D architecture of colonies independent of the population and the multi-layered structure could protect the embedded cells from being insulted by fluid shear, while cell membrane permeability mainly depends on the biofilm population and the duration time of the shear stress. Importance Bacterial biofilms could lead to severe contamination problems in medical devices and food processing equipment. However, biofilms are usually studied at a rough macroscopic level, thus little is known about how individual bacterial behavior within biofilms and multicellular architecture are influenced by bacterial appendages (e.g. pili/fimbriae) and environmental factors during early biofilm formation. We apply Confocal Laser Scanning Microscopy (CLSM) to visualize E.coli micro-colonies at single-cell resolution. Our findings suggest that type-I fimbriae are vital to the initiation of bacterial proliferation on surfaces and that the responses of biofilm architecture and cell membrane permeability of constituent bacteria to fluid shear stress are different, which are respectively regulated by the 3D morphology and the population of micro-colonies. Copyright © 2018 American Society for Microbiology.
Holt, P G; Robinson, B W; Reid, M; Kees, U R; Warton, A; Dawson, V H; Rose, A; Schon-Hegrad, M; Papadimitriou, J M
1986-01-01
The inflammatory and immune cell populations of the human lung parenchyma have not been characterized in detail. This report describes a novel and efficient procedure for their extraction. Histologically normal human lung tissue samples from pneumonectomy specimens were sliced to 0.5 mm, and digested in collagenase/DNAse. Viable mononuclear cell yields ranged from 15-48 X 10(6)/g, and were markedly in excess of reported methods employing mechanical tissue disruption, which normally yield populations containing almost exclusively macrophages. The lung digest population was examined by flow cytometry using monoclonal antibodies against cell surface receptors, and found to comprise up to 40% T lymphocytes, 10% B lymphocytes and 30% macrophages, contaminated by less than 1% peripheral blood cells. Based upon these figures, the recoverable lung parenchymal lymphoid cell pool appears considerably larger than previously recognized, being of the same order as the peripheral blood pool. Initial functional studies suggest that such cellular activities as antigen-specific T cell proliferation, antigen-presentation, interleukin 1 production and natural killer cell activity survive the extraction process, and controlled enzymatic digestion experiments with peripheral blood cells indicate that the degree of enzyme-mediated damage to these functions and to cell-surface structures, was minimal. The extraction method thus appears suitable for studying the types and functions of human parenchymal lung cells in health and disease. Images Fig. 2 p195-a PMID:3026698
Long, Meixiao; Higgins, Amy D.; Mihalyo, Marianne A.; Adler, Adam J.
2010-01-01
It has recently been shown that effector/memory T cells can undergo peripheral tolerization in response to self-antigen. In the present study, we found that within 24 h self-antigen profoundly impairs the ability of CD4 effectors to express TNF-α (and to a lesser extent IFN-γ); however, several days of self-antigen exposure is required to impair non-effector functions such as IL-2 expression and proliferation. Since only half of the initial effector CD4 cell population expresses effector cytokines following brief antigenic stimulation, tolerization might have been mediated either through functional inactivation of effector-competent cells, or alternatively by the selective deletion of competent and expansion of non-competent cells. When briefly stimulated effectors were fractionated based on their expression of IFN-γ, the IFN-γ− sub-population was able to express IFN-γ following secondary stimulation, indicating that all effector CD4 cells are functionally competent. Furthermore, both IFN-γ+ and IFN-γ− sub-populations underwent tolerization in response to self-HA (although the former was slightly more prone to deletion at later time points). Thus, effector CD4 cell tolerization is mediated primarily through the functional inactivation of effector-competent cells. PMID:14609577
Nanotopographical control of human osteoprogenitor differentiation.
Dalby, Matthew J; Gadegaard, Nikolaj; Curtis, Adam S G; Oreffo, Richard O C
2007-05-01
Current load-bearing orthopaedic implants are produced in 'bio-inert' materials such as titanium alloys. When inserted into the reamed bone during hip or knee replacement surgery the implants interact with mesenchymal populations including the bone marrow. Bio-inert materials are shielded from the body by differentiation of the cells along the fibroblastic lineage producing scar tissue and inferior healing. This is exacerbated by implant micromotion, which can lead to capsule formation. Thus, next-generation implant materials will have to elicit influence over osteoprogenitor differentiation and mesenchymal populations in order to recruit osteoblastic cells and produce direct bone apposition onto the implant. A powerful method of delivering cues to cells is via topography. Micro-scale topography has been shown to affect cell adhesion, migration, cytoskeleton, proliferation and differentiation of a large range of cell types (thus far all cell types tested have been shown to be responsive to topographical cues). More recent research with nanotopography has also shown a broad range of cell response, with fibroblastic cells sensing down to 10 nm in height. Initial studies with human mesenchymal populations and osteoprogenitor populations have again shown strong cell responses to nanofeatures with increased levels of osteocalcin and osteopontin production from the cells on certain topographies. This is indicative of increased osteoblastic activity on the nanotextured materials. Looking at preliminary data, it is tempting to speculate that progenitor cells are, in fact, more responsive to topography than more mature cell types and that they are actively seeking cues from their environment. This review will investigate the range of nanotopographies available to researchers and our present understanding of mechanisms of progenitor cell response. Finally, it will make some speculations of the future of nanomaterials and progenitor cells in tissue engineering.
Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition
Eyler, Christine E.; Foo, Wen-Chi; LaFiura, Katherine M.; McLendon, Roger E.; Hjelmeland, Anita B.; Rich, Jeremy N.
2009-01-01
Malignant brain tumors are among the most lethal cancers, and conventional therapies are largely limited to palliation. Novel therapies targeted against specific molecular pathways may offer improved efficacy and reduced toxicity compared to conventional therapies, but initial clinical trials of molecular targeted agents in brain cancer therapy have been frequently disappointing. In brain tumors and other cancers, subpopulations of tumor cells have recently been characterized by their ability to self-renew and initiate tumors. Although these cancer stem cells, or tumor initiating cells, are often only present in small numbers in human tumors, mounting evidence suggests that cancer stem cells contribute to tumor maintenance and therapeutic resistance. Thus, the development of therapies that target cancer stem cell signal transduction and biologies may improve brain tumor patient survival. We now demonstrate that populations enriched for cancer stem cells are preferentially sensitive to an inhibitor of Akt, a prominent cell survival and invasion signaling node. Treatment with an Akt inhibitor more potently reduced the numbers of viable brain cancer stem cells relative to matched non-stem cancer cells associated with a preferential induction of apoptosis and a suppression of neurosphere formation. Akt inhibition also reduced the motility and invasiveness of all tumor cells but had a greater impact on cancer stem cell behaviors. Furthermore, inhibition of Akt activity in cancer stem cells increased survival of immunocompromised mice bearing human glioma xenografts in vivo. Together, these results suggest that Akt inhibitors may function as effective anti-cancer stem cell therapies. PMID:18802038
Sutherland, H J; Lansdorp, P M; Henkelman, D H; Eaves, A C; Eaves, C J
1990-01-01
A major goal of current hematopoiesis research is to develop in vitro methods suitable for the measurement and characterization of stem cells with long-term in vivo repopulating potential. Previous studies from several centers have suggested the presence in normal human or murine marrow of a population of very primitive cells that are biologically, physically, and pharmacologically different from cells detectable by short-term colony assays and that can give rise to the latter in long-term cultures (LTCs) containing a competent stromal cell layer. In this report, we show that such cultures can be used to provide a quantitative assay for human "LTC-initiating cells" based on an assessment of the number of clonogenic cells present after 5-8 weeks. Production of derivative clonogenic cells is shown to be absolutely dependent on the presence of a stromal cell feeder. When this requirement is met, the clonogenic cell output (determined by assessment of 5-week-old cultures) is linearly related to the input cell number over a wide range of cell concentrations. Using limiting dilution analysis techniques, we have established the frequency of LTC-initiating cells in normal human marrow to be approximately 1 per 2 X 10(4) cells and in a highly purified CD34-positive subpopulation to be approximately 1 per 50-100 cells. The proliferative capacity exhibited by individual LTC-initiating cells cultured under apparently identical culture conditions was found to be highly variable. Values for the number of clonogenic cells per LTC-initiating cell in 5-week-old cultures ranged from 1 to 30 (the average being 4) with similar levels being detected in positive 8-week-old cultures. Some LTC-initiating cells are multipotent as evidenced by their generation of erythroid as well as granulopoietic progeny. The availability of a system for quantitative analysis of the proliferative and differentiative behavior of this newly defined compartment of primitive human hematopoietic cells should facilitate future studies of specific genetic or microenvironmental parameters involved in the regulation of these cells. Images PMID:2333304
Raghunath, Shobana; Pudupakam, Raghavendra Sumanth; Allen, Adria; Biswas, Moanaro; Sriranganathan, Nammalwar
2017-10-20
Oncolytic virotherapy is a promising novel approach that overcomes the limitations posed by radiation and chemotherapy. In this study, the oncolytic efficacy of a recombinant Newcastle disease virus (rNDV) BC-KLQL-GFP, against prostate cancer stem-like/tumor initiating cells was evaluated. Xenograft derived prostaspheres (XPS) induced tumor more efficiently than monolayer cell derived prostaspheres (MCPS) in nude mice. Primary and secondary XPS show enhanced self-renewal and clonogenic potential compared to MCPS. XPS also expressed embryonic stem cell markers, such as Nanog, CD44 and Nestin. Further, prostate specific antigen (PSA) activated recombinant Newcastle Disease Virus (rNDV) was selectively cytotoxic to tumor derived DU145 prostaspheres. An effective concentration (EC 50 ) of 0.11-0.14 multiplicity of infection was sufficient to cause prostasphere cell death in serum free culture. DU145 tumor xenograft derived prostaspheres were used as tumor surrogates as they were enriched for a putative tumor initiating cell population. PSA activated rNDV was efficient in inducing cell death of cells and prostaspheres derived from primary xenografts ex-vivo, thus signifying a potential in vivo efficacy. The EC 50 (∼0.1 MOI) for cytolysis of tumor initiating cells was slightly higher than that was required for the parental cell line, but within the therapeutic margin for safety and efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.
Masha, Luke; Zinchuk, Andrey; Boosalis, Valia
2015-01-01
We present a case of a pleural space malignancy masked by an atypical presentation of mantle cell lymphoma. Our patient presented with a large pleural effusion and right sided pleural studding, initially attributed to a new diagnosis of mantle cell lymphoma. Rare atypical epithelial cells were also seen amongst the clonal population of lymphocytes. The patient lacked systemic manifestations of mantle cell lymphoma and did not improve with chemotherapy. A pleural biopsy ultimately revealed the presence of an undifferentiated carcinoma, favoring a lung primary. A discussion of synchronous pleural space malignancies involving lymphomas is given. PMID:26500732
Masha, Luke; Zinchuk, Andrey; Boosalis, Valia
2015-09-07
We present a case of a pleural space malignancy masked by an atypical presentation of mantle cell lymphoma. Our patient presented with a large pleural effusion and right sided pleural studding, initially attributed to a new diagnosis of mantle cell lymphoma. Rare atypical epithelial cells were also seen amongst the clonal population of lymphocytes. The patient lacked systemic manifestations of mantle cell lymphoma and did not improve with chemotherapy. A pleural biopsy ultimately revealed the presence of an undifferentiated carcinoma, favoring a lung primary. A discussion of synchronous pleural space malignancies involving lymphomas is given.
Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B
2015-05-01
Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy. © 2015 AlphaMed Press.
Kim, Ji-Hoon; Kang, Wee-Soo; Yun, Sung-Chul
2014-06-01
A population model of bacterial spot caused by Xanthomonas campestris pv. vesicatoria on hot pepper was developed to predict the primary disease infection date. The model estimated the pathogen population on the surface and within the leaf of the host based on the wetness period and temperature. For successful infection, at least 5,000 cells/ml of the bacterial population were required. Also, wind and rain were necessary according to regression analyses of the monitored data. Bacterial spot on the model is initiated when the pathogen population exceeds 10(15) cells/g within the leaf. The developed model was validated using 94 assessed samples from 2000 to 2007 obtained from monitored fields. Based on the validation study, the predicted initial infection dates varied based on the year rather than the location. Differences in initial infection dates between the model predictions and the monitored data in the field were minimal. For example, predicted infection dates for 7 locations were within the same month as the actual infection dates, 11 locations were within 1 month of the actual infection, and only 3 locations were more than 2 months apart from the actual infection. The predicted infection dates were mapped from 2009 to 2012; 2011 was the most severe year. Although the model was not sensitive enough to predict disease severity of less than 0.1% in the field, our model predicted bacterial spot severity of 1% or more. Therefore, this model can be applied in the field to determine when bacterial spot control is required.
Kim, Ji-Hoon; Kang, Wee-Soo; Yun, Sung-Chul
2014-01-01
A population model of bacterial spot caused by Xanthomonas campestris pv. vesicatoria on hot pepper was developed to predict the primary disease infection date. The model estimated the pathogen population on the surface and within the leaf of the host based on the wetness period and temperature. For successful infection, at least 5,000 cells/ml of the bacterial population were required. Also, wind and rain were necessary according to regression analyses of the monitored data. Bacterial spot on the model is initiated when the pathogen population exceeds 1015 cells/g within the leaf. The developed model was validated using 94 assessed samples from 2000 to 2007 obtained from monitored fields. Based on the validation study, the predicted initial infection dates varied based on the year rather than the location. Differences in initial infection dates between the model predictions and the monitored data in the field were minimal. For example, predicted infection dates for 7 locations were within the same month as the actual infection dates, 11 locations were within 1 month of the actual infection, and only 3 locations were more than 2 months apart from the actual infection. The predicted infection dates were mapped from 2009 to 2012; 2011 was the most severe year. Although the model was not sensitive enough to predict disease severity of less than 0.1% in the field, our model predicted bacterial spot severity of 1% or more. Therefore, this model can be applied in the field to determine when bacterial spot control is required. PMID:25288995
Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Blanco, Mario Andres; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin
2014-01-01
Emerging evidence suggests that cancer is populated and maintained by tumor initiating cells (TICs) with stem-like properties similar to that of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signaling. Importantly, Fzd7-dependent enhancement of Wnt signaling by ΔNp63 also governs tumor initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms. PMID:25241036
Schmitner, Nicole; Kohno, Kenji; Meyer, Dirk
2017-03-01
The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l- negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l -positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells. © 2017. Published by The Company of Biologists Ltd.
Measuring cell cycle progression kinetics with metabolic labeling and flow cytometry.
Fleisig, Helen; Wong, Judy
2012-05-22
Precise control of the initiation and subsequent progression through the various phases of the cell cycle are of paramount importance in proliferating cells. Cell cycle division is an integral part of growth and reproduction and deregulation of key cell cycle components have been implicated in the precipitating events of carcinogenesis. Molecular agents in anti-cancer therapies frequently target biological pathways responsible for the regulation and coordination of cell cycle division. Although cell cycle kinetics tend to vary according to cell type, the distribution of cells amongst the four stages of the cell cycle is rather consistent within a particular cell line due to the consistent pattern of mitogen and growth factor expression. Genotoxic events and other cellular stressors can result in a temporary block of cell cycle progression, resulting in arrest or a temporary pause in a particular cell cycle phase to allow for instigation of the appropriate response mechanism. The ability to experimentally observe the behavior of a cell population with reference to their cell cycle progression stage is an important advance in cell biology. Common procedures such as mitotic shake off, differential centrifugation or flow cytometry-based sorting are used to isolate cells at specific stages of the cell cycle. These fractionated, cell cycle phase-enriched populations are then subjected to experimental treatments. Yield, purity and viability of the separated fractions can often be compromised using these physical separation methods. As well, the time lapse between separation of the cell populations and the start of experimental treatment, whereby the fractionated cells can progress from the selected cell cycle stage, can pose significant challenges in the successful implementation and interpretation of these experiments. Other approaches to study cell cycle stages include the use of chemicals to synchronize cells. Treatment of cells with chemical inhibitors of key metabolic processes for each cell cycle stage are useful in blocking the progression of the cell cycle to the next stage. For example, the ribonucleotide reductase inhibitor hydroxyurea halts cells at the G1/S juncture by limiting the supply of deoxynucleotides, the building blocks of DNA. Other notable chemicals include treatment with aphidicolin, a polymerase alpha inhibitor for G1 arrest, treatment with colchicine and nocodazole, both of which interfere with mitotic spindle formation to halt cells in M phase and finally, treatment with the DNA chain terminator 5-fluorodeoxyridine to initiate S phase arrest. Treatment with these chemicals is an effective means of synchronizing an entire population of cells at a particular phase. With removal of the chemical, cells rejoin the cell cycle in unison. Treatment of the test agent following release from the cell cycle blocking chemical ensures that the drug response elicited is from a uniform, cell cycle stage-specific population. However, since many of the chemical synchronizers are known genotoxic compounds, teasing apart the participation of various response pathways (to the synchronizers vs. the test agents) is challenging. Here we describe a metabolic labeling method for following a subpopulation of actively cycling cells through their progression from the DNA replication phase, through to the division and separation of their daughter cells. Coupled with flow cytometry quantification, this protocol enables for measurement of kinetic progression of the cell cycle in the absence of either mechanically- or chemically- induced cellular stresses commonly associated with other cell cycle synchronization methodologies. In the following sections we will discuss the methodology, as well as some of its applications in biomedical research.
Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry.
Wan, Leo Q; Ronaldson, Kacey; Park, Miri; Taylor, Grace; Zhang, Yue; Gimble, Jeffrey M; Vunjak-Novakovic, Gordana
2011-07-26
Left-right (LR) asymmetry (handedness, chirality) is a well-conserved biological property of critical importance to normal development. Changes in orientation of the LR axis due to genetic or environmental factors can lead to malformations and disease. While the LR asymmetry of organs and whole organisms has been extensively studied, little is known about the LR asymmetry at cellular and multicellular levels. Here we show that the cultivation of cell populations on micropatterns with defined boundaries reveals intrinsic cell chirality that can be readily determined by image analysis of cell alignment and directional motion. By patterning 11 different types of cells on ring-shaped micropatterns of various sizes, we found that each cell type exhibited definite LR asymmetry (p value down to 10(-185)) that was different between normal and cancer cells of the same type, and not dependent on surface chemistry, protein coating, or the orientation of the gravitational field. Interestingly, drugs interfering with actin but not microtubule function reversed the LR asymmetry in some cell types. Our results show that micropatterned cell populations exhibit phenotype-specific LR asymmetry that is dependent on the functionality of the actin cytoskeleton. We propose that micropatterning could potentially be used as an effective in vitro tool to study the initiation of LR asymmetry in cell populations, to diagnose disease, and to study factors involved with birth defects in laterality.
History of myeloid-derived suppressor cells.
Talmadge, James E; Gabrilovich, Dmitry I
2013-10-01
Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies have revealed that this hyperplasia is associated with populations of multipotent progenitor cells that have been identified as myeloid-derived suppressor cells (MDSCs). The study of MDSCs has provided a wealth of information regarding tumour pathobiology, has extended our understanding of neoplastic progression and has modified our approaches to immune adjuvant therapy. In this Timeline article, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs and the host macroenvironment.
PVRL1 Variants Contribute to Non-Syndromic Cleft Lip and Palate in Multiple Populations
Avila, Joseph R.; Jezewski, Peter A.; Vieira, Alexandre R.; Orioli, Iêda M.; Castilla, Eduardo E.; Christensen, Kaare; Daack-Hirsch, Sandra; Romitti, Paul A.; Murray, Jeffrey C.
2007-01-01
Poliovirus Receptor Like-1 (PVRL1) is a member of the immunoglobulin super family that acts in the initiation and maintenance of epithelial adherens junctions and is mutated in the cleft lip and palate/ectodermal dysplasia 1 syndrome (CLPED1, OMIM #225000). In addition, a common non-sense mutation in PVRL1 was discovered more often among non-syndromic sporadic clefting cases in Northern Venezuela in a previous case-control study. The present work sought to ascertain the role of PVRL1 in the sporadic forms of orofacial clefting in multiple populations. Multiple rare and common variants from all three splice isoforms were initially ascertained by sequencing 92 Iowan and 86 Filipino cases and CEPH controls. Using a family-based analysis to examine these variants, the common glycine allele of the G361V coding variant was significantly overtransmitted among all orofacial clefting phenotypes (P = 0.005). This represented G361V genotyping from over 800 Iowan, Danish, and Filipino families. Among four rare amino acid changes found within the V1 and C1 domains, S112T and T131A were found adjacent to critical amino acid positions within the V1 variable domain, regions previously shown to mediate cell-to-cell and cell-to-virus adhesion. The T131A variant was not found in over 1,300 non-affected control samples although the alanine is found in other species. The serine of the S112T variant position is conserved across all known PVRL1 sequences. Together these data suggest that both rare and common mutations within PVRL1 make a minor contribution to disrupting the initiation and regulation of cell-to-cell adhesion and downstream morphogenesis of the embryonic face. PMID:17089422
2009-09-01
using her beadbeater, Sonya Dyhrman for being my initial biology advisor, Heidi Sosik for her advice on image processing , the residents of Watson...64 2-17 Phycobiliprotein absorption spectra . . . . . . . . . . . . . . . . . . . . . 66 3-1 Image processing for automated cell counts...digital camera and Axiovision 4.6.3 software. Images were measured, and cell metrics were determined using the MATLAB image processing toolbox
Lefebvre, Christophe; Vandenbulcke, Franck; Bocquet, Béatrice; Tasiemski, Aurélie; Desmons, Annie; Verstraete, Mathilde; Salzet, Michel; Cocquerelle, Claude
2009-01-01
Previous studies evidenced that cystatin B-like gene is specifically expressed and induced in large circulating cœlomic cells following bacterial challenge in the leech Theromyzon tessulatum. In order to understand the role of that cysteine proteinase inhibitor during immune response, we investigated the existence of members of cathepsin family. We cloned a cathepsin L-like gene and studied its tissue distribution. Immunohistochemical studies using anti-cathepsin L and anti-cystatin B antibodies and ultrastructural results demonstrated the presence of three distinct cœlomic cell populations, (1) the chloragocytes which were initially defined as large cœlomocytes, (2) the granular amœbocytes, and (3) small cœlomic cells. Among those cells, while chloragocytes contain cystatin B and cathepsin L, granular amœbocytes do only contain cathepsin L and third cell population contains neither cathepsin nor inhibitor. Finally, results evidenced that cathepsin L immunopositive granular amœbocytes are chemoattracted to the site of injury and phagocyte bacteria. PMID:18177937
Nsanzimana, Sabin; Prabhu, Krishna; McDermott, Haley; Karita, Etienne; Forrest, Jamie I; Drobac, Peter; Farmer, Paul; Mills, Edward J; Binagwaho, Agnes
2015-09-09
The 1994 genocide against the Tutsi destroyed the health system in Rwanda. It is impressive that a small country like Rwanda has advanced its health system to the point of now offering near universal health insurance coverage. Through a series of strategic structural changes to its health system, catalyzed through international assistance, Rwanda has demonstrated a commitment towards improving patient and population health indicators. In particular, the rapid scale up of antiretroviral therapy (ART) has become a great success story for Rwanda. The country achieved universal coverage of ART at a CD4 cell count of 200 cells/mm(3) in 2007 and increased the threshold for initiation of ART to ≤350 cells/mm(3) in 2008. Further, 2013 guidelines raised the threshold for initiation to ≤500 cells/mm(3) and suggest immediate therapy for key affected populations. In 2015, guidelines recommend offering immediate treatment to all patients. By reviewing the history of HIV and the scale-up of treatment delivery in Rwanda since the genocide, this paper highlights some of the key innovations of the Government of Rwanda and demonstrates the ways in which the national response to the HIV epidemic has catalyzed the implementation of interventions that have helped strengthen the overall health system.
NASA Technical Reports Server (NTRS)
Bridge, K. Y.; Young, R. B.; Vaughn, J. R.
1998-01-01
Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 microM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.
Curran, Judith M; Chen, Rui; Stokes, Robert; Irvine, Eleanor; Graham, Duncan; Gubbins, Earl; Delaney, Deany; Amro, Nabil; Sanedrin, Raymond; Jamil, Haris; Hunt, John A
2010-03-01
The development of homogenously nano-patterned chemically modified surfaces that can be used to initiate a cellular response, particularly stem cell differentiation, in a highly controlled manner without the need for exogenous biological factors has never been reported, due to that fact that precisely defined and reproducible systems have not been available that can be used to study cell/material interactions and unlock the potential of a material driven cell response. Until now material driven stem cell (furthermore any cell) responses have been variable due to the limitations in definition and reproducibility of the underlying substrate and the lack of true homogeneity of modifications that can dictate a cellular response at a sub-micron level that can effectively control initial cell interactions of all cells that contact the surface. Here we report the successful design and use of homogenously molecularly nanopatterned surfaces to control initial stem cell adhesion and hence function. The highly specified nano-patterned arrays were compared directly to silane modified bulk coated substrates that have previously been proven to initiate mesenchymal stem cell (MSC) differentiation in a heterogenous manner, the aim of this study was to prove the efficiency of these previously observed cell responses could be enhanced by the incorporation of nano-patterns. Nano-patterned surfaces were prepared by Dip Pen Nanolithography (DPN) to produce arrays of 70 nm sized dots separated by defined spacings of 140, 280 and 1000 nm with terminal functionalities of carboxyl, amino, methyl and hydroxyl and used to control cell growth. These nanopatterned surfaces exhibited unprecedented control of initial cell interactions and will change the capabilities for stem cell definition in vitro and then cell based medical therapies. In addition to highlighting the ability of the materials to control stem cell functionality on an unprecedented scale this research also introduces the successful scale-up of DPN and the novel chemistries and systems to facilitate the production of homogeneously patterned substrates (5 mm2) that are applicable for use in in vitro cell conditions over prolonged periods for complete control of material driven cell responses.
Multigenerational memory and adaptive adhesion in early bacterial biofilm communities.
Lee, Calvin K; de Anda, Jaime; Baker, Amy E; Bennett, Rachel R; Luo, Yun; Lee, Ernest Y; Keefe, Joshua A; Helali, Joshua S; Ma, Jie; Zhao, Kun; Golestanian, Ramin; O'Toole, George A; Wong, Gerard C L
2018-04-24
Using multigenerational, single-cell tracking we explore the earliest events of biofilm formation by Pseudomonas aeruginosa During initial stages of surface engagement (≤20 h), the surface cell population of this microbe comprises overwhelmingly cells that attach poorly (∼95% stay <30 s, well below the ∼1-h division time) with little increase in surface population. If we harvest cells previously exposed to a surface and direct them to a virgin surface, we find that these surface-exposed cells and their descendants attach strongly and then rapidly increase the surface cell population. This "adaptive," time-delayed adhesion requires determinants we showed previously are critical for surface sensing: type IV pili (TFP) and cAMP signaling via the Pil-Chp-TFP system. We show that these surface-adapted cells exhibit damped, coupled out-of-phase oscillations of intracellular cAMP levels and associated TFP activity that persist for multiple generations, whereas surface-naïve cells show uncorrelated cAMP and TFP activity. These correlated cAMP-TFP oscillations, which effectively impart intergenerational memory to cells in a lineage, can be understood in terms of a Turing stochastic model based on the Pil-Chp-TFP framework. Importantly, these cAMP-TFP oscillations create a state characterized by a suppression of TFP motility coordinated across entire lineages and lead to a drastic increase in the number of surface-associated cells with near-zero translational motion. The appearance of this surface-adapted state, which can serve to define the historical classification of "irreversibly attached" cells, correlates with family tree architectures that facilitate exponential increases in surface cell populations necessary for biofilm formation.
Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus
2008-09-01
We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.
Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B; Fuxe, Jonas; Shoshan, Maria
2012-12-01
Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC 50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations.
Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B.; Fuxe, Jonas; Shoshan, Maria
2012-01-01
Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations. PMID:22954696
Wang, Tianyi; Lai, Janice H; Yang, Fan
2016-12-01
Cell-based therapies offer great promise for repairing cartilage. Previous strategies often involved using a single cell population such as stem cells or chondrocytes. A mixed cell population may offer an alternative strategy for cartilage regeneration while overcoming donor scarcity. We have recently reported that adipose-derived stem cells (ADSCs) can catalyze neocartilage formation by neonatal chondrocytes (NChons) when mixed co-cultured in 3D hydrogels in vitro. However, it remains unknown how the biochemical and mechanical cues of hydrogels modulate cartilage formation by mixed cell populations in vivo. The present study seeks to answer this question by co-encapsulating ADSCs and NChons in 3D hydrogels with tunable stiffness (∼1-33 kPa) and biochemical cues, and evaluating cartilage formation in vivo using a mouse subcutaneous model. Three extracellular matrix molecules were examined, including chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Our results showed that the type of biochemical cue played a dominant role in modulating neocartilage deposition. CS and HA enhanced type II collagen deposition, a desirable phenotype for articular cartilage. In contrast, HS promoted fibrocartilage phenotype with the upregulation of type I collagen and failed to retain newly deposited matrix. Hydrogels with stiffnesses of ∼7-33 kPa led to a comparable degree of neocartilage formation, and a minimal initial stiffness was required to retain hydrogel integrity over time. Results from this study highlight the important role of matrix cues in directing neocartilage formation, and they offer valuable insights in guiding optimal scaffold design for cartilage regeneration by using mixed cell populations.
Dickinson, Sally C; Sutton, Catherine A; Brady, Kyla; Salerno, Anna; Katopodi, Theoni; Williams, Rhys L; West, Christopher C; Evseenko, Denis; Wu, Ling; Pang, Suzanna; Ferro de Godoy, Roberta; Goodship, Allen E; Péault, Bruno; Blom, Ashley W; Kafienah, Wael; Hollander, Anthony P
2017-11-01
Multipotent mesenchymal stem cells (MSCs) have enormous potential in tissue engineering and regenerative medicine. However, until now, their development for clinical use has been severely limited as they are a mixed population of cells with varying capacities for lineage differentiation and tissue formation. Here, we identify receptor tyrosine kinase-like orphan receptor 2 (ROR2) as a cell surface marker expressed by those MSCs with an enhanced capacity for cartilage formation. We generated clonal human MSC populations with varying capacities for chondrogenesis. ROR2 was identified through screening for upregulated genes in the most chondrogenic clones. When isolated from uncloned populations, ROR2+ve MSCs were significantly more chondrogenic than either ROR2-ve or unfractionated MSCs. In a sheep cartilage-repair model, they produced significantly more defect filling with no loss of cartilage quality compared with controls. ROR2+ve MSCs/perivascular cells were present in developing human cartilage, adult bone marrow, and adipose tissue. Their frequency in bone marrow was significantly lower in patients with osteoarthritis (OA) than in controls. However, after isolation of these cells and their initial expansion in vitro, there was greater ROR2 expression in the population derived from OA patients compared with controls. Furthermore, osteoarthritis-derived MSCs were better able to form cartilage than MSCs from control patients in a tissue engineering assay. We conclude that MSCs expressing high levels of ROR2 provide a defined population capable of predictably enhanced cartilage production. Stem Cells 2017;35:2280-2291. © 2017 AlphaMed Press.
Dickinson, Sally C.; Sutton, Catherine A.; Brady, Kyla; Salerno, Anna; Katopodi, Theoni; Williams, Rhys L.; West, Christopher C.; Evseenko, Denis; Wu, Ling; Pang, Suzanna; Ferro de Godoy, Roberta; Goodship, Allen E.; Péault, Bruno; Blom, Ashley W.; Kafienah, Wael
2017-01-01
Abstract Multipotent mesenchymal stem cells (MSCs) have enormous potential in tissue engineering and regenerative medicine. However, until now, their development for clinical use has been severely limited as they are a mixed population of cells with varying capacities for lineage differentiation and tissue formation. Here, we identify receptor tyrosine kinase‐like orphan receptor 2 (ROR2) as a cell surface marker expressed by those MSCs with an enhanced capacity for cartilage formation. We generated clonal human MSC populations with varying capacities for chondrogenesis. ROR2 was identified through screening for upregulated genes in the most chondrogenic clones. When isolated from uncloned populations, ROR2+ve MSCs were significantly more chondrogenic than either ROR2–ve or unfractionated MSCs. In a sheep cartilage‐repair model, they produced significantly more defect filling with no loss of cartilage quality compared with controls. ROR2+ve MSCs/perivascular cells were present in developing human cartilage, adult bone marrow, and adipose tissue. Their frequency in bone marrow was significantly lower in patients with osteoarthritis (OA) than in controls. However, after isolation of these cells and their initial expansion in vitro, there was greater ROR2 expression in the population derived from OA patients compared with controls. Furthermore, osteoarthritis‐derived MSCs were better able to form cartilage than MSCs from control patients in a tissue engineering assay. We conclude that MSCs expressing high levels of ROR2 provide a defined population capable of predictably enhanced cartilage production. Stem Cells 2017;35:2280–2291 PMID:28833807
Modulation of T Cell Activation by Malignant Melanoma Initiating Cells
Schatton, Tobias; Schütte, Ute; Frank, Natasha Y.; Zhan, Qian; Hoerning, André; Robles, Susanne C.; Zhou, Jun; Hodi, F. Stephen; Spagnoli, Giulio C.; Murphy, George F.; Frank, Markus H.
2010-01-01
Highly immunogenic cancers such as malignant melanoma are capable of inexorable tumor growth despite the presence of antitumor immunity. This raises the possibility that only a restricted minority of tumorigenic malignant cells might possess the phenotypic and functional characteristics to modulate tumor-directed immune activation. Here we provide evidence supporting this hypothesis, by demonstrating that tumorigenic ABCB5+ malignant melanoma-initiating cells (MMICs) possess the capacity to preferentially inhibit interleukin (IL)-2-dependent T cell activation and to support, in a B7.2-dependent manner, regulatory T (Treg) cell induction. Compared to melanoma bulk populations, ABCB5+ MMICs expressed lower levels of the major histocompatibility complex (MHC) class I, showed aberrant positivity for MHC class II, and exhibited lower expression levels of the melanoma-associated antigens (MAAs) MART-1, ML-IAP, NY-ESO-1, and MAGE-A. In addition, tumorigenic ABCB5+ subpopulations preferentially expressed the costimulatory molecules B7.2 and PD-1 in both established melanoma xenografts and clinical tumor specimens in vivo. In immune activation assays, ABCB5+ melanoma cells inhibited mitogen-dependent human peripheral blood mononuclear cell (PBMC) proliferation and IL-2 production more efficiently than ABCB5− populations. Moreover, coculture with ABCB5+ MMICs increased, in a B7.2 signalling-dependent manner, CD4+CD25+FoxP3+ Treg cell abundance and IL-10 production by mitogen-activated PBMCs. Consistent with these findings, ABCB5+ melanoma subsets also preferentially inhibited IL-2 production and induced IL-10 secretion by cocultured patient-derived, syngeneic PBMCs. Our findings identify novel T cell-modulatory functions of ABCB5+ melanoma subpopulations and suggest specific roles for MMICs in the evasion of antitumor immunity and in cancer immunotherapeutic resistance. PMID:20068175
Placental immune state shifts with gestational age.
Lewis, Emma L; Sierra, Luz-Jeannette; Barila, Guillermo O; Brown, Amy G; Porrett, Paige M; Elovitz, Michal A
2018-06-01
Placental immunologic functions are implicated in both the maintenance of a healthy pregnancy and the pathogenesis of obstetric complications. Immune populations at the maternal-fetal interface are hypothesized to support fetomaternal tolerance, defend the fetus from infection, and contribute to labor initiation. Despite the many potential roles of placental immune cells in normal and abnormal pregnancy, little is known about placental immune population dynamics over gestation, particularly near parturition. A daily placental immune cell census was established in a murine model by flow cytometry from mid to late gestation and compared to the maternal systemic immune census. Shifts in the placental immune state were further characterized through cytokine ELISAs. The placental immune census is distinct from the maternal systemic immune census, although the cells are primarily maternal in origin. Near term parturition, the placenta contains fewer CD11c-positive myeloid cells and regulatory T cells, and there is a concurrent decrease in placental IL-9 and IL-35. The immune profile of the placenta demonstrates a decrease in both regulatory immune cell types and cytokines late in gestation. Establishing the placental immune population dynamics over a healthy pregnancy will allow future investigation of placental immune cells during abnormal pregnancy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Nardi, James B; Pilas, Barbara; Bee, Charles Mark; Zhuang, Shufei; Garsha, Karl; Kanost, Michael R
2006-01-01
Observations of hemocyte aggregation on abiotic surfaces suggested that certain plasmatocytes from larvae of Manduca sexta act as foci for hemocyte aggregation. To establish how these particular plasmatocytes form initial attachments to foreign surfaces, they were cultured separately from other selected populations of hemocytes. While all circulating plasmatocytes immunolabel with anti-beta-integrin monoclonal antibody (MAb), only these larger plasmatocytes immunolabel with a MAb to the adhesion protein neuroglian. Neuroglian-negative plasmatocytes and granular cells that have been magnetically segregated from the majority of granular cells adhere to each other but fail to adhere to foreign substrata; by contrast, neuroglian-positive plasmatocytes that segregate with most granular cells adhere firmly to a substratum. Hemocytes form stable aggregates around the large, neuroglian-positive plasmatocytes. However, if neuroglian-positive plasmatocytes are separated from most granular cells, attachment of these plasmatocytes to foreign surfaces is suppressed.
Effects of Malignant Melanoma Initiating Cells on T-Cell Activation
Schatton, Tobias; Schütte, Ute; Frank, Markus H.
2016-01-01
Although human malignant melanoma is a highly immunogenic cancer, both the endogenous antitumor immune response and melanoma immunotherapy often fail to control neoplastic progression. Accordingly, characterizing melanoma cell subsets capable of evading antitumor immunity could unravel optimized treatment strategies that might reduce morbidity and mortality from melanoma. By virtue of their preferential capacity to modulate antitumor immune responses and drive inexorable tumor growth and progression, malignant melanoma-initiating cells (MMICs) warrant closer investigation to further elucidate the cellular and molecular mechanisms underlying melanoma immune evasion and immunotherapy resistance. Here we describe methodologies that enable the characterization of immunoregulatory effects of purified MMICs versus melanoma bulk populations in coculture with syngeneic or allogeneic lymphocytes, using [3H] thymidine incorporation, enzyme-linked immunosorbent spot (ELISPOT), or ELISA assays. These assays were traditionally developed to analyze alloimmune processes and we successfully adapted them for the study of tumor-mediated immunomodulatory functions. PMID:26786883
2012-01-01
Background Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Methods Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. Results CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 103 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 105 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). Conclusions We characterized a self-renewing subpopulation of CICs found among four well known human cancer-derived cell lines (HeLa, SiHa, Ca Ski and C-4 I) and found that they express characteristic markers of stem cell, EMT and radioresistance. The fact that CICs demonstrated a higher degree of resistance to radiation than differentiated cells suggests that specific detection and targeting of CICs could be highly valuable for the therapy of tumors from the uterine cervix. PMID:22284662
Simulating Heterogeneous Tumor Cell Populations
Bar-Sagi, Dafna; Mishra, Bud
2016-01-01
Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic hypoxia, signify a tumor’s resistance to therapy. Although recent research has shed light on the intracellular mechanisms of cancer metabolic reprogramming, little is known about how tumors become metabolically heterogeneous or chronically hypoxic, namely the initial conditions and spatiotemporal dynamics that drive these cell population conditions. To study these aspects, we developed a minimal, spatially-resolved simulation framework for modeling tissue-scale mixed populations of cells based on diffusible particles the cells consume and release, the concentrations of which determine their behavior in arbitrarily complex ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel questions in the context of these results: (1) How will two metabolically symbiotic cell subpopulations self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a robust pattern of alternating striations. (2) What is the proper time scale to observe stable local regions of chronic hypoxia? We observe the stability is a function of the balance of three factors related to O2—diffusion rate, local vessel release rate, and viable and hypoxic tumor cell consumption rate. We anticipate our simulation framework will help researchers design better experiments and generate novel hypotheses to better understand dynamic, emergent whole-tumor behavior. PMID:28030620
Novella, Isabel S; Ebendick-Corpus, Bonnie E; Zárate, Selene; Miller, Eric L
2007-06-01
Arboviruses (arthropod-borne viruses) represent quintessential generalists, with the ability to infect and perform well in multiple hosts. However, antagonistic pleiotropy imposed a cost during the adaptation to persistent replication of vesicular stomatitis virus in sand fly cells and resulted in strains that initially replicated poorly in hamster cells, even when the virus was allowed to replicate periodically in the latter. Once a debilitated strain started replicating continuously in mammalian cells, fitness increased significantly. Fitness recovery did not entail back mutations or compensatory mutations, but instead, we observed the replacement of persistence-adapted genomes by mammalian cell-adapted strains with a full set of new, unrelated sequence changes. These mammalian cell-adapted genomes were present at low frequencies in the populations with a history of persistence for up to a year and quickly became dominant during mammalian infection, but coexistence was not stable in the long term. Periodic acute replication in mammalian cells likely contributed to extending the survival of minority genomes, but these genomes were also found in strictly persistent populations.
Dendritic cell subsets in type 1 diabetes: friend or foe?
Morel, Penelope A
2013-12-06
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease characterized by immune mediated destruction of the insulin-producing β cells in the islets of Langerhans. Dendritic cells (DC) have been implicated in the pathogenesis of T1D and are also used as immunotherapeutic agents. Plasmacytoid (p)DC have been shown to have both protective and pathogenic effects and a newly described merocytic DC population has been shown to break tolerance in the mouse model of T1D, the non-obese diabetic (NOD) mouse. We have used DC populations to prevent the onset of T1D in NOD mice and clinical trials of DC therapy in T1D diabetes have been initiated. In this review we will critically examine the recent published literature on the role of DC subsets in the induction and regulation of the autoimmune response in T1D.
van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Ákos T
2014-01-01
In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express ‘cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation. PMID:24694715
van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T
2014-10-01
In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.
Network dynamics underlying the formation of sparse, informative representations in the hippocampus.
Karlsson, Mattias P; Frank, Loren M
2008-12-24
During development, activity-dependent processes increase the specificity of neural responses to stimuli, but the role that this type of process plays in adult plasticity is unclear. We examined the dynamics of hippocampal activity as animals learned about new environments to understand how neural selectivity changes with experience. Hippocampal principal neurons fire when the animal is located in a particular subregion of its environment, and in any given environment the hippocampal representation is sparse: less than half of the neurons in areas CA1 and CA3 are active whereas the rest are essentially silent. Here we show that different dynamics govern the evolution of this sparsity in CA1 and upstream area CA3. CA1, but not CA3, produces twice as many spikes in novel compared with familiar environments. This high rate firing continues during sharp wave ripple events in a subsequent rest period. The overall CA1 population rate declines and the number of active cells decreases as the environment becomes familiar and task performance improves, but the decline in rate is not uniform across neurons. Instead, the activity of cells with initial peak spatial rates above approximately 12 Hz is enhanced, whereas the activity of cells with lower initial peak rates is suppressed. The result of these changes is that the active CA1 population comes to consist of a relatively small group of cells with strong spatial tuning. This process is not evident in CA3, indicating that a region-specific and long timescale process operates in CA1 to create a sparse, spatially informative population of neurons.
Inhibition of antigen- and mitogen-induced human lymphocyte proliferation by gold compounds.
Lipsky, P E; Ziff, M
1977-01-01
Gold sodium thiomalate (GST) inhibited in vitro antigen- and mitogen-triggered human lymphocyte DNA synthesis. Inhibition of responsiveness was observed with concentrations of GST equivalent to gold levels found in serum or tissues of patients receiving chrysotherapy, Inhibition was dependent upon the gold ion itself since GST and gold chloride were both inhibitory whereas thiomalic acid was not. Inhibition could not be explained by nonspecific killing of cells or by an alteration in the kinetics of the responses. GST inhibited mitogen-induced proliferation most effectively when present from the initiation of culture and could not inhibit the responsiveness of cells which previously had been activated by concanvalin A. These findings indicated that GST blocked a critical early step in lymphocyte activation. The degree of GST-induced inhibition of proliferation was increased in cultures of cells partially depleted of monocytes. Moreover, inhibition was reversed by supplementation of these cultures with purified monocytes. These observations suggested that GST blocked thymus-derived (T)-lymphocyte activation by interfering with a requisite function of the monocyte population in initiating such responses. Prolonged incubation of peripheral blood mononuclear cells with GST resulted in diminished mitogen responsiveness upon subsequent culture in the absence of gold. The addition of fresh monocytes restored responsiveness to these populations. Furthermore, preincubation of purified monocytes with GST rendered them deficient in their ability to support mitogen-induced T-lymphocyte proliferation on subsequent culture. These observations indicate that the major effect of GST results from interference with the functional capability of the monocyte population. PMID:838859
Proteolysis-a characteristic of tumor-initiating cells in murine metastatic breast cancer
Hillebrand, Larissa E.; Bengsch, Fee; Hochrein, Jochen; Hülsdünker, Jan; Bender, Julia; Follo, Marie; Busch, Hauke; Boerries, Melanie; Reinheckel, Thomas
2016-01-01
Tumor initiating cells (TICs) have been identified and functionally characterized in hematological malignancies as well as in solid tumors such as breast cancer. In addition to their high tumor-initiating potential, TICs are founder cells for metastasis formation and are involved in chemotherapy resistance. In this study we explored molecular pathways which enable this tumor initiating potential for a cancer cell subset of the transgenic MMTV-PyMT mouse model for metastasizing breast cancer. The cell population, characterized by the marker profile CD24+CD90+CD45−, showed a high tumorigenicity compared to non-CD24+CD90+CD45− cancer cells in colony formation assays, as well as upon orthotopic transplantation into the mammary fat pad of mice. In addition, these orthotopically grown CD24+CD90+CD45− TICs metastasized to the lungs. The transcriptome of TICs freshly isolated from primary tumors by cell sorting was compared with that of sorted non-CD24+CD90+CD45− cancer cells by RNA-seq. In addition to more established TIC signatures, such as epithelial-to-mesenchymal transition or mitogen signaling, an upregulated gene set comprising several classes of proteolytic enzymes was uncovered in the TICs. Accordingly, TICs showed high intra- and extracellular proteolytic activity. Application of a broad range of protease inhibitors to TICs in a colony formation assay reduced anchorage independent growth and had an impact on colony morphology in 3D cell culture assays. We conclude that CD24+CD90+CD45− cells of the MMTV- PyMT mouse model possess an upregulated proteolytic signature which could very well represent a functional hallmark of metastatic TICs from mammary carcinomas. PMID:27542270
Cytokines and the Inception of CD8 T Cell Responses
Cox, Maureen A.; Harrington, Laurie E.; Zajac, Allan J.
2011-01-01
The activation and differentiation of CD8 T cells is a necessary first step that endows these cells with the phenotypic and functional properties required for the control of intracellular pathogens. The induction of the CD8 T cell responses typically results in the development of a massive overall population of effector cells, comprised of both highly functional but short-lived terminally differentiated cells, as well as a smaller subset of precursors that are predisposed to survive and transition into the memory T cell pool. In this article we discuss how inflammatory cytokines and IL-2 bias the initial response towards short-lived effector generation and also highlight the potential counterbalancing role of IL-21. PMID:21371940
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, Andrew Oliveira, E-mail: andrewbiomed@gmail.com; Dalsin, Eloisa, E-mail: dalsineloisa@gmail.com; Onzi, Giovana Ravizzoni, E-mail: gioonzi@gmail.com
Chemotherapy acts on cancer cells by producing multiple effects on a cell population including cell cycle arrest, necrosis, apoptosis and senescence. However, often a subpopulation of cells survives and the behavior of this subpopulation, which is responsible for cancer recurrence, remains obscure. Here we investigated the in vitro short- and long-term responses of six glioblastoma cell lines to clinically relevant doses of temozolomide for 5 days followed by 23 days of recovery, mimicking the standard schedule used in glioblastoma patient for this drug. These cells presented different profiles of sensitivity to temozolomide with varying levels of cell cycle arrest, autophagymore » and senescence, followed by a regrowth of the surviving cells. The initial reduction in cell number and the subsequent regrowth was analyzed with four new parameters applied to Cumulative Population Doubling (CPD) curves that describe the overall sensitivity of the population and the characteristic of the regrowth: the relative end point CPD (RendCPD); the relative Area Under Curve (rAUC); the Relative Time to Cross a Threshold (RTCT); and the Relative Proliferation Rate (RPR). Surprisingly, the kinetics of regrowth were not predicted by the mechanisms activated after treatment nor by the acute or overall sensitivity. With this study we added new parameters that describe key responses of glioblastoma cell populations to temozolomide treatment. These parameters can also be applied to other cell types and treatments and will help to understand the behavior of the surviving cancer cells after treatment and shed light on studies of cancer resistance and recurrence. - Highlights: • Little is known about the behavior of the glioma cells surviving to TMZ. • The short- and long-term response of six glioma cells lines to TMZ varies considerably. • These glioma cells lines recovered proliferation after therapeutic levels of TMZ. • The growth velocity of the surviving cells was different from the untreated cells. • The kinetic of regrowth was not predicted by any TMZ-triggered mechanism.« less
Magnetic field enhancement of organic photovoltaic cells performance.
Oviedo-Casado, S; Urbina, A; Prior, J
2017-06-27
Charge separation is a critical process for achieving high efficiencies in organic photovoltaic cells. The initial tightly bound excitonic electron-hole pair has to dissociate fast enough in order to avoid photocurrent generation and thus power conversion efficiency loss via geminate recombination. Such process takes place assisted by transitional states that lie between the initial exciton and the free charge state. Due to spin conservation rules these intermediate charge transfer states typically have singlet character. Here we propose a donor-acceptor model for a generic organic photovoltaic cell in which the process of charge separation is modulated by a magnetic field which tunes the energy levels. The impact of a magnetic field is to intensify the generation of charge transfer states with triplet character via inter-system crossing. As the ground state of the system has singlet character, triplet states are recombination-protected, thus leading to a higher probability of successful charge separation. Using the open quantum systems formalism we demonstrate that the population of triplet charge transfer states grows in the presence of a magnetic field, and discuss the impact on carrier population and hence photocurrent, highlighting its potential as a tool for research on charge transfer kinetics in this complex systems.
NASA Astrophysics Data System (ADS)
Tang, Tingting
In this dissertation, we develop structured population models to examine how changes in the environmental affect population processes. In Chapter 2, we develop a general continuous time size structured model describing a susceptible-infected (SI) population coupled with the environment. This model applies to problems arising in ecology, epidemiology, and cell biology. The model consists of a system of quasilinear hyperbolic partial differential equations coupled with a system of nonlinear ordinary differential equations that represent the environment. We develop a second-order high resolution finite difference scheme to numerically solve the model. Convergence of this scheme to a weak solution with bounded total variation is proved. We numerically compare the second order high resolution scheme with a first order finite difference scheme. Higher order of convergence and high resolution property are observed in the second order finite difference scheme. In addition, we apply our model to a multi-host wildlife disease problem, questions regarding the impact of the initial population structure and transition rate within each host are numerically explored. In Chapter 3, we use a stage structured matrix model for wildlife population to study the recovery process of the population given an environmental disturbance. We focus on the time it takes for the population to recover to its pre-event level and develop general formulas to calculate the sensitivity or elasticity of the recovery time to changes in the initial population distribution, vital rates and event severity. Our results suggest that the recovery time is independent of the initial population size, but is sensitive to the initial population structure. Moreover, it is more sensitive to the reduction proportion to the vital rates of the population caused by the catastrophe event relative to the duration of impact of the event. We present the potential application of our model to the amphibian population dynamic and the recovery of a certain plant population. In addition, we explore, in details, the application of the model to the sperm whale population in Gulf of Mexico after the Deepwater Horizon oil spill. In Chapter 4, we summarize the results from Chapter 2 and Chapter 3 and explore some further avenues of our research.
Aging-Induced Stem Cell Mutations as Drivers for Disease and Cancer
Adams, Peter D.; Jasper, Heinrich; Rudolph, K. Lenhard
2015-01-01
Aging is characterized by a decrease in genome integrity, impaired organ maintenance, and an increased risk of cancer, which coincide with clonal dominance of expanded mutant stem and progenitor cell populations in aging tissues, such as the intestinal epithelium, the hematopoietic system, and the male germline. Here we discuss possible explanations for age-associated increases in the initiation and/or progression of mutant stem/progenitor clones and highlight the roles of stem cell quiescence, replication-associated DNA damage, telomere shortening, epigenetic alterations, and metabolic challenges as determinants of stem cell mutations and clonal dominance in aging. PMID:26046760
NASA Astrophysics Data System (ADS)
Vagos, Márcia R.; Arevalo, Hermenegild; de Oliveira, Bernardo Lino; Sundnes, Joakim; Maleckar, Mary M.
2017-09-01
Models of cardiac cell electrophysiology are complex non-linear systems which can be used to gain insight into mechanisms of cardiac dynamics in both healthy and pathological conditions. However, the complexity of cardiac models can make mechanistic insight difficult. Moreover, these are typically fitted to averaged experimental data which do not incorporate the variability in observations. Recently, building populations of models to incorporate inter- and intra-subject variability in simulations has been combined with sensitivity analysis (SA) to uncover novel ionic mechanisms and potentially clarify arrhythmogenic behaviors. We used the Koivumäki human atrial cell model to create two populations, representing normal Sinus Rhythm (nSR) and chronic Atrial Fibrillation (cAF), by varying 22 key model parameters. In each population, 14 biomarkers related to the action potential and dynamic restitution were extracted. Populations were calibrated based on distributions of biomarkers to obtain reasonable physiological behavior, and subjected to SA to quantify correlations between model parameters and pro-arrhythmia markers. The two populations showed distinct behaviors under steady state and dynamic pacing. The nSR population revealed greater variability, and more unstable dynamic restitution, as compared to the cAF population, suggesting that simulated cAF remodeling rendered cells more stable to parameter variation and rate adaptation. SA revealed that the biomarkers depended mainly on five ionic currents, with noted differences in sensitivities to these between nSR and cAF. Also, parameters could be selected to produce a model variant with no alternans and unaltered action potential morphology, highlighting that unstable dynamical behavior may be driven by specific cell parameter settings. These results ultimately suggest that arrhythmia maintenance in cAF may not be due to instability in cell membrane excitability, but rather due to tissue-level effects which promote initiation and maintenance of reentrant arrhythmia.
Attachment defect in mouse fibroblasts (L cells) persistently infected with Chlamydia psittaci.
Moulder, J W; Levy, N J; Zeichner, S L; Lee, C K
1981-01-01
Almost all the cells in populations of mouse fibroblasts (L cells) persistently infected with the 6BC strain of Chlamydia psittaci were immune to superinfection with high multiplicities of C. psittaci, whether or not the L cells contained visible chlamydial inclusions. As ascertained by experiments with 14C-labeled C. psittaci, immunity to superinfection resulted from the failure of added chlamydiae to attach to persistently infected host cells. However, when exogenous C. psittaci was introduced into persistently infected L cells by centrifuging the inoculum onto host cell monolayers or by pretreating the monolayers with diethylaminoethyl-dextran, these chlamydiae produced expected numbers of infectious progeny. Persistently infected L cells were associated in an unknown way with a C. psittaci population that entered the host cells only with the aid of centrifugation or pretreatment with diethylaminoethyl-dextran. Inclusion-free, persistently infected L cells appeared to present at least two separate hindrances to chlamydial activity: blockage of the attachment of exogenous elementary bodies to persistently infected host cells and prevention of the initiation of chlamydial multiplication by means of a normal developmental cycle in the absence of added C. psittaci. Images PMID:7298188
Chang, Po-Hsiang; Sekine, Keisuke; Chao, Hsiao-Mei; Hsu, Shan-hui; Chern, Edward
2017-01-01
Cancer stem cells (CSCs), a small population of cancer cells, have been considered to be the origin of cancer initiation, recurrence, and metastasis. Tumor microenvironment provides crucial signals for CSCs to maintain stem cell properties and promotes tumorigenesis. Therefore, establishment of an appropriate cell culture system to mimic the microenvironment for CSC studies is an important issue. In this study, we grew colon and hepatocellular carcinoma (HCC) cells on chitosan membranes and evaluated the tumor progression and the CSC properties. Experimental results showed that culturing cancer cells on chitosan increased cell motility, drug resistance, quiescent population, self-renewal capacity, and the expression levels of stemness and CSC marker genes, such as OCT4, NANOG, CD133, CD44, and EpCAM. Furthermore, we demonstrated that chitosan might activate canonical Wnt/β-catenin-CD44 axis signaling in CD44positive colon cancer cells and noncanonical Wnt-STAT3 signaling in CD44negative HCC cells. In conclusion, chitosan as culture substrates activated the essential signaling of CSCs and promoted CSC properties. The chitosan culture system provides a convenient platform for the research of CSC biology and screening of anticancer drugs. PMID:28367998
Gerlach, Jörg C; Johnen, Christa; Ottomann, Christian; Ottoman, Christian; Bräutigam, Kirsten; Plettig, Jörn; Belfekroun, Claudia; Münch, Sandra; Hartmann, Bernd
2011-03-01
There is a therapeutic gap for patients with deep partial thickness wounds (Grade IIb) of moderate size that were initially not treated with split- or mesh grafting to avoid overgrafting, but developed delayed wound healing around two weeks after injury--at which time grafting is typically not indicated anymore. Delayed wound healing is often associated with esthetically unsatisfactory results and sometimes functional problems. An innovative cell isolation method for cell spray transplantation at the point of care, which eliminates cell culture prior to treatment, was implemented for this population of burn patients in our center. Autologous skin cell spray transplantation was initiated by taking healthy skin. The dermal/epidermal layers were separated using enzymatic digestion with 40 min dispase application, followed by 15 min trypsin application for basal kerationcyte isolation, 7 min cell washing by centrifugation, followed by transferring the cells for spraying into Ringer lactate solution. The procedure was performed on site in a single session immediately following the biopsy. After sharp wound debridement, cells were immediately transplanted by deposition with a cell sprayer for even distribution of the cell suspension. Eight patients were treated (mean age 30.3 years, mean burn total body surface area 14%, mean Abbreviated Burn Severity Index (5 points). The mean time to complete re-epithelialization was 12.6 days. All patients exhibited wound healing with improved esthetic and functional quality. Our initial experience for the use of non-cultured cells using a two-enzyme approach with cell washing suggests shortened time for wound closure, suggesting that the method may potentially avoid longer-term complications.
Smith, Paul J; Furon, Emeline; Wiltshire, Marie; Chappell, Sally; Patterson, Laurence H; Shnyder, Steven D; Falconer, Robert A; Errington, Rachel J
2013-07-01
Polysialylation of neural cell adhesion molecule (NCAM) in small-cell lung cancer (SCLC) is thought to regulate NCAM-mediated cell-surface interactions, imparting antiadhesive properties to cells. However, SCLC cells in culture demonstrate anchorage-independent growth and spontaneously generate adherent forms. Here, the ability of polySia-NCAM to influence cell proliferation and adherence is unclear. We analyzed live SCLC cell polySia-NCAM expression by flow cytometry, using the novel combination of a polySia antibody-mimetic eGFP-tagged endosialidase and the viability dye DRAQ7. Enrichment for adherence (<30 population doublings) in SCLC cell lines resolved populations with increased (SHP-77 and COR-L279) or negligible (NCI-H69) polysialylation compared with nonadherent parent populations. Adherent forms retained NCAM expression as confirmed by immunofluorescence and immunoblotting. Initial transition to adherence and loss of polysialylation in NCI-H69 was linked to a reduced proliferation rate with no increase in cell death. This reduced proliferation rate was reiterated in vivo as determined by the growth of noninvasive subcutaneous xenografts in mice. Continued selection for enhanced substrate adherence in NCI-H69 (>150 population doublings) resolved cells with stable re-expression of polySia and increased growth rates both in vitro and in vivo. Endoneuraminidase removal of polySia from re-expressing cells showed that rapid adherence to extracellular matrix components was functionally independent of polySia. PolySia expression was not altered when isolated adherent forms underwent enforced cell-cell contact in three-dimensional culture. Coculture of polySia expression variants modulated overall polySia expression profiles indicating an influence of SCLC microcommunity composition independent of substrate adherence potential. We conclude that an obligatory linkage between substrate adherence potential and polySia expression is rejected for SCLC cells. We suggest that a degree of homeostasis operates to regulate polysialylation within heterogeneous cell populations. The findings suggest a new model for SCLC progression while the application of live cell profiling of polysialylation could be used to assess polySia-NCAM-targeted therapies. Copyright © 2013 International Society for Advancement of Cytometry.
Pandolfi, Ashley; Barreyro, Laura; Steidl, Ulrich
2013-02-01
Recent experimental evidence has shown that acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) arise from transformed immature hematopoietic cells following the accumulation of multiple stepwise genetic and epigenetic changes in hematopoietic stem cells and committed progenitors. The series of transforming events initially gives rise to preleukemic stem cells (pre-LSC), preceding the formation of fully transformed leukemia stem cells (LSC). Despite the established use of poly-chemotherapy, relapse continues to be the most common cause of death in AML and MDS. The therapeutic elimination of all LSC, as well as pre-LSC, which provide a silent reservoir for the re-formation of LSC, will be essential for achieving lasting cures. Conventional sequencing and next-generation genome sequencing have allowed us to describe many of the recurrent mutations in the bulk cell populations in AML and MDS, and recent work has also focused on identifying the initial molecular changes contributing to leukemogenesis. Here we review recent and ongoing advances in understanding the roles of pre-LSC, and the aberrations that lead to pre-LSC formation and subsequent LSC transformation.
LY6/PLAUR domain containing 3 has a role in the maintenance of colorectal cancer stem-like cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Liming; Department of Surgery, Sapporo Higashi Tokusyukai Hospital, North-33 East-14, Higashi-Ku, Sapporo 065-0033; Hirohashi, Yoshihiko
Colorectal carcinoma (CRC) is one of the most frequently diagnosed cancers and the leading cause of cancer-related death for both men and women. Recent studies have revealed that a small sub-population of cancer cells, termed cancer stem-like cells (CSCs)/cancer-initiating cells (CICs), are endowed with tumor-initiating ability, self-renewal ability and differentiation ability. CSCs/CICs are resistant to current therapies including chemotherapy and radiotherapy. Thus, CSCs/CICs are responsible for recurrence and metastasis, and eradication of CSCs/CICs is essential to cure cancer. In this study, we isolated CR-CSCs/CICs as sphere-cultured cells and found that a product derived from LY6/PLAUR domain containing 3 (LYPD3) ismore » preferentially expressed in CSCs/CICs. Gene overexpression and gene knockdown experiments revealed that LYPD3 has a role in the maintenance of CR-CSCs/CICs. The findings provide a novel molecular insight into CR-CSCs/CICs.« less
The hitchhikers guide to cancer stem cell theory: markers, pathways and therapy.
Fábián, Ákos; Vereb, György; Szöllősi, János
2013-01-01
Cancer stem cell (CSC) biology is a rapidly developing field within cancer research. CSCs are postulated to be a unique cell population exclusively capable of infinite self renewal, multilineage differentiation and with ability to evade conventional cytotoxic cancer therapy. These traits distinguish CSCs from their more differentiated counterparts, which possess only limited or no potential for self renewal and tumor initiation. Therefore, CSCs would be the driving motor of malignant growth and therapy resistance. Accordingly, successful cancer treatment would need to eliminate this highly potent group of cells, since even small residual numbers would suffice to recapitulate the disease after therapy. Putative CSCs has been identified in a broad range of human malignancies and several cell surface markers have been associated with their stem cell phenotype. Despite all efforts, a pure CSC population has not been isolated and often in vitro clonogenic and in vivo tumorigenic potential is found in several cell populations with occasionally contradictory surface marker signatures. Here, we give a brief overview of recent advances in CSC theory, including the signaling pathways in CSCs that also appear crucial for stem cells homeostasis in normal tissues. We discuss evidence for the interaction of CSCs with the stromal tumor environment. Finally, we review the emerging potentially effective CSC-targeted treatment strategies and their future role in therapy. Copyright © 2012 International Society for Advancement of Cytometry.
Nirmala, R; Narayanan, PR
2002-01-01
Background While dealing with mixed in vitro lymphocyte cultures one is faced with the problem of relative contributions of different populations to the activity being studied. This is especially true in the controversy relating to the contributions of lymphocyte sub-populations to the Lymphokine Activated Killer (LAK) phenomenon. Flowcytometry can be used to highlight relative contributions of lymphocyte subpopulations towards LAK activity without resorting to difficult purification strategies. We set up long-term in vitro lymphocyte cultures, stimulated them with cytokines IL-2/IL-12, recorded their phenotypic changes and cytotoxic activity against U-937 tumor targets. Results The results indicated that natural killer cells (NK) constituted the predominant proliferating cell population in the cytokine stimulatedcultures. Flowcytometric evidence revealed that CD56+ T cells contributed little to LAK activity against U937 target cells as compared to cells with NK phenotype which were predominantly responsible for spontaneous killing of the tumor targets. The two cytokines, IL-2 and IL-12, had an additive effect on cell proliferation and spontaneous cytotoxicity. Conclusion Flowcytometry can be used to rapidly delineate phenotypic changes in immune cells after stimulation and simultaneously correlate them with corresponding functional activity. This approach may find application as a initial screening tool for studying different types of cells in mixed cultures and their respective activities under stimulatory / inhibitory conditions. PMID:12165101
Chandler, J. W.; Werr, W.
2014-01-01
In the Arabidopsis inflorescence meristem (IM), auxin is considered a prepatterning signal for floral primordia, whereas a centripetal mode of positional information for floral organ identity is inherent to the ABCE model. However, spatio-temporal patterns of organ initiation in each whorl at the earliest initiation stages are largely unknown. Evidence suggests that initial flower development occurs along an abaxial/adaxial axis and conforms to phytomer theory. Use of the founder cell marker DORNRÖSCHEN-LIKE (DRNL) as a tool in leafy, puchi, and apetala 1 cauliflower mutant backgrounds suggests that bract founder cells are marked at the IM periphery. The DRNL transcription domain in the wild-type IM is spatially discrete from DR5 expression, suggesting that bract initiation is independent of canonical auxin response. When bracts develop in lfy and puchi mutant floral primordia the initiation of lateral sepals precedes the specification of medial sepals compared with wild type, showing an interplay between bract and abaxial sepal founder cell recruitment. In the perianthia (pan) mutant background, DRNL expression indicates that a radial outer whorl arrangement derives from splitting of sepal founder cell populations at abaxial and adaxial positions. This splitting of incipient sepal primordia is partially dependent on PRESSED FLOWER (PRS) activity and implies that sepal specification is independent of WUSCHEL and CLAVATA3 expression, as both marker genes only regain activity in stage-2 flowers, when patterning of inner floral organs switches to a centripetal mode. The transition from an initially abaxial/adaxial into a centripetal patterning programme, and its timing represent an adaptive trait that possibly contributes to variation in floral morphology, especially unidirectional organ initiation. PMID:24744428
Chandler, J W; Werr, W
2014-07-01
In the Arabidopsis inflorescence meristem (IM), auxin is considered a prepatterning signal for floral primordia, whereas a centripetal mode of positional information for floral organ identity is inherent to the ABCE model. However, spatio-temporal patterns of organ initiation in each whorl at the earliest initiation stages are largely unknown. Evidence suggests that initial flower development occurs along an abaxial/adaxial axis and conforms to phytomer theory. Use of the founder cell marker DORNRÖSCHEN-LIKE (DRNL) as a tool in leafy, puchi, and apetala 1 cauliflower mutant backgrounds suggests that bract founder cells are marked at the IM periphery. The DRNL transcription domain in the wild-type IM is spatially discrete from DR5 expression, suggesting that bract initiation is independent of canonical auxin response. When bracts develop in lfy and puchi mutant floral primordia the initiation of lateral sepals precedes the specification of medial sepals compared with wild type, showing an interplay between bract and abaxial sepal founder cell recruitment. In the perianthia (pan) mutant background, DRNL expression indicates that a radial outer whorl arrangement derives from splitting of sepal founder cell populations at abaxial and adaxial positions. This splitting of incipient sepal primordia is partially dependent on PRESSED FLOWER (PRS) activity and implies that sepal specification is independent of WUSCHEL and CLAVATA3 expression, as both marker genes only regain activity in stage-2 flowers, when patterning of inner floral organs switches to a centripetal mode. The transition from an initially abaxial/adaxial into a centripetal patterning programme, and its timing represent an adaptive trait that possibly contributes to variation in floral morphology, especially unidirectional organ initiation. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis.
Dores, C; Rancourt, D; Dobrinski, I
2015-05-01
To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density, or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here, we report the use of stirred suspension bioreactors (SSB) to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: SSB followed by differential plating. After 66 h of culture, germ cell enrichment in SSBs provided 7.3 ± 1.0-fold (n = 9), differential plating 9.8 ± 2.4-fold (n = 6) and combination of both methods resulted in 9.1 ± 0.3-fold enrichment of germ cells from the initial germ cell population (n = 3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the SSB allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability owing to handling. © 2015 American Society of Andrology and European Academy of Andrology.
Stirred suspension bioreactors as a novel method to enrich germ cells from pre-pubertal pig testis
Dores, Camila; Rancourt, Derrick; Dobrinski, Ina
2015-01-01
To study spermatogonial stem cells the heterogeneous testicular cell population first needs to be enriched for undifferentiated spermatogonia, which contain the stem cell population. When working with non-rodent models, this step requires working with large numbers of cells. Available cell separation methods rely on differential properties of testicular cell types such as expression of specific cell surface proteins, size, density or differential adhesion to substrates to separate germ cells from somatic cells. The objective of this study was to develop an approach that allowed germ cell enrichment while providing efficiency of handling large cell numbers. Here we report the use of stirred suspension bioreactors to exploit the adhesion properties of Sertoli cells to enrich cells obtained from pre-pubertal porcine testes for undifferentiated spermatogonia. We also compared the bioreactor approach with an established differential plating method and the combination of both: stirred suspension bioreactor followed by differential plating. After 66 hours of culture, germ cell enrichment in stirred suspension bioreactors provided 7.3±1.0 fold (n=9), differential plating 9.8±2.4 fold (n=6) and combination of both methods resulted in 9.1±0.3 fold enrichment of germ cells from the initial germ cell population (n=3). To document functionality of cells recovered from the bioreactor, we demonstrated that cells retained their functional ability to reassemble seminiferous tubules de novo after grafting to mouse hosts and to support spermatogenesis. These results demonstrate that the stirred suspension bioreactor allows enrichment of germ cells in a controlled and scalable environment providing an efficient method when handling large cell numbers while reducing variability due to handling. PMID:25877677
Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells.
Santini, Roberta; Vinci, Maria C; Pandolfi, Silvia; Penachioni, Junia Y; Montagnani, Valentina; Olivito, Biagio; Gattai, Riccardo; Pimpinelli, Nicola; Gerlini, Gianni; Borgognoni, Lorenzo; Stecca, Barbara
2012-09-01
The question of whether cancer stem/tumor-initiating cells (CSC/TIC) exist in human melanomas has arisen in the last few years. Here, we have used nonadherent spheres and the aldehyde dehydrogenase (ALDH) enzymatic activity to enrich for CSC/TIC in a collection of human melanomas obtained from a broad spectrum of sites and stages. We find that melanomaspheres display extensive in vitro self-renewal ability and sustain tumor growth in vivo, generating human melanoma xenografts that recapitulate the phenotypic composition of the parental tumor. Melanomaspheres express high levels of Hedgehog (HH) pathway components and of embryonic pluripotent stem cell factors SOX2, NANOG, OCT4, and KLF4. We show that human melanomas contain a subset of cells expressing high ALDH activity (ALDH(high)), which is endowed with higher self-renewal and tumorigenic abilities than the ALDH(low) population. A good correlation between the number of ALDH(high) cells and sphere formation efficiency was observed. Notably, both pharmacological inhibition of HH signaling by the SMOOTHENED (SMO) antagonist cyclopamine and GLI antagonist GANT61 and stable expression of shRNA targeting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renewal in vitro and a reduction in the number of ALDH(high) melanoma stem cells. Finally, we show that interference with the HH-GLI pathway through lentiviral-mediated silencing of SMO and GLI1 drastically diminishes tumor initiation of ALDH(high) melanoma stem cells. In conclusion, our data indicate an essential role of the HH-GLI1 signaling in controlling self-renewal and tumor initiation of melanoma CSC/TIC. Targeting HH-GLI1 is thus predicted to reduce the melanoma stem cell compartment. Copyright © 2012 AlphaMed Press.
Michelotti, V; Giorgetti, L; Geri, C; Cionini, G; Pugliesi, C; Fambrini, M
2007-10-01
In plant, post-embryonic development relies on the activities of indeterminate cell populations termed meristems, spatially clustered cell lineages, wherein a subset divides indeterminately. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent cells offsets the output of differentiating cells. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the plant meristems and play important roles in maintaining meristematic cell identity. We have analyzed the expression pattern of HtKNOT1, a class I KNOX gene of Helianthus tuberosus, in stems, inflorescence meristems, floral meristems and floral organs. HtKNOT1 is expressed in cambial cells, phloem cells and xylematic parenchyma within apical stem internodes, while in basal internodes HtKNOT1 expression was restricted to the presumptive initials and recently derived phloem cells. In the reproductive phase, HtKNOT1 mRNAs were detected in both the inflorescence and floral meristems as well within lateral organ primordia (i.e. floral bracts, petals, stamens and carpels). In more differentiated flowers, the expression of HtKNOT1 was restricted to developing ovules and pollen mother cells. HtKNOT1 may play a dual role being required to maintain the meristem initials as well as initiating differentiation and/or conferring new cell identity. In particular, it is possible that HtKNOT1 cooperates at floral level with additional factors that more specifically control floral organs and pollen development in H. tuberosus.
Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing.
Hughes, Andrew E O; Magrini, Vincent; Demeter, Ryan; Miller, Christopher A; Fulton, Robert; Fulton, Lucinda L; Eades, William C; Elliott, Kevin; Heath, Sharon; Westervelt, Peter; Ding, Li; Conrad, Donald F; White, Brian S; Shao, Jin; Link, Daniel C; DiPersio, John F; Mardis, Elaine R; Wilson, Richard K; Ley, Timothy J; Walter, Matthew J; Graubert, Timothy A
2014-07-01
Next-generation sequencing has been used to infer the clonality of heterogeneous tumor samples. These analyses yield specific predictions-the population frequency of individual clones, their genetic composition, and their evolutionary relationships-which we set out to test by sequencing individual cells from three subjects diagnosed with secondary acute myeloid leukemia, each of whom had been previously characterized by whole genome sequencing of unfractionated tumor samples. Single-cell mutation profiling strongly supported the clonal architecture implied by the analysis of bulk material. In addition, it resolved the clonal assignment of single nucleotide variants that had been initially ambiguous and identified areas of previously unappreciated complexity. Accordingly, we find that many of the key assumptions underlying the analysis of tumor clonality by deep sequencing of unfractionated material are valid. Furthermore, we illustrate a single-cell sequencing strategy for interrogating the clonal relationships among known variants that is cost-effective, scalable, and adaptable to the analysis of both hematopoietic and solid tumors, or any heterogeneous population of cells.
Pharmacological targets of breast cancer stem cells: a review.
Pindiprolu, Sai Kiran S S; Krishnamurthy, Praveen T; Chintamaneni, Pavan Kumar
2018-05-01
Breast cancers contain small population of tumor-initiating cells called breast cancer stem cells (BCSCs), which are spared even after chemotherapy. Recently, BCSCs are implicated to be a cause of metastasis, tumor relapse, and therapy resistance in breast cancer. BCSCs have unique molecular mechanisms, which can be targeted to eliminate them. These include surface biomarkers, proteins involved in self-renewal pathways, drug efflux transporters, apoptotic/antiapoptotic proteins, autophagy, metabolism, and microenvironment regulation. The complex molecular mechanisms behind the survival of BCSCs and pharmacological targets for elimination of BCSCs are described in this review.
LEHMANN, CHRISTIAN; JOBS, GABRIELE; THOMAS, MARKUS; BURTSCHER, HELMUT; KUBBIES, MANFRED
2012-01-01
The tumor-initiating capacity of primary human breast cancer cells is maintained in vitro by culturing these cells as spheres/aggregates. Inoculation of small cell numbers derived from these non-adherent cultures leads to rapid xenograft tumor formation in mice. Accordingly, injection of more differentiated monolayer cells derived from spheres results in significantly decelerated tumor growth. For our study, two breast cancer cell lines were generated from primary tumors and cultured as mammospheres or as their adherent counterparts. We examined the in vivo tumorigenicity of these cells by injecting serial dilutions into immunodeficient mice. Inoculation of 106 cells per mouse led to rapid tumor formation, irrespective of cell line or culture conditions. However, after injection of only 103 cells, solely sphere cells were highly tumorigenic. In vitro, we investigated differentiation markers, established breast CSC markers and conducted mRNA profiling. Cytokeratin 5 and 18 were increased in both monolayer cell types, indicating a more differentiated phenotype. All cell lines were CD24−/CD44+ and did not express CD133, CD326 or E-cadherin. ALDH1 activity was not detectable in any cell line. A verapamil-sensitive Hoechst side population was present in sphere cells, but there was no correlation with tumorigenicity in vivo. mRNA profiling did not reveal upregulation of relevant transcription factors. In vitro cell cycle kinetics and in vivo tumor doubling times displayed no difference between sphere and monolayer cultures. Our data indicate that intrinsic genetic and functional markers investigated are not indicative of the in vivo tumori-genicity of putative breast tumor-initiating cells. PMID:23042145
An Alu-like RNA promotes cell differentiation and reduces malignancy of human neuroblastoma cells.
Castelnuovo, Manuele; Massone, Sara; Tasso, Roberta; Fiorino, Gloria; Gatti, Monica; Robello, Mauro; Gatta, Elena; Berger, Audrey; Strub, Katharina; Florio, Tullio; Dieci, Giorgio; Cancedda, Ranieri; Pagano, Aldo
2010-10-01
Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted susceptibility to the effects of antiblastic drugs used in NB therapy. Altogether, these results suggest the induction of NDM29 expression as possible treatment to increase cancer cells vulnerability to therapeutics and the measure of its synthesis in NB explants as prognostic factor of this cancer type.
Talmadge, James E.; Gabrilovich, Dmitry I.
2015-01-01
Tumour-induced granulocytic hyperplasia is associated with tumour vasculogenesis and escape from immunity via T-cell suppression. Initially, these myeloid cells were identified as granulocytes or monocytes; however, recent studies revealed that this hyperplasia was associated with populations of multi-potent progenitor cells identified as myeloid-derived suppressor cells (MDSCs). The discovery and study of MDSCs have provided a wealth of information regarding tumour pathobiology, extended our understanding of neoplastic progression, and modified our approaches to immune adjuvant therapy. In this perspective, we discuss the history of MDSCs, their influence on tumour progression and metastasis, and the crosstalk between tumour cells, MDSCs, and the host macroenvironment. PMID:24060865
Gorrepati, Lakshmi; Eisenmann, David M
2015-01-01
In metazoans, stem cells in developing and adult tissues can divide asymmetrically to give rise to a daughter that differentiates and a daughter that retains the progenitor fate. Although the short-lived nematode C. elegans does not possess adult somatic stem cells, the lateral hypodermal seam cells behave in a similar manner: they divide once per larval stage to generate an anterior daughter that adopts a non-dividing differentiated fate and a posterior daughter that retains the seam fate and the ability to divide further. Wnt signaling pathway is known to regulate the asymmetry of these divisions and maintain the progenitor cell fate in one daughter, but how activation of the Wnt pathway accomplished this was unknown. We describe here our recent work that identified the GATA transcription factor EGL-18 as a downstream target of Wnt signaling necessary for maintenance of a progenitor population of larval seam cells. EGL-18 was previously shown to act in the initial specification of the seam cells in the embryo. Thus the acquisition of a Wnt-responsive cis-regulatory module allows an embryonic fate specification factor to be reutilized later in life downstream of a different regulator (Wnt signaling) to maintain a progenitor cell population. These results support the use of seam cell development in C. elegans as a simple model system for studying stem and progenitor cell biology.
Verhaegen, Monique E.; Mangelberger, Doris; Harms, Paul W.; Eberl, Markus; Wilbert, Dawn M.; Meireles, Julia; Bichakjian, Christopher K.; Saunders, Thomas L.; Wong, Sunny Y.; Dlugosz, Andrzej A.
2017-01-01
Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a non-proliferative population of neuroendocrine cells which arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor’s cell of origin, are unknown. Using a panel of pre-term transgenic mice, we show that epidermis-targeted co-expression of sT and the cell fate determinant atonal bHLH transcription factor 1 (Atoh1) leads to development of widespread cellular aggregates with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Co-expression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with Atoh1. MCPyV sT, when co-expressed with Atoh1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. PMID:28512245
Verhaegen, Monique E; Mangelberger, Doris; Harms, Paul W; Eberl, Markus; Wilbert, Dawn M; Meireles, Julia; Bichakjian, Christopher K; Saunders, Thomas L; Wong, Sunny Y; Dlugosz, Andrzej A
2017-06-15
Merkel cell carcinoma (MCC) tumor cells express several markers detected in normal Merkel cells, a nonproliferative population of neuroendocrine cells that arise from epidermis. MCCs frequently contain Merkel cell polyomavirus (MCPyV) DNA and express viral transforming antigens, sT and tLT, but the role of these putative oncogenes in MCC development, and this tumor's cell of origin, are unknown. Using a panel of preterm transgenic mice, we show that epidermis-targeted coexpression of sT and the cell fate-determinant atonal bHLH transcription factor 1 (ATOH1) leads to development of widespread cellular aggregates, with histology and marker expression mimicking that of human intraepidermal MCC. The MCC-like tumor phenotype was dependent on the FBXW7-binding domain of sT, but not the sT-PP2A binding domain. Coexpression of MCPyV tLT did not appreciably alter the phenotype driven by either sT or sT combined with ATOH1. MCPyV sT, when coexpressed with ATOH1, is thus sufficient to initiate development of epidermis-derived MCC-like tumors in mice. Cancer Res; 77(12); 3151-7. ©2017 AACR . ©2017 American Association for Cancer Research.
Exposure to particulate matter (PM) produces a uniform degree of mortality in exposed populations, in spite of its diverse sources. This suggests a common mechanism of action to explain its initial toxicity. The present study relates certain physicochemical characteristics (i.e.,...
The stability of colorectal cancer mathematical models
NASA Astrophysics Data System (ADS)
Khairudin, Nur Izzati; Abdullah, Farah Aini
2013-04-01
Colorectal cancer is one of the most common types of cancer. To better understand about the kinetics of cancer growth, mathematical models are used to provide insight into the progression of this natural process which enables physicians and oncologists to determine optimal radiation and chemotherapy schedules and develop a prognosis, both of which are indispensable for treating cancer. This thesis investigates the stability of colorectal cancer mathematical models. We found that continuous saturating feedback is the best available model of colorectal cancer growth. We also performed stability analysis. The result shows that cancer progress in sequence of genetic mutations or epigenetic which lead to a very large number of cells population until become unbounded. The cell population growth initiate and its saturating feedback is overcome when mutation changes causing the net per-capita growth rate of stem or transit cells exceed critical threshold.
Peyer, Suzanne M; Heath-Heckman, Elizabeth A C; McFall-Ngai, Margaret J
2017-11-01
The protein Crumbs is a determinant of apical-basal cell polarity and plays a role in apoptosis of epithelial cells and their protection against photodamage. Using the squid-vibrio system, a model for development of symbiotic partnerships, we examined the modulation of the crumbs gene in host epithelial tissues during initiation and maintenance of the association. The extracellular luminous symbiont Vibrio fischeri colonizes the apical surfaces of polarized epithelia in deep crypts of the Euprymna scolopes light organ. During initial colonization each generation, symbiont harvesting is potentiated by the biochemical and biophysical activity of superficial ciliated epithelia, which are several cell layers from the crypt epithelia where the symbionts reside. Within hours of crypt colonization, the symbionts induce the cell death mediated regression of the remote superficial ciliated fields. However, the crypt cells directly interacting with the symbiont are protected from death. In the squid host, we characterized the gene and encoded protein during light organ morphogenesis and in response to symbiosis. Features of the protein sequence and structure, phylogenetic relationships, and localization patterns in the eye supported assignment of the squid protein to the Crumbs family. In situ hybridization revealed that the crumbs transcript shows opposite expression at the onset of symbiosis in the two different regions of the light organ: elevated levels in the superficial epithelia were attenuated whereas low levels in the crypt epithelia were turned up. Although a rhythmic association in which the host controls the symbiont population over the day-night cycle begins in the juvenile upon colonization, cycling of crumbs was evident only in the adult organ with peak expression coincident with maximum symbiont population and luminescence. Our results provide evidence that crumbs responds to symbiont cues that induce developmental apoptosis and to symbiont population dynamics correlating with luminescence-based stress throughout the duration of the host-microbe association.
Du, Juan; Liu, Shuyan; He, Jie; Liu, Xi; Qu, Ying; Yan, Wenqing; Fan, Jianling; Li, Rong; Xi, Hao; Fu, Weijun; Zhang, Chunyang; Yang, Jing; Hou, Jian
2015-06-20
Side population (SP) cells are an enriched source of cancer-initiating cells with stemness characteristics, generated by increased ABC transporter activity, which has served as a unique hallmark for multiple myeloma (MM) stem cell studies. Here we isolated and identified MM SP cells via Hoechst 33342 staining. Furthermore, we demonstrate that SP cells possess abnormal cell cycle, clonogenicity, and high drug efflux characteristics-all of which are features commonly seen in stem cells. Interestingly, we found that bortezomib, As2O3, and melphalan all affected apoptosis and clonogenicity in SP cells. We followed by characterizing the miRNA signature of MM SP cells and validated the specific miR-451 target tuberous sclerosis 1 (TSC1) gene to reveal that it activates the PI3K/Akt/mTOR signaling in MM SP cells. Inhibition of miR-451 enhanced anti-myeloma novel agents' effectiveness, through increasing cells apoptosis, decreasing clonogenicity, and reducing MDR1 mRNA expression. Moreover, the novel specific PI3K/Akt/mTOR signaling inhibitor S14161 displayed its prowess as a potential therapeutic agent by targeting MM SP cells. Our findings offer insights into the mechanisms regulating MM SP cells and provide a novel strategy to overcome resistance to existing therapies against myeloma.
Primitive erythropoiesis is regulated by miR-126 via nonhematopoietic Vcam-1+ cells.
Sturgeon, Christopher M; Chicha, Laurie; Ditadi, Andrea; Zhou, Qinbo; McGrath, Kathleen E; Palis, James; Hammond, Scott M; Wang, Shusheng; Olson, Eric N; Keller, Gordon
2012-07-17
Primitive erythropoiesis defines the onset of hematopoiesis in the yolk sac of the early embryo and is initiated by the emergence of progenitors assayed as colony-forming cells (EryP-CFCs). EryP-CFCs are detected for only a narrow window during embryonic development, suggesting that both their initiation and termination are tightly controlled. Using the embryonic stem differentiation system to model primitive erythropoiesis, we found that miR-126 regulates the termination of EryP-CFC development. Analyses of miR-126 null embryos revealed that this miR also regulates EryP-CFCs in vivo. We identified vascular cell adhesion molecule-1 (Vcam-1) expressed by a mesenchymal cell population as a relevant target of miR-126. Interaction of EryP-CFCs with Vcam-1 accelerated their maturation to ßh1-globin(+) and Ter119(+) cells through a Src family kinase. These findings uncover a cell nonautonomous regulatory pathway for primitive erythropoiesis that may provide insight into the mechanism(s) controlling the developmental switch from primitive to definitive hematopoiesis. Copyright © 2012 Elsevier Inc. All rights reserved.
Oroji, Amin; Omar, Mohd; Yarahmadian, Shantia
2016-10-21
In this paper, a new mathematical model is proposed for studying the population dynamics of breast cancer cells treated by radiotherapy by using a system of stochastic differential equations. The novelty of the model is essentially in capturing the concept of the cell cycle in the modeling to be able to evaluate the tumor lifespan. According to the cell cycle, each cell belongs to one of three subpopulations G, S, or M, representing gap, synthesis and mitosis subpopulations. Cells in the M subpopulation are highly radio-sensitive, whereas cells in the S subpopulation are highly radio-resistant. Therefore, in the process of radiotherapy, cell death rates of different subpopulations are not equal. In addition, since flow cytometry is unable to detect apoptotic cells accurately, the small changes in cell death rate in each subpopulation during treatment are considered. Subsequently, the proposed model is calibrated using experimental data from previous experiments involving the MCF-7 breast cancer cell line. Consequently, the proposed model is able to predict tumor lifespan based on the number of initial carcinoma cells. The results show the effectiveness of the radiation under the condition of stability, which describes the decreasing trend of the tumor cells population. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek
2013-09-15
Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.
Targeting Leukemia Stem Cells in the Bone Marrow Niche
Bornhäuser, Martin
2018-01-01
The bone marrow (BM) niche encompasses multiple cells of mesenchymal and hematopoietic origin and represents a unique microenvironment that is poised to maintain hematopoietic stem cells. In addition to its role as a primary lymphoid organ through the support of lymphoid development, the BM hosts various mature lymphoid cell types, including naïve T cells, memory T cells and plasma cells, as well as mature myeloid elements such as monocyte/macrophages and neutrophils, all of which are crucially important to control leukemia initiation and progression. The BM niche provides an attractive milieu for tumor cell colonization given its ability to provide signals which accelerate tumor cell proliferation and facilitate tumor cell survival. Cancer stem cells (CSCs) share phenotypic and functional features with normal counterparts from the tissue of origin of the tumor and can self-renew, differentiate and initiate tumor formation. CSCs possess a distinct immunological profile compared with the bulk population of tumor cells and have evolved complex strategies to suppress immune responses through multiple mechanisms, including the release of soluble factors and the over-expression of molecules implicated in cancer immune evasion. This chapter discusses the latest advancements in understanding of the immunological BM niche and highlights current and future immunotherapeutic strategies to target leukemia CSCs and overcome therapeutic resistance in the clinic. PMID:29466292
Tobin, Elizabeth D.; Grünbaum, Daniel; Patterson, Johnathan; Cattolico, Rose Ann
2013-01-01
Many species of harmful algae transition between a motile, vegetative stage in the water column and a non-motile, resting stage in the sediments. Physiological and behavioral traits expressed during benthic-pelagic transition potentially regulate the timing, location and persistence of blooms. The roles of key physiological and behavioral traits involved in resting cell emergence and bloom formation were examined in two geographically distinct strains of the harmful alga, Heterosigma akashiwo. Physiological measures of cell viability, division and population growth, and cell fatty acid content were made using flow cytometry and gas chromatography – mass spectrometry techniques as cells transitioned between the benthic resting stage and the vegetative pelagic stage. Video-based tracking was used to quantify cell-level swimming behaviors. Data show increased temperature and light triggered rapid emergence from the resting stage and initiated cell swimming. Algal strains varied in important physiological and behavioral traits, including survivorship during life-stage transitions, population growth rates and swimming velocities. Collectively, these traits function as “population growth strategies” that can influence bloom formation. Many resting cells regained the up-swimming capacity necessary to cross an environmentally relevant halocline and the ability to aggregate in near-surface waters within hours after vegetative growth supporting conditions were restored. Using a heuristic model, we illustrate how strain-specific population growth strategies can govern the timescales over which H. akashiwo blooms form. Our findings highlight the need for identification and quantification of strain-specific physiological and behavioral traits to improve mechanistic understanding of bloom formation and successful bloom prediction. PMID:24124586
Temporal trends in TB notification rates during ART scale-up in Cape Town: an ecological analysis.
Hermans, Sabine; Boulle, Andrew; Caldwell, Judy; Pienaar, David; Wood, Robin
2015-01-01
Although antiretroviral therapy (ART) reduces individual tuberculosis (TB) risk by two-thirds, the population-level impact remains uncertain. Cape Town reports high TB notification rates associated with endemic HIV. We examined population trends in TB notification rates during a 10-year period of expanding ART. Annual Cape Town TB notifications were used as numerators and mid-year Cape Town populations as denominators. HIV-stratified population was calculated using overall HIV prevalence estimates from the Actuarial Society of South Africa AIDS and Demographic model. ART provision numbers from Western Cape government reports were used to calculate overall ART coverage. We calculated rates per 100,000 population over time, overall and stratified by HIV status. Rates per 100,000 total population were also calculated by ART use at treatment initiation. Absolute numbers of notifications were compared by age and sub-district. Changes over time were described related to ART provision in the city as a whole (ART coverage) and by sub-district (numbers on ART). From 2003 to 2013, Cape Town's population grew from 3.1 to 3.7 million inhabitants, and estimated HIV prevalence increased from 3.6 to 5.2%. ART coverage increased from 0 to 63% in 2013. TB notification rates declined by 16% (95% confidence interval (CI), 14-17%) from a 2008 peak (851/100,000) to a 2013 nadir (713/100,000). Decreases were higher among the HIV-positive (21% (95% CI, 19-23%)) than the HIV-negative (9% (95% CI, 7-11%)) population. The number of HIV-positive TB notifications decreased mainly among 0- to 4- and 20- to 34-year-olds. Total population rates on ART at TB treatment initiation increased over time but levelled off in 2013. Overall median CD4 counts increased from 146 cells/µl (interquartile range (IQR), 66, 264) to 178 cells/µl (IQR 75, 330; p<0.001). Sub-district antenatal HIV seroprevalence differed (10-33%) as did numbers on ART (9-29 thousand). Across sub-districts, infant HIV-positive TB decreased consistently whereas adult decreases varied. HIV-positive TB notification rates declined during a period of rapid scale-up of ART. Nevertheless, both HIV-positive and HIV-negative TB notification rates remained very high. Decreases among HIV positives were likely blunted by TB remaining a major entry to the ART programme and occurring after delayed ART initiation.
Cancer: Mitochondrial Origins.
Stefano, George B; Kream, Richard M
2015-12-01
The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was "sidelined" with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced mitochondrial targeted therapies has not been forthcoming.
Radiosensitivity of Mammalian Cells
Walters, R. A.; Petersen, D. F.
1968-01-01
Radiation effects on macromolecular synthesis essential for the Chinese hamster cell to traverse the life cycle and to divide have been investigated. Life-cycle analysis techniques employing inhibitors of macromolecular synthesis were used in determining the kinetics of cell growth for specific segments of the population following spontaneous recovery from radiation-induced division delay. The results indicated that recovery does not occur in the absence of functional protein synthesis. Under conditions which inhibit normal RNA and DNA synthesis, irradiated cells can recover the capacity to traverse the life cycle and to divide. The stability of mRNA species coding for proteins essential for division in irradiated cells was also measured. The mean functional lifetime of these mRNA species was 1 hr. The data demonstrate the existence of a specific segment of the population consisting of cells which have completed transcription related to division but not concomitant translation and which can recover from the radiation injury without synthesis of additional RNA. Thus, initial recovery of the ability to divide has an obligate requirement for protein synthesis but no corresponding requirement for nucleic acid synthesis during the period when original messenger remains intact. PMID:5753224
Assessing metabolic heterogeneity in genetically homogeneous populations of bacteria using SIMS
NASA Astrophysics Data System (ADS)
McClelland, H. L. O.; Fike, D. A.; Jones, C.; Bradley, A. S.
2016-12-01
Biogeochemical cycles of elements are catalyzed by microbes, and can be assessed using a wide array of geochemical techniques. As the spatial resolution of these analytical techniques improves over time, it has become apparent that spatial heterogeneity of geochemical processes may impose noise on a range of geochemical signals. This spatial heterogeneity may reflect population structure, as well as metabolic heterogeneity among cells. New analytical approaches are required to understand, at the cellular level, differences in biogeochemical cycling of elements. We are developing such approaches by applying secondary-ion mass spectrometry (SIMS) techniques to populations of model organisms. In this work we report initial results from the analysis of genetically homogeneous cultures of Methylobacterium extorquens PA1, a facultative methylotrophic Alphaproteobacterium that has been extensively studied growing on both single carbon (e.g., methanol) and multi-carbon (e.g., succinate) substrates. PA1 cultures acclimated to succinate exhibited a more pronounced lag when grown on methanol compared with populations acclimated to methanol. However neither acclimation condition results in a pronounced lag during growth on succinate. When grown on a mixture of methanol and succinate, Methylobacterium co-utilize these substrates on a population level. We investigated the degree to which this apparent coutilisation is representative of individual cells, or whether it is a superposition of distinct metabolically specialized subpopulations. To explore this metabolic heterogeneity, we have grown populations of PA1 in liquid media containing a mixture of both methanol and succinate with one or the other substrate labelled with 13C. SIMS analysis of the isotopic composition of each cell allows us to infer the substrate, or mix of substrates, used for anabolic processes in each cell, along with cell-specfic growth rates via the exponential dilution of a 15N label.
κ chain monoallelic demethylation and the establishment of allelic exclusion
Mostoslavsky, Raul; Singh, Nandita; Kirillov, Andrei; Pelanda, Roberta; Cedar, Howard; Chess, Andrew; Bergman, Yehudit
1998-01-01
Allelic exclusion in κ light-chain synthesis is thought to result from a feedback mechanism by which the expression of a functional κ light chain on the surface of the B cell leads to an intracellular signal that down-regulates the V(D)J recombinase, thus precluding rearrangement of the other allele. Whereas such a feedback mechanism clearly plays a role in the maintenance of allelic exclusion, here we provide evidence suggesting that the initial establishment of allelic exclusion involves differential availability of the two κ alleles for rearrangement. Analysis of κ+ B-cell populations and of individual κ+ B cells that have rearranged only one allele demonstrates that in these cells, critical sites on the rearranged allele are unmethylated, whereas the nonrearranged allele remains methylated. This pattern is apparently generated by demethylation that is initiated at the small pre-B cell stage, on a single allele, in a process that occurs prior to rearrangement and requires the presence in cis of both the intronic and 3′ κ enhancers. Taken together with data demonstrating that undermethylation is required for rearrangement, these results indicate that demethylation may actually underly the process of allelic exclusion by directing the initial choice of a single κ allele for rearrangement. PMID:9637682
Georges Bank: a leaky incubator of Alexandrium fundyense blooms
McGillicuddy, D.J.; Townsend, D.W.; Keafer, B.A.; Thomas, M.A.; Anderson, D.M.
2012-01-01
A series of oceanographic surveys on Georges Bank document variability of populations of the toxic dinoflagellate Alexandrium fundyense on time scales ranging from synoptic to seasonal to interannual. Blooms of A. fundyense on Georges Bank can reach concentrations on the order of 104 cells l−1, and are generally bank-wide in extent. Georges Bank populations of A. fundyense appear to be quasi-independent of those in the adjacent coastal Gulf of Maine, insofar as they occupy a hydrographic niche that is colder and saltier than their coastal counterparts. In contrast to coastal populations that rely on abundant resting cysts for bloom initiation, very few cysts are present in the sediments on Georges Bank. Bloom dynamics must therefore be largely controlled by the balance between growth and mortality processes, which are at present largely unknown for this population. Based on correlations between cell abundance and nutrient distributions, ammonium appears to be an important source of nitrogen for A. fundyense blooms on Georges Bank. PMID:24976691
Georges Bank: a leaky incubator of Alexandrium fundyense blooms.
McGillicuddy, D J; Townsend, D W; Keafer, B A; Thomas, M A; Anderson, D M
2014-05-01
A series of oceanographic surveys on Georges Bank document variability of populations of the toxic dinoflagellate Alexandrium fundyense on time scales ranging from synoptic to seasonal to interannual. Blooms of A. fundyense on Georges Bank can reach concentrations on the order of 10 4 cells l -1 , and are generally bank-wide in extent. Georges Bank populations of A. fundyense appear to be quasi-independent of those in the adjacent coastal Gulf of Maine, insofar as they occupy a hydrographic niche that is colder and saltier than their coastal counterparts. In contrast to coastal populations that rely on abundant resting cysts for bloom initiation, very few cysts are present in the sediments on Georges Bank. Bloom dynamics must therefore be largely controlled by the balance between growth and mortality processes, which are at present largely unknown for this population. Based on correlations between cell abundance and nutrient distributions, ammonium appears to be an important source of nitrogen for A. fundyense blooms on Georges Bank.
Olm, Matthew R.; Brown, Christopher T.; Brooks, Brandon; Firek, Brian; Baker, Robyn; Burstein, David; Soenjoyo, Karina; Thomas, Brian C.; Morowitz, Michael; Banfield, Jillian F.
2017-01-01
The initial microbiome impacts the health and future development of premature infants. Methodological limitations have led to gaps in our understanding of the habitat range and subpopulation complexity of founding strains, as well as how different body sites support microbial growth. Here, we used metagenomics to reconstruct genomes of strains that colonized the skin, mouth, and gut of two hospitalized premature infants during the first month of life. Seven bacterial populations, considered to be identical given whole-genome average nucleotide identity of >99.9%, colonized multiple body sites, yet none were shared between infants. Gut-associated Citrobacter koseri genomes harbored 47 polymorphic sites that we used to define 10 subpopulations, one of which appeared in the gut after 1 wk but did not spread to other body sites. Differential genome coverage was used to measure bacterial population replication rates in situ. In all cases where the same bacterial population was detected in multiple body sites, replication rates were faster in mouth and skin compared to the gut. The ability of identical strains to colonize multiple body sites underscores the habit flexibility of initial colonists, whereas differences in microbial replication rates between body sites suggest differences in host control and/or resource availability. Population genomic analyses revealed microdiversity within bacterial populations, implying initial inoculation by multiple individual cells with distinct genotypes. Overall, however, the overlap of strains across body sites implies that the premature infant microbiome can exhibit very low microbial diversity. PMID:28073918
On the probability of cure for heavy-ion radiotherapy
NASA Astrophysics Data System (ADS)
Hanin, Leonid; Zaider, Marco
2014-07-01
The probability of a cure in radiation therapy (RT)—viewed as the probability of eventual extinction of all cancer cells—is unobservable, and the only way to compute it is through modeling the dynamics of cancer cell population during and post-treatment. The conundrum at the heart of biophysical models aimed at such prospective calculations is the absence of information on the initial size of the subpopulation of clonogenic cancer cells (also called stem-like cancer cells), that largely determines the outcome of RT, both in an individual and population settings. Other relevant parameters (e.g. potential doubling time, cell loss factor and survival probability as a function of dose) are, at least in principle, amenable to empirical determination. In this article we demonstrate that, for heavy-ion RT, microdosimetric considerations (justifiably ignored in conventional RT) combined with an expression for the clone extinction probability obtained from a mechanistic model of radiation cell survival lead to useful upper bounds on the size of the pre-treatment population of clonogenic cancer cells as well as upper and lower bounds on the cure probability. The main practical impact of these limiting values is the ability to make predictions about the probability of a cure for a given population of patients treated to newer, still unexplored treatment modalities from the empirically determined probability of a cure for the same or similar population resulting from conventional low linear energy transfer (typically photon/electron) RT. We also propose that the current trend to deliver a lower total dose in a smaller number of fractions with larger-than-conventional doses per fraction has physical limits that must be understood before embarking on a particular treatment schedule.
The retinoblastoma tumor suppressor and stem cell biology.
Sage, Julien
2012-07-01
Stem cells play a critical role during embryonic development and in the maintenance of homeostasis in adult individuals. A better understanding of stem cell biology, including embryonic and adult stem cells, will allow the scientific community to better comprehend a number of pathologies and possibly design novel approaches to treat patients with a variety of diseases. The retinoblastoma tumor suppressor RB controls the proliferation, differentiation, and survival of cells, and accumulating evidence points to a central role for RB activity in the biology of stem and progenitor cells. In some contexts, loss of RB function in stem or progenitor cells is a key event in the initiation of cancer and determines the subtype of cancer arising from these pluripotent cells by altering their fate. In other cases, RB inactivation is often not sufficient to initiate cancer but may still lead to some stem cell expansion, raising the possibility that strategies aimed at transiently inactivating RB might provide a novel way to expand functional stem cell populations. Future experiments dedicated to better understanding how RB and the RB pathway control a stem cell's decisions to divide, self-renew, or give rise to differentiated progeny may eventually increase our capacity to control these decisions to enhance regeneration or help prevent cancer development.
Evolution of acute myelogenous leukemia stem cell properties after treatment and progression.
Ho, Tzu-Chieh; LaMere, Mark; Stevens, Brett M; Ashton, John M; Myers, Jason R; O'Dwyer, Kristen M; Liesveld, Jane L; Mendler, Jason H; Guzman, Monica; Morrissette, Jennifer D; Zhao, Jianhua; Wang, Eunice S; Wetzler, Meir; Jordan, Craig T; Becker, Michael W
2016-09-29
Most cancers evolve over time as patients initially responsive to therapy acquire resistance to the same drugs at relapse. Cancer stem cells have been postulated to represent a therapy-refractory reservoir for relapse, but formal proof of this model is lacking. We prospectively characterized leukemia stem cell populations (LSCs) from a well-defined cohort of patients with acute myelogenous leukemia (AML) at diagnosis and relapse to assess the effect of the disease course on these critical populations. Leukemic samples were collected from patients with newly diagnosed AML before therapy and after relapse, and LSC frequency was assessed by limiting dilution analyses. LSC populations were identified using fluorescent-labeled cell sorting and transplantation into immunodeficient NOD/SCID/interleukin 2 receptor γ chain null mice. The surface antigen expression profiles of pretherapy and postrelapse LSCs were determined for published LSC markers. We demonstrate a 9- to 90-fold increase in LSC frequency between diagnosis and relapse. LSC activity at relapse was identified in populations of leukemic blasts that did not demonstrate this activity before treatment and relapse. In addition, we describe genetic instability and exceptional phenotypic changes that accompany the evolution of these new LSC populations. This study is the first to characterize the evolution of LSCs in vivo after chemotherapy, identifying a dramatic change in the physiology of primitive AML cells when the disease progresses. Taken together, these findings provide a new frame of reference by which to evaluate candidate AML therapies in which both disease control and the induction of more advanced forms of disease should be considered. © 2016 by The American Society of Hematology.
Evolution of acute myelogenous leukemia stem cell properties after treatment and progression
Ho, Tzu-Chieh; LaMere, Mark; Stevens, Brett M.; Ashton, John M.; Myers, Jason R.; O’Dwyer, Kristen M.; Liesveld, Jane L.; Mendler, Jason H.; Guzman, Monica; Morrissette, Jennifer D.; Zhao, Jianhua; Wang, Eunice S.; Wetzler, Meir; Jordan, Craig T.
2016-01-01
Most cancers evolve over time as patients initially responsive to therapy acquire resistance to the same drugs at relapse. Cancer stem cells have been postulated to represent a therapy-refractory reservoir for relapse, but formal proof of this model is lacking. We prospectively characterized leukemia stem cell populations (LSCs) from a well-defined cohort of patients with acute myelogenous leukemia (AML) at diagnosis and relapse to assess the effect of the disease course on these critical populations. Leukemic samples were collected from patients with newly diagnosed AML before therapy and after relapse, and LSC frequency was assessed by limiting dilution analyses. LSC populations were identified using fluorescent-labeled cell sorting and transplantation into immunodeficient NOD/SCID/interleukin 2 receptor γ chain null mice. The surface antigen expression profiles of pretherapy and postrelapse LSCs were determined for published LSC markers. We demonstrate a 9- to 90-fold increase in LSC frequency between diagnosis and relapse. LSC activity at relapse was identified in populations of leukemic blasts that did not demonstrate this activity before treatment and relapse. In addition, we describe genetic instability and exceptional phenotypic changes that accompany the evolution of these new LSC populations. This study is the first to characterize the evolution of LSCs in vivo after chemotherapy, identifying a dramatic change in the physiology of primitive AML cells when the disease progresses. Taken together, these findings provide a new frame of reference by which to evaluate candidate AML therapies in which both disease control and the induction of more advanced forms of disease should be considered. PMID:27421961
Eggenhofer, Elke; Popp, Felix C; Mendicino, Michael; Silber, Paula; Van't Hof, Wouter; Renner, Philipp; Hoogduijn, Martin J; Pinxteren, Jef; van Rooijen, Nico; Geissler, Edward K; Deans, Robert; Schlitt, Hans J; Dahlke, Marc H
2013-08-01
Multipotent adult progenitor cells (MAPCs) are an adherent stem cell population that belongs to the mesenchymal-type progenitor cell family. Although MAPCs are emerging as candidate agents for immunomodulation after solid organ transplantation, their value requires further validation in a clinically relevant cell therapy model using an organ donor- and organ recipient-independent, third-party cell product. We report that stable allograft survival can be achieved following third-party MAPC infusion in a rat model of fully allogeneic, heterotopic heart transplantation. Furthermore, long-term accepted heart grafts recovered from MAPC-treated animals can be successfully retransplanted to naïve animals without additional immunosuppression. This prolongation of MAPC-mediated allograft acceptance depends upon a myeloid cell population since depletion of macrophages by clodronate abrogates the tolerogenic MAPC effect. We also show that MAPC-mediated allograft acceptance differs mechanistically from drug-induced tolerance regarding marker gene expression, T regulatory cell induction, retransplantability, and macrophage dependence. MAPC-based immunomodulation represents a promising pathway for clinical immunotherapy that has led us to initiate a phase I clinical trial for testing safety and feasibility of third-party MAPC therapy after liver transplantation.
Overexpression of molecular chaperons GRP78 and GRP94 in CD44(hi)/CD24(lo) breast cancer stem cells.
Nami, Babak; Ghasemi-Dizgah, Armin; Vaseghi, Akbar
2016-01-01
Breast cancer stem cell with CD44(hi)/CD24(lo) phonotype is described having stem cell properties and represented as the main driving factor in breast cancer initiation, growth, metastasis and low response to anti-cancer agents. Glucoseregulated proteins (GRPs) are heat shock protein family chaperons that are charged with regulation of protein machinery and modulation of endoplasmic reticulum homeostasis whose important roles in stem cell development and invasion of various cancers have been demonstrated. Here, we investigated the expression levels of GRP78 and GRP94 in CD44(hi)/CD24(lo) phenotype breast cancer stem cells (BCSCs). MCF7, T-47D and MDA-MB-231 breast cancer cell lines were used. CD44(hi)/CD24(lo) phenotype cell population were analyzed and sorted by fluorescence-activated cell sorting (FACS). Transcriptional and translational expression of GRP78 and GRP94 were investigated by western blotting and quantitative real time PCR. RESULTS showed different proportion of CD44(hi)/CD24(lo) phenotype cell population in their original bulk cells. The ranking of the cell lines in terms of CD44(hi)/CD24(lo) phenotype cell population was as MCF7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nijjar, Tarlochan; Wigington, Don; Garbe, James C.
1999-08-01
The authors have uncovered a novel role for the cyclin-dependent kinase inhibitor, p57KIP2, during the immortalization of cultured human mammary epithelial cells (HMEC). HMEC immortalized following chemical carcinogen exposure initially expressed little or no telomerase activity, and their telomeres continued to shorten with passage. Cell populations whose mean terminal restriction fragment (TRF) length declined and exhibited slow heterogeneous growth, and contained many non-proliferative cells. These conditionally immortal HMEC cultures accumulated large quantities of p57 protein. With continued passage, the conditionally immortal cell populations very graduall2048nverted to a fully immortal phenotype of good uniform growth, expression of high levels of telomerasemore » activity, and stabilization of telomere length. The fully immortal good growing HMEC did not accumulate p57 in G0 or during the cell cycle. DNA and RNA analysis of mass populations and individual subclones of conditionally immortal HMEC line 184A1 showed that continued growth of conditionally immortal cells with critically short telomeres was repeatedly accompanied by loss of the expressed p57 allele, and transient expression of the previously imprinted allele. Conditionally immortal 184A1 with mean TRF > 3 kb infected with retroviruses containing the p57 gene exhibited premature slow heterogeneous growth. Conversely, exogenous expression of hTERT, the catalytic subunit of telomerase, in 184A1 with mean TRF > 3 kb prevented both the slow heterogeneous growth phase and accumulation of p57 in cycling populations. These data indicate that in HMEC which have overcome replicative senescence, p57 may provide an additional barrier against indefinite proliferation. Overcoming p57 mediated growth inhibition in these cells may be crucial for acquisition of the unlimited growth potential thought to be critical for malignant progression.« less
Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations
Fox, Randal E; Zhong, Xue; Krone, Stephen M; Top, Eva M
2008-01-01
In spite of the importance of plasmids in bacterial adaptation, we have a poor understanding of their dynamics. It is not known if or how plasmids persist in and spread through (invade) a bacterial population when there is no selection for plasmid-encoded traits. Moreover, the differences in dynamics between spatially structured and mixed populations are poorly understood. Through a joint experimental/theoretical approach, we tested the hypothesis that self-transmissible IncP-1 plasmids can invade a bacterial population in the absence of selection when initially very rare, but only in spatially structured habitats and when nutrients are regularly replenished. Using protocols that differed in the degree of spatial structure and nutrient levels, the invasiveness of plasmid pB10 in Escherichia coli was monitored during at least 15 days, with an initial fraction of plasmid-bearing (p+) cells as low as 10−7. To further explore the mechanisms underlying plasmid dynamics, we developed a spatially explicit mathematical model. When cells were grown on filters and transferred to fresh medium daily, the p+ fraction increased to 13%, whereas almost complete invasion occurred when the population structure was disturbed daily. The plasmid was unable to invade in liquid. When carbon source levels were lower or not replenished, plasmid invasion was hampered. Simulations of the mathematical model closely matched the experimental results and produced estimates of the effects of alternative experimental parameters. This allowed us to isolate the likely mechanisms most responsible for the observations. In conclusion, spatial structure and nutrient availability can be key determinants in the invasiveness of plasmids. PMID:18528415
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E., E-mail: BEOneill@houstonmethodist.org
Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models.more » In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.« less
Gentry, Sara N; Jackson, Trachette L
2013-01-01
Hierarchical organized tissue structures, with stem cell driven cell differentiation, are critical to the homeostatic maintenance of most tissues, and this underlying cellular architecture is potentially a critical player in the development of a many cancers. Here, we develop a mathematical model of mutation acquisition to investigate how deregulation of the mechanisms preserving stem cell homeostasis contributes to tumor initiation. A novel feature of the model is the inclusion of both extrinsic and intrinsic chemical signaling and interaction with the niche to control stem cell self-renewal. We use the model to simulate the effects of a variety of types and sequences of mutations and then compare and contrast all mutation pathways in order to determine which ones generate cancer cells fastest. The model predicts that the sequence in which mutations occur significantly affects the pace of tumorigenesis. In addition, tumor composition varies for different mutation pathways, so that some sequences generate tumors that are dominated by cancerous cells with all possible mutations, while others are primarily comprised of cells that more closely resemble normal cells with only one or two mutations. We are also able to show that, under certain circumstances, healthy stem cells diminish due to the displacement by mutated cells that have a competitive advantage in the niche. Finally, in the event that all homeostatic regulation is lost, exponential growth of the cancer population occurs in addition to the depletion of normal cells. This model helps to advance our understanding of how mutation acquisition affects mechanisms that influence cell-fate decisions and leads to the initiation of cancers.
GDE2 regulates subtype-specific motor neuron generation through inhibition of Notch signaling.
Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini
2011-09-22
The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non-cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons. Copyright © 2011 Elsevier Inc. All rights reserved.
GDE2 regulates subtype specific motor neuron generation through inhibition of Notch signaling
Sabharwal, Priyanka; Lee, Changhee; Park, Sungjin; Rao, Meenakshi; Sockanathan, Shanthini
2011-01-01
The specification of spinal interneuron and motor neuron identities initiates within progenitor cells, while motor neuron subtype diversification is regulated by hierarchical transcriptional programs implemented postmitotically. Here, we find that mice lacking GDE2, a six-transmembrane protein that triggers motor neuron generation, exhibit selective losses of distinct motor neuron subtypes, specifically in defined subsets of limb-innervating motor pools that correlate with the loss of force-generating alpha motor neurons. Mechanistically, GDE2 is expressed by postmitotic motor neurons but utilizes extracellular glycerophosphodiester phosphodiesterase activity to induce motor neuron generation by inhibiting Notch signaling in neighboring motor neuron progenitors. Thus, neuronal GDE2 controls motor neuron subtype diversity through a non cell-autonomous feedback mechanism that directly regulates progenitor cell differentiation, implying that subtype specification initiates within motor neuron progenitor populations prior to their differentiation into postmitotic motor neurons. PMID:21943603
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus
Wolfisberg, Raphael; Kempf, Christoph
2016-01-01
ABSTRACT Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. IMPORTANCE In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. PMID:27009963
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus.
Wolfisberg, Raphael; Kempf, Christoph; Ros, Carlos
2016-06-01
Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Analysis and IbM simulation of the stages in bacterial lag phase: basis for an updated definition.
Prats, Clara; Giró, Antoni; Ferrer, Jordi; López, Daniel; Vives-Rego, Josep
2008-05-07
The lag phase is the initial phase of a culture that precedes exponential growth and occurs when the conditions of the culture medium differ from the pre-inoculation conditions. It is usually defined by means of cell density because the number of individuals remains approximately constant or slowly increases, and it is quantified with the lag parameter lambda. The lag phase has been studied through mathematical modelling and by means of specific experiments. In recent years, Individual-based Modelling (IbM) has provided helpful insights into lag phase studies. In this paper, the definition of lag phase is thoroughly examined. Evolution of the total biomass and the total number of bacteria during lag phase is tackled separately. The lag phase lasts until the culture reaches a maximum growth rate both in biomass and cell density. Once in the exponential phase, both rates are constant over time and equal to each other. Both evolutions are split into an initial phase and a transition phase, according to their growth rates. A population-level mathematical model is presented to describe the transitional phase in cell density. INDividual DIScrete SIMulation (INDISIM) is used to check the outcomes of this analysis. Simulations allow the separate study of the evolution of cell density and total biomass in a batch culture, they provide a depiction of different observed cases in lag evolution at the individual-cell level, and are used to test the population-level model. The results show that the geometrical lag parameter lambda is not appropriate as a universal definition for the lag phase. Moreover, the lag phase cannot be characterized by a single parameter. For the studied cases, the lag phases of both the total biomass and the population are required to fully characterize the evolution of bacterial cultures. The results presented prove once more that the lag phase is a complex process that requires a more complete definition. This will be possible only after the phenomena governing the population dynamics at an individual level of description, and occurring during the lag and exponential growth phases, are well understood.
SU-E-T-565: RAdiation Resistance of Cancer CElls Using GEANT4 DNA: RACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrot, Y; Payno, H; Delage, E
2014-06-01
Purpose: The objective of the RACE project is to develop a comparison between Monte Carlo simulation using the Geant4-DNA toolkit and measurements of radiation damage on 3D melanoma and chondrosarcoma culture cells coupled with gadolinium nanoparticles. We currently expose the status of the developments regarding simulations. Methods: Monte Carlo studies are driven using the Geant4 toolkit and the Geant4-DNA extension. In order to model the geometry of a cell population, the opensource CPOP++ program is being developed for the geometrical representation of 3D cell populations including a specific cell mesh coupled with a multi-agent system. Each cell includes cytoplasm andmore » nucleus. The correct modeling of the cell population has been validated with confocal microscopy images of spheroids. The Geant4 Livermore physics models are used to simulate the interactions of a 250 keV X-ray beam and the production of secondaries from gadolinium nanoparticles supposed to be fixed on the cell membranes. Geant4-DNA processes are used to simulate the interactions of charged particles with the cells. An atomistic description of the DNA molecule, from PDB (Protein Data Bank) files, is provided by the so-called PDB4DNA Geant4 user application we developed to score energy depositions in DNA base pairs and sugar-phosphate groups. Results: At the microscopic level, our simulations enable assessing microscopic energy distribution in each cell compartment of a realistic 3D cell population. Dose enhancement factors due to the presence of gadolinium nanoparticles can be estimated. At the nanometer scale, direct damages on nuclear DNA are also estimated. Conclusion: We successfully simulated the impact of direct radiations on a realistic 3D cell population model compatible with microdosimetry calculations using the Geant4-DNA toolkit. Upcoming validation and the future integration of the radiochemistry module of Geant4-DNA will propose to correlate clusters of ionizations with in vitro experiments. All those developments will be released publicly. This work was supported by grants from Plan Cancer 2009-2013 French national initiative managed by INSERM (Institut National de la Sante et de la Recherche Medicale)« less
Passerat, Julien; Got, Patrice; Dukan, Sam; Monfort, Patrick
2009-01-01
The existence of Salmonella enterica serovar Typhimurium viable-but-nonculturable (VBNC) cells is a public health concern since they could constitute unrecognized sources of infection if they retain their pathogenicity. To date, many studies have addressed the ability of S. Typhimurium VBNC cells to remain infectious, but their conclusions are conflicting. An assumption could explain these conflicting results. It has been proposed that infectivity could be retained only temporarily after entry into the VBNC state and that most VBNC cells generated under intense stress could exceed the stage where they are still infectious. Using a Radioselectan density gradient centrifugation technique makes it possible to increase the VBNC-cell/culturable-cell ratio without increasing the exposure to stress and, consequently, to work with a larger proportion of newly VBNC cells. Here, we observed that (i) in the stationary phase, the S. Typhimurium population comprised three distinct subpopulations at 10, 24, or 48 h of culture; (ii) the VBNC cells were detected at 24 and 48 h; (iii) measurement of invasion gene (hilA, invF, and orgA) expression demonstrated that cells are highly heterogeneous within a culturable population; and (iv) invasion assays of HeLa cells showed that culturable cells from the different subpopulations do not display the same invasiveness. The results also suggest that newly formed VBNC cells are either weakly able or not able to successfully initiate epithelial cell invasion. Finally, we propose that at entry into the stationary phase, invasiveness may be one way for populations of S. Typhimurium to escape stochastic alteration leading to cell death. PMID:19525274
Zeimet, A G; Reimer, D; Sopper, S; Boesch, M; Martowicz, A; Roessler, J; Wiedemair, A M; Rumpold, H; Untergasser, G; Concin, N; Hofstetter, G; Muller-Holzner, E; Fiegl, H; Marth, C; Wolf, D; Pesta, M; Hatina, J
2012-01-01
Because of its semi-solid character in dissemination and growth, advanced ovarian cancer with its hundreds of peritoneal tumor nodules and plaques appears to be an excellent in vivo model for studying the cancer stem cell hypothesis. The most important obstacle, however, is to adequately define and isolate these tumor-initiating cells endowed with the properties of anoikis-resistance and unlimited self-renewal. Until now, no universal single marker or marker constellation has been found to faithfully isolate (ovarian) cancer stem cells. As these multipotent cells are known to possess highly elaborated efflux systems for cytotoxic agents, these pump systems have been exploited to outline putative stem cells as a side-population (SP) via dye exclusion analysis. Furthermore, the cells in question have been isolated via flow cytometry on the basis of cell surface markers thought to be characteristic for stem cells.In the Vienna variant of the ovarian cancer cell line A2780 a proof-of-principle model with both a stable SP and a stable ALDH1A1+ cell population was established. Double staining clearly revealed that both cell fractions were not identical. Of note, A2780V cells were negative for expression of surface markers CD44 and CD117 (c-kit). When cultured on monolayers of healthy human mesothelial cells, green-fluorescence-protein (GFP)-transfected SP of A2780V exhibited spheroid-formation, whereas non-side-population (NSP) developed a spare monolayer growing over the healthy mesothelium. Furthermore, A2780V SP was found to be partially resistant to platinum. However, this resistance could not be explained by over-expression of the "excision repair cross-complementation group 1" (ERCC1) gene, which is essentially involved in the repair of platinated DNA damage. ERCC1 was, nonetheless, over-expressed in A2780V cells grown as spheres under stem cell-selective conditions as compared to adherent monolayers cultured under differentiating conditions. The same was true for the primary ovarian cancer cells B-57.In summary our investigations indicate that even in multi-passaged cancer cell lines hierarchic government of growth and differentiation is conserved and that the key cancer stem cell population may be composed of small overlapping cell fractions defined by various arbitrary markers.
Oghumu, Steve; Terrazas, Cesar A.; Varikuti, Sanjay; Kimble, Jennifer; Vadia, Stephen; Yu, Lianbo; Seveau, Stephanie; Satoskar, Abhay R.
2015-01-01
Innate CD8+ T cells are a heterogeneous population with developmental pathways distinct from conventional CD8+ T cells. However, their biology, classification, and functions remain incompletely understood. We recently demonstrated the existence of a novel population of chemokine (C-X-C motif) receptor 3 (CXCR3)-positive innate CD8+ T cells. Here, we investigated the functional properties of this subset and identified effector molecules and pathways which mediate their function. Adoptive transfer of IL-15 activated CXCR3+ innate CD8+ T cells conferred increased protection against Listeria monocytogenes infection in susceptible IFN-γ−/− mice compared with similarly activated CXCR3− subset. This was associated with enhanced proliferation and IFN-γ production in CXCR3+ cells. Further, CXCR3+ innate cells showed enhanced cytotoxicity against a tumor cell line in vitro. In depth analysis of the CXCR3+ subset showed increased gene expression of Ccl5, Klrc1, CtsW, GP49a, IL-2Rβ, Atp5e, and Ly6c but reduced IFN-γR2 and Art2b. Ingenuity pathway analysis revealed an up-regulation of genes associated with T-cell activation, proliferation, cytotoxicity, and translational initiation in CXCR3+ populations. Our results demonstrate that CXCR3 expression in innate CD8+ T cells defines a subset with enhanced cytotoxic potential and protective antibacterial immune functions. Immunotherapeutic approaches against infectious disease and cancer could utilize CXCR3+ innate CD8+ T-cell populations as novel clinical intervention strategies.—Oghumu, S., Terrazas, C. A., Varikuti, S., Kimble, J., Vadia, S., Yu, L., Seveau, S., Satoskar, A. R. CXCR3 expression defines a novel subset of innate CD8+ T cells that enhance immunity against bacterial infection and cancer upon stimulation with IL-15. PMID:25466888
Antiretroviral drug costs and prescription patterns in British Columbia, Canada: 1996-2011.
Nosyk, Bohdan; Montaner, Julio S G; Yip, Benita; Lima, Viviane D; Hogg, Robert S
2014-04-01
Treatment options and therapeutic guidelines have evolved substantially since highly active antiretroviral treatment (HAART) became the standard of HIV care in 1996. We conducted the present population-based analysis to characterize the determinants of direct costs of HAART over time in British Columbia, Canada. We considered individuals ever receiving HAART in British Columbia from 1996 to 2011. Linear mixed-effects regression models were constructed to determine the effects of demographic indicators, clinical stage, and treatment characteristics on quarterly costs of HAART (in 2010$CDN) among individuals initiating in different temporal periods. The least-square mean values were estimated by CD4 category and over time for each temporal cohort. Longitudinal data on HAART recipients (N = 9601, 17.6% female, mean age at initiation = 40.5) were analyzed. Multiple regression analyses identified demographics, treatment adherence, and pharmacological class to be independently associated with quarterly HAART costs. Higher CD4 cell counts were associated with modestly lower costs among pre-HAART initiators [least-square means (95% confidence interval), CD4 > 500: 4674 (4632-4716); CD4: 350-499: 4765 (4721-4809) CD4: 200-349: 4826 (4780-4871); CD4 <200: 4809 (4759-4859)]; however these differences were not significant among post-2003 HAART initiators. Population-level mean costs increased through 2006 and stabilized post-2003 HAART initiators incurred quarterly costs up to 23% lower than pre-2000 HAART initiators in 2010. Our results highlight the magnitude of the temporal changes in HAART costs, and disparities between recent and pre-HAART initiators. This methodology can improve the precision of economic modeling efforts by using detailed cost functions for annual, population-level medication costs according to the distribution of clients by clinical stage and era of treatment initiation.
CELL POPULATION KINETICS OF EXCISED ROOTS OF PISUM SATIVUM
Van't Hof, Jack
1965-01-01
The cell population kinetics of excised, cultured pea roots was studied with the use of tritiated thymidine and colchicine to determine (1) the influence of excision, (2) the influence of sucrose concentration, (3) the average mitotic cycle duration, and (4) the duration of mitosis and the G 1, S, and G 2 periods of interphase.1 The results indicate that the process of excision causes a drop in the frequency of mitotic figures when performed either at the beginning of the culture period or after 100 hours in culture. This initial decrease in frequency of cell division is independent of sucrose concentration, but the subsequent rise in frequency of division, after 12 hours in culture, is dependent upon sucrose concentration. Two per cent sucrose maintains the shortest mitotic cycle duration. The use of colchicine indicated an average cycle duration of 20 hours, whereas the use of tritiated thymidine produced an average cycle duration of 17 hours. PMID:5857253
Sumption, Natalia; Goodhead, Dudley T.; Anderson, Rhona M.
2015-01-01
Human exposure to high-linear energy transfer α-particles includes environmental (e.g. radon gas and its decay progeny), medical (e.g. radiopharmaceuticals) and occupational (nuclear industry) sources. The associated health risks of α-particle exposure for lung cancer are well documented however the risk estimates for leukaemia remain uncertain. To further our understanding of α-particle effects in target cells for leukaemogenesis and also to seek general markers of individual exposure to α-particles, this study assessed the transmission of chromosomal damage initially-induced in human haemopoietic stem and progenitor cells after exposure to high-LET α-particles. Cells surviving exposure were differentiated into mature T-cells by extra-thymic T-cell differentiation in vitro. Multiplex fluorescence in situ hybridisation (M-FISH) analysis of naïve T-cell populations showed the occurrence of stable (clonal) complex chromosome aberrations consistent with those that are characteristically induced in spherical cells by the traversal of a single α-particle track. Additionally, complex chromosome exchanges were observed in the progeny of irradiated mature T-cell populations. In addition to this, newly arising de novo chromosome aberrations were detected in cells which possessed clonal markers of α-particle exposure and also in cells which did not show any evidence of previous exposure, suggesting ongoing genomic instability in these populations. Our findings support the usefulness and reliability of employing complex chromosome exchanges as indicators of past or ongoing exposure to high-LET radiation and demonstrate the potential applicability to evaluate health risks associated with α-particle exposure. PMID:26252014
Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-Ichiro
2015-03-01
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1 + CD11b + Ly6G med Ly6C med MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27 + CD11b + NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14 + HLA-DR - and CD14 - HLA-DR - MDSC) in NHL patients and found that higher IL-10-producing CD14 + HLA-DR - MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.
Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-ichiro
2015-01-01
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1+CD11b+Ly6GmedLy6Cmed MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27+CD11b+NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14+HLA-DR− and CD14− HLA-DR− MDSC) in NHL patients and found that higher IL-10-producing CD14+HLA-DR−MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma. PMID:25949922
Serotonin modulates the population activity profile of olfactory bulb external tufted cells
Liu, Shaolin; Aungst, Jason L.; Puche, Adam C.
2012-01-01
Serotonergic neurons in the raphe nuclei constitute one of the most prominent neuromodulatory systems in the brain. Projections from the dorsal and median raphe nuclei provide dense serotonergic innervation of the glomeruli of olfactory bulb. Odor information is initially processed by glomeruli, thus serotonergic modulation of glomerular circuits impacts all subsequent odor coding in the olfactory system. The present study discloses that serotonin (5-HT) produces excitatory modulation of external tufted (ET) cells, a pivotal neuron in the operation of glomerular circuits. The modulation is due to a transient receptor potential (TRP) channel-mediated inward current induced by activation of 5-HT2A receptors. This current produces membrane depolarization and increased bursting frequency in ET cells. Interestingly, the magnitude of the inward current and increased bursting inversely correlate with ET cell spontaneous (intrinsic) bursting frequency: slower bursting ET cells are more strongly modulated than faster bursting cells. Serotonin thus differentially impacts ET cells such that the mean bursting frequency of the population is increased. This centrifugal modulation could impact odor processing by: 1) increasing ET cell excitatory drive on inhibitory neurons to increase presynaptic inhibition of olfactory sensory inputs and postsynaptic inhibition of mitral/tufted cells; and/or 2) coordinating ET cell bursting with exploratory sniffing frequencies (5–8 Hz) to facilitate odor coding. PMID:22013233
Glial cell migration in the eye disc.
Silies, Marion; Yuva, Yeliz; Engelen, Daniel; Aho, Annukka; Stork, Tobias; Klämbt, Christian
2007-11-28
Any complex nervous system is made out of two major cell types, neurons and glial cells. A hallmark of glial cells is their pronounced ability to migrate. En route to their final destinations, glial cells are generally guided by neuronal signals. Here we show that in the developing visual system of Drosophila glial cell migration is largely controlled by glial-glial interactions and occurs independently of axonal contact. Differentiation into wrapping glia is initiated close to the morphogenetic furrow. Using single cell labeling experiments we identified six distinct glial cell types in the eye disc. The migratory glial population is separated from the wrapping glial cells by the so-called carpet cells, extraordinary large glial cells, each covering a surface area of approximately 10,000 epithelial cells. Subsequent cell ablation experiments demonstrate that the carpet glia regulates glial migration in the eye disc epithelium and suggest a new model underlying glial migration and differentiation in the developing visual system.
Cell death pathways associated with PDT
NASA Astrophysics Data System (ADS)
Kessel, David; Reiners, John J., Jr.
2006-02-01
Photodynamic therapy leads to both direct and indirect tumor cell death. The latter also involves the consequences of vascular shut-down and immunologic effects. While these factors are a major factor in tumor eradication, there is usually an element of direct cell killing that can reduce the cell population by as much as 2-3 logs. Necrosis was initially believed to represent the predominant PDT death mechanism. An apoptotic response to PDT was first reported by Oleinick in 1991, using a sensitizer that targets the anti-apoptotic protein Bcl-2. Apoptosis leads to fragmentation of DNA and of cells into apoptotic bodies that are removed by phagocytosis. Inflammatory effects are minimized, and the auto- catalytic elements of the process can amplify the death signal. In this study, we examined consequences of Bcl-2 photodamage by a porphycene sensitizer that targets the ER and causes photodamage to the anti-apoptotic protein Bcl-2. Death patterns after Bcl-2 inactivation by a small-molecular antagonist were also assessed. In addition to apoptosis, we also characterized a hitherto undescribed PDT effect, the initiation of autophagy. Autophagy was initially identified as a cell survival pathway, allowing the recycling of components as nutrients become scarce. We propose that autophagy can also represent both a potential survival pathway after PDT damage to cellular organelles, as well as a cell-death pathway. Recent literature reports indicate that autophagy, as well as apoptosis, can be evoked after down-regulation of Bcl-2, a result consistent with results reported here.
Effects of amyloid-β plaque proximity on the axon initial segment of pyramidal cells.
León-Espinosa, Gonzalo; DeFelipe, Javier; Muñoz, Alberto
2012-01-01
The output of cortical pyramidal cells reflects the balance between excitatory inputs of cortical and subcortical origin, and inhibitory inputs from distinct populations of cortical GABAergic interneurons, each of which selectively innervate different domains of neuronal pyramidal cells (i.e., dendrites, soma and axon initial segment [AIS]). In Alzheimer's disease (AD), the presence of amyloid-β (Aβ) plaques alters the synaptic input to pyramidal cells in a number of ways. However, the effects of Aβ plaques on the AIS have still not been investigated to date. This neuronal domain is involved in input integration, as well as action potential initiation and propagation, and it exhibits Ca2+- and activity-dependent structural plasticity. The AIS is innervated by GABAergic axon terminals from chandelier cells, which are thought to exert a strong influence on pyramidal cell output. In the AβPP/PS1 transgenic mouse model of AD, we have investigated the effects of Aβ plaques on the morphological and neurochemical features of the AIS, including the cisternal organelle, using immunocytochemistry and confocal microscopy, as well as studying the innervation of the AIS by chandelier cell axon terminals. There is a strong reduction in GABAergic terminals that appose AIS membrane surfaces that are in contact with Aβ plaques, indicating altered inhibitory synapsis at the AIS. Thus, despite a lack of gross structural alterations in the AIS, this decrease in GABAergic innervation may deregulate AIS activity and contribute to the hyperactivity of neurons in contact with Aβ plaques.
NASA Astrophysics Data System (ADS)
Elber Duverger, James; Boudreau-Béland, Jonathan; Le, Minh Duc; Comtois, Philippe
2014-11-01
Self-organization of pacemaker (PM) activity of interconnected elements is important to the general theory of reaction-diffusion systems as well as for applications such as PM activity in cardiac tissue to initiate beating of the heart. Monolayer cultures of neonatal rat ventricular myocytes (NRVMs) are often used as experimental models in studies on cardiac electrophysiology. These monolayers exhibit automaticity (spontaneous activation) of their electrical activity. At low plated density, cells usually show a heterogeneous population consisting of PM and quiescent excitable cells (QECs). It is therefore highly probable that monolayers of NRVMs consist of a heterogeneous network of the two cell types. However, the effects of density and spatial distribution of the PM cells on spontaneous activity of monolayers remain unknown. Thus, a simple stochastic pattern formation algorithm was implemented to distribute PM and QECs in a binary-like 2D network. A FitzHugh-Nagumo excitable medium was used to simulate electrical spontaneous and propagating activity. Simulations showed a clear nonlinear dependency of spontaneous activity (occurrence and amplitude of spontaneous period) on the spatial patterns of PM cells. In most simulations, the first initiation sites were found to be located near the substrate boundaries. Comparison with experimental data obtained from cardiomyocyte monolayers shows important similarities in the position of initiation site activity. However, limitations in the model that do not reflect the complex beat-to-beat variation found in experiments indicate the need for a more realistic cardiomyocyte representation.
The "Big Bang" in obese fat: Events initiating obesity-induced adipose tissue inflammation.
Wensveen, Felix M; Valentić, Sonja; Šestan, Marko; Turk Wensveen, Tamara; Polić, Bojan
2015-09-01
Obesity is associated with the accumulation of pro-inflammatory cells in visceral adipose tissue (VAT), which is an important underlying cause of insulin resistance and progression to diabetes mellitus type 2 (DM2). Although the role of pro-inflammatory cytokines in disease development is established, the initiating events leading to immune cell activation remain elusive. Lean adipose tissue is predominantly populated with regulatory cells, such as eosinophils and type 2 innate lymphocytes. These cells maintain tissue homeostasis through the excretion of type 2 cytokines, such as IL-4, IL-5, and IL-13, which keep adipose tissue macrophages (ATMs) in an anti-inflammatory, M2-like state. Diet-induced obesity is associated with the loss of tissue homeostasis and development of type 1 inflammatory responses in VAT, characterized by IFN-γ. A key event is a shift of ATMs toward an M1 phenotype. Recent studies show that obesity-induced adipocyte hypertrophy results in upregulated surface expression of stress markers. Adipose stress is detected by local sentinels, such as NK cells and CD8(+) T cells, which produce IFN-γ, driving M1 ATM polarization. A rapid accumulation of pro-inflammatory cells in VAT follows, leading to inflammation. In this review, we provide an overview of events leading to adipose tissue inflammation, with a special focus on adipose homeostasis and the obesity-induced loss of homeostasis which marks the initiation of VAT inflammation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bourin, Philippe; Bunnell, Bruce A; Casteilla, Louis; Dominici, Massimo; Katz, Adam J; March, Keith L; Redl, Heinz; Rubin, J Peter; Yoshimura, Kotaro; Gimble, Jeffrey M
2013-06-01
Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population. Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature. In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction. The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters. Copyright © 2013 International Society for Cellular Therapy. All rights reserved.
Devi, Suma Priya Sudarsana; Howe, James R.
2016-01-01
Key points Purkinje cells of the cerebellum receive ∼180,000 parallel fibre synapses, which have often been viewed as a homogeneous synaptic population and studied using single action potentials.Many parallel fibre synapses might be silent, however, and granule cells in vivo fire in bursts. Here, we used trains of stimuli to study parallel fibre inputs to Purkinje cells in rat cerebellar slices.Analysis of train EPSCs revealed two synaptic components, phase 1 and 2. Phase 1 is initially large and saturates rapidly, whereas phase 2 is initially small and facilitates throughout the train. The two components have a heterogeneous distribution at dendritic sites and different pharmacological profiles.The differential sensitivity of phase 1 and phase 2 to inhibition by pentobarbital and NBQX mirrors the differential sensitivity of AMPA receptors associated with the transmembrane AMPA receptor regulatory protein, γ‐2, gating in the low‐ and high‐open probability modes, respectively. Abstract Cerebellar granule cells fire in bursts, and their parallel fibre axons (PFs) form ∼180,000 excitatory synapses onto the dendritic tree of a Purkinje cell. As many as 85% of these synapses have been proposed to be silent, but most are labelled for AMPA receptors. Here, we studied PF to Purkinje cell synapses using trains of 100 Hz stimulation in rat cerebellar slices. The PF train EPSC consisted of two components that were present in variable proportions at different dendritic sites: one, with large initial EPSC amplitude, saturated after three stimuli and dominated the early phase of the train EPSC; and the other, with small initial amplitude, increased steadily throughout the train of 10 stimuli and dominated the late phase of the train EPSC. The two phases also displayed different pharmacological profiles. Phase 2 was less sensitive to inhibition by NBQX but more sensitive to block by pentobarbital than phase 1. Comparison of synaptic results with fast glutamate applications to recombinant receptors suggests that the high‐open‐probability gating mode of AMPA receptors containing the auxiliary subunit transmembrane AMPA receptor regulatory protein γ‐2 makes a substantial contribution to phase 2. We argue that the two synaptic components arise from AMPA receptors with different functional signatures and synaptic distributions. Comparisons of voltage‐ and current‐clamp responses obtained from the same Purkinje cells indicate that phase 1 of the EPSC arises from synapses ideally suited to transmit short bursts of action potentials, whereas phase 2 is likely to arise from low‐release‐probability or ‘silent’ synapses that are recruited during longer bursts. PMID:27094216
Evaluation of the Safety of Clozapine Use in Patients with Benign Neutropenia
Richardson, Charles M.; Davis, Erica A.; Vyas, Gopal R.; DiPaula, Bethany A.; McMahon, Robert P.; Kelly, Deanna L.
2017-01-01
Objective Determine if clozapine can be safely utilized in a population of psychiatric patients with current or a history of benign neutropenia. Method A single-center, retrospective chart review was conducted in an inpatient psychiatric hospital. Patients included had benign neutropenia prior to receiving clozapine and received clozapine using modified monitoring guidelines. All available laboratory values for absolute neutrophil count (ANC) before clozapine initiation and during treatment were evaluated. The primary endpoint was the difference in ANC after initiation of clozapine compared to before clozapine treatment. Results A total of 26 patients were reviewed. Mean age was 34 years at clozapine initiation. The majority were African-American (73%), with more males than females (73% vs. 27%). The mean lowest ANC value was not significantly different after clozapine initiation compared to before (1.5 and 1.4×103 cells/mm3, respectively; p=0.22). There were no cases of agranulocytosis (ANC <0.5 ×103 cells/mm3) and no patients were discontinued for falling below limits set by modified guidelines. There were fewer occurrences of mild neutropenia (ANC <2.0×103 cells/mm3) after clozapine initiation than before (16% and 31.4%, respectively; p<0.001). There were also fewer occurrences of moderate neutropenia (ANC <1.5×103 cells/mm3) with 2.1% after clozapine and 13.3% before (p<0.001). Occurrence of ANC <1.0×103 cells/mm3 did not differ (0.4% before, 0.3% after, p=0.79). Conclusion Twenty-six patients with benign neutropenia were safely treated with clozapine. Their pre-clozapine neutropenia did not predict increased risk for agranulocytosis with clozapine. Patients had significantly fewer episodes of mild and moderate neutropenia after receiving clozapine compared to before. PMID:27736047
Human Papillomavirus Infections and Cancer Stem Cells of Tumors from the Uterine Cervix
López, Jacqueline; Ruíz, Graciela; Organista-Nava, Jorge; Gariglio, Patricio; García-Carrancá, Alejandro
2012-01-01
Different rate of development of productive infections (as low grade cervical intraepithelial neoplasias), or high grade lesions and cervical malignant tumors associated with infections of the Transformation zone (TZ) by High-Risk Human Papillomavirus (HR-HPV), could suggest that different epithelial host target cells could exist. If there is more than one target cell, their differential infection by HR-HPV may play a central role in the development of cervical cancer. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support in several solid tumors, including cervical cancer (CC). According to the cancer stem cell (CSC) hypothesis, CC can now be considered a disease in which stem cells of the TZ are converted to cervical cancer stem cells by the interplay between HR-HPV viral oncogenes and cellular alterations that are thought to be finally responsible for tumor initiation and maintenance. Current studies of CSC could provide novel insights regarding tumor initiation and progression, their relation with viral proteins and interplay with the tumor micro-environment. This review will focus on the biology of cervical cancer stem cells, which might contribute to our understanding of the mechanisms responsible for cervical tumor development. PMID:23341858
Andersen, Natalia D.; Srinivas, Shruthi; Piñero, Gonzalo; Monje, Paula V.
2016-01-01
We herein developed a protocol for the rapid procurement of adult nerve-derived Schwann cells (SCs) that was optimized to implement an immediate enzymatic dissociation of fresh nerve tissue while maintaining high cell viability, improving yields and minimizing fibroblast and myelin contamination. This protocol introduces: (1) an efficient method for enzymatic cell release immediately after removal of the epineurium and extensive teasing of the nerve fibers; (2) an adaptable drop-plating method for selective cell attachment, removal of myelin debris, and expansion of the initial SC population in chemically defined medium; (3) a magnetic-activated cell sorting purification protocol for rapid and effective fibroblast elimination; and (4) an optional step of cryopreservation for the storage of the excess of cells. Highly proliferative SC cultures devoid of myelin and fibroblast growth were obtained within three days of nerve processing. Characterization of the initial, expanded, and cryopreserved cell products confirmed maintenance of SC identity, viability and growth rates throughout the process. Most importantly, SCs retained their sensitivity to mitogens and potential for differentiation even after cryopreservation. To conclude, this easy-to-implement and clinically relevant protocol allows for the preparation of expandable homogeneous SC cultures while minimizing time, manipulation of the cells, and exposure to culture variables. PMID:27549422
Niess, Hanno; Camaj, Peter; Renner, Andrea; Ischenko, Ivan; Zhao, Yue; Krebs, Stefan; Mysliwietz, Josef; Jäckel, Carsten; Nelson, Peter J; Blum, Helmut; Jauch, Karl-Walter; Ellwart, Joachim W; Bruns, Christiane J
2015-06-01
Cancer stem cells (CSCs) have been proposed to underlie the initiation and maintenance of tumor growth and the development of chemoresistance in solid tumors. The identification and role of these important cells in pancreatic cancer remains controversial. Here, we isolate side population (SP) cells from the highly aggressive and metastatic human pancreatic cancer cell line L3.6pl and evaluate their potential role as models for CSCs. SP cells were isolated following Hoechst 33342 staining of L3.6pl cells. SP, non-SP, and unsorted L3.6pl cells were orthotopically xenografted into the pancreas of nude mice and tumor growth observed. RNA was analyzed by whole genome array and pathway mapping was performed. Drug resistant variants of L3.6pl were developed and examined for SP proportions and evaluated for surface expression of known CSC markers. A distinct SP with the ability to self-renew and differentiate into non-SP cells was isolated from L3.6pl (0.9 % ± 0.22). SP cells showed highly tumorigenic and metastatic characteristics after orthotopic injection. Transcriptomic analysis identified modulation of gene networks linked to tumorigenesis, differentiation, and metastasization in SP cells relative to non-SP cells. Wnt, NOTCH, and EGFR signaling pathways associated with tumor stem cells were altered in SP cells. When cultured with increasing concentrations of gemcitabine, the proportion of SP cells, ABCG2(+), and CD24(+) cells were significantly enriched, whereas 5-fluorouracil (5-FU) treatment lowered the percentage of SP cells. SP cells were distinct from cells positive for previously postulated pancreatic CSC markers. The Hoechst-induced side population in L3.6pl cells comprises a subset of tumor cells displaying aggressive growth and metastasization, increased gemcitabine-, but not 5-FU resistance. The cells may act as a partial model for CSC biology.
Landua, John D.; Bu, Wen; Wei, Wei; Li, Fuhai; Wong, Stephen T.C.; Dickinson, Mary E.; Rosen, Jeffrey M.; Lewis, Michael T.
2014-01-01
Cancer stem cells (CSCs, or tumor-initiating cells) may be responsible for tumor formation in many types of cancer, including breast cancer. Using high-resolution imaging techniques, we analyzed the relationship between a Wnt-responsive, CSC-enriched population and the tumor vasculature using p53-null mouse mammary tumors transduced with a lentiviral Wnt signaling reporter. Consistent with their localization in the normal mammary gland, Wnt-responsive cells in tumors were enriched in the basal/myoepithelial population and generally located in close proximity to blood vessels. The Wnt-responsive CSCs did not colocalize with the hypoxia-inducible factor 1α-positive cells in these p53-null basal-like tumors. Average vessel diameter and vessel tortuosity were increased in p53-null mouse tumors, as well as in a human tumor xenograft as compared with the normal mammary gland. The combined strategy of monitoring the fluorescently labeled CSCs and vasculature using high-resolution imaging techniques provides a unique opportunity to study the CSC and its surrounding vasculature. PMID:24797826
Slusser-Nore, Andrea; Larson-Casey, Jennifer L; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R
2016-01-01
This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As(+3)) and cadmium (Cd(+2))-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd(+2)-and As(+3)-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As(+3)-and Cd(+2)-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. It was shown that the As(+3)-and Cd(+2)-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Tumor initiating cells isolated from SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.
Slusser-Nore, Andrea; Larson-Casey, Jennifer L.; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H.; Sens, Donald A.; Dunlevy, Jane R.
2016-01-01
Background This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As+3) and cadmium (Cd+2)-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd+2-and As+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Methods Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As+3-and Cd+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. Results It was shown that the As+3-and Cd+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As+3-and Cd+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Conclusions Tumor initiating cells isolated from SPARC-transfected As+3-and Cd+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA. PMID:26783756
Estimating error rates for firearm evidence identifications in forensic science
Song, John; Vorburger, Theodore V.; Chu, Wei; Yen, James; Soons, Johannes A.; Ott, Daniel B.; Zhang, Nien Fan
2018-01-01
Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science. This paper describes the recently developed congruent matching cells (CMC) method for image comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate estimation. The CMC method divides compared topography images into correlation cells. Four identification parameters are defined for quantifying both the topography similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. A declared match requires a significant number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation between the distributions of CMC numbers observed for known matching and known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides manufactured by the same process also yielded widely separated distributions. The test results were used to develop two statistical models for the probability mass function of CMC correlation scores. The models were applied to develop a framework for estimating cumulative false positive and false negative error rates and individual error rates of declared matches and non-matches for this population of breech face impressions. The prospect for applying the models to large populations and realistic case work is also discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm evidence identifications, thus emulating methods used for forensic identification of DNA evidence. PMID:29331680
Estimating error rates for firearm evidence identifications in forensic science.
Song, John; Vorburger, Theodore V; Chu, Wei; Yen, James; Soons, Johannes A; Ott, Daniel B; Zhang, Nien Fan
2018-03-01
Estimating error rates for firearm evidence identification is a fundamental challenge in forensic science. This paper describes the recently developed congruent matching cells (CMC) method for image comparisons, its application to firearm evidence identification, and its usage and initial tests for error rate estimation. The CMC method divides compared topography images into correlation cells. Four identification parameters are defined for quantifying both the topography similarity of the correlated cell pairs and the pattern congruency of the registered cell locations. A declared match requires a significant number of CMCs, i.e., cell pairs that meet all similarity and congruency requirements. Initial testing on breech face impressions of a set of 40 cartridge cases fired with consecutively manufactured pistol slides showed wide separation between the distributions of CMC numbers observed for known matching and known non-matching image pairs. Another test on 95 cartridge cases from a different set of slides manufactured by the same process also yielded widely separated distributions. The test results were used to develop two statistical models for the probability mass function of CMC correlation scores. The models were applied to develop a framework for estimating cumulative false positive and false negative error rates and individual error rates of declared matches and non-matches for this population of breech face impressions. The prospect for applying the models to large populations and realistic case work is also discussed. The CMC method can provide a statistical foundation for estimating error rates in firearm evidence identifications, thus emulating methods used for forensic identification of DNA evidence. Published by Elsevier B.V.
Early stages in the development of human T, natural killer and thymic dendritic cells.
Spits, H; Blom, B; Jaleco, A C; Weijer, K; Verschuren, M C; van Dongen, J J; Heemskerk, M H; Res, P C
1998-10-01
T-cell development is initiated when CD34+ pluripotent stem cells or their immediate progeny leave the bone marrow to migrate to the thymus. Upon arrival in the thymus the stem cell progeny is not yet committed to the T-cell lineage as it has the capability to develop into T, natural killer (NK) and dendritic cells (DC). Primitive hematopoietic progenitor cells in the human thymus express CD34 and lack CD1a. When these progenitor cells develop into T cells they traverse a number of checkpoints. One early checkpoint is the induction of T-cell commitment, which correlates with appearance of CD1a and involves the loss of capacity to develop into NK cells and DC and the initiation of T-cell receptor (TCR) gene rearrangements. Basic helix-loop-helix transcription factors play a role in induction of T-cell commitment. CD1a+CD34+ cells develop into CD4+CD8 alpha+ beta+ cells by upregulating first CD4, followed by CD8 alpha and then CD8 beta. Selection for productive TCR beta gene rearrangements (beta selection) likely occurs in the CD4+CD8 alpha+ beta- and CD4+CD8 alpha+ beta+ populations. Although the T and NK-cell lineages are closely related to each other, NK cells can develop independently of the thymus. The fetal thymus is most likely one site of NK-cell development.
Kemter, Franziska S.; Messerschmidt, Sonja J.; Schallopp, Nadine; Sobetzko, Patrick; Bunk, Boyke; Spröer, Cathrin; Teschler, Jennifer K.; Yildiz, Fitnat H.
2018-01-01
Vibrio cholerae, the causative agent of the cholera disease, is commonly used as a model organism for the study of bacteria with multipartite genomes. Its two chromosomes of different sizes initiate their DNA replication at distinct time points in the cell cycle and terminate in synchrony. In this study, the time-delayed start of Chr2 was verified in a synchronized cell population. This replication pattern suggests two possible regulation mechanisms for other Vibrio species with different sized secondary chromosomes: Either all Chr2 start DNA replication with a fixed delay after Chr1 initiation, or the timepoint at which Chr2 initiates varies such that termination of chromosomal replication occurs in synchrony. We investigated these two models and revealed that the two chromosomes of various Vibrionaceae species terminate in synchrony while Chr2-initiation timing relative to Chr1 is variable. Moreover, the sequence and function of the Chr2-triggering crtS site recently discovered in V. cholerae were found to be conserved, explaining the observed timing mechanism. Our results suggest that it is beneficial for bacterial cells with multiple chromosomes to synchronize their replication termination, potentially to optimize chromosome related processes as dimer resolution or segregation. PMID:29505558
Golubev, A; Khrustalev, S; Butov, A
2003-11-21
In telomerase-negative cell populations the mean telomere length (TL) decreases with increasing population doubling number (PD). A critically small TL is believed to stop cell proliferation at a cell-, age- and species-specific PD thus defining the Hayflick limit. However, positively skewed TL distributions are broad compared to differences between initial and final mean TL and strongly overlap at middle and late PD, which is inconsistent with a limiting role of TL. We used computer-assisted modelling to define what set of premises may account for the above. Our model incorporates the following concepts. DNA end replication problem: telomeres loose 1 shortening unit (SU) upon each cell division. Free radical-caused TL decrease: telomeres experience random events resulting in the loss of a random SU number within a remaining TL. Stochasticity of gene expression and cell differentiation: cells experience random events inducing mitoses or committing cells to proliferation arrest, the latter option requiring a specified number of mitoses to be passed. Cells whose TL reaches 1SU cannot divide. The proliferation kinetics of such virtual cells conforms to the transition probability model of cell cycle. When no committing events occur and at realistic SU estimates of the initial TL, maximal PD values far exceed the Hayflick limit observed in normal cells and are consistent with the crisis stage entered by transformed cells that have surpassed the Hayflick limit. At intermediate PD, symmetrical TL distributions are yielded. Upon introduction of committing events making the ratio of the rates of proliferating and committing events (P/C) range from 1.10 to 1.25, TL distributions at intermediate PD become positively skewed, and virtual cell clones show bimodal size distributions. At P/C as high as 1.25 the majority of virtual cells at maximal PD contain telomeres with TL>1SU. A 10% increase in P/C within the 1.10-1.25 range produces a two-fold increase in the maximal PD, which can reach values of up to 25 observed in rodent and some human cells. Increasing the number of committed mitoses from 0 to 10 can increases PD to about 50 observed in human fibroblasts. Introduction of the random TL breakage makes the shapes of TL distributions quite dissimilar from those observed in real cells. Telomere length decrease is a correlate of cell proliferation that cannot alone account for the Hayflick limit, which primarily depends on parameters of cell population kinetics. Free radical damage influences the Hayflick limit not through TL but rather by affecting the ratio of the rates of events that commit cells to mitoses or to proliferation arrest.
Leguay, Jean-Jacques; Guern, Jean
1977-01-01
The utilization of 2,4-dichlorophenoxyacetic acid (2,4-D) molecules by Acer pseudoplatanus cells is governed mainly by a glucosylation process. Evidence that 2,4-D glucoside molecules are biologically inactive is presented. 2,3,5-Triiodobenzoic acid (TIBA), by inhibiting 2,4-D glucosylation, has a sparing effect on 2,4-D molecules; thus TIBA treatments increase growth yield (expressed as the ratio of the maximum number of cells produced to the initial concentration of 2,4-D in the culture medium). Significant amounts of intact 2,4-D molecules remain outside and inside the cells when cell division stops at the onset of the stationary phase. This result and the previous demonstration that, at the onset of the stationary phase, 2,4-D is the specific limiting factor of cell division (Leguay JJ, J Guern 1975 Plant Physiol 56: 356-359) suggest that a threshold concentration of auxin is needed for cell division to proceed. The distribution of 2,4-D molecules between the cells and the culture medium is dependent on the population density at the stationary phase. The extracellular 2,4-D concentration at that time is a linear function of the population density whereas intracellular amounts of 2,4-D and 2,4-D metabolites are constant. By using a modified 2-14C,-5,5-dimethyloxazolidine-2,4-dione technique, it has been shown that the intracellular pH is markedly lowered as the population density at the plateau is increased. This intracellular pH modification is likely to be responsible for a large modification of the ratio between intracellular and extracellular auxin concentrations. The intracellular auxin concentration reaches a constant value (about 3 × 10−7m), independent of population density when cell division stops at the onset of the stationary phase suggesting that it represents the threshold value of the control for cell division. PMID:16660072
Gaillard, Coline; Tokuyasu, Taku A.; Rosen, Galit; Sotzen, Jason; Vitaliano-Prunier, Adeline; Roy, Ritu; Passegué, Emmanuelle; de Thé, Hugues; Figueroa, Maria E.; Kogan, Scott C.
2015-01-01
Acute promyelocytic leukemia is an aggressive malignancy characterized by the accumulation of promyelocytes in the bone marrow. PML/RARA is the primary abnormality implicated in this pathology, but the mechanisms by which this chimeric fusion protein initiates disease are incompletely understood. Identifying PML/RARA targets in vivo is critical for comprehending the road to pathogenesis. Utilizing a novel sorting strategy, we isolated highly purified promyelocyte populations from normal and young preleukemic animals, carried out microarray and methylation profiling analyses, and compared the results from the two groups of animals. Surprisingly, in the absence of secondary lesions, PML/RARA had an overall limited impact on both the transcriptome and methylome. Of interest, we did identify down-regulation of secondary and tertiary granule genes as the first step engaging the myeloid maturation block. Although initially not sufficient to arrest terminal granulopoiesis in vivo, such alterations set the stage for the later, complete differentiation block seen in leukemia. Further, gene set enrichment analysis revealed that PML/RARA promyelocytes exhibit a subtle increase in expression of cell cycle genes, and we show that this leads to both increased proliferation of these cells and expansion of the promyelocyte compartment. Importantly, this proliferation signature was absent from the poorly leukemogenic p50/RARA fusion model, implying a critical role for PML in the altered cell-cycle kinetics and ability to initiate leukemia. Thus, our findings challenge the predominant model in the field and we propose that PML/RARA initiates leukemia by subtly shifting cell fate decisions within the promyelocyte compartment. PMID:26088929
Caro-Vega, Yanink; del Rio, Carlos; Lima, Viviane Dias; Lopez-Cervantes, Malaquias; Crabtree-Ramirez, Brenda; Bautista-Arredondo, Sergio; Colchero, M Arantxa; Sierra-Madero, Juan
2015-01-01
To estimate the impact of late ART initiation on HIV transmission among men who have sex with men (MSM) in Mexico. An HIV transmission model was built to estimate the number of infections transmitted by HIV-infected men who have sex with men (MSM-HIV+) MSM-HIV+ in the short and long term. Sexual risk behavior data were estimated from a nationwide study of MSM. CD4+ counts at ART initiation from a representative national cohort were used to estimate time since infection. Number of MSM-HIV+ on treatment and suppressed were estimated from surveillance and government reports. Status quo scenario (SQ), and scenarios of early ART initiation and increased HIV testing were modeled. We estimated 14239 new HIV infections per year from MSM-HIV+ in Mexico. In SQ, MSM take an average 7.4 years since infection to initiate treatment with a median CD4+ count of 148 cells/mm3(25th-75th percentiles 52-266). In SQ, 68% of MSM-HIV+ are not aware of their HIV status and transmit 78% of new infections. Increasing the CD4+ count at ART initiation to 350 cells/mm3 shortened the time since infection to 2.8 years. Increasing HIV testing to cover 80% of undiagnosed MSM resulted in a reduction of 70% in new infections in 20 years. Initiating ART at 500 cells/mm3 and increasing HIV testing the reduction would be of 75% in 20 years. A substantial number of new HIV infections in Mexico are transmitted by undiagnosed and untreated MSM-HIV+. An aggressive increase in HIV testing coverage and initiating ART at a CD4 count of 500 cells/mm3 in this population would significantly benefit individuals and decrease the number of new HIV infections in Mexico.
Hoff, Paula; Maschmeyer, Patrick; Gaber, Timo; Schütze, Tabea; Raue, Tobias; Schmidt-Bleek, Katharina; Dziurla, René; Schellmann, Saskia; Lohanatha, Ferenz Leonard; Röhner, Eric; Ode, Andrea; Burmester, Gerd-Rüdiger; Duda, Georg N; Perka, Carsten; Buttgereit, Frank
2013-01-01
The initial inflammatory phase of bone fracture healing represents a critical step for the outcome of the healing process. However, both the mechanisms initiating this inflammatory phase and the function of immune cells present at the fracture site are poorly understood. In order to study the early events within a fracture hematoma, we established an in vitro fracture hematoma model: we cultured hematomas forming during an osteotomy (artificial bone fracture) of the femur during total hip arthroplasty (THA) in vitro under bioenergetically controlled conditions. This model allowed us to monitor immune cell populations, cell survival and cytokine expression during the early phase following a fracture. Moreover, this model enabled us to change the bioenergetical conditions in order to mimic the in vivo situation, which is assumed to be characterized by hypoxia and restricted amounts of nutrients. Using this model, we found that immune cells adapt to hypoxia via the expression of angiogenic factors, chemoattractants and pro-inflammatory molecules. In addition, combined restriction of oxygen and nutrient supply enhanced the selective survival of lymphocytes in comparison with that of myeloid derived cells (i.e., neutrophils). Of note, non-restricted bioenergetical conditions did not show any similar effects regarding cytokine expression and/or different survival rates of immune cell subsets. In conclusion, we found that the bioenergetical conditions are among the crucial factors inducing the initial inflammatory phase of fracture healing and are thus a critical step for influencing survival and function of immune cells in the early fracture hematoma. PMID:23396474
Patel, Kunjal; Hernán, Miguel A.; Williams, Paige L.; Seeger, John D.; McIntosh, Kenneth; Van Dyke, Russell B.; Seage, George R.
2011-01-01
Background Lower percentages of CD4+ T lymphocytes are associated with adverse clinical outcomes among children and adolescents infected with human immunodeficiency virus (HIV). CD4+ lymphocyte percentage generally increases with receipt of highly active antiretroviral therapy (HAART), but long-term follow-up is required to assess whether these increases in CD4+ cell percentage are maintained and whether they lead to normal CD4+ cell percentages in children with severe immunosuppression. Methods The study population included 1236 children and adolescents perinatally infected with HIV who were enrolled in a US-based multicenter prospective cohort study (Pediatric AIDS Clinical Trials Group 219/219C) and who were not receiving HAART at study initiation. We estimated the effects of HAART, HAART with protease inhibitors, and HAART with nonnucleoside reverse-transcriptase inhibitors on CD4+ cell percentage, using marginal structural models to account for confounding by severity. Results Initiation of any type of HAART increased CD4+ cell percentage by 2.34% (95% confidence interval, 1.35%–3.33%) in the first year, relative to noninitiation of HAART. The substantial increases in CD4+ cell percentage observed after the first year of experience with these combination therapies were followed by relatively smaller increases that continued for 5 years after initiation. Although larger increases in CD4+ cell percentage were observed among children with a greater degree of immunosuppression at baseline, the mean CD4+ cell percentage after 5 years of HAART did not reach normal levels. Conclusions Our study supports the initiation of HAART in children before severe immunosuppression occurs for long-term maintenance of normal CD4+ cell percentages. This beneficial result must be weighed against the evidence of potential adverse events associated with the prolonged use of such therapy. PMID:18426371
Ichim, CV; Atkins, HL; Iscove, NN; Wells, RA
2016-01-01
Identification of genes that regulate clonogenicity of acute myelogenous leukemia (AML) cells is hindered by the difficulty of isolating pure populations of cells with defined proliferative abilities. By analyzing the growth of clonal siblings in low passage cultures of the cell line OCI/AML4 we resolved this heterogeneous population into strata of distinct clonogenic potential, permitting analysis of the transcriptional signature of single cells with defined proliferative abilities. By microarray analysis we showed that the expression of the orphan nuclear receptor EAR-2 (NR2F6) is greater in leukemia cells with extensive proliferative capacity than in those that have lost proliferative ability. EAR-2 is expressed highly in long-term hematopoietic stem cells, relative to short-term hematopoietic stem and progenitor cells, and is downregulated in AML cells after induction of differentiation. Exogenous expression of EAR-2 increased the growth of U937 cells and prevented the proliferative arrest associated with terminal differentiation, and blocked differentiation of U937 and 32Dcl3 cells. Conversely, silencing of EAR-2 by short-hairpin RNA initiated terminal differentiation of these cell lines. These data identify EAR-2 as an important factor in the regulation of clonogenicity and differentiation, and establish that analysis of clonal siblings allows the elucidation of differences in gene expression within the AML hierarchy. PMID:21637284
Wang, Xiaohong; Hu, Qingsong; Nakamura, Yasuhiro; Lee, Joseph; Zhang, Ge; From, Arthur H L; Zhang, Jianyi
2006-07-01
Cardiac stem cell-like populations exist in adult hearts, and their roles in cardiac repair remain to be defined. Sca-1 is an important surface marker for cardiac and other somatic stem cells. We hypothesized that heart-derived Sca-1(+)/CD31(-) cells may play a role in myocardial infarction-induced cardiac repair/remodeling. Mouse heart-derived Sca-1(+)/CD31(-) cells cultured in vitro could be induced to express both endothelial cell and cardiomyocyte markers. Immunofluorescence staining and fluorescence-activated cell sorting analysis indicated that endogenous Sca-1(+)/CD31(-) cells were significantly increased in the mouse heart 7 days after myocardial infarction (MI). Western blotting confirmed elevated Sca-1 protein expression in myocardium 7 days after MI. Transplantation of Sca-1(+)/CD31(-) cells into the acutely infarcted mouse heart attenuated the functional decline and adverse structural remodeling initiated by MI as evidenced by an increased left ventricular (LV) ejection fraction, a decreased LV end-diastolic dimension, a decreased LV end-systolic dimension, a significant increase of myocardial neovascularization, and modest cardiomyocyte regeneration. Attenuation of LV remodeling was accompanied by remarkably improved myocardial bioenergetic characteristics. The beneficial effects of cell transplantation appear to primarily depend on paracrine effects of the transplanted cells on new vessel formation and native cardiomyocyte function. Sca-1(+)/CD31(-) cells may hold therapeutic possibilities with regard to the treatment of ischemic heart disease.
Characterization of hair-follicle side population cells in mouse epidermis and skin tumors
Kim, Sun Hye; Sistrunk, Christopher; Miliani de Marval, Paula L.; Rodriguez-Puebla, Marcelo L.
2017-01-01
A subset of cells, termed side-population (SP), which have the ability to efflux Hoeschst 33342, have previously been demonstrated to act as a potential method to isolate stem cells. Numerous stem/progenitor cells have been localized in different regions of the mouse hair follicle (HF). The present study identified a SP in the mouse HF expressing the ABCG2 transporter and MTS24 surface marker. These cells are restricted to the upper isthmus of the HF and have previously been described as progenitor cells. Consistent with their SP characteristic, they demonstrated elevated expression of ABCG2 transporter, which participates in the dye efflux. Analysis of tumor epidermal cell lines revealed a correlation between the number of SP keratinocytes and the grade of malignancy, suggesting that the SP may play a role in malignant progression. Consistent with this idea, the present study observed an increased number of cells expressing ABCG2 and MTS24 in chemically induced skin tumors and skin tumor cell lines. This SP does not express the CD34 surface marker detected in the multipotent stem cells of the bulge region of the HF, which have been defined as tumor initiation cells. The present study concluded that a SP with properties of progenitor cells is localized in the upper isthmus of the HF and is important in mouse skin tumor progression. PMID:29181098
Jarid2 is essential for the maintenance of tumor initiating cells in bladder cancer.
Zhu, Xin-Xing; Yan, Ya-Wei; Ai, Chun-Zhi; Jiang, Shan; Xu, Shan-Shan; Niu, Min; Wang, Xiang-Zhen; Zhong, Gen-Shen; Lu, Xi-Feng; Xue, Yu; Tian, Shaoqi; Li, Guangyao; Tang, Shaojun; Jiang, Yi-Zhou
2017-04-11
Bladder cancer is the most common urologic malignancy in China, with an increase of the incidence and mortality rates over past decades. Recent studies suggest that bladder tumors are maintained by a rare fraction of cells with stem cell proprieties. Targeting these bladder tumor initiating cell (TICs) population can overcome the drug-resistance of bladder cancer. However, the molecular and genetic mechanisms regulating TICs in bladder cancer remain poorly defined. Jarid2 is implicated in signaling pathways regulating cancer cell epithelial-mesenchymal transition, and stem cell maintenance. The goal of our study was to examine whether Jarid2 plays a role in the regulation of TICs in bladder cancer. We found that knockdown of Jarid2 was able to inhibit the invasive ability and sphere-forming capacity in bladder cancer cells. Moreover, knockdown of Jarid2 reduced the proportion of TICs and impaired the tumorigenicity of bladder cancer TICs in vivo. Conversely, ectopic overexpression of Jarid2 promoted the invasive ability and sphere-forming capacity in bladder cancer cells. Mechanistically, reduced Jarid2 expression led to the upregulation of p16 and H3K27me3 level at p16 promoter region. Collectively, we provided evidence that Jarid2 via modulation of p16 is a putative novel therapeutic target for treating malignant bladder cancer.
Are Mast Cells MASTers in Cancer?
Varricchi, Gilda; Galdiero, Maria Rosaria; Loffredo, Stefania; Marone, Giancarlo; Iannone, Raffaella; Marone, Gianni; Granata, Francescopaolo
2017-01-01
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin’s lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers. PMID:28446910
Are Mast Cells MASTers in Cancer?
Varricchi, Gilda; Galdiero, Maria Rosaria; Loffredo, Stefania; Marone, Giancarlo; Iannone, Raffaella; Marone, Gianni; Granata, Francescopaolo
2017-01-01
Prolonged low-grade inflammation or smoldering inflammation is a hallmark of cancer. Mast cells form a heterogeneous population of immune cells with differences in their ultra-structure, morphology, mediator content, and surface receptors. Mast cells are widely distributed throughout all tissues and are stromal components of the inflammatory microenvironment that modulates tumor initiation and development. Although canonically associated with allergic disorders, mast cells are a major source of pro-tumorigenic (e.g., angiogenic and lymphangiogenic factors) and antitumorigenic molecules (e.g., TNF-α and IL-9), depending on the milieu. In certain neoplasias (e.g., gastric, thyroid and Hodgkin's lymphoma) mast cells play a pro-tumorigenic role, in others (e.g., breast cancer) a protective role, whereas in yet others they are apparently innocent bystanders. These seemingly conflicting results suggest that the role of mast cells and their mediators could be cancer specific. The microlocalization (e.g., peritumoral vs intratumoral) of mast cells is another important aspect in the initiation/progression of solid and hematologic tumors. Increasing evidence in certain experimental models indicates that targeting mast cells and/or their mediators represent a potential therapeutic target in cancer. Thus, mast cells deserve focused consideration also as therapeutic targets in different types of tumors. There are many unanswered questions that should be addressed before we understand whether mast cells are an ally, adversary, or innocent bystanders in human cancers.
Marquez, Maribel P; Alencastro, Frances; Madrigal, Alma; Jimenez, Jossue Loya; Blanco, Giselle; Gureghian, Alex; Keagy, Laura; Lee, Cecilia; Liu, Robert; Tan, Lun; Deignan, Kristen; Armstrong, Brian; Zhao, Yuanxiang
2017-11-01
Mitotic clonal expansion has been suggested as a prerequisite for adipogenesis in murine preadipocytes, but the precise role of cell proliferation during human adipogenesis is unclear. Using adipose tissue-derived human mesenchymal stem cells as an in vitro cell model for adipogenic study, a group of cell cycle regulators, including Cdk1 and CCND1, were found to be downregulated as early as 24 h after adipogenic initiation and consistently, cell proliferation activity was restricted to the first 48 h of adipogenic induction. Cell proliferation was either further inhibited using siRNAs targeting cell cycle genes or enhanced by supplementing exogenous growth factor, basic fibroblast growth factor (bFGF), at specific time intervals during adipogenesis. Expression knockdown of Cdk1 at the initiation of adipogenic induction resulted in significantly increased adipocytes, even though total number of cells was significantly reduced compared to siControl-treated cells. bFGF stimulated proliferation throughout adipogenic differentiation, but exerted differential effect on adipogenic outcome at different phases, promoting adipogenesis during mitotic phase (first 48 h), but significantly inhibiting adipogenesis during adipogenic commitment phase (days 3-6). Our results demonstrate that cellular proliferation is counteractive to adipogenic commitment in human adipogenesis. However, cellular proliferation stimulation can be beneficial for adipogenesis during the mitotic phase by increasing the population of cells capable of committing to adipocytes before adipogenic commitment.
c-Myc-Dependent Cell Competition in Human Cancer Cells.
Patel, Manish S; Shah, Heta S; Shrivastava, Neeta
2017-07-01
Cell Competition is an interaction between cells for existence in heterogeneous cell populations of multicellular organisms. This phenomenon is involved in initiation and progression of cancer where heterogeneous cell populations compete directly or indirectly for the survival of the fittest based on differential gene expression. In Drosophila, cells having lower dMyc expression are eliminated by cell competition through apoptosis when present in the milieu of cells having higher dMyc expression. Thus, we designed a study to develop c-Myc (human homolog) dependent in vitro cell competition model of human cancer cells. Cells with higher c-Myc were transfected with c-myc shRNA to prepare cells with lower c-Myc and then co-cultured with the same type of cells having a higher c-Myc in equal ratio. Cells with lower c-Myc showed a significant decrease in numbers when compared with higher c-Myc cells, suggesting "loser" and "winner" status of cells, respectively. During microscopy, engulfment of loser cells by winner cells was observed with higher expression of JNK in loser cells. Furthermore, elimination of loser cells was prevented significantly, when co-cultured cells were treated with the JNK (apoptosis) inhibitor. Above results indicate elimination of loser cells in the presence of winner cells by c-Myc-dependent mechanisms of cell competition in human cancer cells. This could be an important mechanism in human tumors where normal cells are eliminated by c-Myc-overexpressed tumor cells. J. Cell. Biochem. 118: 1782-1791, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Raghavan, Shreya; Mehta, Pooja; Ward, Maria R; Bregenzer, Michael E; Fleck, Elyse M A; Tan, Lijun; McLean, Karen; Buckanovich, Ronald J; Mehta, Geeta
2017-11-15
Purpose: Chemoresistant ovarian cancers grow in suspension within the ascites fluid. To screen the effect of chemotherapeutics and biologics on resistant ovarian cancers with a personalized basis, we developed a 3D hanging drop spheroid platform. Experimental Design: We initiated spheroids with primary aldehyde dehydrogenase-positive (ALDH + ) CD133 + ovarian cancer stem cells (OvCSC) from different patient samples and demonstrated that stem cell progeny from harvested spheroids was similar to the primary tumor. OvCSC spheroids were utilized to initiate tumors in immunodeficient mice. Drug responses to cisplatin and ALDH-targeting compound or JAK2 inhibitor determined whether the OvCSC population within the spheroids could be targeted. Cells that escaped therapy were isolated and used to initiate new spheroids and model tumor reemergence in a personalized manner. Results: OvCSC spheroids from different patients exhibited varying and personalized responses to chemotherapeutics. Xenografts were established from OvCSC spheroids, even with a single spheroid. Distinct responses to therapy were observed in distinct primary tumor xenografts similar to those observed in spheroids. Spheroids resistant to cisplatin/ALDH inhibitor therapy had persistent, albeit lower ALDH expression and complete loss of CD133 expression, whereas those resistant to cisplatin/JAK2 inhibitor therapy were enriched for ALDH + cells. Conclusions: Our 3D hanging drop suspension platform can be used to propagate primary OvCSCs that represent individual patient tumors effectively by differentiating in vitro and initiating tumors in mice. Therefore, our platform can be used to study cancer stem cell biology and model tumor reemergence to identify new targeted therapeutics from an effective personalized medicine standpoint. Clin Cancer Res; 23(22); 6934-45. ©2017 AACR . ©2017 American Association for Cancer Research.
Theunissen, Prisca M J; van den Branden, Anouk; Van Der Sluijs-Gelling, Alita; De Haas, Valerie; Beishuizen, Auke; van Dongen, Jacques J M; Van Der Velden, Vincent H J
2017-07-01
A better understanding of the reconstitution of the B-cell compartment during and after treatment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) will help to assess the immunological status and needs of post-treatment BCP-ALL patients. Using 8-colour flow cytometry and proliferation-assays, we studied the composition and proliferation of both the B-cell precursor (BCP) population in the bone marrow (BM) and mature B-cell population in peripheral blood (PB) during and after BCP-ALL therapy. We found a normal BCP differentiation pattern and a delayed formation of classical CD38 dim -naive mature B-cells, natural effector B-cells and memory B-cells in patients after chemotherapy. This B-cell differentiation/maturation pattern was strikingly similar to that during initial B-cell development in healthy infants. Tissue-resident plasma cells appeared to be partly protected from chemotherapy. Also, we found that the fast recovery of naive mature B-cell numbers after chemotherapy was the result of increased de novo BCP generation, rather than enhanced B-cell proliferation in BM or PB. These results indicate that post-treatment BCP-ALL patients will eventually re-establish a B-cell compartment with a composition and B-cell receptor repertoire similar to that in healthy children. Additionally, the formation of a new memory B-cell compartment suggests that revaccination might be beneficial after BCP-ALL therapy. © 2017 John Wiley & Sons Ltd.
BK Virus and Its Role in Hematopoietic Stem Cell Transplantation: Evolution of a Pathogen.
delaCruz, Jennifer; Pursell, Kenneth
2014-08-01
We reviewed the literature regarding disease induced by BK virus (BKV) in the hematopoietic stem cell transplant (HSCT) population, particularly hemorrhagic cystitis (HC) and nephritis. The association between BKV and HC has been reported over the past four decades. BKV has been clinically implicated and widely accepted as an etiologic agent of HC and nephritis in HSCT and nephropathy in renal transplant patients. We discuss the potential benefit of early initiation of therapy in patients who fail supportive care alone as well as the different treatment strategies for HC induced by BKV. Treatments that have been used such as cidofovir and leflunomide are accompanied by risks, and the benefits are not as concrete as with other viral illness in the HSCT population.
Johnson, Robert D; Camelliti, Patrizia
2018-03-15
The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.
Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects
Koutroumpi, Matina; Dimopoulos, Stavros; Psarra, Katherini; Kyprianou, Theodoros; Nanas, Serafim
2012-01-01
Circulating bone-marrow-derived cells, named endothelial progenitor cells (EPCs), are capable of maintaining, generating, and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury. Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role. Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk. In this review, we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension, obstructive sleep-apnea syndrome, obesity, diabetes mellitus, peripheral arterial disease, coronary artery disease, pulmonary hypertension, and heart failure. Recent studies have introduced the novel concept that physical activity, either performed as a single exercise session or performed as part of an exercise training program, results in a significant increase of circulating EPCs. In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations. PMID:23272272
Regulation of bacteria population behaviors by AI-2 "consumer cells" and "supplier cells".
Quan, Yufen; Meng, Fankang; Ma, Xinyu; Song, Xinhao; Liu, Xiao; Gao, Weixia; Dang, Yulei; Meng, Yao; Cao, Mingfeng; Song, Cunjiang
2017-09-19
Autoinducer-2 (AI-2) is a universal signal molecule and enables an individual bacteria to communicate with each other and ultimately control behaviors of the population. Harnessing the character of AI-2, two kinds of AI-2 "controller cells" ("consumer cells" and "supplier cells") were designed to "reprogram" the behaviors of entire population. For the consumer cells, genes associated with the uptake and processing of AI-2, which includes LsrACDB, LsrFG, LsrK, were overexpressed in varying combinations. Four consumer cell strains were constructed: Escherichia coli MG1655 pLsrACDB (NK-C1), MG1655 pLsrACDBK (NK-C2), MG1655 pLsrACDBFG (NK-C3) and MG1655 pLsrACDBFGK (NK-C4). The key enzymes responsible for production of AI-2, LuxS and Mtn, were also overexpressed, yielding strains MG1655 pLuxS (NK-SU1), and MG1655 pLuxS-Mtn (NK-SU2). All the consumer cells could decrease the environmental AI-2 concentration. NK-C2 and NK-C4 were most effective in AI-2 uptake and inhibited biofilm formation. While suppliers can increase the environmental AI-2 concentration and NK-SU2 was most effective in supplying AI-2 and facilitated biofilm formation. Further, reporter strain, MG1655 pLGFP was constructed. The expression of green fluorescent protein (GFP) in reporter cells was initiated and guided by AI-2. Mixture of consumer cells and reporter cells suggest that consumer cells can decrease the AI-2 concentration. And the supplier cells were co-cultured with reporter cells, indicating that supplier cells can provide more AI-2 compared to the control. The consumer cells and supplier cells could be used to regulate environmental AI-2 concentration and the biofilm formation. They can also modulate the AI-2 concentration when they were co-cultured with reporter cells. It can be envisioned that this system will become useful tools in synthetic biology and researching new antimicrobials.
Rao, Jasti S.
2013-01-01
Cancer-initiating cells comprise a heterogeneous population of undifferentiated cells with the capacity for self-renewal and high proliferative potential. We investigated the role of uPAR and cathepsin B in the maintenance of stem cell nature in glioma-initiating cells (GICs). Simultaneous knockdown of uPAR and cathepsin B significantly reduced the expression of CD133, Nestin, Sox2 and Bmi1 at the protein level and GLI1 and GLI2 at the messenger RNA level. Also, knockdown of uPAR and cathepsin B resulted in a reduction in the number of GICs as well as sphere size. These changes are mediated by Sox2 and Bmi1, downstream of hedgehog signaling. Addition of cyclopamine reduced the expression of Sox2 and Bmi1 along with GLI1 and GLI2 expression, induced differentiation and reduced subsphere formation of GICs thereby indicating that hedgehog signaling acts upstream of Sox2 and Bmi1. Further confirmation was obtained from increased luciferase expression under the control of a GLI-bound Sox2 and Bmi1 luciferase promoter. Simultaneous knockdown of uPAR and cathepsin B also reduced the expression of Nestin Sox2 and Bmi1 in vivo. Thus, our study highlights the importance of uPAR and cathepsin B in the regulation of malignant stem cell self-renewal through hedgehog components, Bmi1 and Sox2. PMID:23222817
Linley, Adam J; Mathieu, Morgan G; Miles, Amanda K; Rees, Robert C; McArdle, Stephanie E B; Regad, Tarik
2012-04-20
Malignant melanoma-initiating cells (MMIC) are a subpopulation of cells responsible for melanoma tumor growth and progression. They are defined by the expression of the ATP-binding cassette (ABC) subfamily B member 5 (ABCB5). Here, we identified a critical role for the DEAD-box helicase antigen (HAGE) in ABCB5+ MMIC-dependent tumorigenesis and show that HAGE-specific inactivation inhibits melanoma tumor growth mediated by this tumor-initiating population. Knockdown of HAGE led to a significant decrease in RAS protein expression with a concomitant decrease in activation of the AKT and ERK signaling pathways implicated to play an important role in melanoma progression. To confirm that the reduction in NRAS (Neuroblastoma RAS) expression was dependent on the HAGE helicase activity, we showed that NRAS, effectively silenced by siRNA, could be rescued by reintroduction of HAGE in cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes NRAS unwinding in vitro. We also observed using tumor transplantation in Non-obese diabetic/severe combined immunodeficiency mice that the HAGE knockdown in a ABCB5+ melanoma cell line displayed a significant decrease in tumor growth and compared with the control. Our results suggest that the helicase HAGE is required for ABCB5+ MMIC-dependent tumor growth through promoting RAS protein expression and that cancer therapies targeting HAGE helicase may have broad applications for treating malignant melanoma and potentially other cancer types.
Linley, Adam J.; Mathieu, Morgan G.; Miles, Amanda K.; Rees, Robert C.; McArdle, Stephanie E. B.; Regad, Tarik
2012-01-01
Malignant melanoma-initiating cells (MMIC) are a subpopulation of cells responsible for melanoma tumor growth and progression. They are defined by the expression of the ATP-binding cassette (ABC) subfamily B member 5 (ABCB5). Here, we identified a critical role for the DEAD-box helicase antigen (HAGE) in ABCB5+ MMIC-dependent tumorigenesis and show that HAGE-specific inactivation inhibits melanoma tumor growth mediated by this tumor-initiating population. Knockdown of HAGE led to a significant decrease in RAS protein expression with a concomitant decrease in activation of the AKT and ERK signaling pathways implicated to play an important role in melanoma progression. To confirm that the reduction in NRAS (Neuroblastoma RAS) expression was dependent on the HAGE helicase activity, we showed that NRAS, effectively silenced by siRNA, could be rescued by reintroduction of HAGE in cells lacking HAGE. Furthermore, we provide a mechanism by which HAGE promotes NRAS unwinding in vitro. We also observed using tumor transplantation in Non-obese diabetic/severe combined immunodeficiency mice that the HAGE knockdown in a ABCB5+ melanoma cell line displayed a significant decrease in tumor growth and compared with the control. Our results suggest that the helicase HAGE is required for ABCB5+ MMIC-dependent tumor growth through promoting RAS protein expression and that cancer therapies targeting HAGE helicase may have broad applications for treating malignant melanoma and potentially other cancer types. PMID:22393060
Palpant, Nathan J; Yasuda, So-ichiro; MacDougald, Ormond; Metzger, Joseph M
2007-09-01
Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to establish methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody-tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies.
Palpant, Nathan J.; Yasuda, So-ichiro; MacDougald, Ormond; Metzger, Joseph M.
2007-01-01
Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to derive methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot, and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation, and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies. PMID:17706246
NASA Astrophysics Data System (ADS)
Kravtsov, Alexander L.; Bobyleva, Elena V.; Grebenyukova, Tatyana P.; Kuznetsov, Oleg S.; Kulyash, Youri V.
2002-07-01
A quantitative flow microfluorometric method was used to study the intensity of human blood phagocyte degranulation in response to viable staphylococcus aureus or Yersinia pestis cells. Microorganisms were added directly to defibrinated whole blood. Uninfected and infected blood samples were incubated at 37 degrees C to 8 h. The results were recorded in dynamics after the staining of whole blood with acridine orange solution. Lymphocytes with a low azurophilic granule per cell content were discriminated from phagocytes by the measurement of single cell red cytoplasmic granule fluorescence. 30,000 cells in each sample were examined. S. aureus cells caused a dose-dependent decrease in the number of phagocytes having a high red cytoplasmic fluorescence intensity and a corresponding increase in the weakly fluorescence cell population. In the presence of an initial S. aureus-to-phagocyte ratio more than 1:1, degranulation was measured after 3 h of incubation and to 8 h the percentage of degranulated phagocytes was at least 100 percent Y. pestis cells grown for 48 h at 28 degrees C caused at same condition as the degranulation only about 50 percent of cells. Y.pestis EV cells preincubated in broth for 12 h at 37 degrees C did no stimulate the phahocyte degranulation. The results of these studies suggest that analysis of cell populations via flow microfluorimeter technology may be a powerful tool in analysis bacterial infection.
Radisic, Milica; Park, Hyoungshin; Martens, Timothy P.; Salazar-Lazaro, Johanna E.; Geng, Wenliang; Wang, Yadong; Langer, Robert; Freed, Lisa E.; Vunjak-Novakovic, Gordana
2009-01-01
Native myocardium consists of several cell types, of which approximately one-third are myocytes and most of the nonmyocytes are fibroblasts. By analogy with monolayer culture in which fibroblasts were removed to prevent overgrowth, early attempts to engineer myocardium utilized cell populations enriched for cardiac myocytes (CMs; ~80–90% of total cells). We hypothesized that the pre-treatment of synthetic elastomeric scaffolds with cardiac fibroblasts (CFs) will enhance the functional assembly of the engineered cardiac constructs by creating an environment supportive of cardiomyocyte attachment and function. Cells isolated from neonatal rat ventricles were prepared to form three distinct populations: rapidly plating cells identified as CFs, slowly plating cells identified as CMs, and unseparated initial population of cells (US). The cell fractions (3 × 106 cells total) were seeded into poly(glycerol sebacate) scaffolds (highly porous discs, 5 mm in diameter × 2-mm thick) using Matrigel™, either separately (CM or CF), concurrently (US), or sequentially (CF pre-treatment followed by CM culture, CF + CM), and cultured in spinner flasks. The CF + CM group had the highest amplitude of contraction and the lowest excitation threshold, superior DNA content, and higher glucose consumption rate. The CF + CM group exhibited compact 100- to 200-μm thick layers of elongated myocytes aligned in parallel over layers of collagen-producing fibroblasts, while US and CM groups exhibited scattered and poorly elongated myocytes. The sequential co-culture of CF and CM on a synthetic elastomer scaffold thus created an environment supportive of cardiomyocyte attachment, differentiation, and contractile function, presumably due to scaffold conditioning by cultured fibroblasts. When implanted over the infarcted myocardium in a nude rat model, cell-free poly(glycerol sebacate) remained at the ventricular wall after 2 weeks of in vivo, and was vascularized. PMID:18041719
Kaul, G; Kaur, J; Rafeeqi, T A
2010-12-01
Spermatogonial stem cells transplantation provides a unique approach for studying spermatogenesis. Initially developed in mice, this technique has now been extended in farm animals and provides an alternative means to preserve valuable male germ line and to produce transgenic animals. The aim of this study was to enrich type A spermatogonial cells amongst the isolated cells from goat testis, to cryopreserve these enriched populations of cells and their subsequent transplantation in unrelated recipient goats under ultrasound guidance. The cells were isolated enzymatically and enriched by differential plating and separation on discontinuous percoll gradient. Ultrasound guided injection of trypan blue dye into rete testis resulted in 20-30% filling of the seminiferous tubules. Prior to transplantation, the cells were labelled with a fluorescent dye to trace donor cells in recipient seminiferous tubules after transplantation. The fluorescent-labelled cells were observed up to 12 weeks after transplantation. © 2009 Blackwell Verlag GmbH.
Increasing RpoS expression causes cell death in Borrelia burgdorferi.
Chen, Linxu; Xu, Qilong; Tu, Jiagang; Ge, Yihe; Liu, Jun; Liang, Fang Ting
2013-01-01
RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.
Analyzing the dynamics of DNA replication in Mammalian cells using DNA combing.
Bialic, Marta; Coulon, Vincent; Drac, Marjorie; Gostan, Thierry; Schwob, Etienne
2015-01-01
How cells duplicate their chromosomes is a key determinant of cell identity and genome stability. DNA replication can initiate from more than 100,000 sites distributed along mammalian chromosomes, yet a given cell uses only a subset of these origins due to inefficient origin activation and regulation by developmental or environmental cues. An impractical consequence of cell-to-cell variations in origin firing is that population-based techniques do not accurately describe how chromosomes are replicated in single cells. DNA combing is a biophysical DNA fiber stretching method which permits visualization of ongoing DNA synthesis along Mb-sized single-DNA molecules purified from cells that were previously pulse-labeled with thymidine analogues. This allows quantitative measurements of several salient features of chromosome replication dynamics, such as fork velocity, fork asymmetry, inter-origin distances, and global instant fork density. In this chapter we describe how to obtain this information from asynchronous cultures of mammalian cells.
Identification of tumorigenic cells and therapeutic targets in pancreatic neuroendocrine tumors
Krampitz, Geoffrey Wayne; George, Benson M.; Willingham, Stephen B.; Volkmer, Jens-Peter; Weiskopf, Kipp; Jahchan, Nadine; Newman, Aaron M.; Sahoo, Debashis; Zemek, Allison J.; Yanovsky, Rebecca L.; Nguyen, Julia K.; Schnorr, Peter J.; Mazur, Pawel K.; Sage, Julien; Longacre, Teri A.; Visser, Brendan C.; Poultsides, George A.; Norton, Jeffrey A.; Weissman, Irving L.
2016-01-01
Pancreatic neuroendocrine tumors (PanNETs) are a type of pancreatic cancer with limited therapeutic options. Consequently, most patients with advanced disease die from tumor progression. Current evidence indicates that a subset of cancer cells is responsible for tumor development, metastasis, and recurrence, and targeting these tumor-initiating cells is necessary to eradicate tumors. However, tumor-initiating cells and the biological processes that promote pathogenesis remain largely uncharacterized in PanNETs. Here we profile primary and metastatic tumors from an index patient and demonstrate that MET proto-oncogene activation is important for tumor growth in PanNET xenograft models. We identify a highly tumorigenic cell population within several independent surgically acquired PanNETs characterized by increased cell-surface protein CD90 expression and aldehyde dehydrogenase A1 (ALDHA1) activity, and provide in vitro and in vivo evidence for their stem-like properties. We performed proteomic profiling of 332 antigens in two cell lines and four primary tumors, and showed that CD47, a cell-surface protein that acts as a “don’t eat me” signal co-opted by cancers to evade innate immune surveillance, is ubiquitously expressed. Moreover, CD47 coexpresses with MET and is enriched in CD90hi cells. Furthermore, blocking CD47 signaling promotes engulfment of tumor cells by macrophages in vitro and inhibits xenograft tumor growth, prevents metastases, and prolongs survival in vivo. PMID:27035983
Global initiatives to tackle organ trafficking and transplant tourism.
Bagheri, Alireza; Delmonico, Francis L
2013-11-01
The increasing gap between organ supply and demand has opened the door for illegal organ sale, trafficking of human organs, tissues and cells, as well as transplant tourism. Currently, underprivileged and vulnerable populations in resource-poor countries are a major source of organs for rich patient-tourists who can afford to purchase organs at home or abroad. This paper presents a summary of international initiatives, such as World Health Organization's Principle Guidelines, The Declaration of Istanbul, Asian Task Force Recommendations, as well as UNESCO's and the United Nation's initiatives against trafficking of human organs, tissues, cells, and transplant tourism. Beyond the summary, it calls for more practical measures to be taken to implement the existing guidelines and recommendations, in order to prevent exploitation of the poor as organ providers. The paper suggests that an international legally binding agreement in criminalizing organ trafficking would be a step forward to bring a change in the global picture of organ trafficking and transplant tourism.
Gakhar, Gunjan; Bander, Neil H.; Nanus, David M.
2014-01-01
Metastasis is a process in which tumor cells shed from the primary tumor intravasate blood vascular and lymphatic system, thereby, gaining access to extravasate and form a secondary niche. The extravasation of tumor cells from the blood vascular system can be studied using endothelial cells (ECs) and tumor cells obtained from different cell lines. Initial studies were conducted using static conditions but it has been well documented that ECs behave differently under physiological flow conditions. Therefore, different flow chamber assemblies are currently being used to studying cancer cell interactions with ECs. Current flow chamber assemblies offer reproducible results using either different cell lines or fluid at different shear stress conditions. However, to observe and study interactions with rare cells such as circulating tumor cells (CTCs), certain changes are required to be made to the conventional flow chamber assembly. CTCs are a rare cell population among millions of blood cells. Consequently, it is difficult to obtain a pure population of CTCs. Contamination of CTCs with different types of cells normally found in the circulation is inevitable using present enrichment or depletion techniques. In the present report, we describe a unique method to fluorescently label circulating prostate cancer cells and study their interactions with ECs in a self-assembled flow chamber system. This technique can be further applied to observe interactions between prostate CTCs and any protein of interest. PMID:24894373
Periodic Colony Formation of Bacteria Due to their Cell Reproduction and Movement
NASA Astrophysics Data System (ADS)
Itoh, H.; Wakita, J.; Watanabe, K.; Matsuyama, T.; Matsushita, M.
We have experimentally investigated periodic pattern formation produced by bacterial species Proteus mirabilis, which forms concentric-ring-like colonies by repeating migration and rest alternately on the surface of a solid agar medium. We distinguish three phases (initial lag phase, the following migration and consolidation phases that appear alternately) for the colony growth. Here we mainly used physical approaches in order to try to understand the formation of concentric-ring-like colonies, such as cutting the part of a colony during its growth. Global chemical signals governing the colony formation from the center were not found. We also checked phase entrainment quantitatively by letting two colonies collide with each other and confirmed that it does not take place in macroscopic scales. When we cut a colony just behind the migrating front shortly after the migration started, the migration ended earlier and the following consolidation lasted longer. However, the following cycles were not influenced by the cut, i.e., the following migration and consolidation phases were both found to return normal. The cut results in the stop of supply of cell population to the migrating front by internal waves. In fact the cell population on the new terrace during the first migration after the cut was less than that without cut. Furthermore, the cell population density was found to be recovered to the ordinary value by the end of the consolidation. All these experimental results suggest that the most important factor for the repetition of migration and consolidation phases is the cell population density.
NASA Technical Reports Server (NTRS)
Ponnaiya, B.; Cornforth, M. N.; Ullrich, R. L.
1997-01-01
Genomic instability has been proposed to be the earliest step in radiation-induced tumorigenesis. It follows from this hypothesis that individuals highly susceptible to induction of tumors by radiation should exhibit enhanced radiation-induced instability. BALB/c white mice are considerably more sensitive to radiation-induced mammary cancer than C57BL/6 black mice. In this study, primary mammary epithelial cell cultures from these two strains were examined for the "delayed" appearance of chromosomal aberrations after exposure to 137Cs gamma radiation, as a measure of radiation-induced genomic instability. As expected, actively dividing cultures from both strains showed a rapid decline of initial asymmetrical aberrations with time postirradiation. However, after 16 population doublings, cells from BALB/c mice exhibited a marked increase in the frequency of chromatid-type breaks and gaps which remained elevated throughout the time course of the experiment (28 doublings). No such effect was observed for the cells of C57BL/6 mice; after the rapid clearance of initial aberrations, the frequency of chromatid-type aberrations in the irradiated population remained at or near those of nonirradiated controls. These results demonstrate a correlation between the latent expression of chromosomal damage in vitro and susceptibility for mammary tumors, and provide further support for the central role of radiation-induced instability in the process of tumorigenesis.
Emerging role of lipid metabolism alterations in Cancer stem cells.
Yi, Mei; Li, Junjun; Chen, Shengnan; Cai, Jing; Ban, Yuanyuan; Peng, Qian; Zhou, Ying; Zeng, Zhaoyang; Peng, Shuping; Li, Xiaoling; Xiong, Wei; Li, Guiyuan; Xiang, Bo
2018-06-15
Cancer stem cells (CSCs) or tumor-initiating cells (TICs) represent a small population of cancer cells with self-renewal and tumor-initiating properties. Unlike the bulk of tumor cells, CSCs or TICs are refractory to traditional therapy and are responsible for relapse or disease recurrence in cancer patients. Stem cells have distinct metabolic properties compared to differentiated cells, and metabolic rewiring contributes to self-renewal and stemness maintenance in CSCs. Recent advances in metabolomic detection, particularly in hyperspectral-stimulated raman scattering microscopy, have expanded our knowledge of the contribution of lipid metabolism to the generation and maintenance of CSCs. Alterations in lipid uptake, de novo lipogenesis, lipid droplets, lipid desaturation, and fatty acid oxidation are all clearly implicated in CSCs regulation. Alterations on lipid metabolism not only satisfies the energy demands and biomass production of CSCs, but also contributes to the activation of several important oncogenic signaling pathways, including Wnt/β-catenin and Hippo/YAP signaling. In this review, we summarize the current progress in this attractive field and describe some recent therapeutic agents specifically targeting CSCs based on their modulation of lipid metabolism. Increased reliance on lipid metabolism makes it a promising therapeutic strategy to eliminate CSCs. Targeting key players of fatty acids metabolism shows promising to anti-CSCs and tumor prevention effects.
Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors.
Ghosh, Gargi; Lian, Xiaojun; Kron, Stephen J; Palecek, Sean P
2012-03-20
Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown. An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells. The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib. Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties.
Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg
2016-01-01
Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine1. Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models. PMID:27077489
Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg
2016-03-30
Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.
The New Biology of Estrogen-induced Apoptosis Applied to Treat and Prevent Breast Cancer
Jordan, V Craig
2014-01-01
The successful use of high dose synthetic estrogens to treat post-menopausal metastatic breast cancer, is the first effective “chemical therapy” proven in clinical trial to treat any cancer. This review documents the clinical use of estrogen for breast cancer treatment or estrogen replacement therapy (ERT) for postmenopausal hysterectomized women which can either result in breast cancer cell growth or breast cancer regression. This has remained a paradox since the 1950s until the discovery of the new biology of estrogen induced apoptosis at the end of the 20th century. The key to triggering apoptosis with estrogen is the selection of breast cancer cell populations that are resistant to long term estrogen deprivation. However, through trial and error estrogen independent growth occurs. At the cellular level, estrogen induced apoptosis is dependent upon the presence of the estrogen receptor (ER) which can be blocked by non-steroidal or steroidal anti-estrogens. The shape of an estrogenic ligand programs the conformation of the ER complex which in turn can modulate estrogen induced apoptosis: class I planar estrogens (eg: estradiol) trigger apoptosis after 24 hours whereas class II angular estrogens (eg: bisphenol triphenylethylene) delay the process until after 72 hours. This contrasts with paclitaxel that causes G2 blockade with immediate apoptosis. The process is complete within 24 hours. Estrogen induced apoptosis is modulated by glucocorticoids and cSrc inhibitors but the target mechanism for estrogen action is genomic and not through a non-genomic pathway. The process is step wise through the creation of endoplasmic reticulum stress and, inflammatory responses that then initiate an unfolded protein response. This in turn initiates apoptosis through the intrinsic pathway (mitochondrial) with subsequent recruitment of the extrinsic pathway (death receptor) to complete the process. The symmetry of the clinical and laboratory studies now permits the creation of rules for the future clinical application of ERT or phytoestrogen supplements: a five year gap is necessary after menopause to permit the selection of estrogen deprived breast cancer cell populations to become vulnerable to apoptotic cell death. Earlier treatment with estrogen around the menopause encourages ER positive tumor cell growth, as the cells are still dependent on estrogen to maintain replication within the expanding population. An awareness of the evidence that the molecular events associated with estrogen induced apoptosis can be orchestrated in the laboratory in estrogen deprived breast cancers, now support the clinical findings for the treatment of metastatic breast cancer following estrogen deprivation, decreases in mortality following long term antihormonal adjuvant therapy, and the results of ERT and ERT plus progestin in the Women’s Health Initiative for women over the age of 60. Principles have emerged to understand and apply physiologic estrogen therapy appropriately by targeting the correct patient populations. PMID:25339261
Riahi, Reza; Sun, Jian; Wang, Shue; Long, Min; Zhang, Donna D.; Wong, Pak Kin
2015-01-01
At the onset of collective cell migration, a subset of cells within an initially homogenous population acquires a distinct “leader” phenotype with characteristic morphology and motility. However, the factors driving leader cell formation as well as the mechanisms regulating leader cell density during the migration process remain to be determined. Here, we use single cell gene expression analysis and computational modeling to show that leader cell identity is dynamically regulated by Dll4 signaling through both Notch1 and cellular stress in a migrating epithelium. Time-lapse microscopy reveals that Dll4 is induced in leader cells after the creation of the cell-free region and leader cells are regulated via Notch1-Dll4 lateral inhibition. Furthermore, mechanical stress inhibits Dll4 expression and leader cell formation in the monolayer. Collectively, our findings suggest that a reduction of mechanical force near the boundary promotes Notch1-Dll4 signaling to dynamically regulate the density of leader cells during collective cell migration. PMID:25766473
Adeno-associated virus mediated delivery of Tregitope 167 ameliorates experimental colitis.
van der Marel, Sander; Majowicz, Anna; Kwikkers, Karin; van Logtenstein, Richard; te Velde, Anje A; De Groot, Anne S; Meijer, Sybren L; van Deventer, Sander J; Petry, Harald; Hommes, Daniel W; Ferreira, Valerie
2012-08-28
To explore the anti-inflammatory potential of adeno-associated virus-mediated delivery of Tregitope 167 in an experimental colitis model. The trinitrobenzene sulfonate (TNBS) model of induced colitis was used in Balb/c mice. Subsequently after intravenous adeno-associated virus-mediated regulatory T-cell epitopes (Tregitope) delivery, acute colitis was initiated by intra-rectal administration of 1.5 mg TNBS in 40% ethanol followed by a second treatment with TNBS (0.75 mg in 20% ethanol) 8 d later. Control groups included mice not treated with TNBS (healthy control group) and mice treated by TNBS only (diseased group). At the time of sacrifice colon weight, the disease activity index and histology damage score were determined. Immunohistochemical staining of the colonic tissues was performed to asses the cellular infiltrate and the presence of transcription factor forkhead Box-P3 (Foxp3). Thymus, mesenteric lymph nodes, liver and spleen tissue were collected and the corresponding lymphocyte populations were further assessed by flow cytometry analysis for the expression of CD4+ T cell and regulatory T cell associated markers. The Tregitope 167 treated mice gained an average of 4% over their initial body weight at the time of sacrifice. In contrast, the mice treated with TNBS alone (no Tregitope) developed colitis, and lost 4% of their initial body weight at the time of sacrifice (P < 0.01). The body weight increase that had been observed in the mice pre-treated with Tregitope 167 was substantiated by a lower disease activity index and a decreased colon weight as compared to the diseased control group (P < 0.01 and P < 0.001, respectively). Immunohistochemical staining of the colonic tissues for CD4+ showed that inflammatory cell infiltrates were present in TNBS treated mice with or without administration with tregitope 167 and that these cellular infiltrates consisted mainly of CD4+ cells. For both TNBS treated groups CD4+ T cell infiltrates were observed in the sub-epithelial layer and the lamina propria. CD4+ T cell infiltrates were also present in the muscularis mucosa layer of the diseased control mice, but were absent in the Tregitope 167 treated group. Numerous Foxp3 positive cells were detected in the lamina propria and sub-epithelium of the colon sections from mice treated with Tregitope 167. Furthermore, the Foxp3 and glycoprotein A repetitions predominant markers were significantly increased in the CD4+ T lymphocyte population in the thymus of the mice pre-treated with adeno-associated virus serotype 5 (cytomegalovirus promoter-Tregitope 167), as cytomegalovirus promoter compared to lymphocyte populations in the thymus of diseased and the healthy control mice (P < 0.05 and P < 0.001, respectively). This study identifies adeno-associated virus-mediated delivery of regulatory T-cell epitope 167 as a novel anti-inflammatory approach with the capacity to decrease intestinal inflammation and induce long-term remission in inflammatory bowel disease.
Nowicki, Theodore S; Escuin-Ordinas, Helena; Avramis, Earl; Chmielowski, Bartosz; Chodon, Thinle; Berent-Maoz, Beata; Wang, Xiaoyan; Kaplan-Lefko, Paula; Yang, Lili; Baltimore, David; Economou, James S; Ribas, Antoni; Comin-Anduix, Begoña
2018-06-01
Adoptive cell therapy (ACT) consisting of genetically engineered T cells expressing tumor antigen-specific T-cell receptors displays robust initial antitumor activity, followed by loss of T-cell activity/persistence and frequent disease relapse. We characterized baseline and longitudinal T-cell phenotype variations resulting from different manufacturing and administration protocols in patients who received ACT. Patients with melanoma who enrolled in the F5-MART-1 clinical trial (NCT00910650) received infusions of MART-1 T-cell receptors transgenic T cells with MART-1 peptide-pulsed dendritic cell vaccination. Patients were divided into cohorts based on several manufacturing changes in the generation and administration of the transgenic T cells: decreasing ex vivo stimulation/expansion time, increased cell dose, and receiving fresh instead of cryopreserved cells. T-cell phenotypes were analyzed by flow cytometry at baseline and longitudinally in peripheral blood. Transgenic T cells with shorter ex vivo culture/expansion periods displayed significantly increased expression of markers associated with less differentiated naive/memory populations, as well as significantly decreased expression of the inhibitory receptor programmed death 1 (PD1). Patients receiving fresh infusions of transgenic cells demonstrated expansion of central memory T cells and delayed acquisition of PD1 expression compared with patients who received cryopreserved products. Freshly infused transgenic T cells showed persistence and expansion of naive and memory T-cell populations and delayed acquisition of PD1 expression, which correlated with this cohort's superior persistence of transgenic cells and response to dendritic cell vaccines. These results may be useful in designing future ACT protocols.
Nowicki, Theodore S.; Escuin-Ordinas, Helena; Avramis, Earl; Chmielowski, Bartosz; Chodon, Thinle; Berent-Maoz, Beata; Wang, Xiaoyan; Kaplan-Lefko, Paula; Yang, Lili; Baltimore, David; Economou, James S.; Ribas, Antoni
2018-01-01
Adoptive cell therapy (ACT) consisting of genetically engineered T cells expressing tumor antigen-specific T-cell receptors displays robust initial antitumor activity, followed by loss of T-cell activity/persistence and frequent disease relapse. We characterized baseline and longitudinal T-cell phenotype variations resulting from different manufacturing and administration protocols in patients who received ACT. Patients with melanoma who enrolled in the F5-MART-1 clinical trial (NCT00910650) received infusions of MART-1 T-cell receptors transgenic T cells with MART-1 peptide-pulsed dendritic cell vaccination. Patients were divided into cohorts based on several manufacturing changes in the generation and administration of the transgenic T cells: decreasing ex vivo stimulation/expansion time, increased cell dose, and receiving fresh instead of cryopreserved cells. T-cell phenotypes were analyzed by flow cytometry at baseline and longitudinally in peripheral blood. Transgenic T cells with shorter ex vivo culture/expansion periods displayed significantly increased expression of markers associated with less differentiated naive/memory populations, as well as significantly decreased expression of the inhibitory receptor programmed death 1 (PD1). Patients receiving fresh infusions of transgenic cells demonstrated expansion of central memory T cells and delayed acquisition of PD1 expression compared with patients who received cryopreserved products. Freshly infused transgenic T cells showed persistence and expansion of naive and memory T-cell populations and delayed acquisition of PD1 expression, which correlated with this cohort’s superior persistence of transgenic cells and response to dendritic cell vaccines. These results may be useful in designing future ACT protocols. PMID:29470191
Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach
NASA Astrophysics Data System (ADS)
González, Ramón E. R.; Coutinho, Sérgio; Zorzenon dos Santos, Rita Maria; de Figueirêdo, Pedro Hugo
2013-10-01
The dynamics of human immunodeficiency virus infection under antiretroviral therapy is investigated using a cellular automata model where the effectiveness of each drug is self-adjusted by the concentration of CD4+ T infected cells present at each time step. The effectiveness of the drugs and the infected cell concentration at the beginning of treatment are the control parameters of the cell population’s dynamics during therapy. The model allows describing processes of mono and combined therapies. The dynamics that emerges from this model when considering combined antiretroviral therapies reproduces with fair qualitative agreement the phases and different time scales of the process. As observed in clinical data, the results reproduce the significant decrease in the population of infected cells and a concomitant increase of the population of healthy cells in a short timescale (weeks) after the initiation of treatment. Over long time scales, early treatment with potent drugs may lead to undetectable levels of infection. For late treatment or treatments starting with a low density of CD4+ T healthy cells it was observed that the treatment may lead to a steady state in which the T cell counts are above the threshold associated with the onset of AIDS. The results obtained are validated through comparison to available clinical trial data.
Matias, Bruna F; de Oliveira, Tânia M; Rodrigues, Cláudia M; Abdalla, Douglas R; Montes, Letícia; Murta, Eddie F C; Michelin, Márcia A
2013-01-01
The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer.
Matias, Bruna F.; de Oliveira, Tânia M.; Rodrigues, Cláudia M.; Abdalla, Douglas R.; Montes, Letícia; Murta, Eddie F.C.; Michelin, Márcia A.
2013-01-01
The objective of this study was to evaluate some of the mechanisms involved in the activation of the immune system in patients with advanced-stage cancer (n = 7) who received an autologous dendritic cell vaccine. We examined the immune response mediated by macrophages (CD14+), natural killer cells (CD56+), and B lymphocytes (CD19+) by flow cytometry and assessed the expression of Th1 (IFN-γ, TNF-α, IL-2, and IL-12), Th2 (IL-4), and Treg (TGF-β) cytokines by flow cytometry and an enzyme-linked immunosorbent assay. The CD14+ TNF-α+ population was significantly increased (P < 0.04) when patients received the vaccine; IL-2 expression in both NK cells and in B lymphocytes was increased after a transient initial increase showed a nearly significant decrease (P < 0.07 and P < 0.06 respectively), whereas the CD19+ and CD56+ populations did not show significant changes. Dendritic cell-based immunotherapy led to increased secretion of IFN-γ and IL-12 and reduced secretion of TGF-β. In conclusion, it is likely that the autologous dendritic cell vaccine stimulated the immune cells from the peripheral blood of patients with cancer and generally increased the production of Th1 cytokines, which are related to immunomodulatory responses against cancer. PMID:23926442
Sonic hedgehog acts cell-autonomously on muscle precursor cells to generate limb muscle diversity
Anderson, Claire; Williams, Victoria C.; Moyon, Benjamin; Daubas, Philippe; Tajbakhsh, Shahragim; Buckingham, Margaret E.; Shiroishi, Toshihiko; Hughes, Simon M.; Borycki, Anne-Gaëlle
2012-01-01
How muscle diversity is generated in the vertebrate body is poorly understood. In the limb, dorsal and ventral muscle masses constitute the first myogenic diversification, as each gives rise to distinct muscles. Myogenesis initiates after muscle precursor cells (MPCs) have migrated from the somites to the limb bud and populated the prospective muscle masses. Here, we show that Sonic hedgehog (Shh) from the zone of polarizing activity (ZPA) drives myogenesis specifically within the ventral muscle mass. Shh directly induces ventral MPCs to initiate Myf5 transcription and myogenesis through essential Gli-binding sites located in the Myf5 limb enhancer. In the absence of Shh signaling, myogenesis is delayed, MPCs fail to migrate distally, and ventral paw muscles fail to form. Thus, Shh production in the limb ZPA is essential for the spatiotemporal control of myogenesis and coordinates muscle and skeletal development by acting directly to regulate the formation of specific ventral muscles. PMID:22987640
NMR study of methane + ethane structure I hydrate decomposition.
Dec, Steven F; Bowler, Kristen E; Stadterman, Laura L; Koh, Carolyn A; Sloan, E Dendy
2007-05-24
The thermally activated decomposition of methane + ethane structure I hydrate was studied with use of 13C magic-angle spinning (MAS) NMR as a function of composition and temperature. The observed higher decomposition rate of large sI cages initially filled with ethane gas can be described in terms of a model where a distribution of sI unit cells exists such that a particular unit cell contains zero, one, or two methane molecules in the unit cell; this distribution of unit cells is combined to form the observed equilibrium composition. In this model, unit cells with zero methane molecules are the least stable and decompose more rapidly than those populated with one or two methane molecules leading to the observed overall faster decomposition rate of the large cages containing ethane molecules.
Stephen, Sasha; Morrissey, Kelly A; Benoit, Bernice M; Kim, Ellen J; Vittorio, Carmela C; Nasta, Sunita D; Showe, Louise C; Wysocka, Maria; Rook, Alain H
2012-02-01
Several histone deacetylase inhibitors (HDACi), including vorinostat, have been approved for the therapy of cutaneous T-cell lymphoma (CTCL). Emerging data suggest that HDACi may exert immune suppressive effects which would be disadvantageous for therapy of CTCL. We describe a patient with Sezary syndrome who was monitored for drug-induced immunosuppression while undergoing treatment with vorinostat. Analysis of the patient's natural killer cell function before and after initiation of treatment confirmed inhibition of this important cell-mediated immune function. In addition, the in vitro effects of vorinostat on the immunity of healthy volunteers confirmed that this class of drug can profoundly suppress multiple arms of the cellular immune response. These findings raise concerns of increased susceptibility to infection in this high-risk population.
Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R
2014-08-01
Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Simpson, Matthew J; Sharp, Jesse A; Morrow, Liam C; Baker, Ruth E
2015-01-01
Embryonic development involves diffusion and proliferation of cells, as well as diffusion and reaction of molecules, within growing tissues. Mathematical models of these processes often involve reaction-diffusion equations on growing domains that have been primarily studied using approximate numerical solutions. Recently, we have shown how to obtain an exact solution to a single, uncoupled, linear reaction-diffusion equation on a growing domain, 0 < x < L(t), where L(t) is the domain length. The present work is an extension of our previous study, and we illustrate how to solve a system of coupled reaction-diffusion equations on a growing domain. This system of equations can be used to study the spatial and temporal distributions of different generations of cells within a population that diffuses and proliferates within a growing tissue. The exact solution is obtained by applying an uncoupling transformation, and the uncoupled equations are solved separately before applying the inverse uncoupling transformation to give the coupled solution. We present several example calculations to illustrate different types of behaviour. The first example calculation corresponds to a situation where the initially-confined population diffuses sufficiently slowly that it is unable to reach the moving boundary at x = L(t). In contrast, the second example calculation corresponds to a situation where the initially-confined population is able to overcome the domain growth and reach the moving boundary at x = L(t). In its basic format, the uncoupling transformation at first appears to be restricted to deal only with the case where each generation of cells has a distinct proliferation rate. However, we also demonstrate how the uncoupling transformation can be used when each generation has the same proliferation rate by evaluating the exact solutions as an appropriate limit.
Kwiatek, Maciej; Gęca, Tomasz; Krzyżanowski, Arkadiusz; Malec, Agnieszka; Kwaśniewska, Anna
2015-01-01
The development of pregnancy is possible due to initiation of immune response in the body of the mother resulting in immune tolerance. Miscarriage may be caused by the impaired maternal immune response to paternal alloantigens located on the surface of trophoblast and fetal cells. The aim of the study was to compare the population of circulating dendritic cells (DCs) and CD4+CD25+Foxp3+ regulatory T cells (TREGs) in the first trimester of a normal pregnancy and in women with recurrent miscarriage and an attempt to determine the relationship between these cells and the role they may play in human reproductive failures. The study was conducted in a group of 33 first trimester pregnant women with recurrent miscarriage and in a group of 20 healthy pregnant women in the first trimester of normal pregnancy. Among mononuclear cells isolated from peripheral blood, the populations of DCs and TREGs were assessed by flow cytometry. The percentage of myeloid DCs and lymphoid DCs showed no significant difference between study and control group. Older maternal age and obesity significantly reduced the pool of circulating myeloid and lymphoid DCs (R=-0.39, p=0.02). In miscarriages the percentage of circulating TREGs was significantly lower compared to normal pregnancies (p=0.003). Among the analysed factors the percentage of TREGs was the most sensitive and the most specific parameter which correlated with the pregnancy loss. The reduction in the population of circulating TREGs suggests immunoregulatory mechanisms disorder in a pregnancy complicated by miscarriage. PMID:25945787
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard, Eric; Hamel, Rodolphe; Neyret, Aymeric
Transmission of chikungunya virus (CHIKV) to humans is initiated by puncture of the skin by a blood-feeding Aedes mosquito. Despite the growing knowledge accumulated on CHIKV, the interplay between skin cells and CHIKV following inoculation still remains unclear. In this study we questioned the behavior of human keratinocytes, the predominant cell population in the skin, following viral challenge. We report that CHIKV rapidly elicits an innate immune response in these cells leading to the enhanced transcription of type I/II and type III interferon genes. Concomitantly, we show that despite viral particles internalization into Rab5-positive endosomes and efficient fusion of virusmore » and cell membranes, keratinocytes poorly replicate CHIKV as attested by absence of nonstructural proteins and genomic RNA synthesis. Accordingly, human keratinocytes behave as an antiviral defense against CHIKV infection rather than as a primary targets for initial replication. This picture significantly differs from that reported for Dengue and West Nile mosquito-borne viruses. - Highlights: • Human keratinocytes support endocytosis of CHIKV and fusion of viral membranes. • CHIKV replication is blocked at a post entry step in these cells. • Infection upregulates type-I, –II and –III IFN genes expression. • Keratinocytes behave as immune sentinels against CHIKV.« less
Lyman, W D; Brosnan, C F; Kadish, A S; Raine, C S
1984-05-01
Resistance to experimental autoimmune encephalomyelitis (EAE) in Hartley guinea pigs has previously been reported to be associated with disease-specific antigen-induced suppression of mitogen responses in vitro. The present studies were initiated to investigate the requirement for different cell populations in this suppression. Intact and adherent-cell-depleted cultures of spleen cells from experimental and control animals were incubated with myelin basic protein (MBP), the major antigen of EAE, with the T-cell mitogen concanavalin A (Con A) alone or with Con A in the presence of MBP. In agreement with previous studies, MBP-induced suppression of the Con A response was observed only in cultures derived from resistant animals. In addition, it was observed that this suppression was abrogated by depletion of adherent cells. When cells from resistant and susceptible animals were mixed, suppression occurred only in the presence of nonadherent cells from resistant guinea pigs. Adherent cells from either resistant or susceptible animals functioned equally well. Cultures of purified E-rosette-forming cells (E+) from resistant animals (i.e., T cells) showed no suppression. Similarly, cells from these same animals which were depleted of E+ cells (i.e., non-T cells) did not demonstrate suppression in vitro. Upon reconstitution of spleen cell populations from resistant guinea pigs by mixing E+ and E- cells, suppression was restored. These experiments show that this model of suppression in vitro requires adherent cells as well as T cells and suggests that antigen-induced suppression of mitogen responses is dependent upon a cell-mediated immunologic mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
Purpose: To develop a tumor response model which could be uses to compute tumor hypoxic fraction using serial volumetric tumor imaging. This algorithm may be used for treatment response assessment and also for guidance of more expensive PET imaging of hypoxia. Methods: Previously developed two-level cell population tumor response model was modified to include a third cell level describing hypoxic and necrotic cells. This third level was considered constant value during radiotherapy treatment; therefore, inclusion additional parameter did not compromise stability of model fitting to imaging data. Fitting the model to serial volumetric imaging data was performed using a leastmore » squares objective function and simulated annealing algorithm. The problem of reconstruction of radiobiological parameters from serial imaging data was considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind. Variational regularization was used to stabilize solutions. Results: To evaluate performance of the algorithm, we used a set of serial CT imaging data on tumor-volume for 14 head and neck cancer patients. The hypoxic fractions were reconstructed for each patient and the distribution of hypoxic fractions was compared to the distribution of initial hypoxic fractions previously measured using histograph. The measured and reconstructed from imaging data distributions of hypoxic fractions are in good agreement. The reconstructed distribution of cell surviving fraction was also in better agreement with in vitro data than previously obtained using the two-level cell population model. Conclusion: Our results indicate that it is possible to evaluate the initial hypoxic tumor fraction using serial volumetric imaging and a tumor response model. This algorithm can be used for treatment response assessment and guidance of more expensive PET imaging.« less
Pantazis, Nikos; Morrison, Charles; Amornkul, Pauli N; Lewden, Charlotte; Salata, Robert A; Minga, Albert; Chipato, Tsungai; Jaffe, Harold; Lakhi, Shabir; Karita, Etienne; Porter, Kholoud; Meyer, Laurence; Touloumi, Giota
2012-01-01
It is unknown whether HIV treatment guidelines, based on resource-rich country cohorts, are applicable to African populations. We estimated CD4 cell loss in ART-naïve, AIDS-free individuals using mixed models allowing for random intercept and slope, and time from seroconversion to clinical AIDS, death and antiretroviral therapy (ART) initiation by survival methods. Using CASCADE data from 20 European and 3 sub-Saharan African (SSA) cohorts of heterosexually-infected individuals, aged ≥15 years, infected ≥2000, we compared estimates between non-African Europeans, Africans in Europe, and Africans in SSA. Of 1,959 (913 non-Africans, 302 Europeans-African origin, 744 SSA), two-thirds were female; median age at seroconversion was 31 years. Individuals in SSA progressed faster to clinical AIDS but not to death or non-TB AIDS. They also initiated ART later than Europeans and at lower CD4 cell counts. In adjusted models, Africans (especially from Europe) had lower CD4 counts at seroconversion and slower CD4 decline than non-African Europeans. Median (95% CI) CD4 count at seroconversion for a 15-29 year old woman was 607 (588-627) (non-African European), 469 (442-497) (European-African origin) and 570 (551-589) (SSA) cells/µL with respective CD4 decline during the first 4 years of 259 (228-289), 155 (110-200), and 199 (174-224) cells/µL (p<0.01). Despite differences in CD4 cell count evolution, death and non-TB AIDS rates were similar across study groups. It is therefore prudent to apply current ART guidelines from resource-rich countries to African populations.
Ganjam, L S; Thornton, W H; Marshall, R T; MacDonald, R S
1997-10-01
The consumption of yogurt has been associated with a reduced incidence of colon cancer in population groups. Bioactive peptides produced during bacterial fermentation may alter the risk of colon cancer via modification of cell proliferation in the colon. Using our previously described cell culture model system, we have isolated a yogurt fraction that decreases cell proliferation. Yogurt was fractionated using 10,000- and 500-Da membrane dialysis. When the yogurt fraction was incubated with IEC-6 or Caco-2 cells, cell division was decreased compared with control treatments, as determined by thymidine incorporation. Cell division was not inhibited in response to a similarly produced milk fraction or in response to solutions of lactic acid. The determination of cell kinetics by flow cytometry revealed a decrease in the number of cells in the initial growth phase in response to the yogurt fraction for the IEC-6 cells, but not the Caco-2 cells. Alpha-Lactalbumin inhibited cell division of both cell lines, but beta-casein did not.
Mutant number distribution in an exponentially growing population
NASA Astrophysics Data System (ADS)
Keller, Peter; Antal, Tibor
2015-01-01
We present an explicit solution to a classic model of cell-population growth introduced by Luria and Delbrück (1943 Genetics 28 491-511) 70 years ago to study the emergence of mutations in bacterial populations. In this model a wild-type population is assumed to grow exponentially in a deterministic fashion. Proportional to the wild-type population size, mutants arrive randomly and initiate new sub-populations of mutants that grow stochastically according to a supercritical birth and death process. We give an exact expression for the generating function of the total number of mutants at a given wild-type population size. We present a simple expression for the probability of finding no mutants, and a recursion formula for the probability of finding a given number of mutants. In the ‘large population-small mutation’ limit we recover recent results of Kessler and Levine (2014 J. Stat. Phys. doi:10.1007/s10955-014-1143-3) for a fully stochastic version of the process.
George, Smiley Annie; Junaid, T A
2014-01-01
To report a rare case of synchronous marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) signet ring cell carcinoma occurring as a collision tumour in the stomach. A 53-year-old man was diagnosed initially with signet ring cell carcinoma of the stomach. The microscopy of the subsequent total gastrectomy revealed a collision tumour of MALT lymphoma and signet ring cell carcinoma associated with Helicobacter pylori gastritis. This case highlighted the importance of a careful evaluation of the accompanying lymphoid population in the biopsy samples of gastric adenocarcinoma and underlined the need for multiple endoscopic biopsies to detect these rare synchronous tumours. © 2013 S. Karger AG, Basel.
George, Smiley Annie; Junaid, T.A.
2014-01-01
Objective To report a rare case of synchronous marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT) signet ring cell carcinoma occurring as a collision tumour in the stomach. Clinical Presentation and Intervention A 53-year-old man was diagnosed initially with signet ring cell carcinoma of the stomach. The microscopy of the subsequent total gastrectomy revealed a collision tumour of MALT lymphoma and signet ring cell carcinoma associated with Helicobacter pylori gastritis. Conclusion This case highlighted the importance of a careful evaluation of the accompanying lymphoid population in the biopsy samples of gastric adenocarcinoma and underlined the need for multiple endoscopic biopsies to detect these rare synchronous tumours. PMID:24247357
Kerstein, Anja; Schüler, Silke; Cabral-Marques, Otávio; Fazio, Juliane; Häsler, Robert; Müller, Antje; Pitann, Silke; Moosig, Frank; Klapa, Sebastian; Haas, Christian; Kabelitz, Dieter; Riemekasten, Gabriela; Wolters, Steffen; Lamprecht, Peter
2017-03-01
Autoimmune diseases are initiated by a combination of predisposing genetic and environmental factors resulting in self-perpetuating chronic inflammation and tissue damage. Autoantibody production and an imbalance of effector and regulatory T-cells are hallmarks of autoimmune dysregulation. While expansion of circulating effector memory T-cells is linked to disease pathogenesis and progression, the causes driving alterations of the peripheral T-cell compartment have remained poorly understood so far. In granulomatosis with polyangiitis (GPA), a prototypical autoimmune disorder of unknown aetiology, we performed for the first time a combined approach using phenotyping, transcriptome and functional analyses of T-cell populations to evaluate triggers of memory T-cell expansion. In more detail, we found increased percentages of circulating CD4+CD28-, CD8+CD28- and CD4+CD161+ single-positive and CD4+CD8+ double-positive T-cells in GPA. Transcriptomic profiling of sorted T-cell populations showed major differences between GPA and healthy controls reflecting antigen- (bacteria, viruses, fungi) and cytokine-driven impact on T-cell populations in GPA. Concomitant cytomegalovirus (CMV) and Epstein-Barr virus (EBV) - positivity was associated with a significant increase in the percentage of CD28- T-cells in GPA-patients compared to sole CMV- or EBV-positivity or CMV- and EBV-negativity. T-cells specific for other viruses (influenza A virus, metapneumovirus, respiratory syncytial virus) and the autoantigen proteinase 3 (PR3) were infrequently detected in GPA. Antigen-specific T-cells were not specifically enriched in any of the T-cell subsets. Altogether, on a genetic and cellular basis, here we show that alterations of the peripheral T-cell compartment are driven by inflammation and various environmental factors including concomitant CMV and EBV infection. Our study provides novel insights into mechanisms driving autoimmune disease and on potential therapeutic targets. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Postnatal reduction of BDNF regulates the developmental remodeling of taste bud innervation
Huang, Tao; Ma, Liqun; Krimm, Robin F
2015-01-01
The refinement of innervation is a common developmental mechanism that serves to increase the specificity of connections following initial innervation. In the peripheral gustatory system, the extent to which innervation is refined and how refinement might be regulated is unclear. The initial innervation of taste buds is controlled by brain-derived neurotrophic factor (BDNF). Following initial innervation, taste receptor cells are added and become newly innervated. The connections between the taste receptor cells and nerve fibers are likely to be specific in order to retain peripheral coding mechanisms. Here, we explored the possibility that the down-regulation of BDNF regulates the refinement of taste bud innervation during postnatal development. An analysis of BDNF expression in BdnflacZ/+ mice and real-time reverse transcription polymerase chain reaction (RT-PCR) revealed that BDNF was down-regulated between postnatal day (P) 5 and P10. This reduction in BDNF expression was due to a loss of precursor/progenitor cells that express BDNF, while the expression of BDNF in the subpopulations of taste receptor cells did not change. Gustatory innervation, which was identified by P2X3 immunohistochemistry, was lost around the perimeter where most progenitor/precursor cells are located. In addition, the density of innervation in the taste bud was reduced between P5 and P10, because taste buds increase in size without increasing innervation. This reduction of innervation density was blocked by the overexpression of BDNF in the precursor/progenitor population of taste bud cells. Together these findings indicate that the process of BDNF restriction to a subpopulation of taste receptor cells between P5 and P10, results in a refinement of gustatory innervation. We speculate that this refinement results in an increased specificity of connections between neurons and taste receptor cells during development. PMID:26164656
Julg, Boris; Poole, Danielle; Ghebremichael, Musie; Castilla, Carmen; Altfeld, Marcus; Sunpath, Henry; Murphy, Richard A; Walker, Bruce D
2012-01-01
Factors predicting suboptimal CD4 cell recovery have been studied in HIV clade-B infected US and European populations. It is, however, uncertain to what extent these results are applicable to HIV clade-C infected African populations. Multivariate analysis using logistic regression and longitudinal analyses using mixed models were employed to assess the impact of age, gender, baseline CD4 cell count, hemoglobin, body mass index (BMI), tuberculosis and other opportunistic co-infections, and frequencies of regimen change on CD4 cell recovery at 12 and 30 months and on overtime change in CD4 cells among 442 virologically suppressed South Africans. Despite adequate virological response 37% (95% CI:32%-42%) and 83% (95% CI:79%-86%) of patients on antiretroviral therapy failed to restore CD4 cell counts ≥ 200 cells/mm(3) after 12 and ≥ 500 cells/mm(3) after 30 months, respectively, in this South African cohort. Critical risk factors for inadequate recovery were older age (p = 0.001) and nadir CD4 cell count at ART initiation (p<0.0001), while concurrent TB co-infection, BMI, baseline hemoglobin, gender and antiretroviral regimen were not significant risk factors. These data suggest that greater efforts are needed to identify and treat HAART-eligible patients prior to severe CD4 cell decline or achievement of advanced age.
Miled, Rabeb Bennour; Guillier, Laurent; Neves, Sandra; Augustin, Jean-Christophe; Colin, Pierre; Besse, Nathalie Gnanou
2011-06-01
Cells of six strains of Cronobacter were subjected to dry stress and stored for 2.5 months at ambient temperature. The individual cell lag time distributions of recovered cells were characterized at 25 °C and 37 °C in non-selective broth. The individual cell lag times were deduced from the times taken by cultures from individual cells to reach an optical density threshold. In parallel, growth curves for each strain at high contamination levels were determined in the same growth conditions. In general, the extreme value type II distribution with a shape parameter fixed to 5 (EVIIb) was the most effective at describing the 12 observed distributions of individual cell lag times. Recently, a model for characterizing individual cell lag time distribution from population growth parameters was developed for other food-borne pathogenic bacteria such as Listeria monocytogenes. We confirmed this model's applicability to Cronobacter by comparing the mean and the standard deviation of individual cell lag times to populational lag times observed with high initial concentration experiments. We also validated the model in realistic conditions by studying growth in powdered infant formula decimally diluted in Buffered Peptone Water, which represents the first enrichment step of the standard detection method for Cronobacter. Individual lag times and the pooling of samples significantly affect detection performances. Copyright © 2010 Elsevier Ltd. All rights reserved.
Adipose tissue as a stem cell source for musculo-skeletal regeneration
Gimble, Jeffrey M.; Grayson, Warren; Guilak, Farshid; Lopez, Mandi J.; Vunjak-Novakovic, Gordana
2013-01-01
Adipose tissue is an abundant, easily accessible, and reproducible cell source for musculo-skeletal regenerative medicine applications. Initial derivation steps yield a heterogeneous population of cells collectively termed the stromal vascular fraction (SVF), which consist of endothelial cells, immune cells, pericytes, and pre-adipocytes. Subsequent selection of an adherent cell subset from the SVF results in a relatively homogeneous population of adipose-derived stromal/stem cells (ASCs). Mammalian ASCs exhibit the ability to selectively differentiate into chondrogenic, myogenic, and osteogenic lineages in response to inductive stimuli in vitro (when cultured on scaffolds in bioreactors) and in vivo (when implanted in pre-clinical animal models). Unlike hematopoietic cells, ASCs do not elicit a robust lymphocyte reaction and instead generate and release immunosuppressive factors, such as prostaglandin E2. These unique immunomodulatory features suggest that both allogeneic and autologous ASCs will engraft successfully following application for tissue regeneration purposes. The differentiation and expansion potential of ASCs can be modified by growth factors like bone morphogenetic protein 6, bio-inductive scaffolds, and bioreactors providing environmental control and biophysical stimulation. Gene therapy approaches using lentiviral transduction can also be used to direct differentiation of ASCs along particular lineage pathways. We discuss here the utility of ASCs for musculo-skeletal tissue repair and some of the technologies that can be implemented to unlock the full regenerative potential of these highly valuable cells. PMID:21196358
Examples of Mathematical Modeling
Johnston, Matthew D.; Edwards, Carina M.; Bodmer, Walter F.; Maini, Philip K.; Chapman, S. Jonathan
2008-01-01
Mathematical modeling is being increasingly recognized within the biomedical sciences as an important tool that can aid the understanding of biological systems. The heavily regulated cell renewal cycle in the colonic crypt provides a good example of how modeling can be used to find out key features of the system kinetics, and help to explain both the breakdown of homeostasis and the initiation of tumorigenesis. We use the cell population model by Johnston et al.5 to illustrate the power of mathematical modeling by considering two key questions about the cell population dynamics in the colonic crypt. We ask: how can a model describe both homeostasis and unregulated growth in tumorigenesis; and to which parameters in the system is the model most sensitive? In order to address these questions, we discuss what type of modeling approach is most appropriate in the crypt. We use the model to argue why tumorigenesis is observed to occur in stages with long lag phases between periods of rapid growth, and we identify the key parameters. PMID:17873520
Quantifying the entropic cost of cellular growth control
NASA Astrophysics Data System (ADS)
De Martino, Daniele; Capuani, Fabrizio; De Martino, Andrea
2017-07-01
Viewing the ways a living cell can organize its metabolism as the phase space of a physical system, regulation can be seen as the ability to reduce the entropy of that space by selecting specific cellular configurations that are, in some sense, optimal. Here we quantify the amount of regulation required to control a cell's growth rate by a maximum-entropy approach to the space of underlying metabolic phenotypes, where a configuration corresponds to a metabolic flux pattern as described by genome-scale models. We link the mean growth rate achieved by a population of cells to the minimal amount of metabolic regulation needed to achieve it through a phase diagram that highlights how growth suppression can be as costly (in regulatory terms) as growth enhancement. Moreover, we provide an interpretation of the inverse temperature β controlling maximum-entropy distributions based on the underlying growth dynamics. Specifically, we show that the asymptotic value of β for a cell population can be expected to depend on (i) the carrying capacity of the environment, (ii) the initial size of the colony, and (iii) the probability distribution from which the inoculum was sampled. Results obtained for E. coli and human cells are found to be remarkably consistent with empirical evidence.
Self-organization of vertebrate mesoderm based on simple boundary conditions.
Green, Jeremy B A; Dominguez, Isabel; Davidson, Lance A
2004-11-01
Embryonic development requires cell movements whose coordination is robust and reproducible. A dramatic example is the primary body axis of vertebrates: despite perturbation, cells in prospective axial tissue coordinate their movements to make an elongated body axis. The spatial cues coordinating these movements are not known. We show here that cells deprived of preexisting spatial cues by physical dissociation and reaggregation nonetheless organize themselves into an axis. Activin-induced cells that are reaggregated into a flat disc initially round up into a ball before elongating perpendicular to the disc. Manipulations of the geometry of the disc and immunofluorescence micrography reveal that the edge of the disc provides a circumferential alignment zone. This finding indicates that physical boundaries provide alignment cues and that circumferential "hoop stress" drives the axial extrusion in a manner resembling late-involuting mesoderm of Xenopus and archenteron elongation in other deuterostome species such as sea urchins. Thus, a population of cells finds its own midline based on the form of the population's boundaries using an edge-aligning mechanism. This process provides a remarkably simple organizing principle that contributes to the reliability of embryonic development as a whole. (c) 2004 Wiley-Liss, Inc.
The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.
Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T
2008-12-01
Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.
Left atrial appendages from adult hearts contain a reservoir of diverse cardiac progenitor cells.
Leinonen, Jussi V; Emanuelov, Avishag K; Platt, Yardanna; Helman, Yaron; Feinberg, Yael; Lotan, Chaim; Beeri, Ronen
2013-01-01
There is strong evidence supporting the claim that endogenous cardiac progenitor cells (CPCs) are key players in cardiac regeneration, but the anatomic source and phenotype of the master cardiac progenitors remains uncertain. Our aim was to investigate the different cardiac stem cell populations in the left atrial appendage (LAA) and their fates. We investigated the CPC content and profile of adult murine LAAs using immunohistochemistry and flow cytometry. We demonstrate that the LAA contains a large number of CPCs relative to other areas of the heart, representing over 20% of the total cell number. We grew two distinct CPC populations from the LAA by varying the degree of proteolysis. These differed by their histological location, surface marker profiles and growth dynamics. Specifically, CD45(pos) cells grew with milder proteolysis, while CD45(neg) cells grew mainly with more intense proteolysis. Both cell types could be induced to differentiate into cells with cardiomyocyte markers and organelles, albeit by different protocols. Many CD45(pos) cells expressed CD45 initially and rapidly lost its expression while differentiating. Our results demonstrate that the left atrial appendage plays a role as a reservoir of multiple types of progenitor cells in murine adult hearts. Two different types of CPCs were isolated, differing in their epicardial-myocardial localization. Considering studies demonstrating layer-specific origins of different cardiac progenitor cells, our findings may shed light on possible pathways to study and utilize the diversity of endogenous progenitor cells in the adult heart.
Role of differential physical properties in emergent behavior of 3D cell co-cultures
NASA Astrophysics Data System (ADS)
Kolbman, Dan; Das, Moumita
2015-03-01
The biophysics of binary cell populations is of great interest in many biological processes, whether the formation of embryos or the initiation of tumors. During these processes, cells are surrounded by other cell types with different physical properties, often with important consequences. For example, recent experiments on a co-culture of breast cancer cells and healthy breast epithelial cells suggest that the mechanical mismatch between the two cell types may contribute to enhanced migration of the cancer cells. Here we explore how the differential physical properties of different cell types may influence cell-cell interaction, aggregation, and migration. To this end, we study a proof of concept model- a three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as elastic stiffness, contractility, and particle-particle adhesion, using Langevin Dynamics simulations. Our results may provide insights into emergent behavior such as segregation and differential migration in cell co-cultures in three dimensions.
Mok, Ka-Wai; Mruk, Dolores D.; Lee, Will M.; Cheng, C. Yan
2011-01-01
The blood-testis barrier (BTB) is a unique ultrastructure in the testis which creates a specialized microenvironment in the seminiferous epithelium for post-meiotic germ cell development and to maintain an immunological barrier. In this report, we have demonstrated unequivocally that a functional and intact BTB is crucial for initiation of spermatogenesis in particular differentiation of spermatogonial stem cells (SSCs). It was shown that adult rats (~300 gm body weight, b.w.) treated with adjudin at 50 (low-dose) or 250 (high-dose) mg/kg b.w. by gavage led to germ cell depletion from the seminiferous tubules and >98% of the tubules were devoid of germ cells by ~2-week and rats became infertile in both groups after the sperm reserve in the epididymis was exhausted. While the population of SSC/spermatogonia in the seminiferous tubules from both groups was similar to normal rats, only rats from the low-dose group were capable of re-initiating spermatogenesis by 20-week and by 30-week, greater than 75% of the tubules displayed normal spermatogenesis and the fertility of these rats rebounded. Detailed analysis by dual-labeled immunofluorescence analysis and a functional BTB integrity assay revealed that in both treatment groups, the BTB was disrupted from 6- to 12-week. However, the disrupted BTB “resealed” in the low, but not in the high, dose group. Our findings illustrate that that SSC/spermatogonia failed to differentiate into spermatocytes beyond Aaligned spermatogonia in the high-dose group with a disrupted BTB. In short, these findings illustrate the critical significance of BTB for re-initiation of spermatogenesis besides SSC and spermatogonia. PMID:21696392
TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites.
Ammerman, Michelle L; Presnyak, Vladimir; Fisk, John C; Foda, Bardees M; Read, Laurie K
2010-11-01
TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5' ends of pan-edited RNAs than at their 3' ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3' to 5' progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3' ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA-RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3' to 5' progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.
TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites
Ammerman, Michelle L.; Presnyak, Vladimir; Fisk, John C.; Foda, Bardees M.; Read, Laurie K.
2010-01-01
TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5′ ends of pan-edited RNAs than at their 3′ ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3′ to 5′ progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3′ ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA–RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3′ to 5′ progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs. PMID:20855539
Buchanan, Ian B; Maile, Robert; Frelinger, Jeffrey A; Fair, Jeffrey H; Meyer, Anthony A; Cairns, Bruce A
2006-11-01
Homeostatic proliferation of T cells has recently been shown to be an important mechanism in the host response to infection. However, its role in the T cell response to burn injury is unknown. In this study, we examine the effect of burn injury on CD4+ and CD8+ T cell homeostatic proliferation after irradiation. Wild-type C57BL/6 female mice were irradiated with six grays ionizing radiation and 48 hours later, syngeneic whole splenocytes or purified CD4+ or CD8+ T cells labeled with carboxy-fluorescein diacetate, succinimidyl ester were adoptively transferred. Two days later, mice underwent a 20% burn injury, followed by splenocyte harvest 3 and 10 days after injury. Burn mice demonstrate increased splenic cellularity and CD8+ T cell proliferation after adoptive transfer of either purified CD8+ cells or whole spleen populations compared with unburned (sham) mice. In contrast, CD4+ T cell proliferation after burn injury is unchanged after adoptive transfer of whole spleen cells and drastically decreased after adoptive transfer of a purified CD4+ population compared with sham mice. Ten days after burn injury CD8+ T cells continue to demonstrate greater proliferation than CD4+ T cells. CD8+ T cells are more robust than CD4+ T cells in their proliferative response after burn injury. In addition, CD8+ T cell proliferation appears less reliant on other immune cells than purified CD4+ T cell proliferation. These data reiterate the importance of CD8+ T cells in the initial immune response to burn injury.
Clonal evolution models of tumor heterogeneity.
Shlush, Liran I; Hershkovitz, Dov
2015-01-01
Somatic/clonal evolution is the process of sequential acquisition of vertically transmittable genetic/epigenetic elements in multicellular organisms. Cancer is the result of somatic evolution. Understanding the processes that shape the evolution of individual tumors might help us to treat cancer more efficiently. The initiating genetic/epigenetic events occur in functional cells and provide the cell of origin a selective advantage under a changing environment. The initiating genetic events tend to be enriched in specific tissues (and are sometimes specific for those tissues), as different tissues undergo different changes in the environment that will activate selective forces on different cells of origin. For the initial clonal expansion to occur premalignant clones need to have a relative fitness advantage over their competitors. It is estimated that the premalignant phase can take several years. Once the premalignant clonal expansion is established, the premalignant cells will contribute to the changing environment and will start competing among themselves. In late stages of cancer evolution the environmental changes might be similar across different tissues, including a lack of physical space, a shortage of energy, and activation of the immune system, and more and more of the hallmarks of cancer will evolve. In this review we will explore the possible clinical relevance of the heterogeneity that evolves during this long somatic evolution. Above all, it should be stressed that the earlier the clonal expansion is recognized, the less diverse and less fit for survival the cells in the population are.
Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.; Colin-York, Huw; Clausen, Mathias P.; Felce, James H.; Galiani, Silvia; Erlenkämper, Christoph; Santos, Ana M.; Heddleston, John M.; Pedroza-Pacheco, Isabela; Waithe, Dominic; de la Serna, Jorge Bernardino; Lagerholm, B. Christoffer; Liu, Tsung-li; Chew, Teng-Leong; Betzig, Eric; Davis, Simon J.; Eggeling, Christian
2017-01-01
T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions. PMID:28691087
Sorption of Cr(VI), Cu(II) and Pb(II) by growing and non-growing cells of a bacterial consortium.
Sannasi, P; Kader, J; Ismail, B S; Salmijah, S
2006-03-01
This paper reports the sorption of three metallic ions, namely Cr(VI), Cu(II) and Pb(II) in aqueous solution by a consortium culture (CC) comprising an acclimatised mixed bacterial culture collected from point and non-point sources. Metal sorption capability of growing and non-growing cells at initial pH of between 3 and 8 in the 1-100mg/L concentration range were studied based on Q(max) and K(f) values of the Langmuir and linearised Freundlich isotherm models, respectively. Maximal metal loading was generally observed to be dependent on the initial pH. Growing cells displayed significant maximal loading (Q(max)) for Pb(II) (238.09 mg/g) and Cu(II) (178.87 mg/g) at pH 6 and at pH 7 for Cr(VI) (90.91 mg/g) compared to non-growing cells (p < 0.05). At the pH range of 6-8, growing cells showed higher loading capacity compared to non-growing cells i.e. 38-52% for Cr, 17-28% for Cu and 3-17% for Pb. At lower metal concentrations and at more acidic pH (3-4) however, non-growing cells had higher metal loading capacity than growing cells. The metal sorption capacity for both populations were as follows: Pb(II) > Cu(II) > Cr(VI).
Button, D. K.; Schut, Frits; Quang, Pham; Martin, Ravonna; Robertson, Betsy R.
1993-01-01
Dilution culture, a method for growing the typical small bacteria from natural aquatic assemblages, has been developed. Each of 11 experimental trials of the technique was successful. Populations are measured, diluted to a small and known number of cells, inoculated into unamended sterilized seawater, and examined three times for the presence of 104 or more cells per ml over a 9-week interval. Mean viability for assemblage members is obtained from the frequency of growth, and many of the cultures produced are pure. Statistical formulations for determining viability and the frequency of pure culture production are derived. Formulations for associated errors are derived as well. Computer simulations of experiments agreed with computed values within the expected error, which verified the formulations. These led to strategies for optimizing viability determinations and pure culture production. Viabilities were usually between 2 and 60% and decreased with >5 mg of amino acids per liter as carbon. In view of difficulties in growing marine oligobacteria, these high values are noteworthy. Significant differences in population characteristics during growth, observed by high-resolution flow cytometry, suggested substantial population diversity. Growth of total populations as well as of cytometry-resolved subpopulations sometimes were truncated at levels of near 104 cells per ml, showing that viable cells could escape detection. Viability is therefore defined as the ability to grow to that population; true viabilities could be even higher. Doubling times, based on whole populations as well as individual subpopulations, were in the 1-day to 1-week range. Data were examined for changes in viability with dilution suggesting cell-cell interactions, but none could be confirmed. The frequency of pure culture production can be adjusted by inoculum size if the viability is known. These apparently pure cultures produced retained the size and apparent DNA-content characteristic of the bulk of the organisms in the parent seawater. Three cultures are now available, two of which have been carried for 3 years. The method is thus seen as a useful step for improving our understanding of typical aquatic organisms. PMID:16348896
Ferro, Enrico G.; Culbert, Gabriel J.; Wickersham, Jeffrey A.; Marcus, Ruthanne; Steffen, Alana D.; Pauls, Heather A.; Westergaard, Ryan P.; Lee, Christopher K.; Kamarulzaman, Adeeba
2017-01-01
Abstract Background. Antiretroviral therapy (ART) is recommended for all people living with human immunodeficiency virus (HIV), yet physician attitudes and prescribing behaviors toward members of key risk populations may limit ART access and undermine treatment as prevention strategies. Methods. Physicians in Malaysia (N = 214) who prescribe antiretroviral therapy (ART) responded in an Internet-based survey to hypothetical clinical scenarios of HIV patients, varying by key risk population and CD4+ T-cell count, on whether they would initiate or defer ART compared with a control patient with sexually acquired HIV. Results. The proportion of physicians who would defer ART in patients with advanced HIV (CD4 = 17 cells/μL) was significantly higher (P < .0001) for 4 key populations, including people who inject drugs ([PWID] 45.3%) or consume alcohol (42.1%), released prisoners (35.0%), and those lacking social support (26.6%), compared with a control patient (4.2%). People who inject drugs with advanced HIV (CD4 = 17 cells/μL) were 19-fold (adjusted odds ratio [AOR] = 18.9; 95% confidence interval [CI], 9.8–36.5) more likely to have ART deferred compared with the control. This effect was partially mitigated for PWID receiving methadone (AOR = 2.9; 95% CI, 1.5–5.7). At the highest CD4+ T-cell count (CD4 = 470 cells/μL), sex workers (AOR = 0.55; 95% CI, .44–.70) and patients with an HIV-uninfected sexual partner (AOR = 0.43; 95% CI, .34–.57) were significantly less likely to have ART deferred. Conclusions. Physicians who prescribe antiretroviral therapy in Malaysia may defer ART in some key populations including PWID and released prisoners, regardless of CD4+ T-cell count, which may help to explain very low rates of ART coverage among PWID in Malaysia. Reducing HIV incidence and mortality in Malaysia, where HIV is concentrated in PWID and other key populations, requires clinician-level interventions and monitoring physician adherence to international evidence-based treatment guidelines. PMID:28480230
Effects of incarceration on HIV-infected individuals.
Griffin, M M; Ryan, J G; Briscoe, V S; Shadle, K M
1996-10-01
Human immunodeficiency virus (HIV) infection is a critical problem among the incarcerated population, with rates as high as 17% being reported for prison systems in New York. The literature suggests that stressful living conditions and inherent defects in the immune system associated with HIV infection make prison populations more susceptible to a disproportionate decrease in their CD4 counts. To determine the effects of incarceration on HIV-infected individuals, the charts of 800 inmates were reviewed. Baseline (draw 1), 2- to 5-month (draw 2), and 6- to 12-month (draw 3) CD4 cell counts were obtained. Mean cell counts were calculated, and paired t-tests were used to identify differences. The group receiving antiretrovirals throughout showed no difference in mean CD4 cell count between draws 1 and 2 or between draws 1 and 3. The group not receiving HIV medications did not show a significant difference in CD4 cell counts between draws 1 and 2, but did show a significant difference between draws 1 and 3. For this group, the rate of decline in CD4 cells was greater than among an outpatient setting. The subsample of subjects initiating therapy prior to the second blood draw showed a significant increase in mean CD4 cell counts at draw 1 versus draw 2, but did not show a significant change when comparing draw 1 to draw 3. When examining subjects based on their antiviral status, the mean CD4 cell count at each of the draws was statistically associated with subjects' antiviral status. We conclude that incarceration causes a more rapid decrease in CD4 cells compared with an outpatient population, causing clinical significance on the normal course of HIV disease.
Agladze, Konstantin; Wang, Xin; Romeo, Tony
2005-01-01
Using fast Fourier transform (FFT) analysis, we previously observed that cells within Escherichia coli biofilm are organized in nonrandom or periodic spatial patterns (K. Agladze et al., J. Bacteriol. 185:5632-5638, 2003). Here, we developed a gravity displacement assay for examining cell adherence and used it to quantitatively monitor the formation of two distinct forms of cell attachment, temporary and permanent, during early biofilm development. Temporarily attached cells were mainly surface associated by a cell pole; permanent attachments were via the lateral cell surface. While temporary attachment precedes permanent attachment, both forms can coexist in a population. Exposure of attached cells to gravity liberated an unattached population capable of rapidly reassembling a new monolayer, composed of temporarily attached cells, and possessing periodicity. A csrA mutant, which forms biofilm more vigorously than its wild-type parent, exhibited an increased proportion of permanently attached cells and a form of attachment that was not apparent in the parent strain, permanent polar attachment. Nevertheless, it formed periodic attachment patterns. In contrast, biofilm mutants with altered lipopolysaccharide synthesis (waaG) exhibited increased cell-cell interactions, bypassed the polar attachment step, and produced FFT spectra characteristic of aperiodic cell distribution. Mutants lacking the polysaccharide adhesin β-1,6-N-acetyl-d-glucosamine (ΔpgaC) also exhibited aperiodic cell distribution, but without apparent cell-cell interactions, and were defective in forming permanent attachments. Thus, spatial periodicity of biofilm microstructure is genetically determined and evident during the formation of temporary cell surface attachments. PMID:16321928
Innate lymphoid cells: the new kids on the block.
Withers, David R; Mackley, Emma C; Jones, Nick D
2015-08-01
The purpose of this article is to review recent advances in our understanding of innate lymphoid cell function and to speculate on how these cells may become activated and influence the immune response to allogeneic tissues and cells following transplantation. Innate lymphoid cells encompass several novel cell types whose wide-ranging roles in the immune system are only now being uncovered. Through cytokine production, cross-talk with both haematopoietic and nonhaematopoietic populations and antigen presentation to T cells, these cells have been shown to be key regulators in maintaining tissue integrity, as well as initiating and then sustaining immune responses. It is now clear that innate lymphoid cells markedly contribute to immune responses and tissue repair in a number of disease contexts. Although experimental and clinical data on the behaviour of these cells following transplantation are scant, it is highly likely that innate lymphoid cells will perform similar functions in the alloimmune response following transplantation and therefore may be potential therapeutic targets for manipulation to prevent allograft rejection.
Type II Natural Killer T (NKT) Cells And Their Emerging Role In Health And Disease
Dhodapkar, Madhav V.; Kumar, Vipin
2016-01-01
Natural killer T (NKT) cells recognize lipid antigens presented by a class I MHC-like molecule CD1d, a member of the CD1 family. While most of the initial studies on NKT cells focused on a subset with semi-invariant T cell receptor (TCR) termed iNKT cells, majority of CD1d-restricted lipid-reactive human T cells express diverse TCRs and are termed as type II NKT cells. These cells constitute a distinct population of circulating and tissue-resident effector T cells with immune-regulatory properties. They react to a growing list of self- as well as non-self lipid ligands, and share some properties with both iNKT as well as conventional T cells. Emerging body of evidence points to their role in the regulation of immunity to pathogens/tumors and in autoimmune/metabolic disorders. Improved understanding of the biology of these cells and the ability to manipulate their function may be of therapeutic benefit in diverse disease conditions. PMID:28115591
McCune, Jeannine S.; Baker, K. Scott; Blough, David K.; Gamis, Alan; Bemer, Meagan J.; Kelton-Rehkopf, Megan C.; Winter, Laura; Barrett, Jeffrey S.
2016-01-01
Personalizing intravenous (IV) busulfan doses in children using therapeutic drug monitoring (TDM) is an integral component of hematopoietic cell transplant. The authors sought to characterize initial dosing and TDM of IV busulfan, along with factors associated with busulfan clearance, in 729 children who underwent busulfan TDM from December 2005 to December 2008. The initial IV busulfan dose in children weighing ≤12 kg ranged 4.8-fold, with only 19% prescribed the package insert dose of 1.1 mg/kg. In those children weighing >12 kg, the initial dose ranged 5.4-fold, and 79% were prescribed the package insert dose. The initial busulfan dose achieved the target exposure in only 24.3% of children. A wide range of busulfan exposures were targeted for children with the same disease (eg, 39 target busulfan exposures for the 264 children diagnosed with acute myeloid leukemia). Considerable heterogeneity exists regarding when TDM is conducted and the number of pharmacokinetic samples obtained. Busulfan clearance varied by age and dosing frequency but not by underlying disease. The authors’ group is currently evaluating how using population pharmacokinetics to optimize initial busulfan dose and TDM (eg, limited sampling schedule in conjunction with maximum a posteriori Bayesian estimation) may affect clinical outcomes in children. PMID:23444282
CD30 expression in follicular lymphoma.
Gardner, L J; Polski, J M; Evans, H L; Perkins, S L; Dunphy, C H
2001-08-01
CD30(+) anaplastic large cell lymphomas were originally described as being of T-cell, null cell, and B-cell origin. CD30, however, is not a specific marker of anaplastic large cell lymphoma and has been found to be expressed in reactive as well as neoplastic populations as a probable activation marker. In addition, CD30(+) cells have also been described in both diffuse large B-cell and follicular lymphomas (FLs), resembling the pattern seen in reactive tonsils and lymph nodes. We report an index case of FL with CD30 expression, which on initial touch preparations and flow cytometric immunophenotyping revealed a prominent population of CD30(+) cells with marked cellular pleomorphism (anaplasia) in a background of typical FL. Immunohistochemistry of the paraffin section for CD30 in our index case confirmed unequivocal CD30(+) pleomorphic cells in the malignant nodules in occasional clusters. This case prompted a study of additional cases of FL for pattern of immunoreactivity with CD30 on paraffin sections. Twenty-two additional cases of FL (grades 1-3) were retrieved for CD30 immunoperoxidase staining as in the index case. This study demonstrated 32% of the additional cases of FL had definitive CD30(+), large, pleomorphic malignant cells by paraffin immunohistochemistry. In 2 cases (9%), the pattern of immunoreactivity with CD30 showed clustering and variable staining of large cells, as our index case. This study underscores the morphologic and immunophenotypic spectrum of FL that includes CD30 staining and cellular pleomorphism.
Experimental demonstration of an Allee effect in microbial populations.
Kaul, RajReni B; Kramer, Andrew M; Dobbs, Fred C; Drake, John M
2016-04-01
Microbial populations can be dispersal limited. However, microorganisms that successfully disperse into physiologically ideal environments are not guaranteed to establish. This observation contradicts the Baas-Becking tenet: 'Everything is everywhere, but the environment selects'. Allee effects, which manifest in the relationship between initial population density and probability of establishment, could explain this observation. Here, we experimentally demonstrate that small populations of Vibrio fischeri are subject to an intrinsic demographic Allee effect. Populations subjected to predation by the bacterivore Cafeteria roenbergensis display both intrinsic and extrinsic demographic Allee effects. The estimated critical threshold required to escape positive density-dependence is around 5, 20 or 90 cells ml(-1)under conditions of high carbon resources, low carbon resources or low carbon resources with predation, respectively. This work builds on the foundations of modern microbial ecology, demonstrating that mechanisms controlling macroorganisms apply to microorganisms, and provides a statistical method to detect Allee effects in data. © 2016 The Author(s).
Experimental demonstration of an Allee effect in microbial populations
Kramer, Andrew M.; Dobbs, Fred C.; Drake, John M.
2016-01-01
Microbial populations can be dispersal limited. However, microorganisms that successfully disperse into physiologically ideal environments are not guaranteed to establish. This observation contradicts the Baas-Becking tenet: ‘Everything is everywhere, but the environment selects’. Allee effects, which manifest in the relationship between initial population density and probability of establishment, could explain this observation. Here, we experimentally demonstrate that small populations of Vibrio fischeri are subject to an intrinsic demographic Allee effect. Populations subjected to predation by the bacterivore Cafeteria roenbergensis display both intrinsic and extrinsic demographic Allee effects. The estimated critical threshold required to escape positive density-dependence is around 5, 20 or 90 cells ml−1 under conditions of high carbon resources, low carbon resources or low carbon resources with predation, respectively. This work builds on the foundations of modern microbial ecology, demonstrating that mechanisms controlling macroorganisms apply to microorganisms, and provides a statistical method to detect Allee effects in data. PMID:27048467
Kelderman, Sander; Heemskerk, Bianca; Fanchi, Lorenzo; Philips, Daisy; Toebes, Mireille; Kvistborg, Pia; van Buuren, Marit M; van Rooij, Nienke; Michels, Samira; Germeroth, Lothar; Haanen, John B A G; Schumacher, N M
2016-06-01
Tumor infiltrating lymphocyte (TIL) therapy has shown objective clinical response rates of 50% in stage IV melanoma patients in a number of clinical trials. Nevertheless, the majority of patients progress either directly upon therapy or after an initial period of tumor control. Recent data have shown that most TIL products that are used for therapy contain only low frequencies of T cells reactive against known melanoma-associated epitopes. Because of this, the development of a technology to create T-cell products that are enriched for reactivity against defined melanoma-associated antigens would seem valuable, both to evaluate the tumoricidal potential of T cells directed against different antigen classes and to potentially increase response rates. Here, we developed and validated a conditional MHC streptamer-based platform for the creation of TIL products with defined antigen reactivities. We have used this platform to successfully enrich both high-frequency (≥1%) and low-frequency (<1%) tumor-specific CD8(+) T-cell populations, and thereby created T-cell products with enhanced tumor recognition potential. Collectively, these data demonstrate that selection of antigen-specific T-cell populations can be used to create defined T-cell products for clinical use. This strategy thus forms a highly flexible platform for the development of antigen-specific cell products for personalized cancer immunotherapy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kashef, Jubin; Köhler, Almut; Kuriyama, Sei; Alfandari, Dominique; Mayor, Roberto; Wedlich, Doris
2009-06-15
Xenopus Cadherin-11 (Xcad-11) is expressed when cranial neural crest cells (CNC) acquire motility. However, its function in stimulating cell migration is poorly understood. Here, we demonstrate that Xcad-11 initiates filopodia and lamellipodia formation, which is essential for CNC to populate pharyngeal pouches. We identified the cytoplasmic tail of Xcad-11 as both necessary and sufficient for proper CNC migration as long as it was linked to the plasma membrane. Our results showing that guanine nucleotide exchange factor (GEF)-Trio binds to Xcad-11 and can functionally substitute for it like constitutively active forms of RhoA, Rac, and cdc42 unravel a novel cadherin function.
Effects of Environmental Estrogens on Apoptosis in Normal and Cancerous Breast Epithelial Cells
2001-03-01
breast cancer in population which consume diets rich in these flavonoid phytoestrogens has prompted us to further examine the effects of these...chemicals on apoptosis. Initial studies revealed certain flavonoid phytochemicals possessed potent antiestrogenic effects (Appendix documents #4,5...of specific aim 1 to include examination of the flavonoid phytochemical environmental estrogens. Examination of Bcl-2 expression and effects on
Somatic clonal evolution: A selection-centric perspective.
Scott, Jacob; Marusyk, Andriy
2017-04-01
It is generally accepted that the initiation and progression of cancers is the result of somatic clonal evolution. Despite many peculiarities, evolution within populations of somatic cells should obey the same Darwinian principles as evolution within natural populations, i.e. variability of heritable phenotypes provides the substrate for context-specific selection forces leading to increased population frequencies of phenotypes, which are better adapted to their environment. Yet, within cancer biology, the more prevalent way to view evolution is as being entirely driven by the accumulation of "driver" mutations. Context-specific selection forces are either ignored, or viewed as constraints from which tumor cells liberate themselves during the course of malignant progression. In this review, we will argue that explicitly focusing on selection forces acting on the populations of neoplastic cells as the driving force of somatic clonal evolution might provide for a more accurate conceptual framework compared to the mutation-centric driver gene paradigm. Whereas little can be done to counteract the "bad luck" of stochastic occurrences of cancer-related mutations, changes in selective pressures and the phenotypic adaptations they induce can, in principle, be exploited to limit the incidence of cancers and to increase the efficiency of existing and future therapies. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby. Copyright © 2017 Elsevier B.V. All rights reserved.
Feng, Dingqing; Peng, Cheng; Li, Cairong; Zhou, Ying; Li, Min; Ling, Bin; Wei, Haiming; Tian, Zhigang
2009-11-01
Like many other solid tumors, cervical cancer contains a heterogeneous population of cancer cells. Several investigators have identified putative stem cells from solid tumors and cancer cell lines via the capacity to self renew and drive tumor formation. The aim of this study was to identify and characterize a cancer stem-like cell population from primary carcinoma of the cervix uteri. Cervical carcinoma from 19 patients staged I-II following International Federation of Gynecology and Obstetrics (FIGO) criteria were disaggregated and subjected to growth conditions selective for stem cells. Eight of nineteen tumor-derived cultures encompassed stem-like cells capable of self-renewal, extensive proliferation as clonal non-adherent spherical clusters. Cell markers of spheroid were identified as CD44+CK17+. Cell survival assays showed the sphere-forming cells were only 48% inhibited by doxorubicin whereas 78% inhibited by paclitaxel. Chemo-resistance may partly attribute to the exclusive expression of ABC transporter. To investigate the tumorigenicity of these stem-like cells, xenoengraftment of 10(5) dissociated spheroid cells allowed full recapitulation of the original tumor, whereas the same amount of tumor cells without non-adherent spheroid selection remained non-tumorigenic. Stemness properties of these spheroid cells were further established by reverse transcription-PCR and Western blotting, demonstrating the expression of embryonic and adult stemness-related genes (Oct-4, Piwil2, C-myc, Stat3 and Sox2). Based on these findings, we assert that cervical cancer contain a subpopulation of tumor initiating cells with stem-like properties, thus facilitating the approach to therapeutic strategies aimed at eradicating the tumorigenic subpopulation within cervical cancer.
Gap Junctional Coupling is Essential for Epithelial Repair in the Avian Cochlea
Nickel, Regina; Forge, Andrew
2014-01-01
The loss of auditory hair cells triggers repair responses within the population of nonsensory supporting cells. When hair cells are irreversibly lost from the mammalian cochlea, supporting cells expand to fill the resulting lesions in the sensory epithelium, an initial repair process that is dependent on gap junctional intercellular communication (GJIC). In the chicken cochlea (the basilar papilla or BP), dying hair cells are extruded from the epithelium and supporting cells expand to fill the lesions and then replace hair cells via mitotic and/or conversion mechanisms. Here, we investigated the involvement of GJIC in the initial epithelial repair process in the aminoglycoside-damaged BP. Gentamicin-induced hair cell loss was associated with a decrease of chicken connexin43 (cCx43) immunofluorescence, yet cCx30-labeled gap junction plaques remained. Fluorescence recovery after photobleaching experiments confirmed that the GJIC remained robust in gentamicin-damaged explants, but regionally asymmetric coupling was no longer evident. Dye injections in slice preparations from undamaged BP explants identified cell types with characteristic morphologies along the neural-abneural axis, but these were electrophysiologically indistinct. In gentamicin-damaged BP, supporting cells expanded to fill space formerly occupied by hair cells and displayed more variable electrophysiological phenotypes. When GJIC was inhibited during the aminoglycoside damage paradigm, the epithelial repair response halted. Dying hair cells were retained within the sensory epithelium and supporting cells remained unexpanded. These observations suggest that repair of the auditory epithelium shares common mechanisms across vertebrate species and emphasize the importance of functional gap junctions in maintaining a homeostatic environment permissive for subsequent hair cell regeneration. PMID:25429127
Haridas, Parvathi; Penington, Catherine J; McGovern, Jacqui A; McElwain, D L Sean; Simpson, Matthew J
2017-06-21
Malignant spreading involves the migration of cancer cells amongst other native cell types. For example, in vivo melanoma invasion involves individual melanoma cells migrating through native skin, which is composed of several distinct subpopulations of cells. Here, we aim to quantify how interactions between melanoma and fibroblast cells affect the collective spreading of a heterogeneous population of these cells in vitro. We perform a suite of circular barrier assays that includes: (i) monoculture assays with fibroblast cells; (ii) monoculture assays with SK-MEL-28 melanoma cells; and (iii) a series of co-culture assays initiated with three different ratios of SK-MEL-28 melanoma cells and fibroblast cells. Using immunostaining, detailed cell density histograms are constructed to illustrate how the two subpopulations of cells are spatially arranged within the spreading heterogeneous population. Calibrating the solution of a continuum partial differential equation to the experimental results from the monoculture assays allows us to estimate the cell diffusivity and the cell proliferation rate for the melanoma and the fibroblast cells, separately. Using the parameter estimates from the monoculture assays, we then make a prediction of the spatial spreading in the co-culture assays. Results show that the parameter estimates obtained from the monoculture assays lead to a reasonably accurate prediction of the spatial arrangement of the two subpopulations in the co-culture assays. Overall, the spatial pattern of spreading of the melanoma cells and the fibroblast cells is very similar in monoculture and co-culture conditions. Therefore, we find no clear evidence of any interactions other than cell-to-cell contact and crowding effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Graft failure after allogeneic hematopoietic stem cell transplantation.
Ozdemir, Zehra Narli; Civriz Bozdağ, Sinem
2018-04-18
Graft failure is a serious complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT) defined as either lack of initial engraftment of donor cells (primary graft failure) or loss of donor cells after initial engraftment (secondary graft failure). Successful transplantation depends on the formation of engrafment, in which donor cells are integrated into the recipient's cell population. In this paper, we distinguish two different entities, graft failure (GF) and poor graft function (PGF), and review the current comprehensions of the interactions between the immune and hematopoietic compartments in these conditions. Factors associated with graft failure include histocompatibility locus antigen (HLA)-mismatched grafts, underlying disease, type of conditioning regimen and stem cell source employed, low stem cell dose, ex vivo T-cell depletion, major ABO incompatibility, female donor grafts for male recipients, disease status at transplantation. Although several approaches have been developed which aimed to prevent graft rejection, establish successful engraftment and treat graft failure, GF remains a major obstacle to the success of allo-HSCT. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) still remains to be the curative treatment option for various non-malignant and malignant hematopoietic diseases. The outcome of allo-HSCT primarily depends on the engraftment of the graft. Graft failure (GF), is a life-threatening complication which needs the preferential therapeutic manipulation. In this paper, we focused on the definitions of graft failure / poor graft function and also we reviewed the current understanding of the pathophysiology, risk factors and treatment approaches for these entities. Copyright © 2018. Published by Elsevier Ltd.
Lee, Hsin-chung; Ling, Qing-Dong; Yu, Wan-Chun; Hung, Chunh-Ming; Kao, Ta-Chun; Huang, Yi-Wei; Higuchi, Akon
2013-01-01
Purpose We evaluated the higher levels of carcinoembryonic antigen (CEA) secreted by the LoVo human colon carcinoma cells in a medium containing anticancer drugs. Drug-resistant LoVo cells were analyzed by subcutaneously xenotransplanting them into mice. The aim of this study was to evaluate whether the drug-resistant cells isolated in this study were cancer-initiating cells, known also as cancer stem cells (CSCs). Methods The production of CEA was investigated in LoVo cells that were cultured with 0–10 mM of anticancer drugs, and we evaluated the increase in CEA production by the LoVo cells that were stimulated by anticancer drug treatment. The expression of several CSC markers in LoVo cells treated with anticancer drugs was also evaluated. Following anticancer drug treatment, LoVo cells were injected subcutaneously into the flanks of severe combined immunodeficiency mice in order to evaluate the CSC fraction. Results Production of CEA by LoVo cells was stimulated by the addition of anticancer drugs. Drug-resistant LoVo cells expressed lower levels of CSC markers, and LoVo cells treated with any of the anticancer drugs tested did not generate tumors within 8 weeks from when the cells were injected subcutaneously into severe combined immunodeficiency mice. These results suggest that the drug-resistant LoVo cells have a smaller population of CSCs than the untreated LoVo cells. Conclusion Production of CEA by LoVo cells can be stimulated by the addition of anticancer drugs. The drug-resistant subpopulation of LoVo colon cancer cells could stimulate the production of CEA, but these cells did not act as CSCs in in vivo tumor generation experiments. PMID:23818760
Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration
Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi
2015-01-01
Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034
Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.
2014-01-01
ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354
Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling
Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A
2009-01-01
Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after αCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve αCD3/CD28-stimulated CD8 cells. Consequently, αCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs. PMID:19740334
Linnemann, Carsten; Schildberg, Frank A; Schurich, Anna; Diehl, Linda; Hegenbarth, Silke I; Endl, Elmar; Lacher, Svenja; Müller, Christa E; Frey, Jürgen; Simeoni, Luca; Schraven, Burkhart; Stabenow, Dirk; Knolle, Percy A
2009-09-01
Adenosine is a well-described anti-inflammatory modulator of immune responses within peripheral tissues. Extracellular adenosine accumulates in inflamed and damaged tissues and inhibits the effector functions of various immune cell populations, including CD8 T cells. However, it remains unclear whether extracellular adenosine also regulates the initial activation of naïve CD8 T cells by professional and semi-professional antigen-presenting cells, which determines their differentiation into effector or tolerant CD8 T cells, respectively. We show that adenosine inhibited the initial activation of murine naïve CD8 T cells after alphaCD3/CD28-mediated stimulation. Adenosine caused inhibition of activation, cytokine production, metabolic activity, proliferation and ultimately effector differentiation of naïve CD8 T cells. Remarkably, adenosine interfered efficiently with CD8 T-cell priming by professional antigen-presenting cells (dendritic cells) and semi-professional antigen-presenting cells (liver sinusoidal endothelial cells). Further analysis of the underlying mechanisms demonstrated that adenosine prevented rapid tyrosine phosphorylation of the key kinase ZAP-70 as well as Akt and ERK1/2 in naïve alphaCD3/CD28-stimulated CD8 cells. Consequently, alphaCD3/CD28-induced calcium-influx into CD8 cells was reduced by exposure to adenosine. Our results support the notion that extracellular adenosine controls membrane-proximal T-cell receptor signalling and thereby also differentiation of naïve CD8 T cells. These data raise the possibility that extracellular adenosine has a physiological role in the regulation of CD8 T-cell priming and differentiation in peripheral organs.
Developmental Response of a Resistance-Breaking Population of Meloidogyne arenaria on Vitis spp.
Anwar, Safdar A; McKenry, M V
2002-03-01
Pre- and post-infection resistance mechanisms expressed by Vitis rootstocks RS-9 and Teleki 5C against second-stage juveniles (J2) of resistance-breaking populations of Meloidogyne arenaria were observed and correlated with juvenile development and nematode reproduction. Cabernet Sauvignon grape was used as a susceptible control for comparison. Similar numbers of J2 penetrated Teleki 5C and Cabernet Sauvignon roots. Root-tip necrosis, a hypersensitive reaction, occurred in both rootstocks but was effective in reducing J2 penetration only in RS-9 roots. Juvenile development occurred in roots of all three rootstocks by 13 days after inoculation, with the highest number of swollen juveniles present in Cabernet Sauvignon roots. Cortical necroses restricted the ability of J2 to reach vascular bundles, thereby restricting access to successful feeding sites and leading to dead or underdeveloped juveniles in RS-9 roots. At 35 days after inoculation, only 5% and 25% of the initial inoculum in RS-9 and Teleki 5C roots, respectively, reached the adult stage compared to 32% in Cabernet roots. Giant cells were of sufficient size to support nematode development to maturity in Cabernet. Cell necrosis and underdeveloped giant cells were apparent in the resistant rootstocks, which delayed development of adults and limited egg production. Inadequate development of giant cells may provide long-term population reductions in woody-rooted perennial crops.
How the tooth got its stripes: patterning via strain-cued motility
Cox, Brian N.
2013-01-01
We hypothesize that a population of migrating cells can form patterns when changes in local strains owing to relative cell motions induce changes in cell motility. That the mechanism originates in competing rates of motion distinguishes it from mechanisms involving strain energy gradients, e.g. those generated by surface energy effects or eigenstrains among cells, and diffusion–reaction mechanisms involving chemical signalling factors. The theory is tested by its ability to reproduce the morphological characteristics of enamel in the mouse incisor. Dental enamel is formed during amelogenesis by a population of ameloblasts that move about laterally within an expanding curved sheet, subject to continuously evolving spatial and temporal gradients in strain. Discrete-cell simulations of this process compute the changing strain environment of all cells and predict cell trajectories by invoking simple rules for the motion of an individual cell in response to its strain environment. The rules balance a tendency for cells to enhance relative sliding motion against a tendency to maintain uniform cell–cell separation. The simulations account for observed waviness in the enamel microstructure, the speed and shape of the ‘commencement front’ that separates domains of migrating secretory-stage ameloblasts from those that are not yet migrating, the initiation and sustainment of layered, fracture-resistant decussation patterns (cross-plied microstructure) and the transition from decussating inner enamel to non-decussating outer enamel. All these characteristics can be correctly predicted with the use of a single scalar adjustable parameter. PMID:23614945
Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma
Chen, Zhiguo; Liu, Chiachi; Patel, Amish J.; Liao, Chung-Ping; Wang, Yong; Le, Lu Q.
2014-01-01
Summary Neurofibromatosis type 1 is a tumor-predisposing genetic disorder. Plexiform neurofibromas are common NF1 tumors carrying a risk of malignant transformation, which is typically fatal. Little is known about mechanisms mediating initiation and identity of specific cell-type that gives rise to neurofibromas. Using cell-lineage tracing, we identify a population of GAP43+ PLP+ precursors in embryonic nerve roots as the cells of origin for these tumors and report a non-germline model of neurofibroma for preclinical drug screening to identify effective therapies. The identity of tumor cell-of-origin and facility for isolation and expansion provides fertile ground for continued analysis to define intrinsic and extrinsic factors critical for neurofibromagenesis. It also provides unique approaches to develop therapies to prevent neurofibroma formation in NF1 patients. PMID:25446898
Okulicz, Jason F.; Le, Tuan D.; Agan, Brian K.; Camargo, Jose F.; Landrum, Michael L.; Wright, Edwina; Dolan, Matthew J.; Ganesan, Anuradha; Ferguson, Tomas M.; Smith, Davey M.; Richman, Douglas D.; Little, Susan J.; Clark, Robert A.; He, Weijing; Ahuja, Sunil K.
2014-01-01
IMPORTANCE In individuals with human immunodeficiency virus 1 (HIV-1) infection who are receiving antiretroviral therapy (ART), factors that promote full immune recovery are not well characterized. OBJECTIVE To investigate the influence of the timing of ART relative to HIV-1 infection on normalization of CD4+ T-cell counts, AIDS risk, and immune function. DESIGN, SETTING, AND PARTICIPANTS Participants in the observational US Military HIV Natural History Study with documented estimated dates of seroconversion (EDS) who achieved virologic suppression with ART were evaluated. Markers indicative of immune activation, dysfunction, and responsiveness were determined. Responses to hepatitis B virus (HBV) vaccine, an indicator of in vivo immune function, were also assessed. The timing of ART was indexed to the EDS and/or entry into the cohort. The CD4+ counts in HIV-1–uninfected populations were surveyed. MAIN OUTCOMES AND MEASURES Normalization of CD4+ counts to 900 cells/μL or higher, AIDS development, HBV vaccine response, as well as T-cell activation, dysfunction, and responsiveness. RESULTS The median CD4+ count in HIV-1–uninfected populations was approximately 900 cells/μL. Among 1119 HIV-1–infected participants, CD4+ normalization was achieved in 38.4% vs 28.3% of those initiating ART within 12 months vs after 12 months from the EDS (P = .001). Incrementally higher CD4+ recovery (<500,500–899, and ≥900 cells/μL) was associated with stepwise decreases in AIDS risk and reversion of markers of immune activation, dysfunction, and responsiveness to levels approximating those found in HIV-1–uninfected persons. Participants with CD4+ counts of 500 cells/μL or higher at study entry (adjusted odds ratio [aOR], 2.00; 95% CI, 1.51–2.64; P < .001) or ART initiation (aOR, 4.08; 95% CI, 3.14–5.30; P < .001) had significantly increased CD4+ normalization rates compared with other participants. However, even among individuals with a CD4+ count of 500 cells/μL or higher at both study entry and before ART, the odds of CD4+ normalization were 80% lower in those initiating ART after 12 months from the EDS and study entry (aOR, 0.20; 95% CI, 0.07–0.53; P = 001). Initiation of ART within 12 months of EDS vs later was associated with a significantly lower risk of AIDS (7.8% vs 15.3%; P = .002), reduced T-cell activation (percent CD4+HLA-DR+ effector memory T cells, 12.0% vs 15.6%; P = .03), and increased responsiveness to HBV vaccine (67.9% vs 50.9%; P = .07). CONCLUSIONS AND RELEVANCE Deferral of ART beyond 12 months of the EDS diminishes the likelihood of restoring immunologic health in HIV-1–infected individuals. PMID:25419650
Hepatic stellate cells: fibrogenic, regenerative or both? Heterogeneity and context are key.
Bansal, Meena B
2016-11-01
Since their original identification, our understanding of the role of hepatic stellate cells in both health and disease continues to grow. Numerous studies have delineated the role of stellate cell activation in contributing to the pool of myofibroblasts responsible for liver fibrosis, and these have resulted in the development of a number of anti-fibrotic strategies targeting this cell. However, their potential role in liver regeneration, both initiation and termination, is also emerging and needs to be contemplated when considering targeted therapy. Perhaps what is most striking is the increasing recognition that this is not just one cell, but rather, a heterogenous population made up of a number of different subsets of cells, each with differentiated and specific functions. The tools are emerging for this dissection and are greatly needed to truly develop targeted therapies that will inhibit fibrosis while promoting liver regeneration and repair.
Nelson, Adam S; Vajdic, Claire M; Ashton, Lesley J; Le Marsney, Renate E; Nivison-Smith, Ian; Wilcox, Leonie; Dodds, Anthony J; O'Brien, Tracey A
2017-01-01
Hematopoietic stem cell transplantation (HSCT) is a life-saving procedure for children with a variety of non-malignant conditions. However, these children face an increased risk of late death and incident cancers after HSCT, which may occur many years after their initial HSCT. We examined cancer occurrence and late mortality in a population-based cohort of 318 Australian children who underwent allogeneic HSCT for non-malignant disease. Standardized incident ratios (SIRs) and standardized mortality ratios (SMRs) were calculated and compared with population controls. We identified six (1.9%) cancers at a median 9.2 years post-HSCT. Cancer occurred 15 times more frequently than in the general population (SIR 15.4, 95% CI = 6.9-34.2). Of the 198 patients who survived for at least 2 years post-HSCT, 11 (5.6%) died at a median 7.5 years post-HSCT. The mortality rate was 17 times higher than in the general population (SMR 17.5, 95% CI = 9.7-31.2). Children transplanted for non-malignant conditions require evidence-based survivorship programs to reduce excess morbidity and mortality. © 2016 Wiley Periodicals, Inc.
A Medium-Throughput Single Cell CRISPR-Cas9 Assay to Assess Gene Essentiality.
Grassian, A R; Scales, T M E; Knutson, S K; Kuntz, K W; McCarthy, N J; Lowe, C E; Moore, J D; Copeland, R A; Keilhack, H; Smith, J J; Wickenden, J A; Ribich, S
2015-01-01
Target selection for oncology is a crucial step in the successful development of therapeutics. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 editing of specific loci offers an alternative method to RNA interference and small molecule inhibitors for determining whether a cell line is dependent on a specific gene product for proliferation or survival. In our initial studies using CRISPR-Cas9 to verify the dependence on EZH2 activity for proliferation of a SMARCB1/SNF5/INI1 mutant malignant rhabdoid tumor (MRT) cell line, we noted that the initial reduction in proliferation was lost over time. We hypothesized that in the few cells that retain proliferative capacity, at least one allele of EZH2 remains functional. To verify this, we developed an assay to analyze 10s-100s of clonal cell populations for target gene disruption using restriction digest and fluorescent fragment length analyses. Our results clearly show that in cell lines in which EZH2 is essential for proliferation, at least one potentially functional allele of EZH2 is retained in the clones that survive. This assay clearly indicates whether or not a specific gene is essential for survival and/or proliferation in a given cell line. Such data can aid the development of more robust therapeutics by increasing confidence in target selection.
Bhattar, Sonali; Mehra, Bhanu; Bhalla, Preena; Rawat, Deepti
2016-11-01
Antiretroviral Therapy (ART) has changed the outlook of Human Immune-deficiency Virus (HIV)/Acquired Immuno Deficiency Syndrome (AIDS) patients worldwide. To analyse the trends in baseline CD4+ T cell counts and ART requirements in newly diagnosed HIV seropositive individuals in a Tertiary care hospital of Northern India. Out of 1263 HIV seropositive clients identified from January 2012 to June 2014, the baseline CD4+ T cell counts of only those 470 clients were analysed, who registered at the linked ART centre. The mean baseline CD4+ count of the study group was 249.77±216.0cells/mm 3 and that of male and female were 300.31±240.47cells/mm 3 and 232.38±204.25cells/mm 3 respectively. A total of 259 of 334 (77.54%) HIV reactive males, 83 of 130 (63.85%) HIV reactive females and overall 348 of 470 (74.04%) required antiretroviral treatment on enrolment. In the present study, about three-fourth of newly diagnosed HIV positive Indian patients required initiation of ART at registration. The relatively low baseline CD4+ T cell counts in this population highlights the need for timely baseline CD4+ counts testing of HIV positive patients and the urgency of initiating treatment in HIV reactive individuals in Indian health care settings.
Fabry, M E; Romero, J R; Buchanan, I D; Suzuka, S M; Stamatoyannopoulos, G; Nagel, R L; Canessa, M
1991-07-01
We have previously demonstrated that young normal (AA) and sickle cell anemia (SS) red blood cells are capable of a volume regulatory decrease response (VRD) driven by a K:Cl cotransporter that is activated by low pH or hypotonic conditions. We now report on the characteristics of young SS cells (SS2, discocytes) capable of rapid increase in density in response to swelling. We have isolated cells with high VRD response (H-VRD) and low VRD response (L-VRD) cells by incubation and density-gradient centrifugation under hypotonic conditions. Comparison of these cells in patients homozygous for hemoglobin (Hb)S indicated that H-VRD cells have 91% more reticulocytes (P less than 9 x 10(-9) than L-VRD cells, 25% less HbF (P less than 5.5 x 10(-5), 106% more NEM (N-methylmaleimide)-stimulated K:Cl cotransport activity (P less than 2 x 10(-4), and 86% more volume-stimulated K:Cl cotransport activity (P less than 1.8 x 10(-3). H-VRD and L-VRD cells have similar G-6-PD and Na+/H+ antiport activity. In agreement with the reduced percent HbF in H-VRD cells, F cells (red blood cells that contain fetal Hb) are depleted from the H-VRD population; however, F reticulocytes are enriched in the H-VRD population to the same extent as non-F reticulocytes, which suggests that both F and non-F reticulocytes have a similar initial distribution of volume-sensitive K:Cl cotransport activity but that it may be more rapidly inactivated in F than in S reticulocytes. We find that H-VRD cells consist of 20% reticulocytes (or 79% of all reticulocytes in SS2) and 80% more mature cells. This study demonstrates the role of K:Cl cotransport in determining red blood cell density, the heterogeneity of K:Cl cotransport activity in reticulocytes, and the capacity for rapid change in the density of reticulocytes with high K:Cl cotransport activity. We speculate that the H-VRD population may be more susceptible to generation of dense and irreversibly sickled cells.
Richards, C D; Russell, W J; Smaje, J C
1975-01-01
1. The actions of ether and methoxyflurane on the evoked potentials of in vitro preparations of the guinea-pig olfactory cortex were studied. Following stimulation of the lateral olfactory tract (l.o.t.) evoked potentials could be recorded from the cortical surface; these potentials consisted of an initial wave (the compound action potential of the l.o.t.) followed by a negative field potential which was associated with the synchronous excitation of many superficial excitatory synapses (population e.p.s.p.). Superimposed on the population e.p.s.p. was a number of positive peaks. These positive peaks reflect the synchronous discharge of many neurones and so have been called population spikes. 2. When ether or methoxyflurane was added to the gas stream that superfused the surface of the preparations, the population e.p.s.p.s. and population spikes were depressed at lower concentrations than those required to depress the compound action potential of the afferent fibres. 3. The evoked activity of individual cells in the cortex was depressed by ether and methoxyflurane. However, five of the twelve cells tested in ether showed an increase in their evoked activity at concentrations below 4-5%, but at higher concentrations these cells also became depressed. 4. Both ether and methoxyflurane depressed the sensitivity of cortical neurones to iontophoretically applied L-glutamate and may similarly depress the sensitivity of the post-synaptic membrane to the released transmitter substance. 5. Neither anaesthetic appeared to increase the threshold depolarization required for nerve impulse generation. Thus, the decrease of the discharge of the post-synaptic cells was primarily caused by a depression of chemical transmission. 6. Ether caused some cells in the cortex to alter their normal pattern of synaptically evoked discharge and both anaesthetics induced similar changes during excitation by glutamate. PMID:168356
B Cell Antigen Receptor Signaling and Internalization Are Mutually Exclusive Events
Hou, Ping; Araujo, Elizabeth; Zhao, Tong; Zhang, Miao; Massenburg, Don; Veselits, Margaret; Doyle, Colleen; Dinner, Aaron R; Clark, Marcus R
2006-01-01
Engagement of the B cell antigen receptor initiates two concurrent processes, signaling and receptor internalization. While both are required for normal humoral immune responses, the relationship between these two processes is unknown. Herein, we demonstrate that following receptor ligation, a small subpopulation of B cell antigen receptors are inductively phosphorylated and selectively retained at the cell surface where they can serve as scaffolds for the assembly of signaling molecules. In contrast, the larger population of non-phosphorylated receptors is rapidly endocytosed. Each receptor can undergo only one of two mutually exclusive fates because the tyrosine-based motifs that mediate signaling when phosphorylated mediate internalization when not phosphorylated. Mathematical modeling indicates that the observed competition between receptor phosphorylation and internalization enhances signaling responses to low avidity ligands. PMID:16719564
Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei
Park, Kyunghyuk; Frost, Jennifer M.; Adair, Adam James; Kim, Dong Min; Yun, Hyein; Brooks, Janie S.; Fischer, Robert L.; Choi, Yeonhee
2016-01-01
The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75–90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction. PMID:27788573
Atanasiu, Doina; Saw, Wan Ting; Gallagher, John R.; Hannah, Brian P.; Matsuda, Zene; Whitbeck, J. Charles; Cohen, Gary H.
2013-01-01
Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, “slow and fast,” emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a “hair trigger.” Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion. PMID:23946457
Epirubicin-Adsorbed Nanodiamonds Kill Chemoresistant Hepatic Cancer Stem Cells
2015-01-01
Chemoresistance is a primary cause of treatment failure in cancer and a common property of tumor-initiating cancer stem cells. Overcoming mechanisms of chemoresistance, particularly in cancer stem cells, can markedly enhance cancer therapy and prevent recurrence and metastasis. This study demonstrates that the delivery of Epirubicin by nanodiamonds is a highly effective nanomedicine-based approach to overcoming chemoresistance in hepatic cancer stem cells. The potent physical adsorption of Epirubicin to nanodiamonds creates a rapidly synthesized and stable nanodiamond–drug complex that promotes endocytic uptake and enhanced tumor cell retention. These attributes mediate the effective killing of both cancer stem cells and noncancer stem cells in vitro and in vivo. Enhanced treatment of both tumor cell populations results in an improved impairment of secondary tumor formation in vivo compared with treatment by unmodified chemotherapeutics. On the basis of these results, nanodiamond-mediated drug delivery may serve as a powerful method for overcoming chemoresistance in cancer stem cells and markedly improving overall treatment against hepatic cancers. PMID:25437772
Contact enhancement of locomotion in spreading cell colonies
NASA Astrophysics Data System (ADS)
D'Alessandro, Joseph; Solon, Alexandre P.; Hayakawa, Yoshinori; Anjard, Christophe; Detcheverry, François; Rieu, Jean-Paul; Rivière, Charlotte
2017-10-01
The dispersal of cells from an initially constrained location is a crucial aspect of many physiological phenomena, ranging from morphogenesis to tumour spreading. In such processes, cell-cell interactions may deeply alter the motion of single cells, and in turn the collective dynamics. While contact phenomena like contact inhibition of locomotion are known to come into play at high densities, here we focus on the little explored case of non-cohesive cells at moderate densities. We fully characterize the spreading of micropatterned colonies of Dictyostelium discoideum cells from the complete set of individual trajectories. From data analysis and simulation of an elementary model, we demonstrate that contact interactions act to speed up the early population spreading by promoting individual cells to a state of higher persistence, which constitutes an as-yet unreported contact enhancement of locomotion. Our findings also suggest that the current modelling paradigm of memoryless active particles may need to be extended to account for the history-dependent internal state of motile cells.
Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P
2015-01-01
BACKGROUND Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam+CD44−CD49fHi basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. METHODS Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam+CD44− with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam+CD44−CD49fHi FC, adult Epcam+CD44−CD49fHi TIC, Epcam+CD44+CD49fHi basal cells (BC), and Epcam+CD44−CD49fLo luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. RESULTS Grafts retrieved from Epcam+CD44− fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. CONCLUSIONS Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. Prostate 75: 764–776, 2015. © The Authors. The Prostate, published by Wiley Periodicals, Inc. PMID:25663004
Liu, Haibo; Cadaneanu, Radu M; Lai, Kevin; Zhang, Baohui; Huo, Lihong; An, Dong Sun; Li, Xinmin; Lewis, Michael S; Garraway, Isla P
2015-05-01
Human fetal prostate buds appear in the 10th gestational week as solid cords, which branch and form lumens in response to androgen 1. Previous in vivo analysis of prostate epithelia isolated from benign prostatectomy specimens indicated that Epcam⁺ CD44⁻ CD49f(Hi) basal cells possess efficient tubule initiation capability relative to other subpopulations 2. Stromal interactions and branching morphogenesis displayed by adult tubule-initiating cells (TIC) are reminiscent of fetal prostate development. In the current study, we evaluated in vivo tubule initiation by human fetal prostate cells and determined expression profiles of fetal and adult epithelial subpopulations in an effort to identify pathways used by TIC. Immunostaining and FACS analysis based on Epcam, CD44, and CD49f expression demonstrated the majority (99.9%) of fetal prostate epithelial cells (FC) were Epcam⁺ CD44⁻ with variable levels of CD49f expression. Fetal populations isolated via cell sorting were implanted into immunocompromised mice. Total RNA isolation from Epcam⁺ CD44⁻ CD49f(Hi) FC, adult Epcam⁺ CD44⁻ CD49f(Hi) TIC, Epcam⁺ CD44⁺ CD49f(Hi) basal cells (BC), and Epcam⁺ CD44⁻ CD49f(Lo) luminal cells (LC) was performed, followed by microarray analysis of 19 samples using the Affymetrix Gene Chip Human U133 Plus 2.0 Array. Data was analyzed using Partek Genomics Suite Version 6.4. Genes selected showed >2-fold difference in expression and P < 5.00E-2. Results were validated with RT-PCR. Grafts retrieved from Epcam⁺ CD44⁻ fetal cell implants displayed tubule formation with differentiation into basal and luminal compartments, while only stromal outgrowths were recovered from Epcam- fetal cell implants. Hierarchical clustering revealed four distinct groups determined by antigenic profile (TIC, BC, LC) and developmental stage (FC). TIC and BC displayed basal gene expression profiles, while LC expressed secretory genes. FC had a unique profile with the most similarities to adult TIC. Functional, network, and canonical pathway identification using Ingenuity Pathway Analysis Version 7.6 compiled genes with the highest differential expression (TIC relative to BC or LC). Many of these genes were found to be significantly associated with prostate tumorigenesis. Our results demonstrate clustering gene expression profiles of FC and adult TIC. Pathways associated with TIC are known to be deregulated in cancer, suggesting a cell-of-origin role for TIC versus re-emergence of pathways common to these cells in tumorigenesis. © 2015 The Authors. The Prostate, published by Wiley Periodicals, Inc.
Ehrbar, Martin; Pérez-Pomares, José M.
2013-01-01
The non-muscular cells that populate the space found between cardiomyocyte fibers are known as ‘cardiac interstitial cells’ (CICs). CICs are heterogeneous in nature and include different cardiac progenitor/stem cells, cardiac fibroblasts and other cell types. Upon heart damage CICs soon respond by initiating a reparative response that transforms with time into extensive fibrosis and heart failure. Despite the biomedical relevance of CICs, controversy remains on the ontogenetic relationship existing between the different cell kinds homing at the cardiac interstitium, as well as on the molecular signals that regulate their differentiation, maturation, mutual interaction and role in adult cardiac homeostasis and disease. Our work focuses on the analysis of epicardial-derived cells, the first cell type that colonizes the cardiac interstitium. We present here a characterization and an experimental analysis of the differentiation potential and mobilization properties of a new cell line derived from mouse embryonic epicardium (EPIC). Our results indicate that these cells express some markers associated with cardiovascular stemness and retain part of the multipotent properties of embryonic epicardial derivatives, spontaneously differentiating into smooth muscle, and fibroblast/myofibroblast-like cells. Epicardium-derived cells are also shown to initiate a characteristic response to different growth factors, to display a characteristic proteolytic expression profile and to degrade biological matrices in 3D in vitro assays. Taken together, these data indicate that EPICs are relevant to the analysis of epicardial-derived CICs, and are a god model for the research on cardiac fibroblasts and the role these cells play in ventricular remodeling in both ischemic or non/ischemic myocardial disease. PMID:23349729
Dietary-induced hyperthyroidism marginally affects neonatal testicular development.
Rijntjes, Eddy; Wientjes, Anna T; Swarts, Hans J M; de Rooij, Dirk G; Teerds, Katja J
2008-01-01
The objective of this study was to determine whether dietary-induced mild fetal/neonatal hyperthyroidism influenced the initiation of spermatogenesis and the development of the adult-type Leydig cell population. Previously, the effects of neonatally induced hyperthyroidism have been investigated in rats using rather high doses (5 to 10 microg/100 g body weight) of tri-iodothyronine, which not only influenced testicular development, but also negatively affected the general body condition of the animals. To induce hyperthyroidism the diet of the dams was supplemented with 15 mug thyroxine (T(4))/100 g body weight 2 weeks prior to mating and the dams and their offspring were kept on this diet until sacrifice. Pups were killed between days 7 and 64 after birth. At the age of 12 days plasma thyroid-stimulating hormone (TSH) levels tended to be lower in hyperthyroid pups, and from the age of 15 days onwards plasma TSH levels were significantly lower in hyperthyroid animals. Concomitantly, plasma T(4) levels were significantly elevated. From the age of 12 days onwards, plasma follicle-stimulating hormone levels were lower in hyperthyroid animals compared with age-matched control groups. Sertoli cell differentiation did not seem to be influenced by the mild hyperthyroid condition, as no difference in tubule lumen formation was observed between euthyroid and hyperthyroid animals. Nevertheless, a small effect on the progression of spermatogenesis was observed 15 days after birth, as the most advanced type of germ cells in the control testis were pachytene spermatocytes, whereas in the hyperthyroid testis these were leptotene and zygotene spermatocytes. Leydig cell proliferation was decreased in the hyperthyroid pups at the age of 15 days and slightly elevated at later ages, suggesting a possible slower onset of the proliferative activity of these cells than in the euthyroid control animals. Taken together, the present results suggest that even mild dietary-induced hyperthyroidism transiently affects the development of the adult-type Leydig cell population as well as the initial progression of spermatogenesis.
Characterization of CD133+ parenchymal cells in the liver: histology and culture.
Yoshikawa, Seiichi; Zen, Yoh; Fujii, Takahiko; Sato, Yasunori; Ohta, Tetsuo; Aoyagi, Yutaka; Nakanuma, Yasuni
2009-10-21
To reveal the characteristics of CD133(+) cells in the liver. This study examined the histological characteristics of CD133(+) cells in non-neoplastic and neoplastic liver tissues by immunostaining, and also analyzed the biological characteristics of CD133(+) cells derived from human hepatocellular carcinoma (HCC) or cholangiocarcinoma cell lines. Immunostaining revealed constant expression of CD133 in non-neoplastic and neoplastic biliary epithelium, and these cells had the immunophenotype CD133(+)/CK19(+)/HepPar-1(-). A small number of CD133(+)/CK19(-)/HepPar-1(+) cells were also identified in HCC and combined hepatocellular and cholangiocarcinoma. In addition, small ductal structures, resembling the canal of Hering, partly surrounded by hepatocytes were positive for CD133. CD133 expression was observed in three HCC (HuH7, PLC5 and HepG2) and two cholangiocarcinoma cell lines (HuCCT1 and CCKS1). Fluorescence-activated cell sorting (FACS) revealed that CD133(+) and CD133(-) cells derived from HuH7 and HuCCT1 cells similarly produced CD133(+) and CD133(-) cells during subculture. To examine the relationship between CD133(+) cells and the side population (SP) phenotype, FACS was performed using Hoechst 33342 and a monoclonal antibody against CD133. The ratios of CD133(+)/CD133(-) cells were almost identical in the SP and non-SP in HuH7. In addition, four different cellular populations (SP/CD133(+), SP/CD133(-), non-SP/CD133(+), and non-SP/CD133(-)) could similarly produce CD133(+) and CD133(-) cells during subculture. This study revealed that CD133 could be a biliary and progenitor cell marker in vivo. However, CD133 alone is not sufficient to detect tumor-initiating cells in cell lines.
Wu, Xiaofen; Pedersen, Karsten; Edlund, Johanna; Eriksson, Lena; Åström, Mats; Andersson, Anders F; Bertilsson, Stefan; Dopson, Mark
2017-03-23
Deep terrestrial biosphere waters are separated from the light-driven surface by the time required to percolate to the subsurface. Despite biofilms being the dominant form of microbial life in many natural environments, they have received little attention in the oligotrophic and anaerobic waters found in deep bedrock fractures. This study is the first to use community DNA sequencing to describe biofilm formation under in situ conditions in the deep terrestrial biosphere. In this study, flow cells were attached to boreholes containing either "modern marine" or "old saline" waters of different origin and degree of isolation from the light-driven surface of the earth. Using 16S rRNA gene sequencing, we showed that planktonic and attached populations were dissimilar while gene frequencies in the metagenomes suggested that hydrogen-fed, carbon dioxide- and nitrogen-fixing populations were responsible for biofilm formation across the two aquifers. Metagenome analyses further suggested that only a subset of the populations were able to attach and produce an extracellular polysaccharide matrix. Initial biofilm formation is thus likely to be mediated by a few bacterial populations which were similar to Epsilonproteobacteria, Deltaproteobacteria, Betaproteobacteria, Verrucomicrobia, and unclassified bacteria. Populations potentially capable of attaching to a surface and to produce extracellular polysaccharide matrix for attachment were identified in the terrestrial deep biosphere. Our results suggest that the biofilm populations were taxonomically distinct from the planktonic community and were enriched in populations with a chemolithoautotrophic and diazotrophic metabolism coupling hydrogen oxidation to energy conservation under oligotrophic conditions.
Helminth-conditioned dendritic cells prime CD4+ T cells to IL-4 production in vivo.
Connor, Lisa M; Tang, Shiau-Choot; Camberis, Mali; Le Gros, Graham; Ronchese, Franca
2014-09-15
Dendritic cells (DC) are critical for the initiation of immune responses; however, their role in priming IL-4-producing Th2 cells in vivo is not fully understood. We used a model of intradermal injection with fluorescent-labeled, nonviable larvae from the helminth parasite nonviable Nippostrongylus brasiliensis L3 larvae (Nb), a strong inducer of Th2 responses, together with IL-4-GFP reporter mice that enable a sensitive detection of IL-4 production to examine the contribution of DC to the priming of IL-4-producing CD4(+) T cells in vivo. We found that parasite material is taken up by two distinct DC populations in draining lymph nodes: a mostly CD11c(int)MHC class II (MHCII)(hi)CD11b(+)Ly6C(-) dermal DC population and a CD11c(hi)MHCII(int)CD11b(+)Ly6C(+) monocyte-derived DC population. After Nb treatment, these two DC populations appeared in the draining lymph nodes in comparable numbers and with similar kinetics; however, treatment with pertussis toxin blocked the migration of dermal DC and the priming of IL-4-producing T cells, but only partially affected monocyte-derived DC numbers. In line with this observation, transfer of OVA-loaded CD11c(int)MHCII(hi) DC from Nb-treated mice into naive hosts could sensitize OVA-specific CD4(+) T cells to IL-4 production, whereas transfer of CD11c(int)MHCII(hi) DC from naive mice, or CD11c(hi)MHCII(int) DC from Nb-treated or naive mice, induced CD4(+) T cell expansion but no IL-4 production. Phenotypic analysis of Nb-loaded CD11c(int)MHCII(hi) DC revealed expression of programmed death ligand 2, CD301b, IFN regulatory factor 4, and moderate upregulation of OX40 ligand. However, thymic stromal lymphopoietin and OX40 ligand were not required for Th2 priming. Thus, our data suggest that appropriate stimuli can induce DC to express the unique signals sufficient to direct CD4(+) T cells to Th2 differentiation. Copyright © 2014 by The American Association of Immunologists, Inc.
Long-Boyle, Janel; Savic, Rada; Yan, Shirley; Bartelink, Imke; Musick, Lisa; French, Deborah; Law, Jason; Horn, Biljana; Cowan, Morton J.; Dvorak, Christopher C.
2014-01-01
Background Population pharmacokinetic (PK) studies of busulfan in children have shown that individualized model-based algorithms provide improved targeted busulfan therapy when compared to conventional dosing. The adoption of population PK models into routine clinical practice has been hampered by the tendency of pharmacologists to develop complex models too impractical for clinicians to use. The authors aimed to develop a population PK model for busulfan in children that can reliably achieve therapeutic exposure (concentration-at-steady-state, Css) and implement a simple, model-based tool for the initial dosing of busulfan in children undergoing HCT. Patients and Methods Model development was conducted using retrospective data available in 90 pediatric and young adult patients who had undergone HCT with busulfan conditioning. Busulfan drug levels and potential covariates influencing drug exposure were analyzed using the non-linear mixed effects modeling software, NONMEM. The final population PK model was implemented into a clinician-friendly, Microsoft Excel-based tool and used to recommend initial doses of busulfan in a group of 21 pediatric patients prospectively dosed based on the population PK model. Results Modeling of busulfan time-concentration data indicates busulfan CL displays non-linearity in children, decreasing up to approximately 20% between the concentrations of 250–2000 ng/mL. Important patient-specific covariates found to significantly impact busulfan CL were actual body weight and age. The percentage of individuals achieving a therapeutic Css was significantly higher in subjects receiving initial doses based on the population PK model (81%) versus historical controls dosed on conventional guidelines (52%) (p = 0.02). Conclusion When compared to the conventional dosing guidelines, the model-based algorithm demonstrates significant improvement for providing targeted busulfan therapy in children and young adults. PMID:25162216
Mirza, Sheefa; Jain, Nayan; Rawal, Rakesh
2017-03-01
Lung cancer stem cells are supposed to be the main drivers of tumor initiation, maintenance, drug resistance, and relapse of the disease. Hence, identification of the cellular and molecular aspects of these cells is a prerequisite for targeted therapy of lung cancer. Currently, analysis of circulating tumor cells has the potential to become the main diagnostic technique to monitor disease progression or therapeutic response as it is non-invasive. However, accurate detection of circulating tumor cells has remained a challenge, as epithelial cell markers used so far are not always trustworthy for detecting circulating tumor cells, especially during epithelial-mesenchymal transition. As cancer stem cells are the only culprit to initiate metastatic tumors, our aim was to isolate and characterize circulating tumor stem cells rather than circulating tumor cells from the peripheral blood of NSCLC adenocarcinoma as limited data are available addressing the gene expression profiling of lung cancer stem cells. Here, we reveal that CD44(+)/CD24(-) population in circulation not only exhibit stem cell-related genes but also possess epithelial-mesenchymal transition characteristics. In conclusion, the use of one or more cancer stem cell markers along with epithelial, mesenchymal and epithelial mesenchymal transition markers will prospectively provide the most precise assessment of the threat for recurrence and metastatic disease and has a great potential for forthcoming applications in harvesting circulating tumor stem cells and their downstream applications. Our results will aid in developing diagnostic and prognostic modalities and personalized treatment regimens like dendritic cell-based immunotherapy that can be utilized for targeting and eliminating circulating tumor stem cells, to significantly reduce the possibility of relapse and improve clinical outcomes.
Enteroendocrine cells: a site of 'taste' in gastrointestinal chemosensing.
Sternini, Catia; Anselmi, Laura; Rozengurt, Enrique
2008-02-01
This review discusses the role of enteroendocrine cells of the gastrointestinal tract as chemoreceptors that sense lumen contents and induce changes in gastrointestinal function and food intake through the release of signaling substances acting on a variety of targets locally or at a distance. Recent evidence supports the concept that chemosensing in the gut involves G protein-coupled receptors and effectors that are known to mediate gustatory signals in the oral cavity. These include sweet-taste and bitter-taste receptors, and their associated G proteins, which are expressed in the gastrointestinal mucosa, including selected populations of enteroendocrine cells. In addition, taste receptor agonists elicit a secretory response in enteroendocrine cells in vitro and in animals in vivo, and induce neuronal activation. Taste-signaling molecules expressed in the gastrointestinal mucosa might participate in the functional detection of nutrients and harmful substances in the lumen and prepare the gut to absorb them or initiate a protective response. They might also participate in the control of food intake through the activation of gut-brain neural pathways. These findings provide a new dimension to unraveling the regulatory circuits initiated by luminal contents of the gastrointestinal tract.
Cell-of-Origin of Cancer versus Cancer Stem Cells: Assays and Interpretations.
Rycaj, Kiera; Tang, Dean G
2015-10-01
A tumor originates from a normal cell that has undergone tumorigenic transformation as a result of genetic mutations. This transformed cell is the cell-of-origin for the tumor. In contrast, an established clinical tumor is sustained by subpopulations of self-renewing cancer cells operationally called cancer stem cells (CSC) that can generate, intraclonally, both tumorigenic and nontumorigenic cells. Identifying and characterizing tumor cell-of-origin and CSCs should help elucidate tumor cell heterogeneity, which, in turn, should help understand tumor cell responses to clinical treatments, drug resistance, tumor relapse, and metastatic spread. Both tumor transplantation and lineage-tracing assays have been helpful in characterizing these cancer cell populations, although each system has its strengths and caveats. In this article, we briefly review and summarize advantages and limitations of both assays in support of a combinatorial approach to accurately define the roles of both cancer-initiating and cancer-propagating cells. As an aside, we also wish to clarify the definitions of cancer cell-of-origin and CSCs, which are often interchangeably used by mistake. ©2015 American Association for Cancer Research.
Yoo, Byong Hoon; Axlund, Sunshine Daddario; Kabos, Peter; Reid, Brian G; Schaack, Jerome; Sartorius, Carol A; LaBarbera, Daniel V
2012-10-01
Breast cancers expressing hormone receptors for estrogen (ER) and progesterone (PR) represent ~70% of all cases and are treated with both ER-targeted and chemotherapies, with near 40% becoming resistant. We have previously described that in some ER(+) tumors, the resistant cells express cytokeratin 5 (CK5), a putative marker of breast stem and progenitor cells. CK5(+) cells have lost expression of ER and PR, express the tumor-initiating cell surface marker CD44, and are relatively quiescent. In addition, progestins, which increase breast cancer incidence, expand the CK5(+) subpopulation in ER(+)PR(+) breast cancer cell lines. We have developed models to induce and quantitate CK5(+)ER(-)PR(-) cells, using CK5 promoter-driven luciferase (Fluc) or green fluorescent protein (GFP) reporters stably transduced into T47D breast cancer cells (CK5Pro-GFP or CK5Pro-Luc). We validated the CK5Pro-GFP-T47D model for high-content screening in 96-well microplates and performed a pilot screen using a focused library of 280 compounds from the National Institutes of Health clinical collection. Four hits were obtained that significantly abrogated the progestin-induced CK5(+) cell population, three of which were members of the retinoid family. Hence, this approach will be useful in discovering small molecules that could potentially be developed as combination therapies, preventing the acquisition of a drug-resistant subpopulation.
Hassan, Khaled A.; Wang, Luo; Korkaya, Hasan; Chen, Guoan; Maillard, Ivan; Beer, David G.; Kalemkerian, Gregory P.; Wicha, Max S.
2013-01-01
Purpose The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal, differentiation and tumor-initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells. Experimental Design We investigated the role of Notch activity in lung adenocarcinoma utilizing a Notch GFP-reporter construct and a gamma-secretase inhibitor (GSI), which inhibits Notch pathway activity. Results Transduction of lung cancer cells with Notch GFP-reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media, and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis, we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators), in a group of 441 lung adenocarcinoma patients. This correlation was further confirmed in an independent group of 89 adenocarcinoma patients where Hes-1 overexpression correlated with poor overall survival. Conclusions Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma. PMID:23444212
Sonnaert, Maarten; Luyten, Frank P.; Papantoniou, Ioannis
2015-01-01
The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion. PMID:26313143
Sonnaert, Maarten; Luyten, Frank P; Schrooten, Jan; Papantoniou, Ioannis
2015-01-01
The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion.
Left Atrial Appendages from Adult Hearts Contain a Reservoir of Diverse Cardiac Progenitor Cells
Platt, Yardanna; Helman, Yaron; Feinberg, Yael; Lotan, Chaim; Beeri, Ronen
2013-01-01
Aims There is strong evidence supporting the claim that endogenous cardiac progenitor cells (CPCs) are key players in cardiac regeneration, but the anatomic source and phenotype of the master cardiac progenitors remains uncertain. Our aim was to investigate the different cardiac stem cell populations in the left atrial appendage (LAA) and their fates. Methods and Results We investigated the CPC content and profile of adult murine LAAs using immunohistochemistry and flow cytometry. We demonstrate that the LAA contains a large number of CPCs relative to other areas of the heart, representing over 20% of the total cell number. We grew two distinct CPC populations from the LAA by varying the degree of proteolysis. These differed by their histological location, surface marker profiles and growth dynamics. Specifically, CD45pos cells grew with milder proteolysis, while CD45neg cells grew mainly with more intense proteolysis. Both cell types could be induced to differentiate into cells with cardiomyocyte markers and organelles, albeit by different protocols. Many CD45pos cells expressed CD45 initially and rapidly lost its expression while differentiating. Conclusions Our results demonstrate that the left atrial appendage plays a role as a reservoir of multiple types of progenitor cells in murine adult hearts. Two different types of CPCs were isolated, differing in their epicardial-myocardial localization. Considering studies demonstrating layer-specific origins of different cardiac progenitor cells, our findings may shed light on possible pathways to study and utilize the diversity of endogenous progenitor cells in the adult heart. PMID:23555001
Donnell, Deborah; Baeten, Jared M; Kiarie, James; Thomas, Katherine K; Stevens, Wendy; Cohen, Craig R; McIntyre, James; Lingappa, Jairam R; Celum, Connie
2010-06-12
High plasma HIV-1 RNA concentrations are associated with increased risk of HIV-1 transmission. Initiation of antiretroviral therapy (ART) reduces plasma HIV-1 concentrations. We aimed to assess the effect of ART use by patients infected with HIV-1 on risk of transmission to their uninfected partners. Participants in our prospective cohort analysis were from a randomised placebo-controlled trial that enrolled heterosexual African adults who were seropositive for both HIV-1 and herpes simplex virus type 2, and their HIV-1 seronegative partners. At enrolment, HIV-1 infected participants had CD4 counts of 250 cells per microL or greater and did not meet national guidelines for ART initiation; during 24 months of follow-up, CD4 counts were measured every 6 months and ART was initiated in accordance with national guidelines. Uninfected partners were tested for HIV-1 every 3 months. The primary outcome was genetically-linked HIV-1 transmission within the study partnership. We assessed rates of HIV-1 transmission by ART status of infected participants. 3381 couples were eligible for analysis. 349 (10%) participants with HIV-1 initiated ART during the study, at a median CD4 cell count of 198 (IQR 161-265) cells per microL. Only one of 103 genetically-linked HIV-1 transmissions was from an infected participant who had started ART, corresponding to transmission rates of 0.37 (95% CI 0.09-2.04) per 100 person-years in those who had initiated treatment and 2.24 (1.84-2.72) per 100 person-years in those who had not-a 92% reduction (adjusted incidence rate ratio 0.08, 95% CI 0.00-0.57, p=0.004). In participants not on ART, the highest HIV-1 transmission rate (8.79 per 100 person-years) was from those with CD4 cell counts lower than 200 cells per microL. In couples in whom the untreated HIV-1 infected partner had a CD4 cell count greater than 200 cells per microL, 66 (70%) of 94 transmissions occurred when plasma HIV-1 concentrations exceeded 50 000 copies per mL. Low CD4 cell counts and high plasma HIV-1 concentrations might guide use of ART to achieve an HIV-1 prevention benefit. Provision of ART to HIV-1 infected patients could be an effective strategy to achieve population-level reductions in HIV-1 transmission. Bill & Melinda Gates Foundation; US National Institutes of Health. Copyright 2010 Elsevier Ltd. All rights reserved.
2013-01-01
Background Accumulating evidence supports cancer to initiate and develop from a small population of stem-like cells termed as cancer stem cells (CSC). The exact phenotype of CSC and their counterparts in normal mammary gland is not well characterized. In this study our aim was to evaluate the phenotype and function of stem/progenitor cells in normal mammary epithelial cell populations and their malignant counterparts. Methods Freshly isolated cells from both normal and malignant human breasts were sorted using 13 widely used stem/progenitor cell markers individually or in combination by multi-parametric (up to 9 colors) cell sorting. The sorted populations were functionally evaluated by their ability to form colonies and mammospheres, in vitro. Results We have compared, for the first time, the stem/progenitor markers of normal and malignant breasts side-by-side. Amongst all markers tested, we found CD44high/CD24low cell surface marker combination to be the most efficient at selecting normal epithelial progenitors. Further fractionation of CD44high/CD24low positive cells showed that this phenotype selects for luminal progenitors within Ep-CAMhigh/CD49f + cells, and enriches for basal progenitors within Ep-CAM-/low/CD49f + cells. On the other hand, primary breast cancer samples, which were mainly luminal Ep-CAMhigh, had CD44high/CD24low cells among both CD49fneg and CD49f + cancer cell fractions. However, functionally, CSC were predominantly CD49f + proposing the use of CD44high/CD24low in combination with Ep-CAM/CD49f cell surface markers to further enrich for CSC. Conclusion Our study clearly demonstrates that both normal and malignant breast cells with the CD44high/CD24low phenotype have the highest stem/progenitor cell ability when used in combination with Ep-CAM/CD49f reference markers. We believe that this extensive characterization study will help in understanding breast cancer carcinogenesis, heterogeneity and drug resistance. PMID:23768049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Ryan; Dill, Brian; Pan, Chongle
2011-01-01
Proteomes of acid mine drainage biofilms at different stages of ecological succession were examined to understand microbial responses to changing community membership. We evaluated the degree of reproducibility of the community proteomes between samples of the same growth stage and found stable and predictable protein abundance patterns across time and sampling space, allowing for a set of 50 classifier proteins to be identified for use in predicting growth stages of undefined communities. Additionally, physiological changes in the dominant species, Leptospirillum Group II, were analysed as biofilms mature. During early growth stages, this population responds to abiotic stresses related to growthmore » on the acid mine drainage solution. Enzymes involved in protein synthesis, cell division and utilization of 1- and 2-carbon compounds were more abundant in early growth stages, suggesting rapid growth and a reorganization of metabolism during biofilm initiation. As biofilms thicken and diversify, external stresses arise from competition for dwindling resources, which may inhibit cell division of Leptospirillum Group II through the SOS response. This population also represses translation and synthesizes more complex carbohydrates and amino acids in mature biofilms. These findings provide unprecedented insight into the physiological changes that may result from competitive interactions within communities in natural environments.« less
Kurokawa, Hiroshi; Sakaue-Sawano, Asako; Imamura, Takeshi; Miyawaki, Atsushi; Iimura, Tadahiro
2014-01-01
In multicellular organism development, a stochastic cellular response is observed, even when a population of cells is exposed to the same environmental conditions. Retrieving the spatiotemporal regulatory mode hidden in the heterogeneous cellular behavior is a challenging task. The G1/S transition observed in cell cycle progression is a highly stochastic process. By taking advantage of a fluorescence cell cycle indicator, Fucci technology, we aimed to unveil a hidden regulatory mode of cell cycle progression in developing zebrafish. Fluorescence live imaging of Cecyil, a zebrafish line genetically expressing Fucci, demonstrated that newly formed notochordal cells from the posterior tip of the embryonic mesoderm exhibited the red (G1) fluorescence signal in the developing notochord. Prior to their initial vacuolation, these cells showed a fluorescence color switch from red to green, indicating G1/S transitions. This G1/S transition did not occur in a synchronous manner, but rather exhibited a stochastic process, since a mixed population of red and green cells was always inserted between newly formed red (G1) notochordal cells and vacuolating green cells. We termed this mixed population of notochordal cells, the G1/S transition window. We first performed quantitative analyses of live imaging data and a numerical estimation of the probability of the G1/S transition, which demonstrated the existence of a posteriorly traveling regulatory wave of the G1/S transition window. To obtain a better understanding of this regulatory mode, we constructed a mathematical model and performed a model selection by comparing the results obtained from the models with those from the experimental data. Our analyses demonstrated that the stochastic G1/S transition window in the notochord travels posteriorly in a periodic fashion, with doubled the periodicity of the neighboring paraxial mesoderm segmentation. This approach may have implications for the characterization of the pathophysiological tissue growth mode. PMID:25474567
Klein-Szanto, A. J.; Terzaghi, M.; Mirkin, L. D.; Martin, D.; Shiba, M.
1982-01-01
A new model using xenotransplanted human epithelia was developed for the study of toxic and carcinogenic effects of chemicals. Epithelial cells from the respiratory tract of 4 male and 3 female premature and fullterm fetuses were enzymatically removed and inoculated into deepithelialized rat tracheas. These were sealed at both ends and transplanted subcutaneously into nude mice. After 3-4 weeks, a normal mucociliary epithelium covered the tracheal lumen. At this stage the epithelial cells could be isolated again and transplanted into new denuded rat tracheas. This passaging could be repeated up to six times, each permitting an amplification factor of approximately 3. Tracheal transplants containing cells of human origin (in vivo Passages 2-4) were treated with 7,12-dimethylbenz(a)anthracene. Hyperplasias, squamous metaplasias, and dysplasias were seen 1-8 weeks after initiation of treatment, indicating that the responses of human and rodent epithelial cells to polycyclic aromatic hydrocarbons are similar. Initial experiments with skin and esophageal epithelia suggest that other covering epithelia could also be used in this fashion for evaluation of toxicants and carcinogens that are likely to come into contact with these tissues. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:6821529
Pérez-Garrastachu, Miguel; Arluzea, Jon; Andrade, Ricardo; Díez-Torre, Alejandro; Urtizberea, Marta; Silió, Margarita; Aréchaga, Juan
2017-09-03
Nucleoporins are the main components of the nuclear-pore complex (NPC) and were initially considered as mere structural elements embedded in the nuclear envelope, being responsible for nucleocytoplasmic transport. Nevertheless, several recent scientific reports have revealed that some nucleoporins participate in nuclear processes such as transcription, replication, DNA repair and chromosome segregation. Thus, the interaction of NPCs with chromatin could modulate the distribution of chromosome territories relying on the epigenetic state of DNA. In particular, the nuclear basket proteins Tpr and Nup153, and the FG-nucleoporin Nup98 seem to play key roles in all these novel functions. In this work, histone deacetylase inhibitors (HDACi) were used to induce a hyperacetylated state of chromatin and the behavior of the mentioned nucleoporins was studied. Our results show that, after HDACi treatment, Tpr, Nup153 and Nup98 are translocated from the nuclear pore toward the interior of the cell nucleus, accumulating as intranuclear nucleoporin clusters. These transitory structures are highly dynamic, and are mainly present in the population of cells arrested at the G0/G1 phase of the cell cycle. Our results indicate that the redistribution of these nucleoporins from the nuclear envelope to the nuclear interior may be implicated in the early events of cell cycle initialization, particularly during the G1 phase transition.
Vitetta, Ellen S.; Grundke-Iqbal, Inge; Holmes, Kathryn V.; Uhr, Jonathan W.
1974-01-01
Lymphoid cells from the spleen, lymph nodes, and thoracic duct of axenic and control mice were incubated with [3H]tyrosine and synthesis and secretion of protein and Ig studied. It was found that only IgM was synthesized by cells from axenic mice whereas cells from control mice also synthesized IgG. Splenocytes from both axenic and control mice had 8S IgM on their surface. Radiolabeled splenocytes from axenic mice were incubated to determine the kinetics of release of 125I-labeled cell surface IgM and [3H]tyrosine-labeled IgM. Cell surface IgM was shed as 8S with an initial half-life of release of 5–8 h whereas [3H]tyrosine-labeled Ig was secreted as 19S with an initial half-life of 2–3 h. These findings suggest that two independent pathways are involved. It is suggested that small lymphocytes shed 8S IgM and plasma cells secrete 19S IgM. It was observed that lymphoid cells from axenic mice synthesize a higher proportion of IgM relative to total protein. Electron microscopic examination of splenocytes from such mice revealed a markedly higher proportion of plasma cells and a paucity of lymphoblasts compared to controls. It was suggested, therefore, that axenic mice lack a population of stimulated T cells which can induce a switch from IgM to IgG synthesis and which is capable of suppressing IgM synthesis. Lymphoid cells from axenic mice synthesize and secrete less protein that coprecipitates with antigen-antibody complexes. PMID:4544585
Sickle cell disease in tribal populations in India
Colah, Roshan B.; Mukherjee, Malay B.; Martin, Snehal; Ghosh, Kanjaksha
2015-01-01
The sickle gene is widespread among many tribal population groups in India with prevalence of heterozygotes varying from 1-40 per cent. Co-inheritance of the sickle gene with β-thalassaemia, HbD Punjab and glucose-6-phosphate dehydrogenase (G6PD) deficiency has also been reported. Most of the screening programmes in India now use high performance liquid chromatography (HPLC) analysis although the solubility test is also sensitive and cheap. Sickle cell disease (SCD) among tribal populations is generally milder than among non-tribal groups with fewer episodes of painful crises, infections, acute chest syndrome and need for hospitalization. This has partly been attributed to the very high prevalence of α-thalassaemia among these tribes as well as higher foetal haemoglobin levels. However, the clinical presentation is variable with many cases having a severe presentation. There is not much information available on maternal and perinatal outcome in tribal women with sickle cell disease. Newborn screening programmes for SCD have recently been initiated in Maharashtra, Gujarat, Odisha and Chattisgarh and monitoring these birth cohorts will help to understand the natural history of SCD in India. Prenatal diagnosis is acceptable by tribal families in India. The Indian Council of Medical Research and the National Rural Health Mission in different States are undertaking outreach programmes for better management and control of the disease. PMID:26139766
Lessons from applied ecology: cancer control using an evolutionary double bind.
Gatenby, Robert A; Brown, Joel; Vincent, Thomas
2009-10-01
Because the metastatic cascade is largely governed by the ability of malignant cells to adapt and proliferate at the distant tissue site, we propose that disseminated cancers are analogous in many important ways to the evolutionary and ecological dynamics of exotic species. Although pests can be decimated through the application of chemical toxins, this strategy virtually never achieves robust control as evolution of resistant phenotypes typically permits population recovery to pretreatment levels. In general, biological strategies that introduce predators, parasitoids, or pathogens have achieved more durable control of pest populations even after emergence of resistant phenotypes. From this we propose that long term outcome from any treatment strategy for invasive pests, including cancer, is not limited by evolution of resistance, but rather by the phenotypic cost of that resistance. If a cancerous cell's adaptation to therapy is achieved by upregulating xenobiotic metabolism or a redundant signaling pathway, the required investment in resources is small, and the original malignant phenotype remains essentially intact. As a result, the cancer cells' initial high level of fitness is little changed and unconstrained proliferation will resume once resistance evolves. Robust population control is possible if resistance to therapy requires a substantial and costly phenotypic adaptation that also significantly reduces the organism's fitness in its original niche: an evolutionary double bind.
Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator.
Ibañez Rodriguez, María P; Noctor, Stephen C; Muñoz, Estela M
2016-01-01
The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers.
Clustering single cells: a review of approaches on high-and low-depth single-cell RNA-seq data.
Menon, Vilas
2017-12-11
Advances in single-cell RNA-sequencing technology have resulted in a wealth of studies aiming to identify transcriptomic cell types in various biological systems. There are multiple experimental approaches to isolate and profile single cells, which provide different levels of cellular and tissue coverage. In addition, multiple computational strategies have been proposed to identify putative cell types from single-cell data. From a data generation perspective, recent single-cell studies can be classified into two groups: those that distribute reads shallowly over large numbers of cells and those that distribute reads more deeply over a smaller cell population. Although there are advantages to both approaches in terms of cellular and tissue coverage, it is unclear whether different computational cell type identification methods are better suited to one or the other experimental paradigm. This study reviews three cell type clustering algorithms, each representing one of three broad approaches, and finds that PCA-based algorithms appear most suited to low read depth data sets, whereas gene clustering-based and biclustering algorithms perform better on high read depth data sets. In addition, highly related cell classes are better distinguished by higher-depth data, given the same total number of reads; however, simultaneous discovery of distinct and similar types is better served by lower-depth, higher cell number data. Overall, this study suggests that the depth of profiling should be determined by initial assumptions about the diversity of cells in the population, and that the selection of clustering algorithm(s) is subsequently based on the depth of profiling will allow for better identification of putative transcriptomic cell types. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator
Ibañez Rodriguez, María P.
2016-01-01
The adult pineal gland is composed of pinealocytes, astrocytes, microglia, and other interstitial cells that have been described in detail. However, factors that contribute to pineal development have not been fully elucidated, nor have pineal cell lineages been well characterized. We applied systematic double, triple and quadruple labeling of cell-specific markers on prenatal, postnatal and mature rat pineal gland tissue combined with confocal microscopy to provide a comprehensive view of the cellular dynamics and cell lineages that contribute to pineal gland development. The pineal gland begins as an evagination of neuroepithelium in the roof of the third ventricle. The pineal primordium initially consists of radially aligned Pax6+ precursor cells that express vimentin and divide at the ventricular lumen. After the tubular neuroepithelium fuses, the distribution of Pax6+ cells transitions to include rosette-like structures and later, dispersed cells. In the developing gland all dividing cells express Pax6, indicating that Pax6+ precursor cells generate pinealocytes and some interstitial cells. The density of Pax6+ cells decreases across pineal development as a result of cellular differentiation and microglial phagocytosis, but Pax6+ cells remain in the adult gland as a distinct population. Microglial colonization begins after pineal recess formation. Microglial phagocytosis of Pax6+ cells is not common at early stages but increases as microglia colonize the gland. In the postnatal gland microglia affiliate with Tuj1+ nerve fibers, IB4+ blood vessels, and Pax6+ cells. We demonstrate that microglia engulf Pax6+ cells, nerve fibers, and blood vessel-related elements, but not pinealocytes. We conclude that microglia play a role in pineal gland formation and homeostasis by regulating the precursor cell population, remodeling blood vessels and pruning sympathetic nerve fibers. PMID:27861587
Using Population Dose to Evaluate Community-level Health Initiatives.
Harner, Lisa T; Kuo, Elena S; Cheadle, Allen; Rauzon, Suzanne; Schwartz, Pamela M; Parnell, Barbara; Kelly, Cheryl; Solomon, Loel
2018-05-01
Successful community-level health initiatives require implementing an effective portfolio of strategies and understanding their impact on population health. These factors are complicated by the heterogeneity of overlapping multicomponent strategies and availability of population-level data that align with the initiatives. To address these complexities, the population dose methodology was developed for planning and evaluating multicomponent community initiatives. Building on the population dose methodology previously developed, this paper operationalizes dose estimates of one initiative targeting youth physical activity as part of the Kaiser Permanente Community Health Initiative, a multicomponent community-level obesity prevention initiative. The technical details needed to operationalize the population dose method are explained, and the use of population dose as an interim proxy for population-level survey data is introduced. The alignment of the estimated impact from strategy-level data analysis using the dose methodology and the data from the population-level survey suggest that dose is useful for conducting real-time evaluation of multiple heterogeneous strategies, and as a viable proxy for existing population-level surveys when robust strategy-level evaluation data are collected. This article is part of a supplement entitled Building Thriving Communities Through Comprehensive Community Health Initiatives, which is sponsored by Kaiser Permanente, Community Health. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Westphalen, C Benedikt; Takemoto, Yoshihiro; Tanaka, Takayuki; Macchini, Marina; Jiang, Zhengyu; Renz, Bernhard W; Chen, Xiaowei; Ormanns, Steffen; Nagar, Karan; Tailor, Yagnesh; May, Randal; Cho, Youngjin; Asfaha, Samuel; Worthley, Daniel L; Hayakawa, Yoku; Urbanska, Aleksandra M; Quante, Michael; Reichert, Maximilian; Broyde, Joshua; Subramaniam, Prem S; Remotti, Helen; Su, Gloria H; Rustgi, Anil K; Friedman, Richard A; Honig, Barry; Califano, Andrea; Houchen, Courtney W; Olive, Kenneth P; Wang, Timothy C
2016-04-07
The existence of adult pancreatic progenitor cells has been debated. While some favor the concept of facultative progenitors involved in homeostasis and repair, neither a location nor markers for such cells have been defined. Using genetic lineage tracing, we show that Doublecortin-like kinase-1 (Dclk1) labels a rare population of long-lived, quiescent pancreatic cells. In vitro, Dclk1+ cells proliferate readily and sustain pancreatic organoid growth. In vivo, Dclk1+ cells are necessary for pancreatic regeneration following injury and chronic inflammation. Accordingly, their loss has detrimental effects after cerulein-induced pancreatitis. Expression of mutant Kras in Dclk1+ cells does not affect their quiescence or longevity. However, experimental pancreatitis converts Kras mutant Dclk1+ cells into potent cancer-initiating cells. As a potential effector of Kras, Dclk1 contributes functionally to the pathogenesis of pancreatic cancer. Taken together, these observations indicate that Dclk1 marks quiescent pancreatic progenitors that are candidates for the origin of pancreatic cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Kim, Hoon; Zheng, Siyuan; Amini, Seyed S.; Virk, Selene M.; Mikkelsen, Tom; Brat, Daniel J.; Grimsby, Jonna; Sougnez, Carrie; Muller, Florian; Hu, Jian; Sloan, Andrew E.; Cohen, Mark L.; Van Meir, Erwin G.; Scarpace, Lisa; Laird, Peter W.; Weinstein, John N.; Lander, Eric S.; Gabriel, Stacey; Getz, Gad; Meyerson, Matthew; Chin, Lynda; Barnholtz-Sloan, Jill S.
2015-01-01
Glioblastoma (GBM) is a prototypical heterogeneous brain tumor refractory to conventional therapy. A small residual population of cells escapes surgery and chemoradiation, resulting in a typically fatal tumor recurrence ∼7 mo after diagnosis. Understanding the molecular architecture of this residual population is critical for the development of successful therapies. We used whole-genome sequencing and whole-exome sequencing of multiple sectors from primary and paired recurrent GBM tumors to reconstruct the genomic profile of residual, therapy resistant tumor initiating cells. We found that genetic alteration of the p53 pathway is a primary molecular event predictive of a high number of subclonal mutations in glioblastoma. The genomic road leading to recurrence is highly idiosyncratic but can be broadly classified into linear recurrences that share extensive genetic similarity with the primary tumor and can be directly traced to one of its specific sectors, and divergent recurrences that share few genetic alterations with the primary tumor and originate from cells that branched off early during tumorigenesis. Our study provides mechanistic insights into how genetic alterations in primary tumors impact the ensuing evolution of tumor cells and the emergence of subclonal heterogeneity. PMID:25650244
Can we induce spermatogenesis in the domestic cat using an in vitro tissue culture approach?
Amaral, Sandra; Tavares, Renata S.; Schlatt, Stefan; Ramalho-Santos, João
2018-01-01
The reduced number of animals in most wild felid populations implies a loss of genetic diversity. The death of juveniles, prior to the production of mature sperm, represents a loss of potential genetic contribution to future populations. Since 2011 mouse testicular organ culture has introduced an alternative mechanism to produce sperm in vitro from immature tissue. However, extension of this technology to other species has remained limited. We have used the domestic cat (Felis catus) as a model for wild felids to investigate spermatogenesis initiation and regulation, with the mouse serving as a control species. Testicular tissue fragments were cultured in control medium or medium supplemented with knockout serum replacement (KSR), AlbuMax, beta-estradiol or AlbuMax plus beta-estradiol. Contrary to expectations, and unlike results obtained in mouse controls, no germ cell differentiation could be detected. The only germ cells observed after six weeks of culture were spermatogonia regardless of the initial stage of tubule development in the donor tissue. Moreover, the number of spermatogonia decreased with time in culture in all media tested, especially in the medium supplemented with KSR, while AlbuMax had a slight protective effect. The combination of AlbuMax and beta-estradiol led to an increase in the area occupied by seminiferous tubules, and thus to an increase in total number of spermatogonial cells. Considering all the media combinations tested the stimulus for felid germ cell differentiation in this type of system seems to be different from the mouse. Studies using other triggers of differentiation and tissue survival factors should be performed to pursue this technology for the genetic diversity preservation in wild felids. PMID:29414992
Treating brain tumor–initiating cells using a combination of myxoma virus and rapamycin
Zemp, Franz J.; Lun, Xueqing; McKenzie, Brienne A.; Zhou, Hongyuan; Maxwell, Lori; Sun, Beichen; Kelly, John J.P.; Stechishin, Owen; Luchman, Artee; Weiss, Samuel; Cairncross, J. Gregory; Hamilton, Mark G.; Rabinovich, Brian A.; Rahman, Masmudur M.; Mohamed, Mohamed R.; Smallwood, Sherin; Senger, Donna L.; Bell, John; McFadden, Grant; Forsyth, Peter A.
2013-01-01
Background Intratumoral heterogeneity in glioblastoma multiforme (GBM) poses a significant barrier to therapy in certain subpopulation such as the tumor-initiating cell population, being shown to be refractory to conventional therapies. Oncolytic virotherapy has the potential to target multiple compartments within the tumor and thus circumvent some of the barriers facing conventional therapies. In this study, we investigate the oncolytic potential of myxoma virus (MYXV) alone and in combination with rapamycin in vitro and in vivo using human brain tumor–initiating cells (BTICs). Methods We cultured fresh GBM specimens as neurospheres and assayed their growth characteristics in vivo. We then tested the susceptibility of BTICs to MYXV infection with or without rapamycin in vitro and assessed viral biodistribution/survival in vivo in orthotopic xenografts. Results The cultured neurospheres were found to retain stem cell markers in vivo, and they closely resembled human infiltrative GBM. In this study we determined that (i) all patient-derived BTICs tested, including those resistant to temozolomide, were susceptible to MYXV replication and killing in vitro; (ii) MYXV replicated within BTICs in vivo, and intratumoral administration of MYXV significantly prolonged survival of BTIC-bearing mice; (iii) combination therapy with MYXV and rapamycin improved antitumor activity, even in mice bearing “advanced” BTIC tumors; (iv) MYXV treatment decreased expression of stem cell markers in vitro and in vivo. Conclusions Our study suggests that MYXV in combination with rapamycin infects and kills both the BTICs and the differentiated compartments of GBM and may be an effective treatment even in TMZ-resistant patients. PMID:23585629
Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.; ...
2016-01-06
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. As a result, given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. As a result, given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.« less
Post-treatment control of HIV infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, Jessica M.; Perelson, Alan S.
Antiretroviral therapy (ART) for HIV is not a cure. However, recent studies suggest that ART, initiated early during primary infection, may induce post-treatment control (PTC) of HIV infection with HIV RNA maintained at <50 copies per mL. We investigate the hypothesis that ART initiated early during primary infection permits PTC by limiting the size of the latent reservoir, which, if small enough at treatment termination, may allow the adaptive immune response to prevent viral rebound (VR) and control infection. We use a mathematical model of within host HIV dynamics to capture interactions among target cells, productively infected cells, latently infectedmore » cells, virus, and cytotoxic T lymphocytes (CTLs). Analysis of our model reveals a range in CTL response strengths where a patient may show either VR or PTC, depending on the size of the latent reservoir at treatment termination. Below this range, patients will always rebound, whereas above this range, patients are predicted to behave like elite controllers. As a result, using data on latent reservoir sizes in patients treated during primary infection, we also predict population-level VR times for non-controllers consistent with observations.« less
Post-treatment control of HIV infection
Conway, Jessica M.; Perelson, Alan S.
2015-04-13
Antiretroviral therapy (ART) for HIV is not a cure. However, recent studies suggest that ART, initiated early during primary infection, may induce post-treatment control (PTC) of HIV infection with HIV RNA maintained at <50 copies per mL. We investigate the hypothesis that ART initiated early during primary infection permits PTC by limiting the size of the latent reservoir, which, if small enough at treatment termination, may allow the adaptive immune response to prevent viral rebound (VR) and control infection. We use a mathematical model of within host HIV dynamics to capture interactions among target cells, productively infected cells, latently infectedmore » cells, virus, and cytotoxic T lymphocytes (CTLs). Analysis of our model reveals a range in CTL response strengths where a patient may show either VR or PTC, depending on the size of the latent reservoir at treatment termination. Below this range, patients will always rebound, whereas above this range, patients are predicted to behave like elite controllers. As a result, using data on latent reservoir sizes in patients treated during primary infection, we also predict population-level VR times for non-controllers consistent with observations.« less
RNF17 blocks promiscuous activity of PIWI proteins in mouse testes.
Wasik, Kaja A; Tam, Oliver H; Knott, Simon R; Falciatori, Ilaria; Hammell, Molly; Vagin, Vasily V; Hannon, Gregory J
2015-07-01
PIWI proteins and their associated piRNAs protect germ cells from the activity of mobile genetic elements. Two classes of piRNAs—primary and secondary—are defined by their mechanisms of biogenesis. Primary piRNAs are processed directly from transcripts of piRNA cluster loci, whereas secondary piRNAs are generated in an adaptive amplification loop, termed the ping-pong cycle. In mammals, piRNA populations are dynamic, shifting as male germ cells develop. Embryonic piRNAs consist of both primary and secondary species and are mainly directed toward transposons. In meiotic cells, the piRNA population is transposon-poor and largely restricted to primary piRNAs derived from pachytene piRNA clusters. The transition from the embryonic to the adult piRNA pathway is not well understood. Here we show that RNF17 shapes adult meiotic piRNA content by suppressing the production of secondary piRNAs. In the absence of RNF17, ping-pong occurs inappropriately in meiotic cells. Ping-pong initiates piRNA responses against not only transposons but also protein-coding genes and long noncoding RNAs, including genes essential for germ cell development. Thus, the sterility of Rnf17 mutants may be a manifestation of a small RNA-based autoimmune reaction. © 2015 Wasik et al.; Published by Cold Spring Harbor Laboratory Press.
Biggs, Manus J P; Richards, R Geoff; Gadegaard, Nikolaj; McMurray, Rebecca J; Affrossman, Stanley; Wilkinson, Chris D W; Oreffo, Richard O C; Dalby, Mathew J
2009-10-01
Polymeric medical devices widely used in orthopedic surgery play key roles in fracture fixation and orthopedic implant design. Topographical modification and surface micro-roughness of these devices regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved the field of surface modification; in particular, nanotechnology has allowed the development of nanoscale substrates for the investigation into cell-nanofeature interactions. In this study human osteoblasts (HOBs) were cultured on ordered nanoscale pits and random nano "craters" and "islands". Adhesion subtypes were quantified by immunofluorescent microscopy and cell-substrate interactions investigated via immuno-scanning electron microscopy. To investigate the effects of these substrates on cellular function 1.7 k microarray analysis was used to establish gene profiles of enriched STRO-1+ progenitor cell populations cultured on these nanotopographies. Nanotopographies affected the formation of adhesions on experimental substrates. Adhesion formation was prominent on planar control substrates and reduced on nanocrater and nanoisland topographies; nanopits, however, were shown to inhibit directly the formation of large adhesions. STRO-1+ progenitor cells cultured on experimental substrates revealed significant changes in genetic expression. This study implicates nanotopographical modification as a significant modulator of osteoblast adhesion and cellular function in mesenchymal populations.
Steinmoen, Hilde; Knutsen, Eivind; Håvarstein, Leiv Sigve
2002-05-28
Naturally competent bacteria have the ability to take up free DNA from the surrounding medium and incorporate this DNA into their genomes by homologous recombination. In naturally competent Streptococcus pneumoniae, and related streptococcal species from the mitis phylogenetic group, the competent state is not a constitutive property but is induced by a peptide pheromone through a quorum-sensing mechanism. Recent studies have shown that natural genetic transformation is an important mechanism for gene exchange between streptococci in nature. A prerequisite for effective gene exchange is the presence of streptococcal donor DNA in the environment. Despite decades of study of the transformation process we still do not know how this donor DNA is released from streptococcal cells to the external milieu. Traditionally, it has been assumed that donor DNA originates from cells that die and fall apart from natural causes. In this study we show that induction of the competent state initiates release of DNA from a subfraction of the bacterial population, probably by cell lysis. The majority of the cells induced to competence take up DNA and act as recipients, whereas the rest release DNA and act as donors. These findings show that natural transformation in streptococci provides a natural mechanism for genetic recombination that resembles sex in higher organisms.
RNF17 blocks promiscuous activity of PIWI proteins in mouse testes
Wasik, Kaja A.; Tam, Oliver H.; Knott, Simon R.; Falciatori, Ilaria; Hammell, Molly; Vagin, Vasily V.; Hannon, Gregory J.
2015-01-01
PIWI proteins and their associated piRNAs protect germ cells from the activity of mobile genetic elements. Two classes of piRNAs—primary and secondary—are defined by their mechanisms of biogenesis. Primary piRNAs are processed directly from transcripts of piRNA cluster loci, whereas secondary piRNAs are generated in an adaptive amplification loop, termed the ping-pong cycle. In mammals, piRNA populations are dynamic, shifting as male germ cells develop. Embryonic piRNAs consist of both primary and secondary species and are mainly directed toward transposons. In meiotic cells, the piRNA population is transposon-poor and largely restricted to primary piRNAs derived from pachytene piRNA clusters. The transition from the embryonic to the adult piRNA pathway is not well understood. Here we show that RNF17 shapes adult meiotic piRNA content by suppressing the production of secondary piRNAs. In the absence of RNF17, ping-pong occurs inappropriately in meiotic cells. Ping-pong initiates piRNA responses against not only transposons but also protein-coding genes and long noncoding RNAs, including genes essential for germ cell development. Thus, the sterility of Rnf17 mutants may be a manifestation of a small RNA-based autoimmune reaction. PMID:26115953
NASA Technical Reports Server (NTRS)
Takahashi, T.; Nowakowski, R. S.; Caviness, V. S. Jr
1996-01-01
Neurons of neocortical layers II-VI in the dorsomedial cortex of the mouse arise in the pseudostratified ventricular epithelium (PVE) through 11 cell cycles over the six embryonic days 11-17 (E11-E17). The present experiments measure the proportion of daughter cells that leave the cycle (quiescent or Q fraction or Q) during a single cell cycle and the complementary proportion that continues to proliferate (proliferative or P fraction or P; P = 1 - Q). Q and P for the PVE become 0.5 in the course of the eighth cycle, occurring on E14, and Q rises to approximately 0.8 (and P falls to approximately 0.2) in the course of the 10th cycle occurring on E16. This indicates that early in neuronogenesis, neurons are produced relatively slowly and the PVE expands rapidly but that the reverse happens in the final phase of neuronogenesis. The present analysis completes a cycle of analyses that have determined the four fundamental parameters of cell proliferation: growth fraction, lengths of cell cycle, and phases Q and P. These parameters are the basis of a coherent neuronogenetic model that characterizes patterns of growth of the PVE and mathematically relates the size of the initial proliferative population to the neuronal population of the adult neocortex.
Kashef, Jubin; Köhler, Almut; Kuriyama, Sei; Alfandari, Dominique; Mayor, Roberto; Wedlich, Doris
2009-01-01
Xenopus Cadherin-11 (Xcad-11) is expressed when cranial neural crest cells (CNC) acquire motility. However, its function in stimulating cell migration is poorly understood. Here, we demonstrate that Xcad-11 initiates filopodia and lamellipodia formation, which is essential for CNC to populate pharyngeal pouches. We identified the cytoplasmic tail of Xcad-11 as both necessary and sufficient for proper CNC migration as long as it was linked to the plasma membrane. Our results showing that guanine nucleotide exchange factor (GEF)-Trio binds to Xcad-11 and can functionally substitute for it like constitutively active forms of RhoA, Rac, and cdc42 unravel a novel cadherin function. PMID:19528317
Examining the Origins of Myeloid Leukemia | Center for Cancer Research
Acute myeloid leukemia or AML, a cancer of the white blood cells, is the most common type of rapidly-growing leukemia in adults. The over-production of white blood cells in the bone marrow inhibits the development of other necessary blood components including red blood cells, which carry oxygen throughout the body, and platelets, which are required for clot formation. The cellular changes that lead to AML disease initiation and progression, however, are not clear. Because of the aging of the U.S. population and AML’s increasing incidence with age, cases of this disease are likely to rise significantly in the near future. Thus, understanding what causes AML should lead to the identification of novel targets and the enhanced treatment of patients.
Enders, Jeffrey R.; Marasco, Christina C.; Kole, Ayeeshik; Nguyen, Bao; Sundarapandian, Sevugarajan; Seale, Kevin T.; Wikswo, John P.; McLean, John A.
2014-01-01
The combination of microfluidic cell trapping devices with ion mobility-mass spectrometry offers the potential for elucidating in real time the dynamic responses of small populations of cells to paracrine signals, changes in metabolite levels, and delivery of drugs and toxins. Preliminary experiments examining peptides in methanol and recording the interactions of yeast and Jurkat cells with their superfusate have identified instrumental setup and control parameters and on-line desalting procedures. Numerous initial experiments demonstrate and validate this new instrumental platform. Future outlooks and potential applications are addressed, specifically how this instrumentation may be used for fully automated systems biology studies of the significantly interdependent, dynamic internal workings of cellular metabolic and signaling pathways. PMID:21073240
Alteration of Cell Cycle Mediated by Zinc in Human Bronchial ...
Zinc (Zn2+), a ubiquitous ambient air contaminant, presents an oxidant challenge to the human lung and is linked to adverse human health effects. To further elucidate the adaptive and apoptotic cellular responses of human airway cells to Zn2+, we performed pilot studies to examine cell cycle perturbation upon exposure using a normal human bronchial epithelial cell culture (BEAS-2B). BEAS-2B cells were treated with low (0, 1, 2 µM) and apoptotic (3 µM) doses of Zn2+ plus 1 µM pyrithione, a Zn2+-specific ionophore facilitating cellular uptake, for up to 24 h. Fixed cells were then stained with propidium iodine (PI) and cell cycle phase was determined by fluorescent image cytometry. Initial results report the percentage of cells in the S phase after 18 h exposure to 1, 2, and 3 µM Zn2+ were similar (8%, 7%, and 12%, respectively) compared with 7% in controls. Cells exposed to 3 µM Zn2+ increased cell populations in G2/M phase (76% versus 68% in controls). Interestingly, exposure to 1 µM Zn2+ resulted in decreased (59%) cells in G2/M. While preliminary, these pilot studies suggest Zn2+ alters cell cycle in BEAS-2B cells, particularly in the G2/M phase. The G2/M checkpoint maintains DNA integrity by enabling initiation of DNA repair or apoptosis. Our findings suggest that the adaptive and apoptotic responses to Zn2+ exposure may be mediated via perturbation of the cell cycle at the G2/M checkpoint. This work was a collaborative summer student project. The st
Gatenby, Robert A; Silva, Ariosto S; Gillies, Robert J; Frieden, B Roy
2009-06-01
A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant subpopulations. Computer simulations show that this strategy can result in prolonged survival that is substantially greater than that of high dose density or metronomic therapies. The feasibility of adaptive therapy is supported by in vivo experiments. [Cancer Res 2009;69(11):4894-903] Major FindingsWe present mathematical analysis of the evolutionary dynamics of tumor populations with and without therapy. Analytic solutions and numerical simulations show that, with pretreatment, therapy-resistant cancer subpopulations are present due to phenotypic or microenvironmental factors; maximum dose density chemotherapy hastens rapid expansion of resistant populations. The models predict that host survival can be maximized if "treatment-for-cure strategy" is replaced by "treatment-for-stability." Specifically, the models predict that an optimal treatment strategy will modulate therapy to maintain a stable population of chemosensitive cells that can, in turn, suppress the growth of resistant populations under normal tumor conditions (i.e., when therapy-induced toxicity is absent). In vivo experiments using OVCAR xenografts treated with carboplatin show that adaptive therapy is feasible and, in this system, can produce long-term survival.
Ginovart, Marta; Carbó, Rosa; Blanco, Mónica; Portell, Xavier
2017-01-01
Nowadays control of the growth of Saccharomyces to obtain biomass or cellular wall components is crucial for specific industrial applications. The general aim of this contribution is to deal with experimental data obtained from yeast cells and from yeast cultures to attempt the integration of the two levels of information, individual and population, to progress in the control of yeast biotechnological processes by means of the overall analysis of this set of experimental data, and to assist in the improvement of an individual-based model, namely, INDISIM- Saccha . Populations of S. cerevisiae growing in liquid batch culture, in aerobic and microaerophilic conditions, were studied. A set of digital images was taken during the population growth, and a protocol for the treatment and analyses of the images obtained was established. The piecewise linear model of Buchanan was adjusted to the temporal evolutions of the yeast populations to determine the kinetic parameters and changes of growth phases. In parallel, for all the yeast cells analyzed, values of direct morphological parameters, such as area, perimeter, major diameter, minor diameter, and derived ones, such as circularity and elongation, were obtained. Graphical and numerical methods from descriptive statistics were applied to these data to characterize the growth phases and the budding state of the yeast cells in both experimental conditions, and inferential statistical methods were used to compare the diverse groups of data achieved. Oxidative metabolism of yeast in a medium with oxygen available and low initial sugar concentration can be taken into account in order to obtain a greater number of cells or larger cells. Morphological parameters were analyzed statistically to identify which were the most useful for the discrimination of the different states, according to budding and/or growth phase, in aerobic and microaerophilic conditions. The use of the experimental data for subsequent modeling work was then discussed and compared to simulation results generated with INDISIM- Saccha , which allowed us to advance in the development of this yeast model, and illustrated the utility of data at different levels of observation and the needs and logic behind the development of a microbial individual-based model.
CDC20 maintains tumor initiating cells
Xie, Qi; Wu, Qiulian; Mack, Stephen C.; Yang, Kailin; Kim, Leo; Hubert, Christopher G.; Flavahan, William A.; Chu, Chengwei; Bao, Shideng; Rich, Jeremy N.
2015-01-01
Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention. PMID:25938542
Loutfy, Mona R; Genebat, Miguel; Moore, David; Raboud, Janet; Chan, Keith; Antoniou, Tony; Milan, David; Shen, Anya; Klein, Marina B; Cooper, Curtis; Machouf, Nima; Rourke, Sean B; Rachlis, Anita; Tsoukas, Chris; Montaner, Julio S G; Walmsley, Sharon L; Smieja, Marek; Bayoumi, Ahmed; Mills, Edward; Hogg, Robert S
2010-12-01
To determine the long-term impact of immunologic discordance (viral load <50 copies/mL and CD4+ count <=200 cells/mm3) in antiretroviral-naive patients initiating combination antiretroviral therapy (cART). Our analysis included antiretroviral-naive individuals from a population-based Canadian Observational Cohort that initiated cART after January 1, 2000, and achieved virologic suppression. Multivariable Cox proportional hazards regression was used to examine the association between 1-year and 2-year immunologic discordance and time to death from all-causes. Correlates of immunologic discordance were assessed with logistic regression. Immunologic discordance was observed in 19.9% (404 of 2028) and 10.2% (176 of 1721) of individuals at 1 and 2 years after cART initiation, respectively. Two-year immunologic discordance was associated with an increased risk of death [adjusted hazard ratio = 2.69; 95% confidence interval (CI): 1.26 to 5.78]. One-year immunologic discordance was not associated with death (adjusted hazard ratio = 1.12; 95% CI: 0.54 to 2.30). Two-year immunologic discordance was associated with older age (aOR per decade = 1.23; 95% CI: 1.03 to 1.48), male gender (aOR = 1.86; 95% CI: 1.09 to 3.16), injection drug use (aOR = 2.75; 95% CI: 1.81 to 4.17), and lower baseline CD4+ count (aOR per 100 cells = 0.24; 95% CI: 0.19 to 0.31) and viral load (aOR per log10 copies/mL = 0.46; 95% CI: 0.33 to 0.65). Immunologic discordance after 2 years of cART in antiretroviral-naive individuals was significantly associated with an increased risk of mortality.
Freitag, Julien; Bates, Dan; Boyd, Richard; Shah, Kiran; Barnard, Adele; Huguenin, Leesa; Tenen, Abi
2016-05-26
Osteoarthritis is a leading cause of pain and disability across the world. With an aging population its prevalence is likely to further increase. Current accepted medical treatment strategies are aimed at symptom control rather than disease modification. Surgical options including joint replacement are not without possible significant complications. A growing interest in the area of regenerative medicine, led by an improved understanding of the role of mesenchymal stem cells in tissue homeostasis and repair, has seen recent focused efforts to explore the potential of stem cell therapies in the active management of symptomatic osteoarthritis. Encouragingly, results of pre-clinical and clinical trials have provided initial evidence of efficacy and indicated safety in the therapeutic use of mesenchymal stem cell therapies for the treatment of knee osteoarthritis. This paper explores the pathogenesis of osteoarthritis and how mesenchymal stem cells may play a role in future management strategies of this disabling condition.
Importance of dose-rate and cell proliferation in the evaluation of biological experimental results
NASA Technical Reports Server (NTRS)
Curtis, S. B.
1994-01-01
The nuclei of cells within the bodies of astronauts traveling on extended missions outside the geomagnetosphere will experience single traversals of particles with high Linear Energy Transfer (LET) (e.g., one iron ion per one hundred years, on average) superimposed on a background of tracks with low LET (approximately one proton every two to three days, and one helium ion per month). In addition, some cell populations within the body will be proliferating, thus possibly providing increasing numbers of cells with 'initiated' targets for subsequent radiation hits. These temporal characteristics are not generally reproduced in laboratory experimental protocols. Implications of the differences in the temporal patterns of radiation delivery between conventionally designed radiation biology experiments and the pattern to be experienced in space are examined and the importance of dose-rate and cell proliferation are pointed out in the context of radiation risk assessment on long mission in space.
Innate Immune Regulations and Liver Ischemia Reperfusion Injury
Lu, Ling; Zhou, Haoming; Ni, Ming; Wang, Xuehao; Busuttil, Ronald; Kupiec-Weglinski, Jerzy; Zhai, Yuan
2016-01-01
Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory, but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver IRI involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver IRI in patients. PMID:27861288
Declining lymphoid progenitor fitness promotes aging-associated leukemogenesis.
Henry, Curtis J; Marusyk, Andriy; Zaberezhnyy, Vadym; Adane, Biniam; DeGregori, James
2010-12-14
Aging is associated with the functional decline of cells, tissues, and organs. At the same time, age is the single most important prognostic factor in the development of most human cancers, including chronic myelogenous and acute lymphoblastic leukemias initiated by Bcr-Abl oncogenic translocations. Prevailing paradigms attribute the association between aging and cancers to the accumulation of oncogenic mutations over time, because the accrual of oncogenic events is thought to be the rate-limiting step in initiation and progression of cancers. Conversely, aging-associated functional decline caused by both cell-autonomous and non-cell-autonomous mechanisms is likely to reduce the fitness of stem and progenitor cell populations. This reduction in fitness should be conducive for increased selection of oncogenic mutations that can at least partially alleviate fitness defects, thereby promoting the initiation of cancers. We tested this hypothesis using mouse hematopoietic models. Our studies indicate that the dramatic decline in the fitness of aged B-lymphopoiesis coincides with altered receptor-associated kinase signaling. We further show that Bcr-Abl provides a much greater competitive advantage to old B-lymphoid progenitors compared with young progenitors, coinciding with restored kinase signaling pathways, and that this enhanced competitive advantage translates into increased promotion of Bcr-Abl-driven leukemias. Moreover, impairing IL-7-mediated signaling is sufficient to promote selection for Bcr-Abl-expressing B progenitors. These studies support an unappreciated causative link between aging and cancer: increased selection of oncogenic mutations as a result of age-dependent alterations of the fitness landscape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Li, E-mail: lin.796@osu.edu; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030; Fuchs, James
2011-12-16
Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existencemore » of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower IC50 in colon cancer stem-like cells. In summary, our results indicate that STAT3 is a novel therapeutic target in colon cancer stem-like cells and inhibition of STAT3 in cancer stem-like cells may offer a potential treatment for colorectal cancer.« less
Lab on chip microdevices for cellular mechanotransduction in urothelial cells
NASA Astrophysics Data System (ADS)
Maziz, A.; Guan, N.; Svennersten, K.; Hallén-Grufman, K.; Jager, Edwin W. H.
2016-04-01
Cellular mechanotransduction is crucial for physiological function in the lower urinary tract. The bladder is highly dependent on the ability to sense and process mechanical inputs, illustrated by the regulated filling and voiding of the bladder. However, the mechanisms by which the bladder integrates mechanical inputs, such as intravesicular pressure, and controls the smooth muscles, remain unknown. To date no tools exist that satisfactorily mimic in vitro the dynamic micromechanical events initiated e.g. by an emerging inflammatory process or a growing tumour mass in the urinary tract. More specifically, there is a need for tools to study these events on a single cell level or in a small population of cells. We have developed a micromechanical stimulation chip that can apply physiologically relevant mechanical stimuli to single cells to study mechanosensitive cells in the urinary tract. The chips comprise arrays of microactuators based on the electroactive polymer polypyrrole (PPy). PPy offers unique possibilities and is a good candidate to provide such physiological mechanical stimulation, since it is driven at low voltages, is biocompatible, and can be microfabricated. The PPy microactuators can provide mechanical stimulation at different strains and/or strain rates to single cells or clusters of cells, including controls, all integrated on one single chip, without the need to preprepare the cells. This paper reports initial results on the mechano-response of urothelial cells using the micromechanical stimulation chips. We show that urothelial cells are viable on our microdevices and do respond with intracellular Ca2+ increase when subjected to a micro-mechanical stimulation.
Bunaciu, Rodica P.
2015-01-01
Carcinogenesis is a multifactorial process, frequently encompassing 3 stages: initiation, promotion and progression. It is characterized by multiple deviations from normal both at the cell and organism levels. Although most people have a small number of cells that present deviations from normal, most of those cells will not cause cancer. However, some will. What tips the balance between normal and abnormal is the subject of intense scientific research as well as unfounded speculations. Chronic inflammation is one of the risk factors for cancer. Resveratrol is consumed by the population as a dietary supplement in the hope of decreasing the risk of inflammation and cancer and other chronic diseases such as diabetes and vascular diseases. There is a discrepancy between the doses used in the animal studies showing that resveratrol decreases all three stages of carcinogenesis, and the doses ingested by the population either as supplements or in the diet. While there is health benefit from using high resveratrol doses, it might be also of practical and scientific benefit to focus future effort in understanding the effects of normal dietary resveratrol levels. PMID:26478855
PDGF-responsive progenitors persist in the subventricular zone across the lifespan
Moore, Lisamarie; Bain, Jennifer M.; Loh, Ji Meng; Levison, Steven W.
2013-01-01
The SVZ (subventricular zone) contains neural stem cells and progenitors of various potentialities. Although initially parsed into A, B, and C cells, this germinal zone is comprised of a significantly more diverse population of cells. Here, we characterized a subset of postnatal PRPs (PDGF-AA-responsive precursors) that express functional PDGFα and β receptors from birth to adulthood. When grown in PDGF-AA, dissociated neonatal rat SVZ cells divided to produce non-adherent clusters of progeny. Unlike the self-renewing EGF/FGF-2-responsive precursors that produce neurospheres, these PRPs failed to self-renew after three passages; therefore, we refer to the colonies they produce as spheroids. Upon differentiation these spheroids could produce neurons, type 1 astrocytes and oligodendrocytes. When maintained in medium supplemented with BMP-4 they also produced type 2 astrocytes. Using lineage tracing methods, it became evident that there were multiple types of PRPs, including a subset that could produce neurons, oligodendrocytes, and type 1 and type 2 astrocytes; thus some of these PRPs represent a unique population of precursors that are quatropotential. Spheroids also could be generated from the newborn neocortex and they had the same potentiality as those from the SVZ. By contrast, the adult neocortex produced less than 20% of the numbers of spheroids than the adult SVZ and spheroids from the adult neocortex only differentiated into glial cells. Interestingly, SVZ spheroid producing capacity diminished only slightly from birth to adulthood. Altogether these data demonstrate that there are PRPs that persist in the SVZ that includes a unique population of quatropotential PRPs. PMID:24367913
Bertinchamp, Rémi; Gérard, Laurence; Boutboul, David; Malphettes, Marion; Fieschi, Claire; Oksenhendler, Eric
In 2014, the European Society for Immune Deficiencies (ESID) revised the common variable immunodeficiency (CVID) diagnosis criteria by incorporating new clinical and biological markers. The new definition appeared more restrictive but had not yet been evaluated in a large cohort of patients. The objective of this study was to evaluate the impact of this new definition in a large cohort of patients with primary hypogammaglobulinemia. Evaluation of 3 different CVID definitions (ESID/Pan-American Group for Immunodeficiency [PAGID] 1999, ESID 2014, DEFI 2015) in 521 patients included in the French DEFI study with a diagnosis of primary hypogammaglobulinemia. Using the ESID/PAGID 1999 definition, 351 patients were classified as CVID. The new ESID 2014 definition excluded 62 (18%) patients. Most of them (n = 56; 90%) had a less severe disease, whereas 6 (10%) presented with a severe disease with major T-cell defect. We propose different criteria (occurrence of opportunistic infection or very low naive CD4+ T-cell count) to define this population with severe T-cell defect. Sixty-two patients fulfilled these criteria, represented 20% of the initial CVID population but accounted for 77% of the deaths, with a 5-year overall survival of 67.6% (95% confidence interval, 51.0-79.6), and were considered as late onset combined immunodeficiency (LOCID). The new ESID definition for CVID still fails to exclude a large number of patients with severe T-cell defect. We propose a new definition (DEFI 2015) that excluded more patients with a T-cell defect and consider these patients as LOCID. This population has a poor outcome and should be considered as a distinct group requiring specific care. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Sandquist, Elizabeth J; Somji, Seema; Dunlevy, Jane R; Garrett, Scott H; Zhou, Xu Dong; Slusser-Nore, Andrea; Sens, Donald A
2016-01-01
Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth. Mesenchymal to epithelial transition and E-cadherin are viewed as necessary for a cell to establish a new metastatic site. The lack of N-cadherin expression in tumor transplants is consistent with E-cadherin expressing cells "seeding" a site for tumor growth. The study shows that a minority population of cultured cells can be the initiators of tumor growth.
Sandquist, Elizabeth J.; Somji, Seema; Dunlevy, Jane R.; Garrett, Scott H.; Zhou, Xu Dong; Slusser-Nore, Andrea
2016-01-01
Background Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Methods Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. Results This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. Conclusions The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth. Mesenchymal to epithelial transition and E-cadherin are viewed as necessary for a cell to establish a new metastatic site. The lack of N-cadherin expression in tumor transplants is consistent with E-cadherin expressing cells “seeding” a site for tumor growth. The study shows that a minority population of cultured cells can be the initiators of tumor growth. PMID:27224422
Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.
Mukherjee, Subhas; Brat, Daniel J
2017-01-01
Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.
Nguyen, Phong Dang; Gurevich, David Baruch; Sonntag, Carmen; Hersey, Lucy; Alaei, Sara; Nim, Hieu Tri; Siegel, Ashley; Hall, Thomas Edward; Rossello, Fernando Jaime; Boyd, Sarah Elizabeth; Polo, Jose Maria; Currie, Peter David
2017-07-06
Organ growth requires a careful balance between stem cell self-renewal and lineage commitment to ensure proper tissue expansion. The cellular and molecular mechanisms that mediate this balance are unresolved in most organs, including skeletal muscle. Here we identify a long-lived stem cell pool that mediates growth of the zebrafish myotome. This population exhibits extensive clonal drift, shifting from random deployment of stem cells during development to reliance on a small number of dominant clones to fuel the vast majority of muscle growth. This clonal drift requires Meox1, a homeobox protein that directly inhibits the cell-cycle checkpoint gene ccnb1. Meox1 initiates G 2 cell-cycle arrest within muscle stem cells, and disrupting this G 2 arrest causes premature lineage commitment and the resulting defects in muscle growth. These findings reveal that distinct regulatory mechanisms orchestrate stem cell dynamics during organ growth, beyond the G 0 /G 1 cell-cycle inhibition traditionally associated with maintaining tissue-resident stem cells. Copyright © 2017. Published by Elsevier Inc.
Negative regulators in homeostasis of naïve peripheral T cells.
Modiano, Jaime F; Johnson, Lisa D S; Bellgrau, Donald
2008-01-01
It is now apparent that naïve peripheral T cells are a dynamic population where active processes prevent inappropriate activation while supporting survival. The process of thymic education makes naïve peripheral T cells dependent on interactions with self-MHC for survival. However, as these signals can potentially result in inappropriate activation, various non-redundant, intrinsic negative regulatory molecules including Tob, Nfatc2, and Smad3 actively enforce T cell quiescence. Interactions among these pathways are only now coming to light and may include positive or negative crosstalk. In the case of positive crosstalk, self-MHC initiated signals and intrinsic negative regulatory factors may cooperate to dampen T cell activation and sustain peripheral tolerance in a binary fashion (on-off). In the case of negative crosstalk, self-MHC signals may promote survival through partial activation while intrinsic negative regulatory factors act as rheostats to restrain cell cycle entry and prevent T cells from crossing a threshold that would break tolerance.
High-Content Analysis of CRISPR-Cas9 Gene-Edited Human Embryonic Stem Cells.
Carlson-Stevermer, Jared; Goedland, Madelyn; Steyer, Benjamin; Movaghar, Arezoo; Lou, Meng; Kohlenberg, Lucille; Prestil, Ryan; Saha, Krishanu
2016-01-12
CRISPR-Cas9 gene editing of human cells and tissues holds much promise to advance medicine and biology, but standard editing methods require weeks to months of reagent preparation and selection where much or all of the initial edited samples are destroyed during analysis. ArrayEdit, a simple approach utilizing surface-modified multiwell plates containing one-pot transcribed single-guide RNAs, separates thousands of edited cell populations for automated, live, high-content imaging and analysis. The approach lowers the time and cost of gene editing and produces edited human embryonic stem cells at high efficiencies. Edited genes can be expressed in both pluripotent stem cells and differentiated cells. This preclinical platform adds important capabilities to observe editing and selection in situ within complex structures generated by human cells, ultimately enabling optical and other molecular perturbations in the editing workflow that could refine the specificity and versatility of gene editing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasdekis, Andreas E.; Stephanopoulos, Gregory
The sampling and manipulation of cells down to the individual has been of substantial interest since the very beginning of Life Sciences. Herein, our objective is to highlight the most recent developments in single cell manipulation, as well as pioneering ones. First, flow-through methods will be discussed, namely methods in which the single cells flow continuously in an ordered manner during their analysis. This section will be followed by confinement techniques that enable cell isolation and confinement in one, two- or three-dimensions. Flow cytometry and droplet microfluidics are the two most common methods of flow-through analysis. While both are high-throughputmore » techniques, their difference lays in the fact that the droplet encapsulated cells experience a restricted and personal microenvironment, while in flow cytometry cells experience similar nutrient and stimuli initial concentrations. These methods are rather well established; however, they recently enabled immense strides in single cell phenotypic analysis, namely the identification and analysis of metabolically distinct individuals from an isogenic population using both droplet microfluidics and flow cytometry.« less
Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas
2017-08-02
The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS hybrid clones exhibited a mesenchymal phenotype and, with the exception of one hybrid clone, responded to EGF with an increased migratory activity. Fusion of human breast epithelial cells and human breast cancer cells can give rise to hybrid clone cells that possess certain CS/IC properties, suggesting that cell fusion might be a mechanism underlying how tumor cells exhibiting a CS/IC phenotype could originate.
Beyond empiricism: informing vaccine development through innate immunity research.
Levitz, Stuart M; Golenbock, Douglas T
2012-03-16
Although a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and have informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response, resulting in enhanced protection. Copyright © 2012 Elsevier Inc. All rights reserved.
Beyond empiricism: Informing vaccine development through innate immunity research
Levitz, Stuart M.; Golenbock, Douglas T.
2012-01-01
Summary While a great public heath success, vaccines provide suboptimal protection in some patient populations and are not available to protect against many infectious diseases. Insights from innate immunity research have led to a better understanding of how existing vaccines work and informed vaccine development. New adjuvants and delivery systems are being designed based upon their capacity to stimulate innate immune sensors and target antigens to dendritic cells, the cells responsible for initiating adaptive immune responses. Incorporating these adjuvants and delivery systems in vaccines can beneficially alter the quantitative and qualitative nature of the adaptive immune response resulting in enhanced protection. PMID:22424235