Minor Actinides-Loaded FBR Core Concept Suitable for the Introductory Period in Japan
NASA Astrophysics Data System (ADS)
Fujimura, Koji; Sasahira, Akira; Yamashita, Junichi; Fukasawa, Tetsuo; Hoshino, Kuniyoshi
According to the Japan's Framework for Nuclear Energy Policy(1), a basic scenario for fast breeder reactors (FBRs) is that they will be introduced on a commercial basis starting around 2050 replacing light water reactors (LWRs). During the FBR introduction period, the Pu from LWR spent fuel is used for FBR startup. Howerver, the FBR core loaded with this Pu has a larger burnup reactivity due to its larger isotopic content of Pu-241 than a core loaded with Pu from an FBR multi-recycling core. The increased burnup reactivity may reduce the cycle length of an FBR. We investigated, an FBR transitional core concept to confront the issues of the FBR introductory period in Japan. Core specifications are based on the compact-type sodium-cooled mixed oxide (MOX)-fueled core designed from the Japanese FBR cycle feasibility studies, because lower Pu inventory should be better for the FBR introductory period in view of its flexibility for the required reprocessing amount of LWR spent fuel to start up FBRs. The reference specifications were selected as follows. Output of 1500MWe and average discharge fuel burnup of about 150GWd/t. Minor Actinides (MAs) recovered from LWR spent fuels which provide Pu to startup FBRs are loaded to the initial loading fuels and exchanged fuels during few cycles until equilibrium. We made the MA content of the initial loading fuel four kinds like 0%, 3%, 4%, 5%. The average of the initial loading fuel is assumed to be 3%, and that of the exchange fuel is set as 5%. This 5% maximum of the MA content is based on the irradiation results of the experimental fast reactor Joyo. We evaluated the core performances including burnup characteristics and the reactivity coefficient and confirmed that transitional core from initial loading until equilibrium cycle with loaded Pu from LWR spent fuel performs similary to an FBR multi-recycling core.
NASA Astrophysics Data System (ADS)
Dong, Zhengcheng; Fang, Yanjun; Tian, Meng; Kong, Zhengmin
The hierarchical structure, k-core, is common in various complex networks, and the actual network always has successive layers from 1-core layer (the peripheral layer) to km-core layer (the core layer). The nodes within the core layer have been proved to be the most influential spreaders, but there is few work about how the depth of k-core layers (the value of km) can affect the robustness against cascading failures, rather than the interdependent networks. First, following the preferential attachment, a novel method is proposed to generate the scale-free network with successive k-core layers (KCBA network), and the KCBA network is validated more realistic than the traditional BA network. Then, with KCBA interdependent networks, the effect of the depth of k-core layers is investigated. Considering the load-based model, the loss of capacity on nodes is adopted to quantify the robustness instead of the number of functional nodes in the end. We conduct two attacking strategies, i.e. the RO-attack (Randomly remove only one node) and the RF-attack (Randomly remove a fraction of nodes). Results show that the robustness of KCBA networks not only depends on the depth of k-core layers, but also is slightly influenced by the initial load. With RO-attack, the networks with less k-core layers are more robust when the initial load is small. With RF-attack, the robustness improves with small km, but the improvement is getting weaker with the increment of the initial load. In a word, the lower the depth is, the more robust the networks will be.
NASA Technical Reports Server (NTRS)
Rinker, Martin; Krueger, Ronald; Ratcliffe, James
2013-01-01
The ground-air pressurization of lightweight honeycomb sandwich structures caused by alternating pressure differences between the enclosed air within the honeycomb core and the ambient environment is a well-known and controllable loading condition of aerospace structures. However, initial face sheet/core disbonds intensify the face sheet peeling effect of the internal pressure load significantly and can decrease the reliability of the sandwich structure drastically. Within this paper, a numerical parameter study was carried out to investigate the criticality of initial disbonds in honeycomb sandwich structures under ground-air pressurization. A fracture mechanics approach was used to evaluate the loading at the disbond front. In this case, the strain energy release rate was computed via the Virtual Crack Closure Technique. Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed.
Buckling Analysis of a Honeycomb-Core Composite Cylinder with Initial Geometric Imperfections
NASA Technical Reports Server (NTRS)
Cha, Gene; Schultz, Marc R.
2013-01-01
Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.
NaF-loaded core-shell PAN-PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins.
Cheng, Liyuan; Zhou, Xuegang; Zhong, Hong; Deng, Xuliang; Cai, Qing; Yang, Xiaoping
2014-01-01
A kind of core-shell nanofibers containing sodium fluoride (NaF) was produced and used as reinforcing materials for dimethacrylate-based dental restorative resins in this study. The core-shell nanofibers were prepared by coaxial-electrospinning with polyacrylonitrile (PAN) and poly(methyl methacrylate) (PMMA) solutions as core and shell fluids, respectively. The produced PAN-PMMA nanofibers varied in fiber diameter and the thickness of PMMA shell depending on electrospinning parameters. NaF-loaded nanofibers were obtained by incorporating NaF nanocrystals into the core fluid at two loadings (0.8 or 1.0wt.%). Embedment of NaF nanocrystals into the PAN core did not damage the core-shell structure. The addition of PAN-PMMA nanofibers into Bis-GMA/TEGDMA clearly showed the reinforcement due to the good interfacial adhesion between fibers and resin. The flexural strength (Fs) and flexural modulus (Ey) of the composites decreased slightly as the thickness of PMMA shell increasing. Sustained fluoride releases with minor initial burst release were achieved from NaF-loaded core-shell nanofibers and the corresponding composites, which was quite different from the case of embedding NaF nanocrystals into the dental resin directly. The study demonstrated that NaF-loaded PAN-PMMA core-shell nanofibers were not only able to improve the mechanical properties of restorative resin, but also able to provide sustained fluoride release to help in preventing secondary caries. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kodavasal, Janardhan; Harms, Kevin; Srivastava, Priyesh
A closed-cycle gasoline compression ignition engine simulation near top dead center (TDC) was used to profile the performance of a parallel commercial engine computational fluid dynamics code, as it was scaled on up to 4096 cores of an IBM Blue Gene/Q supercomputer. The test case has 9 million cells near TDC, with a fixed mesh size of 0.15 mm, and was run on configurations ranging from 128 to 4096 cores. Profiling was done for a small duration of 0.11 crank angle degrees near TDC during ignition. Optimization of input/output performance resulted in a significant speedup in reading restart files, andmore » in an over 100-times speedup in writing restart files and files for post-processing. Improvements to communication resulted in a 1400-times speedup in the mesh load balancing operation during initialization, on 4096 cores. An improved, “stiffness-based” algorithm for load balancing chemical kinetics calculations was developed, which results in an over 3-times faster run-time near ignition on 4096 cores relative to the original load balancing scheme. With this improvement to load balancing, the code achieves over 78% scaling efficiency on 2048 cores, and over 65% scaling efficiency on 4096 cores, relative to 256 cores.« less
Segmentation, dynamic storage, and variable loading on CDC equipment
NASA Technical Reports Server (NTRS)
Tiffany, S. H.
1980-01-01
Techniques for varying the segmented load structure of a program and for varying the dynamic storage allocation, depending upon whether a batch type or interactive type run is desired, are explained and demonstrated. All changes are based on a single data input to the program. The techniques involve: code within the program to suppress scratch pad input/output (I/O) for a batch run or translate the in-core data storage area from blank common to the end-of-code+1 address of a particular segment for an interactive run; automatic editing of the segload directives prior to loading, based upon data input to the program, to vary the structure of the load for interactive and batch runs; and automatic editing of the load map to determine the initial addresses for in core data storage for an interactive run.
NASA Astrophysics Data System (ADS)
Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki
2017-01-01
Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.
Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng
2013-08-01
The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.
Northwest Manufacturing Initiative
2012-03-27
crack growth and threshold stress corrosion cracking evaluation. Threshold stress corrosion cracking was done using the rising step load method with...Group Technology methods to establish manufacturing cells for production efficiency, to develop internal Lean Champions, and to implement rapid... different levels, advisory, core, etc. VI. Core steering committee composed of members that have a significant vested interest. Action Item: Draft
DOE Office of Scientific and Technical Information (OSTI.GOV)
John D. Bess; Leland M. Montierth
2013-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bess, John D.; Montierth, Leland M.; Sterbentz, James W.
2014-03-01
In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters.more » One benchmark experiment was evaluated in this report: Core 4. Core 4 represents the only configuration with random pebble packing in the HTR-PROTEUS series of experiments, and has a moderator-to-fuel pebble ratio of 1:1. Three random configurations were performed. The initial configuration, Core 4.1, was rejected because the method for pebble loading, separate delivery tubes for the moderator and fuel pebbles, may not have been completely random; this core loading was rejected by the experimenters. Cores 4.2 and 4.3 were loaded using a single delivery tube, eliminating the possibility for systematic ordering effects. The second and third cores differed slightly in the quantity of pebbles loaded (40 each of moderator and fuel pebbles), stacked height of the pebbles in the core cavity (0.02 m), withdrawn distance of the stainless steel control rods (20 mm), and withdrawn distance of the autorod (30 mm). The 34 coolant channels in the upper axial reflector and the 33 coolant channels in the lower axial reflector were open. Additionally, the axial graphite fillers used in all other HTR-PROTEUS configurations to create a 12-sided core cavity were not used in the randomly packed cores. Instead, graphite fillers were placed on the cavity floor, creating a funnel-like base, to discourage ordering effects during pebble loading. Core 4 was determined to be acceptable benchmark experiment.« less
Wireless, in-vessel neutron monitor for initial core-loading of advanced breeder reactors
NASA Technical Reports Server (NTRS)
Delorenzo, J. T.; Kennedy, E. J.; Blalock, T. V.; Rochelle, J. M.; Chiles, M. M.; Valentine, K. H.
1981-01-01
An experimental wireless, in-vessel neutron monitor was developed to measure the reactivity of an advanced breeder reactor as the core is loaded for the first time to preclude an accidental critically incident. The environment is liquid sodium at a temperature of approx. 220 C, with negligible gamma or neutron radiation. With ultrasonic transmission of neutron data, no fundamental limitation was observed after tests at 230 C for 2000 h. The neutron sensitivity was approx. 1 count/s-nv, and the potential data transmission rate was approx. 10,000 counts/s.
Definition and maintenance of a telemetry database dictionary
NASA Technical Reports Server (NTRS)
Knopf, William P. (Inventor)
2007-01-01
A telemetry dictionary database includes a component for receiving spreadsheet workbooks of telemetry data over a web-based interface from other computer devices. Another component routes the spreadsheet workbooks to a specified directory on the host processing device. A process then checks the received spreadsheet workbooks for errors, and if no errors are detected the spreadsheet workbooks are routed to another directory to await initiation of a remote database loading process. The loading process first converts the spreadsheet workbooks to comma separated value (CSV) files. Next, a network connection with the computer system that hosts the telemetry dictionary database is established and the CSV files are ported to the computer system that hosts the telemetry dictionary database. This is followed by a remote initiation of a database loading program. Upon completion of loading a flatfile generation program is manually initiated to generate a flatfile to be used in a mission operations environment by the core ground system.
NASA Astrophysics Data System (ADS)
Juliyana, M.; Santhana Krishnan, R.
2018-02-01
The sandwich composite panels consisting of facesheet and core material are used as a primary structural member for aerospace, civil and marine areas due to its high stiffness to weight ratio. But the debonding nature of facesheet from the foam core under shear loading conditions leads to failure of the composite structure. To inhibit the debonding, an innovative methodology of introducing semi-torus key is used in the present study. The polyvinyl chloride foam core(PVC) is grooved and filled with semi-torus shaped chopped strand prepregs which are sandwiched between alternate layers of woven roven(WR) and chopped strand mat(CSM) skins by vacuum infusion process. The sandwich panel manufactured with semi-torus keys is evaluated regarding experimental and numerical simulations under shear loading conditions. The present innovative concept delays the debonding between face-sheet and foam core with enhancement the shear load carrying capability as the initial stiffness is higher than the conventional model. Also, the shear behaviour of the proposed concept is in good agreement with experimental results. The split semi-torus keys sustain the shear failure resulting in resistance to debonding capability.
NASA Technical Reports Server (NTRS)
Chen, Zhi M.; Krueger, Ronald; Rinker, Martin
2015-01-01
Typical damage modes in light honeycomb sandwich structures include face sheet/core disbonding and core fracture, both of which can pose a threat to the structural integrity of a component. These damage modes are of particular interest to aviation certification authorities since several in-service occurrences, such as rudder structural failure and other control surface malfunctions, have been attributed to face sheet/core disbonding. Extensive studies have shown that face sheet/core disbonding and core fracture can lead to damage propagation caused by internal pressure changes in the core. The increasing use of composite sandwich construction in aircraft applications makes it vitally important to understand the effect of ground-air-ground (GAG) cycles and conditions such as maneuver and gust loads on face sheet/core disbonding. The objective of the present study was to use a fracture mechanics based approach developed earlier to evaluate the loading at the disbond front caused by ground-air-ground pressurization and in-plane loading. A honeycomb sandwich panel containing a circular disbond at one face sheet/core interface was modeled with three-dimensional (3D) solid finite elements. The disbond was modeled as a discrete discontinuity and the strain energy release rate along the disbond front was computed using the Virtual Crack Closure Technique (VCCT). Special attention was paid to the pressure-deformation coupling which can decrease the pressure load within the disbonded sandwich section significantly when the structure is highly deformed. The commercial finite element analysis software, Abaqus/Standard, was used for the analyses. The recursive pressure-deformation coupling problem was solved by representing the entrapped air in the honeycomb cells as filled cavities in Abaqus/Standard. The results show that disbond size, face sheet thickness and core thickness are important parameters that determine crack tip loading at the disbond front. Further, the pressure-deformation coupling was found to have an important load decreasing effect [6]. In this paper, a detailed problem description is provided first. Second, the analysis methodology is presented. The fracture mechanics approach used is described and the specifics of the finite element model, including the fluid-filled cavities, are introduced. Third, the initial model verification and validation are discussed. Fourth, the findings from a closely related earlier study [6] are summarized. These findings provided the basis for the current investigation. Fifth, an aircraft ascent scenario from 0 to 12192 m (0 to 40000 ft) is considered and the resulting crack tip loading at the disbond front is determined. In-plane loading to simulate maneuvers and gust conditions are also considered. Sixth, the results are shown for a curved panel, which was used to simulate potential fuselage applications. Finally, a brief summary of observations is presented and recommendations for improvement are provided.
Tornado wind-loading requirements based on risk assessment techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deobald, T.L.; Coles, G.A.; Smith, G.L.
Regulations require that nuclear power plants be protected from tornado winds. If struck by a tornado, a plant must be capable of safely shutting down and removing decay heat. Probabilistic techniques are used to show that risk to the public from the US Department of Energy (DOE) SP-100 reactor is acceptable without tornado hardening parts of the secondary system. Relaxed requirements for design wind loadings will result in significant cost savings. To demonstrate an acceptable level of risk, this document examines tornado-initiated accidents. The two tornado-initiated accidents examined in detail are loss of cooling resulting in core damage and lossmore » of secondary system boundary integrity leading to sodium release. Loss of core cooling is analyzed using fault/event tree models. Loss of secondary system boundary integrity is analyzed by comparing the consequences to acceptance criteria for the release of radioactive material or alkali metal aerosol. 4 refs., 4 figs.« less
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.
2017-01-01
Damage tolerant design approaches require determination of critical damage modes and flaw sizes in order to establish nondestructive evaluation detection requirements. A finite element model is developed to assess the effect of circular facesheet-core disbonds on the strength of sandwich specimens subjected to edgewise compressive loads for the purpose of predicting the critical flaw size for a variety of design parameters. Postbuckling analyses are conducted in which an initial imperfection is seeded using results from a linear buckling analysis. Both the virtual crack closure technique (VCCT) and cohesive elements are considered for modeling disbond growth. Predictions from analyses using the VCCT and analyses using cohesive elements are in good correlation. A series of parametric analyses are conducted to investigate the effect of core thickness and material, facesheet layup, facesheet-core interface properties, and curvature on the criticality of facesheet-core disbonds of various sizes. The results from these analyses provide a basis for determining the critical flaw size for facesheet-core disbonds subjected to edgewise compression loads and, therefore, nondestructive evaluation flaw detection requirements for this configuration.
Initial Testing of the Stainless Steel NaK-Cooled Circuit (SNaKC)
NASA Technical Reports Server (NTRS)
Garber, Anne; Godfroy, Thomas
2007-01-01
An actively pumped alkali metal flow circuit, designed and fabricated at the NASA Marshall Space Flight Center, is currently undergoing testing in the Early Flight Fission Test Facility (EFF-TF). Sodium potassium (NaK) was selected as the primary coolant. Basic circuit components include: simulated reactor core, NaK to gas heat exchanger, electromagnetic liquid metal pump, liquid metal flowmeter, load/drain reservoir, expansion reservoir, test section, and instrumentation. Operation of the circuit is based around the 37-pin partial-array core (pin and flow path dimensions are the same as those in a full core), designed to operate at 33 kWt. This presentation addresses the construction, fill and initial testing of the Stainless Steel NaK-Cooled Circuit (SNaKC).
NASA Astrophysics Data System (ADS)
Jia; Wang; Tian; Li; Xu; Jiao; Cao; Wu
2016-10-01
SiO2-based microcapsules containing hydrophobic molecules exhibited potential applications such as extrinsic self-healing, drug delivery, due to outstanding thermal and chemical stability of SiO2. However, to construct SiO2-based microcapsules with both high encapsulation loading and long-term structural stability is still a troublesome issue, limiting their further utilization. We herein design a single-batch route, a combined interfacial and in-situ polymerization strategy, to fabricate epoxy-containing SiO2-based microcapsules with both high encapsulation loading and long-term structural stability. The final SiO2-based microcapsules preserve high encapsulation loading of 85.7 wt% by controlling exclusively hydrolysis and condensed polymerization at oil/water interface in the initial interfacial polymerization step. In the subsequent in-situ polymerization step, the initial SiO2-based microcapsules as seeds could efficiently harvest SiO2 precursors and primary SiO2 particles to finely tune the SiO2 wall thickness, thereby enhancing long-term structural stability of the final SiO2-based microcapsules including high thermal stability with almost no any weight loss until 250°C, and strong tolerance against nonpolar solvents such as CCl4 with almost unchanged core-shell structure and unchanged core weight after immersing into strong solvents for up to 5 days. These SiO2-based microcapsules are extremely suited for processing them into anticorrosive coating in the presence of nonpolar solvents for self-healing application.
Reactors as a Source of Antineutrinos: Effects of Fuel Loading and Burnup for Mixed-Oxide Fuels
NASA Astrophysics Data System (ADS)
Bernstein, Adam; Bowden, Nathaniel S.; Erickson, Anna S.
2018-01-01
In a conventional light-water reactor loaded with a range of uranium and plutonium-based fuel mixtures, the variation in antineutrino production over the cycle reflects both the initial core fissile inventory and its evolution. Under an assumption of constant thermal power, we calculate the rate at which antineutrinos are emitted from variously fueled cores, and the evolution of that rate as measured by a representative ton-scale antineutrino detector. We find that antineutrino flux decreases with burnup for low-enriched uranium cores, increases for full mixed-oxide (MOX) cores, and does not appreciably change for cores with a MOX fraction of approximately 75%. Accounting for uncertainties in the fission yields in the emitted antineutrino spectra and the detector response function, we show that the difference in corewide MOX fractions at least as small as 8% can be distinguished using a hypothesis test. The test compares the evolution of the antineutrino rate relative to an initial value over part or all of the cycle. The use of relative rates reduces the sensitivity of the test to an independent thermal power measurement, making the result more robust against possible countermeasures. This rate-only approach also offers the potential advantage of reducing the cost and complexity of the antineutrino detectors used to verify the diversion, compared to methods that depend on the use of the antineutrino spectrum. A possible application is the verification of the disposition of surplus plutonium in nuclear reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, William R.; Lee, John C.; baxter, Alan
Information and measured data from the intial Fort St. Vrain (FSV) high temperature gas reactor core is used to develop a benchmark configuration to validate computational methods for analysis of a full-core, commercial HTR configuration. Large uncertainties in the geometry and composition data for the FSV fuel and core are identified, including: (1) the relative numbers of fuel particles for the four particle types, (2) the distribution of fuel kernel diameters for the four particle types, (3) the Th:U ratio in the initial FSV core, (4) and the buffer thickness for the fissile and fertile particles. Sensitivity studies were performedmore » to assess each of these uncertainties. A number of methods were developed to assist in these studies, including: (1) the automation of MCNP5 input files for FSV using Python scripts, (2) a simple method to verify isotopic loadings in MCNP5 input files, (3) an automated procedure to conduct a coupled MCNP5-RELAP5 analysis for a full-core FSV configuration with thermal-hydraulic feedback, and (4) a methodology for sampling kernel diameters from arbitrary power law and Gaussian PDFs that preserved fuel loading and packing factor constraints. A reference FSV fuel configuration was developed based on having a single diameter kernel for each of the four particle types, preserving known uranium and thorium loadings and packing factor (58%). Three fuel models were developed, based on representing the fuel as a mixture of kernels with two diameters, four diameters, or a continuous range of diameters. The fuel particles were put into a fuel compact using either a lattice-bsed approach or a stochastic packing methodology from RPI, and simulated with MCNP5. The results of the sensitivity studies indicated that the uncertainties in the relative numbers and sizes of fissile and fertile kernels were not important nor were the distributions of kernel diameters within their diameter ranges. The uncertainty in the Th:U ratio in the intial FSV core was found to be important with a crude study. The uncertainty in the TRISO buffer thickness was estimated to be unimportant but the study was not conclusive. FSV fuel compacts and a regular FSV fuel element were analyzed with MCNP5 and compared with predictions using a modified version of HELIOS that is capable of analyzing TRISO fuel configurations. The HELIOS analyses were performed by SSP. The eigenvalue discrepancies between HELIOS and MCNP5 are currently on the order of 1% but these are still being evaluated. Full-core FSV configurations were developed for two initial critical configurations - a cold, clean critical loading and a critical configuration at 70% power. MCNP5 predictions are compared to experimental data and the results are mixed. Analyses were also done for the pulsed neutron experiments that were conducted by GA for the initial FSV core. MCNP5 was used to model these experiments and reasonable agreement with measured results has been observed.« less
Core-shell microparticles for protein sequestration and controlled release of a protein-laden core.
Rinker, Torri E; Philbrick, Brandon D; Temenoff, Johnna S
2017-07-01
Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85+19% vs. 9.0+4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic core-shell heparin-PEG microparticles presented here overcome this limitation by sequestering proteins through a PEG-based shell onto a protein-protective heparin core, temporarily isolating bound proteins from the cellular microenvironment, and re-delivering proteins only after degradation of the PEG-based shell. Thus, these core-shell microparticles have potential to be a novel tool to harness and isolate proteins produced in the cellular environment and then control when proteins are re-introduced for the most effective tissue regeneration and repair. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lell, R. M.; Morman, J. A.; Schaefer, R.W.
ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide,more » U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium component to construct a central core zone with a composition closer to that in an LMFBR core with high burnup. The high {sup 240}Pu configuration was constructed for two reasons. First, the composition of the high {sup 240}Pu zone more closely matched the composition of LMFBR cores anticipated in design work in 1970. Second, comparison of measurements in the ZPR-6/7 uniform core with corresponding measurements in the high {sup 240}Pu zone provided an assessment of some of the effects of long-term {sup 240}Pu buildup in LMFBR cores. The uniform core version of ZPR-6/7 is evaluated in ZPR-LMFR-EXP-001. This document only addresses measurements in the high {sup 240}Pu core version of ZPR-6/7. Many types of measurements were performed as part of the ZPR-6/7 program. Measurements of criticality, sodium void worth, control rod worth and reaction rate distributions in the high {sup 240}Pu core configuration are evaluated here. For each category of measurements, the uncertainties are evaluated, and benchmark model data are provided.« less
Gas core reactors for actinide transmutation. [uranium hexafluoride
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.
1979-01-01
The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.
NASA Technical Reports Server (NTRS)
Hoewer, Daniel; Lerch, Bradley A.; Bednarcyk, Brett A.; Pineda, Evan Jorge; Reese, Stefanie; Simon, Jaan-Willem
2017-01-01
A new cohesive zone traction-separation law, which includes the effects of fiber bridging, has been developed, implemented with a finite element (FE) model, and applied to simulate the delamination between the facesheet and core of a composite honeycomb sandwich panel. The proposed traction-separation law includes a standard initial cohesive component, which accounts for the initial interfacial stiffness and energy release rate, along with a new component to account for the fiber bridging contribution to the delamination process. Single cantilever beam tests on aluminum honeycomb sandwich panels with carbon fiber reinforced polymer facesheets were used to characterize and evaluate the new formulation and its finite element implementation. These tests, designed to evaluate the mode I toughness of the facesheet to core interface, exhibited significant fiber bridging and large crack process zones, giving rise to a concave downward concave upward pre-peak shape in the load-displacement curve. Unlike standard cohesive formulations, the proposed formulation captures this observed shape, and its results have been shown to be in excellent quantitative agreement with experimental load-displacement and apparent critical energy release rate results, representative of a payload fairing structure, as well as local strain fields measured with digital image correlation.
Li, Ang; Zhang, Donghui
2016-03-14
Amphiphilic block copolypeptoids consisting of a hydrophilic poly(N-ethyl glycine) segment and a hydrophobic poly[(N-propargyl glycine)-r-(N-decyl glycine)] random copolymer segment [PNEG-b-P(NPgG-r-NDG), EPgD] have been synthesized by sequential primary amine-initiated ring-opening polymerization (ROP) of the corresponding N-alkyl N-carboxyanhydride monomers. The block copolypeptoids form micelles in water and the micellar core can be cross-linked with a disulfide-containing diazide cross-linker by copper-mediated alkyne-azide cycloaddition (CuAAC) in aqueous solution. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis revealed the formation of spherical micelles with uniform size for both the core-cross-linked micelles (CCLMs) and non-cross-linked micelles (NCLMs) precursors for selective block copolypeptoid polymers. The CCLMs exhibited increased dimensional stability relative to the NCLMs in DMF, a nonselective solvent for the core and corona segments. Micellar dissociation of CCLMs can be induced upon addition of a reducing agent (e.g., dithiothreitol) in dilute aqueous solutions, as verified by a combination of fluorescence spectroscopy, size exclusion chromatography (SEC), and (1)H NMR spectroscopic measurement. Doxorubicin (DOX), an anticancer drug, can be loaded into the hydrophobic core of CCLMs with a maximal 23% drug loading capacity (DLC) and 37% drug loading efficiency (DLE). In vitro DOX release from the CCLMs can be triggered by DTT (10 mM), in contrast to significantly reduced DOX release in the absence of DTT, attesting to the reductively responsive characteristic of the CCLMs. While the CCLMs exhibited minimal cytotoxicity toward HepG2 cancer cells, DOX-loaded CCLMs inhibited the proliferation of the HepG2 cancer cells in a concentration and time dependent manner, suggesting the controlled release of DOX from the DOX-loaded CCLMS in the cellular environment.
Large Scale Flutter Data for Design of Rotating Blades Using Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
2012-01-01
A procedure to compute flutter boundaries of rotating blades is presented; a) Navier-Stokes equations. b) Frequency domain method compatible with industry practice. Procedure is initially validated: a) Unsteady loads with flapping wing experiment. b) Flutter boundary with fixed wing experiment. Large scale flutter computation is demonstrated for rotating blade: a) Single job submission script. b) Flutter boundary in 24 hour wall clock time with 100 cores. c) Linearly scalable with number of cores. Tested with 1000 cores that produced data in 25 hrs for 10 flutter boundaries. Further wall-clock speed-up is possible by performing parallel computations within each case.
Lazari, Priscilla Cardoso; de Carvalho, Marco Aurélio; Del Bel Cury, Altair A; Magne, Pascal
2018-05-01
Which post-and-core combination will best improve the performance of extensively damaged endodontically treated incisors without a ferrule is still unclear. The purpose of this in vitro study was to investigate the restoration of extensively damaged endodontically treated incisors without a ferrule using glass-ceramic crowns bonded to various composite resin foundation restorations and 2 types of posts. Sixty decoronated endodontically treated bovine incisors without a ferrule were divided into 4 groups and restored with various post-and-core foundation restorations. NfPfB=no-ferrule (Nf) with glass-fiber post (Pf) and bulk-fill resin foundation restoration (B); NfPfP=no-ferrule (Nf) with glass-fiber post (Pf) and dual-polymerized composite resin core foundation restoration (P); NfPt=no-ferrule (Nf) with titanium post (Pt) and resin core foundation restoration; and NfPtB=no-ferrule (Nf) with titanium post (Pt) and bulk-fill resin core foundation restoration (B). Two additional groups from previously published data from the same authors (FPf=2mm of ferrule (F) and glass-fiber post (Pf) and composite resin core foundation restoration; and NfPf=no-ferrule (Nf) with glass-fiber post (Pf) and composite resin core foundation restoration), which were tested concomitantly and using the same experimental arrangement, were included for comparison. All teeth were prepared to receive bonded glass-ceramic crowns luted with dual-polymerized resin cement and were subjected to accelerated fatigue testing under submerged conditions at room temperature. Cyclic isometric loading was applied to the incisal edge at an angle of 30 degrees with a frequency of 5 Hz, beginning with a load of 100 N (5000 cycles). A 100-N load increase was applied every 15000 cycles. The specimens were loaded until failure or to a maximum of 1000 N (140000 cycles). The 6 groups (4 groups from the present study and 2 groups from the previously published study) were compared using the Kaplan-Meier survival analysis (log-rank post hoc test at α=.05 for pairwise comparisons). None of the tested specimen withstood all 140 000 cycles. All specimens without a ferrule were affected by an initial failure phenomenon (wide gap at the lingual margin between the core foundation restoration/crown assembly and the root). NfPfP, NfPt, and NfPtB had similar survival (29649 to 30987 mean cycles until initial failure). NfPfB outperformed NfPt and NfPtB. None of the post-and-core foundation restoration materials were able to match the performance of the ferrule group FPf (72667 cycles). In all groups, 100% of failures were catastrophic. The survival of extensively damaged endodontically treated incisors without a ferrule was slightly improved by the use of a fiber post with a bulk-fill composite resin core foundation restoration. However, none of the post-and-core techniques was able to compensate for the absence of a ferrule. The presence of the posts always adversely affected the failure mode. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan
2015-06-28
Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant kinetic stability that have potential for use as an anti-cancer drug delivery carrier for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Engineering multi-stage nanovectors for controlled degradation and tunable release kinetics
Martinez, Jonathan O.; Chiappini, Ciro; Ziemys, Arturas; Faust, Ari M.; Kojic, Milos; Liu, Xuewu; Ferrari, Mauro; Tasciotti, Ennio
2013-01-01
Nanovectors hold substantial promise in abating the off-target effects of therapeutics by providing a means to selectively accumulate payloads at the target lesion, resulting in an increase in the therapeutic index. A sophisticated understanding of the factors that govern the degradation and release dynamics of these nanovectors is imperative to achieve these ambitious goals. In this work, we elucidate the relationship that exists between variations in pore size and the impact on the degradation, loading, and release of multistage nanovectors. Larger pored vectors displayed faster degradation and higher loading of nanoparticles, while exhibiting the slowest release rate. The degradation of these particles was characterized to occur in a multi-step progression where they initially decreased in size leaving the porous core isolated, while the pores gradually increased in size. Empirical loading and release studies of nanoparticles along with diffusion modeling revealed that this prolonged release was modulated by the penetration within the porous core of the vectors regulated by their pore size. PMID:23911070
Fast reactor core concepts to improve transmutation efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi
Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bi, G.; Liu, C.; Si, S.
This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis ofmore » reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no visible impacts on neutronic characteristics compared with reference full UOX core. The fuel cycle analysis has shown that {sup 233}U mono-recycling with U{sub 3}ThOX fuel could save 13% of natural uranium resource compared with UOX once through fuel cycle, slightly more than that of Plutonium single-recycling with MOX fuel. If {sup 233}U multi-recycling with U{sub 3}ThOX fuel is implemented, more natural uranium resource would be saved. (authors)« less
Hydraulic Conductivity Measurements Barrow 2014
Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller
2015-02-22
Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.
Jian, Yu-Tao; Tang, Tian-Yu; Swain, Michael V; Wang, Xiao-Dong; Zhao, Ke
2016-12-01
The aim of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered zirconia under two loading schemes. Interfacial surfaces of sandblasted zirconia disks (A) were ground with 80 (B), 120 (C) and 220 (D) grit diamond discs, respectively. Surface roughness and topographic analysis were performed using a confocal scanning laser microscope (CSLM) and a scanning electron microscopy (SEM). Relative monoclinic content was evaluated using X-ray diffraction analysis (XRD) then reevaluated after simulated veneer firing. Biaxial fracture strength (σ) and Weibull modulus (m) were calculated either with core in compression (subgroup Ac-Dc) or in tension (subgroup At-Dt). Facture surfaces were examined by SEM and energy dispersive X-ray spectroscopy (EDS). Maximum tensile stress at fracture was estimated by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis and one-way ANOVA at a significance level of 0.05. As grit size of the diamond disc increased, zirconia surface roughness decreased (p<0.001). Thermal veneering treatment reversed the transformation of monoclinic phase observed after initial grinding. No difference in initial (p=0.519 for subgroups Ac-Dc) and final fracture strength (p=0.699 for subgroups Ac-Dc; p=0.328 for subgroups At-Dt) was found among the four groups for both loading schemes. While coarse grinding slightly increased final fracture strength reliability (m) for subgroups Ac-Dc. Two different modes of fracture were observed according to which material was on the bottom surface. Components of the liner porcelain remained on the zirconia surface after fracture for all groups. Technician grinding changed surface topography of zirconia ceramic material, but was not detrimental to the bilayered system strength after veneer application. Coarse grinding slightly improved the fracture strength reliability of the bilayered system tested with core in compression. It is recommended that veneering porcelain be applied directly after routine lab grinding of zirconia ceramic, and its application on rough zirconia cores may be preferred to enhance bond strength. Copyright © 2016. Published by Elsevier Ltd.
Wang, Jian; Zhou, Pin; Obata, Akiko; Jones, Julian R.; Kasuga, Toshihiro
2015-01-01
In previous works, we reported the fabrication of cotton-wool-like composites consisting of siloxane-doped vaterite and poly(l-lactic acid) (SiVPCs). Various irregularly shaped bone voids can be filled with the composite, which effectively supplies calcium and silicate ions, enhancing the bone formation by stimulating the cells. The composites, however, were brittle and showed an initial burst release of ions. In the present work, to improve the mechanical flexibility and ion release, the composite fiber was coated with a soft, thin layer consisting of poly(d,l-lactic-co-glycolic acid) (PLGA). A coaxial electrospinning technique was used to prepare a cotton-wool-like material comprising “core-shell”-type fibers with a diameter of ~12 µm. The fibers, which consisted of SiVPC coated with a ~2-µm-thick PLGA layer, were mechanically flexible; even under a uniaxial compressive load of 1.5 kPa, the cotton-wool-like material did not exhibit fracture of the fibers and, after removing the load, showed a ~60% recovery. In Tris buffer solution, the initial burst release of calcium and silicate ions from the “core-shell”-type fibers was effectively controlled, and the ions were slowly released after one day. Thus, the mechanical flexibility and ion-release behavior of the composites were drastically improved by the thin PLGA coating. PMID:28793691
Zhao, Caiqi; Zheng, Weidong; Ma, Jun; Zhao, Yangjian
2016-01-01
To solve the problem of critical buckling in the structural analysis and design of the new long-span hollow core roof architecture proposed in this paper (referred to as a “honeycomb panel structural system” (HSSS)), lateral compression tests and finite element analyses were employed in this study to examine the lateral compressive buckling performance of this new type of honeycomb panel with different length-to-thickness ratios. The results led to two main conclusions: (1) Under the experimental conditions that were used, honeycomb panels with the same planar dimensions but different thicknesses had the same compressive stiffness immediately before buckling, while the lateral compressive buckling load-bearing capacity initially increased rapidly with an increasing honeycomb core thickness and then approached the same limiting value; (2) The compressive stiffnesses of test pieces with the same thickness but different lengths were different, while the maximum lateral compressive buckling loads were very similar. Overall instability failure is prone to occur in long and flexible honeycomb panels. In addition, the errors between the lateral compressive buckling loads from the experiment and the finite element simulations are within 6%, which demonstrates the effectiveness of the nonlinear finite element analysis and provides a theoretical basis for future analysis and design for this new type of spatial structure. PMID:28773567
The effect of core configuration on temperature coefficient of reactivity in IRR-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bettan, M.; Silverman, I.; Shapira, M.
1997-08-01
Experiments designed to measure the effect of coolant moderator temperature on core reactivity in an HEU swimming pool type reactor were performed. The moderator temperature coefficient of reactivity ({alpha}{sub {omega}}) was obtained and found to be different in two core loadings. The measured {alpha}{sub {omega}} of one core loading was {minus}13 pcm/{degrees}C at the temperature range of 23-30{degrees}C. This value of {alpha}{sub {omega}} is comparable to the data published by the IAEA. The {alpha}{sub {omega}} measured in the second core loading was found to be {minus}8 pcm/{degrees}C at the same temperature range. Another phenomenon considered in this study is coremore » behavior during reactivity insertion transient. The results were compared to a core simulation using the Dynamic Simulator for Nuclear Power Plants. It was found that in the second core loading factors other than the moderator temperature influence the core reactivity more than expected. These effects proved to be extremely dependent on core configuration and may in certain core loadings render the reactor`s reactivity coefficient undesirable.« less
Sreedevi, S; Sanjeev, R; Raghavan, Rekha; Abraham, Anna; Rajamani, T; Govind, Girish Kumar
2015-08-01
Endodontically treated teeth have significantly different physical and mechanical properties compared to vital teeth and are more prone to fracture. The study aims to compare the fracture resistance of endodontically treated teeth with and without post reinforcement, custom cast post-core and prefabricated post with glass ionomer core and to evaluate the ferrule effect on endodontically treated teeth restored with custom cast post-core. A total of 40 human maxillary central incisors with similar dimensions devoid of any root caries, restorations, previous endodontic treatment or cracks were selected from a collection of stored extracted teeth. An initial silicone index of each tooth was made. They were treated endodontically and divided into four groups of ten specimens each. Their apical seal was maintained with 4 mm of gutta-percha. Root canal preparation was done and then post core fabrication was done. The prepared specimens were subjected to load testing using a computer coordinated UTM. The fracture load results were then statistically analyzed. One-way ANOVA was followed by paired t-test. 1. Reinforcement of endodontically treated maxillary central incisors with post and core, improved their fracture resistance to be at par with that of endodontically treated maxillary central incisor, with natural crown. 2. The fracture resistance of endodontically treated maxillary central incisors is significantly increased when restored with custom cast post-core and 2 mm ferrule. With 2 mm ferrule, teeth restored with custom cast post-core had a significantly higher fracture resistance than teeth restored with custom cast post-core or prefabricated post and glass ionomer core without ferrule.
Ball bearing heat analysis program (BABHAP)
NASA Technical Reports Server (NTRS)
1978-01-01
The Ball Bearing Heat Analysis Program (BABHAP) is an attempt to assemble a series of equations, some of which are non-linear algebraic systems, in a logical order, which when solved, provide a complex analysis of load distribution among the balls, ball velocities, heat generation resulting from friction, applied load, and ball spinning, minimum lubricant film thickness, and many additional characteristics of ball bearing systems. Although initial design requirements for BABHAP were dictated by the core limitations of the PDP 11/45 computer, (approximately 8K of real words with limited number of instructions) the program dimensions can easily be expanded for large core computers such as the UNIVAC 1108. The PDP version of BABHAP is also operational on the UNIVAC system with the exception that the PDP uses 029 punch and the UNIVAC uses 026. A conversion program was written to allow transfer between machines.
Edgewise Compression Testing of STIPS-0 (Structurally Integrated Thermal Protection System)
NASA Technical Reports Server (NTRS)
Brewer, Amy R.
2011-01-01
The Structurally Integrated Thermal Protection System (SITPS) task was initiated by the NASA Hypersonics Project under the Fundamental Aeronautics Program to develop a structural load-carrying thermal protection system for use in aerospace applications. The initial NASA concept for SITPS consists of high-temperature composite facesheets (outer and inner mold lines) with a light-weight insulated structural core. An edgewise compression test was performed on the SITPS-0 test article at room temperature using conventional instrumentation and methods in order to obtain panel-level mechanical properties and behavior of the panel. Three compression loadings (10, 20 and 37 kips) were applied to the SITPS-0 panel. The panel behavior was monitored using standard techniques and non-destructive evaluation methods such as photogrammetry and acoustic emission. The elastic modulus of the SITPS-0 panel was determined to be 1.146x106 psi with a proportional limit at 1039 psi. Barrel-shaped bending of the panel and partial delamination of the IML occurred under the final loading.
Galedari, Naghmeh Abuali; Rahmani, Mohammad; Tasbihi, Minoo
2017-05-01
In the current study, ZnO@SiO 2 core-shell structured catalyst was synthesized for photocatalytic degradation of phenol from aqueous samples. The synthesized catalyst was characterized by Fourier transform infrared spectra, X-ray diffraction, energy-dispersive X-ray spectroscopy, UV-Vis-NIR diffuse reflectance spectroscopy, transmission electron microscopy, BET surface area, zeta potential, and field emission scanning electron microscopy. The effect of catalyst loading, initial phenol concentration, pH, UV light intensity and weight ratio of ZnO/(SiO 2 + ZnO) were studied towards photocatalytic degradation of phenol. Moreover, photocatalytic activities of bare ZnO and ZnO@SiO 2 were compared. The results advocated that ZnO@SiO 2 catalyst showed high photocatalytic performance for degradation of phenol (96 % after 120 min) at an initial pH of 5.9, catalyst loading of 0.5 g/L and initial phenol concentration of 25 mg/L. Increase in the weight ratio of ZnO/(SiO 2 + ZnO) from 0.2 to 0.33 significantly enhanced the photodegradation of phenol from 84 to 94 %. It was also found that photocatalytic activity of ZnO@SiO 2 was higher than bare ZnO nanoparticles. Graphical abstract ᅟ.
CFD simulations of transient load change on a high head Francis turbine
NASA Astrophysics Data System (ADS)
Jakobsen, Ken-Robert G.; Aasved Holst, Martin
2017-01-01
Motivated by the importance of better understanding the structural integrity of high-head hydraulic turbines operating at intermittent conditions, complete 360º steady-state and transient simulations of a Francis turbine are presented in this paper. The main target of the work has been to investigate different numerical approaches such as mesh deformation for different operating conditions. Steady-state simulations were performed at the best efficiency point (BEP) and used as initial conditions for the transient simulations considering load rejection from BEP to part load (BEP2PL) and during load acceptance from BEP to high load (BEP2HL). Simulation results were compared with experimental data available for the Francis-99 project where close agreement was found for the mesh independent solution. The transient load analyses showed general trends in accordance with the measurement reports, especially for the pressure in vaneless space that is of high importance regarding RSI effects. Some deviations were identified for the net head at load rejection for which further investigations will be conducted. All CFD simulations were performed at model scale with ANSYS CFX v. 17 at either 96 or 120 cores (2.60 GHz). The immersed boundary technique was tested during the initial stages of the project, but had to be abandoned due to severe memory requirements. Pressure amplitudes and other instantaneous results were not considered.
NASA Astrophysics Data System (ADS)
Mathieson, Haley Aaron
This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels, accounting for P-Delta effects, inherent out-of-straightness profile of any shape at initial conditions, and the excessive shear deformation of soft core and its effect on buckling capacity. Another model was developed to predict the load-deflection response and failure modes of in-plane loaded sandwich beams. After successful verification of the models using experimental results, comprehensive parametric studies were carried out using these models to cover parameters beyond the limitations of the experimental program.
Moumene, Missoum; Geisler, Fred H
2007-08-01
Finite element model. To estimate the effect of lumbar mobile-core and fixed-core artificial disc design and placement on the loading of the facet joints, and stresses on the polyethylene core. Although both mobile-core and fixed-core lumbar artificial disc designs have been used clinically, the effect of their design and the effect of placement within the disc space on the structural element loading, and in particular the facets and the implant itself, have not been investigated. A 3D nonlinear finite element model of an intact ligamentous L4-L5 motion segment was developed and validated in all 6 df based on previous experiments conducted on human cadavers. Facet loading of a mobile-core TDR and a fixed-core TDR were estimated with 4 different prosthesis placements for 3 different ranges of motion. Placing the mobile-core TDR anywhere within the disc space reduced facet loading by more than 50%, while the fixed-core TDR increased facet loading by more than 10% when compared with the intact disc in axial rotation. For central (ideal) placement, the mobile- and fixed-core implants were subjected to compressive stresses on the order of 3 MPa and 24 MPa, respectively. The mobile-core stresses were not affected by implant placement, while the fixed-core stresses increased by up to 40%. A mobile-core artificial disc design is less sensitive to placement, and unloads the facet joints, compared with a fixed-core design. The decreased core stress may result in a reduced potential for wear in a mobile-core prosthesis compared with a fixed-core prosthesis, which may increase the functional longevity of the device.
Fabrication of drug-loaded electrospun aligned fibrous threads for suture applications.
He, Chuang-Long; Huang, Zheng-Ming; Han, Xiao-Jian
2009-04-01
In this work, drug-loaded fibers and threads were successfully fabricated by combining electrospinning with aligned fibers collection. Two different electrospinning processes, that is, blend and coaxial electrospinning, to incorporate a model drug tetracycline hydrochloride (TCH) into poly(L-lactic acid) (PLLA) fibers have been used and compared with each other. The resulting composite ultrafine fibers and threads were characterized through scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, and tensile testing. It has been shown that average diameters of the fibers made from the same polymer concentration depended on the processing method. The blend TCH/PLLA fibers showed the smallest fiber diameter, whereas neat PLLA fibers and core-shell TCH-PLLA fibers showed a larger proximal average diameter. Higher rotating speed of a wheel collector is helpful for obtaining better-aligned fibers. Both the polymer and the drug in the electrospun fibers have poor crystalline property. In vitro release study indicated that threads made from the core-shell fibers could suppress the initial burst release and provide a sustained drug release useful for the release of growth factor or other therapeutic drugs. On the other hand, the threads from the blend fibers produced a large initial burst release that may be used to prevent bacteria infection. A combination of these results suggests that electrospinning technique provides a novel way to fabricate medical agents-loaded fibrous threads for tissue suturing and tissue regeneration applications. Copyright 2008 Wiley Periodicals, Inc.
Findings from the X-33 Hydrogen Tank Failure Investigation
NASA Technical Reports Server (NTRS)
Niedermeyer, Melinda; Munafo, Paul M. (Technical Monitor)
2001-01-01
The X-33 Hydrogen tank failed during test in November of 1999 at MSFC. The tank completed the structural loading phase of the test successfully and was drained of hydrogen prior to the failure. The failure initiated in the acreage of Lobe 1 and was instantaneous, peeling the outer skin and core away from the inner skin. It was determined there were several factors that provided the opportunity for the tank to fail in this way. The factor giving life to these opportunistic circumstances was hydrogen infiltration into the core of the tank. The mechanism for this phenomenon will be discussed in this presentation.
Evaluation of HFIR LEU Fuel Using the COMSOL Multiphysics Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Primm, Trent; Ruggles, Arthur; Freels, James D
2009-03-01
A finite element computational approach to simulation of the High Flux Isotope Reactor (HFIR) Core Thermal-Fluid behavior is developed. These models were developed to facilitate design of a low enriched core for the HFIR, which will have different axial and radial flux profiles from the current HEU core and thus will require fuel and poison load optimization. This report outlines a stepwise implementation of this modeling approach using the commercial finite element code, COMSOL, with initial assessment of fuel, poison and clad conduction modeling capability, followed by assessment of mating of the fuel conduction models to a one dimensional fluidmore » model typical of legacy simulation techniques for the HFIR core. The model is then extended to fully couple 2-dimensional conduction in the fuel to a 2-dimensional thermo-fluid model of the coolant for a HFIR core cooling sub-channel with additional assessment of simulation outcomes. Finally, 3-dimensional simulations of a fuel plate and cooling channel are presented.« less
Design, fabrication and test of a trace contaminant control system
NASA Technical Reports Server (NTRS)
1975-01-01
A trace contaminant control system was designed, fabricated, and evaluated to determine suitability of the system concept to future manned spacecraft. Two different models were considered. The load model initially required by the contract was based on the Space Station Prototype (SSP) general specifications SVSK HS4655, reflecting a change from a 9 man crew to a 6 man crew of the model developed in previous phases of this effort. Trade studies and a system preliminary design were accomplished based on this contaminant load, including computer analyses to define the optimum system configuration in terms of component arrangements, flow rates and component sizing. At the completion of the preliminary design effort a revised contaminant load model was developed for the SSP. Additional analyses were then conducted to define the impact of this new contaminant load model on the system configuration. A full scale foam-core mock-up with the appropriate SSP system interfaces was also fabricated.
Direct-Current Monitor With Flux-Reset Transformer Coupling
NASA Technical Reports Server (NTRS)
Canter, Stanley
1993-01-01
Circuit measures constant or slowly-varying unidirectional electrical current using flux-reset transformer coupling. Measurement nonintrusive in sense that no need for direct contact with wire that carries load current to be measured, and no need to install series resistive element in load-current path. Toroidal magnetic core wrapped with coil of wire placed around load-current-carrying wire, acts as transformer core, load-current-carrying wire acts as primary winding of transformer, and coil wrapped on core acts as secondary winding.
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and facesheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas A.; Goyal, Vinay K.; Lundgren, Eric C.; Patel, Dhruv N.; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth N.
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. A building block approach using fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a small strength reduction due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
Failure Predictions of Out-of-Autoclave Sandwich Joints with Delaminations Under Flexure Loads
NASA Technical Reports Server (NTRS)
Nordendale, Nikolas; Goyal, Vinay; Lundgren, Eric; Patel, Dhruv; Farrokh, Babak; Jones, Justin; Fischetti, Grace; Segal, Kenneth
2015-01-01
An analysis and a test program was conducted to investigate the damage tolerance of composite sandwich joints. The joints contained a single circular delamination between the face-sheet and the doubler. The coupons were fabricated through out-of-autoclave (OOA) processes, a technology NASA is investigating for joining large composite sections. The four-point bend flexure test was used to induce compression loading into the side of the joint where the delamination was placed. The compression side was chosen since it tends to be one of the most critical loads in launch vehicles. Autoclave cure was used to manufacture the composite sandwich sections, while the doubler was co-bonded onto the sandwich face-sheet using an OOA process after sandwich panels were cured. A building block approach was adopted to characterize the mechanical properties of the joint material, including the fracture toughness between the doubler and face-sheet. Twelve four-point-bend samples were tested, six in the sandwich core ribbon orientation and six in sandwich core cross-ribbon direction. Analysis predicted failure initiation and propagation at the pre-delaminated location, consistent with experimental observations. Fracture analyses methods predicted failure loads in close agreement with tests. This investigation demonstrated a strength reduction of 10 percent due to a flaw of significant size compared to the width of the sample. Therefore, concerns of bonding an OOA material to an in-autoclave material was mitigated for the geometries, materials, and load configurations considered.
How MCM loading and spreading specify eukaryotic DNA replication initiation sites.
Hyrien, Olivier
2016-01-01
DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.
Boyd, Peter; Fetherston, Susan M; McCoy, Clare F; Major, Ian; Murphy, Diarmaid J; Kumar, Sandeep; Holt, Jonathon; Brimer, Andrew; Blanda, Wendy; Devlin, Brid; Malcolm, R Karl
2016-09-10
A matrix-type silicone elastomer vaginal ring providing 28-day continuous release of dapivirine (DPV) - a lead candidate human immunodeficiency virus type 1 (HIV-1) microbicide compound - has recently demonstrated moderate levels of protection in two Phase III clinical studies. Here, next-generation matrix and reservoir-type silicone elastomer vaginal rings are reported for the first time offering simultaneous and continuous in vitro release of DPV and the contraceptive progestin levonorgestrel (LNG) over a period of between 60 and 180days. For matrix-type vaginal rings comprising initial drug loadings of 100, 150 or 200mg DPV and 0, 16 or 32mg LNG, Day 1 daily DPV release values were between 4132 and 6113μg while Day 60 values ranged from 284 to 454μg. Daily LNG release ranged from 129 to 684μg on Day 1 and 2-91μg on Day 60. Core-type rings comprising one or two drug-loaded cores provided extended duration of in vitro release out to 180days, and maintained daily drug release rates within much narrower windows (either 75-131μg/day or 37-66μg/day for DPV, and either 96-150μg/day or 37-57μg/day for LNG, depending on core ring configuration and ignoring initial lag release effect for LNG) compared with matrix-type rings. The data support the continued development of these devices as multi-purpose prevention technologies (MPTs) for HIV prevention and long-acting contraception. Copyright © 2016 Elsevier B.V. All rights reserved.
The development of optimal lightweight truss-core sandwich panels
NASA Astrophysics Data System (ADS)
Langhorst, Benjamin Robert
Sandwich structures effectively provide lightweight stiffness and strength by sandwiching a low-density core between stiff face sheets. The performance of lightweight truss-core sandwich panels is enhanced through the design of novel truss arrangements and the development of methods by which the panels may be optimized. An introduction to sandwich panels is presented along with an overview of previous research of truss-core sandwich panels. Three alternative truss arrangements are developed and their corresponding advantages, disadvantages, and optimization routines are discussed. Finally, performance is investigated by theoretical and numerical methods, and it is shown that the relative structural efficiency of alternative truss cores varies with panel weight and load-carrying capacity. Discrete truss core sandwich panels can be designed to serve bending applications more efficiently than traditional pyramidal truss arrangements at low panel weights and load capacities. Additionally, discrete-truss cores permit the design of heterogeneous cores, which feature unit cells that vary in geometry throughout the panel according to the internal loads present at each unit cell's location. A discrete-truss core panel may be selectively strengthened to more efficiently support bending loads. Future research is proposed and additional areas for lightweight sandwich panel development are explained.
TMI-2 (Three Mile Island Unit 2) core region defueling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodabaugh, J.M.; Cowser, D.K.
1988-01-01
In July of 1982, a video camera was inserted into the Three Mile Island Unit 2 reactor vessel providing the first visual evidence of core damage. This inspection, and numerous subsequent data acquisition tasks, revealed a central void /approx/1.5 m (5 ft) deep. This void region was surrounded by partial length fuel assemblies and ringed on the periphery by /approx/40 full-length, but partial cross-section, fuel assemblies. All of the original 177 fuel assemblies exhibited signs of damage. The bottom of the void cavity was covered with a bed of granular rubble, fuel assembly upper end fittings, control rod spiders, fuelmore » rod fragments, and fuel pellets. It was obvious that the normal plant refueling system not suitable for removing the damaged core. A new system of defueling tools and equipment was necessary to perform this task. Design of the new system was started immediately, followed by >1 yr of fabrication. Delivery and checkout of the defueling system occurred in mid-1985. Actual defueling was initiated in late 1985 with removal of the debris bed at the bottom of the core void. Obstructions to the debris, such as end fittings and fuel rod fragments ere removed first; then /approx/23,000 kg (50,000lb) of granular debris was quickly loaded into canisters. Core region defueling was completed in late 1987, /approx/2 yr after it was initiated.« less
Mower, Timothy E.; Higgins, Jerry D.; Yang, In C.; Peters, Charles A.
1994-01-01
Study of the hydrologic system at Yucca Mountain, Nevada, requires the extraction of pore-water samples from welded and nonwelded, unsaturated tuffs. Two compression methods (triaxial compression and one-dimensional compression) were examined to develop a repeatable extraction technique and to investigate the effects of the extraction method on the original pore-fluid composition. A commercially available triaxial cell was modified to collect pore water expelled from tuff cores. The triaxial cell applied a maximum axial stress of 193 MPa and a maximum confining stress of 68 MPa. Results obtained from triaxial compression testing indicated that pore-water samples could be obtained from nonwelded tuff cores that had initial moisture contents as small as 13 percent (by weight of dry soil). Injection of nitrogen gas while the test core was held at the maximum axial stress caused expulsion of additional pore water and reduced the required initial moisture content from 13 to 11 percent. Experimental calculations, together with experience gained from testing moderately welded tuff cores, indicated that the triaxial cell used in this study could not apply adequate axial or confining stress to expel pore water from cores of densely welded tuffs. This concern led to the design, fabrication, and testing of a one-dimensional compression cell. The one-dimensional compression cell used in this study was constructed from hardened 4340-alloy and nickel-alloy steels and could apply a maximum axial stress of 552 MPa. The major components of the device include a corpus ring and sample sleeve to confine the sample, a piston and base platen to apply axial load, and drainage plates to transmit expelled water from the test core out of the cell. One-dimensional compression extracted pore water from nonwelded tuff cores that had initial moisture contents as small as 7.6 percent; pore water was expelled from densely welded tuff cores that had initial moisture contents as small as 7.7 percent. Injection of nitrogen gas at the maximum axial stress did not produce additional pore water from nonwelded tuff cores, but was critical to recovery of pore water from densely welded tuff cores. Gas injection reduced the required initial moisture content in welded tuff cores from 7.7 to 6.5 percent. Based on the mechanical ability of a pore-water extraction method to remove water from welded and nonwelded tuff cores, one-dimensional compression is a more effective extraction method than triaxial compression. However, because the effects that one-dimensional compression has on pore-water chemistry are not completely understood, additional testing will be needed to verify that this method is suitable for pore-water extraction from Yucca Mountain tuffs.
Effect of fuel injection pressure on a heavy-duty diesel engine nonvolatile particle emission.
Lähde, Tero; Rönkkö, Topi; Happonen, Matti; Söderström, Christer; Virtanen, Annele; Solla, Anu; Kytö, Matti; Rothe, Dieter; Keskinen, Jorma
2011-03-15
The effects of the fuel injection pressure on a heavy-duty diesel engine exhaust particle emissions were studied. Nonvolatile particle size distributions and gaseous emissions were measured at steady-state engine conditions while the fuel injection pressure was changed. An increase in the injection pressure resulted in an increase in the nonvolatile nucleation mode (core) emission at medium and at high loads. At low loads, the core was not detected. Simultaneously, a decrease in soot mode number concentration and size and an increase in the soot mode distribution width were detected at all loads. Interestingly, the emission of the core was independent of the soot mode concentration at load conditions below 50%. Depending on engine load conditions, growth of the geometric mean diameter of the core mode was also detected with increasing injection pressure. The core mode emission and also the size of the mode increased with increasing NOx emission while the soot mode size and emission decreased simultaneously.
Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin
Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.
2009-01-01
Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX. PMID:19386272
Fracture resistance of pulpless teeth restored with post-cores and crowns.
Hayashi, Mikako; Takahashi, Yutaka; Imazato, Satoshi; Ebisu, Shigeyuki
2006-05-01
The present study was designed to test the null hypothesis that there is no difference in the fracture resistance of pulpless teeth restored with different types of post-core systems and full coverage crowns. Extracted human upper premolars were restored with a fiber post, prefabricated metallic post or cast metallic post-core. Teeth with full crown preparations without post-core restorations served as a control. All teeth were restored with full coverage crowns. A 90-degree vertical or 45-degree oblique load was applied to the restored teeth with a crosshead speed of 0.5 mm/min, and the fracture loads and mode of fracture were recorded. Under the condition of vertical loading, the fracture load of teeth restored with the cast metallic post-cores was greatest among the groups (two-factor factorial ANOVA and Scheffe's F test, P<0.05). All fractures in teeth restored with all types of post-core systems propagated in the middle portions of roots, including the apices of the posts. Under the condition of oblique loading, the fracture load of teeth restored with pre-fabricated metallic posts was significantly smaller than that in other groups. Two-thirds of fractures in the fiber post group propagated within the cervical area, while most fractures in other groups extended beyond the middle of the roots. From the results of the present investigations, it was concluded that under the conditions of vertical and oblique loadings, the combination of a fiber post and composite resin core with a full cast crown is most protective of the remaining tooth structure.
Takai, Erica; Mauck, Robert L; Hung, Clark T; Guo, X Edward
2004-09-01
A new trabecular bone explant model was used to examine osteocyte-osteoblast interactions under DHP loading. DHP loading enhanced osteocyte viability as well as osteoblast function measured by osteoid formation. However, live osteocytes were necessary for osteoblasts to form osteoids in response to DHP, which directly show osteoblast-osteocyte interactions in this in vitro culture. A trabecular bone explant model was characterized and used to examine the effect of osteocyte and osteoblast interactions and dynamic hydrostatic pressure (DHP) loading on osteocyte viability and osteoblast function in long-term culture. Trabecular bone cores obtained from metacarpals of calves were cleaned of bone marrow and trabecular surface cells and divided into six groups, (1) live cores + dynamic hydrostatic pressure (DHP), (2) live cores + sham, (3) live cores + osteoblast + DHP, (4) live cores + osteoblast + sham, (5) devitalized cores + osteoblast + DHP, and (6) devitalized cores + osteoblast + sham, with four culture durations (2, 8, 15, and 22 days; n = 4/group). Cores from groups 3-6 were seeded with osteoblasts, and cores from groups 5 and 6 were devitalized before seeding. Groups 1, 3, and 5 were subjected to daily DHP loading. Bone histomorphometry was performed to quantify osteocyte viability based on morphology and to assess osteoblast function based on osteoid surface per bone surface (Os/Bs). TUNEL staining was performed to evaluate the mode of osteocyte death under various conditions. A portion of osteocytes remained viable for the duration of culture. DHP loading significantly enhanced osteocyte viability up to day 8, whereas the presence of seeded osteoblasts significantly decreased osteocyte viability. Cores with live osteocytes showed higher Os/Bs compared with devitalized cores, which reached significant levels over a greater range of time-points when combined with DHP loading. DHP loading did not increase Os/Bs in the absence of live osteocytes. The percentage of apoptotic cells remained the same regardless of treatment or culture duration. Enhanced osteocyte viability with DHP suggests the necessity of mechanical stimulation for osteocyte survival in vitro. Furthermore, osteocytes play a critical role in the transmission of signals from DHP loading to modulate osteoblast function. This explant culture model may be used for mechanotransduction studies in long-term cultures.
Internal loading of an inhomogeneous compressible Earth with phase boundaries
NASA Technical Reports Server (NTRS)
Defraigne, P.; Dehant, V.; Wahr, J. M.
1996-01-01
The geoid and the boundary topography caused by mass loads inside the earth were estimated. It is shown that the estimates are affected by compressibility, by a radially varying density distribution, and by the presence of phase boundaries with density discontinuities. The geoid predicted in the chemical boundary case is 30 to 40 percent smaller than that predicted in the phase case. The effects of compressibility and radially varying density are likely to be small. The inner core-outer core topography for loading inside the mantle and for loading inside the inner core were computed.
Honeycomb Core Permeability Under Mechanical Loads
NASA Technical Reports Server (NTRS)
Glass, David E.; Raman, V. V.; Venkat, Venki S.; Sankaran, Sankara N.
1997-01-01
A method for characterizing the air permeability of sandwich core materials as a function of applied shear stress was developed. The core material for the test specimens was either Hexcel HRP-3/16-8.0 and or DuPont Korex-1/8-4.5 and was nominally one-half inch thick and six inches square. The facesheets where made of Hercules' AS4/8552 graphite/epoxy (Gr/Ep) composites and were nominally 0.059-in. thick. Cytec's Metalbond 1515-3M epoxy film adhesive was used for co-curing the facesheets to the core. The permeability of the specimens during both static (tension) and dynamic (reversed and non-reversed) shear loads were measured. The permeability was measured as the rate of air flow through the core from a circular 1-in2 area of the core exposed to an air pressure of 10.0 psig. In both the static and dynamic testing, the Korex core experienced sudden increases in core permeability corresponding to a core catastrophic failure, while the URP core experienced a gradual increase in the permeability prior to core failure. The Korex core failed at lower loads than the HRP core both in the transverse and ribbon directions.
A method for estimation of historic contaminant loads using dated sediment cores
Dated sediment cores were used to assess the history of contaminant loads. The contaminant selected must be one that is not significantly remobilized by post depositional processes such as diagenesis. In addition, the core must be from an area with a high deposition rate and litt...
Detectability and Uncertainties of the Supernova Relic Neutrino Background
NASA Astrophysics Data System (ADS)
Nakazato, Ken'ichiro; Mochida, Eri; Niino, Yuu; Suzuki, Hideyuki
The spectrum of the supernova relic neutrino (SRN) background from past stellar core collapses is calculated and its detectability at SK-Gd (Super-Kamiokande experiment with gadolinium-loaded water) is investigated. Several uncertainties on the flux of SRNs are considered. The core collapse rate at each redshift depends on the cosmic star formation rate, initial mass function and mass range of progenitors that end with a core collapse. The shock revival time is introduced as a parameter that should depend on the still unknown explosion mechanism of core collapse supernovae. Furthermore, since the neutrino luminosity of black-hole-forming failed supernovae is higher than that of ordinary supernovae, their contribution to SRNs is quantitatively estimated. Assuming the mass and metallicity ranges of their progenitors, the redshift dependence of the black hole formation rate is considered on the basis of the metallicity evolution of galaxies. As a result, it is found that the expected event rate of SRNs is comparable with other backgrounds at SK-Gd. Therefore, the required observation time to detect SRNs at SK-Gd depends strongly on the core collapse rate and it is 10-300 years.
Blast protection of infrastructure using advanced composites
NASA Astrophysics Data System (ADS)
Brodsky, Evan
This research was a systematic investigation detailing the energy absorption mechanisms of an E-glass web core composite sandwich panel subjected to an impulse loading applied orthogonal to the facesheet. Key roles of the fiberglass and polyisocyanurate foam material were identified, characterized, and analyzed. A quasi-static test fixture was used to compressively load a unit cell web core specimen machined from the sandwich panel. The web and foam both exhibited non-linear stress-strain responses during axial compressive loading. Through several analyses, the composite web situated in the web core had failed in axial compression. Optimization studies were performed on the sandwich panel unit cell in order to maximize the energy absorption capabilities of the web core. Ultimately, a sandwich panel was designed to optimize the energy dissipation subjected to through-the-thickness compressive loading.
Wang, Xiao-Dong; Jian, Yu-Tao; Guess, Petra C; Swain, Michael V; Zhang, Xin-Ping; Zhao, Ke
2014-11-01
The purpose of this in vitro study was to evaluate the effect of core ceramic grinding on the fracture behaviour of bilayered lithium disilicate glass-ceramic (LDG) under two loading schemes. Interfacial surfaces of sandblasted LDG disks (A) were ground with 220 (B), 500 (C) and 1200 (D) grit silicon carbide (SiC) sandpapers, respectively. Surface roughness and topographic analysis were performed using a profilometer and a scanning electron microscopy (SEM), and then underwent retesting after veneer firing. Biaxial fracture strength (σf) and Weibull modulus (m) were calculated either with core in tension (subgroup t) or in compression (subgroup c). Failure modes were observed by SEM, and loading induced stress distribution was simulated and analyzed by finite element analysis. Statistical data analysis was performed using Kruskal-Wallis, one-way ANOVA, and paired test at a significance level of 0.05. As the grits size of SiC increased, LDG surface roughness decreased from group A to D (p<0.001), which remained unchanged after veneer firing. No difference in σf (p=0.41 for subgroups At-Dt; p=0.11 for subgroups Ac-Dc), m values as well as failure modes was found among four subgroups for both loading schemes. Specimens in subgroup t showed higher σf (p<0.001) and m values than subgroup c. Stress distribution between loading schemes did not differ from each other. Cracks, as the dominant failure mode initiated from bottom tensile surface. No sign of interfacial cracking or delamination was observed for all groups. Technician grinding changed surface topography of LDG ceramic material, but was not detrimental to the bilayered system strength after veneer application. LDG bilayered system was more sensitive to fracture when loaded with veneer porcelain in tension. Within the limitations of the simulated grinding applied, it is concluded that veneer porcelain can be applied directly after technician grinding of LDG ceramic as it has no detrimental effect on the strength of bilayered structures. The connector areas of LDG fixed dental prosthesis are more sensitive to fracture compared with single crowns, and should be fabricated with more caution. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characterization of centrifugally-loaded flame migration for ultra-compact combustors
NASA Astrophysics Data System (ADS)
LeBay, Kenneth D.
The Air Force Research Laboratory (AFRL) has designed a centrifugally-loaded Ultra-Compact Combustor (UCC) showing viable merit for reducing gas turbine combustor length by as much as 66%. The overarching goal of this research was to characterize the migration of centrifugally-loaded flames in a sectional model of the UCC to enable scaling of the design from 15 cm to the 50--75 cm diameter of most engines. Two-line Planar Laser-Induced Fluorescence thermometry (PLIF) of OH, time-resolved Particle Image Velocimetry (PIV), and high-speed video data were collected. Using a sectional UCC model, the flame migration angle was determined to be a function of the UCC/core velocity ratio (VR) while both the VR and the centrifugal or "g-load" affected the migration quantity. Higher g-loads and lower VRs yielding higher migration but lower VRs had lower core flow temperatures due to higher core air mass flow. A comparison of the straight and curved UCC sections showed the centrifugal load increased the flame migration but increased unsteadiness. The flame migration into the core was estimated using pressure and temperature measurements upstream, and PIV measurements downstream of the core flow interface with constant density and velocity profile assumptions. The flame migration quantity was used to estimate the core flow temperature which was in relatively good agreement with the measured PLIF values. The migration quantity scaled relatively linearly with the UCC tangential velocity, which corresponds to the g-load value, with the slope determined by the VR. A simple analytical model resulted for the dependence of the migration quantity on the tangential velocity and VR. The quantitative relationships determined in this research provided a detailed description of the migration of centrifugally-loaded flames in a sectional UCC.
Nuclear reactor removable radial shielding assembly having a self-bowing feature
Pennell, William E.; Kalinowski, Joseph E.; Waldby, Robert N.; Rylatt, John A.; Swenson, Daniel V.
1978-01-01
A removable radial shielding assembly for use in the periphery of the core of a liquid-metal-cooled fast-breeder reactor, for closing interassembly gaps in the reactor core assembly load plane prior to reactor criticality and power operation to prevent positive reactivity insertion. The assembly has a lower nozzle portion for inserting into the core support and a flexible heat-sensitive bimetallic central spine surrounded by blocks of shielding material. At refueling temperature and below the spine is relaxed and in a vertical position so that the tolerances permitted by the interassembly gaps allow removal and replacement of the various reactor core assemblies. During an increase in reactor temperature from refueling to hot standby, the bimetallic spine expands, bowing the assembly toward the core center line, exerting a radially inward gap-closing-force on the above core load plane of the reactor core assembly, closing load plane interassembly gaps throughout the core prior to startup and preventing positive reactivity insertion.
How MCM loading and spreading specify eukaryotic DNA replication initiation sites
Hyrien, Olivier
2016-01-01
DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes. PMID:27635237
Estimation of a Historic Mercury Load Function for Lake Michigan using Dated Sediment Cores
Box cores collected between 1994 and 1996 were used to estimate historic mercury loads to Lake Michigan. Based on a kriging spatial interpolation of 54 Pb-210 dated cores, 228 metric tons of mercury are stored in the lake’s sediments (excluding Green Bay). To estimate the time ...
Damage Tolerance of Sandwich Plates With Debonded Face Sheets
NASA Technical Reports Server (NTRS)
Sankar, Bhavani V.
2001-01-01
A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams.
Core networks and their reconfiguration patterns across cognitive loads.
Zuo, Nianming; Yang, Zhengyi; Liu, Yong; Li, Jin; Jiang, Tianzi
2018-04-20
Different cognitively demanding tasks recruit globally distributed but functionally specific networks. However, the configuration of core networks and their reconfiguration patterns across cognitive loads remain unclear, as does whether these patterns are indicators for the performance of cognitive tasks. In this study, we analyzed functional magnetic resonance imaging data of a large cohort of 448 subjects, acquired with the brain at resting state and executing N-back working memory (WM) tasks. We discriminated core networks by functional interaction strength and connection flexibility. Results demonstrated that the frontoparietal network (FPN) and default mode network (DMN) were core networks, but each exhibited different patterns across cognitive loads. The FPN and DMN both showed strengthened internal connections at the low demand state (0-back) compared with the resting state (control level); whereas, from the low (0-back) to high demand state (2-back), some connections to the FPN weakened and were rewired to the DMN (whose connections all remained strong). Of note, more intensive reconfiguration of both the whole brain and core networks (but no other networks) across load levels indicated relatively poor cognitive performance. Collectively these findings indicate that the FPN and DMN have distinct roles and reconfiguration patterns across cognitively demanding loads. This study advances our understanding of the core networks and their reconfiguration patterns across cognitive loads and provides a new feature to evaluate and predict cognitive capability (e.g., WM performance) based on brain networks. © 2018 Wiley Periodicals, Inc.
Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.
2018-01-01
Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.
Strain energy density and surface layer energy for a crack-like ellipse
NASA Technical Reports Server (NTRS)
Kipp, M. E.; Sih, G. C.
1973-01-01
Some of the fundamental concepts of sharp crack fracture criteria are applied to cracks and narrow ellipses. The strain energy density theory is extended to notch boundaries, where the energy in a surface layer is calculated and the location of failure initiation is determined. The concept of a core region near the notch tip, and its consequences, are examined in detail. The example treated is that of an elliptical cavity loaded uniformly at a large distance from the hole, and at an angle to the hole; the results are shown to approach that of the crack solution for narrow ellipses, and to display quite satisfactory agreement with recently published experimental data under both tensile and compressive loading conditions. Results also indicate that in globally unstable configurations in brittle materials, the original loading and notch geometry are sufficient to predict the subsequent crack trajectory with considerable accuracy.
Chen, Chih-Kuang; Lin, Wei-Jen; Hsia, Yu; Lo, Leu-Wei
2017-03-01
Well-defined poly(ethylene glycol)-b-allyl functional polylactide-b-polylactides (PEG-APLA-PLAs) are synthesized through sequential ring-opening polymerization. PEG-APLA-PLAs that have amphiphilic properties and reactive allyl side chains on their intermediate blocks are successfully transferred to core-shell interface cross-linked micelles (ICMs) by micellization and UV-initiated irradiation. ICMs have demonstrated enhanced colloidal stability in physiological-mimicking media. Hydrophobic molecules such as Nile Red or doxorubicin (Dox) are readily loaded into ICMs; the resulting drug-ICM formulations possess slow and sustained drug release profiles under physiological-mimicking conditions. ICMs exhibit negligible cytotoxicity in human uterine sarcoma cancer cells by using biodegradable aliphatic polyester as the hydrophobic segments. Relative to free Dox, Dox-loaded ICMs show a reduced cytotoxicity due to the late intracellular release of Dox from ICMs. Overall, ICMs represent a new type of biodegradable cross-linked micelle and can be employed as a promising platform for delivering a broad variety of hydrophobic drugs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Novel Mobile Testing Equipment for Rock Cuttability Assessment: Vertical Rock Cutting Rig (VRCR)
NASA Astrophysics Data System (ADS)
Yasar, Serdar; Yilmaz, Ali Osman
2017-04-01
In this study, a new mobile rock cutting testing apparatus was designed and produced for rock cuttability assessment called vertical rock cutting rig (VRCR) which was designed specially to fit into hydraulic press testing equipment which are available in almost every rock mechanics laboratory. Rock cutting trials were initiated just after the production of VRCR along with calibration of the measuring load cell with an external load cell to validate the recorded force data. Then, controlled rock cutting tests with both relieved and unrelieved cutting modes were implemented on five different volcanic rock samples with a standard simple-shaped wedge tool. Additionally, core cutting test which is an important approach for roadheader performance prediction was simulated with VRCR. Mini disc cutters and point attack tools were used for execution of experimental trials. Results clearly showed that rock cutting tests were successfully realized and measuring system is delicate to rock strength, cutting depth and other variables. Core cutting test was successfully simulated, and it was also shown that rock cutting tests with mini disc cutters and point attack tools are also successful with VRCR.
Xu, Weinan; Ledin, Petr A; Iatridi, Zacharoula; Tsitsilianis, Constantinos; Tsukruk, Vladimir V
2016-04-11
Multicompartmental responsive microstructures with the capability for the pre-programmed sequential release of multiple target molecules of opposite solubility (hydrophobic and hydrophilic) in a controlled manner have been fabricated. Star block copolymers with dual-responsive blocks (temperature for poly(N-isopropylacrylamide) chains and pH for poly(acrylic acid) and poly(2-vinylpyridine) arms) and unimolecular micellar structures serve as nanocarriers for hydrophobic molecules in the microcapsule shell. The interior of the microcapsule can be loaded with water-soluble hydrophilic macromolecules. For these dual-loaded microcapsules, a programmable and sequential release of hydrophobic and hydrophilic molecules from the shell and core, respectively, can be triggered independently by temperature and pH variations. These stimuli affect the hydrophobicity and chain conformation of the star block copolymers to initiate out-of-shell release (elevated temperature), or change the overall star conformation and interlayer interactions to trigger increased permeability of the shell and out-of-core release (pH). Reversing stimulus order completely alters the release process. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei
Tensor contractions represent the most compute-intensive core kernels in ab initio computational quantum chemistry and nuclear physics. Symmetries in these tensor contractions makes them difficult to load balance and scale to large distributed systems. In this paper, we develop an efficient and scalable algorithm to contract symmetric tensors. We introduce a novel approach that avoids data redistribution in contracting symmetric tensors while also avoiding redundant storage and maintaining load balance. We present experimental results on two parallel supercomputers for several symmetric contractions that appear in the CCSD quantum chemistry method. We also present a novel approach to tensor redistribution thatmore » can take advantage of parallel hyperplanes when the initial distribution has replicated dimensions, and use collective broadcast when the final distribution has replicated dimensions, making the algorithm very efficient.« less
Di Martino, Antonio; Kucharczyk, Pavel; Capakova, Zdenka; Humpolicek, Petr; Sedlarik, Vladimir
2017-09-01
In this work, nanocomplexes based on chitosan grafted by carboxy-modified polylactic acid (SPLA) were prepared with the aim of loading simultaneously two anticancer drugs - doxorubicin and 5-fluorouracil, as well as to control their release, reduce the initial burst and boost cytotoxicity. The SPLA was prepared by a polycondensation reaction, using pentetic acid as the core molecule, and linked to the chitosan backbone through a coupling reaction. Nanocomplexes loaded with both drugs were formulated by the polyelectrolyte complexation method. The structure of the SPLA was characterized by 1 H NMR, while the product CS-SPLA was analyzed by FTIR-ATR to prove the occurrence of the reaction. Results showed that the diameters and ζ-potential of the nanocomplexes fall in the range 120-200nm and 20-37mV, respectively. SEM and TEM analysis confirmed the spherical shape and dimensions of the nanocomplexes. The presence of hydrophobic side chain SPLA did not influence the encapsulation efficiency of the drugs but strongly reduced the initial burst and prolonged release over time compared to unmodified chitosan. MS analysis showed that no degradation or interactions between the drugs and carrier were exhibited after loading or 24h of release had taken place, confirming the protective role of the nanocomplexes. In vitro tests demonstrated an increase in the cytotoxicity of the drugs when loaded in the prepared carriers. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Efthimiadou, E K; Tziveleka, L-A; Bilalis, P; Kordas, G
2012-05-30
In the current study, poly lactic acid (PLA) modified hollow crosslinked poly(hydroxyethyl methacrylate) (PHEMA) microspheres have been prepared, in order to obtain a stimulus-responsive, biocompatible carrier with sustained drug release properties. The synthetical process consisted of the preparation of poly(methacrylic acid)@poly(hydroxyethyl methacrylate-co-N,N'-methylene bis(acrylamide)) microspheres by a two stage distillation-precipitation polymerization technique using 2,2'-azobisisobutyronitrile as initiator. Following core removal, a PLA coating of the microspheres was formed, after ring opening polymerization of DL-lactide, attributing the initiator's role to the active hydroxyl groups of PHEMA. The anticancer drug daunorubicin (DNR) was selected for the study of loading and release behavior of the coated microspheres. The loading capacity of the PLA modified microspheres was found to be four times higher than that of the parent ones (16% compared to 4%). This coated microspherical carrier exhibited a moderate pH responsive drug release behavior due to the pH dependent water uptake of PHEMA, and PLA hydrolysis. The in vitro cytotoxicity of both the parent and the DNR-loaded or empty modified hollow microspheres has been also examined on MCF-7 breast cancer cells. The results showed that although the empty microspheres were moderately cytotoxic, the DNR-loaded microspheres had more potent anti-tumor effect than the free drug. Therefore, the prepared coated microspheres are interesting drug delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.
A 10-MJ compact homopolar generator
NASA Astrophysics Data System (ADS)
McKee, B. D.; McNab, I. R.
1986-11-01
The design and initial testing of a lightweight (5 kJ/kg) iron-cored homopolar generator is described. The machine employs an external power supply to motor up to operating speed (12,500 rpm) at which point 10 MJ of energy is stored in the steel rotor. Copper-graphite brushes in the stator, actuated by pneumatic actuators, make contact with the rotor surface and permit the inertial energy to be transferred to a load circuit at current levels up to 1.5 MA and voltages up to 60 V.
2014-08-11
generated through a self-sustained propagation of the reaction wave over the generator’s chemical core. The project objective is to determine the...iodine (I2, chips, Sigma Aldrich, 99% pure), at 4 wt% of the initial powder load. The 9.5 mm balls were removed and replaced with the same mass of...of boron (nominal size 0.7 Engineers). The nanocomposite powders were prepared in this project using a sequence of two milling steps. In the first
NASA Astrophysics Data System (ADS)
Bridgeman, J.; Tornqvist, T. E.; Jafari, N.; Allison, M. A.
2017-12-01
Land-surface subsidence can be a major contributor to the relative sea-level rise that is threatening coastal communities. Loosely constrained subsidence rate estimates across the Mississippi Delta make it difficult to differentiate between subsidence mechanisms and complicate modeling efforts. New data from a nearly 40 m long, 12 cm diameter core taken during the installation of a subsidence monitoring superstation near the Mississippi River, SW of New Orleans, provides insight into the stratigraphic and geotechnical properties of the Holocene succession. Stratigraphically, the core can be grouped into three sections. The top 12 m is dominated by clastic overbank sediment with interspersed organic-rich layers. The middle section, 12-35 m consists predominately of mud, and the bottom section, 35-38.7 m, is marked by a transition into a Holocene-aged basal peat (11,350-11,190 cal BP) which overlies densely packed Pleistocene sediment. Radiocarbon and OSL ages show up to 6 m of vertical displacement since 3,000 cal BP. We infer that most of this was due to compaction of the thick underlying mud package. The top 70 cm of the core is a peat that represents the modern marsh surface and is inducing minimal surface loading. This is consistent with the negligible shallow subsidence rate as seen at a nearby rod-surface elevation table - marker horizon station and the initial strainmeter data. Future compaction scenarios for the superstation can be modeled from the stratigraphic and geotechnical properties of the core, including the loading from the planned Mid-Barataria sediment diversion which is expected to dramatically change the coastal landscape in this region.
Dental responsibility loadings and the relative value of dental services.
Teusner, D N; Ju, X; Brennan, D S
2017-09-01
To estimate responsibility loadings for a comprehensive list of dental services, providing a standardized unit of clinical work effort. Dentists (n = 2500) randomly sampled from the Australian Dental Association membership (2011) were randomly assigned to one of 25 panels. Panels were surveyed by questionnaires eliciting responsibility loadings for eight common dental services (core items) and approximately 12 other items unique to that questionnaire. In total, loadings were elicited for 299 items listed in the Australian Dental Schedule 9th Edition. Data were weighted to reflect the age and sex distribution of the workforce. To assess reliability, regression models assessed differences in core item loadings by panel assignment. Estimated loadings were described by reporting the median and mean. Response rate was 37%. Panel composition did not vary by practitioner characteristics. Core item loadings did not vary by panel assignment. Oral surgery and endodontic service areas had the highest proportion (91%) of services with median loadings ≥1.5, followed by prosthodontics (78%), periodontics (76%), orthodontics (63%), restorative (62%) and diagnostic services (31%). Preventive services had median loadings ≤1.25. Dental responsibility loadings estimated by this study can be applied in the development of relative value scales. © 2017 Australian Dental Association.
Core/corona modeling of diode-imploded annular loads
NASA Astrophysics Data System (ADS)
Terry, R. E.; Guillory, J. U.
1980-11-01
The effects of a tenuous exterior plasma corona with anomalous resistivity on the compression and heating of a hollow, collisional aluminum z-pinch plasma are predicted by a one-dimensional code. As the interior ("core") plasma is imploded by its axial current, the energy exchange between core and corona determines the current partition. Under the conditions of rapid core heating and compression, the increase in coronal current provides a trade-off between radial acceleration and compression, which reduces the implosion forces and softens the pitch. Combined with a heuristic account of energy and momentum transport in the strongly coupled core plasma and an approximate radiative loss calculation including Al line, recombination and Bremsstrahlung emission, the current model can provide a reasonably accurate description of imploding annular plasma loads that remain azimuthally symmetric. The implications for optimization of generator load coupling are examined.
Gallego-Yerga, Laura; Posadas, Inmaculada; de la Torre, Cristina; Ruiz-Almansa, Jesús; Sansone, Francesco; Ortiz Mellet, Carmen; Casnati, Alessandro; García Fernández, José M; Ceña, Valentín
2017-01-01
Giant amphiphiles encompassing a hydrophilic β-cyclodextrin (βCD) component and a hydrophobic calix[4]arene (CA 4 ) module undergo self-assembly in aqueous media to afford core-shell nanospheres or nanocapsules, depending on the nanoprecipitation protocol, with high docetaxel (DTX) loading capacity. The blank and loaded nanoparticles have been fully characterized by dynamic light scattering (DLS), ζ-potential measurements and cryo-transmission electron microscopy (cryo-TEM). The data are compatible with the distribution of the drug between the nanoparticle core and the shell, where it is probably anchored by inclusion of the DTX aromatic moieties in βCD cavities. Indeed, the release kinetics profiles evidenced an initial fast release of the drug, which likely accounts for the fraction hosted on the surface, followed by a slow and sustained release rate, corresponding to diffusion of DTX in the core, which can be finely tuned by modification of the giant amphiphile chemical structure. The ability of the docetaxel-loaded nanoparticles to induce cellular death in different prostate (human LnCap and PC3) and glioblastoma (human U87 and rat C6) cells was also explored. Giant amphiphile-based DTX formulations surpassing or matching the antitumoral activity of the free DTX formulation were identified in all cases with no need to employ any organic co-solvent, thus overcoming the DTX water solubility problems. Moreover, the presence of the βCD shell at the surface of the assemblies is intended to impart stealth properties against serum proteins while permitting nanoparticle surface decoration by supramolecular approaches, paving the way for a new generation of molecularly well-defined antitumoral drug delivery systems with improved specificity and efficiency. Altogether, the results provide a proof of concept of the suitability of the approach based on βCD-CA 4 giant amphiphiles to access DTX carriers with tunable properties.
2014-01-01
The use of nebulizable, nanoparticle-based antimicrobial delivery systems can improve efficacy and reduce toxicity for treatment of multi-drug-resistant bacteria in the chronically infected lungs of cystic fibrosis patients. Nanoparticle vehicles are particularly useful for applying broad-spectrum silver-based antimicrobials, for instance, to improve the residence time of small-molecule silver carbene complexes (SCCs) within the lung. Therefore, we have synthesized multifunctional, shell cross-linked knedel-like polymeric nanoparticles (SCK NPs) and capitalized on the ability to independently load the shell and core with silver-based antimicrobial agents. We formulated three silver-loaded variants of SCK NPs: shell-loaded with silver cations, core-loaded with SCC10, and combined loading of shell silver cations and core SCC10. All three formulations provided a sustained delivery of silver over the course of at least 2–4 days. The two SCK NP formulations with SCC10 loaded in the core each exhibited excellent antimicrobial activity and efficacy in vivo in a mouse model of Pseudomonas aeruginosa pneumonia. SCK NPs with shell silver cation-load only, while efficacious in vitro, failed to demonstrate efficacy in vivo. However, a single dose of core SCC10-loaded SCK NPs (0.74 ± 0.16 mg Ag) provided a 28% survival advantage over sham treatment, and administration of two doses (0.88 mg Ag) improved survival to 60%. In contrast, a total of 14.5 mg of Ag+ delivered over 5 doses at 12 h intervals was necessary to achieve a 60% survival advantage with a free-drug (SCC1) formulation. Thus, SCK NPs show promise for clinical impact by greatly reducing antimicrobial dosage and dosing frequency, which could minimize toxicity and improve patient adherence. PMID:23718195
Ourique, A F; Azoubel, S; Ferreira, C V; Silva, C B; Marchiori, M C L; Pohlmann, A R; Guterres, S S; Beck, R C R
2010-06-01
Tretinoin-loaded conventional nanocapsules have showed a significant protection of this drug against UVC radiation. However, this formulation presents a limited stability on storage. We hypothesized that the association of tretinoin to lipid-core nanocapsules could increase the physicochemical stability of such formulations, focusing on the development of a reliable nanomedicine for parenteral administration. However, this advantage should still be accompanied by the known photoprotective effect of conventional polymeric nanocapsules against the exposure of tretinoin to UV radiation. Results showed that tretinoin-loaded lipid-core nanocapsules improved the physicochemical stability of formulations under storage, without changing their ability to protect tretinoin either against UVA or UVC radiation. In addition, the effect of nanoencapsulation on the antiproliferative and differentiation properties of tretinoin was studied on human myeloid leukemia cells (HL60 cells) showing that tretinoin-loaded lipid-core nanocapsules presents a longer antitumor efficiency compared to the free tretinoin. These results allow us to propose the current formulation (tretinoin-loaded lipid-core nanocapsules) as a promising parenteral nanomedicine for the treatment of acute promyelocytic leukaemia.
Hollow-core FRP-concrete-steel bridge columns under extreme loading.
DOT National Transportation Integrated Search
2015-04-01
This report presents the behavior of hollow-core fiber reinforced polymer concrete - steel columns (HC-FCS) under : combined axial-flexural as well as vehicle collision loads. The HC-FCS column consists of a concrete wall sandwiched between an ou...
Preparation of acetaminophen capsules containing beads prepared by hot-melt direct blend coating.
Pham, Loan; Christensen, John M
2014-02-01
Twelve hydrophobic coating agents were assessed for their effects on drug release after coating sugar cores by a flexible hot-melt coating method using direct blending. Drug-containing pellets were also produced and used as cores. The cores were coated with single or double wax layers containing acetaminophen (APAP). The harder the wax, the slower the resultant drug releases from single-coated beads. Wax coating can be deposited on cores up to 28% of the beads final weight and reaching 58% with wax and drug. Carnauba-coated beads dissolved in approximately 6 h releasing 80% of the loaded drug. Applying another wax layer extended drug release over 20 h, while still delivering 80% of the loaded drug. When drug-containing pellets (33-58% drug loading) were used as cores, double wax-coated pellets exhibited a near zero-order drug release for 16 h, releasing 80% of the loaded drug delivering 18 mg/h. The simple process of hot-melt coating by direct blending of pellet-containing drug-coated formulations provides excellent options for immediate and sustained release formulations when higher lipid coating or drug loading is warranted. Predicted plasma drug concentration time profiles using convolution and in vitro drug release properties of the beads were performed for optimal formulations.
Angular default mode network connectivity across working memory load.
Vatansever, D; Manktelow, A E; Sahakian, B J; Menon, D K; Stamatakis, E A
2017-01-01
Initially identified during no-task, baseline conditions, it has now been suggested that the default mode network (DMN) engages during a variety of working memory paradigms through its flexible interactions with other large-scale brain networks. Nevertheless, its contribution to whole-brain connectivity dynamics across increasing working memory load has not been explicitly assessed. The aim of our study was to determine which DMN hubs relate to working memory task performance during an fMRI-based n-back paradigm with parametric increases in difficulty. Using a voxel-wise metric, termed the intrinsic connectivity contrast (ICC), we found that the bilateral angular gyri (core DMN hubs) displayed the greatest change in global connectivity across three levels of n-back task load. Subsequent seed-based functional connectivity analysis revealed that the angular DMN regions robustly interact with other large-scale brain networks, suggesting a potential involvement in the global integration of information. Further support for this hypothesis comes from the significant correlations we found between angular gyri connectivity and reaction times to correct responses. The implication from our study is that the DMN is actively involved during the n-back task and thus plays an important role related to working memory, with its core angular regions contributing to the changes in global brain connectivity in response to increasing environmental demands. Hum Brain Mapp 38:41-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Denis, Nicolas; Kato, Yoshiyuki; Ieki, Masaharu; Fujisaki, Keisuke
2016-05-01
In this paper, an interior permanent magnet synchronous motor (IPMSM) with a stator core made of amorphous magnetic material (AMM) is presented. The IPMSM is driven by a voltage source three-phase inverter with classical pulse width modulation (PWM) control. The core losses under no-load condition are measured by experiment and compared to an equivalent IPMSM with a stator core made of NO steel. Under these conditions, the core losses are influenced by the stator, rotor and magnet shapes but also by the PWM carrier signal that implies a high frequency harmonic in the magnetic flux density. It is demonstrated that the AMM can reduce the core losses by about 56 %.
Evaluation of Analysis Techniques for Fluted-Core Sandwich Cylinders
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Schultz, Marc R.
2012-01-01
Buckling-critical launch-vehicle structures require structural concepts that have high bending stiffness and low mass. Fluted-core, also known as truss-core, sandwich construction is one such concept. In an effort to identify an analysis method appropriate for the preliminary design of fluted-core cylinders, the current paper presents and compares results from several analysis techniques applied to a specific composite fluted-core test article. The analysis techniques are evaluated in terms of their ease of use and for their appropriateness at certain stages throughout a design analysis cycle (DAC). Current analysis techniques that provide accurate determination of the global buckling load are not readily applicable early in the DAC, such as during preliminary design, because they are too costly to run. An analytical approach that neglects transverse-shear deformation is easily applied during preliminary design, but the lack of transverse-shear deformation results in global buckling load predictions that are significantly higher than those from more detailed analysis methods. The current state of the art is either too complex to be applied for preliminary design, or is incapable of the accuracy required to determine global buckling loads for fluted-core cylinders. Therefore, it is necessary to develop an analytical method for calculating global buckling loads of fluted-core cylinders that includes transverse-shear deformations, and that can be easily incorporated in preliminary design.
Preparation and evaluation of celecoxib-loaded microcapsules with self-microemulsifying core.
Homar, Miha; Dreu, Rok; Kerc, Janez; Gasperlin, Mirjana
2009-09-01
The purpose of this study was to prepare alginate microcapsules with a self-microemulsifying system (SMES) containing celecoxib in the core. An Inotech IE-50 R encapsulator equipped with a concentric nozzle was used to prepare the microcapsules. The encapsulated SMES was shown to increase celecoxib solubility over that of the pure drug more than 400-fold. Microcapsules prepared with a high SMES:celecoxib ratio exhibited distinct core vesicles containing liquid SMES. By modifying the SMES and including an additional chitosan coating, drug loading in the range from 12-40% could be achieved with the degree of encapsulation ranging from 60-82%. Alginate microcapsules loaded with SMES and celecoxib showed increased dissolution rate of celecoxib over that of alginate microcapsules loaded with celecoxib or of the celecoxib alone. Compared to the previous report, drug loading capacity was significantly improved, enabling the formulation of dosage forms which are of suitable size for peroral application.
Heuristic rules embedded genetic algorithm for in-core fuel management optimization
NASA Astrophysics Data System (ADS)
Alim, Fatih
The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code used for VVER in this research is Moby-Dick, which was developed to analyze the VVER by SKODA Inc. The SIMULATE-3 code, which is an advanced two-group nodal code, is used to analyze the TMI-1.
Core-Sheath Paraffin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage.
Lu, Yuan; Xiao, Xiudi; Zhan, Yongjun; Huan, Changmeng; Qi, Shuai; Cheng, Haoliang; Xu, Gang
2018-04-18
Paraffin wax (PW) is widely used for smart thermoregulation materials due to its good thermal performance. However, the leakage and low thermal conductivity of PW hinder its application in the heat storage field. Accordingly, developing effective methods to address these issues is of great importance. In this study, we explored a facile approach to obtain PW-loaded core-sheath structured flexible nanofibers films via coaxial electrospinning technique. The PW as the core layer was successfully encapsulated by the sheath-layer poly(methyl methacrylate). The diameter of the fiber core increased from 395 to 848 nm as the core solution speed rate increased from 0.1 to 0.5 mL/h. In addition, it can be seen that higher core solution speed rate could lead to higher PW encapsulation efficiency according to the transmission electron microscopy results. The core-sheath nanofiber films, moreover, possessed the highest latent heat of 58.25 J/g and solidifying enthalpy of -56.49 J/g. In addition, we found that after 200 thermal cycles, there was little change in latent heat, which demonstrated that it is beneficial for the PW-loaded core-sheath structure to overcome the leakage issue and enhance thermal stability properties for the thermoregulation film.
A Regional Survey of River-plume Sedimentation on the Mississippi River Delta Front
NASA Astrophysics Data System (ADS)
Courtois, A. J.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Chaytor, J. D.; Smith, J.
2017-12-01
Many studies of the Mississippi River and Delta (MRD) have shown historic declines in sediment load reaching the main river distributaries over the last few decades. Recent studies also reported that 50% of the suspended load during floods is sequestered within the delta. While the impact of declining sediment load on wetland loss is well documented, submarine sedimentary processes on the delta front during this recent period of declining sediment load are understudied. To better understand modern sediment dispersal and deposition across the Mississippi River Delta Front, 31 multicores were collected in June 2017 from locations extending offshore from Southwest Pass, South Pass, and Pass a Loutre (the main river outlets) in water depths of 25-280 m. Core locations were selected based on multibeam bathymetry and morphology collected by the USGS in May 2017; the timing of collection coincided with the end of annual peak discharge on the Mississippi River. This multi-agency survey is the first to study delta-front sedimentary processes regionally with such a wide suite of tools. Target locations for coring included the dominant depositional environments: mudflow lobes, gullies, and undisturbed prodelta. Cores were subsampled at 2 cm intervals and analyzed for Beryllium-7 activity via gamma spectrometry; in such settings, Be-7 can be used as a tracer of sediment recently delivered from fluvial origin. Results indicate a general trend of declining Be-7 activity with increasing distance from source, and in deeper water. Inshore samples near Southwest Pass show the deepest penetration depth of Be-7 into the sediment (24-26 cm), which is a preliminary indicator of rapid seasonal sedimentation. Nearshore samples from South Pass exhibited similar Be-7 penetration depths, with results near Pass a Loutre to 14-16 cm depth. Be-7 remains detectable to 2 cm in water 206 m deep, approximately 20 km from South Pass. Sediment dispersal remains impressive offshore from all three major river outlets, despite overall decline of sediment load in recent decades, and pronounced declines for South Pass and Pass a Loutre. Future research will focus on relationships among changing sediment loads, dispersal patterns, and sediment transport by mudflows, which are an important process for dispersal after initial deposition.
Devi, D Chitra; Uthariaraj, V Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods.
Devi, D. Chitra; Uthariaraj, V. Rhymend
2016-01-01
Cloud computing uses the concepts of scheduling and load balancing to migrate tasks to underutilized VMs for effectively sharing the resources. The scheduling of the nonpreemptive tasks in the cloud computing environment is an irrecoverable restraint and hence it has to be assigned to the most appropriate VMs at the initial placement itself. Practically, the arrived jobs consist of multiple interdependent tasks and they may execute the independent tasks in multiple VMs or in the same VM's multiple cores. Also, the jobs arrive during the run time of the server in varying random intervals under various load conditions. The participating heterogeneous resources are managed by allocating the tasks to appropriate resources by static or dynamic scheduling to make the cloud computing more efficient and thus it improves the user satisfaction. Objective of this work is to introduce and evaluate the proposed scheduling and load balancing algorithm by considering the capabilities of each virtual machine (VM), the task length of each requested job, and the interdependency of multiple tasks. Performance of the proposed algorithm is studied by comparing with the existing methods. PMID:26955656
Field testing of stiffened deep cement mixing piles under lateral cyclic loading
NASA Astrophysics Data System (ADS)
Raongjant, Werasak; Jing, Meng
2013-06-01
Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.
Anusavice, Kenneth J; Jadaan, Osama M; Esquivel-Upshaw, Josephine F
2013-11-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Predicted fracture probabilities (Pf) for centrally loaded 1.6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8mm/0.8mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4mm/1.2mm). CARES/Life results support the proposed crown design and load orientation hypotheses. The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. Copyright © 2013 Academy of Dental Materials. All rights reserved.
Anusavice, Kenneth J.; Jadaan, Osama M.; Esquivel–Upshaw, Josephine
2013-01-01
Recent reports on bilayer ceramic crown prostheses suggest that fractures of the veneering ceramic represent the most common reason for prosthesis failure. Objective The aims of this study were to test the hypotheses that: (1) an increase in core ceramic/veneer ceramic thickness ratio for a crown thickness of 1.6 mm reduces the time-dependent fracture probability (Pf) of bilayer crowns with a lithium-disilicate-based glass-ceramic core, and (2) oblique loading, within the central fossa, increases Pf for 1.6-mm-thick crowns compared with vertical loading. Materials and methods Time-dependent fracture probabilities were calculated for 1.6-mm-thick, veneered lithium-disilicate-based glass-ceramic molar crowns as a function of core/veneer thickness ratio and load orientation in the central fossa area. Time-dependent fracture probability analyses were computed by CARES/Life software and finite element analysis, using dynamic fatigue strength data for monolithic discs of a lithium-disilicate glass-ceramic core (Empress 2), and ceramic veneer (Empress 2 Veneer Ceramic). Results Predicted fracture probabilities (Pf) for centrally-loaded 1,6-mm-thick bilayer crowns over periods of 1, 5, and 10 years are 1.2%, 2.7%, and 3.5%, respectively, for a core/veneer thickness ratio of 1.0 (0.8 mm/0.8 mm), and 2.5%, 5.1%, and 7.0%, respectively, for a core/veneer thickness ratio of 0.33 (0.4 mm/1.2 mm). Conclusion CARES/Life results support the proposed crown design and load orientation hypotheses. Significance The application of dynamic fatigue data, finite element stress analysis, and CARES/Life analysis represent an optimal approach to optimize fixed dental prosthesis designs produced from dental ceramics and to predict time-dependent fracture probabilities of ceramic-based fixed dental prostheses that can minimize the risk for clinical failures. PMID:24060349
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovol, A.A.; Sich, A.R.
1995-10-01
Approximately 135 tonnes of the 190.3-tonne initial core fuel load ({approx}71%) at Chornobyl Unit 4 melted and flowed into the lower regions of the reactor building to form various kinds of the now-solidified lava-like fuel-containing materials (LFCMs) or corium. The results of radiochemical analyses reveal that only 5% of the LFCM inventory of Ru-106 remains, whereas, surprisingly, 35% of the LFCM inventory of Cs-137 remains. Moreover, the results of these analyses support the fact that little if any of the 5020 tonnes of various materials (dropped from helicopters during the active phase of the accident in an attempt to smothermore » the burning graphite) ever made it into the core shaft, where the bulk of the core was located. The results appear to support earlier Western source-term estimates that significantly more volatile radionuclides may have been released as a result of the accident.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovoi, A.A.; Sich, A.R.
1995-01-01
Approximately 135 tonnes of the 190.3-tonne initial core fuel load ({approx}71%) at Chernobyl Unit 4 melted and flowed into the lower regions of the reactor building to form various kinds of the now-solidified lava-like fuel-containing materials (LFCMs) or corium. The results of radiochemical analyses reveal that only 5% of the LFCM inventory of Ru-106 remains. whereas, surprisingly, 35% of the LFCM inventory of Cs-137 remains. Moreover, the results of these analyses support the fact that little if any of the 5020 tonnes of various materials (dropped from helicopters during the active phase of the accident in an attempt to smothermore » the burning graphite) ever made it into the core shaft, where the bulk of the core was located. The results appear to support earlier Western source-term estimates that significantly more volatile radionuclides may have been released as a result of the accident. 37 refs., 13 figs., 7 tabs.« less
The 25-KVA amorphous metal-core transformer developmental test report
NASA Astrophysics Data System (ADS)
Urata, G. V.; Franchi, J. O.; Franchi, P. E.
1989-08-01
NCEL has completed a test and evaluation program for 25-kVA amorphous metal-core transformers. These transformers save energy by reducing no-load losses by 60 to 70 percent. No-load losses are estimated to cost the Navy millions annually and if all of the Navy transformers were replaced by amorphous metal-core transformers, the Navy would save millions a year. The program objective was to evaluate the electrical performance and operational reliability of the amorphous metal-core transformers compared to conventional silicon-steel transformers.
The effect of rehearsal rate and memory load on verbal working memory.
Fegen, David; Buchsbaum, Bradley R; D'Esposito, Mark
2015-01-15
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. Copyright © 2014 Elsevier Inc. All rights reserved.
The Effect of Rehearsal Rate and Memory Load on Verbal Working Memory
Fegen, David; Buchsbaum, Bradley R.; D’Esposito, Mark
2014-01-01
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-second delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded. PMID:25467303
Alhasanyah, Abdulrahman; Vaidyanathan, Tritala K; Flinton, Robert J
2013-07-01
Despite the excellent esthetics of veneered zirconia crowns, the incidence of chipping and fracture of veneer porcelain on zirconia crowns has been recognized to be higher than in metal ceramic crowns. The objective of this investigation was to study the effect of selected variations in core thickness on the post-fatigue fracture resistance of veneer porcelain on zirconia crowns. Zirconia crowns for veneering were prepared with three thickness designs of (a) uniform 0.6-mm thick core (group A), (b) extra-thick 1.7 mm occlusal core support (group B), and (c) uniform 1.2-mm thick core (group C). The copings were virtually designed and milled by the CAD/CAM technique. Metal ceramic copings (group D) with the same design as in group C were used as controls. A sample size of N = 20 was used for each group. The copings were veneered with compatible porcelain and fatigue tested under a sinusoidal loading regimen. Loading was done with a 200 N maximum force amplitude under Hertzian axial loading conditions at the center of the crowns using a spherical tungsten carbide indenter. After 100,000 fatigue cycles, the crowns were axially loaded to fracture and maximum load levels before fracture was recorded. One-way ANOVA (P < 0.05) and post hoc Tukey tests (α = 0.05) were used to determine significant differences between means. The mean fracture failure load of group B was not significantly different from that of control group D. In contrast, the mean failure loads of groups A and C were significantly lower than that of control group D. Failure patterns also indicated distinct differences in failure mode distributions. The results suggest that proper occlusal core support improves veneer chipping fracture resistance in zirconia crowns. Extra-thick occlusal core support for porcelain veneer may significantly reduce the veneer chipping and fracture of zirconia crowns. This is suggested as an important consideration in the design of copings for zirconia crowns. © 2013 by the American College of Prosthodontists.
Biomechanical consequences of running with deep core muscle weakness.
Raabe, Margaret E; Chaudhari, Ajit M W
2018-01-23
The deep core muscles are often neglected or improperly trained in athletes. Improper function of this musculature may lead to abnormal spinal loading, muscle strain, or injury to spinal structures, all of which have been associated with increased low back pain (LBP) risk. The purpose of this study was to identify potential strategies used to compensate for weakness of the deep core musculature during running and to identify accompanying changes in compressive and shear spinal loads. Kinematically-driven simulations of overground running were created for eight healthy young adults in OpenSim at increasing levels of deep core muscle weakness. The deep core muscles (multifidus, quadratus lumborum, psoas, and deep fascicles of the erector spinae) were weakened individually and together. The superficial longissimus thoracis was a significant compensator for 4 out of 5 weakness conditions (p < 0.05). The deep erector spinae required the largest compensations when weakened individually (up to a 45 ± 10% increase in compensating muscle force production, p = 0.004), revealing it may contribute most to controlling running kinematics. With complete deep core muscle weakness, peak anterior shear loading increased on all lumbar vertebrae (up to 19%, p = 0.001). Additionally, compressive spinal loading increased on the upper lumbar vertebrae (up to 15%, p = 0.007) and decreased on the lower lumbar vertebrae (up to 8%, p = 0.008). Muscular compensations may increase risk of muscular fatigue or injury and increased spinal loading over numerous gait cycles may result in damage to spinal structures. Therefore, insufficient strength of the deep core musculature may increase a runner's risk of developing LBP. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fuel management optimization using genetic algorithms and expert knowledge
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1996-09-01
The CIGARO fuel management optimization code based on genetic algorithms is described and tested. The test problem optimized the core lifetime for a pressurized water reactor with a penalty function constraint on the peak normalized power. A bit-string genotype encoded the loading patterns, and genotype bias was reduced with additional bits. Expert knowledge about fuel management was incorporated into the genetic algorithm. Regional crossover exchanged physically adjacent fuel assemblies and improved the optimization slightly. Biasing the initial population toward a known priority table significantly improved the optimization.
Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang
2014-01-01
Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection. PMID:25364253
Wang, Yun; Lin, Fu-xing; Zhao, Yu; Wang, Mo-zhen; Ge, Xue-wu; Gong, Zheng-xing; Bao, Dan-dan; Gu, Yu-fang
2014-01-01
Novel submicron core-shell-structured chitosan-based composite particles encapsulated with enhanced green fluorescent protein plasmids (pEGFP) were prepared by complex coacervation method. The core was pEGFP-loaded thiolated N-alkylated chitosan (TACS) and the shell was pH- and temperature-responsive hydroxybutyl chitosan (HBC). pEGFP-loaded TACS-HBC composite particles were spherical, and had a mean diameter of approximately 120 nm, as measured by transmission electron microscopy and particle size analyzer. pEGFP showed sustained release in vitro for >15 days. Furthermore, in vitro transfection in human embryonic kidney 293T and human cervix epithelial cells, and in vivo transfection in mice skeletal muscle of loaded pEGFP, were investigated. Results showed that the expression of loaded pEGFP, both in vitro and in vivo, was slow but could be sustained over a long period. pEGFP expression in mice skeletal muscle was sustained for >60 days. This work indicates that these submicron core-shell-structured chitosan-based composite particles could potentially be used as a gene vector for in vivo controlled gene transfection.
Kheradvar, Shadi Alsadat; Nourmohammadi, Jhamak; Tabesh, Hadi; Bagheri, Behnam
2018-06-01
Core-sheath nanofibrous mat as a new vitamin E (VE) delivery system based on silk fibroin (SF)/poly(vinyl alcohol) (PVA)/aloe vera (AV) was successfully prepared by the electrospinning method. Initially, VE-loaded starch nanoparticles were produced and then incorporated into the best beadless SF-PVA-AV nanofibers. The successful loading of VE in starch nanoparticles was proved by Fourier-transform infrared spectroscopy. The scanning electron microscopy and transmission electron microscopy indicated that spherical nanoparticles were successfully embedded within the nanofibers. In vitro release studies demonstrated that the release of VE was controlled by Fickian diffusion and was faster in samples containing more nanoparticles. Fibroblast attachment, proliferation, and collagen secretion were enhanced after adding AV and VE to the SF-PVA nanomatrix. Moreover, the incorporation of VE into the nanocomposite dressing enhanced antioxidant activity, which can have a positive effect on wound healing process by protecting the cells from toxic oxidation products. Copyright © 2018 Elsevier B.V. All rights reserved.
Brynsvold, Glen V.; Snyder, Jr., Harold J.
1976-06-22
An internal core tightener which is a linear actuated (vertical actuation motion) expanding device utilizing a minimum of moving parts to perform the lateral tightening function. The key features are: (1) large contact areas to transmit loads during reactor operation; (2) actuation cam surfaces loaded only during clamping and unclamping operation; (3) separation of the parts and internal operation involved in the holding function from those involved in the actuation function; and (4) preloaded pads with compliant travel at each face of the hexagonal assembly at the two clamping planes to accommodate thermal expansion and irradiation induced swelling. The latter feature enables use of a "fixed" outer core boundary, and thus eliminates the uncertainty in gross core dimensions, and potential for rapid core reactivity changes as a result of core dimensional change.
RNA polymerase gate loop guides the nontemplate DNA strand in transcription complexes.
NandyMazumdar, Monali; Nedialkov, Yuri; Svetlov, Dmitri; Sevostyanova, Anastasia; Belogurov, Georgiy A; Artsimovitch, Irina
2016-12-27
Upon RNA polymerase (RNAP) binding to a promoter, the σ factor initiates DNA strand separation and captures the melted nontemplate DNA, whereas the core enzyme establishes interactions with the duplex DNA in front of the active site that stabilize initiation complexes and persist throughout elongation. Among many core RNAP elements that participate in these interactions, the β' clamp domain plays the most prominent role. In this work, we investigate the role of the β gate loop, a conserved and essential structural element that lies across the DNA channel from the clamp, in transcription regulation. The gate loop was proposed to control DNA loading during initiation and to interact with NusG-like proteins to lock RNAP in a closed, processive state during elongation. We show that the removal of the gate loop has large effects on promoter complexes, trapping an unstable intermediate in which the RNAP contacts with the nontemplate strand discriminator region and the downstream duplex DNA are not yet fully established. We find that although RNAP lacking the gate loop displays moderate defects in pausing, transcript cleavage, and termination, it is fully responsive to the transcription elongation factor NusG. Together with the structural data, our results support a model in which the gate loop, acting in concert with initiation or elongation factors, guides the nontemplate DNA in transcription complexes, thereby modulating their regulatory properties.
Experimental Study of the Compression Response of Fluted-Core Composite Panels with Joints
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Rose, Cheryl A.; Guzman, J. Carlos; McCarville, Douglas; Hilburger, Mark W.
2012-01-01
Fluted-core sandwich composites consist of integral angled web members spaced between laminate face sheets, and may have the potential to provide benefits over traditional sandwich composites for certain aerospace applications. However, fabrication of large autoclave-cured fluted-core cylindrical shells with existing autoclaves will require that the shells be fabricated in segments, and joined longitudinally to form a complete barrel. Two different longitudinal fluted-core joint designs were considered experimentally in this study. In particular, jointed fluted-core-composite panels were tested in longitudinal compression because longitudinal compression is the primary loading condition in dry launch-vehicle barrel sections. One of the joint designs performed well in comparison with unjointed test articles, and the other joint design failed at loads approximately 14% lower than unjointed test articles. The compression-after-impact (CAI) performance of jointed fluted-core composites was also investigated by testing test articles that had been subjected to 6 ft-lb impacts. It was found that such impacts reduced the load-carrying capability by 9% to 40%. This reduction is dependent on the joint concept, component flute size, and facesheet thickness.
Simultaneous optimization of loading pattern and burnable poison placement for PWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alim, F.; Ivanov, K.; Yilmaz, S.
2006-07-01
To solve in-core fuel management optimization problem, GARCO-PSU (Genetic Algorithm Reactor Core Optimization - Pennsylvania State Univ.) is developed. This code is applicable for all types and geometry of PWR core structures with unlimited number of fuel assembly (FA) types in the inventory. For this reason an innovative genetic algorithm is developed with modifying the classical representation of the genotype. In-core fuel management heuristic rules are introduced into GARCO. The core re-load design optimization has two parts, loading pattern (LP) optimization and burnable poison (BP) placement optimization. These parts depend on each other, but it is difficult to solve themore » combined problem due to its large size. Separating the problem into two parts provides a practical way to solve the problem. However, the result of this method does not reflect the real optimal solution. GARCO-PSU achieves to solve LP optimization and BP placement optimization simultaneously in an efficient manner. (authors)« less
Damage Tolerance of Sandwich Plates with Debonded Face Sheets
NASA Technical Reports Server (NTRS)
Avery, John L., III; Sankar, Bhavani V.
1998-01-01
Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites.
BNL program in support of LWR degraded-core accident analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginsberg, T.; Greene, G.A.
1982-01-01
Two major sources of loading on dry watr reactor containments are steam generatin from core debris water thermal interactions and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described in this paper. 8 figures.
2009-10-01
nanoparticles size of 8 nm; found out that shell loaded image is much more effective than core loaded one. We have prepared a number of lipid nanoparticles ...strategies: lipid - conjugated fluorochrome was introduced into either core or shell lipids of the nanoparticles . Pyro- CE-OA that contains cholesterol... lipids either in the core or in the shell . We have conjugated the nanoparticles with the integrin ligands. We have showed
Pt monolayer shell on nitrided alloy core — A path to highly stable oxygen reduction catalyst
Hu, Jue; Kuttiyiel, Kurian A.; Sasaki, Kotaro; ...
2015-07-22
The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC). Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared Pt MLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability ofmore » the Pt MLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.« less
NASA Astrophysics Data System (ADS)
Otsuka, Yudai; Koyama, Yuya; Nishiyama, Michiko; Watanabe, Kazuhiro
2016-03-01
Gait in daily activity affects human health because it may cause physical problems such as asymmetric pelvis, flat foot and bowlegs. Monitoring natural weight shift and foot rolling on plantar has been employed in order for researchers to analyze gait characteristics. Conventional gait monitoring systems have been developed using camera, acceleration sensor, gyro sensor and electrical load sensors. They have some problems such as limited measurement place, temperature dependence and electric leakage. On the other hand, a hetero-core optical fiber sensor has many advantages such as high sensitivity for macro-bending, light weight sensor element, independency on temperature fluctuations, and no electric contact. This paper describes extraction of natural weight shift and foot rolling for gait evaluation by using a sensitive shoe, in the insole of which hetero-core optical load sensors are embedded for detecting plantar pressure. Plantar pressure of three subjects who wear the sensitive shoe and walk on the treadmill was monitored. As a result, weight shift and foot rolling for three subjects were extracted using the proposed sensitive shoe in terms of centroid movement and positions. Additionally, these extracted data are compared to that of electric load sensor to ensure consistency. For these results, it was successfully demonstrated that hetero-core optical fiber load sensor performed in unconstraint gait monitoring as well as electric load sensor.
Evaluation of oil-leakage of multi-layered resin-hose clamped with metal nipple and sleeve
NASA Astrophysics Data System (ADS)
Matsuoka, Kenta; Okubo, Kazuya; Fujii, Toru; Nakamura, Chihiro; Fujishita, Yushi; Kusu, Fuko; Matsushita, Masato; Yoshihara, Ryota
2018-03-01
The purpose of this study is to investigate the path of occurred oil-leakage of multi-layered resin-hose as one of multifunctional materials around the caulked joint with a metal nipple and sleeve when excessive cyclic internal pressure was applied onto the hose. Equivalent cyclic axial tensile force was substitutively applied to the hose, where same degree of normal stress was produced in longitudinal direction. Excessive 3 and 5 times of the standard load was applied to the hose. Cyclic loading was paused at every 1000 and 10000 cycles and then designed internal pressure was applied to the hose by a hand-operated pump with water in order to check whether the leakage was occurred around the joint and surface of the hose for safety evaluation. Cyclic fatigue life was defined as the number of loading cycles in which the leakage and the initial damage which was the passage of the ultrasonic wave was observed on the cyclic test. Test results showed the fatigue life at which leakage of water was observed was increased 20 times in case of K=3 compared to that in case of K=5. The cycles of initial damage detected by the ultrasonic wave were passed was increased 3.3 times in case of K=3 compared to that in case of K=5. The fluorescent agent penetrated from the core layer of resin hose to the reinforcement layer in which a half cross section along longitudinal direction in failed specimens was observed after the leak test. The original specimens had the gap between the resin-hose and the nipple and then the gap extended and connected during fatigue cyclic. In this study, it was observed that oil was leaked through narrow gap between the nipple and core layer of resin hose.
Lee, Wei Li; Guo, Wei Mei; Ho, Vincent H B; Saha, Amitaksha; Chong, Han Chung; Tan, Nguan Soon; Tan, Ern Yu; Loo, Say Chye Joachim
2015-11-01
Double-layered microparticles composed of poly(d,l-lactic-co-glycolic acid, 50:50) (PLGA) and poly(l-lactic acid) (PLLA) were loaded with doxorubicin HCl (DOX) and paclitaxel (PCTX) through a solvent evaporation technique. DOX was localized in the PLGA shell, while PCTX was localized in the PLLA core. The aim of this study was to investigate how altering layer thickness of dual-drug, double-layered microparticles can influence drug release kinetics and their antitumor capabilities, and against single-drug microparticles. PCTX-loaded double-layered microparticles with denser shells retarded the initial release of PCTX, as compared with dual-drug-loaded microparticles. The DOX release from both DOX-loaded and dual-drug-loaded microparticles were observed to be similar with an initial burst. Through specific tailoring of layer thicknesses, a suppressed initial burst of DOX and a sustained co-delivery of two drugs can be achieved over 2months. Viability studies using spheroids of MCF-7 cells showed that controlled co-delivery of PCTX and DOX from dual-drug-loaded double-layered microparticles were better in reducing spheroid growth rate. This study provides mechanistic insights into how by tuning the layer thickness of double-layered microparticles the release kinetics of two drugs can be controlled, and how co-delivery can potentially achieve better anticancer effects. While the release of multiple drugs has been reported to achieve successful apoptosis and minimize drug resistance, most conventional particulate systems can only deliver a single drug at a time. Recently, although a number of formulations (e.g. micellar nanoparticles, liposomes) have been successful in delivering two or more anticancer agents, sustained co-delivery of these agents remains inadequate due to the complex agent loading processes and rapid release of hydrophilic agents. Therefore, the present work reports the multilayered particulate system that simultaneously hosts different drugs, while being able to tune their individual release over months. We believe that our findings would be of interest to the readers of Acta Biomaterialia because the proposed system could open a new avenue on how two drugs can be released, through rate-controlling carriers, for combination chemotherapy. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Andhariya, Nidhi; Chudasama, Bhupendra; Mehta, R. V.; Upadhyay, R. V.
2011-04-01
The use of nanoparticles as drug delivery systems for anticancer therapeutics has great potential to revolutionize the future of cancer therapy. The aim of this study is to construct a novel drug delivery platform comprising a magnetic core and biodegradable thermoresponsive shell of tri-block-copolymer. Oleic acid-coated Fe3O4 nanoparticles and hydrophilic anticancer drug "doxorubicin" are encapsulated with PEO-PLGA-PEO (polyethylene oxide-poly d, l lactide-co-glycolide-polyethylene oxide) tri-block-copolymer. Structural, magnetic, and physical properties of Fe3O4 core are determined by X-ray diffraction, vibrating sample magnetometer, and transmission electron microscopy techniques, respectively. The hydrodynamic size of composite nanoparticles is determined by dynamic light scattering and is found to be 36.4 nm at 25 °C. The functionalization of magnetic core with various polymeric chain molecules and their weight proportions are determined by Fourier transform infrared spectroscopy and thermogravimetric analysis, respectively. Encapsulation of doxorubicin into the polymeric magnetic nanoparticles, its loading efficiency, and kinetics of drug release are investigated by UV-vis spectroscopy. The loading efficiency of drug is 89% with a rapid release for the initial 7 h followed by the sustained release over a period of 36 h. The release of drug is envisaged to occur in response to the physiological temperature by deswelling of thermoresponsive PEO-PLGA-PEO block-copolymer. This study demonstrates that temperature can be exploited successfully as an external parameter to control the release of drug.
Modelling the Centers of Galaxies
NASA Technical Reports Server (NTRS)
Smith, B. F.; Miller, R. H.; Young, Richard E. (Technical Monitor)
1997-01-01
The key to studying central regions by means of nobody numerical experiments is to concentrate on the central few parsecs of a galaxy, replacing the remainder of the galaxy by a suitable boundary condition, rather after the manner in which stellar interiors can be studied without a detailed stellar atmosphere by replacing the atmosphere with a boundary condition. Replacements must be carefully designed because the long range gravitational force means that the core region is sensitive to mass outside that region and because particles can exchange between the outer galaxy and the core region. We use periodic boundary conditions, coupled with an iterative procedure to generate initial particle loads in isothermal equilibrium. Angular momentum conservation is ensured for problems including systematic rotation by a circular reflecting boundary and by integrating in a frame that rotates with the mean flow. Mass beyond the boundary contributes to the gravitational potential, but does not participate in the dynamics. A symplectic integration scheme has been developed for rotating coordinate systems. This combination works well, leading to robust configurations. Some preliminary results with this combination show that: (1) Rotating systems are extremely sensitive to non-axisymmetric external potentials, and (2) that a second core, orbiting near the main core (like the M31 second core system), shows extremely rapid orbital decay. The experimental setups will be discussed, along with preliminary results.
Survival of resin infiltrated ceramics under influence of fatigue.
Aboushelib, Moustafa N; Elsafi, Mohamed H
2016-04-01
to evaluate influence of cyclic fatigue on two resin infiltrated ceramics and three all-ceramic crowns manufactured using CAD/CAM technology. CAD/CAM anatomically shaped crowns were manufactured using two resin infiltrated ceramics (Lava Ultimate and Vita Enamic), two reinforced glass ceramic milling blocks ((IPS)Empress CAD and (IPS)e.max CAD) and a veneered zirconia core ((IPS)Zir CAD). (IPS)e.max CAD and (IPS)Zir CAD were milled into 0.5mm thick anatomically shaped core structure which received standardized press-on veneer ceramic. The manufactured crowns were cemented on standardized resin dies using a resin adhesive (Panavia F2.0). Initial fracture strength of half of the specimens was calculated using one cycle load to failure in a universal testing machine. The remaining crowns were subjected to 3.7 million chewing cycles (load range 50-200N at 3s interval) in a custom made pneumatic fatigue tester. Survival statistics were calculated and Weibull modulus was measured from fitted load-cycle-failure diagrams. Scanning electron microscopy was performed to fractographically analyze fractured surfaces. Data were analyzed using two way analysis of variance and Bonferroni post hoc tests (α=0.05). Dynamic fatigue resulted in significant reduction (F=7.54, P<0.005) of the initial fracture strength of the tested specimens. Zirconia showed the highest deterioration percent (34% reduction in strength) followed by (IPS)Empress (32.2%), (IPS)e.max (27.1%) while Lava Ultimate and Vita Enamic showed the lowest percent of reduction in strength. The two types of resin infiltrated ceramics and (IPS)Empress demonstrated the highest percent of fracture incidences under the influence of fatigue (35-45% splitting). None of the tested veneered zirconia restorations were fractured during testing, however, chipping of the veneer ceramics was observed in 6 crowns. The lowest percent of failure was observed for (IPS)e.max crowns manifested as 3 cases of minor chipping in addition to two complete fracture incidences. SEM images demonstrated the internal structure of the tested materials and detected location and size of the critical crack. The internal structure of the tested materials significantly influenced their fatigue behavior. Resin infiltrated ceramics were least influenced by fatigue while the characteristic strength of zirconia prevented core fracture but failure still occurred from the weaker veneer ceramic. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Gowda, Srinivasa; Quadras, Dilip D; Sesappa, Shetty R; Maiya, G R Ramakrishna; Kumar, Lalit; Kulkarni, Dinraj; Mishra, Nitu
2018-05-01
The aim of the study was to evaluate the fracture strength of three types of composite core build-up materials. The objectives were to study and evaluate the fracture strength and type of fracture in composite core build-up in restoration of endodonti-cally treated teeth with or without a prefabricated metallic post. A total of 60 freshly extracted mandibular premolars free of caries, cracks, or fractures were end-odontically treated and restored with composite core build-up with prefabricated metallic posts cemented with resin luting cement (group I) and without a post (group II). This was followed by a core build-up of 10 teeth each with three different types of composite materials: Hybrid composite, nanocomposite, and ormocer respectively. The samples were mounted on polyvinyl chloride block and then loaded in the universal load frame at 90° to the long axis of tooth. The fracture strength of the samples was directly obtained from the load indicator attached to the universal load frame. Analysis of variance (ANOVA) test revealed that teeth restored with post exhibited highest fracture strength (1552.32 N) and teeth restored without post exhibited lowest fracture strength (232.20 N). Bonferroni's test revealed that values for hybrid composite (Z-100, 3M ESPE) with post, nanocomposite (Z-350, 3M ESPE) with post, ormocer composite (Admira-VOCO) with post, and nanocomposite (Z-350, 3M ESPE) without post were not significantly different from each other. Teeth restored with post and core using hybrid composite yielded the highest values for fracture strength. Teeth restored with ormocer core without post exhibited the lowest values. Teeth restored with nanocomposite core without post exhibited strength that was comparable with hybrid composite core but higher than that of ormocer. Mutilated endodontically treated teeth can be prosthetically rehabilitated successfully by using adhesive composite core build-up along with post to meet anatomical, functional, and esthetic demands.
BNL severe-accident sequence experiments and analysis program. [PWR; BWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greene, G.A.; Ginsberg, T.; Tutu, N.K.
1983-01-01
In the analysis of degraded core accidents, the two major sources of pressure loading on light water reactor containments are: steam generation from core debris-water thermal interactions; and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described.
Poro-elastic Properties of Whillan's Ice Stream Till: Implications for Basal Stick-Slip
NASA Astrophysics Data System (ADS)
Leeman, J.; Valdez, R. D.; Alley, R. B.; Anandakrishnan, S.; Saffer, D. M.
2016-12-01
Whillans ice stream, West Antarctica, flows rapidly from the West Antarctic ice sheet into the Ross Ice Shelf. Regions of highly compacted till, termed sticky-spots, pin the ice in place. Upstream ice flow increases driving stress, until minor changes in buttressing stresses from tides affecting the ice shelf cause the main sticky-spot to fail, triggering diurnal or semidiurnal stick-slip events. The mechanical and hydrological properties of the till partially control the basal conditions, generation and persistence of the sticky spots, and thus the dynamics of the rupture and healing processes. Here we present laboratory tests on core samples of the till beneath Whillan's Ice Stream collected in the 1989-1993 field seasons. Two types of tests were performed on till cores: stepped loading and cyclic loading. In the stepped loading test, the effective stress was increased from 0.1 to 10 MPa in a series of steps, and the permeability measured at each step. Cyclic loading tests consisted of a series of effective stress oscillations with 24 h period lasting 5-10 d each, increasing in amplitude from 20-150 kPa. The permeability was measured after each set of oscillations to investigate the role of cyclic loading in driving enhanced compaction. Compressional wave velocity (Vp) was also measured during both test sequences. We observe sample initial porosities of 30% and permeabilities of 3x10-17 m2. During stepped loading tests, porosity is reduced to 20% and permeability to 8x10-18 m2. Vp ranged from 2.2-2.95 km s-1 and was well fit by an effective medium model. Application of this model to Vp obtained by field seismic surveys is consistent with low ( 50 kPa) effective vertical stresses in the uppermost till. Cyclic loading sequences reduced porosity by 4% and permeability by an order of magnitude. A transient numerical model based on our data shows that over the tidal timescale, a layer of stiffened till 10 cm thick should develop. We suggest that this provides one mechanism to generate and maintain sticky spots and modify the stiffness of the system.
Yurgel, Virginia C; Oliveira, Catiuscia P; Begnini, Karine R; Schultze, Eduarda; Thurow, Helena S; Leon, Priscila M M; Dellagostin, Odir A; Campos, Vinicius F; Beck, Ruy C R; Guterres, Silvia S; Collares, Tiago; Pohlmann, Adriana R; Seixas, Fabiana K
2014-01-01
Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors.
Yurgel, Virginia C; Oliveira, Catiuscia P; Begnini, Karine R; Schultze, Eduarda; Thurow, Helena S; Leon, Priscila MM; Dellagostin, Odir A; Campos, Vinicius F; Beck, Ruy CR; Guterres, Silvia S; Collares, Tiago; Pohlmann, Adriana R; Seixas, Fabiana K
2014-01-01
Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors. PMID:24741306
Dietschi, Dider; Ardu, Stefano; Rossier-Gerber, Anne; Krejci, Ivo
2006-12-01
Fatigue resistance of post and cores is critical to the long term behavior of restored nonvital teeth. The purpose of this in vitro trial was to evaluate the influence of the post material's physical properties on the adaptation of adhesive post and core restorations after cyclic mechanical loading. Composite post and cores were made on endodontically treated deciduous bovine teeth using 3 anisotropic posts (made of carbon, quartz, or quartz-and-carbon fibers) and 3 isotropic posts (zirconium, stainless steel, titanium). Specimens were submitted to 3 successive loading phases--250,000 cycles at 50 N, 250,000 at 75 N, and 500,000 at 100 N--at a rate of 1.5 Hz. Restoration adaptation was evaluated under SEM, before and during loading (margins) and after test completion (margins and internal interfaces). Six additional samples were fabricated for the characterization of interface micromorphology using confocal microscopy. Mechanical loading increased the proportion of marginal gaps in all groups; carbon fiber posts presented the lowest final gap proportion (7.11%) compared to other stiffer metal-ceramic or softer fiber posts (11.0% to 19.1%). For internal adaptation, proportions of debonding between dentin and core or cement varied from 21.69% (carbon post) to 47.37% (stainless steel post). Debonding at the post-cement interface occurred only with isotropic materials. Confocal microscopy observation revealed that gaps were generally associated with an incomplete hybrid layer and reduced resin tags. Regardless of their rigidity, metal and ceramic isotropic posts proved less effective than fiber posts at stabilizing the post and core structure in the absence of the ferrule effect, due to the development of more interfacial defects with either composite or dentin.
NASA Astrophysics Data System (ADS)
Nelson, Chris; Anna, Shelley
2013-11-01
Droplet-based strategies for fluid manipulation have seen significant application in microfluidics due to their ability to compartmentalize solutions and facilitate highly parallelized reactions. Functioning as micro-scale reaction vessels, droplets have been used to study protein crystallization, enzyme kinetics, and to encapsulate whole cells. Recently, the mass transport out of droplets has been used to concentrate solutions and induce phase transitions. Here, we show that droplets trapped in a microfluidic array will spontaneously dehydrate over the course of several hours. By loading these devices with an initially dilute aqueous polymer solution, we use this slow dehydration to observe phase transitions and the evolution of droplet morphology in hundreds of droplets simultaneously. As an example, we trap and dehydrate droplets of a model aqueous two-phase system consisting of polyethylene glycol and dextran. Initially the drops are homogenous, then after some time the polymer concentration reaches a critical point and two phases form. As water continues to leave the system, the drops transition from a microemulsion of DEX in PEG to a core-shell configuration. Eventually, changes in interfacial tension, driven by dehydration, cause the DEX core to completely de-wet from the PEG shell. Since aqueous two phase systems are able to selectively separate a variety of biomolecules, this core shedding behavior has the potential to provide selective, on-chip separation and concentration.
Deformation Behavior of Al/a-Si Core-shell Nanostructures
NASA Astrophysics Data System (ADS)
Fleming, Robert
Al/a-Si core-shell nanostructures (CSNs), consisting of a hemispherical Al core surrounded by a hard shell of a-Si, have been shown to display unusual mechanical behavior in response to compression loading. Most notably, these nanostructures exhibit substantial deformation recovery, even when loaded much beyond the elastic limit. Nanoindentation measurements revealed a unique mechanical response characterized by discontinuous signatures in the load-displacement data. In conjunction with the indentation signatures, nearly complete deformation recovery is observed. This behavior is attributed to dislocation nucleation and annihilation events enabled by the 3-dimensional confinement of the Al core. As the core confinement is reduced, either through an increase in confined core volume or a change in the geometrical confinement, the indentation signatures and deformation resistance are significantly reduced. Complimentary molecular dynamics simulations show that a substantial amount of dislocation egression occurs in the core of CSNs during unloading as dislocations annihilate at the core/shell interface. Smaller core diameters correlate with the development of a larger back-stress within the core during unloading, which further correlates with improved dislocation annihilation after unloading. Furthermore, dislocations nucleated in the core of core-shell nanorods are not as effectively removed as compared to CSNs. Nanostructure-textured surfaces (NSTSs) composed of Al/a-Si CSNs have improved tribological properties compared surfaces patterned with Al nanodots and a flat (100) Si surface. NSTSs have a coefficient of friction (COF) as low as 0.015, exhibit low adhesion with adhesion forces on the order of less than 1 microN, and are highly deformation resistant, with no apparent surface deformation after nanoscratch testing, even at contact forces up to 8000 microN. In comparison, (100) Si has substantially higher adhesion and COF ( 10 microN and 0.062, respectively), while the Al nanodots have both higher friction (COF 0.044) and are deformed when subjected to contact loads as low as 250 microN. This integrated experimental and computational study elucidates the mechanisms that contribute to the novel properties of Al/a-Si CSNs and characterizes the tribological properties of surface composed of these nanostructures, which provides a foundation for the rational design of novel technologies based on CSNs.
77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-15
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling... for public comment draft regulatory guide (DG), DG-1277, ``Initial Test Program of Emergency Core... acceptable to implement with regard to initial testing features of emergency core cooling systems (ECCSs) for...
3D Magnetic Field Analysis of a Turbine Generator Stator Core-end Region
NASA Astrophysics Data System (ADS)
Wakui, Shinichi; Takahashi, Kazuhiko; Ide, Kazumasa; Takahashi, Miyoshi; Watanabe, Takashi
In this paper we calculated magnetic flux density and eddy current distributions of a 71MVA turbine generator stator core-end using three-dimensional numerical magnetic field analysis. Subsequently, the magnetic flux densities and eddy current densities in the stator core-end region on the no-load and three-phase short circuit conditions obtained by the analysis have good agreements with the measurements. Furthermore, the differences of eddy current and eddy current loss in the stator core-end region for various load conditions are shown numerically. As a result, the facing had an effect that decrease the eddy current loss of the end plate about 84%.
Design and testing of coring bits on drilling lunar rock simulant
NASA Astrophysics Data System (ADS)
Li, Peng; Jiang, Shengyuan; Tang, Dewei; Xu, Bo; Ma, Chao; Zhang, Hui; Qin, Hongwei; Deng, Zongquan
2017-02-01
Coring bits are widely utilized in the sampling of celestial bodies, and their drilling behaviors directly affect the sampling results and drilling security. This paper introduces a lunar regolith coring bit (LRCB), which is a key component of sampling tools for lunar rock breaking during the lunar soil sampling process. We establish the interaction model between the drill bit and rock at a small cutting depth, and the two main influential parameters (forward and outward rake angles) of LRCB on drilling loads are determined. We perform the parameter screening task of LRCB with the aim to minimize the weight on bit (WOB). We verify the drilling load performances of LRCB after optimization, and the higher penetrations per revolution (PPR) are, the larger drilling loads we gained. Besides, we perform lunar soil drilling simulations to estimate the efficiency on chip conveying and sample coring of LRCB. The results of the simulation and test are basically consistent on coring efficiency, and the chip removal efficiency of LRCB is slightly lower than HIT-H bit from simulation. This work proposes a method for the design of coring bits in subsequent extraterrestrial explorations.
Advanced Structural and Inflatable Hybrid Spacecraft Module
NASA Technical Reports Server (NTRS)
Schneider, William C. (Inventor); delaFuente, Horacio M. (Inventor); Edeen, Gregg A. (Inventor); Kennedy, Kriss J. (Inventor); Lester, James D. (Inventor); Gupta, Shalini (Inventor); Hess, Linda F. (Inventor); Lin, Chin H. (Inventor); Malecki, Richard H. (Inventor); Raboin, Jasen L. (Inventor)
2001-01-01
An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.
NASA Technical Reports Server (NTRS)
Raboin, Jasen L. (Inventor); Valle, Gerard D. (Inventor); Edeen, Gregg A. (Inventor); delaFuente, Horacio M. (Inventor); Schneider, William C. (Inventor); Spexarth, Gary R. (Inventor); Pandya, Shalini Gupta (Inventor); Johnson, Christopher J. (Inventor)
2003-01-01
An inflatable module comprising a structural core and an inflatable shell, wherein the inflatable shell is sealingly attached to the structural core. In its launch or pre-deployed configuration, the wall thickness of the inflatable shell is collapsed by vacuum. Also in this configuration, the inflatable shell is collapsed and efficiently folded around the structural core. Upon deployment, the wall thickness of the inflatable shell is inflated; whereby the inflatable shell itself, is thereby inflated around the structural core, defining therein a large enclosed volume. A plurality of removable shelves are arranged interior to the structural core in the launch configuration. The structural core also includes at least one longeron that, in conjunction with the shelves, primarily constitute the rigid, strong, and lightweight load-bearing structure of the module during launch. The removable shelves are detachable from their arrangement in the launch configuration so that, when the module is in its deployed configuration and launch loads no longer exist, the shelves can be rearranged to provide a module interior arrangement suitable for human habitation and work. In the preferred embodiment, to provide efficiency in structural load paths and attachments, the shape of the inflatable shell is a cylinder with semi-toroidal ends.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Myers, David E.; Bednarcyk, Brett A.; Krivanek, Thomas M.
2015-01-01
A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance approach for the next-generation Space Launch System heavy lift vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method. Facesheet and core nodes in a predetermined circular region were detached to simulate a disbond induced via low-speed impact between the outer mold line facesheet and honeycomb core. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. A significant change in the slope of the edge load-deflection response was used to determine the onset of global buckling and corresponding buckling load.
The SIV plasma viral load assay performed by the Quantitative Molecular Diagnostics Core (QMDC) utilizes reagents specifically designed to detect and accurately quantify the full range of SIV/SHIV viral variants and clones in common usage in the rese
Saremi, Shahrooz; Dinarvand, Rassoul; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Atyabi, Fatemeh
2013-01-01
The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (P(app)) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs.
Saremi, Shahrooz; Kebriaeezadeh, Abbas; Ostad, Seyed Nasser; Atyabi, Fatemeh
2013-01-01
The aim of this study was to evaluate a nanoparticulate system with mucoadhesion properties composed of a core of polymethyl methacrylate surrounded by a shell of thiolated chitosan (Ch-GSH-pMMA) for enhancing oral bioavailability of docetaxel (DTX), an anticancer drug. DTX-loaded nanoparticles were prepared by emulsion polymerization method using cerium ammonium nitrate as an initiator. Physicochemical properties of the nanoparticles such as particle size, size distribution, morphology, drug loading, and entrapment efficiency were characterized. The pharmacokinetic study was carried out in vivo using wistar rats. The half-life of DTX-loaded NPs was about 9 times longer than oral DTX used as positive control. The oral bioavailability of DTX was increased to 68.9% for DTX-loaded nanoparticles compared to 6.5% for positive control. The nanoparticles showed stronger effect on the reduction of the transepithelial electrical resistance (TEER) of Caco-2 cell monolayer by opening the tight junctions. According to apparent permeability coefficient (P app) results, the DTX-loaded NPs showed more specific permeation across the Caco-2 cell monolayer in comparison to the DTX. In conclusion, the nanoparticles prepared in this study showed promising results for the development of an oral drug delivery system for anticancer drugs. PMID:23971023
Karim, Lamya; Vashishth, Deepak
2011-01-01
Alterations in microdamage morphology and accumulation are typically attributed to impaired remodeling, but may also result from changes in microdamage initiation and propagation. Such alterations are relevant for cancellous bone with high metabolic activity and numerous bone quality changes. This study investigates the role of trabecular microarchitecture on morphology and accumulation of microdamage in human cancellous bone. Trabecular bone cores from donors of varying ages and bone volume fraction (BV/TV) were separated into high and low BV/TV groups. Samples were subjected to no load or uniaxial compression to 0.6% (pre-yield) or 1.1% (post-yield) strain. Microdamage was stained with lead uranyl acetate and specimens were imaged via microcomputed tomography to quantify microdamage and determine its morphology in three-dimensions (3D). Donors with high BV/TV had greater post yield strain and were tougher than low BV/TV donors. High BV/TV bone had less microdamage than low BV/TV bone under post- but not pre-yield loading. Microdamage under both loading conditions showed significant correlations with microarchitecture and BV/TV, but the key predictor was structure model index (SMI). As SMI increased (more trabecular rods), microdamage morphology became crack-like. Thus, low BV/TV and increased SMI have strong influences on microdamage accumulation in bone through altered initiation. PMID:21538510
Subash, Dayalan; Shoba, Krishnamma; Aman, Shibu; Bharkavi, Srinivasan Kumar Indu; Nimmi, Vijayan; Abhilash, Radhakrishnan
2017-09-01
The restoration of a severely damaged tooth usually needs a post and core as a part of treatment procedure to provide a corono - radicular stabilization. Biodentine is a class of dental material which possess high mechanical properties with excellent biocompatibility and bioactive behaviour. The sealing ability coupled with optimum physical properties could make Biodentine an excellent option as a core material. The aim of the study was to determine the fracture resistance of Biodentine as a core material in comparison with resin modified glass ionomer and composite resin. Freshly extracted 30 human permanent maxillary central incisors were selected. After endodontic treatment followed by post space preparation and luting of Glass fibre post (Reforpost, Angelus), the samples were divided in to three groups based on the type of core material. The core build-up used in Group I was Biodentine (Septodont, France), Group II was Resin-Modified Glass Ionomer Cement (GC, Japan) and Group III was Hybrid Composite Resin (TeEconom plus, Ivoclar vivadent). The specimens were subjected to fracture toughness using Universal testing machine (1474, Zwick/Roell, Germany) and results were compared using One-way analysis of variance with Tukey's Post hoc test. The results showed that there was significant difference between groups in terms of fracture load. Also, composite resin exhibited highest mean fracture load (1039.9 N), whereas teeth restored with Biodentine demonstrated the lowest mean fracture load (176.66 N). Resin modified glass ionomer exhibited intermediate fracture load (612.07 N). The primary mode of failure in Group I and Group II was favourable (100%) while unfavourable fracture was seen in Group III (30%). Biodentine, does not satisfy the requirements to be used as an ideal core material. The uses of RMGIC's as a core build-up material should be limited to non-stress bearing areas. Composite resin is still the best core build-up material owing to its high fracture resistance and bonding to tooth.
Lee, Ki-Sun; Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan; Lee, Jeong-Yol
2017-01-01
The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.
Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan
2017-01-01
The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems. PMID:28386547
Meyer, Luisa A; Johnson, Michael G; Cullen, Diane M; Vivanco, Juan F; Blank, Robert D; Ploeg, Heidi-Lynn; Smith, Everett L
2016-04-01
Increased bone formation resulting from mechanical loading is well documented; however, the interactions of the mechanotransduction pathways are less well understood. Endothelin-1, a ubiquitous autocrine/paracrine signaling molecule promotes osteogenesis in metastatic disease. In the present study, it was hypothesized that exposure to big endothelin-1 (big ET1) and/or mechanical loading would promote osteogenesis in ex vivo trabecular bone cores. In a 2×2 factorial trial of daily mechanical loading (-2000με, 120cycles daily, "jump" waveform) and big ET1 (25ng/mL), 48 bovine sternal trabecular bone cores were maintained in bioreactor chambers for 23days. The bone cores' response to the treatment stimuli was assessed with percent change in core apparent elastic modulus (ΔEapp), static and dynamic histomorphometry, and prostaglandin E2 (PGE2) secretion. Two-way ANOVA with a post hoc Fisher's LSD test found no significant treatment effects on ΔEapp (p=0.25 and 0.51 for load and big ET1, respectively). The ΔEapp in the "no load + big ET1" (CE, 13±12.2%, p=0.56), "load + no big ET1" (LC, 17±3.9%, p=0.14) and "load + big ET1" (LE, 19±4.2%, p=0.13) treatment groups were not statistically different than the control group (CC, 3.3%±8.6%). Mineralizing surface (MS/BS), mineral apposition (MAR) and bone formation rates (BFR/BS) were significantly greater in LE than CC (p=0.037, 0.0040 and 0.019, respectively). While the histological bone formation markers in LC trended to be greater than CC (p=0.055, 0.11 and 0.074, respectively) there was no difference between CE and CC (p=0.61, 0.50 and 0.72, respectively). Cores in LE and LC had more than 50% greater MS/BS (p=0.037, p=0.055 respectively) and MAR (p=0.0040, p=0.11 respectively) than CC. The BFR/BS was more than two times greater in LE (p=0.019) and LC (p=0.074) than CC. The PGE2 levels were elevated at 8days post-osteotomy in all groups and the treatment groups remained elevated compared to the CC group on days 15, 19 and 23. The data suggest that combined exposure to big ET1 and mechanical loading results in increased osteogenesis as measured in biomechanical, histomorphometric and biochemical responses. Copyright © 2016 Elsevier Inc. All rights reserved.
In situ TEM and analytical STEM studies of ZnO nanotubes with Sn cores and Sn nanodrops
NASA Astrophysics Data System (ADS)
Ortega, Y.; Jäger, W.; Piqueras, J.; Häussler, D.; Fernández, P.
2013-10-01
ZnO nanorods with Sn core regions grown by a thermal evaporation-deposition method from a mixture of SnO2 and ZnS powders as precursors, are used to study the behaviour of liquid metal in the nanotubes' core regions and the formation of liquid metal nanodrops at the tube ends by in situ TEM experiments. The compositions of the core materials and of the nanodrops were assessed by employing HAADF-STEM imaging and spatially resolved EDXS measurements. By applying variable thermal load through changing the electron-beam flux of the electron microscope, melting of the metallic core can be induced and the behaviour of the liquid metal of the nanorods can be monitored locally. Within the nanorod core, melting and reversible thermal expansion and contraction of Sn core material is reproducibly observed. For nanotubes with core material near-tip regions, a nanodrop emerges from the tip upon melting the core material, followed by reabsorption of the melt into the core and re-solidification upon decreasing the heat load, being reminiscent of a ‘soldering nanorod’. The radius of the liquid nanodrop can reach a few tens of nanometres, containing a total volume of 10-20 up to 10-18 l of liquid Sn. In situ TEM confirms that the radius of the nanodrop can be controlled via the thermal load: it increases with increasing temperature and decreases with decreasing temperature. In addition, some phenomena related to structure modifications during extended electron-beam exposure are also described.
Characteristics of a wingtip vortex from an oscillating winglet
NASA Astrophysics Data System (ADS)
Guha, T. K.; Kumar, R.
2017-01-01
Initial perturbations in the wingtip vortices can potentially lead to instabilities that significantly reduce their lifetime in the wake of an aircraft. An active winglet capable of oscillating about its point of attachment to the main wing-section is developed using piezoelectric macro fiber composite, to actively perturb the vortex at its onset. Resonance characteristics of the actuated winglet oscillations are evaluated at different excitation levels and aerodynamic loading. Mean near-field characteristics of the vortex, developing from a stationary and an oscillating winglet, are investigated with the help of stereoscopic particle image velocimetry. Results show that the amplitude of winglet oscillations increases linearly with input excitation, to a highest attainable value of nearly four times the airfoil thickness at the winglet tip. The vortex developing from a winglet is stretched along its axis, having an elliptical core with non-uniform vorticity distribution. Actuation leads to spatial oscillations of the vortex core together with a reduction in the mean peak vorticity levels. The amplitude of the actuated core oscillations remains constant in the investigated region of the wake.
Shock Initiated Reactions of Reactive Multiphase Blast Explosives
NASA Astrophysics Data System (ADS)
Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald
2015-06-01
This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.
A Methodology for Loading the Advanced Test Reactor Driver Core for Experiment Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowherd, Wilson M.; Nielsen, Joseph W.; Choe, Dong O.
In support of experiments in the ATR, a new methodology was devised for loading the ATR Driver Core. This methodology will replace the existing methodology used by the INL Neutronic Analysis group to analyze experiments. Studied in this paper was the as-run analysis for ATR Cycle 152B, specifically comparing measured lobe powers and eigenvalue calculations.
Analysis of syntactic foam – GFRP sandwich composites for flexural loads
NASA Astrophysics Data System (ADS)
Paul, Daniel; Velmurugan, R.; Jayaganthan, R.; Gupta, N. K.; Manzhirov, A. V.
2018-04-01
The use of glass microballoon (GMB) — epoxy syntactic foams as a sandwich core material is studied. The skins and foam core are fabricated and joined instantaneously unlike the procedures followed in the previous studies. Each successive layer of the sandwich is fabricated when the previous layer is in a semi-gelled state. These sandwich samples are characterized for their properties under flexural loading. The failure modes and mechanical properties are carefully investigated. The change in fabrication technique results in a significant increase in the load bearing pattern of the sandwich. In earlier studies, debonding was found to occur prematurely since the bonding between the skins and core is the weakest plane. Using the current technique, core cracking occurs first, followed by skin fiber breaking and debonding happens at the end. This ensures that the load carrying phase of the structure is extended considerably. The sandwich is also analytically studied using Reddy’s higher order shear deformation theory. A higher order theory is selected as the sandwich can no longer be considered as a thin beam and thus shear effects also need to be considered in addition to bending effects.
Predictive modelling of JT-60SA high-beta steady-state plasma with impurity accumulation
NASA Astrophysics Data System (ADS)
Hayashi, N.; Hoshino, K.; Honda, M.; Ide, S.
2018-06-01
The integrated modelling code TOPICS has been extended to include core impurity transport, and applied to predictive modelling of JT-60SA high-beta steady-state plasma with the accumulation of impurity seeded to reduce the divertor heat load. In the modelling, models and conditions are selected for a conservative prediction, which considers a lower bound of plasma performance with the maximum accumulation of impurity. The conservative prediction shows the compatibility of impurity seeding with core plasma with high-beta (β N > 3.5) and full current drive conditions, i.e. when Ar seeding reduces the divertor heat load below 10 MW m‑2, its accumulation in the core is so moderate that the core plasma performance can be recovered by additional heating within the machine capability to compensate for Ar radiation. Due to the strong dependence of accumulation on the pedestal density gradient, high separatrix density is important for the low accumulation as well as the low divertor heat load. The conservative prediction also shows that JT-60SA has enough capability to explore the divertor heat load control by impurity seeding in high-beta steady-state plasmas.
Grady, Ian; Vasquez, Tony; Tawfik, Sara; Grady, Sean
2017-03-01
To evaluate the cost-efficacy of vacuum-assisted ultrasound-guided breast biopsy instruments compared to ultrasound-guided 14-gauge spring-loaded core-needle biopsy. The American Society of Breast Surgeons' Mastery of Breast Surgery Registry was reviewed. Biopsy findings, any rebiopsy, and the instrument used were abstracted for 31,451 ultrasound-guided biopsy procedures performed between 2001 and July 2014. Rates of cancer diagnosis and rebiopsy were calculated for each instrument. A linear mathematical model was developed to calculate total cost per cancer diagnosis, including procedural costs and the costs of any additional surgical rebiopsy procedures. Mean cost per cancer diagnosis with confidence limits was then determined for 14-gauge spring-loaded core-needle biopsy and 14 different vacuum-assisted instruments. For 14-gauge spring-loaded core-needle biopsy, mean cost per cancer diagnosis was $4346 (4327-$4366). For the vacuum-assisted instruments, mean cost per cancer diagnosis ranged from a low of $3742 ($3732-$3752) to a high of $4779 ($4750-$4809). Vacuum-assisted instruments overall were more cost-effective than core with a mean cost per cancer diagnosis of $4052 ($4038-$4067) (p < 0.05). Tethered vacuum-assisted instruments performed best with a mean cost per cancer diagnosis of $3978 ($3964-$3991) (p < 0.05). Nontethered devices had a mean cost per cancer diagnosis of $4369 ($4350-$4388), a result no better than core (p < 0.05). Ultrasound-guided vacuum-assisted breast biopsy had a lower mean cost per cancer diagnosis than 14-gauge spring-loaded core-needle biopsy. This advantage was only seen in tethered vacuum-assisted instruments. Within device families, larger instruments tended to outperform smaller instruments.
Potential atmospheric impact of the Toba mega-eruption {approx}71,000 years ago
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zielinski, G.A.; Mayewski, P.A.; Meeker, L.D.
1996-04-15
An {approx}6 year-long period of volcanic sulfate recorded in the GISP2 ice core about 71,000 {+-} 5000 years ago may provide detailed information on the atmospheric and climate impact in the Toba mega-eruption. Deposition of these aerosols occur beginning of an {approx}1000-year long stadial event, but not immediately before the longer glacial period beginning {approx}67,500 years ago. Total stratospheric loading estimates over this {approx}6 year period range from 2200 to 4400 Mt of H{sub 2}SO{sub 4} aerosols. The range in values is given to compensate for uncertainties in aerosol transport. Magnitude and longevity of the atmospheric loading may have ledmore » directly to enhanced cooling during the initial two centuries of this {approx}1000-year cooling event. 25 refs., 2 fig., 1 tab.« less
Theoretical prediction on corrugated sandwich panels under bending loads
NASA Astrophysics Data System (ADS)
Shu, Chengfu; Hou, Shujuan
2018-05-01
In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.
NASA Astrophysics Data System (ADS)
Jian, Nan; Dowle, Miriam; Horniblow, Richard D.; Tselepis, Chris; Palmer, Richard E.
2016-11-01
As the major iron storage protein, ferritin stores and releases iron for maintaining the balance of iron in fauna, flora, and bacteria. We present an investigation of the morphology and iron loading of ferritin (from equine spleen) using aberration-corrected high angle annular dark field scanning transmission electron microscopy. Atom counting method, with size selected Au clusters as mass standards, was employed to determine the number of iron atoms in the nanoparticle core of each ferritin protein. Quantitative analysis shows that the nuclearity of iron atoms in the mineral core varies from a few hundred iron atoms to around 5000 atoms. Moreover, a relationship between the iron loading and iron core morphology is established, in which mineral core nucleates from a single nanoparticle, then grows along the protein shell before finally forming either a solid or hollow core structure.
NASA Astrophysics Data System (ADS)
Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan
2018-05-01
Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.
NASA Astrophysics Data System (ADS)
Turner, Andrew J.; Al Rifaie, Mohammed; Mian, Ahsan; Srinivasan, Raghavan
2018-04-01
Sandwich panel structures are widely used in aerospace, marine, and automotive applications because of their high flexural stiffness, strength-to-weight ratio, good vibration damping, and low through-thickness thermal conductivity. These structures consist of solid face sheets and low-density cellular core structures, which are traditionally based upon honeycomb folded-sheet topologies. The recent advances in additive manufacturing (AM) or 3D printing process allow lattice core configurations to be designed with improved mechanical properties. In this work, the sandwich core is comprised of lattice truss structures (LTS). Two different LTS designs are 3D-printed using acrylonitrile butadiene styrene (ABS) and are tested under low-velocity impact loads. The absorption energy and the failure mechanisms of lattice cells under such loads are investigated. The differences in energy-absorption capabilities are captured by integrating the load-displacement curve found from the impact response. It is observed that selective placement of vertical support struts in the unit-cell results in an increase in the absorption energy of the sandwich panels.
Reversible polyelectrolyte capsules as carriers for protein delivery.
Anandhakumar, S; Nagaraja, V; Raichur, Ashok M
2010-07-01
A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 x 10(7) to 2.03 x 10(8) molecules per capsule with decrease in pH from 4.5 to 3. The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides. 2010 Elsevier B.V. All rights reserved.
Switch on the engine: how the eukaryotic replicative helicase MCM2-7 becomes activated.
Tognetti, Silvia; Riera, Alberto; Speck, Christian
2015-03-01
A crucial step during eukaryotic initiation of DNA replication is the correct loading and activation of the replicative DNA helicase, which ensures that each replication origin fires only once. Unregulated DNA helicase loading and activation, as it occurs in cancer, can cause severe DNA damage and genomic instability. The essential mini-chromosome maintenance proteins 2-7 (MCM2-7) represent the core of the eukaryotic replicative helicase that is loaded at DNA replication origins during G1-phase of the cell cycle. The MCM2-7 helicase activity, however, is only triggered during S-phase once the holo-helicase Cdc45-MCM2-7-GINS (CMG) has been formed. A large number of factors and several kinases interact and contribute to CMG formation and helicase activation, though the exact mechanisms remain unclear. Crucially, upon DNA damage, this reaction is temporarily halted to ensure genome integrity. Here, we review the current understanding of helicase activation; we focus on protein interactions during CMG formation, discuss structural changes during helicase activation, and outline similarities and differences of the prokaryotic and eukaryotic helicase activation process.
Baldassarre, Francesca; Vergaro, Viviana; Scarlino, Flavia; De Santis, Flavia; Lucarelli, Giovanna; Torre, Antonio Della; Ciccarella, Giuseppe; Rinaldi, Ross; Giannelli, Gianluigi; Leporatti, Stefano
2012-05-01
The efficient internalization of TGF-beta inhibitor-loaded polyelectrolyte capsules and particles is studied in two HCC cell lines. Two polyelectrolyte pairs (biocompatible but not degradable and biodegradable crosslinked with gluteraldehyde) are employed for coating. The capsules are characterized by SEM. LY is successfully loaded inside the core and embedded between polymer layers. MS is used to quantify the loading efficiency by comparing post-loading and core-loading methods, since both coated templates and hollow shells are used as carriers. CLSM confirms dissolution of the pre-formed multilayer upon enzymatic degradation as the method of release, and migration assays demonstrate a higher inhibition efficiency of TGF-beta in tailored biodegradable capsules compared to free LY administration. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zheng, Huajun; Wang, Jiaoxia; Jia, Yi; Ma, Chun'an
2012-10-01
A new type of core-shell structured material consisting of multi-walled carbon nanotubes (MWCNTs) and manganese dioxide (MnO2) nanoflake is synthesized using an in-situ co-precipitation method. By scanning electron microscopy and transition electron microscope, it is confirmed that the core-shell nanostructure is formed by the uniform incorporation of birnessite-type MnO2 nanoflake growth round the surface of the activated-MWCNTs. That core-shell structured material electrode presents excellent electrochemical capacitance properties with the specific capacitance reaching 380 F g-1 at the current density of 5 A g-1 in 0.5 M Na2SO4 electrolyte. In addition, the electrode also exhibits good performance (the power density: 11.28 kW kg-1 at 5 A g-1) and long-term cycling stability (retaining 82.7% of its initial capacitance after 3500 cycles at 5 A g-1). It mainly attributes to MWCNTs not only providing considerable specific surface area for high mass loading of MnO2 nanoflakes to ensure effective utilization of MnO2 nanoflake, but also offering an electron pathway to improve electrical conductivity of the electrode materials. It is clearly indicated that such core-shell structured materials including MWCNTs and MnO2 nanoflake may find important applications for supercapacitors.
Fokkinga, Wietske A; Kreulen, Cees M; Vallittu, Pekka K; Creugers, Nico H J
2004-01-01
This study sought to aggregate literature data on in vitro failure loads and failure modes of prefabricated fiber-reinforced composite (FRC) post systems and to compare them to those of prefabricated metal, custom-cast, and ceramic post systems. The literature was searched using MEDLINE from 1984 to 2003 for dental articles in English. Keywords used were (post or core or buildup or dowel) and (teeth or tooth). Additional inclusion/exclusion steps were conducted, each step by two independent readers: (1) Abstracts describing post-and-core techniques to reconstruct endodontically treated teeth and their mechanical and physical characteristics were included (descriptive studies or reviews were excluded); (2) articles that included FRC post systems were selected; (3) in vitro studies, single-rooted human teeth, prefabricated FRC posts, and composite as the core material were the selection criteria; and (4) failure loads and modes were extracted from the selected papers, and failure modes were dichotomized (distinction was made between "favorable failures," defined as reparable failures, and "unfavorable failures,"defined as irreparable [root] fractures). The literature search revealed 1,984 abstracts. Included were 244, 42, and 12 articles in the first, second, and third selection steps, respectively. Custom-cast post systems showed higher failure loads than prefabricated FRC post systems, whereas ceramic showed lower failure loads. Significantly more favorable failures occurred with prefabricated FRC post systems than with prefabricated and custom-cast metal post systems. The variable "post system" had a significant effect on mean failure loads. FRC post systems more frequently showed favorable failure modes than did metal post systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stimpson, Shane G.
In this report, load-follow simulations using VERA-CS with one-way coupling to standalone BISON has been demonstrated including both a single rod with a full cycle of load-follow operations and a quarter-core model with a single month of load-follow.
Dimchevska, Simona; Geskovski, Nikola; Petruševski, Gjorgji; Chacorovska, Marina; Popeski-Dimovski, Riste; Ugarkovic, Sonja; Goracinova, Katerina
2017-03-01
One of the most important problems in nanoencapsulation of extremely hydrophobic drugs is poor drug loading due to rapid drug crystallization outside the polymer core. The effort to use nanoprecipitation, as a simple one-step procedure with good reproducibility and FDA approved polymers like Poly(lactic-co-glycolic acid) (PLGA) and Polycaprolactone (PCL), will only potentiate this issue. Considering that drug loading is one of the key defining characteristics, in this study we attempted to examine whether the nanoparticle (NP) core composed of two hydrophobic polymers will provide increased drug loading for 7-Ethyl-10-hydroxy-camptothecin (SN-38), relative to NPs prepared using individual polymers. D-optimal design was applied to optimize PLGA/PCL ratio in the polymer blend and the mode of addition of the amphiphilic copolymer Lutrol ® F127 in order to maximize SN-38 loading and obtain NPs with acceptable size for passive tumor targeting. Drug/polymer and polymer/polymer interaction analysis pointed to high degree of compatibility and miscibility among both hydrophobic polymers, providing core configuration with higher drug loading capacity. Toxicity studies outlined the biocompatibility of the blank NPs. Increased in vitro efficacy of drug-loaded NPs compared to the free drug was confirmed by growth inhibition studies using SW-480 cell line. Additionally, the optimized NP formulation showed very promising blood circulation profile with elimination half-time of 7.4 h.
Comparison of sensitivity and resolution load sensor at various configuration polymer optical fiber
NASA Astrophysics Data System (ADS)
Arifin, A.; Yusran, Miftahuddin, Abdullah, Bualkar; Tahir, Dahlang
2017-01-01
This study uses a load sensor with a macro-bending on polymer optical fiber loop model which is placed between two plates with a buffer spring. The load sensor with light intensity modulation principle is an infrared LED emits light through the polymer optical fiber then received by the phototransistor and amplifier. Output voltage from the amplifier continued to arduino sequence and displayed on the computer. Load augment on the sensor resulted in an increase of curvature on polymer optical fibers that can cause power losses gets bigger too. This matter will result in the intensity of light that received by phototransistor getting smaller, so that the output voltage that ligable on computer will be getting smaller too. The sensitivity and resolution load sensors analyzed based on configuration with various amount of loops, imperfection on the jacket, and imperfection at the cladding and core of polymer optical fiber. The results showed that the augment on the amount of load, imperfection on the jacket and imperfection on the sheath and core polymer optical fiber can improve the sensitivity and resolution of the load sensor. The best sensors resolution obtained on the number of loops 4 with imperfection 8 on the core and cladding polymer optical fiber that is 0.037 V/N and 0,026 N. The advantages of the load sensor based on polymers optical fiber are easy to make, low cost and simple to use measurement methods.
The Role of Natural Hydrate on the Strength of Sands: Load-bearing or Cementing?
NASA Astrophysics Data System (ADS)
Priest, J. A.; Hayley, J. L.
2017-12-01
The strength of hydrate bearing sands is a key parameter for simulating the long-term performance of hydrate reservoirs during gas production and assessing reservoir and wellbore stability. Historically this parameter has been determined from testing synthesized hydrate sand samples, which has led to significant differences in measured strength that appears to reflect different formation methods adopted. At present, formation methods can be grouped into either those that form hydrate at grain contacts leading to a high strength `cemented' sand, or those where the hydrate forms a `load-bearing' structure in which the hydrate grains reside in the pore space resulting in more subtle changes in strength. Recovered natural hydrate-bearing cores typically exhibit this `load-bearing' behavior, although these cores have generally undergone significant changes in temperature and pressure during recovery, which may have altered the structure of the hydrate and sediment. Recent drilling expeditions using pressure coring, such as NGHP2 offshore India, have enabled intact hydrate bearing sediments to be recovered that have maintained hydrostatic stresses minimizing any changes in the hydrate structure within the core. Triaxial testing on these samples highlight enhanced strength even at zero effective stresses. This suggests that the hydrate forms a connected framework within the pore space apparently `cementing' the sand grains in place: we differentiate here between true cementation where hydrate is sintered onto the sand grains and typical observed behavior for cemented sands (cohesion, peak strength, post-peak strain softening). This inter-connected hydrate, and its ability to increase strength of the sands, appears to occur even at hydrate saturations as low as 30%, where typical `load-bearing' hydrates just start to increase strength. The results from pressure cores suggest that hydrate formation techniques that lead to `load-bearing' behavior may not capture the true interaction between the hydrate and sand and thus further research is needed to form synthesized hydrate bearing samples that more realistically mimic the observed strength behavior of natural hydrate bearing cores.
Further Development of Crack Growth Detection Techniques for US Test and Research Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohse, Gordon; Carpenter, David M.; Ostrovsky, Yakov
One of the key issues facing Light Water Reactors (LWRs) in extending lifetimes beyond 60 years is characterizing the combined effect of irradiation and water chemistry on material degradation and failure. Irradiation Assisted Stress Corrosion Cracking (IASCC), in which a crack propagates in a susceptible material under stress in an aggressive environment, is a mechanism of particular concern. Full understanding of IASCC depends on real time crack growth data acquired under relevant irradiation conditions. Techniques to measure crack growth in actively loaded samples under irradiation have been developed outside the US - at the Halden Boiling Water Reactor, for example.more » Several types of IASCC tests have also been deployed at the MITR, including passively loaded crack growth measurements and actively loaded slow strain rate tests. However, there is not currently a facility available in the US to measure crack growth on actively loaded, pre-cracked specimens in LWR irradiation environments. A joint program between the Idaho National Laboratory (INL) and the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory (NRL) is currently underway to develop and demonstrate such a capability for US test and research reactors. Based on the Halden design, the samples will be loaded using miniature high pressure bellows and a compact loading mechanism, with crack length measured in real time using the switched Direct Current Potential Drop (DCPD) method. The basic design and initial mechanical testing of the load system and implementation of the DCPD method have been previously reported. This paper presents the results of initial autoclave testing at INL and the adaptation of the design for use in the high pressure, high temperature water loop at the MITR 6 MW research reactor, where an initial demonstration is planned in mid-2015. Materials considerations for the high pressure bellows are addressed. Design modifications to the loading mechanism required by the size constraints of the MITR water loop are described. The safety case for operation of the high pressure gas-driven bellows mechanism is also presented. Key issues are the design and response of systems to limit gas flow in the event of a high pressure gas leak in the in-core autoclave. Integrity of the autoclave must be maintained and reactivity effects due to voiding of the loop coolant must be shown to be within the reactor technical specifications. The technical development of the crack growth monitor for application in the INL Advanced Test Reactor or the MITR can act as a template for adaptation of this technology in other reactors. (authors)« less
Du, Guofeng; Li, Zhao; Song, Gangbing
2018-05-23
Impact loads can have major adverse effects on the safety of civil engineering structures, such as concrete-filled steel tubular (CFST) columns. The study of mechanical behavior and stress analysis of CFST columns under impact loads is very important to ensure their safety against such loads. At present, the internal stress monitoring of the concrete cores CFST columns under impact loads is still a very challenging subject. In this paper, a PVDF (Polyvinylidene Fluoride) piezoelectric smart sensor was developed and successfully applied to the monitoring of the internal stress of the concrete core of a CFST column under impact loads. The smart sensor consists of a PVDF piezoelectric film sandwiched between two thin steel plates through epoxy. The protection not only prevents the PVDF film from impact damages but also ensures insulation and waterproofing. The smart sensors were embedded into the circular concrete-filled steel tube specimen during concrete pouring. The specimen was tested against impact loads, and testing data were collected. The time history of the stress obtained from the PVDF smart sensor revealed the evolution of core concrete internal stress under impact loads when compared with the impact force⁻time curve of the hammer. Nonlinear finite element simulations of the impact process were also carried out. The results of FEM simulations had good agreement with the test results. The results showed that the proposed PVDF piezoelectric smart sensors can effectively monitor the internal stress of concrete-filled steel tubular columns under impact loads.
Thermal barrier and support for nuclear reactor fuel core
Betts, Jr., William S.; Pickering, J. Larry; Black, William E.
1987-01-01
A thermal barrier/core support for the fuel core of a nuclear reactor having a metallic cylinder secured to the reactor vessel liner and surrounded by fibrous insulation material. A top cap is secured to the upper end of the metallic cylinder that locates and orients a cover block and post seat. Under normal operating conditions, the metallic cylinder supports the entire load exerted by its associated fuel core post. Disposed within the metallic cylinder is a column of ceramic material, the height of which is less than that of the metallic cylinder, and thus is not normally load bearing. In the event of a temperature excursion beyond the design limits of the metallic cylinder and resulting in deformation of the cylinder, the ceramic column will abut the top cap to support the fuel core post.
Split radiator design for heat rejection optimization for a waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2016-10-18
A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romander, C. M.; Cagliostro, D. J.
Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-sec hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response.more » Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, an upper internals structure (UIS), and, in the more complex models SM 4 and SM 5, a Ni 200 thermal liner and core support structure. Water simulated the liquid sodium coolant and a low-density explosive simulated the HCDA loads.« less
Analysis of No-load Iron Losses of Turbine Generators by 3D Magnetic Field Analysis
NASA Astrophysics Data System (ADS)
Nakahara, Akihito; Mogi, Hisashi; Takahashi, Kazuhiko; Ide, Kazumasa; Kaneda, Junya; Hattori, Ken'Ichi; Watanabe, Takashi; Kaido, Chikara; Minematsu, Eisuke; Hanzawa, Kazufumi
This paper focuses on no-load iron losses of turbine generators. To calculate iron losses of turbine generators a program was developed. In the program, core loss curves of materials used for stator core were reproduced precisely by using tables of loss coefficients. Accuracy of calculation by this method was confirmed by comparing calculated values with measured in a model stator core. The iron loss of a turbine generator estimated with considering three-dimensional distribution of magnetic fluxes. And additional losses included in measured iron loss was evaluated with three-dimensional magnetic field analysis.
78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0134] Initial Test Program of Emergency Core Cooling....79.1, ``Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors.'' This... emergency core cooling systems (ECCSs) for boiling- water reactors (BWRs) whose licenses are issued after...
Copper Loading of Preformed Nanoparticles for PET-Imaging Applications.
Lu, Hoang D; Wang, Leon Z; Wilson, Brian K; McManus, Simon A; Jumai'an, Jenny; Padakanti, Prashanth K; Alavi, Abass; Mach, Robert H; Prud'homme, Robert K
2018-01-31
Nanoparticles (NP) are promising contrast agents for positron emission tomography (PET) radionuclide imaging that can increase signal intensity by localizing clusters of PET radionuclides together. However, methods to load NPs with PET radionuclides suffer from harsh loading conditions or poor loading efficacies or result in NP surface modifications that alter targeting in vivo. We present the formation of water-dispersible, polyethylene glycol coated NPs that encapsulate phthalocyanines into NP cores at greater than 50 wt % loading, using the self-assembly technique Flash NanoPrecipitation. Particles from 70 to 160 nm are produced. Phthalocyanine NPs rapidly and spontaneously chelate metals under mild conditions and can act as sinks for PET radionuclides such as 64-Cu to produce PET-active NPs. NPs chelate copper(II) with characteristic rates of 1845 M -1 h -1 at pH 6 and 37 °C, which produced >90% radionuclide chelation within 1 h. NP physical properties, such as core composition, core fluidity, and size, can be tuned to modulate chelation kinetics. These NPs retain 64 Cu even in the presence of the strong chelator ethylene diamine tetraacetic acid. The development of these constructs for rapid and facile radionuclide labeling expands the applications of NP-based PET imaging.
NASA Technical Reports Server (NTRS)
Nolte, W. E.
1976-01-01
LOADS determines rigid body vehicle shears, bending moments and axial loads on a space vehicle due to aerodynamic loads and propellant inertial loads. An example hand calculation is presented and was used to check LOADS. A brief description of the program and the equations used are presented. LOADS is operational on the Univac 1110, occupies 10505 core and typically takes less than one(1) second of CAU time to execute.
Composite fluorescent nanoparticles for biomedical imaging.
Pansare, Vikram J; Bruzek, Matthew J; Adamson, Douglas H; Anthony, John; Prud'homme, Robert K
2014-04-01
In the rapidly expanding field of biomedical imaging, there is a need for nontoxic, photostable, and nonquenching fluorophores for fluorescent imaging. We have successfully encapsulated a new, extremely hydrophobic, pentacene-based fluorescent dye within polymeric nanoparticles (NPs) or nanocarriers (NCs) via the Flash NanoPrecipitation (FNP) process. Nanoparticles and dye-loaded micelles were formulated by FNP and characterized by dynamic light scattering, fluorescence spectroscopy, UV-VIS absorbance spectroscopy, and confocal microscopy. These fluorescent particles were loaded from less than 1% to 78% by weight core loading and the fluorescence maximum was found to be at 2.3 wt.%. The particles were also stably formed at 2.3% core loading from 20 up to 250 nm in diameter with per-particle fluorescence scaling linearly with the NC core volume. The major absorption peaks are at 458, 575, and 625 nm, and the major emission peaks at 635 and 695 nm. In solution, the Et-TP5 dye displays a strong concentration-dependent ratio of the emission intensities of the first two emission peaks, whereas in the nanoparticle core the spectrum is independent of concentration over the entire concentration range. A model of the fluorescence quenching was consistent with Förster resonant energy transfer as the cause of the quenching observed for Et-TP5. The Förster radius calculated from the absorption and emission spectra of Et-TP5 is 4.1 nm, whereas the average dye spacing in the particles at the maximum fluorescence is 3.9 nm. We have successfully encapsulated Et-TP5, a pentacene derivative dye previously only used in light-emitting diode applications, within NCs via the FNP process. The extreme hydrophobicity of the dye keeps it encapsulated in the NC core, its extended pentacene structure gives it relatively long wavelength emission at 695 nm, and the pentacene structure, without oxygen or nitrogen atoms in its core, makes it highly resistant to photobleaching. Its bulky side groups minimize self-quenching and localization within the nanoparticle core prevents interaction of the dye with biological surfaces, or molecules in diagnostic assays. Loading of dye in the NP core allows 25 times more dye to be delivered than if it were conjugated onto the nanocarrier surface. The utility of the dye for quantifying nanoparticle binding is demonstrated. Studies to extend the wavelength range of these pentacene dyes into the near infra-red are underway.
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin; Paris, Isabelle L.
2004-01-01
Small sub-component specimens consisting of solid laminates at the ends that transition to X-cor(R) truss sandwich in the center, were tested in a combination of three point bending, uni-axial tension, and combined tension and bending. The failure process in the transition region was documented for each loading using digital video and high-resolution cameras. For the 3-point bending tests, most of the deformation occurred in the solid laminate regions on either end of the specimen. Some pin debonding from the skin of the X-cor(R) truss sandwich was observed in the transition region and was accompanied by audible "pings" throughout the loading. Tension loaded specimens failed in the sandwich skin in the middle of the gage length, accompanied by separation of the sandwich core from the back skin and by delamination between the top skin and bottom skin at the transition region. The pinging associated with pin debonding occurred as the load was increased. However, the frequency of the pinging exceeded any visual observations of pin debonding in the video of the transition region. For specimens tested in combined tension and bending, the greatest amount of pinging occurred during initial application of the axial load. High-resolution images in the transition region indicated that the pinging corresponded to pins debonding and buckling due to the through-thickness Poisson contraction of the specimen. This buckling continued to a much smaller extent as the transverse load was applied.
Thauvin, Cédric; Schwarz, Bettina; Delie, Florence; Allémann, Eric
2017-11-15
Advantages associated with the use of polylactic acid (PLA) nano- or microparticles as drug delivery systems have been widely proven in the field of pharmaceutical sciences. These biodegradable and biocompatible carriers have demonstrated different loading and release properties depending on interactions with the cargo, preparation methods, particles size or molecular weight of PLA. In this study, we sought to show the possibility of influencing these properties by modifying the structure of the constituting polymer. Seven non-functionalized or functionalized PLA polymers were specifically designed and synthesized by microwave-assisted ring-opening polymerization of d,l-lactide. They presented short hydrophobic and/or hydrophilic groups thanks to the use of C20 aliphatic chain, mPEG1000, sorbitan esters (Spans ® ) or polysorbates (Tweens ® ), their PEGylated analogues, as initiators. Then, seven types of drug-loaded nanoparticles (NP) were prepared from these polymers and compared in terms of physico-chemical characteristics, drug loading and release profiles. Although the loading properties were not improved with any of the functionalized PLA NP, different release profiles were observed in an aqueous medium at 37 °C and over a period of five days. The presence of PEG moieties in the core of PLA-polysorbates NP induced a faster release while the addition of a single aliphatic chain induced a slower release due to better interactions with the active molecule. Copyright © 2017 Elsevier B.V. All rights reserved.
Song, Wantong; Tang, Zhaohui; Li, Mingqiang; Lv, Shixian; Sun, Hai; Deng, Mingxiao; Liu, Huaiyu; Chen, Xuesi
2014-03-01
A novel methoxy poly(ethylene glycol)-b-poly(l-glutamic acid)-b-poly(l-phenylalanine) (mPEG-b-P(Glu)-b-P(Phe)) triblock copolymer was prepared and explored as a micelle carrier for the co-delivery of paclitaxel (PTX) and cisplatin (cis-diamminedichlo-platinum, CDDP). PTX and CDDP were loaded inside the hydrophobic P(Phe) inner core and chelated to the middle P(Glu) shell, respectively, while mPEG provided the outer corona for prolonged circulation. An in vitro release profile of the PTX+CDDP-loaded micelles showed that the CDDP chelation cross-link prevented an initial burst release of PTX. The PTX+CDDP-loaded micelles exhibited a high synergism effect in the inhibition of A549 human lung cancer cell line proliferation over 72 h incubation. For the in vivo treatment of xenograft human lung tumor, the PTX+CDDP-loaded micelles displayed an obvious tumor inhibiting effect with a 83.1% tumor suppression rate (TSR%), which was significantly higher than that of a free drug combination or micelles with a single drug. In addition, more importantly, the enhanced anti-tumor efficacy of the PTX+CDDP-loaded micelles came with reduced side-effects. No obvious body weight loss occurred during the treatment of A549 tumor-bearing mice with the PTX+CDDP-loaded micelles. Thus, the polypeptide-based combination of PTX and CDDP may provide useful guidance for effective and safe cancer chemotherapy. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tenofovir Containing Thiolated Chitosan Core/Shell Nanofibers: In Vitro and in Vivo Evaluations.
Meng, Jianing; Agrahari, Vivek; Ezoulin, Miezan J; Zhang, Chi; Purohit, Sudhaunshu S; Molteni, Agostino; Dim, Daniel; Oyler, Nathan A; Youan, Bi-Botti C
2016-12-05
It is hypothesized that thiolated chitosan (TCS) core/shell nanofibers (NFs) can enhance the drug loading of tenofovir, a model low molecular weight and highly water-soluble drug molecule, and improve its mucoadhesivity and in vivo safety. To test this hypothesis, poly(ethylene oxide) (PEO) core with TCS and polylactic acid (PLA) shell NFs are fabricated by a coaxial electrospinning technique. The morphology, drug loading, drug release profiles, cytotoxicity and mucoadhesion of the NFs are analyzed using scanning and transmission electron microscopies, liquid chromatography, cytotoxicity assays on VK2/E6E7 and End1/E6E7 cell lines and Lactobacilli crispatus, fluorescence imaging and periodic acid colorimetric method, respectively. In vivo safety studies are performed in C57BL/6 mice followed by H&E and immunohistochemical (CD45) staining analysis of genital tract. The mean diameters of PEO, PEO/TCS, and PEO/TCS-PLA NFs are 118.56, 9.95, and 99.53 nm, respectively. The NFs exhibit smooth surface. The drug loading (13%-25%, w/w) increased by 10-fold compared to a nanoparticle formulation due to the application of the electrospinning technique. The NFs are noncytotoxic at the concentration of 1 mg/mL. The PEO/TCS-PLA core/shell NFs mostly exhibit a release kinetic following Weibull model (r 2 = 0.9914), indicating the drug release from a matrix system. The core/shell NFs are 40-60-fold more bioadhesive than the pure PEO based NFs. The NFs are nontoxic and noninflammatory in vivo after daily treatment for up to 7 days. Owing to their enhanced drug loading and preliminary safety profile, the TCS core/shell NFs are promising candidates for the topical delivery of HIV/AIDS microbicides such as tenofovir.
Impact and Blast Resistance of Sandwich Plates
NASA Astrophysics Data System (ADS)
Dvorak, George J.; Bahei-El-Din, Yehia A.; Suvorov, Alexander P.
Response of conventional and modified sandwich plate designs is examined under static load, impact by a rigid cylindrical or flat indenter, and during and after an exponential pressure impulse lasting for 0.05 ms, at peak pressure of 100 MPa, simulating a nearby explosion. The conventional sandwich design consists of thin outer (loaded side) and inner facesheets made of carbon/epoxy fibrous laminates, separated by a thick layer of structural foam core. In the three modified designs, one or two thin ductile interlayers are inserted between the outer facesheet and the foam core. Materials selected for the interlayers are a hyperelas-tic rate-independent polyurethane;a compression strain and strain rate dependent, elastic-plastic polyurea;and an elastomeric foam. ABAQUS and LS-Dyna software were used in various response simulations. Performance comparisons between the enhanced and conventional designs show that the modified designs provide much better protection against different damage modes under both load regimes. After impact, local facesheet deflection, core compression, and energy release rate of delamination cracks, which may extend on hidden interfaces between facesheet and core, are all reduced. Under blast or impulse loads, reductions have been observed in the extent of core crushing, facesheet delaminations and vibration amplitudes, and in overall deflections. Similar reductions were found in the kinetic energy and in the stored and dissipated strain energy. Although strain rates as high as 10-4/s1 are produced by the blast pressure, peak strains in the interlayers were too low to raise the flow stress in the polyurea to that in the polyurethane, where a possible rate-dependent response was neglected. Therefore, stiff polyurethane or hard rubber interlayers materials should be used for protection of sandwich plate foam cores against both impact and blast-induced damage.
Dalvi, Bhagyashree R; Siddiqui, Ejaz A; Syed, Asad S; Velhal, Shilpa M; Ahmad, Absar; Bandivdekar, Atmaram B; Devarajan, Padma V
2016-01-01
HIV/AIDS is a macrophage resident infection localized in the reticuloendothelial system and remote locations of brain and bone marrow. We present core shell nanoparticles of gold(AuNPs) and nevirapine(NVP) for targeted delivery to the multiple HIV reservoirs. The aim of the study was to design core shell NVP loaded AuNPs with high drug loading and to evaluate biodistribution of the nanoparticles in possible HIV reservoirs in vivo. A specific objective was to assess the possible synergy of AuNPs with NVP on anti-HIV activity in vitro. Core shell nanoparticles were prepared by double emulsion solvent evaporation method and characterized. Glyceryl monostearate-nevirapine-gold nanoparticles(GMS-NVP-AuNPs) revealed high entrapment efficiency (>70%), high loading (~40%), particle size <250 nm and zeta potential -35.9± 1.41mv and exhibited sustained release with good stability. Surface plasmon resonance indicated shell formation while SEM coupled EDAX confirmed the presence of Au. TEM confirmed formation of spherical core shell nanoparticles. GMS-NVP-AuNPs revealed low hemolysis (<10 %) and serum stability upto 6 h. GMS-NVP-AuNPs exhibited rapid, high and sustained accumulation in the possible HIV reservoir organs, including the major organs of liver, spleen, lymph nodes, thymus and also remote locations of brain, ovary and bone marrow. High cell viability and enhanced uptake in PBMC's and TZM-bl cells were observed. While uptake in PBMC's proposed monocytes/macrophages enabled brain delivery. GMS-NVP-AuNPs demonstrated synergistic anti-HIV activity. The superior anti-HIV activity in vitro coupled with extensive localization of the nanoparticles in multiple HIV reservoirs suggests great promise of the core shell GMS-NVP-AuNPs for improved therapy of HIV.
Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer.
Hines, Michael; Kumar, Sameer; Schürmann, Felix
2011-01-01
For neural network simulations on parallel machines, interprocessor spike communication can be a significant portion of the total simulation time. The performance of several spike exchange methods using a Blue Gene/P (BG/P) supercomputer has been tested with 8-128 K cores using randomly connected networks of up to 32 M cells with 1 k connections per cell and 4 M cells with 10 k connections per cell, i.e., on the order of 4·10(10) connections (K is 1024, M is 1024(2), and k is 1000). The spike exchange methods used are the standard Message Passing Interface (MPI) collective, MPI_Allgather, and several variants of the non-blocking Multisend method either implemented via non-blocking MPI_Isend, or exploiting the possibility of very low overhead direct memory access (DMA) communication available on the BG/P. In all cases, the worst performing method was that using MPI_Isend due to the high overhead of initiating a spike communication. The two best performing methods-the persistent Multisend method using the Record-Replay feature of the Deep Computing Messaging Framework DCMF_Multicast; and a two-phase multisend in which a DCMF_Multicast is used to first send to a subset of phase one destination cores, which then pass it on to their subset of phase two destination cores-had similar performance with very low overhead for the initiation of spike communication. Departure from ideal scaling for the Multisend methods is almost completely due to load imbalance caused by the large variation in number of cells that fire on each processor in the interval between synchronization. Spike exchange time itself is negligible since transmission overlaps with computation and is handled by a DMA controller. We conclude that ideal performance scaling will be ultimately limited by imbalance between incoming processor spikes between synchronization intervals. Thus, counterintuitively, maximization of load balance requires that the distribution of cells on processors should not reflect neural net architecture but be randomly distributed so that sets of cells which are burst firing together should be on different processors with their targets on as large a set of processors as possible.
Investigating the soil removal characteristics of flexible tube coring method for lunar exploration
NASA Astrophysics Data System (ADS)
Tang, Junyue; Quan, Qiquan; Jiang, Shengyuan; Liang, Jieneng; Lu, Xiangyong; Yuan, Fengpei
2018-02-01
Compared with other technical solutions, sampling the planetary soil and returning it back to Earth may be the most direct method to seek the evidence of extraterrestrial life. To keep sample's stratification for further analyzing, a novel sampling method called flexible tube coring has been adopted for China future lunar explorations. Given the uncertain physical properties of lunar regolith, proper drilling parameters should be adjusted immediately in piercing process. Otherwise, only a small amount of core could be sampled and overload drilling faults could occur correspondingly. Due to the fact that the removed soil is inevitably connected with the cored soil, soil removal characteristics may have a great influence on both drilling loads and coring results. To comprehend the soil removal characteristics, a non-contact measurement was proposed and verified to acquire the coring and removal results accurately. Herein, further more experiments in one homogenous lunar regolith simulant were conducted, revealing that there exists a sudden core failure during the sampling process and the final coring results are determined by the penetration per revolution index. Due to the core failure, both drilling loads and soil's removal states are also affected thereby.
From structure to mechanism—understanding initiation of DNA replication
Riera, Alberto; Barbon, Marta; Noguchi, Yasunori; Reuter, L. Maximilian; Schneider, Sarah; Speck, Christian
2017-01-01
DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2–7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability. PMID:28717046
Achieving Core Indicators for HIV Clinical Care Among New Patients at an Urban HIV Clinic.
Greer, Gillian A; Tamhane, Ashutosh; Malhotra, Rakhi; Burkholder, Greer A; Mugavero, Michael J; Raper, James L; Zinski, Anne
2015-09-01
Following the release of the 2010 National HIV/AIDS Strategy for the United States, the Institute of Medicine (IOM) issued core clinical indicators for measuring health outcomes in HIV-positive persons. As early retention in HIV primary care is associated with improved long-term health outcomes, we employed IOM indicators as a guide to examine a cohort of persons initiating HIV outpatient medical care at a university-affiliated HIV clinic in the Southern United States (January 2007-July 2012). Using indicators for visit attendance, CD4 and viral load laboratory testing frequency, and antiretroviral therapy initiation, we evaluated factors associated with achieving IOM core indicators among care- and treatment-naïve patients during the first year of HIV care. Of 448 patients (mean age = 35 years, 35.7% white, 79.0% male, 58.4% education beyond high school, 35.9% monthly income > $1,000 US, 47.3% uninsured), 84.6% achieved at least four of five IOM indicators. In multivariable analyses, persons with monthly income > $1,000 (ORadj. = 3.71; 95% CI: 1.68-8.19; p = 0.001) and depressive symptoms (ORadj. = 2.13; 95% CI: 1.02-4.45; p = 0.04) were significantly more likely to achieve at least four of the five core indicators, while patients with anxiety symptoms were significantly less likely to achieve these indicators (ORadj. = 0.50; 95% CI: 0.26-0.97; p = 0.04). Age, sex, race, education, insurance status, transportation barriers, alcohol use, and HIV status disclosure to family were not associated with achieving core indicators. Evaluating and addressing financial barriers and anxiety symptoms during the first year of HIV outpatient care may improve individual health outcomes and subsequent achievement of the National HIV/AIDS Strategy.
NASA Astrophysics Data System (ADS)
Luke, Jensen; Lebit, Hermann; Paterson, Scott; Miller, Robert; Vernon, Ron
2017-04-01
The Cascades crystalline core forms part of the Cretaceous magmatic belt of western North America and exposes a crustal section composed of primarily tonalitic plutons that intruded siliciclastic metasediments of an arc-derived accretional system, and local meta-basalt/chert sequences. This study is the first attempt to correlate the well understood intrusive and P-T-t history of the metasedimentary and plutonic terrane with the kinematics and tectonic boundary conditions by rigorous analysis of structures documented in the Tonga Formation exposed at the western edge of the core. The Tonga Formation comprises pelite-psammite metasediments, which increase from greenschist ( 300-350° C) to amphibolite grade ( 500-600° C) from south to north. This metamorphic gradient is inverted relative to a major westward verging and downward facing fold system that dominates the internal architecture of the formation and implies that the initial regional metamorphic signature was established prior to the early fold generation. Subsequent co-axial fold superposition is seen as a consequence of the persistent accretional west-vergent thrusting in the foreland of the magmatic arc. The central section of the Cascades Range, exposed in western Washington, forms part of the Cretaceous accretional/magmatic arc extending over 4,000 km along western North America from Baja California to British Columbia (Fig. 1a) (e.g. Misch, 1966; Brown, 1987; Tabor et al., 1989). Two models exist for the evolution of the Cascades crystalline core with one invoking magmatic loading (e.g. Brown and Walker, 1993) as the major cause for rapid loading, consequent regional metamorphism and vertical uplift (Evans and Berti, 1986). Conversely, other workers favor a model that suggests loading as a consequence of tectonic, thrust-related thickening, followed by rapid exhumation of the exposed crustal section of 10 to 40 km paleodepth (e.g. Matzel, 2004; Patterson et al., 2004; Stowell et al., 2007). In this context, the Tonga Formation, on the westernmost boundary of the Cascades crystalline core, records Cretaceous plutonism, contact to regional metamorphism, and multiple episodes of folding, evidencing intense, arc-perpendicular contractional deformation, similar to that observed in the neighboring Chiwaukum Schist to the east (Miller and Paterson, 1992; Miller et al., 1993; Paterson and Miller, 1998; Miller et al., 2006). Building on previous extensive mapping and metamorphic and petrologic analysis in the Cascades, we use the Tonga Formation as a means to a comprehensive tectonic synthesis incorporating detailed analysis of the kinematics and timing of structural evolution, magma emplacement, and metamorphism.
Wu, Yanping; Wang, Zhongyuan; Liu, Gan; Zeng, Xiaowei; Wang, Xusheng; Gao, Yongfeng; Jiang, Lijuan; Shi, Xiaojun; Tao, Wei; Huang, Laiqiang; Mei, Lin
2015-07-01
A novel nanocarrier system of cholic acid (CA) core, star-shaped polymer consisting of poly(D,L-lactide-co-glycolide) (PLGA) was developed for sustained and controlled delivery of simvastatin for chemotherapy of breast adenocarcinoma. The star-shaped polymer CA-PLGA with three branch arms was synthesized successfully through the core-first approach. The simvastatin-loaded star-shaped CA-PLGA nanoparticles were prepared through a modified nanoprecipitation method. The data showed that the fluorescence star-shaped CA-PLGA nanoparticles could be internalized into MDA-MB-231 and MDA-MB-468 human breast cancer cells. The simvastatin-loaded star-shaped CA-PLGA nanoparticles achieved significantly higher level of cytotoxicity than pristine simvastatin and simvastatin-loaded linear PLGA nanoparticles. Moreover, the expression of the cell cycle protein cyclin D1 was dramatically inhibited by simvastatin in both cells, with simvastatin-loaded star-shaped CA-PLGA nanoparticles having the greatest effect. MDA-MB-231 xenograft tumor model on BALB/c nude mice showed that simvastatin-loaded star-shaped CA-PLGA nanoformulations could effectively inhibit the growth of tumor over a longer period of time than pristine simvastatin and simvastatin-loaded linear PLGA nanoformulations at the same dose. In agreement with these, the nuclear expression of proliferation marker Ki-67 in simvastatin-loaded star-shaped CA-PLGA nanoparticles group was reduced to a most extent among four groups through tumor frozen section immunohistochemistry. In conclusion, the star-shaped CA-PLGA polymers could serve as a novel polymeric nanocarrier for breast cancer chemotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cormier, Dallas; Edra, Sherwin; Espinoza, Michael
This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations,more » identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okwit, S.; Siegel, K.; Smith, J.G.
1962-09-01
Results of an investigation to determine the feasibility of incorporating superconducting magnet techniques in the design of traveling-wave maser systems are reported. Several different types of magnet configurations were investigated: isomagnets, Helmholtz coils, modified Helmholtz coils, air-core solenoids, and magnetic end-loaded air-core solenoids. The magnetic end-loaded air-core solenoid was found to be the best configuration for the S-band maser under consideration. This technique yielded relatively large regions of field homogeneity with relatively small aspect ratios (length of solenoid/diameter of solenoid). Several small-scale models of full-length superconducting magnets and foreshortened end-loaded superconducting magnets were constructed using un-annealed niobium wire. Measurements havemore » shown that these magnets were adequate for traveling-wave maser applications that require magnetic fields up to 2,200 G and marginal for magnetic fields up to 2,500 G.« less
Meyer, Luisa A.; Johnson, Michael G.; Cullen, Diane M.; Vivanco, Juan F.; Blank, Robert D.; Ploeg, Heidi-Lynn; Smith, Everett L.
2016-01-01
Increased bone formation resulting from mechanical loading is well documented; however, the interactions of the mechanotransduction pathways are less well understood. Endothelin-1, a ubiquitous autocrine/paracrine signaling molecule promotes osteogenesis in metastatic disease. In the present study, it was hypothesized that exposure to big endothelin-1 (big ET1) and/or mechanical loading would promote osteogenesis in ex vivo trabecular bone cores. In a 2×2 factorial trial of daily mechanical loading (−2000 με, 120 cycles daily, “jump” waveform) and big ET1 (25 ng/mL), 48 bovine sternal trabecular bone cores were maintained in bioreactor chambers for 23 days. The bone cores’ response to the treatment stimuli was assessed with percent change in core apparent elastic modulus (ΔEapp), static and dynamic histomorphometry, and prostaglandin E2 (PGE2) secretion. Two-way ANOVA with a post hoc Fisher’s LSD test found no significant treatment effects on ΔEapp (p=0.25 and 0.51 for load and big ET1, respectively). The ΔEapp in the “no load + big ET1” (CE, 13±12.2%, p=0.56), “load + no big ET1” (LC, 17±3.9%, p=0.14) and “load + big ET1” (LE, 19±4.2%, p=0.13) treatment groups were not statistically different than the control group (CC, 3.3%±8.6%). Mineralizing surface (MS/BS), mineral apposition (MAR) and bone formation rates (BFR/BS) were significantly greater in LE than CC (p=0.037, 0.0040 and 0.019, respectively). While the histological bone formation markers in LC trended to be greater than CC (p=0.055, 0.11 and 0.074, respectively) there was no difference between CE and CC (p=0.61, 0.50 and 0.72, respectively). Cores in LE and LC had more than 50% greater MS/BS (p=0.037, p=0.055 respectively) and MAR (p=0.0040, p=0.11 respectively) than CC. The BFR/BS was more than two times greater in LE (p=0.019) and LC (p=0.074) than CC. The PGE2 levels were elevated at 8 days post-osteotomy in all groups and the treatment groups remained elevated compared to the CC group on days 15, 19 and 23. The data suggest that combined exposure to big ET1 and mechanical loading results in increased osteogenesis as measured in biomechanical, histomorphometric and biochemical responses. PMID:26855374
Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.
Kim, Jinhwan; Jo, Changshin; Lim, Won-Gwang; Jung, Sungjin; Lee, Yeong Mi; Lim, Jun; Lee, Haeshin; Lee, Jinwoo; Kim, Won Jong
2018-05-18
Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting "nanoparticle-loaded nanoparticles" to address the long-lasting problem is reported for effective surface-to-core drug delivery in entire 3D tumors. The "nanoparticle-loaded nanoparticle" is a silica nanoparticle (≈150 nm) with well-developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)-loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface-to-core tumor tissues, and finally (3) release a drug triggered by cancer-characteristic pH gradients. The hierarchical "nanoparticle-loaded nanoparticle" can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Research on Shock Responses of Three Types of Honeycomb Cores
NASA Astrophysics Data System (ADS)
Peng, Fei; Yang, Zhiguang; Jiang, Liangliang; Ren, Yanting
2018-03-01
The shock responses of three kinds of honeycomb cores have been investigated and analyzed based on explicit dynamics analysis. According to the real geometric configuration and the current main manufacturing methods of aluminum alloy honeycomb cores, the finite element models of honeycomb cores with three different cellular configurations (conventional hexagon honeycomb core, rectangle honeycomb core and auxetic honeycomb core with negative Poisson’s ratio) have been established through FEM parametric modeling method based on Python and Abaqus. In order to highlight the impact response characteristics of the above three honeycomb cores, a 5 mm thick panel with the same mass and material was taken as contrast. The analysis results showed that the peak values of longitudinal acceleration history curves of the three honeycomb cores were lower than those of the aluminum alloy panel in all three reference points under the loading of a longitudinal pulse pressure load with the peak value of 1 MPa and the pulse width of 1 μs. It could be concluded that due to the complex reflection and diffraction of stress wave induced by shock in honeycomb structures, the impact energy was redistributed which led to a decrease in the peak values of the longitudinal acceleration at the measuring points of honeycomb cores relative to the panel.
Light-Responsive and pH-Responsive DNA Microcapsules for Controlled Release of Loads.
Huang, Fujian; Liao, Wei-Ching; Sohn, Yang Sung; Nechushtai, Rachel; Lu, Chun-Hua; Willner, Itamar
2016-07-20
A method to assemble light-responsive or pH-responsive microcapsules loaded with different loads (tetramethylrhodamine-modified dextran, TMR-D; microperoxidase-11, MP-11; CdSe/ZnS quantum dots; or doxorubicin-modified dextran, DOX-D) is described. The method is based on the layer-by-layer deposition of sequence-specific nucleic acids on poly(allylamine hydrochloride)-functionalized CaCO3 core microparticles, loaded with the different loads, that after the dissolution of the core particles with EDTA yields the stimuli-responsive microcapsules that include the respective loads. The light-responsive microcapsules are composed of photocleavable o-nitrobenzyl-phosphate-modified DNA shells, and the pH-responsive microcapsules are made of a cytosine-rich layer cross-linked by nucleic acid bridges. Irradiating the o-nitrobenzyl phosphate-functionalized microcapsules, λ = 365 nm, or subjecting the pH-responsive microcapsules to pH = 5.0, results in the cleavage of the microcapsule shells and the release of the loads. Preliminary studies address the cytotoxicity of the DOX-D-loaded microcapsules toward MDA-MB-231 breast cancer cells and normal MCF-10A breast epithelial cells. Selective cytotoxicity of the DOX-D-loaded microcapsules toward cancer cells is demonstrated.
High energy overcurrent protective device
Praeg, Walter F.
1982-01-01
Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.
Surge Pressure Mitigation in the Global Precipitation Measurement Mission Core Propulsion System
NASA Technical Reports Server (NTRS)
Scroggins, Ashley R.; Fiebig, Mark D.
2014-01-01
The Global Precipitation Measurement (GPM) mission is an international partnership between NASA and JAXA whose Core spacecraft performs cutting-edge measurements of rainfall and snowfall worldwide and unifies data gathered by a network of precipitation measurement satellites. The Core spacecraft's propulsion system is a blowdown monopropellant system with an initial hydrazine load of 545 kg in a single composite overwrapped propellant tank. At launch, the propulsion system contained propellant in the tank and manifold tubes upstream of the latch valves, with low-pressure helium gas in the manifold tubes downstream of the latch valves. The system had a relatively high beginning-of- life pressure and long downstream manifold lines; these factors created conditions that were conducive to high surge pressures. This paper discusses the GPM project's approach to surge mitigation in the propulsion system design. The paper describes the surge testing program and results, with discussions of specific difficulties encountered. Based on the results of surge testing and pressure drop analyses, a unique configuration of cavitating venturis was chosen to mitigate surge while minimizing pressure losses during thruster maneuvers. This paper concludes with a discussion of overall lessons learned with surge pressure testing for NASA Goddard spacecraft programs.
Suresh, S; Saravanan, P; Jayamoorthy, K; Ananda Kumar, S; Karthikeyan, S
2016-07-01
In this article a series of epoxy nanocomposites film were developed using amine functionalized (ZnO-APTES) core shell nanoparticles as the dispersed phase and a commercially available epoxy resin as the matrix phase. The functional group of the samples was characterized using FT-IR spectra. The most prominent peaks of epoxy resin were found in bare epoxy and in all the functionalized ZnO dispersed epoxy nanocomposites (ZnO-APTES-DGEBA). The XRD analysis of all the samples exhibits considerable shift in 2θ, intensity and d-spacing values but the best and optimum concentration is found to be 3% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposites supported by FT-IR results. From TGA measurements, 100wt% residue is obtained in bare ZnO nanoparticles whereas in ZnO core shell nanoparticles grafted DGEBA residue percentages are 37, 41, 45, 46 and 52% for 0, 1, 3, 5 and 7% ZnO-APTES-DGEBA respectively, which is confirmed with ICP-OES analysis. From antimicrobial activity test, it was notable that antimicrobial activity of 7% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposite film has best inhibition zone effect against all pathogens under study. Copyright © 2016 Elsevier B.V. All rights reserved.
Flexible Power Distribution Based on Point of Load Converters
NASA Astrophysics Data System (ADS)
Dhallewin, G.; Galiana, D.; Mollard, J. M.; Schaper, W.; Strixner, E.; Tonicello, F.; Triggianese, M.
2014-08-01
Present digital electronic loads require low voltages and suffer from high currents. In addition, they need several different voltage levels to supply the different parts of digital devices like the core, the input/output I/F, etc. Distributed Power Architectures (DPA) with point-of- load (POL) converters (synchronous buck type) offer excellent performance in term of efficiency and load step behaviour. They occupy little PCB area and are well suited for very low voltage (VLV) DC conversion (1V to 3.3V). The paper presents approaches to architectural design of POL based supplies including redundancy and protection as well as the requirements on a European hardware implementation. The main driver of the analysis is the flexibility of each element (DC/DC converter, protection, POL core) to cover a wide range of space applications.
NASA Astrophysics Data System (ADS)
Wu, Fuli; Fang, Xiaomin; Meng, Qingquan; Zhao, Yan; Tang, Fenjun; Zhang, Tao; Zhang, Weilin; Zan, Jinbo
2017-11-01
The East Asian monsoon is generally regarded to have initiated at the transition from the Late Oligocene to the Early Miocene. However, little is known about this process because of a lack of continuous strata across the boundary between the Late Oligocene and the Early Miocene in Asia. Based on previous drilling (core HZ-1) in the Miocene sediments in the southern Linxia Basin in NW China, we drilled a new 620 m core (HZ-2) into the Late Oligocene strata and obtained 206 m of continuous new core. The detailed paleomagnetism of the new core reveals eleven pairs of normal and reversed polarity zones that can be readily correlated with chrons 6Bn-9n of the geomagnetic polarity time scale (GPTS), define an age interval of 21.6-26.5 Ma and indicate continuity from the Late Oligocene to Early Miocene. The core is characterized by the remarkable occurrence of brownish-red paleosols of luvic cambisols (brown to luvic drab soils) above reddish-brown floodplain siltstones and mudstones, which suggest that the East Asian monsoon likely began by 26.5 Ma. In contrast to the siltstone and mudstone of the Late Oligocene strata, the Miocene strata begin with a thick fine sandstone bed, which marks sudden increases in erosion and loading that most likely reflect a response to tectonic uplift. The hematite content and redness index records of the core further demonstrate that the monsoonal climate in the Late Oligocene to Early Miocene in this area was mainly controlled by global temperature trends and events.
Three-point bending of honeycomb sandwich beams with facesheet perforations
NASA Astrophysics Data System (ADS)
Su, Pengbo; Han, Bin; Zhao, Zhongnan; Zhang, Qiancheng; Lu, Tian Jian
2017-12-01
A novel square honeycomb-cored sandwich beam with perforated bottom facesheet is investigated under three-point bending, both analytically and numerically. Perforated square holes in the bottom facesheet are characterized by the area ratio of the hole to intact facesheet (perforation ratio). While for large-scale engineering applications like the decks of cargo vehicles and transportation ships, the perforations are needed to facilitate the fabrication process (e.g., laser welding) as well as service maintenance, it is demonstrated that these perforations, when properly designed, can also enhance the resistance of the sandwich to bending. For illustration, fair comparisons among competing sandwich designs having different perforation ratios but equal mass is achieved by systematically thickening the core webs. Further, the perforated sandwich beam is designed with a relatively thick facesheet to avoid local indention failure so that it mainly fails in two competing modes: (1) bending failure, i.e., yielding of beam cross-section and buckling of top facesheet caused by bending moment; (2) shear failure, i.e., yielding and buckling of core webs due to shear forcing. The sensitivity of the failure loads to the ratio of core height to beam span is also discussed for varying perforation ratios. As the perforation ratio is increased, the load of shear failure increases due to thickening core webs, while that of bending failure decreases due to the weakening bottom facesheet. Design of a sandwich beam with optimal perforation ratio is realized when the two failure loads are equal, leading to significantly enhanced failure load (up to 60% increase) relative to that of a non-perforated sandwich beam with equal mass.
Evaluation of Thin Kevlar-Epoxy Fabric Panels Subjected to Shear Loading
NASA Technical Reports Server (NTRS)
Baker, Donald J.
1996-01-01
The results of an analytical and experimental investigation of 4-ply Kevlar-49-epoxy panels loaded by in-plane shear are presented. Approximately one-half of the panels are thin-core sandwich panels and the other panels are solid-laminate panels. Selected panels were impacted with an aluminum sphere at a velocity of either 150 or 220 ft/sec. The strength of panels impacted at 150 ft/sec was not reduced when compared to the strength of the undamaged panels, but the strength of panels impacted at 220 ft/sec was reduced by 27 to 40 percent. Results are presented for panels that were cyclically loaded from a load less than the buckling load to a load in the postbuckling load range. The thin-core sandwich panels had a lower fatigue life than the solid panels. The residual strength of the solid and sandwich panels cycled more than one million cycles exceeded the baseline undamaged panel strengths. The effect of hysteresis in the response of the sandwich panels is not significant. Results of a nonlinear finite element analysis conducted for each panel design are presented.
Lu, Yin-ping; Cao, Wei; Hong, Mei; Zhu, Jian-fang; Liu, Zhao; Yang, Dong-liang
2008-10-01
To investigate the relationship between pre-core G1896A point mutation of hepatitis B virus (HBV) and safety of breast feeding. Serum and breast milk samples were collected from 62 pregnant women of HBV DNA positive/HBeAg negative. PCR-solid phase hybridization was used to detect the point mutation in pre-core region G1896A of HBV from pregnant women, and HBV DNA loads in sera and breast milk were determined by fluorescence quantitative PCR (FQ-PCR). The prevalence of point mutation was 61.3% (38/62) in 62 pregnant women with HBsAg positive/HBeAg negative. The positive rate of HBV DNA in breast milk of group with point mutation (28.9%) was similar to that of group without mutation (29.2%, chi2=0.0003, P>0.05). However, The positive rate of HBV DNA in breast milk of group with high HBV loads (56.0%) was significantly higher than that of group with low HBV loads (10.8%, chi2=14.79, P<0.01). The point mutation in pre-core region G1896A of HBV dose not affect the positive rate of HBV DNA in breast milk and higher HBV DNA loads in serum of pregnant women might increase the risk of mother-infant transmission.
Large-Scale Compute-Intensive Analysis via a Combined In-situ and Co-scheduling Workflow Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Messer, Bronson; Sewell, Christopher; Heitmann, Katrin
2015-01-01
Large-scale simulations can produce tens of terabytes of data per analysis cycle, complicating and limiting the efficiency of workflows. Traditionally, outputs are stored on the file system and analyzed in post-processing. With the rapidly increasing size and complexity of simulations, this approach faces an uncertain future. Trending techniques consist of performing the analysis in situ, utilizing the same resources as the simulation, and/or off-loading subsets of the data to a compute-intensive analysis system. We introduce an analysis framework developed for HACC, a cosmological N-body code, that uses both in situ and co-scheduling approaches for handling Petabyte-size outputs. An initial inmore » situ step is used to reduce the amount of data to be analyzed, and to separate out the data-intensive tasks handled off-line. The analysis routines are implemented using the PISTON/VTK-m framework, allowing a single implementation of an algorithm that simultaneously targets a variety of GPU, multi-core, and many-core architectures.« less
Khanal, Anil; Bui, Minh-Phuong Ngoc
2014-01-01
Purpose Photodynamic therapy (PDT) is gaining increasing recognition for breast cancer treatment because it offers local selectivity and reduced toxic side effects compared to radiotherapy and chemotherapy. In PDT, photosensitizer drugs are loaded in different nanomaterials and used in combination with light exposure. However, the most representative issue with PDT is the difficulty of nanomaterials to encapsulate anticancer drugs at high doses, which results in low efficacy of the PDT treatment. Here, we proposed the development of the poly(N-isopropylacrylamide) (PNIPAM) microgel for the encapsulation of methylene blue, an anticancer drug, for its use as breast cancer treatment in MCF-7 cell line. Methods We developed biocompatible microgels based on nonfunctionalized PNIPAM and its corresponding anionically functionalized PNIPAM and polyacrylic acid (PNIPAM-co-PAA) microgel. Methylene blue was used as the photosensitizer drug because of its ability to generate toxic reactive oxygen species upon exposure to light at 664 nm. Core PNIPAM and core/shell PNIPAM-co-PAA microgels were synthesized and characterized using ultraviolet-visible spectroscopy and dynamic light scattering. The effect of methylene blue was evaluated using the MCF-7 cell line. Results Loading of methylene blue in core PNIPAM microgel was higher than that in the core/shell PNIPAM-co-PAA microgel, indicating that electrostatic interactions did not play an important role in loading a cationic drug. This behavior is probably due to the skin layer inhibiting the high uptake of drugs in the PNIPAM-co-PAA microgel. Core PNIPAM microgel effectively retained the cationic drug (i.e., methylene blue) for several hours compared to core/shell PNIPAM-co-PAA and enhanced its photodynamic efficacy in vitro more than that of free methylene blue. Conclusion Our results showed that the employment of core PNIPAM and core/shell PNIPAM-co-PAA microgels enhanced the encapsulation of methylene blue. Core PNIPAM microgel released the drug more slowly than did core/shell PNIPAM-co-PAA, and it effectively inhibited the growth of MCF-7 cells. PMID:24744793
Khanal, Anil; Bui, Minh-Phuong Ngoc; Seo, Seong S
2014-03-01
Photodynamic therapy (PDT) is gaining increasing recognition for breast cancer treatment because it offers local selectivity and reduced toxic side effects compared to radiotherapy and chemotherapy. In PDT, photosensitizer drugs are loaded in different nanomaterials and used in combination with light exposure. However, the most representative issue with PDT is the difficulty of nanomaterials to encapsulate anticancer drugs at high doses, which results in low efficacy of the PDT treatment. Here, we proposed the development of the poly(N-isopropylacrylamide) (PNIPAM) microgel for the encapsulation of methylene blue, an anticancer drug, for its use as breast cancer treatment in MCF-7 cell line. We developed biocompatible microgels based on nonfunctionalized PNIPAM and its corresponding anionically functionalized PNIPAM and polyacrylic acid (PNIPAM-co-PAA) microgel. Methylene blue was used as the photosensitizer drug because of its ability to generate toxic reactive oxygen species upon exposure to light at 664 nm. Core PNIPAM and core/shell PNIPAM-co-PAA microgels were synthesized and characterized using ultraviolet-visible spectroscopy and dynamic light scattering. The effect of methylene blue was evaluated using the MCF-7 cell line. Loading of methylene blue in core PNIPAM microgel was higher than that in the core/shell PNIPAM-co-PAA microgel, indicating that electrostatic interactions did not play an important role in loading a cationic drug. This behavior is probably due to the skin layer inhibiting the high uptake of drugs in the PNIPAM-co-PAA microgel. Core PNIPAM microgel effectively retained the cationic drug (i.e., methylene blue) for several hours compared to core/shell PNIPAM-co-PAA and enhanced its photodynamic efficacy in vitro more than that of free methylene blue. Our results showed that the employment of core PNIPAM and core/shell PNIPAM-co-PAA microgels enhanced the encapsulation of methylene blue. Core PNIPAM microgel released the drug more slowly than did core/shell PNIPAM-co-PAA, and it effectively inhibited the growth of MCF-7 cells.
NASA Astrophysics Data System (ADS)
Wang, Hui; Yi, Jinhui; Mukherjee, Sumit; Banerjee, Probal; Zhou, Shuiqin
2014-10-01
The paper demonstrates a class of multifunctional core-shell hybrid nanogels with fluorescent and magnetic properties, which have been successfully developed for simultaneous optical temperature sensing, tumor cell imaging and magnetic/NIR-thermally responsive drug carriers. The as-synthesized hybrid nanogels were designed by coating bifunctional nanoparticles (BFNPs, fluorescent carbon dots embedded in the porous carbon shell and superparamagnetic iron oxide nanocrystals clustered in the core) with a thermo-responsive poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)]-based hydrogel as the shell. The BFNPs in hybrid nanogels not only demonstrate excellent photoluminescence (PL) and photostability due to the fluorescent carbon dots embedded in the porous carbon shell, but also has targeted drug accumulation potential and a magnetic-thermal conversion ability due to the superparamagnetic iron oxide nanocrystals clustered in the core. The thermo-responsive poly(NIPAM-AAm)-based gel shell can not only modify the physicochemical environment of the BFNPs core to manipulate the fluorescence intensity for sensing the variation of the environmental temperature, but also regulate the release rate of the loaded anticancer drug (curcumin) by varying the local temperature of environmental media. In addition, the carbon layer of BFNPs can adsorb and convert the NIR light to heat, leading to a promoted drug release under NIR irradiation and improving the therapeutic efficacy of drug-loaded hybrid nanogels. Furthermore, the superparamagnetic iron oxide nanocrystals in the core of BFNPs can trigger localized heating using an alternating magnetic field, leading to a phase change in the polymer gel to trigger the release of loaded drugs. Finally, the multifunctional hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The demonstrated hybrid nanogels would be an ideal system for the biomedical applications due to their excellent optical properties, magnetic properties, high drug loading capacity and responsive drug release behavior.The paper demonstrates a class of multifunctional core-shell hybrid nanogels with fluorescent and magnetic properties, which have been successfully developed for simultaneous optical temperature sensing, tumor cell imaging and magnetic/NIR-thermally responsive drug carriers. The as-synthesized hybrid nanogels were designed by coating bifunctional nanoparticles (BFNPs, fluorescent carbon dots embedded in the porous carbon shell and superparamagnetic iron oxide nanocrystals clustered in the core) with a thermo-responsive poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)]-based hydrogel as the shell. The BFNPs in hybrid nanogels not only demonstrate excellent photoluminescence (PL) and photostability due to the fluorescent carbon dots embedded in the porous carbon shell, but also has targeted drug accumulation potential and a magnetic-thermal conversion ability due to the superparamagnetic iron oxide nanocrystals clustered in the core. The thermo-responsive poly(NIPAM-AAm)-based gel shell can not only modify the physicochemical environment of the BFNPs core to manipulate the fluorescence intensity for sensing the variation of the environmental temperature, but also regulate the release rate of the loaded anticancer drug (curcumin) by varying the local temperature of environmental media. In addition, the carbon layer of BFNPs can adsorb and convert the NIR light to heat, leading to a promoted drug release under NIR irradiation and improving the therapeutic efficacy of drug-loaded hybrid nanogels. Furthermore, the superparamagnetic iron oxide nanocrystals in the core of BFNPs can trigger localized heating using an alternating magnetic field, leading to a phase change in the polymer gel to trigger the release of loaded drugs. Finally, the multifunctional hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The demonstrated hybrid nanogels would be an ideal system for the biomedical applications due to their excellent optical properties, magnetic properties, high drug loading capacity and responsive drug release behavior. Electronic supplementary information (ESI) available: Fig. S1-S12. See DOI: 10.1039/c4nr03748k
Experimental Investigation of DC-Bias Related Core Losses in a Boost Inductor (Postprint)
2014-08-01
dc bias-flux conditions. These dc bias conditions result in distorted hysteresis loops , increased core losses, and have been shown to be independent...These dc bias conditions result in dis- torted hysteresis loops , increased core losses, and have been shown to be independent of core material. The...controllable converter load currents, this topology is ideal to study dc-related losses. Inductor core hysteresis loop characterization was accomplished
Deterministic Modeling of the High Temperature Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortensi, J.; Cogliati, J. J.; Pope, M. A.
2010-06-01
Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is usedmore » in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.« less
Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.
1999-01-01
The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.
Stable Tearing and Buckling Responses of Unstiffened Aluminum Shells with Long Cracks
NASA Technical Reports Server (NTRS)
Starnes, James H., Jr.; Rose, Cheryl A.
1998-01-01
The results of an analytical and experimental study of the nonlinear response of thin, unstiffened, aluminum cylindrical shells with a long longitudinal crack are presented. The shells are analyzed with a nonlinear shell analysis code that accurately accounts for global and local structural response phenomena. Results are presented for internal pressure and for axial compression loads. The effect of initial crack length on the initiation of stable crack growth and unstable crack growth in typical shells subjected to internal pressure loads is predicted using geometrically nonlinear elastic-plastic finite element analyses and the crack-tip-opening angle (CTOA) fracture criterion. The results of these analyses and of the experiments indicate that the pressure required to initiate stable crack growth and unstable crack growth in a shell subjected to internal pressure loads decreases as the initial crack length increases. The effects of crack length on the prebuckling, buckling and postbuckling responses of typical shells subjected to axial compression loads are also described. For this loading condition, the crack length was not allowed to increase as the load was increased. The results of the analyses and of the experiments indicate that the initial buckling load and collapse load for a shell subjected to axial compression loads decrease as the initial crack length increases. Initial buckling causes general instability or collapse of a shell for shorter initial crack lengths. Initial buckling is a stable local response mode for longer initial crack lengths. This stable local buckling response is followed by a stable postbuckling response, which is followed by general or overall instability of the shell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heard, F.J.; Harris, R.A.; Padilla, A.
The SASSYS/SAS4A systems analysis code was used to simulate a series of unprotected loss of flow (ULOF) tests planned at the Fast Flux Test Facility (FFTF). The subject tests were designed to investigate the transient performance of the FFTF during various ULOF scenarios for two different loading patterns designed to produce extremes in the assembly load pad clearance and the direction of the initial assembly bows. The tests are part of an international program designed to extend the existing data base on the performance of liquid metal reactors (LMR). The analyses demonstrate that a wide range of power-to-flow ratios canmore » be reached during the transients and, therefore, will yield valuable data on the dynamic character of the structural feedbacks in LMRS. These analyses will be repeated once the actual FFTF core loadings for the tests are available. These predictions, similar ones obtained by other international participants in the FFTF program, and post-test analyses will be used to upgrade and further verify the computer codes used to predict the behavior of LMRS.« less
Pérez-González, A; González-Lluch, C; Sancho-Bru, J L; Rodríguez-Cervantes, P J; Barjau-Escribano, A; Forner-Navarro, L
2012-03-01
The aim of this study was to analyse the strength and failure mode of teeth restored with fibre posts under retention and flexural-compressive loads at different stages of the restoration and to analyse whether including a simulated ligament in the experimental setup has any effect on the strength or the failure mode. Thirty human maxillary central incisors were distributed in three different groups to be restored with simulation of different restoration stages (1: only post, 2: post and core, 3: post-core and crown), using Rebilda fibre posts. The specimens were inserted in resin blocks and loaded by means of a universal testing machine until failure under tension (stage 1) and 50º flexion (stages 2-3). Half the specimens in each group were restored using a simulated ligament between root dentine and resin block and the other half did not use this element. Failure in stage 1 always occurred at the post-dentine interface, with a mean failure load of 191·2 N. Failure in stage 2 was located mainly in the core or coronal dentine (mean failure load of 505·9 N). Failure in stage 3 was observed in the coronal dentine (mean failure load 397·4 N). Failure loads registered were greater than expected masticatory loads. Fracture modes were mostly reparable, thus indicating that this post is clinically valid at the different stages of restoration studied. The inclusion of the simulated ligament in the experimental system did not show a statistically significant effect on the failure load or the failure mode. © 2011 Blackwell Publishing Ltd.
Lake Michigan sediment lead storage and history of loads
Dated sediment box cores collected in 1994-1996 from 52 locations in Lake Michigan were analyzed for to access storage, trends, and loading history of lead. The results of this study provide information of historic lead loads to the lake for a time period for which no other info...
Jeaidi, Zaid Al
2016-01-01
To assess the fracture resistance of endodontically treated teeth with a novel Zirconia (Zr) nano-particle filler containing bulk fill resin composite. Forty-five freshly extracted maxillary central incisors were endodontically treated using conventional step back preparation and warm lateral condensation filling. Post space preparation was performed using drills compatible for fiber posts (Rely X Fiber Post) on all teeth (n=45), and posts were cemented using self etch resin cement (Rely X Unicem). Samples were equally divided into three groups (n=15) based on the type of core materials, ZirconCore (ZC) MulticCore Flow (MC) and Luxacore Dual (LC). All specimens were mounted in acrylic resin and loads were applied (Universal testing machine) at 130° to the long axis of teeth, at a crosshead speed of 0.5 mm/min until failure. The loads and the site at which the failures occurred were recorded. Data obtained was tabulated and analyzed using a statistical program. The means and standard deviations were compared using ANOVA and Multiple comparisons test. The lowest and highest failure loads were shown by groups LC (18.741±3.02) and MC (25.16±3.30) respectively. Group LC (18.741±3.02) showed significantly lower failure loads compared to groups ZC (23.02±4.21) and MC (25.16±3.30) (p<0.01). However groups ZC (23.02±4.21) and MC (25.16±3.30) showed comparable failure loads (p=0.23). Fracture resistance of endodontically treated teeth restored with Zr filler containing bulk fill composite cores was comparable to teeth restored with conventional Zr free bulk fill composites. Zr filled bulk fill composites are recommended for restoration of endodontically treated teeth as they show comparable fracture resistance to conventional composite materials with less catastrophic failures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard; Hasan, Iftekhar; Husain, Tausif
This research examines the vibration and thermal characteristics of double-sided flux concentrating Transverse Flux Machines (TFM), designed for direct drive application. Two TFM prototypes with different stator cores, one with Quasi U-Core and the other with E-Core, has been used for the study. 3D Finite Element Analysis (FEA) has been carried out to determine the no-load and with load performance of the TFMs along with their fluctuating axial electromagnetic force densities acting on the stator teeth. The deformation response of the stator cores was observed in the static structural analysis. Thermal analysis for the TFM was performed through FEA basedmore » on copper and iron losses in the machine to examine the temperature rise in different parts of the machine structure. Acceleration and noise measurements were experimentally obtained to characterize the vibrational performance of the prototypes.« less
Mazloomi-Rezvani, Mahsa; Salami-Kalajahi, Mehdi; Roghani-Mamaqani, Hossein
2018-06-01
Different core-shell nanoparticles with Au as core and stimuli-responsive polymers such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMAA), poly(N-isopropylacrylamide) (PNIPAAm), poly(N,N'-methylenebis(acrylamide)) (PMBA), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly((2-dimethylamino)ethyl methacrylate) (PDMAEMA) as shells were fabricated via inverse emulsion polymerization. Dynamic light scattering (DLS) was used to investigate particles sizes and particle size distributions and transmission electron microscopy (TEM) was applied to observe the core-shell structure of Au-polymer nanoparticles. Also, surface charge of all samples was studied by measurement of zeta potentials. Synthesized core-shell nanoparticles were utilized as nanocarriers of DOX as anti-cancer drug and drug release behaviors were investigated in dark room and under irradiation of near-infrared (NIR) light. Results showed that all core-shell samples have particle sizes less than 100 nm with narrow particle size distributions. Moreover, amount of drug loading decreased by increasing zeta potential. In dark room, lower pH resulted in higher cumulative drug release due to better solubility of DOX in acidic media. Also, NIR lighting on DOX-loaded samples led to increasing cumulative drug release significantly. However, DOX-loaded Au-PAA and Au-PMAA showed higher drug release at pH = 7.4 compared to 5.3 under NIR lighting. Copyright © 2018 Elsevier B.V. All rights reserved.
Brown, Philip J; Mannava, Sandeep; Seyler, Thorsten M; Plate, Johannes F; Van Sikes, Charles; Stitzel, Joel D; Lang, Jason E
2016-10-26
Femoral head core decompression is an efficacious joint-preserving procedure for treatment of early stage avascular necrosis. However, postoperative fractures have been described which may be related to the decompression technique used. Femoral head decompressions were performed on 12 matched human cadaveric femora comparing large 8mm single bore versus multiple 3mm small drilling techniques. Ultimate failure strength of the femora was tested using a servo-hydraulic material testing system. Ultimate load to failure was compared between the different decompression techniques using two paired ANCOVA linear regression models. Prior to biomechanical testing and after the intervention, volumetric bone mineral density was determined using quantitative computed tomography to account for variation between cadaveric samples and to assess the amount of bone disruption by the core decompression. Core decompression, using the small diameter bore and multiple drilling technique, withstood significantly greater load prior to failure compared with the single large bore technique after adjustment for bone mineral density (p< 0.05). The 8mm single bore technique removed a significantly larger volume of bone compared to the 3mm multiple drilling technique (p< 0.001). However, total fracture energy was similar between the two core decompression techniques. When considering core decompression for the treatment of early stage avascular necrosis, the multiple small bore technique removed less bone volume, thereby potentially leading to higher load to failure.
NASA Astrophysics Data System (ADS)
Nikulin, S.; Nikitin, A.; Belov, V.; Rozhnov, A.; Turilina, V.; Anikeenko, V.; Khatkevich, V.
2017-07-01
The crack resistances as well as fracture behavior of 20GL steel quenched with a fast-moving water stream and having gradient microstructure and strength are analyzed. Crack resistance tests with quenched and normalized flat rectangular specimens having different cut lengths loaded by three-point bending with acoustic emission measurements have been performed. The critical J-integral has been used as the crack resistance parameter of the material. Quenching with a fast moving water stream leads to gradient (along a specimen wall thickness) strengthening of steel due to highly refined gradient microstructure formation of the troostomartensite type. Quenching with a fast-moving water stream increases crack resistance Jc , of 20GL steel by a factor of ∼ 1.5. The fracture accrues gradually with the load in the normalized specimens while the initiated crack is hindered in the variable ductility layer and further arrested in the more ductile core in the quenched specimens.
Chen, Augustine; Kao, Y. F.; Brown, Chris M.
2005-01-01
The human hepatitis B virus (HBV) has a compact genome encoding four major overlapping coding regions: the core, polymerase, surface and X. The polymerase initiation codon is preceded by the partially overlapping core and four or more upstream initiation codons. There is evidence that several mechanisms are used to enable the synthesis of the polymerase protein, including leaky scanning and ribosome reinitiation. We have examined the first AUG in the pregenomic RNA, it precedes that of the core. It initiates an uncharacterized short upstream open reading frame (uORF), highly conserved in all HBV subtypes, we designated the C0 ORF. This arrangement suggested that expression of the core and polymerase may be affected by this uORF. Initiation at the C0 ORF was confirmed in reporter constructs in transfected cells. The C0 ORF had an inhibitory role in downstream expression from the core initiation site in HepG2 cells and in vitro, but also stimulated reinitiation at the polymerase start when in an optimal context. Our results indicate that the C0 ORF is a determinant in balancing the synthesis of the core and polymerase proteins. PMID:15731337
Reed, Casey A; Ford, Kevin R; Myer, Gregory D; Hewett, Timothy E
2012-08-01
Core stability training, operationally defined as training focused to improve trunk and hip control, is an integral part of athletic development, yet little is known about its direct relation to athletic performance. This systematic review focuses on identification of the association between core stability and sports-related performance measures. A secondary objective was to identify difficulties encountered when trying to train core stability with the goal of improving athletic performance. A systematic search was employed to capture all articles related to athletic performance and core stability training that were identified using the electronic databases MEDLINE, CINAHL and SPORTDiscus™ (1982-June 2011). A systematic approach was used to evaluate 179 articles identified for initial review. Studies that performed an intervention targeted toward the core and measured an outcome related to athletic or sport performances were included, while studies with a participant population aged 65 years or older were excluded. Twenty-four in total met the inclusionary criteria for review. Studies were evaluated using the Physical Therapy Evidence Database (PEDro) scale. The 24 articles were separated into three groups, general performance (n = 8), lower extremity (n = 10) and upper extremity (n = 6), for ease of discussion. In the majority of studies, core stability training was utilized in conjunction with more comprehensive exercise programmes. As such, many studies saw improvements in skills of general strengths such as maximum squat load and vertical leap. Surprisingly, not all studies reported measurable increases in specific core strength and stability measures following training. Additionally, investigations that targeted the core as the primary goal for improved outcome of training had mixed results. Core stability is rarely the sole component of an athletic development programme, making it difficult to directly isolate its affect on athletic performance. The population biases of some studies of athletic performance also confound the results. Targeted core stability training provides marginal benefits to athletic performance. Conflicting findings and the lack of a standardization for measurement of outcomes and training focused to improve core strength and stability pose difficulties. Because of this, further research targeted to determine this relationship is necessary to better understand how core strength and stability affect athletic performance.
Microbial synthesis of core/shell gold/palladium nanoparticles for applications in green chemistry
Deplanche, Kevin; Merroun, Mohamed L.; Casadesus, Merixtell; Tran, Dung T.; Mikheenko, Iryna P.; Bennett, James A.; Zhu, Ju; Jones, Ian P.; Attard, Gary A.; Wood, J.; Selenska-Pobell, Sonja; Macaskie, Lynne E.
2012-01-01
We report a novel biochemical method based on the sacrificial hydrogen strategy to synthesize bimetallic gold (Au)–palladium (Pd) nanoparticles (NPs) with a core/shell configuration. The ability of Escherichia coli cells supplied with H2 as electron donor to rapidly precipitate Pd(II) ions from solution is used to promote the reduction of soluble Au(III). Pre-coating cells with Pd(0) (bioPd) dramatically accelerated Au(III) reduction, with the Au(III) reduction rate being dependent upon the initial Pd loading by mass on the cells. Following Au(III) addition, the bioPd–Au(III) mixture rapidly turned purple, indicating the formation of colloidal gold. Mapping of bio-NPs by energy dispersive X-ray microanalysis suggested Au-dense core regions and peripheral Pd but only Au was detected by X-ray diffraction (XRD) analysis. However, surface analysis of cleaned NPs by cyclic voltammetry revealed large Pd surface sites, suggesting, since XRD shows no crystalline Pd component, that layers of Pd atoms surround Au NPs. Characterization of the bimetallic particles using X-ray absorption spectroscopy confirmed the existence of Au-rich core and Pd-rich shell type bimetallic biogenic NPs. These showed comparable catalytic activity to chemical counterparts with respect to the oxidation of benzyl alcohol, in air, and at a low temperature (90°C). PMID:22399790
A feasibility study of reactor-based deep-burn concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, T. K.; Taiwo, T. A.; Hill, R. N.
2005-09-16
A systematic assessment of the General Atomics (GA) proposed Deep-Burn concept based on the Modular Helium-Cooled Reactor design (DB-MHR) has been performed. Preliminary benchmarking of deterministic physics codes was done by comparing code results to those from MONTEBURNS (MCNP-ORIGEN) calculations. Detailed fuel cycle analyses were performed in order to provide an independent evaluation of the physics and transmutation performance of the one-pass and two-pass concepts. Key performance parameters such as transuranic consumption, reactor performance, and spent fuel characteristics were analyzed. This effort has been undertaken in close collaborations with the General Atomics design team and Brookhaven National Laboratory evaluation team.more » The study was performed primarily for a 600 MWt reference DB-MHR design having a power density of 4.7 MW/m{sup 3}. Based on parametric and sensitivity study, it was determined that the maximum burnup (TRU consumption) can be obtained using optimum values of 200 {micro}m and 20% for the fuel kernel diameter and fuel packing fraction, respectively. These values were retained for most of the one-pass and two-pass design calculations; variation to the packing fraction was necessary for the second stage of the two-pass concept. Using a four-batch fuel management scheme for the one-pass DB-MHR core, it was possible to obtain a TRU consumption of 58% and a cycle length of 286 EFPD. By increasing the core power to 800 MWt and the power density to 6.2 MW/m{sup 3}, it was possible to increase the TRU consumption to 60%, although the cycle length decreased by {approx}64 days. The higher TRU consumption (burnup) is due to the reduction of the in-core decay of fissile Pu-241 to Am-241 relative to fission, arising from the higher power density (specific power), which made the fuel more reactivity over time. It was also found that the TRU consumption can be improved by utilizing axial fuel shuffling or by operating with lower material temperatures (colder core). Results also showed that the transmutation performance of the one-pass deep-burn concept is sensitive to the initial TRU vector, primarily because longer cooling time reduces the fissile content (Pu-241 specifically.) With a cooling time of 5 years, the TRU consumption increases to 67%, while conversely, with 20-year cooling the TRU consumption is about 58%. For the two-pass DB-MHR (TRU recycling option), a fuel packing fraction of about 30% is required in the second pass (the recycled TRU). It was found that using a heterogeneous core (homogeneous fuel element) concept, the TRU consumption is dependent on the cooling interval before the 2nd pass, again due to Pu-241 decay during the time lag between the first pass fuel discharge and the second pass fuel charge. With a cooling interval of 7 years (5 and 2 years before and after reprocessing) a TRU consumption of 55% is obtained. With an assumed ''no cooling'' interval, the TRU consumption is 63%. By using a cylindrical core to reduce neutron leakage, TRU consumption of the case with 7-year cooling interval increases to 58%. For a two-pass concept using a heterogeneous fuel element (and homogeneous core) with first and second pass volume ratio of 2:1, the TRU consumption is 62.4%. Finally, the repository loading benefits arising from the deep-burn and Inert Matrix Fuel (IMF) concepts were estimated and compared, for the same initial TRU vector. The DB-MHR concept resulted in slightly higher TRU consumption and repository loading benefit compared to the IMF concept (58.1% versus 55.1% for TRU consumption and 2.0 versus 1.6 for estimated repository loading benefit).« less
A Study of the Efficiency of High-strength, Steel, Cellular-core Sandwich Plates in Compression
NASA Technical Reports Server (NTRS)
Johnson, Aldie E , Jr; Semonian, Joseph W
1956-01-01
Structural efficiency curves are presented for high-strength, stainless-steel, cellular-core sandwich plates of various proportions subjected to compressive end loads for temperatures of 80 F and 600 F. Optimum proportions of sandwich plates for any value of the compressive loading intensity can be determined from the curves. The efficiency of steel sandwich plates of optimum proportions is compared with the efficiency of solid plates of high-strength steel and aluminum and titanium alloys at the two temperatures.
Wan, Xuejuan; Liu, Tao; Liu, Shiyong
2011-04-11
We report on the facile synthesis of well-defined amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization (ROP) directly initiating from cyclic precursors, their self-assembling behavior in aqueous solution, and the application of micellar assemblies as controlled release drug nanocarriers. Starting from a trifunctional core molecule containing alkynyl, hydroxyl, and bromine moieties, alkynyl-(OH)-Br, macrocyclic poly(N-isopropylacrylamide) (c-PNIPAM) bearing a single hydroxyl functionality was prepared by atom transfer radical polymerization (ATRP), the subsequent end group transformation into azide functionality, and finally the intramacromolecular ring closure reaction via click chemistry. The target amphiphilic tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, was then synthesized via the ROP of ε-caprolactone (CL) by directly initiating from the cyclic precursor. In aqueous solution at 20 °C, (c-PNIPAM)-b-PCL self-assembles into spherical micelles consisting of hydrophobic PCL cores and well-solvated coronas of cyclic PNIPAM segments. For comparison, linear diblock copolymer with comparable molecular weight and composition, (l-PNIPAM)-b-PCL, was also synthesized. It was found that the thermoresponsive coronas of micelles self-assembled from (c-PNIPAM)-b-PCL exhibit thermoinduced collapse and aggregation at a lower critical thermal phase transition temperature (T(c)) compared with those of (l-PNIPAM)-b-PCL. Temperature-dependent drug release profiles from the two types of micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL loaded with doxorubicin (Dox) were measured, and the underlying mechanism for the observed difference in releasing properties was proposed. Moreover, MTT assays revealed that micelles of (c-PNIPAM)-b-PCL are almost noncytotoxic up to a concentration of 1.0 g/L, whereas at the same polymer concentration, micelles loaded with Dox lead to ∼60% cell death. Overall, chain topologies of thermoresponsive block copolymers, that is, (c-PNIPAM)-b-PCL versus (l-PNIPAM)-b-PCL, play considerable effects on the self-assembling and thermal phase transition properties and their functions as controlled release drug nanocarriers.
1990-08-01
transformer core, such as loose or fractured core laminations . A sound level meter with an A- weighting frequency network was used for the...loaded on flatbed trucks as shown in Figure 2 and permanently installed at various sites throughout the Pearl Harbor complex. Figure 3 shows the final
Influence of peak oral temperatures on veneer–core interface stress state
Marrelli, Massimo; Pujia, Antonella; Apicella, Davide; Sansalone, Salvatore; Tatullo, Marco
2015-01-01
Abstract Objective: There is a growing interest for the use of Y-TZP zirconia as core material in veneered all-ceramic prostheses. The objective of this study was to evaluate the influence of CET on the stress distribution of a porcelain layered to zirconia core single crowns by finite elements analysis. Material and methods: CET of eight different porcelains was considered during the analysis. Results: Results of this study indicated that the mismatch in CET between the veneering porcelain and the Y-TZP zirconia core has to be minimum (0.5–1 μm/mK) so as to decrease the growing of residual stresses which could bring chipping. Conclusions: The stress state due to temperature variation should be carefully taken into consideration while studying the effect of mechanical load on zirconia core crown by FEA. The interfacial stress state can be increased by temperature variation up to 20% with respect to the relative failure parameter (interface strength in this case). This means that stress due to mechanical load combined to temperature variation-induced stress can lead porcelain veneer–zirconia core interfaces to failure. PMID:28642897
Optimizing performance by improving core stability and core strength.
Hibbs, Angela E; Thompson, Kevin G; French, Duncan; Wrigley, Allan; Spears, Iain
2008-01-01
Core stability and core strength have been subject to research since the early 1980s. Research has highlighted benefits of training these processes for people with back pain and for carrying out everyday activities. However, less research has been performed on the benefits of core training for elite athletes and how this training should be carried out to optimize sporting performance. Many elite athletes undertake core stability and core strength training as part of their training programme, despite contradictory findings and conclusions as to their efficacy. This is mainly due to the lack of a gold standard method for measuring core stability and strength when performing everyday tasks and sporting movements. A further confounding factor is that because of the differing demands on the core musculature during everyday activities (low load, slow movements) and sporting activities (high load, resisted, dynamic movements), research performed in the rehabilitation sector cannot be applied to the sporting environment and, subsequently, data regarding core training programmes and their effectiveness on sporting performance are lacking. There are many articles in the literature that promote core training programmes and exercises for performance enhancement without providing a strong scientific rationale of their effectiveness, especially in the sporting sector. In the rehabilitation sector, improvements in lower back injuries have been reported by improving core stability. Few studies have observed any performance enhancement in sporting activities despite observing improvements in core stability and core strength following a core training programme. A clearer understanding of the roles that specific muscles have during core stability and core strength exercises would enable more functional training programmes to be implemented, which may result in a more effective transfer of these skills to actual sporting activities.
Zhao, Peiqi; Wang, Hanjie; Yu, Man; Liao, Zhenyu; Wang, Xianhuo; Zhang, Fei; Ji, Wei; Wu, Bing; Han, Jinghua; Zhang, Haichang; Wang, Huaqing; Chang, Jin; Niu, Ruifang
2012-06-01
A functional drug carrier comprised of folic acid modified lipid-shell and polymer-core nanoparticles (FLPNPs) including poly(D,L-lactide-co-glycolide) (PLGA) core, PEGylated octadecyl-quaternized lysine modified chitosan (PEG-OQLCS) as lipid-shell, folic acid as targeting ligand and cholesterol was prepared and evaluated for targeted delivery of paclitaxel (PTX). Confocal microscopy analysis confirmed the coating of the lipid-shell on the polymer-core. Physicochemical characterizations of FLPNPs, such as particle size, zeta potential, morphology, encapsulation efficiency, and in vitro PTX release, were also evaluated. The internalization efficiency and targeting ability of FLPNPs were demonstrated by flow cytometry and confocal microscopy. PTX loaded FLPNPs showed a significantly higher cytotoxicity than the commercial PTX formulation (Taxol®). The intravenous administration of PTX encapsulated FLPNPs led to tumor regression and improvement of animal survival in a murine model, compared with that observed with Taxol® and biodistribution study showed that PTX concentration in tumor for PTX encapsulated FLPNPs was higher than other PTX formulations. Our data indicate that PTX loaded FLPNPs are a promising nano-sized drug formulation for cancer therapy. Copyright © 2012 Elsevier B.V. All rights reserved.
Effect of framework design on crown failure.
Bonfante, Estevam A; da Silva, Nelson R F A; Coelho, Paulo G; Bayardo-González, Daniel E; Thompson, Van P; Bonfante, Gerson
2009-04-01
This study evaluated the effect of core-design modification on the characteristic strength and failure modes of glass-infiltrated alumina (In-Ceram) (ICA) compared with porcelain fused to metal (PFM). Premolar crowns of a standard design (PFMs and ICAs) or with a modified framework design (PFMm and ICAm) were fabricated, cemented on dies, and loaded until failure. The crowns were loaded at 0.5 mm min(-1) using a 6.25 mm tungsten-carbide ball at the central fossa. Fracture load values were recorded and fracture analysis of representative samples were evaluated using scanning electron microscopy. Probability Weibull curves with two-sided 90% confidence limits were calculated for each group and a contour plot of the characteristic strength was obtained. Design modification showed an increase in the characteristic strength of the PFMm and ICAm groups, with PFM groups showing higher characteristic strength than ICA groups. The PFMm group showed the highest characteristic strength among all groups. Fracture modes of PFMs and of PFMm frequently reached the core interface at the lingual cusp, whereas ICA exhibited bulk fracture through the alumina core. Core-design modification significantly improved the characteristic strength for PFM and for ICA. The PFM groups demonstrated higher characteristic strength than both ICA groups combined.
Zhao, Yongli; Chen, Zhendong; Zhang, Jie; Wang, Xinbo
2016-07-25
Driven by the forthcoming of 5G mobile communications, the all-IP architecture of mobile core networks, i.e. evolved packet core (EPC) proposed by 3GPP, has been greatly challenged by the users' demands for higher data rate and more reliable end-to-end connection, as well as operators' demands for low operational cost. These challenges can be potentially met by software defined optical networking (SDON), which enables dynamic resource allocation according to the users' requirement. In this article, a novel network architecture for mobile core network is proposed based on SDON. A software defined network (SDN) controller is designed to realize the coordinated control over different entities in EPC networks. We analyze the requirement of EPC-lightpath (EPCL) in data plane and propose an optical switch load balancing (OSLB) algorithm for resource allocation in optical layer. The procedure of establishment and adjustment of EPCLs is demonstrated on a SDON-based EPC testbed with extended OpenFlow protocol. We also evaluate the OSLB algorithm through simulation in terms of bandwidth blocking ratio, traffic load distribution, and resource utilization ratio compared with link-based load balancing (LLB) and MinHops algorithms.
Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.
1960-03-22
An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.
From structure to mechanism-understanding initiation of DNA replication.
Riera, Alberto; Barbon, Marta; Noguchi, Yasunori; Reuter, L Maximilian; Schneider, Sarah; Speck, Christian
2017-06-01
DNA replication results in the doubling of the genome prior to cell division. This process requires the assembly of 50 or more protein factors into a replication fork. Here, we review recent structural and biochemical insights that start to explain how specific proteins recognize DNA replication origins, load the replicative helicase on DNA, unwind DNA, synthesize new DNA strands, and reassemble chromatin. We focus on the minichromosome maintenance (MCM2-7) proteins, which form the core of the eukaryotic replication fork, as this complex undergoes major structural rearrangements in order to engage with DNA, regulate its DNA-unwinding activity, and maintain genome stability. © 2017 Riera et al.; Published by Cold Spring Harbor Laboratory Press.
Station blackout calculations for Browns Ferry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ott, L.J.; Weber, C.F.; Hyman, C.R.
1985-01-01
This paper presents the results of calculations performed with the ORNL SASA code suite for the Station Blackout Severe Accident Sequence at Browns Ferry. The accident is initiated by a loss of offsite power combined with failure of all onsite emergency diesel generators to start and load. The Station Blackout is assumed to persist beyond the point of battery exhaustion (at six hours) and without DC power, cooling water could no longer be injected into the reactor vessel. Calculations are continued through the period of core degradation and melting, reactor vessel failure, and the subsequent containment failure. An estimate ofmore » the magnitude and timing of the concomitant fission product releases is also provided.« less
Salvioni, Lucia; Fiandra, Luisa; Del Curto, Maria Dorly; Mazzucchelli, Serena; Allevi, Raffaele; Truffi, Marta; Sorrentino, Luca; Santini, Benedetta; Cerea, Matteo; Palugan, Luca; Corsi, Fabio; Colombo, Miriam
2016-08-01
In this study, insulin-containing nanoparticles were loaded into pellet cores and orally administered to diabetic rats. Polyethylene imine-based nanoparticles, either placebo or loaded with insulin, were incorporated by extrusion and spheronization technology into cores that were subsequently coated with three overlapping layers and a gastroresistant film. The starting and coated systems were evaluated in vitro for their physico-technololgical characteristics, as well as disintegration and release performance. Nanoparticles-loaded cores showed homogeneous particle size distribution and shape. When a superdisintegrant and a soluble diluent were included in the composition enhanced disintegration and release performance were observed. The selected formulations, coated either with enteric or three-layer films, showed gastroresistant and release delayed behavior in vitro, respectively. The most promising formulations were finally tested for their hypoglycemic effect in diabetic rats. Only the nanoformulations loaded into the three-layer pellets were able to induce a significant hypoglycemic activity in diabetic rats. Our results suggest that this efficient activity could be attributed to a retarded release of insulin into the distal intestine, characterized by relatively low proteolytic activity and optimal absorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hadziyannis, Emilia; Minopetrou, Martha; Georgiou, Anastasia; Spanou, Fotini; Koskinas, John
2013-01-01
Background Hepatitis C viral (HCV) load detection and quantification is routinely accomplished by HCV RNA measurement, an expensive but essential test, both for the diagnosis and treatment of chronic hepatitis C (CHC). HCV core antigen (Ag) testing has been suggested as an attractive alternative to molecular diagnostics. The aim of the study was to evaluate an automated chemiluminescent immunoassay (CLIA) for HCV core Ag measurement in comparison to quantitative HCV RNA determination. Methods HCV Ag was measured in 105 anti-HCV positive patients, from which 89 were HCV RNA positive with CHC and 16 HCV RNA negative after spontaneous HCV clearance. Viral load was quantified with branched DNA (bDNA, Versant, Siemens). Sera were stored at -70°C and then tested with the Architect HCV Ag test (Abbott Laboratories), a two-step CLIA assay, with high throughput and minimal handling of the specimens. Statistical analysis was performed on logarithmically transformed values. Results HCV-Ag was detectable and quantifiable in 83/89 and in grey zone in 4/89 HCV RNA positive sera. HCV-Ag was undetectable in all 16 HCV RNA negative samples. The sample with the lowest viral load that tested positive for HCV-Ag contained 1200 IU/mL HCV RNA. There was a positive correlation between HCV RNA and HCV-Ag (r=0.89). The HCV RNA/ HCV Ag ratio varied from 1.5 to 3.25. Conclusion The HCV core Ag is an easy test with comparable sensitivity (>90%) and satisfactory correlation with the HCV RNA bDNA assay. Its role in diagnostics and other clinical applications has to be determined based on cost effectiveness. PMID:24714621
Formulation of long-wavelength indocyanine green nanocarriers.
Pansare, Vikram J; Faenza, William J; Lu, Hoang; Adamson, Douglas H; Prud'homme, Robert K
2017-09-01
Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICG-tetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 1∶1 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
NASA Astrophysics Data System (ADS)
Ronhovde, Cicily J.; Baer, John; Larsen, Sarah C.
2017-06-01
Mesoporous silica nanoparticles (MSNs) have a network of pores that give rise to extremely high specific surface areas, making them attractive materials for applications such as adsorption and drug delivery. The pore topology can be readily tuned to achieve a variety of structures such as the hexagonally ordered Mobil Crystalline Material 41 (MCM-41) and the disordered "wormhole" (WO) mesoporous silica (MS) structure. In this work, the effects of pore topology and iron oxide core on doxorubicin loading and release were investigated using MSNs with pore diameters of approximately 3 nm and sub-100 nm particle diameters. The nanoparticles were loaded with doxorubicin, and the drug release into phosphate-buffered saline (PBS, 10 mM, pH 7.4) at 37 °C was monitored by fluorescence spectroscopy. The release profiles were fit using the Peppas model. The results indicated diffusion-controlled release for all samples. Statistically significant differences were observed in the kinetic host-guest parameters for each sample due to the different pore topologies and the inclusion of an iron oxide core. Applying a static magnetic field to the iron oxide core WO-MS shell materials did not have a significant impact on the doxorubicin release. This is the first time that the effects of pore topology and iron oxide core have been isolated from pore diameter and particle size for these materials.
Formulation of long-wavelength indocyanine green nanocarriers
NASA Astrophysics Data System (ADS)
Pansare, Vikram J.; Faenza, William J.; Lu, Hoang; Adamson, Douglas H.; Prud'homme, Robert K.
2017-09-01
Indocyanine green (ICG), a Food and Drug Administration (FDA)-approved fluorophore with excitation and emission wavelengths inside the "optical imaging window," has been incorporated into nanocarriers (NCs) to achieve enhanced circulation time, targeting, and real-time tracking in vivo. While previous studies transferred ICG exogenously into NCs, here, a one-step rapid precipitation process [flash nanoprecipitation (FNP)] creates ICG-loaded NCs with tunable, narrow size distributions from 30 to 180 nm. A hydrophobic ion pair of ICG-tetraoctylammonium or tetradodecylammonium chloride is formed either in situ during FNP or preformed then introduced into the FNP feed stream. The NCs are formulated with cores comprising either vitamin E (VE) or polystyrene (PS). ICG core loadings of 30 wt. % for VE and 10 wt. % for PS are achieved. However, due to a combination of molecular aggregation and Förster quenching, maximum fluorescence (FL) occurs at 10 wt. % core loading. The FL-per-particle scales with core diameter to the third power, showing that FNP enables uniform volume encapsulation. By varying the ICG counter-ion ratio, encapsulation efficiencies above 80% are achieved even in the absence of ion pairing, which rises to 100% with 1∶1 ion pairing. Finally, while ICG ion pairs are shown to be stable in buffer, they partition out of NC cores in under 30 min in the presence of physiological albumin concentrations.
Grinding efficiency of abutment tooth with both dentin and core composite resin on axial plane.
Miho, Otoaki; Sato, Toru; Matsukubo, Takashi
2015-01-01
The purpose of this study was to evaluate grinding efficiency in abutment teeth comprising both dentin and core composite resin in the axial plane. Grinding was performed over 5 runs at two loads (0.5 or 0.25 N) and two feed rates (1 or 2 mm/sec). The grinding surface was observed with a 3-D laser microscope. Tomographic images of the grinding surfaces captured perpendicular to the feed direction were also analyzed. Using a non-ground surface as a reference, areas comprising only dentin, both dentin and core composite resin, or only core composite resin were analyzed to determine the angle of the grinding surface. Composite resins were subjected to the Vickers hardness test and scanning electron microscopy. Data were statistically analyzed using a one-way analysis of variance and multiple comparison tests. Multiple regression analysis was performed for load, feed rate, and Vickers hardness of the build-up material depending on number of runs. When grinding was performed at a constant load and feed rate, a greater grinding angle was observed in areas comprising both dentin and composite resin or only composite resin than in areas consisting of dentin alone. A correlation was found between machinability and load or feed rate in areas comprising both dentin and composite resin or composite resin alone, with a particularly high correlation being observed between machinability and load. These results suggest that great caution should be exercised in a clinical setting when the boundary between the dentin and composite resin is to be ground, as the angle of the grinding surface changes when the rotating diamond point begins grinding the composite resin.
NASA Astrophysics Data System (ADS)
Yuan, Conghui; Xu, Yiting; Luo, Weiang; Zeng, Birong; Qiu, Wuhui; Liu, Jie; Huang, Huiling; Dai, Lizong
2012-05-01
Core-shell nanospheres (CSNSs) with hydrophobic cores and hydrophilic shells were fabricated via a simple mini-emulsion polymerization for the stabilization of platinum nanoparticles (Pt-NPs). The CSNSs showed extremely high loading capacity of Pt-NPs (the largest loading amount of the Pt-NPs was about 49.2 wt%). Importantly, the Pt-NPs/CSNSs nanocomposites had unexpected stability in aqueous solution. DLS results revealed that the CSNSs loaded with Pt-NPs exhibited almost no aggregation after standing for a long time . However, the Pt-NPs immobilized on the CSNSs were not straitlaced: they could transport and redistribute between CSNSs freely when the environmental temperature was higher than the melting point of the CSNS shell. Owing to their excellent stability in aqueous solution, the surface of the Pt-NPs/CSNSs nanocomposites could be further decorated easily. For example, polyaniline (PANI)-coated Pt-NPs/CSNSs, nickel (Ni)-coated Pt-NPs/CSNSs and PANI/Pt-NPs dual-layer hollow nanospheres were facilely fabricated from the Pt-NPs/CSNS nanocomposites.
Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Dexter, Benson H.
1996-01-01
A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.
Modular container assembled from fiber reinforced thermoplastic sandwich panels
Donnelly, Mathew William; Kasoff, William Andrew; Mcculloch, Patrick Carl; Williams, Frederick Truman
2007-12-25
An improved, load bearing, modular design container structure assembled from thermoformed FRTP sandwich panels in which is utilized the unique core-skin edge configuration of the present invention in consideration of improved load bearing performance, improved useful load volume, reduced manufacturing costs, structural weight savings, impact and damage tolerance and repair and replace issues.
PDRD (SR13046) TRITIUM PRODUCTION FINAL REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.; Sheetz, S.
Utilizing the results of Texas A&M University (TAMU) senior design projects on tritium production in four different small modular reactors (SMR), the Savannah River National Laboratory’s (SRNL) developed an optimization model evaluating tritium production versus uranium utilization under a FY2013 plant directed research development (PDRD) project. The model is a tool that can evaluate varying scenarios and various reactor designs to maximize the production of tritium per unit of unobligated United States (US) origin uranium that is in limited supply. The primary module in the model compares the consumption of uranium for various production reactors against the base case ofmore » Watts Bar I running a nominal load of 1,696 tritium producing burnable absorber rods (TPBARs) with an average refueling of 41,000 kg low enriched uranium (LEU) on an 18 month cycle. After inputting an initial year, starting inventory of unobligated uranium and tritium production forecast, the model will compare and contrast the depletion rate of the LEU between the entered alternatives. This is an annual tritium production rate of approximately 0.059 grams of tritium per kilogram of LEU (g-T/kg-LEU). To date, the Nuclear Regulatory Commission (NRC) license has not been amended to accept a full load of TPBARs so the nominal tritium production has not yet been achieved. The alternatives currently loaded into the model include the three light water SMRs evaluated in TAMU senior projects including, mPower, Holtec and NuScale designs. Initial evaluations of tritium production in light water reactor (LWR) based SMRs using optimized loads TPBARs is on the order 0.02-0.06 grams of tritium per kilogram of LEU used. The TAMU students also chose to model tritium production in the GE-Hitachi SPRISM, a pooltype sodium fast reactor (SFR) utilizing a modified TPBAR type target. The team was unable to complete their project so no data is available. In order to include results from a fast reactor, the SRNL Technical Advisory Committee (TAC) ran a Monte Carlo N-Particle (MCNP) model of a basic SFR for comparison. A 600MWth core surrounded by a lithium blanket produced approximately 1,000 grams of tritium annually with a 13% enriched, 6 year core. This is similar results to a mid-1990’s study where the Fast Flux Test Facility (FFTF), a 400 MWth reactor at the Idaho National Laboratory (INL), could produce about 1,000 grams with an external lithium target. Normalized to the LWRs values, comparative tritium production for an SFR could be approximately 0.31 g-T/kg LEU.« less
Dissecting transcription-coupled and global genomic repair in the chromatin of yeast GAL1-10 genes.
Li, Shisheng; Smerdon, Michael J
2004-04-02
Transcription-coupled repair (TCR) and global genomic repair (GGR) of UV-induced cyclobutane pyrimidine dimers were investigated in the yeast GAL1-10 genes. Both Rpb9- and Rad26-mediated TCR are confined to the transcribed strands, initiating at upstream sites approximately 100 nucleotides from the upstream activating sequence shared by the two genes. However, TCR initiation sites do not correlate with either transcription start sites or TATA boxes. Rad16-mediated GGR tightly correlates with nucleosome positioning when the genes are repressed and are slow in the nucleosome core and fast in linker DNA. Induction of transcription enhanced GGR in nucleosome core DNA, especially in the nucleosomes around and upstream of the transcription start sites. Furthermore, when the genes were induced, GGR was slower in the transcribed regions than in the upstream regions. Finally, simultaneous deletion of RAD16, RAD26, and RPB9 resulted in no detectable repair in all sites along the region analyzed. Our results suggest that (a). TCR may be initiated by a transcription activator, presumably through the loading of RNA polymerase II, rather than by transcription initiation or elongation per se; (b). TCR and nucleosome disruption-enhanced GGR are the major causes of rapid repair in regions around and upstream of transcription start sites; (c). transcription machinery may hinder access of NER factors to a DNA lesion in the absence of a transcription-repair coupling factor; and (d). other than GGR mediated by Rad16 and TCR mediated by Rad26 and Rpb9, no other nucleotide excision repair pathway exists in these RNA polymerase II-transcribed genes.
Improved method for measuring water imbibition rates on low-permeability porous media
Humphrey, M.D.; Istok, J.D.; Flint, L.E.; Flint, A.L.
1996-01-01
Existing methods for measuring water imbibition rates are inadequate when imbibition rates are small (e.g., clay soils and many igneous rocks). We developed an improved laboratory method for performing imbibition measurements on soil or rock cores with a wide range of hydraulic properties. Core specimens are suspended from an electronic strain gauge (load cell) in a closed chamber while maintaining the lower end of the core in contact with a free water surface in a constant water level reservoir. The upper end of the core is open to the atmosphere. During imbibition, mass increase of the core is recorded continuously by a datalogger that converts the load cell voltage signal into mass units using a calibration curve. Computer automation allows imbibition rate measurement on as many as eight cores simultaneously and independently. Performance of each component of the imbibition apparatus was evaluated using a set of rock cores (2.5 cm in diameter and 2-5 cm in length) from a single lithostratigraphic unit composed of non-to-moderately welded ash-flow tuff (a glass-rich pyroclastic rock partially fused by heat and pressure) with porosities ranging from 0.094 to 0.533 m3 m-3. Reproducibility of sample handling and testing procedures was demonstrated using replicate measurements. Precision and accuracy of load cell measurements were assessed using mass balance calculations and indicated agreement within a few tenths of a percent of total mass. Computed values of sorptivity, S, ranged from 8.83 x 10-6 to 4.55 x 10-4 m s-0.5. The developed method should prove useful for measuring imbibition rates on a wide range of porous materials.
Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming
2015-01-01
The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, M.; National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973; Shukla, V.
Elastic and plastic strain evolution under four-point bending has been studied by synchrotron energy dispersive x-ray diffraction. Measured strain profiles across the specimen thickness showed an increasing linear elastic strain gradient under increasing four-point bending load up to approx2 kN. The bulk elastic modulus of Ti-6Al-4V was determined as 118 GPa. The onset of plastic deformation was found to set in at a total in-plane strain of approx0.008, both under tension and compression. Plastic deformation under bending is initiated in the vicinity of the surface and at a stress of 1100 MPa, and propagates inward, while a finite core regionmore » remains elastically deformed up to 3.67 kN loading. The onset of the plastic regime and the plastic regime itself has been verified by monitoring the line broadening of the (100) peak of alpha-Ti. The effective compression/tension stress-strain curve has been obtained from the scaling collapse of strain profile data taken at seven external load levels. A similar multiple load scaling collapse of the plastic strain variation has also been obtained. The level of precision in strain measurement reported herein was evaluated and found to be 1.5x10{sup -5} or better.« less
Petersen, Bailey A; Hastings, Bryce; Gottschall, Jinger S
2017-01-01
High load, low repetition resistance training increases BMD in untrained adults; however, many older and untrained adults cannot maintain this type of strenuous program. Our goal was to evaluate whether a low load, high repetition resistance training program would increase BMD in untrained adults. Twenty sedentary, but otherwise healthy, adults (6 men and 14 women, age 28-63 yrs) completed a 27-week group exercise program. The participants were randomly assigned to one of two strength groups: one group completed full body, low load, high repetition weight training classes (S-WEIGHT), while the other group completed core focused fusion classes (S-CORE). Both groups also completed indoor cycling classes for cardiovascular conditioning. After a 3-week familiarization period, all participants completed a 12-week block of 5 fitness classes per week (3 cycling + 2 strength) and concluded with another 12-week block of 6 classes per week (3 cycling + 3 strength). We completed iDXA scans at baseline (week 3) and final (week 28). Compared to baseline, BMD significantly increased for S-WEIGHT in the arms (+4%, P<0.001), legs (+8%, P<0.01), pelvis (+6%, P<0.01) and lumbar spine (+4%, P<0.05), whereas BMD did not significantly change for S-CORE at any site. These results suggest that a low load, high repetition resistance training program may be an effective method to improve bone mass in adults.
Code of Federal Regulations, 2011 CFR
2011-04-01
... initially determine and then adjust expected levels of performance for the core performance measures? 641... the core performance measures? (a) Initial agreement. Before the beginning of each Program Year, the Department and each grantee will undertake to agree upon expected levels of performance for each core...
Code of Federal Regulations, 2010 CFR
2010-04-01
... initially determine and then adjust expected levels of performance for the core performance measures? 641... the core performance measures? (a) Initial agreement. Before the beginning of each Program Year, the Department and each grantee will undertake to agree upon expected levels of performance for each core...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... Transformation Initiative (OneCPD TA and Core Curricula) AGENCY: Office of the Assistant Secretary for Community... Transformation Initiative (OneCPD TA and Core Curricula) program. This announcement contains the names of the... Capacity Building under the Transformation Initiative (OneCPD TA and Core Curricula) was designed to...
Wang, Yao; Ding, Xiali; Chen, Yuan; Guo, Mingquan; Zhang, Yan; Guo, Xiaokui; Gu, Hongchen
2016-09-01
Drug-resistant bacterial infections have become one of the most serious risks in public health as they make the conventional antibiotics less efficient. There is an urgent need for developing new generations of antibacterial agents in this field. In this work, a nanoplatform of LEVO-loaded and silver core-embedded mesoporous silica nanovehicles (Ag@MSNs@LEVO) is demonstrated as a synergistic antibacterial agent for the treatment of drug-resistant infections both in vitro and in vivo. The combination of the inner Ag core and the loaded antibiotic drug in mesopores endows the single-particle nanoplatform with a synergistic effect on killing the drug-resistant bacteria. The nanoplatform of Ag@MSNs@LEVO exhibits superior antibacterial activity to LEVO-loaded MSNs (MSNs@LEVO) and silver core-embedded MSNs (Ag@MSNs) in vitro. In the in vivo acute peritonitis model, the infected drug-resistant Escherichia coli GN102 in peritoneal cavity of the mice is reduced by nearly three orders of magnitude and the aberrant pathological feature of spleen and peritoneum disappears after treatment with Ag@MSNs@LEVO. Importantly, this nanopaltform renders no obvious toxic side effect to the mice during the tested time. There is no doubt that this study strongly indicates a promising potential of Ag@MSNs@LEVO as a synergistic and safety therapy tool for the clinical drug-resistant infections. Copyright © 2016 Elsevier Ltd. All rights reserved.
Eynali, Samira; Khoei, Samideh; Khoei, Sepideh; Esmaelbeygi, Elaheh
2016-10-04
The purpose of this study was to evaluate the combined effects of heat and poly lactic-co-glycolic acid (PLGA) nanoparticles, as 5-fluorouracil carriers with/without iron oxide core, on the viability and proliferation capacity of human colon cancer cell line HT-29 in the spheroid model. HT-29 spheroid cells were treated with different concentrations of 5-FU or 5-FU loaded into both nanoparticles for 74 h. Hyperthermia was then performed at 43°C for 60 min. Finally, the effects of the mentioned treatments on cell viability and proliferation capacity were evaluated using the trypan blue dye exclusion test and colony formation assay, respectively. Our results showed that hyperthermia, in combination with 5-FU or PLGA nanoparticles as 5-FU carriers, significantly enhanced the cytotoxic effects as compared to the control group. Considering that nanoparticles could increase the intracellular concentration of drugs in cancer cells, the extent of cytotoxic effects following treatment with 5-FU loaded into both nanoparticles was significantly higher than that with free 5-FU. In addition, the presence of iron oxide cores in nanoparticles during hyperthermia enhanced the cytotoxic effects of hyperthermia compared with nanoparticles without iron oxide core. Based on this study, hyperthermia in combination with 5-FU-loaded PLGA nanoparticles with iron oxide core drastically reduced the proliferation capacity of HT-29 cells; therefore, it may be considered a new direction in the treatment of colon cancer.
Geophysical Age Dating of Seamounts using Dense Core Flexure Model
NASA Astrophysics Data System (ADS)
Hwang, Gyuha; Kim, Seung-Sep
2016-04-01
Lithospheric flexure of oceanic plate is thermo-mechanical response of an elastic plate to the given volcanic construct (e.g., seamounts and ocean islands). If the shape and mass of such volcanic loads are known, the flexural response is governed by the thickness of elastic plate, Te. As the age of oceanic plate increases, the elastic thickness of oceanic lithosphere becomes thicker. Thus, we can relate Te with the age of plate at the time of loading. To estimate the amount of the driving force due to seamounts on elastic plate, one needs to approximate their density structure. The most common choice is uniform density model, which utilizes constant density value for a seamount. This approach simplifies computational processes for gravity prediction and error estimates. However, the uniform density model tends to overestimate the total mass of the seamount and hence produces more positive gravitational contributions from the load. Minimization of gravity misfits using uniform density, therefore, favors thinner Te in order to increase negative contributions from the lithospheric flexure, which can compensate for the excessive positives from the seamount. An alternative approach is dense core model, which approximate the heterogeneity nature of seamount density as three bodies of infill sediment, edifice, and dense core. In this study, we apply the dense core model to the Louisville Seamount Chain for constraining flexural deformation. We compare Te estimates with the loading time of the examined seamounts to redefine empirical geophysical age dating of seamounts.
Kim, Jong Oh; Sahay, Gaurav; Kabanov, Alexander V; Bronich, Tatiana K
2010-04-12
Novel functional polymeric nanocarriers with ionic cores containing biodegradable cross-links were developed for delivery of chemotherapeutic agents. Block ionomer complexes (BIC) of poly(ethylene oxide)-b-poly(methacylic acid) (PEO-b-PMA) and divalent metal cations (Ca(2+)) were utilized as templates. Disulfide bonds were introduced into the ionic cores by using cystamine as a biodegradable cross-linker. The resulting cross-linked micelles with disulfide bonds represented soft, hydrogel-like nanospheres and demonstrated a time-dependent degradation in the conditions mimicking the intracellular reducing environment. The ionic character of the cores allowed to achieve a very high level of doxorubicin (DOX) loading (50% w/w) into the cross-linked micelles. DOX-loaded degradable cross-linked micelles exhibited more potent cytotoxicity against human A2780 ovarian carcinoma cells as compared to micellar formulations without disulfide linkages. These novel biodegradable cross-linked micelles are expected to be attractive candidates for delivery of anticancer drugs.
An improved heat transfer configuration for a solid-core nuclear thermal rocket engine
NASA Technical Reports Server (NTRS)
Clark, John S.; Walton, James T.; Mcguire, Melissa L.
1992-01-01
Interrupted flow, impingement cooling, and axial power distribution are employed to enhance the heat-transfer configuration of a solid-core nuclear thermal rocket engine. Impingement cooling is introduced to increase the local heat-transfer coefficients between the reactor material and the coolants. Increased fuel loading is used at the inlet end of the reactor to enhance heat-transfer capability where the temperature differences are the greatest. A thermal-hydraulics computer program for an unfueled NERVA reactor core is employed to analyze the proposed configuration with attention given to uniform fuel loading, number of channels through the impingement wafers, fuel-element length, mass-flow rate, and wafer gap. The impingement wafer concept (IWC) is shown to have heat-transfer characteristics that are better than those of the NERVA-derived reactor at 2500 K. The IWC concept is argued to be an effective heat-transfer configuration for solid-core nuclear thermal rocket engines.
NASA Astrophysics Data System (ADS)
Wang, Peng; Zheng, Zhijun; Liao, Shenfei; Yu, Jilin
2018-02-01
The seemingly contradictory understandings of the initial crush stress of cellular materials under dynamic loadings exist in the literature, and a comprehensive analysis of this issue is carried out with using direct information of local stress and strain. Local stress/strain calculation methods are applied to determine the initial crush stresses and the strain rates at initial crush from a cell-based finite element model of irregular honeycomb under dynamic loadings. The initial crush stress under constant-velocity compression is identical to the quasi-static one, but less than the one under direct impact, i.e. the initial crush stresses under different dynamic loadings could be very different even though there is no strain-rate effect of matrix material. A power-law relation between the initial crush stress and the strain rate is explored to describe the strain-rate effect on the initial crush stress of irregular honeycomb when the local strain rate exceeds a critical value, below which there is no strain-rate effect of irregular honeycomb. Deformation mechanisms of the initial crush behavior under dynamic loadings are also explored. The deformation modes of the initial crush region in the front of plastic compaction wave are different under different dynamic loadings.
Innovative energy absorbing devices based on composite tubes
NASA Astrophysics Data System (ADS)
Tiwari, Chandrashekhar
Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and geometric nonlinearities that arise from large deformation and fiber reorientation. Developed non-linear analysis predicts the behavior of extension-twist coupled and angle ply flexible matrix composite tubes under multi-axial loadings. The predicted results show close correlation with experimental findings. It was also found that these devices exhibit variations with respect to rate of loading. It was found that the novel energy absorbing devices are capable of providing 4-5 times higher specific energy absorption (SEA) than currently used devices for similar purposes (such as wire bender which has SEA of 3.6 J/g).
Determinants of bovine thermal response to heat and solar radiation exposures in a field environment
NASA Astrophysics Data System (ADS)
Scharf, Brad; Leonard, Michael J.; Weaber, Robert L.; Mader, Terry L.; Hahn, G. Leroy; Spiers, Donald E.
2011-07-01
Continuous exposure of cattle to summer heat in the absence of shade results in significant hyperthermia and impairs growth and general health. Reliable predictors of heat strain are needed to identify this condition. A 12-day study was conducted during a moderate summer heat period using 12 Angus x Simmental ( Bos taurus) steers (533 ± 12 kg average body weight) to identify animal and ambient determinations of core body temperature ( T core) and respiration rate (RR) responses to heat stress. Steers were provided standard diet and water ad libitum, and implanted intraperitoneally with telemetric transmitters to monitor T core hourly. Visual count of flank movement at 0800 and 1500 hours was used for RR. Dataloggers recorded air temperature ( T a), and black globe temperatures ( T bg) hourly to assess radiant heat load. Analysis was across four periods and 2 consecutive days averaged within each period. Average T a and T bg increased progressively from 21.7 to 30.3°C and 25.3 to 34.0°C, respectively, from the first to fourth periods. A model utilizing a quadratic function of T a explained the most variation in T core ( R 2 = 0.56). A delay in response from 1 to 3 h did not significantly improve R 2 for this relationship. Measurements at 0800 and 1500 hours alone are sufficient to predict heat strain. Daily minimum core body temperature and initial 2-h rise in T a were predictors of maximum core temperature and RR. Further studies using continuous monitoring are needed to expand prediction of heat stress impact under different conditions.
Loss measurement and analysis for the prototype generator with HTS stator and permanent magnet rotor
NASA Astrophysics Data System (ADS)
Song, Peng; Qu, Timing; Yu, Xiaoyu; Li, Longnian; Gu, Chen; Li, Xiaohang; Wang, Dewen; Hu, Boping; Chen, Duxing; Han, Zhenghe
2013-11-01
A prototype HTS synchronous generator with a permanent magnet rotor and HTS armature windings was developed. The rated armature frequency is 10 Hz. The cryogenic Dewar is tightly surrounded outside the iron core. Both HTS coils and the iron core were cooled by using conduction cooling method. During the process of no-load running, the no-load loss power data were obtained through the torque measurement. The temperature evolution characteristics of the stator was measured by PT-100 temperature sensors. These results show that the no-load loss power at around 77 K are much larger than that at room temperature. The possible reason for the no-load loss increment is discussed. The ac loss power of one individual HTS coil used in this generator was also tested. Compared with the iron loss power, the ac loss power is rather small and could be neglected.
Hashimoto, Kohei; Shinkai, Nobuo; Tanaka, Toshiaki; Masumori, Naoya
2017-06-01
We investigated diagnostic yield of initial biopsy and repeated biopsy including apical cores. We investigated 573 consecutive men with PSA of ≤20 ng/ml who underwent prostate biopsy between 2004 and 2013. The initial 14-core biopsy consisted of the sextant type, lateral sites at the base and middle, lateral apices (la) at anterior horn sites, and apical anterior sites (aa). The repeated 18-core biopsy consisted of the initial 14-core biopsy with four transition zone (TZ) sites at the base (tzb) and middle (tzm). Prostate cancer was diagnosed in 178 (38.9%) of 458 men with the initial 14-core biopsy, and 44 (38.3%) of 115 men with the repeated 18-core biopsy. In the initial biopsy setting, the unique cancer detection rate was high in apical sites (apex, la, and aa: 6.2%, 6.2% and 5.1%, respectively). In the repeated setting, it was high in the TZ site in addition to the apical site (apex, la, aa, tzm, and tzb: 6.8%, 6.8%, 11.4%, 9.1% and 11.4%, respectively). The positive SM rate at the apex was higher in patients whose cancer was detected only in sites other than the sextant region than for those in the sextant region (36.4% vs. 14.8%, P = 0.037). The initial 14-core and the repeated 18-core biopsy scheme including apical anterior cores are feasible for prostate cancer detection. We propose that apical biopsy cores can be used to predict not only the existence of cancer but also surgical margin status at the apex. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Varchi, Greta; Benfenati, Valentina; Pistone, Assunta; Ballestri, Marco; Sotgiu, Giovanna; Guerrini, Andrea; Dambruoso, Paolo; Liscio, Andrea; Ventura, Barbara
2013-05-01
Among the medical applications of nanoparticles, their usage as photosensitizer (PS) carriers for photodynamic therapy (PDT) has attracted increasing attention. In the present study we explored the morphological and photophysical properties of core-shell PMMA nanoparticles (PMMA-NPs) electrostatically post-loaded with the synthetic, water soluble 5,10,15,20-tetrakis(4-sulphonatophenyl)-porphyrin (TPPS4). pH response and singlet oxygen analyses of differently loaded samples proved the high capability of the PMMA-NPs to shield the PS from the environment, while retaining the PS singlet oxygen production capability. Preliminary in vitro imaging and phototoxicity experiments on HepG2 cells demonstrated the efficacy of the system to trigger photoinduced cell death in the culture.
A three-limb amorphous magnetic circuit for three-phase 200 kVA distribution transformers
NASA Astrophysics Data System (ADS)
Kolano, R.; Wójcik, N.; Gawior, W.
1996-07-01
This paper describes the construction and method of preparation of a three-limb amorphous magnetic circuit. The circuit consists of three single cores: two smaller cores of the same size, surrounded by a third larger one with appropriate window dimensions. The no-load loss and exciting power of the single cores have been investigated as a function of the magnetic induction and stresses applied to the third core.
NASA Astrophysics Data System (ADS)
Shibazaki, Y.; Ohtani, E.; Fukui, H.; Sakai, T.; Kamada, S.; Baron, A. Q.; Nishitani, N.; Hirao, N.; Takemura, K.
2011-12-01
The Earth's interior has been directly investigated by seismic wave propagation and normal mode oscillation. In particular, the distributions of density and sound velocity are available to study the Earth's core (e.g. PREM). The inner core, which is solid state, is approximately 3 % less dense than pure iron (a core density deficit), and it is considered that the core consists of iron and light elements, such as hydrogen, carbon, oxygen, silicon, and sulfur. In this work, in order to constrain the abundance of hydrogen in the Earth's core by matching the density and sound velocity of FeHx to those of PREM, we determined the compressional sound velocity of iron hydride at high pressure using inelastic X-ray scattering (IXS). The IXS experiments and in situ X-ray diffraction (XRD) experiments were conducted up to 70 GPa and room temperature. High-pressure conditions were generated using a symmetric diamond anvil cell (DAC) with tungsten gaskets. Hydrogen initially pressurized to 0.18 GPa was loaded to the sample chamber. The IXS experiments were performed at BL35XU of the SPring-8 facility in Japan. The XRD experiments at high pressure were carried out by the angle dispersive method at BL10XU of the SPring-8 facility in Japan. The each XRD pattern of FeHx was collected after each IXS measurement in order to obtain directly the density of FeHx. Over the range of pressure studied, the diffraction lines of double-hexagonal close-packed (dhcp)-FeHx were observed and there were no diffraction lines of iron. We show that FeHx follows Birch's law for Vp above 37 GPa, namely a linear dependence between velocity and density. The estimated Vp, extrapolated to core conditions, is compared with PREM. Our results provide that the Earth's inner core could contain about 0.2 wt% hydrogen.
Framework GRASP: routine library for optimize processing of aerosol remote sensing observation
NASA Astrophysics Data System (ADS)
Fuertes, David; Torres, Benjamin; Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Ducos, Fabrice; Aspetsberger, Michael; Federspiel, Christian
The present the development of a Framework for the Generalized Retrieval of Aerosol and Surface Properties (GRASP) developed by Dubovik et al., (2011). The framework is a source code project that attempts to strengthen the value of the GRASP inversion algorithm by transforming it into a library that will be used later for a group of customized application modules. The functions of the independent modules include the managing of the configuration of the code execution, as well as preparation of the input and output. The framework provides a number of advantages in utilization of the code. First, it implements loading data to the core of the scientific code directly from memory without passing through intermediary files on disk. Second, the framework allows consecutive use of the inversion code without the re-initiation of the core routine when new input is received. These features are essential for optimizing performance of the data production in processing of large observation sets, such as satellite images by the GRASP. Furthermore, the framework is a very convenient tool for further development, because this open-source platform is easily extended for implementing new features. For example, it could accommodate loading of raw data directly onto the inversion code from a specific instrument not included in default settings of the software. Finally, it will be demonstrated that from the user point of view, the framework provides a flexible, powerful and informative configuration system.
Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul
2011-01-12
The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs.
Saremi, Shahrooz; Atyabi, Fatemeh; Akhlaghi, Seyedeh Parinaz; Ostad, Seyed Nasser; Dinarvand, Rassoul
2011-01-01
The aim of this study was to prepare and evaluate mucoadhesive core-shell nanoparticles based on copolymerization of thiolated chitosan coated on poly methyl methacrylate cores as a carrier for oral delivery of docetaxel. Docetaxel-loaded nanoparticles with various concentrations were prepared via a radical emulsion polymerization method using cerium ammonium nitrate as an initiator. The physicochemical properties of the obtained nanoparticles were characterized by: dynamic light-scattering analysis for their mean size, size distribution, and zeta potential; scanning electron microscopy and transmission electron microscopy for surface morphology; and differential scanning calorimetry analysis for confirmation of molecular dispersity of docetaxel in the nanoparticles. Nanoparticles were spherical with mean diameter below 200 nm, polydispersity of below 0.15, and positive zeta potential values. The entrapment efficiency of the nanoparticles was approximately 90%. In vitro release studies showed a sustained release characteristic for 10 days after a burst release at the beginning. Ex vivo studies showed a significant increase in the transportation of docetaxel from intestinal membrane of rat when formulated as nanoparticles. Cellular uptake of nanoparticles was investigated using fluoresceinamine-loaded nanoparticles. Docetaxel nanoparticles showed a high cytotoxicity effect in the Caco-2 and MCF-7 cell lines after 72 hours. It can be concluded that by combining the advantages of both thiolated polymers and colloidal particles, these nanoparticles can be proposed as a drug carrier system for mucosal delivery of hydrophobic drugs. PMID:21289989
An improved method for determining force balance calibration accuracy
NASA Technical Reports Server (NTRS)
Ferris, Alice T.
1993-01-01
The results of an improved statistical method used at Langley Research Center for determining and stating the accuracy of a force balance calibration are presented. The application of the method for initial loads, initial load determination, auxiliary loads, primary loads, and proof loads is described. The data analysis is briefly addressed.
Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin
2013-01-01
One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system. PMID:23366803
Photonic bandgap narrowing in conical hollow core Bragg fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet
2014-08-18
We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightlymore » smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.« less
Xie, Zhongxi; Deng, Xiaoran; Liu, Bei; Huang, Shanshan; Ma, Pingan; Hou, Zhiyao; Cheng, Ziyong; Lin, Jun; Luan, Shifang
2017-09-13
Photoinduced reversible addition-fragmentation chain transfer (RAFT) polymerization generally adopts high-energy ultraviolet (UV) or blue light. In combination with photoredox catalyst, the excitation light wavelength was extended to the visible and even near-infrared (NIR) region for photoinduced electron transfer RAFT polymerization. In this report, we introduce for the first time a surface NIR-light-initiated RAFT polymerization on upconversion nanoparticles (UCNPs) without adding any photocatalyst and construct a functional inorganic core/polymer shell nanohybrid for application in cancer theranostics. The multilayer core-shell UCNPs (NaYF 4 :Yb/Tm@NaYbF 4 :Gd@NaNdF 4 :Yb@NaYF 4 ), with surface anchorings of chain transfer agents, can serve as efficient NIR-to-UV light transducers for initiating the RAFT polymerization. A hierarchical double block copolymer brush, consisting of poly(acrylic acid) (PAA) and poly(oligo(ethylene oxide)methacrylate-co-2-(2-methoxy-ethoxy)ethyl methacrylate) (PEG for short), was grafted from the surface in sequence. The targeting arginine-glycine-aspartic (RGD) peptide was modified at the end of the copolymer through the trithiolcarbonate end group. After loading of doxorubicin, the UCNPs@PAA-b-PEG-RGD exhibited an enhanced U87MG cancer cell uptake efficiency and cytotoxicity. Besides, the unique upconversion luminescence of the nanohybrids was used for the autofluoresence-free cell imaging and labeling. Therefore, our strategy verified that UCNPs could efficiently activate RAFT polymerization by NIR photoirradiation and construct the complex nanohybrids, exhibiting prospective biomedical applications due to the low phototoxicity and deep penetration of NIR light.
Effect of Loading Efficiency on the Process of Consolidation in Unsaturated Soils
NASA Astrophysics Data System (ADS)
Lo, W. C.; Lee, J. W.; Deng, J. H.; Liu, J. H.
2016-12-01
Loading efficiency is an undrained poroelastic coefficient that causes an increase in the pore pressure due to an increase in the compressive axial stress. In order to illustrate the importance of loading efficiency on the process of consolidation in unsaturated soils, we utilize two assumptions proposed by Biot (1941) and Terzaghi (1943) to formulate the initial conditions taking account of loading efficiency and without consideration of loading efficiency, respectively. In Biot's theory (1941), he suggested that water is not allowed to escape when the external loading is instantly applied on a porous medium. Accordingly, the soil texture sample is considered to be undrained, and the linearized increment of the fluid content is equal to zero. For this reason, water and air can sustain an external loading only partially at the moment it is imposed, leading to an immediate one-dimensional consolidation. On the contrary, Terzaghi (1943) posited that as the external loading is initially applied, it is entirely sustained by the pore fluid. Thus, the initial water and air pressures are equal to the stress of external loading. Numerical calculations of excess pore water pressure and total settlement were made for a soil with clay texture as an illustrative example. A comparative study shows that in the early stage of consolidation, the model of considering loading efficiency generates larger time-dependent total settlement and also has the highest value of excess pore water pressure initially. The physical cause behind this difference is that the initial conditions established from Biot's theory is much smaller, reflecting the soil skeleton to carry most of external load at the moment it is imposed. Our results indicate that, in terms of the initial conditions for water and air pressures, the loading efficiency must be taken into account in the early stage of consolidation.
3D characterization of crack propagation in building stones
NASA Astrophysics Data System (ADS)
Fusi, N.; Martinez-Martinez, J.; Crosta, G. B.
2012-04-01
Opening of fractures can strongly modify mechanical characteristics of natural stones and thus significantly decrease stability of historical and modern buildings. It is commonly thought that fractures origin from pre-existing structures of the rocks, such as pores, veins, stylolythes (Meng and Pan, 2007; Yang et al., 2008). The aim of this study is to define relationships between crack formation and textural characteristics in massive carbonate lithologies and to follow the evolution of fractures with loading. Four well known Spanish building limestones and dolostones have been analysed: Amarillo Triana (AT): a yellow dolomitic marble, with fissures filled up by calcite and Fe oxides or hydroxides; Blanco Tranco (BT): a homogeneous white calcitic marble with pore clusters orientated parallel to metamorphic foliation; Crema Valencia (CV): a pinkish limestone (mudstone), characterized by abundant stilolythes, filled mainly by quartz (80%) and kaolin (11%); Rojo Cehegin (RC): a red fossiliferous limestone (packstone) with white veins, made up exclusively by calcite in crystals up to 300 micron. All lithotypes are characterized by homogeneous mineralogical composition (calcitic or dolomitic) and low porosity (<10%). Three cores 20 mm in diameter have been obtained for each lithotype. Uniaxial compressive tests have been carried out in order to induce sample fracturing by a series of successive steps with application of a progressive normal stress. Crack propagation has been checked after each stress level application by microCT-RX following Hg impregnation of the sample (in a Hg porosimeter). Combination of both tests (microCT-RX and Hg porosimeter) guarantees a better characterization of small defects and their progressive propagation inside low-porous rocks than by employing solely microCT-RX (Fusi et al., 2009). Due to the reduced dimensions of sample holder (dilatometers) in porosimeter, cores have been cut with a non standard h/d = 1.5. Several cycles of: a) Hg impregnation with mercury porosimeter, b) scanning with microCT system, c) uniaxial compression, have been performed on each core. Cores have been firstly impregnated with mercury in Thermo Fisher Scientific Pascal porosimeters 140 and 240, in order to fill up the pores and obtain a good density contrast between rock matrix (2.71 g/cm3 for calcite and 2.86 g/cm3 for dolomite) and voids filled by mercury (13.6 g/cm3). Microporosity coincides with structural features of the rock, such as stylolythes (CV), fissures (AT), clusters of pores (BT) and/or veins (RC). At the end of each cycle of impregnation-scanning-loading, the cores have been impregnated again in both porosimeters 140 and 240 in order to fill up the new micro cracks and fractures. Uniaxial compression has been performed with a GDS Vis (Virtual Infinite Stiffness) loading apparatus, in axial displacement control. For each core four to six loading steps have been performed on the basis of the maximum loading obtained in previous uniaxial tests on standard cores of the same lithologies. Once the maximum load of each step has been achieved, the specimen has been unloaded at the same velocity. A BIR Actis 130/150 industrial micro CT was used for imaging the interior of the samples (100keV/80mA). The dimensions of the voxel, corresponding to the resolution of the images, are 0.024x0.024x0.027 mm. Core position has been accurately checked in order to maintain the same orientation and numbering of CT slices throughout the cores after different loading cycles. The main results of this study, clearly imaged by microCT scanning, can be summed up as follows: - in all the lithotypes (AT, BT, CV and RC) fracture patterns are unrelated to major textural characters of the rock (fig. 1). - In all the cases, first phases of fracture opening can be seen in CT images but there is not a corresponding load drop in the stress-strain curve. - For all the samples, fractures begin to open at about 50% or less of the maximum load.
Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures
NASA Astrophysics Data System (ADS)
Lares, Alan
Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the previous insert designs. A casting process for manufacturing the v.3 inserts was developed. The developed casting process, when producing more than 13 inserts, becomes more economical than machining. An exploratory study was conducted looking at the effects of dynamic loading on the v.3 insert performance. The results of this study highlighted areas for improving dynamic testing of foam-core sandwich structure inserts. Correlations were developed relating design variables such as face-sheet thickness and insert diameter to a failure load for different load cases. This was done through simulations using Computer Aided Engineering (CAE) software, and experimental testing. The resulting correlations were integrated into a computer program which outputs the required insert dimensions given a set of design parameters, and load values.
Effects of a New Cooling Technology on Physical Performance in US Air Force Military Personnel.
O'Hara, Reginald; Vojta, Christopher; Henry, Amy; Caldwell, Lydia; Wade, Molly; Swanton, Stacie; Linderman, Jon K; Ordway, Jason
2016-01-01
Heat-related illness is a critical factor for military personnel operating in hyperthermic environments. Heat illness can alter cognitive and physical performance during sustained operations missions. Therefore, the primary purpose of this investigation was to determine the effects of a novel cooling shirt on core body temperature in highly trained US Air Force personnel. Twelve trained (at least 80th percentile for aerobic fitness according to the American College of Sports Medicine, at least 90% on the US Air Force fitness test), male Air Force participants (mean values: age, 25 ± 2.8 years; height, 178 ± 7.9cm; body weight 78 ± 9.6kg; maximal oxygen uptake, 57 ± 1.9mL/kg/ min; and body fat, 10% ± 0.03%) completed this study. Subjects performed a 70-minute weighted treadmill walking test and 10-minute, 22.7kg sandbag shuttle test under two conditions: (1) "loaded" (shirt with cooling inserts) and (2) "unloaded" (shirt with no cooling inserts). Core body temperature, exercise heart rate, capillary blood lactate, and ratings of perceived exertion were recorded. Core body temperature was lower (ρ = .001) during the 70-minute treadmill walking test in the loaded condition. Peak core temperature during the 70-minute walking test was also significantly lower (ρ = .038) in the loaded condition. This lightweight (471g), passive cooling technology offers multiple hours of sustained cooling and reduced core and peak body temperature during a 70-minute, 22.7kg weighted-vest walking test. 2016.
Fuel loading of PeBR for a long operation life on the lunar surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schriener, T. M.; Chemical and Nuclear Engineering Dept., Univ. of New Mexico, Albuquerque, NM; El-Genk, M. S.
2012-07-01
The Pellet Bed Reactor (PeBR) power system could provide 99.3 kW e to a lunar outpost for 66 full power years and is designed for no single point failures. The core of this fast energy spectrum reactor consists of three sectors that are neutronically and thermally coupled, but hydraulically independent. Each sector has a separate Closed Brayton Cycle (CBC) loop for energy conversion and separate water heat-pipes radiator panels for heat rejection. He-Xe (40 g/mole) binary gas mixture serves as the reactor coolant and CBC working fluid. On the lunar surface, the emplaced PeBR below grade is loaded with sphericalmore » fuel pellets (1-cm in dia.). It is launched unfueled and the pellets are launched in separate subcritical canisters, one for each core sector. This paper numerically simulates the transient loading of a core sector with fuel pellets on the Moon. The simulation accounts for the dynamic interaction of the pellets during loading and calculates the axial and radial distributions of the volume porosity in the sector. The pellets pack randomly with a volume porosity of 0.39 - 0.41 throughout most of the sector, except near the walls the local porosity is higher. (authors)« less
NASA Astrophysics Data System (ADS)
Tang, Xiaolong; Cai, Shuyu; Zhang, Rongbo; Liu, Peng; Chen, Hongbo; Zheng, Yi; Sun, Leilei
2013-10-01
A system of novel nanoparticles of star-shaped cholic acid-core polylactide- d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly( d, l-lactide- co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment.
NASA Astrophysics Data System (ADS)
Preunkert, S.; Legrand, M.
2013-07-01
Seasonally resolved chemical ice core records available from the Col du Dôme glacier (4250 m elevation, French Alps), are here used to reconstruct past aerosol load and composition of the free European troposphere from before World War II to present. Available ice core records include inorganic (Na+, Ca2+, NH4+, Cl-, NO3-, and SO42-) and organic (carboxylates, HCHO, humic-like substances, dissolved organic carbon, water-insoluble organic carbon, and black carbon) compounds and fractions that permit reconstructing the key aerosol components and their changes over the past. It is shown that the atmospheric load of submicron aerosol has been increased by a factor of 3 from the 1921-1951 to 1971-1988 years, mainly as a result of a large increase of sulfate (a factor of 5), ammonium and water-soluble organic aerosol (a factor of 3). Thus, not only growing anthropogenic emissions of sulfur dioxide and ammonia have caused the enhancement of the atmospheric aerosol load but also biogenic emissions producing water-soluble organic aerosol. This unexpected change of biospheric source of organic aerosol after 1950 needs to be considered and further investigated in scenarios dealing with climate forcing by atmospheric aerosol.
NASA Astrophysics Data System (ADS)
Lewis, Benjamin T.; Bate, Matthew R.
2018-07-01
We present the results of 18 magnetohydrodynamical calculations of the collapse of a molecular cloud core to form a protostar. Some calculations include radiative transfer in the flux-limited diffusion approximation, while others employ a barotropic equation of state. We cover a wide parameter space, with mass-to-flux ratios ranging from μ = 5 to 20; initial turbulent amplitudes ranging from a laminar calculation (i.e. where the Mach number, M = 0) to transonic M = 1; and initial rotation rates from βrot = 0.005 to 0.02. We first show that using a radiative transfer scheme produces warmer pseudo-discs than the barotropic equation of state, making them more stable. We then `shake' the core by increasing the initial turbulent velocity field, and find that at all three mass-to-flux ratios transonic cores are weakly bound and do not produce pseudo-discs; M = 0.3 cores produce very disrupted discs; and M = 0.1 cores produce discs broadly comparable to a laminar core. In our previous paper, we showed that a pseudo-disc coupled with sufficient magnetic field is necessary to form a bipolar outflow. Here, we show that only weakly turbulent cores exhibit collimated jets. We finally take the M = 1.0, μ = 5 core and `stir' it by increasing the initial angular momentum, finding that once the degree of rotational energy exceeds the turbulent energy in the core the disc returns, with a corresponding (though slower), outflow. These conclusions place constraints on the initial mixtures of rotation and turbulence in molecular cloud cores which are conducive to the formation of bipolar outflows early in the star formation process.
Deterministic Modeling of the High Temperature Test Reactor with DRAGON-HEXPEDITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; M.A. Pope; R.M. Ferrer
2010-10-01
The Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine the INL’s current prismatic reactor analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 fuel column thin annular core, and the fully loaded core critical condition with 30 fuel columns. Special emphasis is devoted to physical phenomena and artifacts in HTTR that are similar to phenomena and artifacts in themore » NGNP base design. The DRAGON code is used in this study since it offers significant ease and versatility in modeling prismatic designs. DRAGON can generate transport solutions via Collision Probability (CP), Method of Characteristics (MOC) and Discrete Ordinates (Sn). A fine group cross-section library based on the SHEM 281 energy structure is used in the DRAGON calculations. The results from this study show reasonable agreement in the calculation of the core multiplication factor with the MC methods, but a consistent bias of 2–3% with the experimental values is obtained. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement partially stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.« less
Trailing Vortex Measurements in the Wake of a Hovering Rotor Blade with Various Tip Shapes
NASA Technical Reports Server (NTRS)
Martin, Preston B.; Leishman, J. Gordon
2003-01-01
This work examined the wake aerodynamics of a single helicopter rotor blade with several tip shapes operating on a hover test stand. Velocity field measurements were conducted using three-component laser Doppler velocimetry (LDV). The objective of these measurements was to document the vortex velocity profiles and then extract the core properties, such as the core radius, peak swirl velocity, and axial velocity. The measured test cases covered a wide range of wake-ages and several tip shapes, including rectangular, tapered, swept, and a subwing tip. One of the primary differences shown by the change in tip shape was the wake geometry. The effect of blade taper reduced the initial peak swirl velocity by a significant fraction. It appears that this is accomplished by decreasing the vortex strength for a given blade loading. The subwing measurements showed that the interaction and merging of the subwing and primary vortices created a less coherent vortical structure. A source of vortex core instability is shown to be the ratio of the peak swirl velocity to the axial velocity deficit. The results show that if there is a turbulence producing region of the vortex structure, it will be outside of the core boundary. The LDV measurements were supported by laser light-sheet flow visualization. The results provide several benchmark test cases for future validation of theoretical vortex models, numerical free-wake models, and computational fluid dynamics results.
Contribution of Sediment Compaction/Loading to the Ganges-Bangladesh Delta Subsidence
NASA Astrophysics Data System (ADS)
Karpytchev, Mikhail; Krien, Yann; Ballu, Valerie; Becker, Melanie; Calmant, Stephane; Spada, Giorgio; Guo, Junyi; Khan, Zahirul; Shum, Ck
2016-04-01
A pronounced spatial variability characterizes the subsidence/uplift rates in the Ganges-Bangladesh delta estimated from both sediment cores and modern geodetic techniques. The large variability of the subsidence rates suggests an interplay of different natural and anthropogenic processes including tectonics, sediment loading and sediment compaction, groundwater extaction among many others drivers of the delta vertical land movements.In this study, we focus on estimating the subsidence rates due to the sediments transported by the Ganges-Brahmaputra since the last 18 000 years. The delta subsidence induced by the sediment loading and the resulting sea level changes are modelled by the TABOO and SELEN software (Spada, 2003; Stocchi and Spada, 2007) in the framework of a gravitationally self-consistent Earth model. The loading history was obtained from available sediment cores and from the isopach map of Goodbread and Kuehl (2000). The results demonstrate that the delta loading enhanced by the Holocene sedimention can be responsable for a regular subsidence across the Ganges-Brahmaputra delta with an amplitude of 1-5 mm/yr along the Bengal coast. These estimates demonstrate that the contribution of the Holocene as well as modern sediment loading should be taken into account in climate change mitigation politicy for Bangladesh.
Overview of the Core Commitments Initiative
ERIC Educational Resources Information Center
McTighe Musil, Caryn
2013-01-01
This chapter provides an overview of the Core Commitments Initiative conducted by the Association of American Colleges and Universities (AAC&U). Core Commitments was intended to reinvigorate the conversation about personal and social responsibility within higher education, and served as the impetus for this "New Directions" volume.
NASA Technical Reports Server (NTRS)
Williams, K. K.; Zuber, M. T.
1995-01-01
Models of surface fractures due to volcanic loading an elastic plate are commonly used to constrain thickness of planetary lithospheres, but discrepancies exist in predictions of the style of initial failure and in the nature of subsequent fracture evolution. In this study, we perform an experiment to determine the mode of initial failure due to the incremental addition of a conical load to the surface of an elastic plate and compare the location of initial failure with that predicted by elastic theory. In all experiments, the mode of initial failure was tension cracking at the surface of the plate, with cracks oriented circumferential to the load. The cracks nucleated at a distance from load center that corresponds the maximum radial stress predicted by analytical solutions, so a tensile failure criterion is appropriate for predictions of initial failure. With continued loading of the plate, migration of tensional cracks was observed. In the same azimuthal direction as the initial crack, subsequent cracks formed at a smaller radial distance than the initial crack. When forming in a different azimuthal direction, the subsequent cracks formed at a distance greater than the radial distance of the initial crack. The observed fracture pattern may explain the distribution of extensional structures in annular bands around many large scale, circular volcanic features.
Metternich, Jan B; Sagebiel, Sven; Lückener, Anne; Lamping, Sebastian; Ravoo, Bart Jan; Gilmour, Ryan
2018-03-20
The covalent immobilization of the biomimetic, photo-organocatalyst (-)-riboflavin on silica micro- and nanoparticles via atom transfer radical polymerization (ATRP) is disclosed. Given the effectiveness of (-)-riboflavin as a versatile, environmentally benign photocatalyst, an immobilization strategy based on acrylate-linker modification of the catalyst core and controlled polymerization on initiator pre-functionalized silica particles has been developed. Validation of this approach is demonstrated in the E→Z isomerization of a benchmark cinnamonitrile (Z/E up to 88:12) with 0.97 mol % catalyst loading. Characterization of the immobilized photocatalyst supports covalent embedding of the catalyst in the polymeric brushes on the silica particle surface. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Initial operation of high power ICRF system for long pulse in EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, C. M., E-mail: chmq@ipp.ac.cn; Zhao, Y. P.; Zhang, X. J.
2015-12-10
The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactionsmore » at EAST and some preliminary results for the optimizing RF performance will be presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, David; Betzler, Ben; Hirtz, Gregory John
2016-09-01
The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se productionmore » capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.« less
Bollmann, Steffen; Ghisleni, Carmen; Poil, Simon-Shlomo; Martin, Ernst; Ball, Juliane; Eich-Höchli, Dominique; Klaver, Peter; O'Gorman, Ruth L; Michels, Lars; Brandeis, Daniel
2017-06-01
Attention-deficit/hyperactivity disorder (ADHD) has been associated with spatial working memory as well as frontostriatal core deficits. However, it is still unclear how the link between these frontostriatal deficits and working memory function in ADHD differs in children and adults. This study examined spatial working memory in adults and children with ADHD, focussing on identifying regions demonstrating age-invariant or age-dependent abnormalities. We used functional magnetic resonance imaging to examine a group of 26 children and 35 adults to study load manipulated spatial working memory in patients and controls. In comparison to healthy controls, patients demonstrated reduced positive parietal and frontostriatal load effects, i.e., less increase in brain activity from low to high load, despite similar task performance. In addition, younger patients showed negative load effects, i.e., a decrease in brain activity from low to high load, in medial prefrontal regions. Load effect differences between ADHD and controls that differed between age groups were found predominantly in prefrontal regions. Age-invariant load effect differences occurred predominantly in frontostriatal regions. The age-dependent deviations support the role of prefrontal maturation and compensation in ADHD, while the age-invariant alterations observed in frontostriatal regions provide further evidence that these regions reflect a core pathophysiology in ADHD.
Fatigue behaviour of core-spun yarns containing filament by means of cyclic dynamic loading
NASA Astrophysics Data System (ADS)
Esin, S.; Osman, B.
2017-10-01
The behaviour of yarns under dynamic loading is important that leads to understand the growth characteristics which is exposed to repetitive loadings during usage of fabric made from these yarns. Fabric growth is undesirable property that originated from low resilience characteristics of fabric. In this study, the effects of the filament fineness and yarn linear density on fatigue behaviour of rigid-core spun yarns were determined. Cotton covered yarns containing different filament fineness of polyester (PET) draw textured yarns (DTY) (100d/36f, 100d/96f, 100d/144f, 100d/192f and 100d/333f) and yarn linear densities (37 tex, 30 tex, 25 tex and 21 tex) were manufactured by using a modified ring spinning system at the same spinning parameters. Repetitive loads were applied for 25 cycles at levels between 0.1 and 3 N. Dynamic modulus and dynamic strain of yarn samples were analyzed statistically. Results showed that filament fineness and yarn linear density have significance effect on dynamic modulus and dynamic strain after cyclic loading.
Bearing capacity and rigidity of short plastic-concrete-tubal vertical columns under transverse load
NASA Astrophysics Data System (ADS)
Dolzhenko, A. V.; Naumov, A. E.; Shevchenko, A. E.
2018-03-01
The results of mathematical modeling in determining strain-stress distribution parameters of a short plastic-concrete-tubal vertical column under horizontal load as those in vertical constructions are described. Quantitative parameters of strain-stress distribution during vertical and horizontal loads and horizontal stiffness were determined by finite element modeling. The internal stress in the concrete column core was analyzed according to equivalent stress in Mohr theory of failure. It was determined that the bearing capacity of a short plastic- concrete-tubal vertical column is 25% higher in resistibility and 15% higher in rigidness than those of the caseless concrete columns equal in size. Cracks formation in the core of a short plastic-concrete-tubal vertical column happens under significantly bigger horizontal loads with less amount of concrete spent than that in caseless concrete columns. The significant increase of bearing capacity and cracking resistance of a short plastic-concrete-tubal vertical column under vertical and horizontal loads allows recommending them as highly effective and highly reliable structural wall elements in civil engineering.
Chen, Si; Gayet, Florence; Manoury, Eric; Joumaa, Ahmad; Lansalot, Muriel; D'Agosto, Franck; Poli, Rinaldo
2016-04-25
Stable latexes of hierarchically organized core-cross-linked polymer micelles that are functionalized at the core with triphenylphosphine (TPP@CCM) have been investigated by NMR spectroscopic analysis at both natural (ca. pH 5) and strongly basic (pH 13.6) pH values after core swelling with toluene. The core-shell interface structuring forces part of the hydrophilic poly(ethylene oxide) (PEO) chains to reside inside the hydrophobic core at both pH values. Loading the particle cores with [Rh(acac)(CO)2 ] (acac=acetylacetonate) at various Rh/P ratios yielded polymer-supported [Rh(acac)(CO)(TPP)] (TPP=triphenylphosphine). The particle-to-particle rhodium migration is very fast at natural pH, but slows down dramatically at high pH, whereas the size distribution of the nanoreactors remains unchanged. The slow migration at pH 13.6 leads to the generation of polymer-anchored [Rh(OH)(CO)(TPP)2 ], which is also generated immediately upon the addition of NaOH to the particles with a [Rh(acac)(CO)] loading of 50 %. Similarly, treatment of the same particles with NaCl yielded polymer-anchored [RhCl(CO)(TPP)2 ]. Interparticle coupling occurs during these rapid processes. These experiments prove that the major contribution to metal migration is direct core-core contact. The slow migration at the high pH value, however, must result from a pathway that does not involve core-core contact. The facile penetration of the polymer cores by NaOH and NaCl results from the presence of shell-linked poly(ethylene oxide) methyl ether functions both outside and inside the polymer core-shell interface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Effects of Isolated and Integrated ‘Core Stability’ Training on Athletic Performance Measures
Reed, Casey A.; Ford, Kevin R.; Myer, Gregory D.; Hewett, Timothy E.
2014-01-01
Background Core stability training, operationally defined as training focused to improve trunk and hip control, is an integral part of athletic development, yet little is known about its direct relation to athletic performance. Objective This systematic review focuses on identification of the association between core stability and sports-related performance measures. A secondary objective was to identify difficulties encountered when trying to train core stability with the goal of improving athletic performance. Data sources A systematic search was employed to capture all articles related to athletic performance and core stability training that were identified using the electronic databases MEDLINE, CINAHL and SPORTDiscus™ (1982-June2011). Study selection A systematic approach was used to evaluate 179 articles identified for initial review. Studies that performed an intervention targeted toward the core and measured an outcome related to athletic or sport performances were included, while studies with a participant population aged 65 years or older were excluded. Twenty-four in total met the inclusionary criteria for review. Study appraisal and synthesis methods Studies were evaluated using the Physical Therapy Evidence Database (PEDro) scale. The 24 articles were separated into three groups, general performance (n = 8), lower extremity (n = 10) and upper extremity (n = 6), for ease of discussion. Results In the majority of studies, core stability training was utilized in conjunction with more comprehensive exercise programmes. As such, many studies saw improvements in skills of general strengths such as maximum squat load and vertical leap. Surprisingly, not all studies reported measurable increases in specific core strength and stability measures following training. Additionally, investigations that targeted the core as the primary goal for improved outcome of training had mixed results. Limitations Core stability is rarely the sole component of an athletic development programme, making it difficult to directly isolate its affect on athletic performance. The population biases of some studies of athletic performance also confound the results. Conclusions Targeted core stability training provides marginal benefits to athletic performance. Conflicting findings and the lack of a standardization for measurement of outcomes and training focused to improve core strength and stability pose difficulties. Because of this, further research targeted to determine this relationship is necessary to better understand how core strength and stability affect athletic performance. PMID:22784233
Scalable isosurface visualization of massive datasets on commodity off-the-shelf clusters
Bajaj, Chandrajit
2009-01-01
Tomographic imaging and computer simulations are increasingly yielding massive datasets. Interactive and exploratory visualizations have rapidly become indispensable tools to study large volumetric imaging and simulation data. Our scalable isosurface visualization framework on commodity off-the-shelf clusters is an end-to-end parallel and progressive platform, from initial data access to the final display. Interactive browsing of extracted isosurfaces is made possible by using parallel isosurface extraction, and rendering in conjunction with a new specialized piece of image compositing hardware called Metabuffer. In this paper, we focus on the back end scalability by introducing a fully parallel and out-of-core isosurface extraction algorithm. It achieves scalability by using both parallel and out-of-core processing and parallel disks. It statically partitions the volume data to parallel disks with a balanced workload spectrum, and builds I/O-optimal external interval trees to minimize the number of I/O operations of loading large data from disk. We also describe an isosurface compression scheme that is efficient for progress extraction, transmission and storage of isosurfaces. PMID:19756231
Compression Behavior of Fluted-Core Composite Panels
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Oremont, Leonard; Guzman, J. Carlos; McCarville, Douglas; Rose, Cheryl A.; Hilburger, Mark W.
2011-01-01
In recent years, fiber-reinforced composites have become more accepted for aerospace applications. Specifically, during NASA s recent efforts to develop new launch vehicles, composite materials were considered and baselined for a number of structures. Because of mass and stiffness requirements, sandwich composites are often selected for many applications. However, there are a number of manufacturing and in-service concerns associated with traditional honeycomb-core sandwich composites that in certain instances may be alleviated through the use of other core materials or construction methods. Fluted-core, which consists of integral angled web members with structural radius fillers spaced between laminate face sheets, is one such construction alternative and is considered herein. Two different fluted-core designs were considered: a subscale design and a full-scale design sized for a heavy-lift-launch-vehicle interstage. In particular, axial compression of fluted-core composites was evaluated with experiments and finite-element analyses (FEA); axial compression is the primary loading condition in dry launch-vehicle barrel sections. Detailed finite-element models were developed to represent all components of the fluted-core construction, and geometrically nonlinear analyses were conducted to predict both buckling and material failures. Good agreement was obtained between test data and analyses, for both local buckling and ultimate material failure. Though the local buckling events are not catastrophic, the resulting deformations contribute to material failures. Consequently, an important observation is that the material failure loads and modes would not be captured by either linear analyses or nonlinear smeared-shell analyses. Compression-after-impact (CAI) performance of fluted core composites was also investigated by experimentally testing samples impacted with 6 ft.-lb. impact energies. It was found that such impacts reduced the ultimate load carrying capability by approximately 40% on the subscale test articles and by less than 20% on the full-scale test articles. Nondestructive inspection of the damage zones indicated that the detectable damage was limited to no more than one flute on either side of any given impact. More study is needed, but this may indicate that an inherent damage-arrest capability of fluted core could provide benefits over traditional sandwich designs in certain weight-critical applications.
Predicting drug loading in PLA-PEG nanoparticles.
Meunier, M; Goupil, A; Lienard, P
2017-06-30
Polymer nanoparticles present advantageous physical and biopharmaceutical properties as drug delivery systems compared to conventional liquid formulations. Active pharmaceutical ingredients (APIs) are often hydrophobic, thus not soluble in conventional liquid delivery. Encapsulating the drugs in polymer nanoparticles can improve their pharmacological and bio-distribution properties, preventing rapid clearance from the bloodstream. Such nanoparticles are commonly made of non-toxic amphiphilic self-assembling block copolymers where the core (poly-[d,l-lactic acid] or PLA) serves as a reservoir for the API and the external part (Poly-(Ethylene-Glycol) or PEG) serves as a stealth corona to avoid capture by macrophage. The present study aims to predict the drug affinity for PLA-PEG nanoparticles and their effective drug loading using in silico tools in order to virtually screen potential drugs for non-covalent encapsulation applications. To that end, different simulation methods such as molecular dynamics and Monte-Carlo have been used to estimate the binding of actives on model polymer surfaces. Initially, the methods and models are validated against a series of pigments molecules for which experimental data exist. The drug affinity for the core of the nanoparticles is estimated using a Monte-Carlo "docking" method. Drug miscibility in the polymer matrix, using the Hildebrand solubility parameter (δ), and the solvation free energy of the drug in the PLA polymer model is then estimated. Finally, existing published ALogP quantitative structure-property relationships (QSPR) are compared to this method. Our results demonstrate that adsorption energies modelled by docking atomistic simulations on PLA surfaces correlate well with experimental drug loadings, whereas simpler approaches based on Hildebrand solubility parameters and Flory-Huggins interaction parameters do not. More complex molecular dynamics techniques which use estimation of the solvation free energies both in PLA and in water led to satisfactory predictive models. In addition, experimental drug loadings and Log P are found to correlate well. This work can be used to improve the understanding of drug-polymer interactions, a key component to designing better delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Fault Damage Zone Permeability in Crystalline Rocks from Combined Field and Laboratory Measurements
NASA Astrophysics Data System (ADS)
Mitchell, T.; Faulkner, D.
2008-12-01
In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were stopped at various points in the loading history in order to correlate microfracture density within the samples with permeability. By combining empirical relationships determined from both quantitative fieldwork and experiments we present a model that allows microfracture permeability distribution throughout the damage zone to be determined as function of increasing fault displacement.
The Gravity-Loading countermeasure Skinsuit (GLCS) and its effect upon aerobic exercise performance
NASA Astrophysics Data System (ADS)
Attias, Julia; Philip, A. T. Carvil; Waldie, James; Russomano, Thais; Simon, N. Evetts; David, A. Green
2017-03-01
The Russian Pingvin suit is employed as a countermeasure to musculoskeletal atrophy in microgravity, though its 2-stage loading regime is poorly tolerated. The Gravity-Loading Countermeasure Skinsuit (GLCS) has been devised to comfortably compress the body via incrementally increasing longitudinal elastic-fibre tensions from the shoulders to the feet. We tested whether the Mk III GLCS was a feasible adjunct to sub-maximal aerobic exercise and resulting VO2Max predictions. Eight healthy subjects (5♂, 28±6 yr) performed cycle ergometry at 75% VO2Max (derived from an Astrand-Rhyming protocol) whilst wearing a GLCS and gym clothing (GYM). Ventilatory parameters, heart rate (HR), core temperature (TC), and blood lactate (BL) were recorded along with subjective perceived exertion, thermal comfort, movement discomfort and body control. Physiological and subjective responses were compared over TIME and between GYM and GLCS (ATTIRE) with 2-way repeated measures ANOVA and Wilcoxon tests respectively. Resultant VO2Max predictions were compared with paired t-tests between ATTIRE. The GLCS induced greater initial exercise ventilatory responses which stabilised by 20 min. HR and TC continued to rise from 5 min irrespective of ATTIRE, whereas BL was greater in the GLCS at 20 min. Predicted V O2Max did not differ with ATTIRE, though some observed differences in HR were noteworthy. All subjective ratings were exacerbated in the GLCS. Despite increased perception of workload and initial ventilatory augmentations, submaximal exercise performance was not impeded. Whilst predicted VO2Max did not differ, determination of actual VO2Max in the GLCS is warranted due to apparent modulation of the linear HR-VO2 relationship. The GLCS may be a feasible adjunct to exercise and potential countermeasure to unloaded-induced physiological deconditioning on Earth or in space.
Modeling and Comparison of Options for the Disposal of Excess Weapons Plutonium in Russia
2002-04-01
fuel LWR cooling time LWR Pu load rate LWR net destruction frac ~ LWR reactors op life mox core frac Excess Separated Pu HTGR Cycle Pu in Waste LWR MOX...reflecting the cycle used in this type of reactor. For the HTGR , the entire core consists of plutonium fuel , therefore a core fraction is not specified...cooling time Time spent fuel unloaded from HTGR reactor must cool before permanently stored 3 years Mox core fraction Fraction of
BWR Anticipated Transients Without Scram Leading to Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng L. Y.; Baek J.; Cuadra, A.
2013-11-10
Anticipated transients without scram (ATWS) in aboiling water reactor (BWR) were simulated in order to understand reactor response and determine the effectiveness of automatic and operator actions to mitigate this beyond-design-basis accident. The events of interest herein are initiated by a turbine trip when the reactor is operating in the expanded operating domainMELLLA+ [maximum extended load line limit plus]. In these events the reactor may initially be at up to 120% of the original licensed thermal power (OLTP) and at flow rates as low as 80% of rated.For these (and similar) ATWS events the concern isthat when the reactor powermore » decreases in response to a dual recirculation pump trip, the core will become unstable and large amplitude oscillations will begin. The occurrence of these power oscillations, if left unmitigated, may result in fuel damage, and the amplitude of the poweroscillations may hamper the effectiveness of the injection of dissolved neutron absorber through the standby liquid control system (SLCS).« less
ECOLOGICAL RISKS OF DIOXINS IN LAKE ONTARIO: A TALE OF TWO SEDIMENT CORES
Sediment box cores have frequently been used to determine organochlorine chemical loading histories of lakes and reservoirs. 137Cs and 210Pb radionuclide dating techniques are employed synchronously with chemical analyses of the contaminants for thin sections extruded from adjace...
Li, Jinghao; Hunt, John F; Gong, Shaoqin; Cai, Zhiyong
2017-01-01
This paper presents experimental results of both quasi-static compression and low-velocity impact behavior for tri-axial bio-composite structural panels using a spherical load head. Panels were made having different core and face configurations. The results showed that panels made having either carbon fiber fabric composite faces or a foam-filled core had significantly improved impact and compressive performance over panels without either. Different localized impact responses were observed based on the location of the compression or impact relative to the tri-axial structural core; the core with a smaller structural element had better impact performance. Furthermore, during the early contact phase for both quasi-static compression and low-velocity impact tests, the panels with the same configuration had similar load-displacement responses. The experimental results show basic compression data could be used for the future design and optimization of tri-axial bio-composite structural panels for potential impact applications. PMID:28772542
Electrochemically Controlled Reconstitution of Immobilized Ferritins for Bioelectronic Applications
NASA Technical Reports Server (NTRS)
Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; Chu, Sang-Hong; King, Glen C.; Watt, Gerald D.
2007-01-01
Site-specific reconstituted nanoparticles were fabricated via electrochemically-controlled biomineralization through the immobilization of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, and the electrocatalytic reduction of oxygen on the reconstituted Pt-cored ferritins. Protein immobilization on the substrate is achieved by anchoring ferritins with dithiobis-N-succinimidyl propionate (DTSP). A reconstitution process of site-specific electrochemical biomineralization with a protein cage loads ferritins with different core materials. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. This first demonstration of electrochemically controlled site-specific reconstitution of biomolecules provides a new tool for biomineralization and opens the way to produce the bio-templated nanoparticles by electrochemical control. The nanosized platinum-cored ferritins on gold displayed good catalytic activity for the electrochemical reduction of oxygen, which is applicable to biofuel cell applications. This results in a smaller catalyst loading on the electrodes for fuel cells or other bioelectronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romander, C M; Cagliostro, D J
Five experiments were performed to help evaluate the structural integrity of the reactor vessel and head design and to verify code predictions. In the first experiment (SM 1), a detailed model of the head was loaded statically to determine its stiffness. In the remaining four experiments (SM 2 to SM 5), models of the vessel and head were loaded dynamically under a simulated 661 MW-s hypothetical core disruptive accident (HCDA). Models SM 2 to SM 4, each of increasing complexity, systematically showed the effects of upper internals structures, a thermal liner, core support platform, and torospherical bottom on vessel response.more » Model SM 5, identical to SM 4 but more heavily instrumented, demonstrated experimental reproducibility and provided more comprehensive data. The models consisted of a Ni 200 vessel and core barrel, a head with shielding and simulated component masses, and an upper internals structure (UIS).« less
Development of 600 kV triple resonance pulse transformer.
Li, Mingjia; Zhang, Faqiang; Liang, Chuan; Xu, Zhou
2015-06-01
In this paper, a triple-resonance pulse transformer based on an air-core transformer is introduced. The voltage across the high-voltage winding of the air-core transformer is significantly less than the output voltage; instead, the full output voltage appears across the tuning inductor. The maximum ratio of peak load voltage to peak transformer voltage is 2.77 in theory. By analyzing pulse transformer's lossless circuit, the analytical expression for the output voltage and the characteristic equation of the triple-resonance circuit are presented. Design method for the triple-resonance pulse transformer (iterated simulation method) is presented, and a triple-resonance pulse transformer is developed based on the existing air-core transformer. The experimental results indicate that the maximum ratio of peak voltage across the load to peak voltage across the high-voltage winding of the air-core transformer is approximately 2.0 and the peak output voltage of the triple-resonance pulse transformer is approximately 600 kV.
NASA Technical Reports Server (NTRS)
Wahr, J. M.; Sasao, T.
1981-01-01
The effects of the oceans, which are subject to a resonance due to a free rotational eigenmode of an elliptical, rotating earth with a fluid outer core having an eigenfrequency of (1 + 1/460) cycle/day, on the body tide and nutational response of the earth to the diurnal luni-tidal force are computed. The response of an elastic, rotating, elliptical, oceanless earth with a fluid outer core to a given load distribution on its surface is first considered, and the tidal sea level height for equilibrium and nonequilibrium oceans is examined. Computations of the effects of equilibrium and nonequilibrium oceans on the nutational and deformational responses of the earth are then presented which show small but significant perturbations to the retrograde 18.6-year and prograde six-month nutations, and more important effects on the earth body tide, which is also resonant at the free core notation eigenfrequency.
Wakaskar, Rajesh R; Bathena, Sai Praneeth R; Tallapaka, Shailendra B; Ambardekar, Vishakha V; Gautam, Nagsen; Thakare, Rhishikesh; Simet, Samantha M; Curran, Stephen M; Singh, Rakesh K; Dong, Yuxiang; Vetro, Joseph A
2015-03-01
Determine the feasibility and potential benefit of peripherally cross-linking the shell of core-shell polymer micelles on the premature release of physically loaded hydrophobic drug in whole blood and subsequent potency against solid tumors. Individual Pluronic F127 polymer micelles (F127 PM) peripherally cross-linked with ethylenediamine at 76% of total PEO blocks (X-F127 PM) were physically loaded with combretastatin A4 (CA4) by the solid dispersion method and compared to CA4 physically loaded in uncross-linked F127 PM, CA4 in DMSO in vitro, or water-soluble CA4 phosphate (CA4P) in vivo. X-F127 PM had similar CA4 loading and aqueous solubility as F127 PM up to 10 mg CA4 / mL at 22.9 wt% and did not aggregate in PBS or 90% (v/v) human serum at 37°C for at least 24 h. In contrast, X-F127 PM decreased the unbound fraction of CA4 in whole blood (fu) and increased the mean plasma residence time and subsequent potency of CA4 against the vascular function and growth of primary murine 4T1 breast tumors over CA4 in F127 PM and water-soluble CA4P after IV administration. Given that decreasing the fu is an indication of decreased drug release, peripherally cross-linking the shell of core-shell polymer micelles may be a simple approach to decrease premature release of physically loaded hydrophobic drug in the blood and increase subsequent potency in solid tumors.
Initial versus final fracture of metal-free crowns, analyzed via acoustic emission.
Ereifej, Nadia; Silikas, Nick; Watts, David C
2008-09-01
To discriminate between initial and final fracture failure loads of four metal-free crown systems by the conjoint detection of acoustic emission signals during compressive loading. Teeth were prepared and used for crown construction with four crown systems; Vita Mark II (VM II) (Vita Zahnfabrik), IPS e.max Ceram/CAD (CAD) (Ivoclar-Vivadent), IPS e.max Ceram/ZirCAD (ZirCAD) (Ivoclar-Vivadent) and BelleGlass/EverStick (BGES) (Kerr/Stick Tech Ltd.). All samples were loaded in compression via a Co/Cr maxillary first molar tooth at 0.2mm/min and released acoustic signals were collected and analyzed. A minimum number of 15 crowns per group were loaded to final failure and values of loading at initial and final fracture were compared. Additional four samples per group were loaded till fracture initiation and were fractographically examined under the optical microscope. A lower threshold of 50dB was selected to exclude spurious background signals. Initial fracture forces were significantly lower than those of final fracture (p<0.05) in all groups and initial failure AE amplitudes were lower than those of final fracture. Mean initial fracture force of ZirCAD samples (1029.1N) was higher than those of VMII (744.4N), CAD (808.8 N) and BGES (979.7 N). Final fracture of ZirCAD also occurred at significantly higher force values (2091.7 N) than the rest of the groups; VMII (1120.9 N), CAD (1468.9 N) and BGES (1576.6 N). Significantly higher values of initial failure AE amplitude were found in VMII than CAD and BGES while those of final fracture were similar. All crowns observed under the microscope at initial fracture had signs of failure. Whereas the metal-free crowns examined showed significant variations in final failure loads, acoustic emission data showed that they all manifested initial failures at significantly lower load values.
Ductile Crack Initiation Criterion with Mismatched Weld Joints Under Dynamic Loading Conditions.
An, Gyubaek; Jeong, Se-Min; Park, Jeongung
2018-03-01
Brittle failure of high toughness steel structures tends to occur after ductile crack initiation/propagation. Damages to steel structures were reported in the Hanshin Great Earthquake. Several brittle failures were observed in beam-to-column connection zones with geometrical discontinuity. It is widely known that triaxial stresses accelerate the ductile fracture of steels. The study examined the effects of geometrical heterogeneity and strength mismatches (both of which elevate plastic constraints due to heterogeneous plastic straining) and loading rate on critical conditions initiating ductile fracture. This involved applying the two-parameter criterion (involving equivalent plastic strain and stress triaxiality) to estimate ductile cracking for strength mismatched specimens under static and dynamic tensile loading conditions. Ductile crack initiation testing was conducted under static and dynamic loading conditions using circumferentially notched specimens (Charpy type) with/without strength mismatches. The results indicated that the condition for ductile crack initiation using the two parameter criterion was a transferable criterion to evaluate ductile crack initiation independent of the existence of strength mismatches and loading rates.
Open-ringed structure of the Cdt1-Mcm2-7 complex as a precursor of the MCM double hexamer.
Zhai, Yuanliang; Cheng, Erchao; Wu, Hao; Li, Ningning; Yung, Philip Yuk Kwong; Gao, Ning; Tye, Bik-Kwoon
2017-03-01
The minichromosome maintenance complex (MCM) hexameric complex (Mcm2-7) forms the core of the eukaryotic replicative helicase. During G1 phase, two Cdt1-Mcm2-7 heptamers are loaded onto each replication origin by the origin-recognition complex (ORC) and Cdc6 to form an inactive MCM double hexamer (DH), but the detailed loading mechanism remains unclear. Here we examine the structures of the yeast MCM hexamer and Cdt1-MCM heptamer from Saccharomyces cerevisiae. Both complexes form left-handed coil structures with a 10-15-Å gap between Mcm5 and Mcm2, and a central channel that is occluded by the C-terminal domain winged-helix motif of Mcm5. Cdt1 wraps around the N-terminal regions of Mcm2, Mcm6 and Mcm4 to stabilize the whole complex. The intrinsic coiled structures of the precursors provide insights into the DH formation, and suggest a spring-action model for the MCM during the initial origin melting and the subsequent DNA unwinding.
Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming
2015-01-01
The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m2/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration. PMID:25609957
Application-Controlled Demand Paging for Out-of-Core Visualization
NASA Technical Reports Server (NTRS)
Cox, Michael; Ellsworth, David; Kutler, Paul (Technical Monitor)
1997-01-01
In the area of scientific visualization, input data sets are often very large. In visualization of Computational Fluid Dynamics (CFD) in particular, input data sets today can surpass 100 Gbytes, and are expected to scale with the ability of supercomputers to generate them. Some visualization tools already partition large data sets into segments, and load appropriate segments as they are needed. However, this does not remove the problem for two reasons: 1) there are data sets for which even the individual segments are too large for the largest graphics workstations, 2) many practitioners do not have access to workstations with the memory capacity required to load even a segment, especially since the state-of-the-art visualization tools tend to be developed by researchers with much more powerful machines. When the size of the data that must be accessed is larger than the size of memory, some form of virtual memory is simply required. This may be by segmentation, paging, or by paged segments. In this paper we demonstrate that complete reliance on operating system virtual memory for out-of-core visualization leads to poor performance. We then describe a paged segment system that we have implemented, and explore the principles of memory management that can be employed by the application for out-of-core visualization. We show that application control over some of these can significantly improve performance. We show that sparse traversal can be exploited by loading only those data actually required. We show also that application control over data loading can be exploited by 1) loading data from alternative storage format (in particular 3-dimensional data stored in sub-cubes), 2) controlling the page size. Both of these techniques effectively reduce the total memory required by visualization at run-time. We also describe experiments we have done on remote out-of-core visualization (when pages are read by demand from remote disk) whose results are promising.
Fire development and wall endurance in sandwich and wood-frame structures
Carlton A. Holmes; Herbert W. Eickner; John J. Brenden; Curtis C. Peters; Robert H. White
1980-01-01
Large-scale fire tests were conducted on seven 16- by 24-foot structures. Four of these structures were of sandwich construction with cores of plastic or paper honeycomb and three were of wood-frame construction. The wasss were loaded to a computer design loading, and the fire endurance determined under a fire exposure from a typical building contents loading of 4-1/2...
DOT National Transportation Integrated Search
1992-09-01
The Louisiana Transportation Research Center has established a Pavement Research Facility (PRF). The core of the PRF is a testing machine that is capable of conducting full-scale simulated and accelerated load testing of pavement materials, construct...
"Functional" Inspiratory and Core Muscle Training Enhances Running Performance and Economy.
Tong, Tomas K; McConnell, Alison K; Lin, Hua; Nie, Jinlei; Zhang, Haifeng; Wang, Jiayuan
2016-10-01
Tong, TK, McConnell, AK, Lin, H, Nie, J, Zhang, H, and Wang, J. "Functional" inspiratory and core muscle training enhances running performance and economy. J Strength Cond Res 30(10): 2942-2951, 2016-We compared the effects of two 6-week high-intensity interval training interventions. Under the control condition (CON), only interval training was undertaken, whereas under the intervention condition (ICT), interval training sessions were followed immediately by core training, which was combined with simultaneous inspiratory muscle training (IMT)-"functional" IMT. Sixteen recreational runners were allocated to either ICT or CON groups. Before the intervention phase, both groups undertook a 4-week program of "foundation" IMT to control for the known ergogenic effect of IMT (30 inspiratory efforts at 50% maximal static inspiratory pressure [P0] per set, 2 sets per day, 6 days per week). The subsequent 6-week interval running training phase consisted of 3-4 sessions per week. In addition, the ICT group undertook 4 inspiratory-loaded core exercises (10 repetitions per set, 2 sets per day, inspiratory load set at 50% post-IMT P0) immediately after each interval training session. The CON group received neither core training nor functional IMT. After the intervention phase, global inspiratory and core muscle functions increased in both groups (p ≤ 0.05), as evidenced by P0 and a sport-specific endurance plank test (SEPT) performance, respectively. Compared with CON, the ICT group showed larger improvements in SEPT, running economy at the speed of the onset of blood lactate accumulation, and 1-hour running performance (3.04% vs. 1.57%, p ≤ 0.05). The changes in these variables were interindividually correlated (r ≥ 0.57, n = 16, p ≤ 0.05). Such findings suggest that the addition of inspiratory-loaded core conditioning into a high-intensity interval training program augments the influence of the interval program on endurance running performance and that this may be underpinned by an improvement in running economy.
Nadim, Afsaneh; Khorasani, Saied Nouri; Kharaziha, Mahshid; Davoodi, Seyyed Mohammadreza
2017-09-01
The aim of this research was to fabricate dexamethasone (Dex)-loaded poly (glycerol sebacate) (PGS)-poly (caprolactone) (PCL)/gelatin (Gt) (PGS-PCL/Gt-Dex) fibrous scaffolds in the form of core/shell structure which have potential application in soft tissues. In this regard, after synthesize and characterizations of PGS, PGS-PCL and gelatin fibrous scaffolds were separately developed in order to optimize the electrospinning parameters. In the next step, coaxial electrospun fibrous scaffold of PGS-PCL/Gt fibrous scaffold with PGS-PCL as core and Gt as shell was developed and its mechanical, physical and chemical properties were characterized. Moreover, degradability, hydrophilicity and biocompatibility of PGS-PCL/Gt fibrous scaffold were evaluated. In addition, Dex was encapsulated in PGS-PCL/Gt fibrous scaffold and drug release was assessed for tissue engineering application. Results demonstrated the formation of coaxial fibrous scaffold with average porosity of 79% and average fiber size of 294nm. Moreover, PGS-PCL/Gt fibrous scaffold revealed lower elastic modulus, ultimate tensile and ultimate elongation than those of PGS-PCL scaffold and more close to mechanical properties of natural tissue. Furthermore, lower contact angle of PGS-PCL/Gt than that of PGS-PCL demonstrated improved surface hydrophilicity of scaffold. DEX release was sustained over a period time of 30days from the scaffolds via three steps consisting of an initial burst release, secondary linear phase release pattern with slower rate over 20days followed by an apparent zero-order release phase. MTT observations demonstrated that there was no evidence of toxicity in the samples with and without Dex. Our findings indicated that core/shell PGS-PCL/Gt-Dex fibrous could be used as a carrier for the sustained release of drugs relevant for tissue engineering which makes it appropriate for soft tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
The Initial Physical Conditions of Kepler-36 b and c
NASA Astrophysics Data System (ADS)
Owen, James E.; Morton, Timothy. D.
2016-03-01
The Kepler-36 planetary system consists of two exoplanets at similar separations (0.115 and 0.128 au), which have dramatically different densities. The inner planet has a density consistent with an Earth-like composition, while the outer planet is extremely low density, such that it must contain a voluminous H/He envelope. Such a density difference would pose a problem for any formation mechanism if their current densities were representative of their composition at formation. However, both planets are at close enough separations to have undergone significant evaporation in the past. We constrain the core mass, core composition, initial envelope mass, and initial cooling time of each planet using evaporation models conditioned on their present-day masses and radii, as inferred from Kepler photometry and transit timing analysis. The inner planet is consistent with being an evaporatively stripped core, while the outer planet has retained some of its initial envelope due to its higher core mass. Therefore, both planets could have had a similar formation pathway, with the inner planet having an initial envelope-mass fraction of ≲10% and core mass of ˜4.4 M⊕, while the outer had an initial envelope-mass fraction of the order of 15%-30% and core mass ˜7.3 M⊕. Finally, our results indicate that the outer planet had a long (≳30 Myr) initial cooling time, much longer than would naively be predicted from simple timescale arguments. The long initial cooling time could be evidence for a dramatic early cooling episode such as the recently proposed “boil-off” process.
13.1 Foot Diameter Fluted-Core Sandwich Composite Test Article
2013-09-26
White light shape and measurement of a 13.1 Foot diameter fluted-core sandwich composite test article designed by LaRC and fabricated by Boeing Under Space Act Agreement SAA1-737, Annex 14. to be tested in LaRC's combined Loads Testing System (COLTS).
13.1 Foot Diameter Fluted-Core Sandwich Composite Test Article
2013-09-25
White light shape and measurement of a 13.1 Foot diameter fluted-core sandwich composite test article designed by LaRC and fabricated by Boeing Under Space Act Agreement SAA1-737, Annex 14. to be tested in LaRC's combined Loads Testing System (COLTS).
ECOLOGICAL RISKS OF DIOXINS IN LAKE ONTARIO: A TALE OF TWO CORES
Sediment box cores have frequently been used to determine organochlorine chemical loading histories of lakes and reservoirs. ? Typical profiles for PCBs or DDT show concentrations that increase from around 1940 to 1970 and then decline to the present. Applying these data to retr...
Spherical and tubule nanocarriers for sustained drug release
Shutava, T.; Fakhrullin, R.; Lvov, Y.
2014-01-01
We discuss new trends in Layer-by-Layer (LbL) encapsulation of spherical and tubular cores of 50–150 nm diameter and loaded with drugs. This core size decrease (from few micrometers to a hundred of nanometers) for LbL encapsulation required development of sonication assistant non-washing technique and shell PEGylation to reach high colloidal stability of drug nanocarriers at 2–3 mg/mL concentration in isotonic buffers and serum. For 120–170 nm spherical LbL nanocapsules of low soluble anticancer drugs, polyelectrolyte shell thickness controls drug dissolution. As for nanotube carriers, we concentrated on natural halloysite clay nanotubes as cores for LbL encapsulation that allows high drug loading and sustains its release over tens and hundreds hours. Further drug release prolongation was reached with formation of the tube-end stoppers. PMID:25450068
Heat pipe nuclear reactor for space power
NASA Technical Reports Server (NTRS)
Koening, D. R.
1976-01-01
A heat-pipe-cooled nuclear reactor has been designed to provide 3.2 MWth to an out-of-core thermionic conversion system. The reactor is a fast reactor designed to operate at a nominal heat-pipe temperature of 1675 K. Each reactor fuel element consists of a hexagonal molybdenum block which is bonded along its axis to one end of a molybdenum/lithium-vapor heat pipe. The block is perforated with an array of longitudinal holes which are loaded with UO2 pellets. The heat pipe transfers heat directly to a string of six thermionic converters which are bonded along the other end of the heat pipe. An assembly of 90 such fuel elements forms a hexagonal core. The core is surrounded by a thermal radiation shield, a thin thermal neutron absorber, and a BeO reflector containing boron-loaded control drums.
Critical induction a key quantity for the optimisation of transformer core operation
NASA Astrophysics Data System (ADS)
Ilo, A.; Pfützner, H.; Nakata, T.
2000-06-01
No-load losses P of transformers core have been considerably decreased through introduction of the so-called multi-step-lap designs. However, profound guidelines for the optimum step-number N do not exist. This study shows that the combination of both N and working induction B characterises the flux distribution. Transformer cores can operate in an over or an under-critical way depending on N and B.
Post-Buckling Analysis of Curved Honeycomb Sandwich Panels Containing Interfacial Disbonds
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Bednarcyk, Brett A.; Krivanek, Thomas K.
2016-01-01
A numerical study on the effect of facesheet-core disbonds on the post-buckling response of curved honeycomb sandwich panels is presented herein. This work was conducted as part of the development of a damage tolerance plan for the next-generation Space Launch System heavy lift launch vehicle payload fairing. As such, the study utilized full-scale fairing barrel segments as the structure of interest. The panels were composed of carbon fiber reinforced polymer facesheets and aluminum honeycomb core. The panels were analyzed numerically using the finite element method incorporating geometric nonlinearity. In a predetermined circular region, facesheet and core nodes were detached to simulate a disbond, between the outer mold line facesheet and honeycomb core, induced via low-speed impact. Surface-to-surface contact in the disbonded region was invoked to prevent interpenetration of the facesheet and core elements and obtain realistic stresses in the core. The diameter of this disbonded region was varied and the effect of the size of the disbond on the post-buckling response was observed. Significant changes in the slope of the edge load-deflection response were used to determine the onset of global buckling and corresponding buckling load. Finally, several studies were conducted to determine the sensitivity of the numerical predictions to refinement in the finite element mesh.
Tang, Chun-hua; Yin, Xuesong; Gong, Hao
2013-11-13
Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yousu; Huang, Zhenyu; Rice, Mark J.
Contingency analysis studies are necessary to assess the impact of possible power system component failures. The results of the contingency analysis are used to ensure the grid reliability, and in power market operation for the feasibility test of market solutions. Currently, these studies are performed in real time based on the current operating conditions of the grid with a set of pre-selected contingency list, which might result in overlooking some critical contingencies caused by variable system status. To have a complete picture of a power grid, more contingencies need to be studied to improve grid reliability. High-performance computing techniques holdmore » the promise of being able to perform the analysis for more contingency cases within a much shorter time frame. This paper evaluates the performance of counter-based dynamic load balancing schemes for a massive contingency analysis program on 10,000+ cores. One million N-2 contingency analysis cases with a Western Electricity Coordinating Council power grid model have been used to demonstrate the performance. The speedup of 3964 with 4096 cores and 7877 with 10240 cores are obtained. This paper reports the performance of the load balancing scheme with a single counter and two counters, describes disk I/O issues, and discusses other potential techniques for further improving the performance.« less
Tammeorg, Olga; Horppila, Jukka; Tammeorg, Priit; Haldna, Marina; Niemistö, Juha
2016-12-01
Ascertaining the phosphorus (P) release processes in polymictic lakes is one of the methodologically most complex questions in limnology. In the current study, we combined short- and long-term investigations to elucidate the role of sediments in the P budget in a chain of eutrophic lake basins. We quantified the internal loading of P in three basins of Lake Peipsi (Estonia/Russia) for two periods characterized by different external P loadings using radiometrically dated sediment cores (long-term studies). The relationships between different water quality variables and the internal P loading, and the external P loading were studied. Our short-term studies aimed at elucidating the possible mechanisms behind variations in internal P loading included examination of the surficial sediments, i.e., seasonal measurements of redox potential, sediment pore water P concentrations and diffusive fluxes. Our results provided evidence for a potentially high importance of internal P loading in regulating water quality. The sediment core analyses revealed an increase in the internal P loading during the period of lower external P loading coinciding with the general deterioration in the lake water quality (i.e, higher concentrations of soluble reactive phosphorus, total phosphorus and biomass of cyanobacteria). Increase in wave action between the two studied periods appeared to cause more frequent sediment resuspension, and thus be the most likely reason for the variations in internal P loading. Our short-term measurements indicated that resuspension events can be followed by a considerable increase in the diffusive fluxes. Copyright © 2016 Elsevier B.V. All rights reserved.
The Common Core State Standards Initiative: an Overview
ERIC Educational Resources Information Center
Watt, Michael G.
2011-01-01
The purpose of this study was to evaluate decision making in the Common Core State Standards Initiative as the change process moved from research, development and diffusion activities to adoption of the Common Core State Standards by the states. A decision-oriented evaluation model was used to describe the four stages of planning, structuring,…
Christensen, Victoria G.
1999-01-01
The Solomon River drains approximately 6,840 square miles of mainly agricultural land in north-central Kansas. The Bureau of Reclamation, U.S. Department of the Interior, has begun a Resource Management Assessment (RMA) of the Solomon River Basin to provide the necessary data for National Environmental Policy Act (NEPA) compliance before renewal of long-term water-service contracts with irrigation districts in the basin. In May 1998, the U.S. Geological Survey (USGS) collected bottom-sediment cores from Kirwin and Webster Reservoirs, which are not affected by Bureau irrigation, and Waconda Lake, which receives water from both Bureau and non-Bureau irrigated lands. The cores were analyzed for selected physical properties, total recoverable metals, nutrients, cesium-137, and total organic carbon. Spearman's rho correlations and Kendall's tau trend tests were done for sediment concentrations in cores from each reservoir. Selenium, arsenic, and strontium were the only constituents that showed an increasing trend in concentrations for core samples from more than one reservoir. Concentrations and trends for these three constituents were compared to information on historical irrigation to determine any causal effect. Increases in selenium, arsenic, and strontium concentrations can not be completely explained by Bureau irrigation. However, mean selenium, arsenic, and strontium concentrations in sediment from all three reservoirs may be related to total irrigated acres (Bureau and non-Bureau irrigation) in the basin. Selenium, arsenic, and strontium loads were calculated for Webster Reservoir to determine if annual loads deposited in the reservoir were increasing along with constituent concentrations. Background selenium, arsenic, and strontium loads in Webster Reservoir are significantly larger than post-background loads.
Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Permana, Sidik; Novitrian,; Waris, Abdul
Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissilemore » material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.« less
Zhuo, Xuezhi; Lei, Tian; Miao, Linlin; Chu, Wei; Li, Xiaowen; Luo, Lifeng; Gou, Jingxin; Zhang, Yu; Yin, Tian; He, Haibing; Tang, Xing
2018-05-30
To develop an injectable formulation and improve the stability of disulfiram (DSF), DSF was encapsulated into mixed nanoparticles (DSF-NPs) through a high-pressure homogenization method. The Flory-Huggins interaction parameters (χ FH ) were calculated to predict the miscibility between DSF and the hydrophobic core, resulting in PCL 5000 selected as the hydrophobic block to encapsulate the DSF, as PCL 5000 had a lower χ FH 3.39 and the drug loading of the nanoparticles prepared by mPEG 5000 -PCL 5000 was relatively higher. mPEG 5000 -PCL 5000 and PCL 5000 were blended to reduce the leakage of DSF during preparation, as well as increase the stability of the nanoparticles. The cargo-loading capacity of the nanoparticles was improved from 3.35% to 5.50% by reducing the crystallinity of the PCL nanoparticle core, and the crystallinity decreased from 51.13% to 25.15% after adding medium chain triglyceride (MCT). The DSF-NPs prepared by the above method had a small particle size of 98.1 ± 10.54 nm, with a polydispersity index (PDI) of 0.036, as well as drug loading of 5.50%. Furthermore, DSF-NPs containing MCT showed higher stability than DSF-NPs without MCT and DSF-sol (DSF dissolved in Cremophor EL and ethanol) in water and 90% plasma-containing PBS. The pharmacokinetics proved that DSF-NPs containing MCT enhanced the DSF concentration in the blood. Finally, DSF-NPs effectively inhibited H22 xenograft tumor growth in vivo. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Rong; Li, Kang; Xia, Kaiwen; Lin, Yuliang; Yao, Wei; Lu, Fangyun
2016-10-01
A dynamic load superposed on a static pre-load is a key problem in deep underground rock engineering projects. Based on a modified split Hopkinson pressure bar test system, the notched semi-circular bend (NSCB) method is selected to investigate the fracture initiation toughness of rocks subjected to pre-load. In this study, a two-dimensional ANSYS finite element simulation model is developed to calculate the dimensionless stress intensity factor. Three groups of NSCB specimen are tested under a pre-load of 0, 37 and 74 % of the maximum static load and with the loading rate ranging from 0 to 60 GPa m1/2 s-1. The results show that under a given pre-load, the fracture initiation toughness of rock increases with the loading rate, resembling the typical rate dependence of materials. Furthermore, the dynamic rock fracture toughness decreases with the static pre-load at a given loading rate. The total fracture toughness, defined as the sum of the dynamic fracture toughness and initial stress intensity factor calculated from the pre-load, increases with the pre-load at a given loading rate. An empirical equation is used to represent the effect of loading rate and pre-load force, and the results show that this equation can depict the trend of the experimental data.
NASA Technical Reports Server (NTRS)
1993-01-01
This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties. This report describes test results, procedures employed, and any unusual occurrences or specific observations associated with this test program.
Ultrasonic Drilling and Coring
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
1998-01-01
A novel drilling and coring device, driven by a combination, of sonic and ultrasonic vibration, was developed. The device is applicable to soft and hard objects using low axial load and potentially operational under extreme conditions. The device has numerous potential planetary applications. Significant potential for commercialization in construction, demining, drilling and medical technologies.
On the optimization of mitred overlaps in transformer cores
NASA Astrophysics Data System (ADS)
Bengtsson, C.; Pfützner, H.; Schönhuber, P.
1989-05-01
The influence of the overlap length a on the no-load loss P and excitation power S of single phase model cores was measured for different sheet widths w. It was found that the optimum overlap length a0 shows a non-linear increase with w. The appearance of such minima, however, was irregular, and in many cases, the lowest no-load loss was obtained at the smallest investigated overlap length, an effect which may result from the assembling conditions. Minima in P will appear as a consequence of a balance between loss contributions resulting from normal flux in the overlap region, from increased longitudinal flux due to flux transfer between sheets, and from the triangular cut-outs at the inner corners of the cores. However, the dependence of a0 on w is attributed only to the triangular cut-outs. The flatness of the minima in combination with their irregular appearance, makes the effect difficult to be used in practice. It is concluded that in power transformers, the overlap length should be chosen as small as possible within the limitations set by stability requirements of the core. This is especially important in cores with a high operating flux density.
Microporous polymeric 3D scaffolds templated by the layer-by-layer self-assembly.
Paulraj, Thomas; Feoktistova, Natalia; Velk, Natalia; Uhlig, Katja; Duschl, Claus; Volodkin, Dmitry
2014-08-01
Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio-molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer-by-layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio-molecules using external triggers such as IR-light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carbonaceous aerosol tracers in ice-cores record multi-decadal climate oscillations
Seki, Osamu; Kawamura, Kimitaka; Bendle, James A. P.; Izawa, Yusuke; Suzuki, Ikuko; Shiraiwa, Takayuki; Fujii, Yoshiyuki
2015-01-01
Carbonaceous aerosols influence the climate via direct and indirect effects on radiative balance. However, the factors controlling the emissions, transport and role of carbonaceous aerosols in the climate system are highly uncertain. Here we investigate organic tracers in ice cores from Greenland and Kamchatka and find that, throughout the period covered by the records (1550 to 2000 CE), the concentrations and composition of biomass burning-, soil bacterial- and plant wax- tracers correspond to Arctic and regional temperatures as well as the warm season Arctic Oscillation (AO) over multi-decadal time-scales. Specifically, order of magnitude decreases (increases) in abundances of ice-core organic tracers, likely representing significant decreases (increases) in the atmospheric loading of carbonaceous aerosols, occur during colder (warmer) phases in the high latitudinal Northern Hemisphere. This raises questions about causality and possible carbonaceous aerosol feedback mechanisms. Our work opens new avenues for ice core research. Translating concentrations of organic tracers (μg/kg-ice or TOC) from ice-cores, into estimates of the atmospheric loading of carbonaceous aerosols (μg/m3) combined with new model constraints on the strength and sign of climate forcing by carbonaceous aerosols should be a priority for future research. PMID:26411576
NASA Astrophysics Data System (ADS)
Sarangi, Chandan; Tripathi, S. N.; Qian, Yun; Kumar, Shailendra; Ruby Leung, L.
2018-04-01
Coupling of urban land use land cover (LULC) and aerosol loading on rainfall around cities in the Gangetic Basin (GB) is examined here. Long-term observations illustrate more rainfall at urban core and climatological downwind regions compared to the upwind regions of Kanpur, a metropolitan area located in central GB. In addition, analysis of a 15 day cloud resolving simulation using the Weather Research and Forecasting model also illustrated similar rainfall pattern around other major cities in the GB. Interestingly, the enhancement of downwind rainfall was greater than that over urban regions, and it was positively associated with both the urban area of the city and ambient aerosol loading during the propagating storm. Further, to gain a process-level understanding, a typical storm that propagated northwestward across Kanpur was simulated using Weather Research and Forecasting under three different scenarios. Case 1 has realistic LULC representation of Kanpur, while the grids representing the Kanpur urban region were replaced by cropland LULC pattern in Case 2. Comparison illustrated that urban heat island effect caused convergence of winds and moisture in the lower troposphere, which enhances convection over urban region and induced more rainfall over the urban core compared to upwind regions. Case 3 is similar to Case 1 but lower aerosol concentration (by a factor of 100) over the storm region. Analysis shows that aerosol-induced microphysical changes delay the initiation of warm rain (over the upwind region) but enhance ice phase particle formation in latter stages (over the urban and downwind regions) resulting in increase in downwind rainfall.
Yu, Shuangjiang; Ding, Jianxun; He, Chaoliang; Cao, Yue; Xu, Weiguo; Chen, Xuesi
2014-05-01
Nanoscale carriers that stably load drugs in blood circulation and release the payloads in desirable sites in response to a specific trigger are of great interest for smart drug delivery systems. For this purpose, a novel type of disulfide core cross-linked micelles, which are facilely fabricated by cross-linking of poly(ethylene glycol)/polyurethane block copolymers containing cyclic disulfide moieties via a thiol-disulfide exchange reaction, are developed. A broad-spectrum anti-cancer drug, doxorubicin (DOX), is loaded into the micelles as a model drug. The drug release from the core cross-linked polyurethane micelles (CCL-PUMs) loaded with DOX is suppressed in normal phosphate buffer saline (PBS), whereas it is markedly accelerated with addition of an intracellular reducing agent, glutathione (GSH). Notably, although DOX-loaded CCL-PUMs display lower cytotoxicity in vitro compared to either free DOX or DOX-loaded uncross-linked polyurethane micelles, the drug-loaded CCL-PUMs show the highest anti-tumor efficacy with reduced toxicity in vivo. Since enhanced anti-tumor efficacy and reduced toxic side effects are key aspects of efficient cancer therapy, the novel reduction-responsive CCL-PUMs may hold great potential as a bio-triggered drug delivery system for cancer therapy. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Memory Impairment in Multiple Sclerosis is Due to a Core Deficit in Initial Learning
DeLuca, John; Leavitt, Victoria M.; Chiaravalloti, Nancy; Wylie, Glenn
2013-01-01
Persons with multiple sclerosis (MS) suffer memory impairment, but research on the nature of MS-related memory problems is mixed. Some have argued for a core deficit in retrieval, while others have identified deficient initial learning as the core deficit. We used a selective reminding paradigm to determine whether deficient initial learning or delayed retrieval represents the primary memory deficit in 44 persons with MS. Brain atrophy was measured from high-resolution MRIs. Regression analyses examined the impact of brain atrophy on (a) initial learning and delayed retrieval separately, and then (b) delayed retrieval controlling for initial learning. Brain atrophy was negatively associated with both initial learning and delayed retrieval (ps < .01), but brain atrophy was unrelated to retrieval when controlling for initial learning (p > .05). In addition, brain atrophy was associated with inefficient learning across initial acquisition trials, and brain atrophy was unrelated to delayed recall among MS subjects who successfully acquired the word list (although such learning frequently required many exposures). Taken together, memory deficits in MS are a result of deficits in initial learning; moreover, initial learning mediates the relationship between brain atrophy and subsequent retrieval, thereby supporting the core learning-deficit hypothesis of memory impairment in MS. PMID:23832311
{Linking permeability and mechanical damage for basalt from Mt Etna Volcano, Italy}
NASA Astrophysics Data System (ADS)
Faoro, I.; Vinciguerra, S.; Marone, C.; Elsworth, D.
2009-04-01
Volcanic edifices, such as Mt. Etna volcano (Italy), are affected from repeated episodes of pressurisation due to magma emplacement from deep reservoirs to shallow depths. This mechanism pressurizes the large aquifers within the edifice and increases the level of crack damage within the rocks of the edifice over extended periods of times. In order to improve our understanding of the complex coupling between circulating fluids and the development of crack damage, we performed flow-through tests using cylindrical cores of Etna Basalt (Etna, Italy) to evaluate permeabilty changes as a function of approach to failure under non-hydrostatic stresses at confining pressures from 5 to 60 MPa. Samples were loaded to failure by increasing increments of axial stress or by cyclic stresses of increasing amplitude. Both intact samples and pre-drilled samples (1.18mm) were tested. Under hydrostatic stresses, the permeability values of the intact sample decrease linearly with the increments of pressure and range between 5.2*10-17 m2and 1.5*10-17m2Under non-hydrostatic conditions, at low deviatoric stresses from (up to 18 MPa), the permeability values ranged between 5.5*10-17 m2and 4*10-17m2 and tended to completely recover the initial value each time the sample was unloaded, indicating an elastic regime. At higher deviatoric stresses (up to 60 MPa) the permeability values range between 2*10-17 m2 and 0.6*10-17m2. We hypothesize that from 5MPa to 40MPa axial stress, anelastic deformation mechanisms start to occur, with progressive pore collapse and opening of microfractures, resulting in a change of permeability. Under incremental uniaxial cyclic loading up to peak stresses of 160 MPa permeability decreases up to 2 orders of magnitude from initial values of 1*10-15 m2 to 2*10-14m2 Higher initial permeability values are related to the presence of an open fracture in the sample. We interpreted the reduction as a result of progressive closure of the voids space, as the axial load is incremented. Overall it is shown that permeability on Etna basalt rocks is strongly dependent on the loading conditions. Ongoing work is expected to elucidate the mechanisms relating increasing damage mechanical damage to changes of permeability.
Wu, Shuo; Zhao, Qiong; Zhang, Pinghu; Kulp, John; Hu, Lydia; Hwang, Nicky; Zhang, Jiming; Block, Timothy M; Xu, Xiaodong; Du, Yanming; Chang, Jinhong; Guo, Ju-Tao
2017-08-15
Chronic hepatitis B virus (HBV) infection is a global public health problem. Although the currently approved medications can reliably reduce the viral load and prevent the progression of liver diseases, they fail to cure the viral infection. In an effort toward discovery of novel antiviral agents against HBV, a group of benzamide (BA) derivatives that significantly reduced the amount of cytoplasmic HBV DNA were discovered. The initial lead optimization efforts identified two BA derivatives with improved antiviral activity for further mechanistic studies. Interestingly, similar to our previously reported sulfamoylbenzamides (SBAs), the BAs promote the formation of empty capsids through specific interaction with HBV core protein but not other viral and host cellular components. Genetic evidence suggested that both SBAs and BAs inhibited HBV nucleocapsid assembly by binding to the heteroaryldihydropyrimidine (HAP) pocket between core protein dimer-dimer interfaces. However, unlike SBAs, BA compounds uniquely induced the formation of empty capsids that migrated more slowly in native agarose gel electrophoresis from A36V mutant than from the wild-type core protein. Moreover, we showed that the assembly of chimeric capsids from wild-type and drug-resistant core proteins was susceptible to multiple capsid assembly modulators. Hence, HBV core protein is a dominant antiviral target that may suppress the selection of drug-resistant viruses during core protein-targeting antiviral therapy. Our studies thus indicate that BAs are a chemically and mechanistically unique type of HBV capsid assembly modulators and warranted for further development as antiviral agents against HBV. IMPORTANCE HBV core protein plays essential roles in many steps of the viral replication cycle. In addition to packaging viral pregenomic RNA (pgRNA) and DNA polymerase complex into nucleocapsids for reverse transcriptional DNA replication to take place, the core protein dimers, existing in several different quaternary structures in infected hepatocytes, participate in and regulate HBV virion assembly, capsid uncoating, and covalently closed circular DNA (cccDNA) formation. It is anticipated that small molecular core protein assembly modulators may disrupt one or multiple steps of HBV replication, depending on their interaction with the distinct quaternary structures of core protein. The discovery of novel core protein-targeting antivirals, such as benzamide derivatives reported here, and investigation of their antiviral mechanism may lead to the identification of antiviral therapeutics for the cure of chronic hepatitis B. Copyright © 2017 American Society for Microbiology.
Effects of stress paths on physical properties of sediments at the Nankai Trough subduction zone
NASA Astrophysics Data System (ADS)
Kitajima, H.; Saffer, D. M.
2011-12-01
Stress states are one of the most important factors governing deformation modes and fault strength. In subduction systems where tectonic stress is large, sediments are subjected to complicated stress conditions in time and space. Because direct measurements of stress are very limited, stress conditions at depths have been estimated by combining seismic reflection data with empirical relations between compressional-wave, porosity, and effective stress [Tsuji et al., 2008; Tobin and Saffer, 2009]. However, most of the empirical relations are derived from experiments conducted under isotropic conditions, and do not account for the more complicated stress states expected in active subduction-accretion complexes. In this study, we aim to derive relations between physical properties and stress states from triaxial deformation experiments on sediments. During the Integrated Ocean Drilling Program (IODP) Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) Expeditions 314, 315, 319, 322, and 333, core samples were recovered from shallow boreholes into the accretionary prism and two sites seaward of the deformation front (reference sites). We used core samples from reference sites (Sites C0011 and C0012) for this study because they represent input material for the subduction system, and have not been subjected to tectonic compression in the accretionary wedge. In our deformation tests, samples are loaded under a range of different stress paths including isotropic loading, triaxial compression, and triaxial extension by controlling axial stress (up to 100 MPa), confining pressure (up to 100 MPa), and pore pressure (0.5-28 MPa). During tests, all pressures, axial displacement, and pore volume change were monitored. Permeability, and ultrasonic velocity were also measured during the tests. Two experiments have been conducted on samples taken from the core 322-C0011B-19R-5 (Lower Shikoku Basin hemipelagic mudstone, initial porosity of 43 %). The first test was conducted under istotropic loading and unloading by (1) increase and decrease in confining pressure, and (2) decrease and increase in pore pressure. The evolution of physical properties depends on effective pressure regardless of whether confining pressure or pore pressure is controlled. As effective pressure increases from 0.2 to 30 MPa, porosity decreases from 43 to 18 %, permeability decreases from 1.1×10-18 to 4.1×10-20 m2, and compressional-wave velocity increases from 1.76 to 2.5 km/s, respectively. The same physical properties do not fully recover during unloading, which corresponds to overconsolidated or overpressured condition. The second test included various loading paths including triaxial compression and extension, and drained and undrained condition of pore pressure. The results indicate that the evolution of physical properties be dependent on both effective mean stress and differential stress. The experimental results suggest that it is important to consider consolidation state and loading paths. We will present more experimental results and derive relations between physical properties and stress states.
NASA Technical Reports Server (NTRS)
Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin
2004-01-01
The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.
Main steam-line break core shroud loading calculations for BWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoop, U.; Feltus, M.A.; Baratta, A.J.
1995-12-31
In July 1994, the U.S. Nuclear regulatory Commission sent out Generic Letter 94-03 to all boiling water reactors in the United States, informing them of intergranular stress corrosion cracking of core shrouds found in 2 reactors. The letter directed all to perform safety analysis of the BWR units. Penn State performed scoping calculations to determine the forces experienced by the core shroud during a main-stream line break transient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sesonske, A.
1980-08-01
Detailed core management arrangements are developed requiring four operating cycles for the transition from present three-batch loading to an extended burnup four-batch plan for Zion-1. The ARMP code EPRI-NODE-P was used for core modeling. Although this work is preliminary, uranium and economic savings during the transition cycles appear of the order of 6 percent.
Collins, Donley S.
1983-01-01
A preliminary core study from the Acme Fire-Pit-1 drill hole, Sheridan County, Wyoming, revealed that the upper portion of the core had been baked by a fire confined to the underlying Monarch coal bed. The baked (clinkered) sediment above the Monarch coal bed was determined to have higher point-load strength values (greater than 2 MPa) than the sediment under the burned coal
ERIC Educational Resources Information Center
Kornhaber, Mindy L.; Barkauskas, Nikolaus J.; Griffith, Kelly M.; Sausner, Erica; Mahfouz, Julia
2017-01-01
The Common Core State Standards Initiative (Common Core) was spearheaded by policy entrepreneurs, unveiled nationally in 2010, and initially received strong support from leaders in state and federal government, philanthropic foundations, the business sector, and teacher unions. However, the reform came into the crosshairs of an ideologically wide…
Numerical analysis and experiment to identify origin of buckling in rapid cycling synchrotron core
NASA Astrophysics Data System (ADS)
Morita, Y.; Kageyama, T.; Akoshima, M.; Torizuka, S.; Tsukamoto, M.; Yamashita, S.; Yoshikawa, N.
2013-11-01
The accelerating cavities used in the rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) are loaded with magnetic alloy (MA) cores. Over lengthly periods of RCS operation, significant reductions in the impedance of the cavities resulting from the buckling of the cores were observed. A series of thermal structural simulations and compressive strength tests showed that the buckling can be attributed to the low-viscosity epoxy resin impregnation of the MA core that causes the stiffening of the originally flexible MA-ribbon-wound core. Our results showed that thermal stress can be effectively reduced upon using a core that is not epoxy-impregnated.
Mechanical Behavior of Advanced Materials for Aerospace Applications
NASA Technical Reports Server (NTRS)
Telesman, Ignancy (Technical Monitor); Kantzos, Peter; Shannon, Brian
2003-01-01
The purpose of this study was to determine whether High Cycle Fatigue (HCF) loading has any deleterious synergistic effect on life when combined with the typical Low Cycle Fatigue (LCF) loading present in engine disks. This interaction is particularly important in the rim region of blisk applications, where fatigue initiations from vibratory stresses (HCF) may be propagated to the disk by LCF. The primary effort in this study was focused on determining and documenting initiation sites and damage mechanisms. Under LCF loading conditions the failures were predominantly surface initiated, while HCF loading favored internal initiations. Deleterious HCF/LCF interactions would always result in a transition from internal to surface initiations. The results indicated that under the relative stress conditions evaluated there was no interaction between HCF and LCF. In FY99 this effort was extended to investigate several other loading conditions (R-ratio effects) as well as interactions between LCF and two-hour tensile dwells. The results will be published as a NASA Technical Memorandum.
Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation
NASA Astrophysics Data System (ADS)
Parekh, Gaurav
In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few layers of the LbL shell are assembled at acidic pH 3, and the final layers (2-3) are assembled at a slightly basic pH of 7.4. These LbL-encapsulated nanocores are not stable and immediately aggregate in water or the serum. A final layer of 5 kDa PEG was assembled to improve circulation time. It showed higher colloidal stability in PBS, high drug loading concentration of 0.5 mg/mL, and an improved drug chemical stability in Fetal Bovine Serum with high lactone fraction of 99%. It also showed 3 times improved cytotoxicity against glioblastoma cancer cells. For the first time we applied a new method of the LbL capsule assembly at different pH values, the first 4 bilayers at pH 3, and the following 3 bilayers at pH 7.4. In the second study (CHAPTER 5), the developed LbL assembly for low solubility drug encapsulation was extended for the delivery of PTX loaded in nanomicelle cores. PTX, as a nanomicelle core, is encapsulated with fewer layers of LbL assembly, followed by an extra layer of PEG (PEGylation). A significant improvement was seen in reducing the process steps through reduction in the number of LbL layers, while smaller nano-colloids, ~100 nm, were produced with improved drug loading capacity, higher cytotoxicity, and high mice survival rate. In the third study (CHAPTER 6), we have applied the concepts learned and the techniques developed from the previous two studies to modify the surface of the nanostructured solid lipid carriers (NLC) with LbL architecture, plus extra PEGylation. The NLC are co-loaded with DOX and docosahexaenoic acid (DHA). This study is an attempt to further increase drug circulation time in the blood. We improved the colloidal stability with a narrow distribution size, 128 nm, polydispersity of 0.098, a higher longevity in the blood, a 1.5 times lower accumulation in the liver, a 2.25 times higher accumulation in tumors, and a significant ~3.5 times greater tumor growth inhibition in 4T1 murine tumor model in mice. In conclusion, we developed a general model of an LbL nanoassembly core-shell drug delivery system of three anticancer drugs. The capsules had diameters of ca. 100170 nm, were stable in the serum and the blood for three weeks, were injectable to small animals with a circulation time of 1-4 hrs., and effectively suppressed cancerous tumors in mice.
Schaefer, Jennifer E
2016-01-01
The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative introduced by the Obama Administration in 2013 presents a context for integrating many STEM competencies into undergraduate neuroscience coursework. The BRAIN Initiative core principles overlap with core STEM competencies identified by the AAAS Vision and Change report and other entities. This neurobiology course utilizes the BRAIN Initiative to serve as the unifying theme that facilitates a primary emphasis on student competencies such as scientific process, scientific communication, and societal relevance while teaching foundational neurobiological content such as brain anatomy, cellular neurophysiology, and activity modulation. Student feedback indicates that the BRAIN Initiative is an engaging and instructional context for this course. Course module organization, suitable BRAIN Initiative commentary literature, sample primary literature, and important assignments are presented.
Rating the strength of coal mine roof rocks. Information circular/1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molinda, G.M.; Mark, C.
1996-05-01
The Ferm pictoral classification of coal measure rocks is widely utilized in coalfield exploration. Although extremely useful as an alternative to conventional geologic description, no material properties are provided that would be suitable for engineering solutions. To remedy this problem, the USBM has tested over 30 common coal measure roof rock types for axial and bedding strength. More than 1,300 individual point load tests have been conducted on core from 8 different coal mines representing the full range of common coal measure rocks. The USBM core and roof exposure properties database has been merged with the picture classification to provide,more » for the first time, a simple, clear guide from field identification of core to the associated mechanical strength of the rock. For 33 of the most common roof rocks, the axial and diametral point load strength, as well as the ultimate unit rating, is overprinted onto the photograph.« less
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.
1995-01-01
A structurally efficient hat-stiffened panel concept that utilizes a structural foam as stiffener core has been designed for aircraft primary structural applications. This stiffener concept utilizes a manufacturing process that can be adapted readily to grid-stiffened structural configurations which possess inherent damage tolerance characteristics due to their multiplicity of load paths. The foam-filled hat-stiffener concept in a prismatically stiffened panel configuration is more efficient than most other stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The prismatically stiffened panel concept investigated here has been designed using AS4/3502 preimpregnated tape and Rohacell foam core and evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimens suggest that this structural concept responds to loading as anticipated and has good damage tolerance characteristics.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1993-01-01
Combined inplane compressive and shear buckling analysis was conducted on flat rectangular sandwich panels using the Raleigh-Ritz minimum energy method with a consideration of transverse shear effect of the sandwich core. The sandwich panels were fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that slightly slender (along unidirectional compressive loading axis) rectangular sandwich panels have the most desirable stiffness-to-weight ratios for aerospace structural applications; the degradation of buckling strength of sandwich panels with rising temperature is faster in shear than in compression; and the fiber orientation of the face sheets for optimum combined-load buckling strength of sandwich panels is a strong function of both loading condition and panel aspect ratio. Under the same specific weight and panel aspect ratio, a sandwich panel with metal matrix composite face sheets has much higher buckling strength than one having monolithic face sheets.
Core compressor exit stage study. Volume 1: Blading design. [turbofan engines
NASA Technical Reports Server (NTRS)
Wisler, D. C.
1977-01-01
A baseline compressor test stage was designed as well as a candidate rotor and two candidate stators that have the potential of reducing endwall losses relative to the baseline stage. These test stages are typical of those required in the rear stages of advanced, highly-loaded core compressors. The baseline Stage A is a low-speed model of Stage 7 of the 10 stage AMAC compressor. Candidate Rotor B uses a type of meanline in the tip region that unloads the leading edge and loads the trailing edge relative to the baseline Rotor A design. Candidate Stator B embodies twist gradients in the endwall region. Candidate Stator C embodies airfoil sections near the endwalls that have reduced trailing edge loading relative to Stator A. Tests will be conducted using four identical stages of blading so that the designs described will operate in a true multistage environment.
Highway Maintenance Equipment Operator: Basic Core. Training Materials.
ERIC Educational Resources Information Center
Perky, Sandra Dutreau; And Others
This basic core curriculum is part of a three-part series of instructional guides designed for use in teaching a course in highway maintenance equipment operation. Addressed in the individual units of the curriculum, after an orientation unit, are safety; basic math; basic hand tools; procedures for loading. lashing, and unloading equipment;…
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M. (Inventor); Kren, Lawrence A. (Inventor)
2000-01-01
A resilient braided rope seal for use in high temperature applications includes a center core of fibers. a resilient canted spring member supporting the core and at least one layer of braided sheath fibers tightly packed together overlying the spring member. The seal provides both improved load bearing and resiliency. Permanent set and hysteresis are greatly reduced.
Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per
2016-01-01
To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1-7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8-11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. There was a significant difference (P<0.05) between the core designs, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS(®) (1,806±165 N) and e.max(®) ZirPress (1,854±115 N) and the state-of-the-art design with VITA VM(®) 9 (1,849±150 N) demonstrated the highest mean fracture values. The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed cores. All veneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass-ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of the fracture pattern shows differences between the milled veneers and over-pressed or built-up veneers, where the milled ones show numerically more veneer cracks and the other groups only show complete connector fractures.
Spiral wound extraction cartridge
Wisted, Eric E.; Lundquist, Susan H.
1999-01-01
A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite.
NASA Astrophysics Data System (ADS)
Guo, Miao; Yan, Yu; Liu, Xiaozhou; Yan, Husheng; Liu, Keliang; Zhang, Hongkai; Cao, Youjia
2010-03-01
Nanocarriers with multilayer core-shell architecture were prepared by coating a superparamagnetic Fe3O4 core with a triblock copolymer. The first block of the copolymer formed the biocompatible outermost shell of the nanocarrier. The second block that contains amino groups and hydrophobic moiety formed the inner shell. The third block bound tightly onto the Fe3O4 core. Chlorambucil (an anticancer agent) and indomethacin (an anti-inflammation agent), each containing a carboxyl group and a hydrophobic moiety, were loaded into the amino-group-containing inner shell by a combination of ionic and hydrophobic interactions. The release rate of the loaded drugs was slow at pH 7.4, mimicking the blood environment, whereas the release rate increased significantly at acidic pH, mimicking the intracellular conditions in the endosome/lysosome. This can be attributed to the disruption of the ionic bond caused by protonation of the carboxylate anion of the drugs and the swelling of the inner shell caused by protonation of the amino groups.
Tests on a 30 kVA class superconducting transformer
NASA Astrophysics Data System (ADS)
Yoneda, E. S.; Tashiro, I.; Morohoshi, M.; Ito, D.
To demonstrate the applicability of superconductors to electric power machines, the present authors made and tested a 30 kVA class single-phase superconducting transformer. The aim of the study was to determine the superconducting transformer properties. Therefore the superconducting transformer has a simple structure, i.e. the primary to secondary voltage ratio is 1:1 and the iron core is immersed in liquid helium. The core loss, evaluated from no-load tests, was 13 W and leakage impedance, obtained by short circuit tests, was 0.02 Ω in accordance with a calculated value. The superconducting transformer showed the limitation effect of fault currents. The authors succeeded in continuous operation with a 0.5 Ω load resistance. These results suggest that efficiency can be 98.5%, if the iron core is located outside the cryostat and if high Tc superconductors are used as current leads. Superconducting windings exhibit training quenches in general. The authors also developed a superconducting transformer quench detector with a third winding around the iron core. The quench detector revealed that the secondary winding quenches before the primary winding.
Designing the Next Generation of Human Spacecraft
NASA Technical Reports Server (NTRS)
Simmons, Emily
2016-01-01
Lunar Space Station Common Module: A new concept for a module for a lunar space station attempts to reduce the module's mass by abandoning the traditional rack structure currently used on the ISS for the mounting of internal hardware and replacing it with a core structure. By using this design, the pressure shell will not have to carry the loads resulting from the internal mass. I worked with another intern to create the initial design for the module, with him focusing on the core and myself focusing on the pressure shell. To start, I was given the shell overall dimensions and material and tasked with sizing the wall thickness and placing stiffeners such that the shell could withstand the required loads. At the same time, I had to keep the mass to a minimum to keep the overall module within the allowable launch mass. Once I had done initial sizing based on pressure loads, I combined the pressure shell with the inner core to perform optimization of the design. Currently, the design involves circumferential stiffeners along the entire length of the pressure shell with longitudinal stiffeners on either end. In addition, extra wall thickness was added around each of the hatches. At this stage, the design shows a comparable mass to a more traditional design, but we are hopeful that, through optimization, we will be able to reduce the mass even further. There is currently a patent pending for the module design, for which I am listed as a co-inventor. ALON Material Testing: I was given samples of aluminum oxynitride (ALON) that had been impacted by a previous intern on which to perform residual strength tests as part of a plan to approve them for space use. Before testing, I measured the pucks and their damages using a ruler and optical micrometer in order to verify that the puck dimensions were within the tolerances set by the test guidelines and that the damages had not grown when the pucks were thinned. The test was a ring-ring test, which used two concentric rings to place the ring in axisymmetric bending, with the puck set up so that the damaged side was always in tension. Though I was unable to do the setup of the test or run the load machine due to a period of changing test procedures, I was able to observe the testing and perform the data collection. The pucks behaved as expected, breaking at the damage, as did the strengths calculated from the data, being lower than for the unimpacted pucks and having less scatter between the puck values. The attached image is of myself during the ALON strength testing. Over the course of my internship, I was able to learn much more about real-life structural analysis and about the behavior of materials, and it confirmed my previous interest in structural analysis. At the same time, due to the opportunities offered to interns, I was able to learn a lot about mission control, and, in doing so, I developed a second interest in working in mission control. In addition, being able to meet the people here and learn about the type of work NASA does made me want to come back to work for NASA full time.
SANS contrast variation study of magnetoferritin structure at various iron loading
NASA Astrophysics Data System (ADS)
Melnikova, Lucia; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Oleksandr I.; Bulavin, Leonid A.; Garamus, Vasil M.; Almásy, László; Mitroova, Zuzana; Kopcansky, Peter
2015-03-01
Magnetoferritin, a synthetic derivate of iron storage protein - ferritin, has been synthesized with different iron oxide loading values. Small-angle neutron scattering experiments were applied to study the structure of magnetoferritin solutions using contrast variation method by varying the light to heavy water ratio of the solvent. Higher iron loading leads to increase of the neutron scattering length density of magnetoferritin and also to the increase of the polydispersity of complexes. The formation of the magnetic core and the variation of the protein shell structure upon iron loading are concluded.
Designing for time-dependent material response in spacecraft structures
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Oleksuk, Lynda L. S.; Bowles, D. E.
1992-01-01
To study the influence on overall deformations of the time-dependent constitutive properties of fiber-reinforced polymeric matrix composite materials being considered for use in orbiting precision segmented reflectors, simple sandwich beam models are developed. The beam models include layers representing the face sheets, the core, and the adhesive bonding of the face sheets to the core. A three-layer model lumps the adhesive layers with the face sheets or core, while a five-layer model considers the adhesive layers explicitly. The deformation response of the three-layer and five-layer sandwich beam models to a midspan point load is studied. This elementary loading leads to a simple analysis, and it is easy to create this loading in the laboratory. Using the correspondence principle of viscoelasticity, the models representing the elastic behavior of the two beams are transformed into time-dependent models. Representative cases of time-dependent material behavior for the facesheet material, the core material, and the adhesive are used to evaluate the influence of these constituents being time-dependent on the deformations of the beam. As an example of the results presented, if it assumed that, as a worst case, the polymer-dominated shear properties of the core behave as a Maxwell fluid such that under constant shear stress the shear strain increases by a factor of 10 in 20 years, then it is shown that the beam deflection increases by a factor of 1.4 during that time. In addition to quantitative conclusions, several assumptions are discussed which simplify the analyses for use with more complicated material models. Finally, it is shown that the simpler three-layer model suffices in many situations.
Ozcopur, B; Akman, S; Eskitascioglu, G; Belli, S
2010-08-01
The aim of this in vitro study was to test the effect of different post systems on fracture strength of roots with re-attached fragments. Root canals of eighty extracted single-rooted human teeth were instrumented (ProFile) and randomly divided into two groups. The roots in the first group were vertically cracked, and the fragments were re-attached using Super Bond C&B (Sun Medical, Tokya, Japan). The roots in the second group were kept sound. Obturation of the roots was performed with MetaSEAL (Sun Medical) and gutta-percha. Post spaces were prepared, and the roots were restored with one of the followings: UniCore (Ultradent), Everstick (Stick Tech), Ribbond (Ribbond), ParaPost (Coltene/Whaledent) (n = 10). Four mm high build-ups were created (Clearfil DC Bond Core; Kuraray, Tokyo, Japan). Compressive loading of the samples was performed after 24 h (1 mm min(-1)). Mean load necessary to fracture each sample was recorded (Newton) and statistically analysed (One-way anova, t-tests). ParaPost showed the highest fracture strength among the roots with re-attached fragments (P < 0.05). UniCore and ParaPost systems showed similar fracture strength in the sound roots (P > 0.05). Re-attached fragments significantly reduced the fracture strength of roots in UniCore group (P = 0.000). Ribbond post showed mostly repairable fractures. Metal post (ParaPost) showed the highest fracture strength in the roots with re-attached fragments; however, fracture pattern was 41% non-repairable. Re-attached fragments significantly reduced the fracture strength of the roots in UniCore group. Prefabricated posts showed similar fracture strength in the sound roots. Customized post systems EverStick and Ribbond showed mostly repairable failure after loading in sound roots or roots with re-attached fragments.
McNulty, P A; Cresswell, A G
2004-06-01
We investigated the recruitment behaviour of low threshold motor units in flexor digitorum superficialis by altering two biomechanical constraints: the load against which the muscle worked and the initial muscle length. The load was increased using isotonic (low load), loaded dynamic (intermediate load) and isometric (high load) contractions in two studies. The initial muscle position reflected resting muscle length in series A, and a longer length with digit III fully extended in series B. Intramuscular EMG was recorded from 48 single motor units in 10 experiments on five healthy subjects, 21 units in series A and 27 in series B, while subjects performed ramp up, hold and ramp down contractions. Increasing the load on the muscle decreased the force, displacement and firing rate of single motor units at recruitment at shorter muscle lengths (P<0.001, dependent t-test). At longer muscle lengths this recruitment pattern was observed between loaded dynamic and isotonic contractions, but not between isometric and loaded dynamic contractions. Thus, the recruitment properties of single motor units in human flexor digitorum superficialis are sensitive to changes in both imposed external loads and the initial length of the muscle.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-22
... Building Under the Transformation Initiative (OneCPD and Core Curricula) AGENCY: Office of the Chief... Transformation Initiative (OneCPD and Core Curricula). Description of Information Collection: The Narratives...
Abrahim, Ahmed; Al-Sayah, Mohammad; Skrdla, Peter; Bereznitski, Yuri; Chen, Yadan; Wu, Naijun
2010-01-05
Fused-core silica stationary phases represent a key technological advancement in the arena of fast HPLC separations. These phases are made by fusing a 0.5 microm porous silica layer onto 1.7 microm nonporous silica cores. The reduced intra-particle flow path of the fused particles provides superior mass transfer kinetics and better performance at high mobile phase velocities, while the fused-core particles provide lower pressure than sub-2 microm particles. In this work, chromatographic performance of the fused-core particles (Ascentis Express) was investigated and compared to that of sub-2 microm porous particles (1.8 microm Zorbax Eclipse Plus C18 and 1.7 microm Acquity BEH C18). Specifically, retention, selectivity, and loading capacity were systematically compared for these two types of columns. Other chromatographic parameters such as efficiency and pressure drop were also studied. Although the fused-core column was found to provide better analyte shape selectivity, both columns had similar hydrophobic, hydrogen bonding, total ion-exchange, and acidic ion-exchange selectivities. As expected, the retention factors and sample loading capacity on the fused-core particle column were slightly lower than those for the sub-2 microm particle column. However, the most dramatic observation was that similar efficiency separations to the sub-2 microm particles could be achieved using the fused-core particles, without the expense of high column back pressure. The low pressure of the fused-core column allows fast separations to be performed routinely on a conventional LC system without significant loss in efficiency or resolution. Applications to the HPLC impurity profiling of drug substance candidates were performed using both types of columns to validate this last point.
Interaction of a turbulent vortex with a lifting surface
NASA Technical Reports Server (NTRS)
Lee, D. J.; Roberts, L.
1985-01-01
The impulsive noise due to blade-vortex-interaction is analyzing in the time domain for the extreme case when the blade cuts through the center of the vortex core with the assumptions of no distortion of the vortex path or of the vortex core. An analytical turbulent vortex core model, described in terms of the tip aerodynamic parameters, is used and its effects on the unsteady loading and maximum acoustic pressure during the interaction are determined.
Environment-based pin-power reconstruction method for homogeneous core calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroyer, H.; Brosselard, C.; Girardi, E.
2012-07-01
Core calculation schemes are usually based on a classical two-step approach associated with assembly and core calculations. During the first step, infinite lattice assemblies calculations relying on a fundamental mode approach are used to generate cross-sections libraries for PWRs core calculations. This fundamental mode hypothesis may be questioned when dealing with loading patterns involving several types of assemblies (UOX, MOX), burnable poisons, control rods and burn-up gradients. This paper proposes a calculation method able to take into account the heterogeneous environment of the assemblies when using homogeneous core calculations and an appropriate pin-power reconstruction. This methodology is applied to MOXmore » assemblies, computed within an environment of UOX assemblies. The new environment-based pin-power reconstruction is then used on various clusters of 3x3 assemblies showing burn-up gradients and UOX/MOX interfaces, and compared to reference calculations performed with APOLLO-2. The results show that UOX/MOX interfaces are much better calculated with the environment-based calculation scheme when compared to the usual pin-power reconstruction method. The power peak is always better located and calculated with the environment-based pin-power reconstruction method on every cluster configuration studied. This study shows that taking into account the environment in transport calculations can significantly improve the pin-power reconstruction so far as it is consistent with the core loading pattern. (authors)« less
A pH and redox dual stimuli-responsive poly(amino acid) derivative for controlled drug release.
Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin
2016-10-01
A pH and redox dual stimuli-responsive poly(aspartic acid) derivative for controlled drug release was successfully developed through progressive ring-opening reactions of polysuccinimide (PSI). Polyethylene glycol (PEG) chains were grafted onto the polyaspartamide backbone via redox-responsive disulfide linkages, providing a sheddable shell for the polymeric micelles in a reductive environment. Phenyl groups were introduced into the polyaspartamide backbone via the aminolysis reaction of PSI to serve as the hydrophobic segment of micelles. The polyaspartamide scaffold was also functionalized with N-(3-aminopropyl)-imidazole to obtain the pH-responsiveness manifesting as a swelling of the core of micelles at a low pH. The polymeric micelles with a core-shell nanostructure forming in neutral media exhibited both pH and redox responsive characteristics. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through both hydrophobic and π-π interactions between aromatic rings and the DOX-loaded polymeric micelles exhibited accelerated drug release behaviors in an acidic and reductive environment due to the swelling of hydrophobic cores and the shedding of PEG shells. Furthermore, the cytocompability of the polymer and the cytotoxicity of DOX-loaded micelles towards Hela cells under corresponding conditions were evaluated, and the endocytosis of DOX-loaded polymeric micelles and the intracellular drug release from micelles were observed. All obtained data indicated that the micelle was a promising candidate for controlled drug release. Copyright © 2016 Elsevier B.V. All rights reserved.
On the three-dimensional interaction of a rotor-tip vortex with a cylindrical surface
NASA Astrophysics Data System (ADS)
Radcliff, Thomas D.; Burggraf, Odus R.; Conlisk, A. T.
2000-12-01
The collision of a strong vortex with a surface is an important problem because significant impulsive loads may be generated. Prediction of helicopter fatigue lifetime may be limited by an inability to predict these loads accurately. Experimental results for the impingement of a helicopter rotor-tip vortex on a cylindrical airframe show a suction peak on the top of the airframe that strengthens and then weakens within milliseconds. A simple line-vortex model can predict the experimental results if the vortex is at least two vortex-core radii away from the airframe. After this, the model predicts continually deepening rather than lessening suction as the vortex stretches. Experimental results suggest that axial flow within the core of a tip vortex has an impact on the airframe pressure distribution upon close approach. The mechanism for this is hypothesized to be the inviscid redistribution of the vorticity field within the vortex as the axial velocity stagnates. Two models of a tip vortex with axial flow are considered. First, a classical axisymmetric line vortex with a cutoff parameter is superimposed with vortex ringlets suitably placed to represent the helically wound vortex shed by the rotor tip. Thus, inclusion of axial flow is found to advect vortex core thinning away from the point of closest interaction as the vortex stretches around the cylindrical surface during the collision process. With less local thinning, vorticity in the cutoff parameter model significantly overlaps the solid cylinder in an unphysical manner, highlighting the fact that the vortex core must deform from its original cylindrical shape. A second model is then developed in which axial and azimuthal vorticity are confined within a rectangular-section vortex. Area and aspect ratio of this vortex can be varied independently to simulate deformation of the vortex core. Both axial velocity and core deformation are shown to be important to calculate the local induced pressure loads properly. The computational results are compared with experiments conducted at the Georgia Institute of Technology.
Too Little or Too Much? Parafoveal Preview Benefits and Parafoveal Load Costs in Dyslexic Adults
ERIC Educational Resources Information Center
Silva, Susana; Faísca, Luís; Araújo, Susana; Casaca, Luis; Carvalho, Loide; Petersson, Karl Magnus; Reis, Alexandra
2016-01-01
Two different forms of parafoveal dysfunction have been hypothesized as core deficits of dyslexic individuals: reduced parafoveal preview benefits ("too little parafovea") and increased costs of parafoveal load ("too much parafovea"). We tested both hypotheses in a single eye-tracking experiment using a modified serial rapid…
Rachakatla, Raja Shekar; Balivada, Sivasai; Seo, Gwi-Moon; Myers, Carl B; Wang, Hongwang; Samarakoon, Thilani N.; Dani, Raj; Pyle, Marla; Kroh, Franklin O.; Walker, Brandon; Leaym, Xiaoxuan; Koper, Olga B.; Chikan, Viktor; Bossmann, Stefan H.; Tamura, Masaaki; Troyer, Deryl L.
2010-01-01
Localized magnetic hyperthermia as a treatment modality for cancer has generated renewed interest, particularly if it can be targeted to the tumor site. We examined whether tumor-tropic neural progenitor cells (NPCs) could be utilized as cell delivery vehicles for achieving preferential accumulation of core/shell iron/iron oxide magnetic nanoparticles (MNPs) within a mouse model of melanoma. We developed aminosiloxane-porphyrin functionalized MNPs, evaluated cell viability and loading efficiency, and transplanted neural progenitor cells loaded with this cargo into mice with melanoma. NPCs were efficiently loaded with core/shell Fe/Fe3O4 MNPs with minimal cytotoxicity; the MNPs accumulated as aggregates in the cytosol. The NPCs loaded with MNPs could travel to subcutaneous melanomas, and after A/C (alternating current) magnetic field (AMF) exposure, the targeted delivery of MNPs by the cells resulted in a measurable regression of the tumors. The tumor attenuation was significant (p<0.05) a short time (24 hours) after the last of three AMF exposures. PMID:21058696
NASA Astrophysics Data System (ADS)
Abdelmalek, B. F.; Karpyn, Z.; Liu, S.
2014-12-01
Over the last several years, hydrocarbon exploitation and development in North America has been heavily centered on shale gas plays. However, the physical attributes of shales and their manifestation on transport properties and storage capacity remain poorly understood. Therefore, more experimentally based data are needed to fill the gaps in understanding both transport and storage of fluids in shale. The proposed work includes installation and testing of an experimental system which is capable of monitoring the dynamic evolution of shale core permeability under variable loading conditions and in coordination with X-ray microCT imaging. The goal of this study is to better understand and quantify fluid flow patterns and associated transport dynamics of fractured shale samples. The independent variables considered in this study are: mechanical loading and pore pressure. The mechanical response of shale core is captured for different loading paths. To best replicate the in-situ production scenario, the pore pressure is progressively depleted to mimic pressure decline. During the course of experimentation, permeability is estimated using the pulse-decay method under tri-axial stress boundary conditions. Simultaneously, X-ray microCT imaging is used with a tracer gas that is allowed to flow through the sample as an illuminating agent. In the presence of an illuminating agent, either Xenon or Krypton, the X-ray CT scanner can image fractures, global pathways and diffusional fronts in the matrix, as well as sorption sites that reflect heterogeneities in the sample and localized deformation. Anticipated results from these experiments will help quantify permeability evolution as a function of different loading conditions and pore pressure depletion. Also, the X-ray images will help visualize the change of flow patterns and the intensity of sorption as a function of mechanical loading and pore pressure.
Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy.
Purushotham, S; Ramanujan, R V
2010-02-01
The synthesis, characterization and property evaluation of drug-loaded polymer-coated magnetic nanoparticles (MNPs) relevant to multimodal cancer therapy has been studied. The hyperthermia and controlled drug release characteristics of these particles was examined. Magnetite (Fe(3)O(4))-poly-n-(isopropylacrylamide) (PNIPAM) composite MNPs were synthesized in a core-shell morphology by dispersion polymerization of n-(isopropylacrylamide) chains in the presence of a magnetite ferrofluid. These core-shell composite particles, with a core diameter of approximately 13nm, were loaded with the anti-cancer drug doxorubicin (dox), and the resulting composite nanoparticles (CNPs) exhibit thermoresponsive properties. The magnetic properties of the composite particles are close to those of the uncoated magnetic particles. In an alternating magnetic field (AMF), composite particles loaded with 4.15 wt.% dox exhibit excellent heating properties as well as simultaneous drug release. Drug release testing confirmed that release was much higher above the lower critical solution temperature (LCST) of the CNP, with a release of up to 78.1% of bound dox in 29h. Controlled drug release testing of the particles reveals that the thermoresponsive property can act as an on/off switch by blocking drug release below the LCST. Our work suggests that these dox-loaded polymer-coated MNPs show excellent in vitro hyperthermia and drug release behavior, with the ability to release drugs in the presence of AMF, and the potential to act as agents for combined targeting, hyperthermia and controlled drug release treatment of cancer.
Aaland, K.
1983-08-09
A switching system for delivering pulses of power from a source to a load using a storage capacitor charged through a rectifier, and maintained charged to a reference voltage level by a transistor switch and voltage comparator. A thyristor is triggered to discharge the storage capacitor through a saturable reactor and fractional turn saturable transformer having a secondary to primary turn ratio N of n:l/n = n[sup 2]. The saturable reactor functions as a soaker'' while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor charges, and then switches to a low impedance state to dump the charge of the storage capacitor into the load through the coupling capacitor. The transformer is comprised of a multilayer core having two secondary windings tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe for a linear particle accelerator and capacitance of a pulse forming network. To hold off discharge of the capacitance until it is fully charged, a saturable core is provided around the resistive beampipe to isolate the beampipe from the capacitance until it is fully charged. 5 figs.
Efficiency of Core Biopsy for BI-RADS-5 Breast Lesions.
Wolf, Ronald; Quan, Glenda; Calhoun, Kris; Soot, Laurel; Skokan, Laurie
2008-01-01
Stereotactic biopsy has proven more cost effective for biopsy of lesions associated with moderately suspicious mammograms. Data regarding selection of stereotactic biopsy (CORE) instead of excisional biopsy (EB) as the first diagnostic procedure in patients with nonpalpable breast lesions and highest suspicion breast imaging-reporting and data system (BI-RADS)-5 mammograms are sparse. Records from a regional health system radiology database were screened for mammograms associated with image-guided biopsy. A total of 182 nonpalpable BI-RADS-5 lesions were sampled in 178 patients over 5 years, using CORE or EB. Initial surgical margins, number of surgeries, time from initial procedure to last related surgical procedure, and hospital and professional charges for related admissions were compared using chi-squared, t-test, and Wilcoxon Mann-Whitney tests. A total of 108 CORE and 74 EB were performed as the first diagnostic procedure. Invasive or in situ carcinoma was diagnosed in 156 (86%) of all biopsies, 95 in CORE and 61 in EB groups. Negative margins of the first surgical procedure were more frequent in CORE (n = 70, 74%) versus EB (n = 17, 28%), p < 0.05. Use of CORE was associated with fewer total surgical procedures per lesion (1.29 +/- 0.05 versus 1.8 +/- 0.05, p < 0.05). Time of initial diagnostic procedure to final treatment did not vary significantly according to group (27 +/- 2 days versus 22 +/- 2 days, CORE versus EB). Mean charges including the diagnostic procedure and all subsequent surgeries were not different between CORE and EB groups ($10,500 +/- 300 versus $11,500 +/- 500, p = 0.08). Use of CORE as the first procedure in patients with highly suspicious mammograms is associated with improved pathologic margins and need for fewer surgical procedures than EB, and should be considered the preferred initial diagnostic approach.
NASA Astrophysics Data System (ADS)
Wang, Hanjie; Su, Wenya; Wang, Sheng; Wang, Xiaomin; Liao, Zhenyu; Kang, Chunsheng; Han, Lei; Chang, Jin; Wang, Guangxiu; Pu, Peiyu
2012-09-01
Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic nanocrystals; and polymeric lipid shells anchored with functional molecules such as PEG chains, TAT peptides and RGD peptides that can help the vectors to condense the gene, prolong the circulation time, cross the blood brain barrier and target delivery to the cancer tissue. The results showed that the magnetic PLGA/MPLs nanosphere has a nanosized core-shell structure, can achieve sustained drug release and has good DNA binding abilities. Importantly, compared with the control group and other groups with single functionality, it can co-deliver the drug and gene into the same cell in vitro and show the strongest inhibiting effect on the growth of the in situ malignant glioblastoma in vivo. All of these results indicated that the different functional components of magnetic PLGA/MPLs, can form an organic whole and none of them can be dispensed with. The magnetic PLGA/MPLs nanosphere may be another option for treatment of glioblastoma.Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic nanocrystals; and polymeric lipid shells anchored with functional molecules such as PEG chains, TAT peptides and RGD peptides that can help the vectors to condense the gene, prolong the circulation time, cross the blood brain barrier and target delivery to the cancer tissue. The results showed that the magnetic PLGA/MPLs nanosphere has a nanosized core-shell structure, can achieve sustained drug release and has good DNA binding abilities. Importantly, compared with the control group and other groups with single functionality, it can co-deliver the drug and gene into the same cell in vitro and show the strongest inhibiting effect on the growth of the in situ malignant glioblastoma in vivo. All of these results indicated that the different functional components of magnetic PLGA/MPLs, can form an organic whole and none of them can be dispensed with. The magnetic PLGA/MPLs nanosphere may be another option for treatment of glioblastoma. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr31263h
Sensitivity of Space Launch System Buffet Forcing Functions to Buffet Mitigation Options
NASA Technical Reports Server (NTRS)
Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.
2016-01-01
Time-varying buffet forcing functions arise from unsteady aerodynamic pressures and are one of many load environments, which contribute to the overall loading condition of a launch vehicle during ascent through the atmosphere. The buffet environment is typically highest at transonic conditions and can excite the vehicle dynamic modes of vibration. The vehicle response to these buffet forcing functions may cause high structural bending moments and vibratory environments, which can exceed the capabilities of the structure, or of vehicle components such as payloads and avionics. Vehicle configurations, protuberances, payload fairings, and large changes in stage diameter can trigger undesirable buffet environments. The Space Launch System (SLS) multi-body configuration and its structural dynamic characteristics presented challenges to the load cycle design process with respect to buffet-induced loads and responses. An initial wind-tunnel test of a 3-percent scale SLS rigid buffet model was conducted in 2012 and revealed high buffet environments behind the booster forward attachment protuberance, which contributed to reduced vehicle structural margins. Six buffet mitigation options were explored to alleviate the high buffet environments including modified booster nose cones and fences/strakes on the booster and core. These studies led to a second buffet test program that was conducted in 2014 to assess the ability of the buffet mitigation options to reduce buffet environments on the vehicle. This paper will present comparisons of buffet forcing functions from each of the buffet mitigation options tested, with a focus on sectional forcing function rms levels within regions of the vehicle prone to high buffet environments.
The influence of geometric imperfections on the stability of three-layer beams with foam core
NASA Astrophysics Data System (ADS)
Wstawska, Iwona
2017-01-01
The main objective of this work is the numerical analysis (FE analysis) of stability of three-layer beams with metal foam core (alumina foam core). The beams were subjected to pure bending. The analysis of the local buckling was performed. Furthermore, the influence of geometric parameters of the beam and material properties of the core (linear and non-linear model) on critical loads values and buckling shape were also investigated. The calculations were made on a family of beams with different mechanical properties of the core (elastic and elastic-plastic material). In addition, the influence of geometric imperfections on deflection and normal stress values of the core and the faces has been evaluated.
Kashyap, Smita; Singh, Nitesh; Surnar, Bapurao; Jayakannan, Manickam
2016-01-11
Dual responsive polymer nanoscaffolds for administering anticancer drugs both at the tumor site and intracellular compartments are made for improving treatment in cancers. The present work reports the design and development of new thermo- and enzyme-responsive amphiphilic copolymer core-shell nanoparticles for doxorubicin delivery at extracellular and intracellular compartments, respectively. A hydrophobic acrylate monomer was tailor-made from 3-pentadecylphenol (PDP, a natural resource) and copolymerized with oligoethylene glycol acrylate (as a hydrophilic monomer) to make new classes of thermo and enzyme dual responsive polymeric amphiphiles. Both radical and reversible addition-fragmentation chain transfer (RAFT) methodologies were adapted for making the amphiphilic copolymers. These amphiphilic copolymers were self-assembled to produce spherical core-shell nanoparticles in water. Upon heating, the core-shell nanoparticles underwent segregation to produce larger sized aggregates above the lower critical solution temperature (LCST). The dual responsive polymer scaffold was found to be capable of loading water insoluble drug, such as doxorubicin (DOX), and fluorescent probe-like Nile Red. The drug release kinetics revealed that DOX was preserved in the core-shell assemblies at normal body temperature (below LCST, ≤ 37 °C). At closer to cancer tissue temperature (above LCST, ∼43 °C), the polymeric scaffold underwent burst release to deliver 90% of loaded drugs within 2 h. At the intracellular environment (pH 7.4, 37 °C) in the presence of esterase enzyme, the amphiphilic copolymer ruptured in a slow and controlled manner to release >95% of the drugs in 12 h. Thus, both burst release of cargo at the tumor microenvironment and control delivery at intracellular compartments were accomplished in a single polymer scaffold. Cytotoxicity assays of the nascent and DOX-loaded polymer were carried out in breast cancer (MCF-7) and cervical cancer (HeLa) cells. Among the two cell lines, the DOX-loaded polymers showed enhanced killing in breast cancer cells. Furthermore, the cellular uptake of the DOX was studied by confocal and fluorescence microscopes. The present investigation opens a new enzyme and thermal-responsive polymer scaffold approach for DOX delivery in cancer cells.
ERIC Educational Resources Information Center
Bracco, Kathy Reeves; Dadgar, Mina; Austin, Kim; Klarin, Becca; Broek, Marie; Finkelstein, Neal; Mundry, Susan; Bugler, Dan
2014-01-01
"Core to College: Preparing Students for College Readiness and Success" is a three-year initiative. The initiative's mission is to "facilitate greater coordination between K-12 and postsecondary education systems around implementation of the Common Core State Standards (CCSS) and aligned assessments." Its aim is to foster…
Voltage-spike analysis for a free-running parallel inverter
NASA Technical Reports Server (NTRS)
Lee, F. C. Y.; Wilson, T. G.
1974-01-01
Unwanted and sometimes damaging high-amplitude voltage spikes occur during each half cycle in many transistor saturable-core inverters at the moment when the core saturates and the transistors switch. The analysis shows that spikes are an intrinsic characteristic of certain types of inverters even with negligible leakage inductance and purely resistive load. The small but unavoidable after-saturation inductance of the saturable-core transformer plays an essential role in creating these undesired thigh-voltage spikes. State-plane analysis provides insight into the complex interaction between core and transistors, and shows the circuit parameters upon which the magnitude of these spikes depends.
Pueyo Bellafont, Noèlia; Bagus, Paul S; Illas, Francesc
2015-06-07
A systematic study of the N(1s) core level binding energies (BE's) in a broad series of molecules is presented employing Hartree-Fock (HF) and the B3LYP, PBE0, and LC-BPBE density functional theory (DFT) based methods with a near HF basis set. The results show that all these methods give reasonably accurate BE's with B3LYP being slightly better than HF but with both PBE0 and LCBPBE being poorer than HF. A rigorous and general decomposition of core level binding energy values into initial and final state contributions to the BE's is proposed that can be used within either HF or DFT methods. The results show that Koopmans' theorem does not hold for the Kohn-Sham eigenvalues. Consequently, Kohn-Sham orbital energies of core orbitals do not provide estimates of the initial state contribution to core level BE's; hence, they cannot be used to decompose initial and final state contributions to BE's. However, when the initial state contribution to DFT BE's is properly defined, the decompositions of initial and final state contributions given by DFT, with several different functionals, are very similar to those obtained with HF. Furthermore, it is shown that the differences of Kohn-Sham orbital energies taken with respect to a common reference do follow the trend of the properly calculated initial state contributions. These conclusions are especially important for condensed phase systems where our results validate the use of band structure calculations to determine initial state contributions to BE shifts.
Shattered Pellet Injection Simulations With NIMROD
NASA Astrophysics Data System (ADS)
Kim, Charlson; Parks, Paul; Lao, Lang; Lehnan, Michael; Loarte, Alberto; Izzo, Valerie; Nimrod Team
2017-10-01
Shattered Pellet Injection (SPI) will be the Disruption Mitigation System in ITER. SPI propels a cryo-pellet of high-Z and deuterium into a sharp bend of the flight tube, shattering the pellet into a plume of shards. These shards are injected into the plasma to quench it and mitigate forces and heat loads that may damage in-vessel components. We use NIMROD to perform 3-D nonlinear MHD simulations of SPI to study the thermal quench. This work builds upon prior Massive Gas Injection (MGI) studies by Izzo. A Particle-in-Cell (PIC) model is implemented to mimic the shards, providing a discrete moving source. Observations indicate that the quench proceeds in two phases. Initially, the outer plasma is shed via interchange-like instabilities while preserving the core temperature. This results in a steep gradient and triggers the second phase, an external kink-like event that collapses the core. We report on the radiation efficiency and toroidal peaking as well as fueling efficiency and other metrics that assess the efficacy of the SPI system. Work supported by GA ITER Contract ITER/CT/14/4300001108 and US DOE DE-FG02-95ER54309.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1991-01-01
Combined compressive and shear buckling analysis was conducted on flat rectangular sandwich panels with the consideration of transverse shear effects of the core. The sandwich panel is fabricated with titanium honeycomb core and laminated metal matrix composite face sheets. The results show that the square panel has the highest combined load buckling strength, and that the buckling strength decreases sharply with the increases of both temperature and panel aspect ratio. The effect of layup (fiber orientation) on the buckling strength of the panels was studied in detail. The metal matrix composite sandwich panel was much more efficient than the sandwich panel with nonreinforced face sheets and had the same specific weight.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Investigation of Low-Cycle Bending Fatigue of AISI 9310 Steel Spur Gears
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Krantz, Timothy L.; Lerch, Bradley A.; Burke, Christopher S.
2007-01-01
An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semilogarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.
Long-Term Stability of Core Language Skill in Children with Contrasting Language Skills
ERIC Educational Resources Information Center
Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.
2016-01-01
This 4-wave longitudinal study evaluated stability of core language skill in 421 European American and African American children, half of whom were identified as low (n = 201) and half of whom were average-to-high (n = 220) in later language skill. Structural equation modeling supported loadings of multivariate age-appropriate multisource measures…
Stability of Core Language Skill from Early Childhood to Adolescence: A Latent Variable Approach
ERIC Educational Resources Information Center
Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.; Suwalsky, Joan T. D.
2014-01-01
This four-wave prospective longitudinal study evaluated stability of language in 324 children from early childhood to adolescence. Structural equation modeling supported loadings of multiple age-appropriate multisource measures of child language on single-factor core language skills at 20 months and 4, 10, and 14 years. Large stability…
ERIC Educational Resources Information Center
Al-Mashaqbeh, Ibtesam; Al Shurman, Muneera
2015-01-01
This study aimed to investigate the effect of using e-textbooks, activities, games, and worksheets that loaded onto students tablets on first grade students' achievement on their core curriculum (science, math, English, Arabic) compared to the use of the traditional teaching method. It also, investigated the school administration reflection toward…
Effect of core cooling on the radius of sub-Neptune planets
NASA Astrophysics Data System (ADS)
Vazan, A.; Ormel, C. W.; Dominik, C.
2018-02-01
Sub-Neptune planets are very common in our Galaxy and show a large diversity in their mass-radius relation. In sub-Neptunes most of the planet mass is in the rocky part (hereafter, core), which is surrounded by a modest hydrogen-helium envelope. As a result, the total initial heat content of such a planet is dominated by that of the core. Nonetheless, most studies contend that the core cooling only has a minor effect on the radius evolution of the gaseous envelope because the cooling of the core is in sync with the envelope; that is most of the initial heat is released early on timescales of 10-100 Myr. In this Letter we examined the importance of the core cooling rate for the thermal evolution of the envelope. Thus, we relaxed the early core cooling assumption and present a model in which the core is characterized by two parameters: the initial temperature and the cooling time. We find that core cooling can significantly enhance the radius of the planet when it operates on a timescale similar to the observed age, i.e. Gyr. Consequently, the interpretation of the mass-radius observations of sub-Neptunes depends on the assumed core thermal properties and the uncertainty therein. The degeneracy of composition and core thermal properties can be reduced by obtaining better estimates of the planet ages (in addition to their radii and masses) as envisioned by future observations.
Efficient 3-D finite element failure analysis of compression loaded angle-ply plates with holes
NASA Technical Reports Server (NTRS)
Burns, S. W.; Herakovich, C. T.; Williams, J. G.
1987-01-01
Finite element stress analysis and the tensor polynomial failure criterion predict that failure always initiates at the interface between layers on the hole edge for notched angle-ply laminates loaded in compression. The angular location of initial failure is a function of the fiber orientation in the laminate. The dominant stress components initiating failure are shear. It is shown that approximate symmetry can be used to reduce the computer resources required for the case of unaxial loading.
Metal pollution loading, Manzalah lagoon, Nile delta, Egypt: Implications for aquaculture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegel, F.R.; Slaboda, M.L.; Stanley, D.J.
1994-03-01
High cultural enrichment factors are found for Hg (13 x), Pb (22.1 x), and other potentially toxic metals (e.g., Sn, Zn, Cu, Ag) in the upper 20 cm of sediment cores from the southeastern Ginka subbasin of Manzalah lagoon, Nile delta, Egypt. Cores from other areas of the lagoon show little metal loading. Metal loading followed the closure of the Aswan High Dam, the availability of abundant cheap electricity, and the development of major power-based industries. Industrial wastes containing potentially toxic metals are dumped into the Nile delta drain system. The load carried by Bahr El-Baqar drain discharges into themore » Ginka subbasin, which acts as a sink and results in metal loading of the sediment deposited there. Further development of aquaculture in this subbasin, of food-stuff agriculture on recently reclaimed lagoon bottom, or where irrigation waters come from Bahr El-Baqar drain or its discharge should be halted or strictly limited until potentially toxic metals in the drain waters and sediment are removed and polluted input drastically reduced. This environmental assessment of heavy metals in aquaculture or agriculture development should extend to other waterbodies in the northern Nile delta, particularly Idku lagoon and Lake Mariut, where industrial metal-bearing wastes discharge into the waterbodies. 21 refs., 7 figs., 3 tabs.« less
Fracture-permeability behavior of shale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carey, J. William; Lei, Zhou; Rougier, Esteban
The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less
Fracture-permeability behavior of shale
Carey, J. William; Lei, Zhou; Rougier, Esteban; ...
2015-05-08
The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less
Tang, Rupei; Ji, Weihang; Panus, David; Palumbo, R Noelle; Wang, Chun
2011-04-10
A new type of block copolymer micelles for pH-triggered delivery of poorly water-soluble anticancer drugs has been synthesized and characterized. The micelles were formed by the self-assembly of an amphiphilic diblock copolymer consisting of a hydrophilic poly(ethylene glycol) (PEG) block and a hydrophobic polymethacrylate block (PEYM) bearing acid-labile ortho ester side-chains. The diblock copolymer was synthesized by atom transfer radical polymerization (ATRP) from a PEG macro-initiator to obtain well-defined polymer chain-length. The PEG-b-PEYM micelles assumed a stable core-shell structure in aqueous buffer at physiological pH with a low critical micelle concentration as determined by proton NMR and pyrene fluorescence spectroscopy. The hydrolysis of the ortho ester side-chain at physiological pH was minimal yet much accelerated at mildly acidic pHs. Doxorubicin (Dox) was successfully loaded into the micelles at pH 7.4 and was released at a much higher rate in response to slight acidification to pH 5. Interestingly, the release of Dox at pH 5 followed apparently a biphasic profile, consisting of an initial fast phase of several hours followed by a sustained release period of several days. Dox loaded in the micelles was rapidly taken up by human glioma (T98G) cells in vitro, accumulating in the endolysosome and subsequently in the nucleus in a few hours, in contrast to the very low uptake of free drug at the same dose. The dose-dependent cytotoxicity of the Dox-loaded micelles was determined by the MTT assay and compared with that of the free Dox. While the empty micelles themselves were not toxic, the IC(50) values of the Dox-loaded micelles were approximately ten-times (by 24h) and three-times (by 48h) lower than the free drug. The much enhanced potency in killing the multi-drug-resistant human glioma cells by Dox loaded in the micelles could be attributed to high intracellular drug concentration and the subsequent pH-triggered drug release. These results establish the PEG-b-PEYM block copolymer with acid-labile ortho ester side-chains as a novel and effective pH-responsive nano-carrier for enhancing the delivery of drugs to cancer cells. Copyright © 2010 Elsevier B.V. All rights reserved.
Running STAR-CCM+ Software on the Peregrine System | High-Performance
/bin/lmutil lmstat -c 1999@wind-lms.nrel.gov -a module load star-ccm export TMPDIR="/scratch/$USER + -power -rsh "ssh -oStrictHostKeyChecking=no" -machinefile nodelist -np $(($nodes*$cores , type the commands from the SLURM script and make sure the job runs: module load star-ccm export TMPDIR
Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions.
Hodaei, Amin; Akhlaghi, Omid; Khani, Navid; Aytas, Tunahan; Sezer, Dilek; Tatli, Buse; Menceloglu, Yusuf Z; Koc, Bahattin; Akbulut, Ozge
2018-03-21
A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.
Choi, Seung Yoo; Baek, Seung Hoon; Chang, Sung-Jin; Song, Yohan; Rafique, Rafia; Lee, Kang Taek; Park, Tae Jung
2017-07-15
Multifunctional nanocomposite has a huge potential for cell imaging, drug delivery, and improving therapeutic effect with less side effects. To date, diverse approaches have been demonstrated to endow a single nanostructure with multifunctionality. Herein, we report the synthesis and application of core-shell nanoparticles composed with upconversion nanoparticle (UCNP) as a core and a graphene oxide quantum dot (GOQD) as a shell. The UCNP was prepared and applied for imaging-guided analyses of upconversion luminescence. GOQD was prepared and employed as promising drug delivery vehicles to improve anti-tumor therapy effect in this study. Unique properties of UCNPs and GOQDs were incorporated into a single nanostructure to provide desirable functions for cell imaging and drug delivery. In addition, hypocrellin A (HA) was loaded on GOQDs for photo-dynamic therapy (PDT). HA, a commonly used chemotherapy drug and a photo-sensitizer, was conjugated with GOQD by π-π interaction and loaded on PEGylated UCNP without complicated synthetic process, which can break structure of HA. Applying these core-shell nanoparticles to MTT assay, we demonstrated that the UCNPs with GOQD shell loaded with HA could be excellent candidates as multifunctional agents for cell imaging, drug delivery and cell therapy. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Wei; Zhang, Wei; Li, Dacheng; Hypervelocity Impact Research Center Team
2015-06-01
Corrugated sandwich plates are widely used in marine industry because such plates have high strength-to-weight ratios and blast resistance. The laboratory-scaled fluid-structure interaction experiments are performed to demonstrate the shock resistance of solid monolithic plates and corrugated sandwich plates by quantifying the permanent transverse deflection at mid-span of the plates as a function of impulsive loadings per areal mass. Sandwich structures with 6mm-thick and 10mm-thick 3003 aluminum corrugated core and 5A06 face sheets are compared with the 5A06 solid monolithic plates in this paper. The dynamic deformation of plates are captured with the the 3D digital speckle correlation method (DIC). The results affirm that sandwich structures show a 30% reduction in the maximum plate deflection compare with a monolithic plate of identical mass per unit area, and the peak value of deflection effectively reduced by increasing the thickness core. The failure modes of sandwich plates consists of core crushing, imprinting, stretch tearing of face sheets, bending and permanent deformation of entire structure with the increasing impulsive loads, and the failure mechanisms are analyzed with the postmortem panels and dynamic deflection history captured by cameras. National Natural Science Foundation of China (NO.: 11372088).
NASA Astrophysics Data System (ADS)
Körpe, Didem Aksoy; Malekghasemi, Soheil; Aydın, Uğur; Duman, Memed
2014-12-01
Biopolymers such as chitosan and alginate are widely used for controlled drug delivery systems. The present work aimed to develop a new protocol for preparation of monodisperse alginate-coated chitosan nanoparticles at nanoscale. Modifications of preparation protocol contain changing the pH of polymer solutions and adding extra centrifugation steps into the procedure. While chitosan nanoparticles were synthesized by ionic gelation method, they were coated with alginate by electrostatic interaction. The size, morphology, charge, and structural characterization of prepared core-shell nanoparticulated system were performed by AFM, Zeta sizer, and FTIR. BSA and DOX were loaded as test biomolecules to core and shell part of the nanoparticle, respectively. Release profiles of BSA and DOX were determined by spectrophotometry. The sizes of both chitosan and alginate-coated chitosan nanoparticles which were prepared by modified protocol were measured to be 50 ± 10 and 60 ± 3 nm, respectively. After loading BSA and DOX, the average size of the particles increased to 80 ± 7 nm. Moreover, while the zeta potential of chitosan nanoparticles was positive value, the value was inverted to negative after alginate coating. Release profile measurements of BSA and DOX were determined during 57 and 2 days, respectively. Our results demonstrated that monodisperse alginate-coated nanoparticles were synthesized and loaded successfully using our modified protocol.
ERIC Educational Resources Information Center
Jaeger, Elizabeth L.; Pearson, P. David
2017-01-01
The Common Core State Standards and Response to Intervention are significant contemporary educational initiatives that have emerged largely in isolation from one another. We argue that an integration of these initiatives is beneficial. We trace the independent development of these two initiatives and offer suggestions for how they might fruitfully…
Nagasaki, Yukio; Mizukoshi, Yutaro; Gao, Zhenyu; Feliciano, Chitho P; Chang, Kyungho; Sekiyama, Hiroshi; Kimura, Hiroyuki
2017-07-15
Although local anesthesia is commonly applied for pain relief, there are several issues such as its short duration of action and low effectiveness at the areas of inflammation due to the acidic pH. The presence of excessive amount of reactive oxygen species (ROS) is known to induce inflammation and aggravate pain. To resolve these issues, we developed a redox-active injectable gel (RIG) with ROS-scavenging activity. RIG was prepared by mixing polyamine-b-poly(ethylene glycol)-b-polyamine with nitroxide radical moieties as side chains on the polyamine segments (PMNT-b-PEG-b-PMNT) with a polyanion, which formed a flower-type micelle via electrostatic complexation. Lidocaine could be stably incorporated in its core. When the temperature of the solution was increased to 37°C, the PIC-type flower micelle transformed to gel. The continuous release of lidocaine from the gel was observed for more than three days, without remarkable initial burst, which is probably owing to the stable entrapment of lidocaine in the PIC core of the gel. We evaluated the analgesic effect of RIG in carrageenan-induced arthritis mouse model. Results showed that lidocaine-loaded RIG has stronger and longer analgesic effect when administered in inflamed areas. In contrast, while the use of non-complexed lidocaine did not show analgesic effect one day after its administration. Note that no effect was observed when PIC-type flower micelle without ROS-scavenging ability was used. These findings suggest that local anesthetic-loaded RIG can effectively reduce the number of injection times and limit the side effects associated with the use of anti-inflammatory drugs for postoperative pain management. 1. We have been working on nanomaterials, which effectively eliminate ROS, avoiding dysfunction of mitochondria in healthy cells. 2. We designed redox injectable gel using polyion complexed flower type micelle, which can eliminates ROS locally. 3. We could prepare local anesthesia-loaded redox injectable gel (lido@RIG). 4. Drug release could be extended by local administration of lido@RIG. 5. Deprotonation of lidocaine improved anesthetic effect because ROS were eliminated locally by RIG. 6. Local inflammation could be also suppressed by lido@RIG. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Helfrich, Christian D; Li, Yu-Fang; Sharp, Nancy D; Sales, Anne E
2009-01-01
Background The Promoting Action on Research Implementation in Health Services, or PARIHS, framework is a theoretical framework widely promoted as a guide to implement evidence-based clinical practices. However, it has as yet no pool of validated measurement instruments that operationalize the constructs defined in the framework. The present article introduces an Organizational Readiness to Change Assessment instrument (ORCA), organized according to the core elements and sub-elements of the PARIHS framework, and reports on initial validation. Methods We conducted scale reliability and factor analyses on cross-sectional, secondary data from three quality improvement projects (n = 80) conducted in the Veterans Health Administration. In each project, identical 77-item ORCA instruments were administered to one or more staff from each facility involved in quality improvement projects. Items were organized into 19 subscales and three primary scales corresponding to the core elements of the PARIHS framework: (1) Strength and extent of evidence for the clinical practice changes represented by the QI program, assessed with four subscales, (2) Quality of the organizational context for the QI program, assessed with six subscales, and (3) Capacity for internal facilitation of the QI program, assessed with nine subscales. Results Cronbach's alpha for scale reliability were 0.74, 0.85 and 0.95 for the evidence, context and facilitation scales, respectively. The evidence scale and its three constituent subscales failed to meet the conventional threshold of 0.80 for reliability, and three individual items were eliminated from evidence subscales following reliability testing. In exploratory factor analysis, three factors were retained. Seven of the nine facilitation subscales loaded onto the first factor; five of the six context subscales loaded onto the second factor; and the three evidence subscales loaded on the third factor. Two subscales failed to load significantly on any factor. One measured resources in general (from the context scale), and one clinical champion role (from the facilitation scale). Conclusion We find general support for the reliability and factor structure of the ORCA. However, there was poor reliability among measures of evidence, and factor analysis results for measures of general resources and clinical champion role did not conform to the PARIHS framework. Additional validation is needed, including criterion validation. PMID:19594942
Helfrich, Christian D; Li, Yu-Fang; Sharp, Nancy D; Sales, Anne E
2009-07-14
The Promoting Action on Research Implementation in Health Services, or PARIHS, framework is a theoretical framework widely promoted as a guide to implement evidence-based clinical practices. However, it has as yet no pool of validated measurement instruments that operationalize the constructs defined in the framework. The present article introduces an Organizational Readiness to Change Assessment instrument (ORCA), organized according to the core elements and sub-elements of the PARIHS framework, and reports on initial validation. We conducted scale reliability and factor analyses on cross-sectional, secondary data from three quality improvement projects (n = 80) conducted in the Veterans Health Administration. In each project, identical 77-item ORCA instruments were administered to one or more staff from each facility involved in quality improvement projects. Items were organized into 19 subscales and three primary scales corresponding to the core elements of the PARIHS framework: (1) Strength and extent of evidence for the clinical practice changes represented by the QI program, assessed with four subscales, (2) Quality of the organizational context for the QI program, assessed with six subscales, and (3) Capacity for internal facilitation of the QI program, assessed with nine subscales. Cronbach's alpha for scale reliability were 0.74, 0.85 and 0.95 for the evidence, context and facilitation scales, respectively. The evidence scale and its three constituent subscales failed to meet the conventional threshold of 0.80 for reliability, and three individual items were eliminated from evidence subscales following reliability testing. In exploratory factor analysis, three factors were retained. Seven of the nine facilitation subscales loaded onto the first factor; five of the six context subscales loaded onto the second factor; and the three evidence subscales loaded on the third factor. Two subscales failed to load significantly on any factor. One measured resources in general (from the context scale), and one clinical champion role (from the facilitation scale). We find general support for the reliability and factor structure of the ORCA. However, there was poor reliability among measures of evidence, and factor analysis results for measures of general resources and clinical champion role did not conform to the PARIHS framework. Additional validation is needed, including criterion validation.
Evaluation of the impact of a total automation system in a large core laboratory on turnaround time.
Lou, Amy H; Elnenaei, Manal O; Sadek, Irene; Thompson, Shauna; Crocker, Bryan D; Nassar, Bassam
2016-11-01
Growing financial and workload pressures on laboratories coupled with user demands for faster turnaround time (TAT) has steered the implementation of total laboratory automation (TLA). The current study evaluates the impact of a complex TLA on core laboratory efficiency through the analysis of the In-lab to Report TAT (IR-TAT) for five representative tests based on the different requested priorities. Mean, median and outlier percentages (OP) for IR-TAT were determined following TLA implementation and where possible, compared to the pre-TLA era. The shortest mean IR-TAT via the priority lanes of the TLA was 22min for Complete Blood Count (CBC), followed by 34min, 39min and 40min for Prothrombin time (PT), urea and potassium testing respectively. The mean IR-TAT for STAT CBC loaded directly on to the analyzers was 5min shorter than that processed via the TLA. The mean IR-TATs for both STAT potassium and urea via offline centrifugation were comparable to that processed by the TLA. The longest mean IR-TAT via regular lanes of the TLA was 62min for Thyroid-Stimulating Hormone (TSH) while the shortest was 17min for CBC. All parameters for IR-TAT for CBC and PT tests decreased significantly post- TLA across all requested priorities in particular the outlier percentage (OP) at 30 and 60min. TLA helps to efficiently manage substantial volumes of samples across all requested priorities. Manual processing for small STAT volumes, at both the initial centrifugation stage and front loading directly on to analyzers, is however likely to yield the shortest IR-TAT. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Murayama, Asako; Sugiyama, Nao; Watashi, Koichi; Masaki, Takahiro; Suzuki, Ryosuke; Aizaki, Hideki; Mizuochi, Toshiaki; Wakita, Takaji
2012-01-01
An accurate and reliable quantitative assay for hepatitis C virus (HCV) is essential for measuring viral propagation and the efficacy of antiviral therapy. There is a growing need for domestic reference panels for evaluation of clinical assay kits because the performance of these kits may vary with region-specific genotypes or polymorphisms. In this study, we established a reference panel by selecting 80 donated blood specimens in Japan that tested positive for HCV. Using this panel, we quantified HCV viral loads using two HCV RNA kits and five core antigen (Ag) kits currently available in Japan. The data from the two HCV RNA assay kits showed excellent correlation. All RNA titers were distributed evenly across a range from 3 to 7 log IU/ml. Although the data from the five core Ag kits also correlated with RNA titers, the sensitivities of individual kits were not sufficient to quantify viral load in all samples. As calculated by the correlation with RNA titers, the theoretical lower limits of detection by these core Ag assays were higher than those for the detection of RNA. Moreover, in several samples in our panel, core Ag levels were underestimated compared to RNA titers. Sequence analysis in the HCV core region suggested that polymorphisms at amino acids 47 to 49 of the core Ag were responsible for this underestimation. The panel established in this study will be useful for estimating the quality of currently available and upcoming HCV assay kits; such quality control is essential for clinical usage of these kits. PMID:22495557
Weather Research and Forecasting Model Sensitivity Comparisons for Warm Season Convective Initiation
NASA Technical Reports Server (NTRS)
Watson, Leela R.
2007-01-01
This report describes the work done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting warm season convection over East-Central Florida. The Weather Research and Forecasting Environmental Modeling System (WRF EMS) software allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Besides model core and initialization options, the WRF model can be run with one- or two-way nesting. Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. This project assessed three different model intializations available to determine which configuration best predicts warm season convective initiation in East-Central Florida. The project also examined the use of one- and two-way nesting in predicting warm season convection.
Polymer-lipid-PEG hybrid nanoparticles as photosensitizer carrier for photodynamic therapy.
Pramual, Sasivimon; Lirdprapamongkol, Kriengsak; Svasti, Jisnuson; Bergkvist, Magnus; Jouan-Hureaux, Valérie; Arnoux, Philippe; Frochot, Céline; Barberi-Heyob, Muriel; Niamsiri, Nuttawee
2017-08-01
Polymer-lipid-PEG hybrid nanoparticles were investigated as carriers for the photosensitizer (PS), 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,23H-porphine (pTHPP) for use in photodynamic therapy (PDT). A self-assembled nanoprecipitation technique was used for preparing two types of core polymers poly(d,l-lactide-co-glycolide) (PLGA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) with lipid-PEG as stabilizer. The resulting nanoparticles had an average particle size of 88.5±3.4nm for PLGA and 215.0±6.3nm for PHBV. Both nanoparticles exhibited a core-shell structure under TEM with high zeta potential and loading efficiency. X-ray powder diffraction analysis showed that the encapsulated pTHPP molecules in polymeric nanoparticles no longer had peaks of free pTHPP in the crystalline state. The pTHPP molecules encapsulated inside the polymeric core demonstrated improved photophysical properties in terms of singlet oxygen generation and cellular uptake rate in a FTC-133 human thyroid carcinoma cell line, compared to non-encapsulated pTHPP. The pTHPP-loaded polymer-lipid-PEG nanoparticles showed better in vitro phototoxicity compared to free pTHPP, in both time- and concentration-dependent manners. Overall, this study provides detailed analysis of the photophysical properties of pTHPP molecules when entrapped within either PLGA or PHBV nanoparticle cores, and demonstrates the effectiveness of these systems for delivery of photosensitizers. The two polymeric systems may have different potential benefits, when used with cancer cells. For instance, the pTHPP-loaded PLGA system requires only a short time to show a PDT effect and may be suitable for topical PDT, while the delayed photo-induced cytotoxic effect of the pTHPP-loaded PHBV system may be more suitable for cancer solid tumors. Hence, both pTHPP-encapsulated polymer-lipid-PEG nanoparticles can be considered promising delivery systems for PDT cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
1981-01-01
The National Science Foundation (NSF) initialized a new phase of exploration last year, a 10 year effort jointly funded by NSF and several major oil companies, known as the Ocean Margin Drilling Program (OMDP). The OMDP requires a ship with capabilities beyond existing drill ships; it must drill in 13,000 feet of water to a depth 20,000 feet below the ocean floor. To meet requirements, NSF is considering the conversion of the government-owned mining ship Glomar Explorer to a deep ocean drilling and coring vessel. Feasibility study performed by Donhaiser Marine, Inc. analyzed the ship's characteristics for suitability and evaluated conversion requirement. DMI utilized COSMIC's Ship Motion and Sea Load Computer program to perform analysis which could not be accomplished by other means. If approved for conversion, Glomar Explorer is expected to begin operations as a drillship in 1984.
NASA Astrophysics Data System (ADS)
Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao
2018-03-01
The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.
Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei
2017-11-22
Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (<0.05 at 1 kHz). Both high electric displacement and high electric breakdown strength were achieved in the films with 10 wt % core-shell fillers loaded. The maximum energy storage density of 7.018 J/cm 3 was measured at 2350 kV/cm, which shows significant enhancement than those of the pure P(VDF-HFP) films and analogous composited films with converse insulating-conductive core-shell fillers. A Maxwell-Wagner capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.
NASA Astrophysics Data System (ADS)
Xie, Xing; Yi, Hong; Xu, Jian; Gen, Liming; Chen, Luyun
2017-09-01
Fatigue initiation life has been studied with 10CrNi5MoV steel for use in ocean engineering at different load ratios and in different environmental media. The microstructure and micro-topography have been observed and analyzed by means of SEM, EDS and EBSD. Our findings indicate that, the initiation life of 10Ni5CrMoV steel in seawater is shorter than that in air, and the difference in longevity is larger with the increasing of load ratio. Corrosion pits had a great influence on initial corrosion fatigue life.
Vertical velocity in oceanic convection off tropical Australia
NASA Technical Reports Server (NTRS)
Lucas, Christopher; Zipser, Edward J.; Lemone, Margaret A.
1994-01-01
Time series of 1-Hz vertical velocity data collected during aircraft penetrations of oceanic cumulonimbus clouds over the western Pacific warm pool as part of the Equatorial Mesoscale Experiment (EMEX) are analyzed for updraft and downdraft events called cores. An updraft core is defined as occurring whenever the vertical velocity exceeds 1 m/sec for at least 500 m. A downdraft core is defined analogously. Over 19,000 km of straight and level flight legs are used in the analysis. Five hundred eleven updraft cores and 253 downdraft cores are included in the dataset. Core properties are summarized as distributions of average and maximum vertical velocity, diameter, and mass flux in four altitude intervals between 0.2 and 5.8 km. Distributions are approximately lognormal at all levels. Examination of the variation of the statistics with height suggests a maximum in vertical velocity between 2 and 3 km; slightly lower or equal vertical velocity is indicated at 5 km. Near the freezing level, virtual temperature deviations are found to be slightly positive for both updraft and downdraft cores. The excess in updraft cores is much smaller than that predicted by parcel theory. Comparisons with other studies that use the same analysis technique reveal that EMEX cores have approximately the same strength as cores of other oceanic areas, despite warmer sea surface temperatures. Diameter and mass flux are greater than those in the Global Atmospheric Research Program (GATE) but smaller than those in hurricane rainbands. Oceanic cores are much weaker and appear to be slightly smaller than those observed over land during the Thunderstorm Project. The markedly weaker oceanic vertical velocities below 5.8 km (compared to the continental cores) cannot be attributed to smaller total convective available potential energy or to very high water loading. Rather, it is suggested that water loading, although less than adiabatic, is more effective in reducing buoyancy of oceanic cores because of the smaller potential buoyancy below 5.8 km. Entrainment appears to be more effective in reducing buoyancy to well below adiabatic values in oceanic cores, a result consistent with the smaller oceanic core diameters in the lower cloud layer. It is speculated further that core diameters are related to boundary layer depth, which is clearly smaller over the oceans.
Cable, E. E.; Connor, J. R.; Isom, H. C.
1998-01-01
We have previously shown that hepatocytes in long-term dimethylsulfoxide (DMSO) culture, fed a chemically defined medium, are highly differentiated and an excellent in vitro model of adult liver. Hepatocytes in long-term DMSO culture can be iron loaded by exposure to non-transferrin-bound iron (NTBI) in the form of ferrous sulfate (FeSO4), ferric nitrilotriacetate, or trimethylhexanoyl (TMH)-ferrocene. Holotransferrin, at equivalent times and concentrations, was unable to load hepatocytes. Of the iron compounds tested, TMH-ferrocene most accurately simulated the morphological features of iron-loaded hepatocytes in vivo. When exposed to 25 micromol/L TMH-ferrocene, hepatocytes loaded increasing amounts of iron for 2 months before the cells died. When exposed to lower concentrations of TMH-ferrocene (as low as 2.5 micromol/L), hepatocytes continuously loaded iron and remained viable for more than 2 months. The cellular deposition of iron was different in hepatocytes exposed to TMH-ferrocene compared with those exposed to FeSO4; exposure to TMH-ferrocene resulted in the presence of more ferritin cores within lysosomes than were seen with FeSO4. When the concentration of TMH-ferrocene was increased, a greater number of ferritin cores were observed within the lysosome, and total cellular ferritin, as assessed by Western blot, increased. The formation of hemosiderin was also observed. Furthermore, nuclear shape was distorted in iron-loaded hepatocytes. The extent of deviation from circularity in the nucleus correlated with increasing concentrations of TMH-ferrocene and was greater in hepatocytes exposed to FeSO4 than an equivalent concentration of TMH-ferrocene. The deviation from circularity was smallest in hepatocytes that contained well formed ferritin cores and increased in hepatocytes that contained greater amounts of hemosiderin. Furthermore, in hepatocytes treated with FeSO4, a large amount of cell-associated iron was detected but without a significant increase in the total amount of ferritin. The deviation from circularity was the largest in FeSO4-treated hepatocytes, indicating that iron not properly incorporated into ferritin caused more cellular damage. We conclude that iron-loaded hepatocytes in long-term DMSO culture represent a flexible system for studying the effects of chronic iron loading on hepatocytes. Images Figure 1 Figure 2 Figure 5 Figure 7 PMID:9502420
Okamoto, Yuko; Taguchi, Kazuaki; Yamasaki, Keishi; Sakuragi, Mina; Kuroda, Shun'ichi; Otagiri, Masaki
2018-01-01
Liposomes are clinically used in drug delivery, but loading hydrophobic substances is limited to the hydrophobic space of a lipid membrane, despite the fact that it is favorable to encapsulate substances into the inner aqueous core of liposome, from a drug stability of view. We report herein on the preparation of a liposome with bovine serum albumin encapsulated (BSA-liposome). Using this system, it is possible to encapsulate hydrophobic drugs in the inner aqueous core of the liposome based on the hypothesis that the water solubility of hydrophobic drugs is increased when bound to albumin. The physicochemical properties of the prepared BSA-liposomes could be easily regulated and the loading of hydrophobic drugs in the inner aqueous core of the liposome was dramatically improved by virtue of the drug-binding properties of albumin. An in vivo safety and pharmacokinetic study showed that BSA-liposomes possess favorable properties as a drug carrier, including biocompatibility and a stealth effect. This new type of hydrophobic drug carrier, an albumin-liposome, has the potential for use in delivering numerous hydrophobic drugs that typically bind to albumin. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Spiral wound extraction cartridge
Wisted, E.E.; Lundquist, S.H.
1999-04-27
A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite. 4 figs.
NASA Technical Reports Server (NTRS)
Peterson, Thomas M.
2001-01-01
The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.
Ra, Kongtae; Bang, Jae-Hyun; Lee, Jung-Moo; Kim, Kyung-Tae; Kim, Eun-Soo
2011-08-01
The vertical distribution of trace metals in sediment cores was investigated to evaluate the extent and the historical record of metal pollution over 30 years in the artificial Lake Shihwa in Korea. A marked increase of trace metals after 1980 was observed due to the operation of two large industrial complexes and dike construction for a reclamation project. There was a decreasing trend of metal concentrations with the distance from the pollution source. The enrichment factor and pollution load index of the metals indicated that the metal pollution was mainly derived from Cu, Zn and Cd loads due to anthropogenic activities. The concentrations of Cr, Ni, Cu, Zn, As and Pb in the upper part of all core sediments exceeded the ERL criteria of NOAA. Our results indicate that inadequate planning and management of industrialization and a large reclamation project accomplished by dike construction have continued to strongly accelerate metal pollution in Lake Shihwa. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Treshow, M.
1959-02-10
A reactor system incorporating a reactor of the heterogeneous boiling water type is described. The reactor is comprised essentially of a core submerged adwater in the lower half of a pressure vessel and two distribution rings connected to a source of water are disposed within the pressure vessel above the reactor core, the lower distribution ring being submerged adjacent to the uppcr end of the reactor core and the other distribution ring being located adjacent to the top of the pressure vessel. A feed-water control valve, responsive to the steam demand of the load, is provided in the feedwater line to the distribution rings and regulates the amount of feed water flowing to each distribution ring, the proportion of water flowing to the submerged distribution ring being proportional to the steam demand of the load. This invention provides an automatic means exterior to the reactor to control the reactivity of the reactor over relatively long periods of time without relying upon movement of control rods or of other moving parts within the reactor structure.
NASA Astrophysics Data System (ADS)
Müller, Anne; Scharf, Burkhard; von Tümpling, Wolf; Pirrung, Michael
2009-03-01
Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout as well as from river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue Volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.
NASA Astrophysics Data System (ADS)
Mueller, A.; Pirrung, M.; Scharf, B.; von Tuempling, W.
2007-05-01
Two 6-m long sediment cores drilled in the two basins of Lake Caviahue give new evidence of the impact of natural hazards such as ash fallouts linked to nearby volcanic eruptions in the ecologically sensitive environment of the high-altitude region of the Argentinan Patagonian Andes. The two cores show distinct signals of changes in autochthonous productivity and terrigenous input into the lake from ash fallout, river load and shore erosion. Multiproxy records of the sediments indicate whether these changes can be related to volcanic activity. High values of magnetic susceptibility in the cores reflect periods of basaltic ash fallouts during eruptions of the nearby Copahue volcano. The southern basin is located in the prevalent direction of ash fallouts and has been affected by these volcanic inputs more intensely than the northern basin of the lake. In contrast, sedimentation and authochthonous productivity in the northern basin are strongly affected by fluvial inputs such as suspended river load and acidic stream waters.
Lipid-coated mannitol core microparticles for sustained release of protein.
Wang, Bifeng; Friess, Wolfgang
2018-07-01
Parenteral sustained release systems for proteins which provide therapeutic levels over a longer period avoiding frequent administration, which preserve protein stability during manufacturing, storage and application and which are biodegradable and highly biocompatible in the body are intensively sought after. The aim of this study was to generate and study mannitol core microparticles loaded with a monoclonal antibody IgG1 and coated with lipid either hard fat or glyceryl stearate at different coating levels. The protein was stabilized with 22.5 mg/mL sucrose, 0.1% PS 80, 10 mM methionine in 10 mM His buffer pH 7.2 during the spray loading process. 30 g protein-loaded mannitol carrier microparticles were coated with 5 g, 10 g, 20 g and 30 g of lipid, respectively. Placing more lipid onto the protein-loaded microparticles reduced both burst and release rate, and the particles maintained their geometric form during the release test. The IgG1 release from microparticles covered with a hard fat layer extended up to 6 weeks. The IgG1 was released in its monomeric form and maintained its secondary structure as shown by FTIR. Incomplete release of IgG1 from glyceryl stearate-coated microparticles was observed, which may be due to the small pore sizes of the glyceryl stearate layer or a detrimental surfactant character of glyceryl stearate to protein. Hence, these hard fat-coated mannitol core microparticles have high potential for protein delivery. Copyright © 2018 Elsevier B.V. All rights reserved.
Aaland, Kristian
1983-01-01
A switching system for delivering pulses of power from a source (10) to a load (20) using a storage capacitor (C3) charged through a rectifier (D1, D2), and maintained charged to a reference voltage level by a transistor switch (Q1) and voltage comparator (12). A thyristor (22) is triggered to discharge the storage capacitor through a saturable reactor (18) and fractional turn saturable transformer (16) having a secondary to primary turn ratio N of n:l/n=n.sup.2. The saturable reactor (18) functions as a "soaker" while the thyristor reaches saturation, and then switches to a low impedance state. The saturable transformer functions as a switching transformer with high impedance while a load coupling capacitor (C4) charges, and then switches to a low impedance state to dump the charge of the storage capacitor (C3) into the load through the coupling capacitor (C4). The transformer is comprised of a multilayer core (26) having two secondary windings (28, 30) tightly wound and connected in parallel to add their output voltage and reduce output inductance, and a number of single turn windings connected in parallel at nodes (32, 34) for the primary winding, each single turn winding linking a different one of the layers of the multilayer core. The load may be comprised of a resistive beampipe (40) for a linear particle accelerator and capacitance of a pulse forming network (42). To hold off discharge of the capacitance until it is fully charged, a saturable core (44) is provided around the resistive beampipe (40) to isolate the beampipe from the capacitance (42) until it is fully charged.
ERIC Educational Resources Information Center
Watt, Michael
2009-01-01
The purpose of this study is to evaluate the nature of activities in the change process undertaken by two initiatives to produce national standards in academic disciplines, national assessments and accountability measures. The Common Core State Standards Initiative, a project coordinated by the National Governors Association and the Council of…
Optimizing the robustness of electrical power systems against cascading failures.
Zhang, Yingrui; Yağan, Osman
2016-06-21
Electrical power systems are one of the most important infrastructures that support our society. However, their vulnerabilities have raised great concern recently due to several large-scale blackouts around the world. In this paper, we investigate the robustness of power systems against cascading failures initiated by a random attack. This is done under a simple yet useful model based on global and equal redistribution of load upon failures. We provide a comprehensive understanding of system robustness under this model by (i) deriving an expression for the final system size as a function of the size of initial attacks; (ii) deriving the critical attack size after which system breaks down completely; (iii) showing that complete system breakdown takes place through a first-order (i.e., discontinuous) transition in terms of the attack size; and (iv) establishing the optimal load-capacity distribution that maximizes robustness. In particular, we show that robustness is maximized when the difference between the capacity and initial load is the same for all lines; i.e., when all lines have the same redundant space regardless of their initial load. This is in contrast with the intuitive and commonly used setting where capacity of a line is a fixed factor of its initial load.
Structure of a human cap-dependent 48S translation pre-initiation complex
Eliseev, Boris; Yeramala, Lahari; Leitner, Alexander; Karuppasamy, Manikandan; Raimondeau, Etienne; Huard, Karine; Alkalaeva, Elena; Aebersold, Ruedi
2018-01-01
Abstract Eukaryotic translation initiation is tightly regulated, requiring a set of conserved initiation factors (eIFs). Translation of a capped mRNA depends on the trimeric eIF4F complex and eIF4B to load the mRNA onto the 43S pre-initiation complex comprising 40S and initiation factors 1, 1A, 2, 3 and 5 as well as initiator-tRNA. Binding of the mRNA is followed by mRNA scanning in the 48S pre-initiation complex, until a start codon is recognised. Here, we use a reconstituted system to prepare human 48S complexes assembled on capped mRNA in the presence of eIF4B and eIF4F. The highly purified h-48S complexes are used for cross-linking/mass spectrometry, revealing the protein interaction network in this complex. We report the electron cryo-microscopy structure of the h-48S complex at 6.3 Å resolution. While the majority of eIF4B and eIF4F appear to be flexible with respect to the ribosome, additional density is detected at the entrance of the 40S mRNA channel which we attribute to the RNA-recognition motif of eIF4B. The eight core subunits of eIF3 are bound at the 40S solvent-exposed side, as well as the subunits eIF3d, eIF3b and eIF3i. elF2 and initiator-tRNA bound to the start codon are present at the 40S intersubunit side. This cryo-EM structure represents a molecular snap-shot revealing the h-48S complex following start codon recognition. PMID:29401259
Schultheis, Stefan; Strub, Joerg R; Gerds, Thomas A; Guess, Petra C
2013-06-01
The authors analyzed the effect of fatigue on the survival rate and fracture load of monolithic and bi-layer CAD/CAM lithium-disilicate posterior three-unit fixed dental prostheses (FDPs) in comparison to the metal-ceramic gold standard. The authors divided 96 human premolars and molars into three equal groups. Lithium-disilicate ceramic (IPS-e.max-CAD) was milled with the CEREC-3-system in full-anatomic FDP dimensions (monolithic: M-LiCAD) or as framework (Bi-layer: BL-LiCAD) with subsequent hand-layer veneering. Metal-ceramic FDPs (MC) served as control. Single-load-to-failure tests were performed before and after mouth-motion fatigue. No fracture failures occurred during fatigue. Median fracture loads in [N], before and after fatigue were, respectively, as follows: M-LiCAD, 1,298/1,900; BL-LiCAD, 817/699; MC, 1,966/1,818. M-LiCAD and MC FPDs revealed comparable fracture loads and were both significantly higher than BL-LiCAD. M-LiCAD and BL-LiCAD both failed from core/veneer bulk fracture within the connector area. MC failures were limited to ceramic veneer fractures exposing the metal core. Fatigue had no significant effect on any group. Posterior monolithic CAD/CAM fabricated lithium-disilicate FPDs were shown to be fracture resistant with failure load results comparable to the metal-ceramic gold standard. Clinical investigations are needed to confirm these promising laboratory results. Monolithic CAD/CAM fabricated lithium-disilicate FDPs appeared to be a reliable treatment alternative for the posterior load-bearing area, whereas FDPs in bi-layer configuration were susceptible to low load fracture failure.
Numerical investigation of contact stresses for fretting fatigue damage initiation
NASA Astrophysics Data System (ADS)
Bhatti, N. A.; Abdel Wahab, M.
2017-05-01
Fretting fatigue phenomena occurs due to interaction between contacting bodies under application of cyclic and normal loads. In addition to environmental conditions and material properties, the response at the contact interface highly depends on the combination of applied loads. High stress concentration is present at the contact interface, which can start the damage nucleation process. At the culmination of nucleation process several micro cracks are initiated, ultimately leading to the structural failure. In this study, effect of ratio of tangential to normal load on contact stresses, slip amplitude and damage initiation is studied using finite element analysis. The results are evaluated for Ruiz parameter as it involves the slip amplitude which in an important factor in fretting fatigue conditions. It is observed that tangential to normal load ratio influences the stick zone size and damage initiation life. Furthermore, it is observed that tensile stress is the most important factor that drives the damage initiation to failure for the cases where failure occurs predominantly in mode I manner.
NASA Astrophysics Data System (ADS)
Jung, Byung Ik; Cho, Yong Sun; Park, Hyoung Min; Chung, Dong Chul; Choi, Hyo Sang
2013-01-01
The South Korean power grid has a network structure for the flexible operation of the system. The continuously increasing power demand necessitated the increase of power facilities, which decreased the impedance in the power system. As a result, the size of the fault current in the event of a system fault increased. As this increased fault current size is threatening the breaking capacity of the circuit breaker, the main protective device, a solution to this problem is needed. The superconducting fault current limiter (SFCL) has been designed to address this problem. SFCL supports the stable operation of the circuit breaker through its excellent fault-current-limiting operation [1-5]. In this paper, the quench and fault current limiting characteristics of the flux-coupling-type SFCL with one three-phase transformer were compared with those of the same SFCL type but with three single-phase transformers. In the case of the three-phase transformers, both the superconducting elements of the fault and sound phases were quenched, whereas in the case of the single-phase transformer, only that of the fault phase was quenched. For the fault current limiting rate, both cases showed similar rates for the single line-to-ground fault, but for the three-wire earth fault, the fault current limiting rate of the single-phase transformer was over 90% whereas that of the three-phase transformer was about 60%. It appears that when the three-phase transformer was used, the limiting rate decreased because the fluxes by the fault current of each phase were linked in one core. When the power loads of the superconducting elements were compared by fault type, the initial (half-cycle) load was great when the single-phase transformer was applied, whereas for the three-phase transformer, its power load was slightly lower at the initial stage but became greater after the half fault cycle.
Coupled Fracture and Flow in Shale in Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Carey, J. W.; Mori, H.; Viswanathan, H.
2014-12-01
Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (< 1 mD), possibly because of limited fracture connectivity through the anvils. In pure share experiments, shale with bedding planes perpendicular to shear loading developed complex fracture networks with narrow apertures and peak permeability of 30 mD. Shale with bedding planes parallel to shear loading developed simple fractures with large apertures and a peak permeability as high as 1 D. Fracture systems held at static conditions for periods of several hours showed little change in effective permeability at hydrostatic conditions as high as 140 bars. However, permeability of fractured systems was a function of hydrostatic pressure, declining in a pseudo-linear, exponential fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.
Peces, M; Astals, S; Jensen, P D; Clarke, W P
2018-05-17
The impact of the starting inoculum on long-term anaerobic digestion performance, process functionality and microbial community composition remains unclear. To understand the impact of starting inoculum, active microbial communities from four different full-scale anaerobic digesters were each used to inoculate four continuous lab-scale anaerobic digesters, which were operated identically for 295 days. Digesters were operated at 15 days solid retention time, an organic loading rate of 1 g COD L r -1 d -1 (75:25 - cellulose:casein) and 37 °C. Results showed that long-term process performance, metabolic rates (hydrolytic, acetogenic, and methanogenic) and microbial community are independent of the inoculum source. Digesters process performance converged after 80 days, while metabolic rates and microbial communities converged after 120-145 days. The convergence of the different microbial communities towards a core-community proves that the deterministic factors (process operational conditions) were a stronger driver than the initial microbial community composition. Indeed, the core-community represented 72% of the relative abundance among the four digesters. Moreover, a number of positive correlations were observed between higher metabolic rates and the relative abundance of specific microbial groups. These correlations showed that both substrate consumers and suppliers trigger higher metabolic rates, expanding the knowledge of the nexus between microorganisms and functionality. Overall, these results support that deterministic factors control microbial communities in bioreactors independently of the inoculum source. Hence, it seems plausible that a desired microbial composition and functionality can be achieved by tuning process operational conditions. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Zhu, Jing-Ling; Liu, Kerh Li; Wen, Yuting; Song, Xia; Li, Jun
2016-01-01
A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin.A star polymer of poly[(R,S)-3-hydroxybutyrate] (PHB) with adamantyl end-terminals extended from an α-cyclodextrin (α-CD) core is designed. It subsequently self-assembles to form controllable and uniform nanovesicles induced by host-guest interactions between heptakis(2,6-di-O-methyl)-β-CD and the adamantyl ends. The nanovesicles are suitable for loading and intracellular delivery of the anticancer drug doxorubicin. Electronic supplementary information (ESI) available: Polymer synthesis, characterization, preparation of drug-loaded nanovesicles, intracellular drug release and cytotoxicity assays, TEM and DLS measurements. See DOI: 10.1039/c5nr06744h
Lee, Hong Jae; Kim, Da Eun; Park, Dong Jin; Choi, Gi Hyun; Yang, Dal-Nim; Heo, Jung Sun; Lee, Sang Cheon
2016-10-01
We describe a calcium carbonate (CaCO3) mineralization approach to generate pH-responsive nanocarriers that can stably load S-nitrosoglutathione (GSNO) and dissolve at acidic endosomes to trigger intracellular release of nitric oxide (NO). GSNO-loaded CaCO3-mineralized nanoparticles (GSNO-MNPs) were prepared by an anionic block copolymer (PEG-Poly(l-aspartic acid))-templated mineralization. Ionic GSNO could be loaded in situ inside the CaCO3 core during the mineralization process. The stability of GSNO shielded within the crystalline CaCO3 core was greatly enhanced. The GSNO-MNPs triggered NO release at endosomal pH and an intracellular ascorbic acid level. Confocal microscopy demonstrated that the GSNO-MNPs could be dissolved at endosomal environments to release GSNO and sequentially generate NO through the GSNO reduction in the cytosol. In vitro cell experiments demonstrated that NO release by the GSNO-MNPs efficiently improved therapeutic activity of doxorubicin (DOX). Copyright © 2016 Elsevier B.V. All rights reserved.
Microyielding of core-shell crystal dendrites in a bulk-metallic-glass matrix composite
Huang, E. -Wen; Qiao, Junwei; Winiarski, Bartlomiej; ...
2014-03-18
In-situ synchrotron x-ray experiments have been used to follow the evolution of the diffraction peaks for crystalline dendrites embedded in a bulk metallic glass matrix subjected to a compressive loading-unloading cycle. We observe irreversible diffraction-peak splitting even though the load does not go beyond half of the bulk yield strength. The chemical analysis coupled with the transmission electron microscopy mapping suggests that the observed peak splitting originates from the chemical heterogeneity between the core (major peak) and the stiffer shell (minor peak) of the dendrites. A molecular dynamics model has been developed to compare the hkl-dependent microyielding of the bulkmore » metallic-glass matrix composite. As a result, the complementary diffraction measurements and the simulation results suggest that the interfaces between the amorphous matrix and the (211) crystalline planes relax under prolonged load that causes a delay in the reload curve which ultimately catches up with the original path.« less
Matsumoto, Hideki; Nagao, Daisuke; Konno, Mikio
2010-03-16
Oppositely charged particles were repetitively heterocoagulated to fabricate highly monodisperse magnetic silica particles with high loading of magnetic nanoparticles. Positively charged magnetic nanoparticles prepared by surface modification with N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride (TSA) were used to heterocoagulate with silica particles under basic conditions to give rise to negative silica surface charge and prevent the oxidation of the magnetic nanoparticles. The resultant particles of silica core homogeneously coated with the magnetic nanoparticles were further coated with thin silica layer with sodium silicate in order to enhance colloidal stability and avoid desorption of the magnetic nanoparticles from the silica cores. Five repetitions of the heterocoagulation and the silica coating could increase saturation magnetization of the magnetic silica particles to 27.7 emu/g, keeping the coefficient of variation of particle sizes (C(V)) less than 6.5%. Highly homogeneous loading of the magnetic component was confirmed by measuring Fe-to-Si atomic ratios of individual particles with energy dispersive X-ray spectroscopy.
Development of lightweight graphite/polyimide sandwich panels, phases 3, 4 and 5
NASA Technical Reports Server (NTRS)
Merlette, J. B.
1972-01-01
Work performed in the last three phases of the program included: (1) face sheet processing; (2) honeycomb core manufacture; (3) face sheet-to-core bonding development; and (4) sandwich panel fabrication and testing. Resin cure studies were a major portion of this effort since processing problems traced to the polyimide matrix resin had to be resolved before quality core and face sheets could be fabricated. Honeycomb core fabrication and testing were conducted by Hexcel Corporation. A total of four graphite/polyimide resin composite cores were fabricated, tested, and reported. Two sandwich panels weighing .48 and .58 lb/sq ft, respectively were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.
Transformer coupling for transmitting direct current through a barrier
Brown, Ralph L.; Guilford, Richard P.; Stichman, John H.
1988-01-01
The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level.
Transformer coupling for transmitting direct current through a barrier
Brown, R.L.; Guilford, R.P.; Stichman, J.H.
1987-06-29
The transmission system for transmitting direct current from an energy source on one side of an electrical and mechanical barrier to a load on the other side of the barrier utilizes a transformer comprising a primary core on one side of the transformer and a secondary core on the other side of the transformer. The cores are magnetically coupled selectively by moving a magnetic ferrite coupler in and out of alignment with the poles of the cores. The direct current from the energy source is converted to a time varying current by an oscillating circuit, which oscillating circuit is optically coupled to a secondary winding on the secondary core to interrupt oscillations upon the voltage in the secondary winding exceeding a preselected level. 4 figs.
ERIC Educational Resources Information Center
Maynard, Jennifer L.; Floyd, Randy G.; Acklie, Teresa J.; Houston, Lawrence, III
2011-01-01
The purpose of this study was to investigate the "g" loadings and specific effects of the core and diagnostic composite scores from the Differential Abilities Scales, Second Edition (DAS-II; Elliott, 2007a). Scores from a subset of the DAS-II standardization sample for ages 3:6 to 17:11 were submitted to principal factor analysis. Four…
Cyclic performance of concrete-filled steel batten built-up columns
NASA Astrophysics Data System (ADS)
Razzaghi, M. S.; Khalkhaliha, M.; Aziminejad, A.
2016-03-01
Steel built-up batten columns are common types of columns in Iran and some other parts of the world. They are economic and have acceptable performance due to gravity loads. Although several researches have been conducted on the behavior of the batten columns under axial loads, there are few available articles about their seismic performance. Experience of the past earthquakes, particularly the 2003 Bam earthquake in Iran, revealed that these structural members are seismically vulnerable. Thus, investigation on seismic performance of steel batten columns due to seismic loads and providing a method for retrofitting them are important task in seismic-prone areas. This study aims to investigate the behavior of concrete-filled batten columns due to combined axial and lateral loads. To this end, nonlinear static analyses were performed using ANSYS software. Herein, the behaviors of the steel batten columns with and without concrete core were compared. The results of this study showed that concrete-filled steel batten columns, particularly those filled with high-strength concrete, may cause significant increases in energy absorption and capacity of the columns. Furthermore, concrete core may improve post-buckling behavior of steel batten columns.
Barratt, Paul A; Selfe, James
2018-06-01
To improve outcomes of physiotherapy treatment for patients with Lateral Epicondylalgia. A systematic audit and quality improvement project over three phases, each of one year duration. Salford Royal NHS Foundation Trust Teaching Hospital Musculoskeletal Physiotherapy out-patients department. n=182. Phase one - individual discretion; Phase two - strengthening as a core treatment however individual discretion regarding prescription and implementation; Phase three - standardised protocol using high load isometric exercise, progressing on to slow combined concentric & eccentric strengthening. Global Rating of Change Scale, Pain-free grip strength, Patient Rated Tennis Elbow Evaluation, Tampa Scale of Kinesophobia-11. Phase three demonstrated a reduction in the average number of treatments by 42% whilst improving the number of responders to treatment by 8% compared to phase one. Complete cessation of non-evidence based treatments was also observed by phase three. Strengthening should be a core treatment for LE. Load setting needs to be sufficient. In phase three of the audit a standardised tendon loading programme using patient specific high load isometric exercises into discomfort/pain demonstrated a higher percentage of responders compared to previous phases. Copyright © 2017 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load
NASA Astrophysics Data System (ADS)
Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong
2015-12-01
Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.
Mangrio, Farhana Akbar; Dwivedi, Pankaj; Han, Shuya; Zhao, Gang; Gao, Dayong; Si, Ting; Xu, Ronald X
2017-12-04
Artemether is one of the most effective drugs for the treatment of chloroquine-resistant and Plasmodium falciparum strains of malaria. However, its therapeutic potency is hindered by its poor bioavailability. To overcome this limitation, we have encapsulated artemether in poly(lactic-co-glycolic) acid (PLGA) core-shell microparticles (MPs) using the coaxial electrospray method. With optimized process parameters including liquid flow rates and applied electric voltages, experiments are systematically carried out to generate a stable cone-jet mode to produce artemether-loaded PLGA-MPs with an average size of 2 μm, an encapsulation efficiency of 78 ± 5.6%, and a loading efficiency of 11.7%. The in vitro release study demonstrates the sustained release of artemether from the core-shell structure in comparison with that of plain artemether and that of MPs produced by single-axial electrospray without any relevant cytotoxicity. The in vivo studies are performed to evaluate the pharmacokinetic characteristics of the artemether-loaded PLGA-MPs. Our study implies that artemether can be effectively encapsulated in a protective shell of PLGA for controlled release kinetics and enhanced oral bioavailability.
Selective randomized load balancing and mesh networks with changing demands
NASA Astrophysics Data System (ADS)
Shepherd, F. B.; Winzer, P. J.
2006-05-01
We consider the problem of building cost-effective networks that are robust to dynamic changes in demand patterns. We compare several architectures using demand-oblivious routing strategies. Traditional approaches include single-hop architectures based on a (static or dynamic) circuit-switched core infrastructure and multihop (packet-switched) architectures based on point-to-point circuits in the core. To address demand uncertainty, we seek minimum cost networks that can carry the class of hose demand matrices. Apart from shortest-path routing, Valiant's randomized load balancing (RLB), and virtual private network (VPN) tree routing, we propose a third, highly attractive approach: selective randomized load balancing (SRLB). This is a blend of dual-hop hub routing and randomized load balancing that combines the advantages of both architectures in terms of network cost, delay, and delay jitter. In particular, we give empirical analyses for the cost (in terms of transport and switching equipment) for the discussed architectures, based on three representative carrier networks. Of these three networks, SRLB maintains the resilience properties of RLB while achieving significant cost reduction over all other architectures, including RLB and multihop Internet protocol/multiprotocol label switching (IP/MPLS) networks using VPN-tree routing.
Staskowski, Maureen
2012-05-01
Educational reform is sweeping the country. The adoption and the implementation of the Common Core State Standards in almost every state are meant to transform education. It is intended to update the way schools educate, the way students learn, and to ultimately prepare the nation's next generation for the global workplace. This article will describe the Common Core State Standard initiative and the underlying concerns about the quality of education in the United States as well as the opportunities this reform initiative affords speech-language pathologists. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Roe, S C
1997-01-01
Evaluate the mechanical properties of twist, loop, double loop, double-wrap and loop/twist cerclage. The initial tension generated by 18 cerclage of each type was determined using a materials testing machine after tying around a testing jig. Six wires from each type were distracted and the initial stiffness and yield load were determined. Yield behavior was further investigated in six wires of each type by determining the load required to reduce cerclage tension below 30 Newton (N) following and incremental (50 N) stepwise load and unload regimen. The amount of collapse of the simulated bone fragments that resulted in the reduction of initial tension to 30 N was measured for the final six wires of each group. Data were analyzed by analysis of variance and a multiple comparison test. Twist type cerclage generated less tension than loop-type cerclage. The yield load of these two types was similar. Double-loop and double-wrap cerclage generated superior tension and resisted a greater load before loosening. Loop/twist cerclage had an intermediate initial tension but had the greatest resistance to loading. In the collapse test, the greater the initial tension, the more collapse could occur before the wire was loose. For all types of cerclage wire fixation, a reduction of diameter of the testing jig of more than 1% caused loosening. Double-loop and double-wrap cerclage provide greater compression of fragments and resist loads associated with weight-bearing better than the twist and loop methods. Loop/twist cerclage may have advantages because of their superior resistance to loading. All cerclage will loosen if fracture fragments collapse.
The French initiative for scientific cores virtual curating : a user-oriented integrated approach
NASA Astrophysics Data System (ADS)
Pignol, Cécile; Godinho, Elodie; Galabertier, Bruno; Caillo, Arnaud; Bernardet, Karim; Augustin, Laurent; Crouzet, Christian; Billy, Isabelle; Teste, Gregory; Moreno, Eva; Tosello, Vanessa; Crosta, Xavier; Chappellaz, Jérome; Calzas, Michel; Rousseau, Denis-Didier; Arnaud, Fabien
2016-04-01
Managing scientific data is probably one the most challenging issue in modern science. The question is made even more sensitive with the need of preserving and managing high value fragile geological sam-ples: cores. Large international scientific programs, such as IODP or ICDP are leading an intense effort to solve this problem and propose detailed high standard work- and dataflows thorough core handling and curating. However most results derived from rather small-scale research programs in which data and sample management is generally managed only locally - when it is … The national excellence equipment program (Equipex) CLIMCOR aims at developing French facilities for coring and drilling investigations. It concerns indiscriminately ice, marine and continental samples. As part of this initiative, we initiated a reflexion about core curating and associated coring-data management. The aim of the project is to conserve all metadata from fieldwork in an integrated cyber-environment which will evolve toward laboratory-acquired data storage in a near future. In that aim, our demarche was conducted through an close relationship with field operators as well laboratory core curators in order to propose user-oriented solutions. The national core curating initiative currently proposes a single web portal in which all scientifics teams can store their field data. For legacy samples, this will requires the establishment of a dedicated core lists with associated metadata. For forthcoming samples, we propose a mobile application, under Android environment to capture technical and scientific metadata on the field. This application is linked with a unique coring tools library and is adapted to most coring devices (gravity, drilling, percussion, etc...) including multiple sections and holes coring operations. Those field data can be uploaded automatically to the national portal, but also referenced through international standards or persistent identifiers (IGSN, ORCID and INSPIRE) and displayed in international portals (currently, NOAA's IMLGS). In this paper, we present the architecture of the integrated system, future perspectives and the approach we adopted to reach our goals. We will also present in front of our poster, one of the three mobile applications, dedicated more particularly to the operations of continental drillings.
Blended-Wing-Body (BWB) Fuselage Structural Design for Weight Reduction
NASA Technical Reports Server (NTRS)
Mukhopadhyay, V.
2005-01-01
Structural analysis and design of efficient pressurized fuselage configurations for the advanced Blended-Wing-Body (BWB) flight vehicle is a challenging problem. Unlike a conventional cylindrical pressurized fuselage, stress level in a box type BWB fuselage is an order of magnitude higher, because internal pressure primarily results in bending stress instead of skin-membrane stress. In addition, resulting deformation of aerodynamic surface could significantly affect performance advantages provided by lifting body. The pressurized composite conformal multi-lobe tanks of X-33 type space vehicle also suffered from similar problem. In the earlier BWB design studies, Vaulted Ribbed Shell (VLRS), Flat Ribbed Shell (FRS); Vaulted shell Honeycomb Core (VLHC) and Flat sandwich shell Honeycomb Core (FLHC) concepts were studied. The flat and vaulted ribbed shell concepts were found most efficient. In a recent study, a set of composite sandwich panel and cross-ribbed panel were analyzed. Optimal values of rib and skin thickness, rib spacing, and panel depth were obtained for minimal weight under stress and buckling constraints. In addition, a set of efficient multi-bubble fuselage (MBF) configuration concept was developed. The special geometric configuration of this concept allows for balancing internal cabin pressure load efficiently, through membrane stress in inner-stiffened shell and inter-cabin walls, while the outer-ribbed shell prevents buckling due to external resultant compressive loads. The initial results from these approximate finite element analyses indicate progressively lower maximum stresses and deflections compared to the earlier study. However, a relative comparison of the FEM weight per unit floor area of the segment unit indicates that the unit weights are still relatively higher that the conventional B777 type cylindrical or A380 type elliptic fuselage design. Due to the manufacturing concern associated with multi-bubble fuselage, a Y braced box-type fuselage alternative with special resin-film injected (RFI) stitched carbon composite with foam-core was designed by Boeing under a NASA research contract for the 480 passenger version. It is shown that this configuration can be improved to a modified multi-bubble fuselage which has better stress distribution, for same material and dimension.
Metal Foam Analysis: Improving Sandwich Structure Technology for Engine Fan and Propeller Blades
NASA Technical Reports Server (NTRS)
Fedor, Jessica L.
2004-01-01
The Life Prediction Branch of the NASA Glenn Research Center is searching for ways to construct aircraft and rotorcraft engine fan and propeller blades that are lighter and less costly. One possible design is to create a sandwich structure composed of two metal faces sheets and a metal foam core. The face sheets would carry the bending loads and the foam core would have to resist the transverse shear loads. Metal foam is ideal because of its low density and energy absorption capabilities, making the structure lighter, yet still stiff. The material chosen for the face sheets and core was 17-4PH stainless steel, which is easy to make and has appealing mechanical properties. This material can be made inexpensively compared to titanium and polymer matrix composites, the two current fan blade alternatives. Initial tests were performed on design models, including vibration and stress analysis. These tests revealed that the design is competitive with existing designs; however, some problems were apparent that must be addressed before it can be implemented in new technology. The foam did not hold up as well as expected under stress. This could be due to a number of issues, but was most likely a result of a large number of pores within the steel that weakened the structure. The brazing between the face sheets and the foam was also identified as a concern. The braze did not hold up well under shear stress causing the foam to break away from the face sheets. My role in this project was to analyze different options for improving the design. I primarily spent my time examining various foam samples, created with different sintering conditions, to see which exhibited the most favorable characteristics for our purpose. Methods of analysis that I employed included examining strut integrity under a microscope, counting the number of cells per inch, measuring the density, testing the microhardness, and testing the strength under compression. Shear testing will also be done to examine the strengths of different types of brazes.
Porous and non-porous water soluble polymer nanospheres
NASA Astrophysics Data System (ADS)
Henselwood, Fred William
Water soluble polymer nanospheres have been prepared from the photo-cross-linking of diblock copolymer micelles formed either in water or in N,N-dimethylformamide/water mixtures. The diblock copolymers utilized in this study were poly(2-cinnamoyl-ethyl methacrylate)-block-poly(acrylic acid), poly ((2-cinnamoylethyl methacrylate)-random-(2-octanoylethyl methacrylate)) -block-poly(acrylic acid), and poly ((2-cinnamoyl-ethyl methacrylate)-random-(2-oleoylethyl methacrylate)) -block-poly(acrylic acid). These polymers were synthesized by the functionalization of diblock copolymers prepared by anionic polymerization. The photo-cross-linking was achieved through the dimerization of cinnamoyl groups by ultraviolet irradiation. Transmission electron microscopy confirmed that the polymer nanospheres had an inner core region formed by the cinnamoyl containing polymer blocks, and an outer shell layer formed by the acrylic acid polymer blocks. The hydrodynamic radius of the polymer nanospheres in water was approximately 50 to 75 nm as determined by dynamic light scattering. It has been found that the polymer nanospheres, when in water, could be readily impregnated with organic molecules. Fluorescence measurements showed that the polymer nanospheres could uptake polyaromatic hydrocarbons by the direct mixing of polyaromatic hydrocarbons with the polymer nanospheres in water. Perylene was found to be between 2.0 × 10sp5 and 4.0 × 10sp5 times more soluble in the core region of the polymer nanospheres than in water. The addition of divalent cations was shown to induce aggregation of the polymer nanospheres and resulted in the precipitation of the polymer nanospheres along with any captured perylene. This suggests that the polymer nanospheres may be useful in water remediation. Porous polymer nanospheres were prepared by the incorporation of low molecular weight polymeric porogens within the core region of the polymer nanospheres. Following photo-cross-linking the polymeric porogens were extracted out of the polymer nanospheres resulting in pore formation. Perylene loading experiments revealed that the loading of the porous polymer nanospheres was 41% higher than that achieved for non-porous polymer nanospheres prepared from the same initial diblock copolymer. This indicates that the porous polymer nanospheres may be preferred over the non-porous polymer nanospheres in applications such as drug delivery.
Marzolini, Catia; Sabin, Caroline; Raffi, François; Siccardi, Marco; Mussini, Cristina; Launay, Odile; Burger, David; Roca, Bernardino; Fehr, Jan; Bonora, Stefano; Mocroft, Amanda; Obel, Niels; Dauchy, Frederic-Antoine; Zangerle, Robert; Gogos, Charalambos; Gianotti, Nicola; Ammassari, Adriana; Torti, Carlo; Ghosn, Jade; Chêne, Genevieve; Grarup, Jesper; Battegay, Manuel
2015-01-14
The prevalence of overweight and obesity is increasing among HIV-infected patients. Whether standard antiretroviral drug dosage is adequate in heavy individuals remains unresolved. We assessed the virological and immunological responses to initial efavirenz (EFV)-containing regimens in heavy compared to normal-weight HIV-infected patients. Observational European cohort collaboration study. Eligible patients were antiretroviral-naïve with documented weight prior to EFV start and follow-up viral loads after treatment initiation. Cox regression analyses evaluated the association between weight and time to first undetectable viral load (<50 copies/ml) after treatment initiation, and time to viral load rebound (two consecutive viral load >50 copies/ml) after initial suppression over 5 years of follow-up. Recovery of CD4 cell count was evaluated 6 and 12 months after EFV initiation. Analyses were stratified by weight (kg) group (I - <55; II - >55, <80 (reference); III - >80, <85; IV - >85, <90; V - >90, <95; VI - >95). The study included 19,968 patients, of whom 9.1, 68.3, 9.1, 5.8, 3.5, and 4.3% were in weight groups I-VI, respectively. Overall, 81.1% patients attained virological suppression, of whom 34.1% subsequently experienced viral load rebound. After multiple adjustments, no statistical difference was observed in time to undetectable viral load and virological rebound for heavier individuals compared to their normal-weight counterparts. Although heaviest individuals had significantly higher CD4 cell count at baseline, CD4 cell recovery at 6 and 12 months after EFV initiation was comparable to normal-weight individuals. Virological and immunological responses to initial EFV-containing regimens were not impaired in heavy individuals, suggesting that the standard 600 mg EFV dosage is appropriate across a wide weight range.
PLGA/polymeric liposome for targeted drug and gene co-delivery.
Wang, Hanjie; Zhao, Peiqi; Su, Wenya; Wang, Sheng; Liao, Zhenyu; Niu, Ruifang; Chang, Jin
2010-11-01
Chemotherapy is one of the most effective approaches to treat cancers in the clinic, but the problems, such as multidrug resistance (MDR), low bioavailability and toxicity, severely constrain the further application of chemotherapy. Our group recently reported that cationic PLGA/folate coated PEGlated polymeric liposome core-shell nanoparticles (PLGA/FPL NPs). It was self-assembled from a hydrophobic PLGA core and a hydrophilic folate coated PEGlated lipid shell for targeting co-delivery of drug and gene. Hydrophobic drugs can be incorporated into the core and the cationic shell of the drug-loaded nanoparticles can be used to bind DNA. The drug-loaded PLGA/FPL NPs/DNA complexes offer advantages to overcome these problems mentioned above, such as co-delivery of drugs and DNA to improving the chemosensitivity of cancer cells at a gene level, and targeting delivery of drug to the cancer tissue that enhance the bioavailability and reduce the toxicity. The experiment showed that nanoparticles have core-shell structure with nanosize, sustained drug release profile and good DNA-binding ability. Importantly, the core-shell nanoparticles achieve the possibility of co-delivering drugs and genes to the same cells with high gene transfection and drug delivery efficiency. Our data suggest that the PLGA/FPL NPs may be a useful drug and gene co-delivery system. Copyright © 2010 Elsevier Ltd. All rights reserved.
Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent
NASA Astrophysics Data System (ADS)
Tang, Jing; Liu, Yongjia; Zhu, Bangshang; Su, Yue; Zhu, Xinyuan
2017-01-01
The paclitaxel/chitosan (PTX/CS) core-shell nanofibers (NFs) are easily prepared by co-assembly of PTX and CS and used in drug-eluting stent. The mixture solution of PTX (dissolved in ethanol) and CS (dissolved in 1% acetic acid water solution) under sonication will make the formation of NFs, in which small molecule PTX co-assembles with biomacromolecular CS through non-covalent interactions. The obtained NFs are tens to hundreds nanometers in diameter and millimeter level in length. Furthermore, the structure of PTX/CS NFs was characterized by confocal laser scanning microscopy (CLSM), zeta potential, X-ray photoelectron spectroscopy (XPS) and nanoscale infra-red (nanoIR), which provided evidences demonstrated that PTX/CS NFs are core-shell structures. The 'shell' of CS wrapped outside of the NFs, while PTX is located in the core. Thus it resulted in high drug loading content (>40 wt.%). The well-controlled drug release, low cytotoxicity and good haemocompatibility were also found in drug carrier system of PTX/CS NFs. In addition, the hydrophilic and flexible properties of NFs make them easily coating and filming on stent to prepare drug-eluting stent (DES). Therefore, this study provides a convenient method to prepare high PTX loaded NFs, which is a promising nano-drug carrier used for DES and other biomedical applications. The possible molecular mechanism of PTX and CS co-assembly and core-shell nanofiber formation is also explored.
Comparison of ENDF/B-VII.1 and JEFF-3.2 in VVER-1000 operational data calculation
NASA Astrophysics Data System (ADS)
Frybort, Jan
2017-09-01
Safe operation of a nuclear reactor requires an extensive calculational support. Operational data are determined by full-core calculations during the design phase of a fuel loading. Loading pattern and design of fuel assemblies are adjusted to meet safety requirements and optimize reactor operation. Nodal diffusion code ANDREA is used for this task in case of Czech VVER-1000 reactors. Nuclear data for this diffusion code are prepared regularly by lattice code HELIOS. These calculations are conducted in 2D on fuel assembly level. There is also possibility to calculate these macroscopic data by Monte-Carlo Serpent code. It can make use of alternative evaluated libraries. All calculations are affected by inherent uncertainties in nuclear data. It is useful to see results of full-core calculations based on two sets of diffusion data obtained by Serpent code calculations with ENDF/B-VII.1 and JEFF-3.2 nuclear data including also decay data library and fission yields data. The comparison is based directly on fuel assembly level macroscopic data and resulting operational data. This study illustrates effect of evaluated nuclear data library on full-core calculations of a large PWR reactor core. The level of difference which results exclusively from nuclear data selection can help to understand the level of inherent uncertainties of such full-core calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockhart, L.; Ramial, K.; Wilkinson, P.
Mercury concentrations were measured in sediment cores from lakes in central and northern Canada. Typically cores spanned periods of one hundred to several hundred years, as judged by profiles of unsupported lead-210 and cesium-137. Mercury in the uppermost slices of sediment from lakes in more easterly locations was consistently elevated above that in deeper slices from the same lakes. The authors have interpreted this surface enrichment as evidence of increased recent loadings in agreement with similar studies in Ontario, Quebec, USA and Scandinavia. Western sites showed less surface enrichment with mercury, sometimes almost none, in agreement with experience in Alaska.more » Surface grab samples and two deep cores from Lake Winnipeg indicated that mercury in surface sediments exceeded that at depths corresponding to several thousand years in the history of the lake. The current indication from the cores is a regional difference in loadings of mercury with higher enrichments over basal values in the East than in the West. Recent literature, however, has raised the possibility of vertical mobility of mercury in sediments. This has suggested that processes controlling the well-known concentration of iron and manganese in oxidized surface sediments may also concentrate mercury. A number of the cores were analyzed for iron and manganese but mercury (or lead or cadmium) failed to correlate with iron or manganese. Efforts are underway to develop ways to distinguish rigorously between natural mercury and contamination.« less
Dogra, P N; Nabi, G
2002-01-01
To assess the feasibility, problems and results of Nd-YAG laser core through urethrotomy in the management of failed urethroplasty for posttraumatic bulbomembranous urethral strictures. 61 patients with obliterative posttraumatic urethral strictures were treated by Nd-YAG laser core through urethrotomy between May 1997 to April 2000. Of these, 5 patients had failed end-to-end urethroplasty done as an initial procedure at various periods of time. The procedure was performed as day care and patients were discharged within 6 h of procedure. At 24-30 months of follow-up, all patients are voiding well and are continent. Auxiliary procedures were required in 2 cases. Nd-YAG laser core through urethrotomy is a feasible day care option for patients of obliterative urethral strictures following failed initial urethroplasty with successful outcome. Copyright 2002 S. Karger AG, Basel
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Kurth, R. E.; Ho, H.
1986-01-01
A multiyear program is performed with the objective to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts. Progress of the first year's effort includes completion of a sufficient portion of each task -- probabilistic models, code development, validation, and an initial operational code. This code has from its inception an expert system philosophy that could be added to throughout the program and in the future. The initial operational code is only applicable to turbine blade type loadings. The probabilistic model included in the operational code has fitting routines for loads that utilize a modified Discrete Probabilistic Distribution termed RASCAL, a barrier crossing method and a Monte Carlo method. An initial load model was developed by Battelle that is currently used for the slowly varying duty cycle type loading. The intent is to use the model and related codes essentially in the current form for all loads that are based on measured or calculated data that have followed a slowly varying profile.
A comparison of wire- and Kevlar-reinforced provisional restorations.
Powell, D B; Nicholls, J I; Yuodelis, R A; Strygler, H
1994-01-01
Stainless steel wire 0.036 inch in diameter was compared with Kevlar 49 polyaramid fiber as a means of reinforcing a four-unit posterior provisional fixed restoration with 2 pontics. Three reinforcement patterns for wire and two for Kevlar 49 were evaluated and compared with the control, which was an unreinforced provisional restoration. A central tensile load was placed on the cemented provisional restoration and the variables were measured: (1) the initial stiffness; (2) the load at initial fracture; and (3) the unit toughness, or the energy stored in the beam at a point where the load had undergone a 1.0-mm deflection. Statistical analysis showed (1) the bent wire configuration had a significantly higher initial stiffness (P < or = .05), (2) there was no difference between designs for load at initial fracture, and (3) the bent wire had a significantly higher unit toughness value (P < or = .05).
Series-counterpulse repetitive-pulse inductive storage circuit
Honig, E.M.
1984-06-05
A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The local pulse is initiated simultaneously with the initiation of the counterpulse used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is automatically charged with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is reclosed to terminate the load pulse, the counterpulse capacitor discharges through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.
Hunt, Sean T; Román-Leshkov, Yuriy
2018-05-15
Conspecuts Commercial and emerging renewable energy technologies are underpinned by precious metal catalysts, which enable the transformation of reactants into useful products. However, the noble metals (NMs) comprise the least abundant elements in the lithosphere, making them prohibitively scarce and expensive for future global-scale technologies. As such, intense research efforts have been devoted to eliminating or substantially reducing the loadings of NMs in various catalytic applications. These efforts have resulted in a plethora of heterogeneous NM catalyst morphologies beyond the traditional supported spherical nanoparticle. In many of these new architectures, such as shaped, high index, and bimetallic particles, less than 20% of the loaded NMs are available to perform catalytic turnovers. The majority of NM atoms are subsurface, providing only a secondary catalytic role through geometric and ligand effects with the active surface NM atoms. A handful of architectures can approach 100% NM utilization, but severe drawbacks limit general applicability. For example, in addition to problems with stability and leaching, single atom and ultrasmall cluster catalysts have extreme metal-support interactions, discretized d-bands, and a lack of adjacent NM surface sites. While monolayer thin films do not possess these features, they exhibit such low surface areas that they are not commercially relevant, serving predominantly as model catalysts. This Account champions core-shell nanoparticles (CS NPs) as a vehicle to design highly active, stable, and low-cost materials with high NM utilization for both thermo- and electrocatalysis. The unique benefits of the many emerging NM architectures could be preserved while their fundamental limitations could be overcome through reformulation via a core-shell morphology. However, the commercial realization of CS NPs remains challenging, requiring concerted advances in theory and manufacturing. We begin by formulating seven constraints governing proper core material design, which naturally point to early transition metal ceramics as suitable core candidates. Two constraints prove extremely challenging. The first relates to the core modifying the shell work function and d-band. To properly investigate materials that could satisfy this constraint, we discuss our development of a new heat, quench, and exfoliation (HQE) density functional theory (DFT) technique to model heterometallic interfaces. This technique is used to predict how transition metal carbides can favorably tune the catalytic properties of various NM monolayer shell configurations. The second challenging constraint relates to the scalable manufacturing of CS NP architectures with independent synthetic control of the thickness and composition of the shell and the size and composition of the core. We discuss our development of a synthetic method that enables high temperature self-assembly of tunable CS NP configurations. Finally, we discuss how these principles and methods were used to design catalysts for a variety of applications. These include the design of a thermally stable sub-monolayer CS catalyst, a highly active methanol electrooxidation catalyst, CO-tolerant Pt catalysts, and a hydrogen evolution catalyst that is less expensive than state-of-the-art NM-free catalysts. Such core-shell architectures offer the promise of ultralow precious metal loadings while ceramic cores hold the promise of thermodynamic stability and access to unique catalytic activity/tunability.
Multi level optimization of burnable poison utilization for advanced PWR fuel management
NASA Astrophysics Data System (ADS)
Yilmaz, Serkan
The objective of this study was to develop an unique methodology and a practical tool for designing burnable poison (BP) pattern for a given PWR core. Two techniques were studied in developing this tool. First, the deterministic technique called Modified Power Shape Forced Diffusion (MPSFD) method followed by a fine tuning algorithm, based on some heuristic rules, was developed to achieve this goal. Second, an efficient and a practical genetic algorithm (GA) tool was developed and applied successfully to Burnable Poisons (BPs) placement optimization problem for a reference Three Mile Island-1 (TMI-1) core. This thesis presents the step by step progress in developing such a tool. The developed deterministic method appeared to perform as expected. The GA technique produced excellent BP designs. It was discovered that the Beginning of Cycle (BOC) Kinf of a BP fuel assembly (FA) design is a good filter to eliminate invalid BP designs created during the optimization process. By eliminating all BP designs having BOC Kinf above a set limit, the computational time was greatly reduced since the evaluation process with reactor physics calculations for an invalid solution is canceled. Moreover, the GA was applied to develop the BP loading pattern to minimize the total Gadolinium (Gd) amount in the core together with the residual binding at End-of-Cycle (EOC) and to keep the maximum peak pin power during core depletion and Soluble boron concentration at BOC both less than their limit values. The number of UO2/Gd2O3 pins and Gd 2O3 concentrations for each fresh fuel location in the core are the decision variables and the total amount of the Gd in the core and maximum peak pin power during core depletion are in the fitness functions. The use of different fitness function definition and forcing the solution movement towards to desired region in the solution space accelerated the GA runs. Special emphasize is given to minimizing the residual binding to increase core lifetime as well as minimizing the total Gd amount in the core. The GA code developed many good solutions that satisfy all of the design constraints. For these solutions, the EOC soluble boron concentration changes from 68.9 to 97.2 ppm. It is important to note that the difference of 28.3 ppm between the best and the worst solution in the good solutions region represent the potential of 12.5 Effective-Full-Power-Day (EPFD) savings in cycle length. As a comparison, the best BP loading design has 97.2 ppm soluble boron concentration at EOC while the BP loading with available vendors' U/Gd FA designs has 94.4 ppm SOB at EOC. It was estimated that the difference of 2.8 ppm reflected the potential savings of 1.25 EFPD in cycle length. Moreover, the total Gd amount was reduced by 6.89% in mass that provided extra savings in fuel cost compared to the BP loading pattern with available vendor's U/Gd FA designs. (Abstract shortened by UMI.)
Series-counterpulse repetitive-pulse inductive storage circuit
Honig, Emanuel M.
1986-01-01
A high-power series-counterpulse repetitive-pulse inductive energy storage and transfer circuit includes an opening switch, a main energy storage coil, and a counterpulse capacitor. The load pulse is initiated simultaneously with the initiation of the counterpulse which is used to turn the opening switch off. There is no delay from command to output pulse. During the load pulse, the counterpulse capacitor is first discharged and then recharged in the opposite polarity with sufficient energy to accomplish the load counterpulse which terminates the load pulse and turns the load switch off. When the main opening switch is triggered closed again to terminate the load pulse, the counterpulse capacitor discharges in the reverse direction through the load switch and through the load, causing a rapid, sharp cutoff of the load pulse as well as recovering any energy remaining in the load inductance. The counterpulse capacitor is recharged to its original condition by the main energy storage coil after the load pulse is over, not before it begins.
Supernova 2007bi as a pair-instability explosion.
Gal-Yam, A; Mazzali, P; Ofek, E O; Nugent, P E; Kulkarni, S R; Kasliwal, M M; Quimby, R M; Filippenko, A V; Cenko, S B; Chornock, R; Waldman, R; Kasen, D; Sullivan, M; Beshore, E C; Drake, A J; Thomas, R C; Bloom, J S; Poznanski, D; Miller, A A; Foley, R J; Silverman, J M; Arcavi, I; Ellis, R S; Deng, J
2009-12-03
Stars with initial masses such that 10M[symbol: see text]
NASA Astrophysics Data System (ADS)
Naik, Sweta; Carpenter, Everett E.
2008-04-01
Today many potent anticancer drugs like cisplatin are available which carry a number of side effects. A promising way of reducing the side effects is to target the drug to tissue sites by coating it with biocompatible materials like Poly (dl-lactide-co-glycolide) (PLGA) polymer where controlled drug release is achieved during the biodegradation of the polymer. Also the efficacy of anticancer drugs like cisplatin increases at elevated temperatures, so if local heating can be achieved where the drug is targeted. Local heating can be achieved by introducing iron core nanoparticles in the composites along with the drug, which can be heated by the 2.4 GHz microwaves. Local heating of the nanocomposites also helps to swell the polymer shell and enhance the drug release. The magnetic nanocomposites were synthesized using iron nanoparticles, PLGA and a fluorescent dye, tris-(2,2'bipyridyl) dichlororuthenium (II) using an oil-in-emulsion technique. The emulsion contains PLGA, dye, and iron nanoparticles dissolved in the oil phase and polyvinyl alcohol (PVA) as a stabilizer. As the sample is homogenized, and dried, uniform 100 nm composites are formed where the dye and iron nanoparticles are encapsulated in a PLGA shell. Control of the thickness and loading efficiency of the nanocomposite can be controlled by varying the ratio of PLGA, iron, and dye. The amount of loading was determined using TGA confirming from 20-50% (w/w) loading. As the dye is released from the composite the fluorescence intensity decreases due to self-quenching. This self-quenching allows for the determination of the release kinetics as a function of temperature using fluorescence spectroscopy. Initial results suggest that there is a release of 5-10% of the dye from the composite at 25°C and complete release after the nanocomposite reaches 90°C. Using local microwave heating the complete release of the dye can be accomplished with three two second pulses of 2.4 GHz microwaves. This allows for the complete drug delivery platform which allows for the controlled release using microwave frequency.
In vitro fatigue resistance of glass ionomer cements used in post-and-core applications.
Gateau, P; Sabek, M; Dailey, B
2001-08-01
New glass ionomer cements exhibit better mechanical properties than their older counterparts. However, there is concern about their use as a core material in post-and-core applications. This in vitro study evaluated the fatigue resistance of 2 new glass ionomer cements, Shofu Hi-Dense and Fuji IX GP, and compared their mechanical behavior as a core material under masticatory load with a silver-reinforced glass ionomer (ESPE Ketac-Silver) and a silver amalgam (Cavex Avaloy LC). A total of 100 commercial plastic teeth were divided into 4 groups of 25 specimens each. Titanium posts were placed in the prepared root canals, and cores were built up in amalgam, silver-reinforced glass ionomer cement, and the 2 new glass ionomer cements. The post-and-core specimens were prepared for full cast metal crowns, which were fabricated and cemented with glass ionomer cement. Twenty specimens from each group were placed in a mastication simulator and cyclically loaded with a 400 N force for 1.5 million cycles. The 5 remaining specimens were used as controls. The specimens were sectioned and observed macroscopically and microscopically to determine the number of defects (alterations) in each material. Observed defects were verified with the Kruskal-Wallis test, and the 4 core materials were ranked with the Tukey multiple comparisons test. The mean rank sum values of the defects were as follows: Cavex Avaloy LC Amalgam (16.75), Fuji IX GP (38.50), Shofu Hi-Dense (39.53), and ESPE Ketac-Silver (67.22). The amalgam alloy was significantly different (P< .05) from the others. Under the conditions of this study, the 2 new glass ionomer cements used as core materials showed a higher number of defects than amalgam. These results suggest that their fatigue resistance may be inadequate for post-and-core applications.
Armor systems including coated core materials
Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID
2012-07-31
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
Armor systems including coated core materials
Chu, Henry S; Lillo, Thomas M; McHugh, Kevin M
2013-10-08
An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.
NASA Astrophysics Data System (ADS)
Deng, X. T.; Shi, J. J.; Shama, G.; Kong, M. G.
2005-10-01
Current inactivation studies of Bacillus subtilis spores using atmospheric-pressure glow discharges (APGD) do not consider two important factors, namely microbial loading at the surface of a substrate and sporulation temperature. Yet these are known to affect significantly microbial resistance to heat and hydrogen peroxide. This letter investigates effects of microbial loading and sporulation temperature on spore resistance to APGD. It is shown that microbial loading can lead to a stacking structure as a protective shield against APGD treatment and that high sporulation temperature increases spore resistance by altering core water content and cross-linked muramic acid content of B. subtilis spores.
Effect of volumetric organic loading on the nitrogen removal rate by immobilised activated sludge.
Zielinska, M; Wojnowska-Baryla, I
2006-05-01
Activated sludge was immobilised in a porous ceramic carrier to create a stationary core of a bio-reactor. Municipal wastewater was treated in this reactor under varied conditions of volumetric organic loading rate (expressed by chemical oxygen demand (COD)) that were the following: 6.5, 8.0, 20.8, 48.8 g COD l(-1) d(-1). The rate constants of ammonification, nitrification and denitrification under aerobic conditions were determined. All rate constants increased with a growth in volumetric loading rate, but the highest loading value of 48.8 g COD l(-1) d(-1) limited the ammonification and nitrification rates.
International Metadata Initiatives: Lessons in Bibliographic Control.
ERIC Educational Resources Information Center
Caplan, Priscilla
This paper looks at a subset of metadata schemes, including the Text Encoding Initiative (TEI) header, the Encoded Archival Description (EAD), the Dublin Core Metadata Element Set (DCMES), and the Visual Resources Association (VRA) Core Categories for visual resources. It examines why they developed as they did, major point of difference from…
Pang, Rui; Teramura, Kentaro; Tatsumi, Hiroyuki; Asakura, Hiroyuki; Hosokawa, Saburo; Tanaka, Tsunehiro
2018-01-25
A core-shell structure of Ag-Cr dual cocatalyst loaded-Ga 2 O 3 was found to significantly enhance the formation rate of CO and selectivity toward CO evolution for the photocatalytic conversion of CO 2 where H 2 O is used as an electron donor.
Takahashi, Masahiko; Saito, Hidetsugu; Higashimoto, Makiko; Atsukawa, Kazuhiro; Ishii, Hiromasa
2005-01-01
A highly sensitive second-generation hepatitis C virus (HCV) core antigen assay has recently been developed. We compared viral disappearance and first-phase kinetics between commercially available core antigen (Ag) assays, Lumipulse Ortho HCV Ag (Lumipulse-Ag), and a quantitative HCV RNA PCR assay, Cobas Amplicor HCV Monitor test, version 2 (Amplicor M), to estimate the predictive benefit of a sustained viral response (SVR) and non-SVR in 44 genotype 1b patients treated with interferon (IFN) and ribavirin. HCV core Ag negativity could predict SVR on day 1 (sensitivity = 100%, specificity = 85.0%, accuracy = 86.4%), whereas RNA negativity could predict SVR on day 7 (sensitivity = 100%, specificity = 87.2%, accuracy = 88.6%). None of the patients who had detectable serum core Ag or RNA on day 14 achieved SVR (specificity = 100%). The predictive accuracy on day 14 was higher by RNA negativity (93.2%) than that by core Ag negativity (75.0%). The combined predictive criterion of both viral load decline during the first 24 h and basal viral load was also predictive for SVR; the sensitivities of Lumipulse-Ag and Amplicor-M were 45.5 and 47.6%, respectively, and the specificity was 100%. Amplicor-M had better predictive accuracy than Lumipulse-Ag in 2-week disappearance tests because it had better sensitivity. On the other hand, estimates of kinetic parameters were similar regardless of the detection method. Although the correlations between Lumipulse-Ag and Amplicor-M were good both before and 24 h after IFN administration, HCV core Ag seemed to be relatively lower 24 h after IFN administration than before administration. Lumipulse-Ag seems to be useful for detecting the HCV concentration during IFN therapy; however, we still need to understand the characteristics of the assay.
Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo
Klippstein, Rebecca; Wang, Julie Tzu-Wen; El-Gogary, Riham I; Bai, Jie; Mustafa, Falisa; Rubio, Noelia; Bansal, Sukhvinder; Al-Jamal, Wafa T; Al-Jamal, Khuloud T
2015-01-01
Clinical applications of curcumin for the treatment of cancer and other chronic diseases have been mainly hindered by its short biological half-life and poor water solubility. Nanotechnology-based drug delivery systems have the potential to enhance the efficacy of poorly soluble drugs for systemic delivery. This study proposes the use of poly(lactic-co-glycolic acid) (PLGA)-based polymeric oil-cored nanocapsules (NCs) for curcumin loading and delivery to colon cancer in mice after systemic injection. Formulations of different oil compositions are prepared and characterized for their curcumin loading, physico-chemical properties, and shelf-life stability. The results indicate that castor oil-cored PLGA-based NC achieves high drug loading efficiency (≈18% w(drug)/w(polymer)%) compared to previously reported NCs. Curcumin-loaded NCs internalize more efficiently in CT26 cells than the free drug, and exert therapeutic activity in vitro, leading to apoptosis and blocking the cell cycle. In addition, the formulated NC exhibits an extended blood circulation profile compared to the non-PEGylated NC, and accumulates in the subcutaneous CT26-tumors in mice, after systemic administration. The results are confirmed by optical and single photon emission computed tomography/computed tomography (SPECT/CT) imaging. In vivo growth delay studies are performed, and significantly smaller tumor volumes are achieved compared to empty NC injected animals. This study shows the great potential of the formulated NC for treating colon cancer. PMID:26140363
Young, Li-Hao; Liou, Yi-Jyun; Cheng, Man-Ting; Lu, Jau-Huai; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Chen, Chung-Bang; Lai, Jim-Shoung
2012-01-15
Diesel engine exhaust contains large numbers of submicrometer particles that degrade air quality and human health. This study examines the number emission characteristics of 10-1000 nm nonvolatile particles from a heavy-duty diesel engine, operating with various waste cooking oil biodiesel blends (B2, B10 and B20), engine loads (0%, 25%, 50% and 75%) and a diesel oxidation catalyst plus diesel particulate filter (DOC+DPF) under steady modes. For a given load, the total particle number concentrations (N(TOT)) decrease slightly, while the mode diameters show negligible changes with increasing biodiesel blends. For a given biodiesel blend, both the N(TOT) and mode diameters increase modestly with increasing load of above 25%. The N(TOT) at idle are highest and their size distributions are strongly affected by condensation and possible nucleation of semivolatile materials. Nonvolatile cores of diameters less than 16 nm are only observed at idle mode. The DOC+DPF shows remarkable filtration efficiency for both the core and soot particles, irrespective of the biodiesel blend and engine load under study. The N(TOT) post the DOC+DPF are comparable to typical ambient levels of ≈ 10(4)cm(-3). This implies that, without concurrent reductions of semivolatile materials, the formation of semivolatile nucleation mode particles post the after treatment is highly favored. Copyright © 2011 Elsevier B.V. All rights reserved.
T-Cap Pull-Off and Bending Behavior for Stitched Structure
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Leone, Frank A., Jr.
2016-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.
Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Leone, Frank A., Jr.
2016-01-01
The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.
Application of interleaved flyback micro inverter in a grid connected system
NASA Astrophysics Data System (ADS)
Brindha, R.; Ananthichristy, A.; Poornima, P. U.; Madhana, M.; Ashok Rathish, S.; Ragavi, Selvam
2018-04-01
The two control strategies CCM and DCM have various effects on the loss distribution and efficiency and thus were studied for the interleaved flyback micro inverter concentrating on the loss analysis under different load conditions. The dominant losses with heavy load include the conduction loss and the transformer loss in case of the interleaved flyback micro inverter; whereas driving of gate loss, the turn-off loss in the transformer core loss and in the powermosfets are included in the dominant losses with light load. A new hybrid control strategy which has the one-phase DCM and two-phase DCM control reduces the dominant losses in order to improving the efficiency based on the load in wide load range is proposed here.
Preliminary weight and costs of sandwich panels to distribute concentrated loads
NASA Technical Reports Server (NTRS)
Belleman, G.; Mccarty, J. E.
1976-01-01
Minimum mass honeycomb sandwich panels were sized for transmitting a concentrated load to a uniform reaction through various distances. The form skin gages were fully stressed with a finite element computer code. The panel general stability was evaluated with a buckling computer code labeled STAGS-B. Two skin materials were considered; aluminum and graphite-epoxy. The core was constant thickness aluminum honeycomb. Various panel sizes and load levels were considered. The computer generated data were generalized to allow preliminary least mass panel designs for a wide range of panel sizes and load intensities. An assessment of panel fabrication cost was also conducted. Various comparisons between panel mass, panel size, panel loading, and panel cost are presented in both tabular and graphical form.
Differentiated planetesimal impacts into a terrestrial magma ocean: Fate of the iron core
NASA Astrophysics Data System (ADS)
Kendall, Jordan D.; Melosh, H. J.
2016-08-01
The abundance of moderately siderophile elements (;iron-loving;; e.g. Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. We have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments rain through the magma ocean and settle deeper into the planet. Our results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean.
NASA Astrophysics Data System (ADS)
Xu, Chen; Zhang, Cheng; Wang, Yingxi; Li, Liu; Li, Ling; Whittaker, Andrew K.
2017-12-01
In this study, novel magnetic core-shell nanoparticles Fe3O4@La-BTC/GO have been synthesized by the layer-by-layer self-assembly (LBL) method and further modified by attachment of amino-modified PEG chains. The nanoparticles were thoroughly characterized by x-ray diffraction, FTIR, scanning electron microscopy and transmission electron microscopy. The core-shell structure was shown to be controlled by the LBL method. The drug loading of doxorubicin (DOX) within the Fe3O4@La-BTC/GO-PEG nanoparticles with different numbers of deposited layers was investigated. It was found that DOX loading increased with increasing number of metal organic framework coating layers, indicating that the drug loading can be controlled through the controllable LBL method. Cytotoxicity assays indicated that the Fe3O4@La-BTC/GO-PEG nanoparticles were biocompatible. The DOX was released rapidly at pH 3.8 and pH 5.8, but at pH 7.4 the rate and extent of release was greatly attenuated. The nanoparticles therefore demonstrate an excellent pH-triggered drug release. In addition, the particles could be tracked by magnetic resonance imaging (MRI) and fluorescence optical imaging (FOI). A clear dose-dependent contrast enhancement in T 2-weighted MR images and fluorescence images indicate the potential of these nanoparticles as dual-mode MRI/FOI contrast agents.
Lohan, S B; Icken, N; Teutloff, C; Saeidpour, S; Bittl, R; Lademann, J; Fleige, E; Haag, R; Haag, S F; Meinke, M C
2016-03-30
Dendritic core-multi shell (CMS) particles are polymer based systems consisting of a dendritic polar polyglycerol polymer core surrounded by a two-layer shell of nonpolar C18 alkyl chains and hydrophilic polyethylene glycol. Belonging to nanotransport systems (NTS) they allow the transport and storage of molecules with different chemical characters. Their amphipihilic character CMS-NTS permits good solubility in aqueous and organic solutions. We showed by multifrequency electron paramagnetic resonance (EPR) spectroscopy that spin-labeled 5-doxyl stearic acid (5DSA) can be loaded into the CMS-NTS. Furthermore, the release of 5DSA from the carrier into the stratum corneum of porcine skin was monitored ex vivo by EPR spectroscopy. Additionally, the penetration of the CMS-NTS into the skin was analyzed by fluorescence microscopy using indocarbocyanine (ICC) covalently bound to the nanocarrier. Thereby, no transport into the viable skin was observed, whereas the CMS-NTS had penetrated into the hair follicles down to a depth of 340 μm ± 82 μm. Thus, it could be shown that the combined application of fluorescence microscopy and multi-frequency EPR spectroscopy can be an efficient tool for investigating the loading of spin labeled drugs to nanocarrier systems, drug release and penetration into the skin as well as the localization of the NTS in the skin. Copyright © 2016 Elsevier B.V. All rights reserved.
Torous, John
2017-01-01
Research studies that leverage emerging technologies, such as passive sensing devices and mobile apps, have demonstrated encouraging potential with respect to favorably influencing the human condition. As a result, the nascent fields of mHealth and digital medicine have gained traction over the past decade as demonstrated in the United States by increased federal funding for research that cuts across a broad spectrum of health conditions. The existence of mHealth and digital medicine also introduced new ethical and regulatory challenges that both institutional review boards (IRBs) and researchers are struggling to navigate. In response, the Connected and Open Research Ethics (CORE) initiative was launched. The CORE initiative has employed a participatory research approach, whereby researchers and IRB affiliates are involved in identifying the priorities and functionality of a shared resource. The overarching goal of CORE is to develop dynamic and relevant ethical practices to guide mHealth and digital medicine research. In this Viewpoint paper, we describe the CORE initiative and call for readers to join the CORE Network and contribute to the bigger conversation on ethics in the digital age. PMID:28179216
New Dimensions in Microarchitecture Harnessing 3D Integration Technologies (BRIEFING CHARTS)
2007-03-06
Quad Core Bandwidth and Latency Boundaries General Purpose Processor Loads Latency limited Ba nd w id th li m ite dProcessor load trade -off between I...delay No= number of ckts at 1V do= ckt delay at 1V From “3D Intergration ” Special Topic Sessionl W. Haensch, ISSCC ‘07, 2/07 11 DARPA MTS March 6, 2007
Study on Ultra-Long Life,Small U-Zr Metallic Fuelled Core With Burnable Poison
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenji Tsuji; Hiromitsu Inagaki; Akira Nishikawa
2002-07-01
A conceptual design for a 50 MWe sodium cooled, U-Pu-Zr metallic fuelled, fast reactor core, which aims at a core lifetime of 30 years, has been performed [1]. As for the compensation for a large burn-up reactivity through 30 years, an axially movable reflector, which is located around the core, carries the major part of it and a burnable poison does the rest. This concept has achieved not only a long core lifetime but also a high discharged burn-up. On this study, a conceptual design for a small fast reactor loading U-Zr metallic fuelled core instead of U-Pu-Zr fuelled coremore » has been conducted, based on the original core arrangement of 4S reactor [2]. Within the range of this study including safety requirements, adopting the burnable poison would be effective to construct a core concept that achieves both a long lifetime and a high discharged burn-up. (authors)« less
Modified Y-TZP Core Design Improves All-ceramic Crown Reliability
Silva, N.R.F.A.; Bonfante, E.A.; Rafferty, B.T.; Zavanelli, R.A.; Rekow, E.D.; Thompson, V.P.; Coelho, P.G.
2011-01-01
This study tested the hypothesis that all-ceramic core-veneer system crown reliability is improved by modification of the core design. We modeled a tooth preparation by reducing the height of proximal walls by 1.5 mm and the occlusal surface by 2.0 mm. The CAD-based tooth preparation was replicated and positioned in a dental articulator for core and veneer fabrication. Standard (0.5 mm uniform thickness) and modified (2.5 mm height lingual and proximal cervical areas) core designs were produced, followed by the application of veneer porcelain for a total thickness of 1.5 mm. The crowns were cemented to 30-day-aged composite dies and were either single-load-to-failure or step-stress-accelerated fatigue-tested. Use of level probability plots showed significantly higher reliability for the modified core design group. The fatigue fracture modes were veneer chipping not exposing the core for the standard group, and exposing the veneer core interface for the modified group. PMID:21057036
NASA Astrophysics Data System (ADS)
Wang, Yazhou; Zhang, Yiqiong; Wang, Bochu; Cao, Yang; Yu, Qingsong; Yin, Tieying
2013-06-01
The study aimed at constructing a novel drug delivery system for programmable multiple drug release controlled with core-shell structure. The core-shell structure consisted of chitosan nanoparticles as core and polyvinylpyrrolidone micro/nanocoating as shell to form core-shell micro/nanoparticles, which was fabricated by ionic gelation and emulsion electrospray methods. As model drug agents, Naproxen and rhodamine B were encapsulated in the core and shell regions, respectively. The core-shell micro/nanoparticles thus fabricated were characterized and confirmed by scanning electron microscope, transmission electron microscope, and fluorescence optical microscope. The core-shell micro/nanoparticles showed good release controllability through drug release experiment in vitro. It was noted that a programmable release pattern for dual drug agents was also achieved by adjusting their loading regions in the core-shell structures. The results indicate that emulsion electrospraying technology is a promising approach in fabrication of core-shell micro/nanoparticles for programmable dual drug release. Such a novel multi-drug delivery system has a potential application for the clinical treatment of cancer, tuberculosis, and tissue engineering.
Individual Responses to a Barefoot Running Program: Insight Into Risk of Injury.
Tam, Nicholas; Tucker, Ross; Astephen Wilson, Janie L
2016-03-01
Barefoot running is of popular interest because of its alleged benefits for runners, including reduced injury risk and increased economy of running. There is a dearth in understanding whether all runners can gain the proposed benefits of barefoot running and how barefoot running may affect long-term injury risk. The purpose of this study was to determine whether runners can achieve the proposed favorable kinematic changes and reduction in loading rate after a progressive training program that included barefoot running. It was hypothesized that not all individuals would experience a decrease in initial loading rate facilitated by increased ankle plantar flexion after a progressive barefoot running program; it was further hypothesized that relationships exist between changes in initial loading rate and sagittal ankle angle. Descriptive laboratory study. A total of 26 habitually shod runners completed an 8-week, progressively introduced barefoot running program. Pre- and postintervention barefoot and shod kinematics, electromyography, and ground-reaction force data of the lower limb were collected. Ankle and knee kinematics and kinetics, initial loading rates, spatiotemporal variables, muscle activity during preactivation, and ground contact were assessed in both conditions before and after the intervention. Individual responses were analyzed by separating runners into nonresponders, negative responders, and positive responders based on no change, increase, and decrease in barefoot initial loading rate, respectively. No biomechanical changes were found in the group after the intervention. However, condition differences did persist during both preactivation and ground contact. The positive-responder group had greater plantar flexion, increased biceps femoris and gluteus medius preactivation, and decreased rectus femoris muscle activity between testing periods. The negative responders landed in greater barefoot dorsiflexion after the intervention, and the nonresponders did not change. An overall change in ankle flexion angle was associated with a change in initial loading rate (r(2) = 0.345, P = .002) in the barefoot but not shod condition. Eight weeks of progressive barefoot running did not change overall group biomechanics, but subgroups of responders (25% of the entire group) were identified who had specific changes that reduced the initial loading rate. It appears that changes in initial loading rate are explained by changes in ankle flexion angle at initial ground contact. Uninstructed barefoot running training does not reduce initial loading rate in all runners transitioning from shod to barefoot conditions. Some factors have been identified that may assist sports medicine professionals in the evaluation and management of runners at risk of injury. Conscious instruction to runners may be required for them to acquire habitual barefoot running characteristics and to reduce risk of injury. © 2016 The Author(s).
24 CFR 3280.402 - Test procedure for roof trusses.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Nondestructive test procedure—(1) Dead load plus live load. (i) Noting figure A-1, measure and record initial... the truss equal to the full dead load of roof and ceiling. Measure and record deflections. (iii) Maintaining the dead load, add live load in approximate 1/4 design live load increments. Measure the...
24 CFR 3280.402 - Test procedure for roof trusses.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Nondestructive test procedure—(1) Dead load plus live load. (i) Noting figure A-1, measure and record initial... the truss equal to the full dead load of roof and ceiling. Measure and record deflections. (iii) Maintaining the dead load, add live load in approximate 1/4 design live load increments. Measure the...
Development of lightweight graphite/polyimide sandwich panels.
NASA Technical Reports Server (NTRS)
Poesch, J. G.
1972-01-01
Lightweight graphite/polyimide composite honeycomb core and sandwich panels were fabricated and tested. Honeycomb cores of 1/4-in. and 3/8-in. cell sizes of hexagonal configuration were produced from thin plus or minus 45 deg cross plied sheets of prepreg producing core weights between 1.8 and 3.6 lb/cu ft. Thin gauge prepreg using Hercules graphite tow and Monsanto Skybond 710 polyimide resin were manufactured to produce cured ply thicknesses of 0.001 to 0.002 in. Graphite core properties measured at temperatures from -150 to 600 F are reported. Core properties which are superior to available materials were obtained. Sandwich panels weighing less than 0.5 lb/sq ft were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.
METHOD AND APPARATUS FOR EARTH PENETRATION
Adams, W.M.
1963-12-24
A nuclear reactor apparatus for penetrating into the earth's crust is described. The apparatus comprises a cylindrical nuclear core operating at a temperature that is higher than the melting temperature of rock. A high-density ballast member is coupled to the nuclear core such that the overall density of the core-ballast assembly is greater than the density of molten rock. The nuclear core is thermally insulated so that its heat output is constrained to flow axially, with radial heat flow being minimized. In operation, the apparatus is placed in contact with the earth's crust at the point desired to be penetrated. The heat output of the reactor melts the underlying rock, and the apparatus sinks through the resulting magma. The fuel loading of the reactor core determines the ultimate depth of crust penetration. (AEC)