Sample records for initial cosmological singularity

  1. Generalized teleparallel cosmology and initial singularity crossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Nashed, Gamal, E-mail: Adel.Awad@bue.edu.eg, E-mail: gglnashed@sci.asu.edu.eg

    We present a class of cosmological solutions for a generalized teleparallel gravity with f ( T )= T +α̃ (− T ) {sup n} , where α̃ is some parameter and n is an integer or half-integer. Choosing α̃ ∼ G {sup n} {sup −1}, where G is the gravitational constant, and working with an equation of state p = w ρ, one obtains a cosmological solution with multiple branches. The dynamics of the solution describes standard cosmology at late times, but the higher-torsion correction changes the nature of the initial singularity from big bang to a sudden singularity. Themore » milder behavior of the sudden singularity enables us to extend timelike or lightlike curves, through joining two disconnected branches of solution at the singularity, leaving the singularity traversable. We show that this extension is consistent with the field equations through checking the known junction conditions for generalized teleparallel gravity. This suggests that these solutions describe a contracting phase a prior to the expanding phase of the universe.« less

  2. Initial singularity and pure geometric field theories

    NASA Astrophysics Data System (ADS)

    Wanas, M. I.; Kamal, Mona M.; Dabash, Tahia F.

    2018-01-01

    In the present article we use a modified version of the geodesic equation, together with a modified version of the Raychaudhuri equation, to study initial singularities. These modified equations are used to account for the effect of the spin-torsion interaction on the existence of initial singularities in cosmological models. Such models are the results of solutions of the field equations of a class of field theories termed pure geometric. The geometric structure used in this study is an absolute parallelism structure satisfying the cosmological principle. It is shown that the existence of initial singularities is subject to some mathematical (geometric) conditions. The scheme suggested for this study can be easily generalized.

  3. Big bounce with finite-time singularity: The F(R) gravity description

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    An alternative to the Big Bang cosmologies is obtained by the Big Bounce cosmologies. In this paper, we study a bounce cosmology with a Type IV singularity occurring at the bouncing point in the context of F(R) modified gravity. We investigate the evolution of the Hubble radius and we examine the issue of primordial cosmological perturbations in detail. As we demonstrate, for the singular bounce, the primordial perturbations originating from the cosmological era near the bounce do not produce a scale-invariant spectrum and also the short wavelength modes after these exit the horizon, do not freeze, but grow linearly with time. After presenting the cosmological perturbations study, we discuss the viability of the singular bounce model, and our results indicate that the singular bounce must be combined with another cosmological scenario, or should be modified appropriately, in order that it leads to a viable cosmology. The study of the slow-roll parameters leads to the same result indicating that the singular bounce theory is unstable at the singularity point for certain values of the parameters. We also conformally transform the Jordan frame singular bounce, and as we demonstrate, the Einstein frame metric leads to a Big Rip singularity. Therefore, the Type IV singularity in the Jordan frame becomes a Big Rip singularity in the Einstein frame. Finally, we briefly study a generalized singular cosmological model, which contains two Type IV singularities, with quite appealing features.

  4. On Resolutions of Cosmological Singularities in Higher-Spin Gravity

    NASA Astrophysics Data System (ADS)

    Burrington, Benjamin; Pando Zayas, Leopoldo; Rombes, Nicholas

    2014-03-01

    Gravity in three dimensions is simpler than in four, due to the lack of gravitational waves, and can be recast as a Chern-Simons theory. In this context, it is straightforward to generalize Einstein's gravity, with or without cosmological constant, by changing the gauge group. Using this, we study the resolution of certain cosmological singularities, and extend the singularity resolution scheme proposed by Krishnan and Roy. We discuss the resolution of a big-bang singularity in the case of gravity coupled to a spin-4 field realized as Chern-Simons theory with gauge group SL (4 , C) . We show the existence of gauge transformations that do not change the holonomy of the Chern-Simons gauge potential and lead to metrics without the initial singularity. We argue that such transformations always exist in the context of gravity coupled to a spin-N field when described by Chern-Simons with gauge group SL (N , C) . This work was supported by the DOE under grant DE-FG02-95ER40899, a research grant from Troy University, and the Honors Summer Fellowship at the University of Michigan.

  5. Exact solutions to Brans-Dicke cosmologies in flat Friedmann universes.

    NASA Technical Reports Server (NTRS)

    Morganstern, R. E.

    1971-01-01

    The Brans-Dicke cosmological equations for flat Friedmann-type expanding universes are solved parametrically for time, density, expansion parameter, and scalar field. These results reduce to a previously obtained exact solution to the radiation cosmology. Although the scalar field may be undetectable at the present epoch, it is felt that, if it exists, it must play an important role as one approaches the initial singularity of the cosmology.

  6. Cosmological applications of singular hypersurfaces in general relativity

    NASA Astrophysics Data System (ADS)

    Laguna-Castillo, Pablo

    Three applications to cosmology of surface layers, based on Israel's formalism of singular hypersurfaces and thin shells in general relativity, are presented. Einstein's field equations are analyzed in the presence of a bubble nucleated in vacuum phase transitions within the context of the old inflationary universe scenario. The evolution of a bubble with vanishing surface energy density is studied. It is found that such bubbles lead to a worm-hole matching. Next, the observable four-dimensional universe is considered as a singular hypersurface of discontinuity embedded in a five-dimensional Kaluza-Klein cosmology. It is possible to rewrite the projected five-dimensional Einstein equations on the surface layer in a similar way to the four-dimensional Robertson-Walker cosmology equations. Next, a model is described for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. A set of equations is introduced which are required to develop a three-dimensional computer code whose purpose is to study the process of intercommuting cosmic strings with the inclusion of gravitational effects. The outcome is evolution and constraint equations for the gravitational, scalar and gauge field of two initially separated, perpendicular, cosmic strings.

  7. Quantum propagation across cosmological singularities

    NASA Astrophysics Data System (ADS)

    Gielen, Steffen; Turok, Neil

    2017-05-01

    The initial singularity is the most troubling feature of the standard cosmology, which quantum effects are hoped to resolve. In this paper, we study quantum cosmology with conformal (Weyl) invariant matter. We show that it is natural to extend the scale factor to negative values, allowing a large, collapsing universe to evolve across a quantum "bounce" into an expanding universe like ours. We compute the Feynman propagator for Friedmann-Robertson-Walker backgrounds exactly, identifying curious pathologies in the case of curved (open or closed) universes. We then include anisotropies, fixing the operator ordering of the quantum Hamiltonian by imposing covariance under field redefinitions and again finding exact solutions. We show how complex classical solutions allow one to circumvent the singularity while maintaining the validity of the semiclassical approximation. The simplest isotropic universes sit on a critical boundary, beyond which there is qualitatively different behavior, with potential for instability. Additional scalars improve the theory's stability. Finally, we study the semiclassical propagation of inhomogeneous perturbations about the flat, isotropic case, at linear and nonlinear order, showing that, at least at this level, there is no particle production across the bounce. These results form the basis for a promising new approach to quantum cosmology and the resolution of the big bang singularity.

  8. Nonsingular universe in massive gravity's rainbow

    NASA Astrophysics Data System (ADS)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  9. Loop quantum cosmology and singularities.

    PubMed

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  10. On the initial singularity problem in rainbow cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Grasiele; Gubitosi, Giulia; Amelino-Camelia, Giovanni, E-mail: grasiele.dossantos@icranet.org, E-mail: g.gubitosi@imperial.ac.uk, E-mail: giovanni.amelino-camelia@roma1.infn.it

    2015-08-01

    It has been recently claimed that the initial singularity might be avoided in the context of rainbow cosmology, where one attempts to account for quantum-gravitational corrections through an effective-theory description based on an energy-dependent ('rainbow') spacetime metric. We here scrutinize this exciting hypothesis much more in depth than previous analyses. In particular, we take into account all requirements for singularity avoidance, while previously only a subset of these requirements had been considered. Moreover, we show that the implications of a rainbow metric for thermodynamics are more significant than previously appreciated. Through the analysis of two particularly meaningful examples of rainbowmore » metrics we find that our concerns are not merely important conceptually, but actually change in quantitatively significant manner the outcome of the analysis. Notably we only find examples where the singularity is not avoided, though one can have that in the regime where our semi-classical picture is still reliable the approach to the singularity is slowed down when compared to the standard classical scenario. We conclude that the study of rainbow metrics provides tantalizing hints of singularity avoidance but is inconclusive, since some key questions remain to be addressed just when the scale factor is very small, a regime which, as here argued, cannot be reliably described by an effective rainbow-metric picture.« less

  11. Regularizing cosmological singularities by varying physical constants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dąbrowski, Mariusz P.; Marosek, Konrad, E-mail: mpdabfz@wmf.univ.szczecin.pl, E-mail: k.marosek@wmf.univ.szczecin.pl

    2013-02-01

    Varying physical constant cosmologies were claimed to solve standard cosmological problems such as the horizon, the flatness and the Λ-problem. In this paper, we suggest yet another possible application of these theories: solving the singularity problem. By specifying some examples we show that various cosmological singularities may be regularized provided the physical constants evolve in time in an appropriate way.

  12. An Open Singularity-Free Cosmological Model with Inflation

    NASA Astrophysics Data System (ADS)

    Karaca, Koray; Bayin, Selçuk

    In the light of recent observations which point to an open universe (Ω0 < 1), we construct an open singularity-free cosmological model by reconsidering a model originally constructed for a closed universe. Our model starts from a nonsingular state called prematter, governed by an inflationary equation of state P = (γp - 1)ρ where γp (~= 10-3) is a small positive parameter representing the initial vacuum dominance of the universe. Unlike the closed models universe cannot be initially static hence, starts with an initial expansion rate represented by the initial value of the Hubble constant H(0). Therefore, our model is a two-parameter universe model (γp,H(0)). Comparing the predictions of this model for the present properties of the universe with the recent observational results, we argue that the model constructed in this work could be used as a realistic universe model.

  13. Are Singularities Integral to General Theory of Relativity?

    NASA Astrophysics Data System (ADS)

    Krori, K.; Dutta, S.

    2011-11-01

    Since the 1960s the general relativists have been deeply obsessed with the possibilities of GTR singularities - blackhole as well as cosmological singularities. Senovilla, for the first time, followed by others, showed that there are cylindrically symmetric cosmological space-times which are free of singularities. On the other hand, Krori et al. have presently shown that spherically symmetric cosmological space-times - which later reduce to FRW space-times may also be free of singularities. Besides, Mitra has in the mean-time come forward with some realistic calculations which seem to rule out the possibility of a blackhole singularity. So whether singularities are integral to GTR seems to come under a shadow.

  14. Observational constraints on cosmological future singularities

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Lazkoz, Ruth; Sáez-Gómez, Diego; Salzano, Vincenzo

    2016-11-01

    In this work we consider a family of cosmological models featuring future singularities. This type of cosmological evolution is typical of dark energy models with an equation of state violating some of the standard energy conditions (e.g. the null energy condition). Such a kind of behavior, widely studied in the literature, may arise in cosmologies with phantom fields, theories of modified gravity or models with interacting dark matter/dark energy. We briefly review the physical consequences of these cosmological evolution regarding geodesic completeness and the divergence of tidal forces in order to emphasize under which circumstances the singularities in some cosmological quantities correspond to actual singular spacetimes. We then introduce several phenomenological parameterizations of the Hubble expansion rate to model different singularities existing in the literature and use SN Ia, BAO and H( z) data to constrain how far in the future the singularity needs to be (under some reasonable assumptions on the behavior of the Hubble factor). We show that, for our family of parameterizations, the lower bound for the singularity time cannot be smaller than about 1.2 times the age of the universe, what roughly speaking means {˜ }2.8 Gyrs from the present time.

  15. Singularities in loop quantum cosmology.

    PubMed

    Cailleteau, Thomas; Cardoso, Antonio; Vandersloot, Kevin; Wands, David

    2008-12-19

    We show that simple scalar field models can give rise to curvature singularities in the effective Friedmann dynamics of loop quantum cosmology (LQC). We find singular solutions for spatially flat Friedmann-Robertson-Walker cosmologies with a canonical scalar field and a negative exponential potential, or with a phantom scalar field and a positive potential. While LQC avoids big bang or big rip type singularities, we find sudden singularities where the Hubble rate is bounded, but the Ricci curvature scalar diverges. We conclude that the effective equations of LQC are not in themselves sufficient to avoid the occurrence of curvature singularities.

  16. Cosmology of the closed string tachyon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Ian

    2008-09-15

    The spacetime physics of bulk closed string tachyon condensation is studied at the level of a two-derivative effective action. We derive the unique perturbative tachyon potential consistent with a full class of linearized tachyonic deformations of supercritical string theory. The solutions of interest deform a general linear dilaton background by the insertion of purely exponential tachyon vertex operators. In spacetime, the evolution of the tachyon drives an accelerated contraction of the universe and, absent higher-order corrections, the theory collapses to a cosmological singularity in finite time, at arbitrarily weak string coupling. When the tachyon exhibits a null symmetry, the worldsheetmore » dynamics is known to be exact and well defined at tree level. We prove that if the two-derivative effective action is free of nongravitational singularities, higher-order corrections always resolve the spacetime curvature singularity of the null tachyon. The resulting theory provides an explicit mechanism by which tachyon condensation can generate or terminate the flow of cosmological time in string theory. Additional particular solutions can resolve an initial singularity with a tachyonic phase at weak coupling, or yield solitonic configurations that localize the universe along spatial directions.« less

  17. ``All that Matter ... in One Big Bang ...'', &Other Cosmological Singularities

    NASA Astrophysics Data System (ADS)

    Elizalde, Emilio

    2018-02-01

    The first part of this paper contains a brief description of the beginnings of modern cosmology, which, the author will argue, was most likely born in the Year 1912. Some of the pieces of evidence presented here have emerged from recent research in the history of science, and are not usually shared with the general audiences in popular science books. In special, the issue of the correct formulation of the original Big Bang concept, according to the precise words of Fred Hoyle, is discussed. Too often, this point is very deficiently explained (when not just misleadingly) in most of the available generalist literature. Other frequent uses of the same words, Big Bang, as to name the initial singularity of the cosmos, and also whole cosmological models, are then addressed, as evolutions of its original meaning. Quantum and inflationary additions to the celebrated singularity theorems by Penrose, Geroch, Hawking and others led to subsequent results by Borde, Guth and Vilenkin. And corresponding corrections to the Einstein field equations have originated, in particular, $R^2$, $f(R)$, and scalar-tensor gravities, giving rise to a plethora of new singularities. For completeness, an updated table with a classification of the same is given.

  18. Singular F(R) cosmology unifying early- and late-time acceleration with matter and radiation domination era

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We present some cosmological models which unify the late- and early-time acceleration eras with the radiation and the matter domination era, and we realize the cosmological models by using the theoretical framework of F(R) gravity. Particularly, the first model unifies the late- and early-time acceleration with the matter domination era, and the second model unifies all the evolution eras of our Universe. The two models are described in the same way at early and late times, and only the intermediate stages of the evolution have some differences. Each cosmological model contains two Type IV singularities which are chosen to occur one at the end of the inflationary era and one at the end of the matter domination era. The cosmological models at early times are approximately identical to the R 2 inflation model, so these describe a slow-roll inflationary era which ends when the slow-roll parameters become of order one. The inflationary era is followed by the radiation era and after that the matter domination era follows, which lasts until the second Type IV singularity, and then the late-time acceleration era follows. The models have two appealing features: firstly they produce a nearly scale invariant power spectrum of primordial curvature perturbations and a scalar-to-tensor ratio which are compatible with the most recent observational data and secondly, it seems that the deceleration-acceleration transition is crucially affected by the presence of the second Type IV singularity which occurs at the end of the matter domination era. As we demonstrate, the Hubble horizon at early times shrinks, as expected for an initially accelerating Universe, then during the matter domination era, it expands and finally after the Type IV singularity, the Hubble horizon starts to shrink again, during the late-time acceleration era. Intriguingly enough, the deceleration-acceleration transition, occurs after the second Type IV singularity. In addition, we investigate which F(R) gravity can successfully realize each of the four cosmological epochs.

  19. Loop Quantum Cosmology.

    PubMed

    Bojowald, Martin

    2008-01-01

    Quantum gravity is expected to be necessary in order to understand situations in which classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e., the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular theory is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. The main effects are introduced into effective classical equations, which allow one to avoid the interpretational problems of quantum theory. They give rise to new kinds of early-universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function, which allows an extension of quantum spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds light on more general issues, such as the nature of time. Supplementary material is available for this article at 10.12942/lrr-2008-4.

  20. w-cosmological singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Jambrina, L.

    2010-12-15

    In this paper we characterize barotropic index singularities of homogeneous isotropic cosmological models [M. P. Dabrowski and T. Denkiewicz, Phys. Rev. D 79, 063521 (2009).]. They are shown to appear in cosmologies for which the scale factor is analytical with a Taylor series in which the linear and quadratic terms are absent. Though the barotropic index of the perfect fluid is singular, the singularities are weak, as it happens for other models for which the density and the pressure are regular.

  1. Future singularities and teleparallelism in loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Kazuharu; Haro, Jaume de; Odintsov, Sergei D., E-mail: bamba@kmi.nagoya-u.ac.jp, E-mail: jaime.haro@upc.edu, E-mail: odintsov@ieec.uab.es

    2013-02-01

    We demonstrate how holonomy corrections in loop quantum cosmology (LQC) prevent the Big Rip singularity by introducing a quadratic modification in terms of the energy density ρ in the Friedmann equation in the Friedmann-Lemaître-Robertson-Walker (FLRW) space-time in a consistent and useful way. In addition, we investigate whether other kind of singularities like Type II,III and IV singularities survive or are avoided in LQC when the universe is filled by a barotropic fluid with the state equation P = −ρ−f(ρ), where P is the pressure and f(ρ) a function of ρ. It is shown that the Little Rip cosmology does notmore » happen in LQC. Nevertheless, the occurrence of the Pseudo-Rip cosmology, in which the phantom universe approaches the de Sitter one asymptotically, is established, and the corresponding example is presented. It is interesting that the disintegration of bound structures in the Pseudo-Rip cosmology in LQC always takes more time than that in Einstein cosmology. Our investigation on future singularities is generalized to that in modified teleparallel gravity, where LQC and Brane Cosmology in the Randall-Sundrum scenario are the best examples. It is remarkable that F(T) gravity may lead to all the kinds of future singularities including Little Rip.« less

  2. Classical and quantum cosmology of minimal massive bigravity

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Mousavi, M.

    2016-10-01

    In a Friedmann-Robertson-Walker (FRW) space-time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger-Wheeler-DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle-Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.

  3. Matter-antimatter asymmetry induced by a running vacuum coupling

    NASA Astrophysics Data System (ADS)

    Lima, J. A. S.; Singleton, D.

    2017-12-01

    We show that a CP-violating interaction induced by a derivative coupling between the running vacuum and a non-conserving baryon current may dynamically break CPT and trigger baryogenesis through an effective chemical potential. By assuming a non-singular class of running vacuum cosmologies which provides a complete cosmic history (from an early inflationary de Sitter stage to the present day quasi-de Sitter acceleration), it is found that an acceptable baryon asymmetry is generated for many different choices of the model parameters. It is interesting that the same ingredient (running vacuum energy density) addresses several open cosmological questions/problems: avoids the initial singularity, provides a smooth exit for primordial inflation, alleviates both the coincidence and the cosmological constant problems, and, finally, is also capable of explaining the generation of matter-antimatter asymmetry in the very early Universe.

  4. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamenshchik, A. Yu.; Manti, S.

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bangmore » and Big Crunch singularities are not traversable.« less

  5. NONSINGULAR UNIVERSES IN GAUSS–BONNET GRAVITY’S RAINBOW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendi, Seyed Hossein; Momennia, Mehrab; Panah, Behzad Eslam

    In this paper, we study the rainbow deformation of Friedmann-Robertson-Walker (FRW) cosmology in both Einstein gravity and Gauss–Bonnet (GB) gravity. We demonstrate that the singularity in FRW cosmology can be removed because of the rainbow deformation of the FRW metric. We obtain the general constraints required for FRW cosmology to be free of singularities. We observe that the inclusion of GB gravity can significantly change the constraints required to obtain nonsingular universes. We use rainbow functions motivated by the hard spectra of gamma-ray bursts to deform FRW cosmology and explicitly demonstrate that such a deformation removes the singularity in FRWmore » cosmology.« less

  6. Simple coupling with cosmological implications. The initial singularity and the inflationary universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saez, D.

    1987-03-15

    In this work the metric is coupled with a scalar field phi in a simple way. Although this coupling becomes problematic because the energy density of phi appears to be unbounded from below, it is displayed as a very simple coupling leading to a nonsingular cosmological model with an early antigravity regime. A basic study of the inflationary period and various suggestions are presented.

  7. Future singularity avoidance in phantom dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    2012-07-01

    Different approaches to quantum cosmology are studied in order to deal with the future singularity avoidance problem. Our results show that these future singularities will persist but could take different forms. As an example we have studied the big rip which appear when one considers the state equation P = ωρ with ω < −1, showing that it does not disappear in modified gravity. On the other hand, it is well-known that quantum geometric effects (holonomy corrections) in loop quantum cosmology introduce a quadratic modification, namely proportional to ρ{sup 2}, in Friedmann's equation that replace the big rip by amore » non-singular bounce. However this modified Friedmann equation could have been obtained in an inconsistent way, what means that the obtained results from this equation, in particular singularity avoidance, would be incorrect. In fact, we will show that instead of a non-singular bounce, the big rip singularity would be replaced, in loop quantum cosmology, by other kind of singularity.« less

  8. Singular cosmological evolution using canonical and ghost scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojiri, Shin'ichi; Odintsov, S.D.; Oikonomou, V.K.

    2015-09-01

    We demonstrate that finite time singularities of Type IV can be consistently incorporated in the Universe's cosmological evolution, either appearing in the inflationary era, or in the late-time regime. While using only one scalar field instabilities can in principle occur at the time of the phantom-divide crossing, when two fields are involved we are able to avoid such instabilities. Additionally, the two-field scalar-tensor theories prove to be able to offer a plethora of possible viable cosmological scenarios, at which various types of cosmological singularities can be realized. Amongst others, it is possible to describe inflation with the appearance of amore » Type IV singularity, and phantom late-time acceleration which ends in a Big Rip. Finally, for completeness, we also present the Type IV realization in the context of suitably reconstructed F(R) gravity.« less

  9. Holographic signatures of cosmological singularities.

    PubMed

    Engelhardt, Netta; Hertog, Thomas; Horowitz, Gary T

    2014-09-19

    To gain insight into the quantum nature of cosmological singularities, we study anisotropic Kasner solutions in gauge-gravity duality. The dual description of the bulk evolution towards the singularity involves N=4 super Yang-Mills theory on the expanding branch of deformed de Sitter space and is well defined. We compute two-point correlators of Yang-Mills operators of large dimensions using spacelike geodesics anchored on the boundary. The correlators show a strong signature of the singularity around horizon scales and decay at large boundary separation at different rates in different directions. More generally, the boundary evolution exhibits a process of particle creation similar to that in inflation. This leads us to conjecture that information on the quantum nature of cosmological singularities is encoded in long-wavelength features of the boundary wave function.

  10. Cosmological singularities in Bakry-Émery spacetimes

    NASA Astrophysics Data System (ADS)

    Galloway, Gregory J.; Woolgar, Eric

    2014-12-01

    We consider spacetimes consisting of a manifold with Lorentzian metric and a weight function or scalar field. These spacetimes admit a Bakry-Émery-Ricci tensor which is a natural generalization of the Ricci tensor. We impose an energy condition on the Bakry-Émery-Ricci tensor and obtain singularity theorems of a cosmological type, both for zero and for positive cosmological constant. That is, we find conditions under which every timelike geodesic is incomplete. These conditions are given by 'open' inequalities, so we examine the borderline (equality) cases and show that certain singularities are avoided in these cases only if the geometry is rigid; i.e., if it splits as a Lorentzian product or, for a positive cosmological constant, a warped product, and the weight function is constant along the time direction. Then the product case is future timelike geodesically complete while, in the warped product case, worldlines of certain conformally static observers are complete. Our results answer a question posed by J Case. We then apply our results to the cosmology of scalar-tensor gravitation theories. We focus on the Brans-Dicke family of theories in 4 spacetime dimensions, where we obtain 'Jordan frame' singularity theorems for big bang singularities.

  11. Cosmological bounce and Genesis beyond Horndeski

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolevatov, R.; Mironov, S.; Volkova, V.

    2017-08-01

    We study 'classical' bouncing and Genesis models in beyond Horndeski theory. We give an example of spatially flat bouncing solution that is non-singular and stable throughout the whole evolution. We also provide an example of stable geodesically complete Genesis with similar features. The model is arranged in such a way that the scalar field driving the cosmological evolution initially behaves like full-fledged beyond Horndeski, whereas at late times it becomes a massless scalar field minimally coupled to gravity.

  12. Classical stability of sudden and big rip singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrow, John D.; Lip, Sean Z. W.

    2009-08-15

    We introduce a general characterization of sudden cosmological singularities and investigate the classical stability of homogeneous and isotropic cosmological solutions of all curvatures containing these singularities to small scalar, vector, and tensor perturbations using gauge-invariant perturbation theory. We establish that sudden singularities at which the scale factor, expansion rate, and density are finite are stable except for a set of special parameter values. We also apply our analysis to the stability of Big Rip singularities and find the conditions for their stability against small scalar, vector, and tensor perturbations.

  13. Thermodynamics of cosmological matter creation.

    PubMed

    Prigogine, I; Geheniau, J; Gunzig, E; Nardone, P

    1988-10-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the vacuum in which black holes act as membranes that stabilize these fluctuations. In short, black holes will be produced by and "inverse" Hawking radiation process and, once formed, will decompose into "real" matter through the usual Hawking radiation. In this way, the irreversible transformation of space-time into matter can be described as a phase separation between matter and gravitation in which black holes play the role of "critical nuclei."

  14. Strength of the singularities, equation of state and asymptotic expansion in Kaluza-Klein space time

    NASA Astrophysics Data System (ADS)

    Samanta, G. C.; Goel, Mayank; Myrzakulov, R.

    2018-04-01

    In this paper an explicit cosmological model which allows cosmological singularities are discussed in Kaluza-Klein space time. The generalized power-law and asymptotic expansions of the baro-tropic fluid index ω and equivalently the deceleration parameter q, in terms of cosmic time 't' are considered. Finally, the strength of the found singularities is discussed.

  15. Note on bouncing backgrounds

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Pan, Supriya

    2018-05-01

    The theory of inflation is one of the fundamental and revolutionary developments of modern cosmology that became able to explain many issues of the early Universe in the context of the standard cosmological model (SCM). However, the initial singularity of the Universe, where physics is indefinite, is still obscure in the combined SCM +inflation scenario. An alternative to SCM +inflation without the initial singularity is thus always welcome, and bouncing cosmology is an attempt at that. The current work is thus motivated to investigate the bouncing solutions in modified gravity theories when the background universe is described by the spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry. We show that the simplest way to obtain the bouncing cosmologies in such spacetime is to consider some kind of Lagrangian whose gravitational sector depends only on the square of the Hubble parameter of the FLRW universe. For these modified Lagrangians, the corresponding Friedmann equation, a constraint in the dynamics of the Universe, depicts a curve in the phase space (H ,ρ ), where H is the Hubble parameter and ρ is the energy density of the Universe. As a consequence, a bouncing cosmology is obtained when this curve is closed and crosses the axis H =0 at least twice, and whose simplest particular example is the ellipse depicting the well-known holonomy corrected Friedmann equation in loop quantum cosmology (LQC). Sometimes, a crucial point in such theories is the appearance of the Ostrogradski instability at the perturbative level; however, fortunately enough, in the present work, as long as the linear level of perturbations is concerned, this instability does not appear, although it may appear at the higher order of perturbations.

  16. Exotic singularities and spatially curved loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Parampreet; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5; Vidotto, Francesca

    2011-03-15

    We investigate the occurrence of various exotic spacelike singularities in the past and the future evolution of k={+-}1 Friedmann-Robertson-Walker model and loop quantum cosmology using a sufficiently general phenomenological model for the equation of state. We highlight the nontrivial role played by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale. We show that quantum gravity effects generically resolve all strong curvature singularities including big rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities, are ignored by quantum gravity when spatial curvature is negative, as was previouslymore » found for the spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel feature. For a particular class of equation of state, this model also exhibits an additional physical branch in loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes previous results obtained on the resolution of strong curvature singularities in flat models to isotropic spacetimes with nonzero spatial curvature.« less

  17. Tachyon field in loop quantum cosmology: An example of traversable singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Lifang; Zhu Jianyang

    2009-06-15

    Loop quantum cosmology (LQC) predicts a nonsingular evolution of the universe through a bounce in the high energy region. But LQC has an ambiguity about the quantization scheme. Recently, the authors in [Phys. Rev. D 77, 124008 (2008)] proposed a new quantization scheme. Similar to others, this new quantization scheme also replaces the big bang singularity with the quantum bounce. More interestingly, it introduces a quantum singularity, which is traversable. We investigate this novel dynamics quantitatively with a tachyon scalar field, which gives us a concrete example. Our result shows that our universe can evolve through the quantum singularity regularly,more » which is different from the classical big bang singularity. So this singularity is only a weak singularity.« less

  18. Fully stable cosmological solutions with a non-singular classical bounce

    DOE PAGES

    Ijjas, Anna; Steinhardt, Paul J.

    2016-11-28

    Recently, we showed how it is possible to use a cubic Galileon action to construct classical cosmological solutions that enter a contracting null energy condition (NEC) violating phase, bounce at finite values of the scale factor and exit into an expanding NEC-satisfying phase without encountering any singularities or pathologies. One drawback of these examples is that singular behavior is encountered at some time either just before or just after the NEC-violating phase. In this Letter, we show that it is possible to circumvent this problem by extending our method to actions that include the next order L 4 Galileon interaction.more » In using this approach, we construct non-singular classical bouncing cosmological solutions that are non-pathological for all times.« less

  19. Topological defects in alternative theories to cosmic inflation and string cosmology

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon H. S.

    The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We finally address the cosmological initial singularity problem using the target space duality inherent in string/M theory. It was suggested by Brandenberger and Vafa that superstring theory can solve the singularity problem and in addition explain why only three spatial dimensions can become large. We show that under specific conditions this mechanism still persists when including the effects of D-branes.

  20. Holographic curvature perturbations in a cosmology with a space-like singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, Elisa G.M.; Brandenberger, Robert; Institute for Theoretical Studies, ETH Zürich,Clausiusstr. 47, Zürich, CH-8092

    2016-07-19

    We study the evolution of cosmological perturbations in an anti-de-Sitter (AdS) bulk through a cosmological singularity by mapping the dynamics onto the boundary conformal fields theory by means of the AdS/CFT correspondence. We consider a deformed AdS space-time obtained by considering a time-dependent dilaton which induces a curvature singularity in the bulk at a time which we call t=0, and which asymptotically approaches AdS both for large positive and negative times. The boundary field theory becomes free when the bulk curvature goes to infinity. Hence, the evolution of the fluctuations is under better controle on the boundary than in themore » bulk. To avoid unbounded particle production across the bounce it is necessary to smooth out the curvature singularity at very high curvatures. We show how the bulk cosmological perturbations can be mapped onto boundary gauge field fluctuations. We evolve the latter and compare the spectrum of fluctuations on the infrared scales relevant for cosmological observations before and after the bounce point. We find that the index of the power spectrum of fluctuations is the same before and after the bounce.« less

  1. Does loop quantum cosmology replace the big rip singularity by a non-singular bounce?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaume de, E-mail: jaime.haro@upc.edu

    It is stated that holonomy corrections in loop quantum cosmology introduce a modification in Friedmann's equation which prevent the big rip singularity. Recently in [1] it has been proved that this modified Friedmann equation is obtained in an inconsistent way, what means that the results deduced from it, in particular the big rip singularity avoidance, are not justified. The problem is that holonomy corrections modify the gravitational part of the Hamiltonian of the system leading, after Legendre's transformation, to a non covariant Lagrangian which is in contradiction with one of the main principles of General Relativity. A more consistent waymore » to deal with the big rip singularity avoidance is to disregard modification in the gravitational part of the Hamiltonian, and only consider inverse volume effects [2]. In this case we will see that, not like the big bang singularity, the big rip singularity survives in loop quantum cosmology. Another way to deal with the big rip avoidance is to take into account geometric quantum effects given by the the Wheeler-De Witt equation. In that case, even though the wave packets spread, the expectation values satisfy the same equations as their classical analogues. Then, following the viewpoint adopted in loop quantum cosmology, one can conclude that the big rip singularity survives when one takes into account these quantum effects. However, the spreading of the wave packets prevents the recover of the semiclassical time, and thus, one might conclude that the classical evolution of the universe come to and end before the big rip is reached. This is not conclusive because. as we will see, it always exists other external times that allows us to define the classical and quantum evolution of the universe up to the big rip singularity.« less

  2. Null cosmological singularities and free strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, K.

    2010-03-15

    We continue exploring free strings in the background of null Kasner-like cosmological singularities, following K. Narayan, arXiv:0904.4532. We study the free string Schrodinger wave functional along the lines of K. Narayan, arXiv:0807.1517. We find the wave functional to be nonsingular in the vicinity of singularities whose Kasner exponents satisfy certain relations. We compare this with the description in other variables. We then study certain regulated versions of these singularities where the singular region is replaced by a substringy but nonsingular region and study the string spectra in these backgrounds. The string modes can again be solved for exactly, giving somemore » insight into how string oscillator states get excited near the singularity.« less

  3. Asymptotic dynamics of the exceptional Bianchi cosmologies

    NASA Astrophysics Data System (ADS)

    Hewitt, C. G.; Horwood, J. T.; Wainwright, J.

    2003-05-01

    In this paper we give, for the first time, a qualitative description of the asymptotic dynamics of a class of non-tilted spatially homogeneous (SH) cosmologies, the so-called exceptional Bianchi cosmologies, which are of Bianchi type VI$_{-1/9}$. This class is of interest for two reasons. Firstly, it is generic within the class of non-tilted SH cosmologies, being of the same generality as the models of Bianchi types VIII and IX. Secondly, it is the SH limit of a generic class of spatially inhomogeneous $G_{2}$ cosmologies. Using the orthonormal frame formalism and Hubble-normalized variables, we show that the exceptional Bianchi cosmologies differ from the non-exceptional Bianchi cosmologies of type VI$_{h}$ in two significant ways. Firstly, the models exhibit an oscillatory approach to the initial singularity and hence are not asymptotically self-similar. Secondly, at late times, although the models are asymptotically self-similar, the future attractor for the vacuum-dominated models is the so-called Robinson-Trautman SH model instead of the vacuum SH plane wave models.

  4. Exact solutions, finite time singularities and non-singular universe models from a variety of Λ(t) cosmologies

    NASA Astrophysics Data System (ADS)

    Pan, Supriya

    2018-01-01

    Cosmological models with time-dependent Λ (read as Λ(t)) have been investigated widely in the literature. Models that solve background dynamics analytically are of special interest. Additionally, the allowance of past or future singularities at finite cosmic time in a specific model signals for a generic test on its viabilities with the current observations. Following these, in this work we consider a variety of Λ(t) models focusing on their evolutions and singular behavior. We found that a series of models in this class can be exactly solved when the background universe is described by a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) line element. The solutions in terms of the scale factor of the FLRW universe offer different universe models, such as power-law expansion, oscillating, and the singularity free universe. However, we also noticed that a large number of the models in this series permit past or future cosmological singularities at finite cosmic time. At last we close the work with a note that the avoidance of future singularities is possible for certain models under some specific restrictions.

  5. Thermodynamics of cosmological matter creation

    PubMed Central

    Prigogine, I.; Geheniau, J.; Gunzig, E.; Nardone, P.

    1988-01-01

    A type of cosmological history that includes large-scale entropy production is proposed. These cosmologies are based on reinterpretation of the matter-energy stress tensor in Einstein's equations. This modifies the usual adiabatic energy conservation laws, thereby including irreversible matter creation. This creation corresponds to an irreversible energy flow from the gravitational field to the created matter constituents. This point of view results from consideration of the thermodynamics of open systems in the framework of cosmology. It is shown that the second law of thermodynamics requires that space-time transforms into matter, while the inverse transformation is forbidden. It appears that the usual initial singularity associated with the big bang is structurally unstable with respect to irreversible matter creation. The corresponding cosmological history therefore starts from an instability of the vacuum rather than from a singularity. This is exemplified in the framework of a simple phenomenological model that leads to a three-stage cosmology: the first drives the cosmological system from the initial instability to a de Sitter regime, and the last connects with the usual matter-radiation Robertson-Walker universe. Matter as well as entropy creation occurs during the first two stages, while the third involves the traditional cosmological evolution. A remarkable fact is that the de Sitter stage appears to be an attractor independent of the initial fluctuation. This is also the case for all the physical predictions involving the present Robertson-Walker universe. Most results obtained previously, in the framework of quantum field theory, can now be obtained on a macroscopic basis. It is shown that this description leads quite naturally to the introduction of primeval black holes as the intermediate stage between the Minkowski vacuum and the present matter-radiation universe. The instability at the origin of the universe is the result of fluctuations of the vacuum in which black holes act as membranes that stabilize these fluctuations. In short, black holes will be produced by and “inverse” Hawking radiation process and, once formed, will decompose into “real” matter through the usual Hawking radiation. In this way, the irreversible transformation of space-time into matter can be described as a phase separation between matter and gravitation in which black holes play the role of “critical nuclei.” PMID:16593986

  6. Quantum descriptions of singularities leading to pair creation. [of gravitons

    NASA Technical Reports Server (NTRS)

    Misner, C. W.

    1974-01-01

    A class of cosmological models is analyzed which provide a mathematically convenient (but idealized) description of a cosmological singularity that develops into a pair creation epoch and terminates in an adiabatic expansion with redshifting particle energies. This class of models was obtained by Gowdy (1971, 1974) as a set of exact solutions of the classical empty space Einstein equations describing inhomogeneous universes populated only by gravitational waves. It is shown that these models can be used to exhibit simplified models of quantized gravitational fields, and that a quantum description can be given arbitrarily near a cosmological singularity. Graviton pair creation occurs, and can be seen to convert anisotropic expansion rates into the energy of graviton pairs.

  7. Cosmological models in energy-momentum-squared gravity

    NASA Astrophysics Data System (ADS)

    Board, Charles V. R.; Barrow, John D.

    2017-12-01

    We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting cosmological theories give rise to field equations of similar form to several particular theories with different fundamental bases, including bulk viscous cosmology, loop quantum gravity, k -essence, and brane-world cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.

  8. Infinite derivative gravity: non-singular cosmology & blackhole solutions

    NASA Astrophysics Data System (ADS)

    Mazumdar, A.

    Both Einstein’s theory of General Relativity and Newton’s theory of gravity possess a short distance and small time scale catastrophe. The blackhole singularity and cosmological Big Bang singularity problems highlight that current theories of gravity are incomplete description at early times and small distances. I will discuss how one can potentially resolve these fundamental problems at a classical level and quantum level. In particular, I will discuss infinite derivative theories of gravity, where gravitational interactions become weaker in the ultraviolet, and therefore resolving some of the classical singularities, such as Big Bang and Schwarzschild singularity for compact non-singular objects with mass up to 1025 grams. In this lecture, I will discuss quantum aspects of infinite derivative gravity and discuss few aspects which can make the theory asymptotically free in the UV.

  9. Fine-tuning free paradigm of two-measures theory: k-essence, absence of initial singularity of the curvature, and inflation with graceful exit to the zero cosmological constant state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guendelman, E. I.; Kaganovich, A. B.

    2007-04-15

    The dilaton-gravity sector of the two-measures field theory (TMT) is explored in detail in the context of spatially flat Friedman-Robertson-Walker (FRW) cosmology. The model possesses scale invariance which is spontaneously broken due to the intrinsic features of the TMT dynamics. The dilaton {phi} dependence of the effective Lagrangian appears only as a result of the spontaneous breakdown of the scale invariance. If no fine-tuning is made, the effective {phi}-Lagrangian p({phi},X) depends quadratically upon the kinetic term X. Hence TMT represents an explicit example of the effective k-essence resulting from first principles without any exotic term in the underlying action intendedmore » for obtaining this result. Depending of the choice of regions in the parameter space (but without fine-tuning), TMT exhibits different possible outputs for cosmological dynamics: (a) Absence of initial singularity of the curvature while its time derivative is singular. This is a sort of sudden singularities studied by Barrow on purely kinematic grounds. (b) Power law inflation in the subsequent stage of evolution. Depending on the region in the parameter space the inflation ends with a graceful exit either into the state with zero cosmological constant (CC) or into the state driven by both a small CC and the field {phi} with a quintessencelike potential. (c) Possibility of resolution of the old CC problem. From the point of view of TMT, it becomes clear why the old CC problem cannot be solved (without fine-tuning) in conventional field theories. (d) TMT enables two ways for achieving small CC without fine-tuning of dimensionful parameters: either by a seesaw type mechanism or due to a correspondence principle between TMT and conventional field theories (i.e. theories with only the measure of integration {radical}(-g) in the action). (e) There is a wide range of the parameters such that in the late time universe: the equation of state w=p/{rho}<-1; w asymptotically (as t{yields}{infinity}) approaches -1 from below; {rho} approaches a constant, the smallness of which does not require fine-tuning of dimensionful parameters.« less

  10. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolgar, Eric, E-mail: ewoolgar@ualberta.ca; Wylie, William, E-mail: wwylie@syr.edu

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the “pure Bakry-Émery” N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able tomore » extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (−∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (−∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.« less

  11. Cosmological singularity theorems and splitting theorems for N-Bakry-Émery spacetimes

    NASA Astrophysics Data System (ADS)

    Woolgar, Eric; Wylie, William

    2016-02-01

    We study Lorentzian manifolds with a weight function such that the N-Bakry-Émery tensor is bounded below. Such spacetimes arise in the physics of scalar-tensor gravitation theories, including Brans-Dicke theory, theories with Kaluza-Klein dimensional reduction, and low-energy approximations to string theory. In the "pure Bakry-Émery" N = ∞ case with f uniformly bounded above and initial data suitably bounded, cosmological-type singularity theorems are known, as are splitting theorems which determine the geometry of timelike geodesically complete spacetimes for which the bound on the initial data is borderline violated. We extend these results in a number of ways. We are able to extend the singularity theorems to finite N-values N ∈ (n, ∞) and N ∈ (-∞, 1]. In the N ∈ (n, ∞) case, no bound on f is required, while for N ∈ (-∞, 1] and N = ∞, we are able to replace the boundedness of f by a weaker condition on the integral of f along future-inextendible timelike geodesics. The splitting theorems extend similarly, but when N = 1, the splitting is only that of a warped product for all cases considered. A similar limited loss of rigidity has been observed in a prior work on the N-Bakry-Émery curvature in Riemannian signature when N = 1 and appears to be a general feature.

  12. The Singular Universe and the Reality of Time

    NASA Astrophysics Data System (ADS)

    Mangabeira Unger, Roberto; Smolin, Lee

    2015-01-01

    Introduction; Part I. Roberto Mangabeira Unger: 1. The science of the one universe in time; 2. The context and consequences of the argument; 3. The singular existence of the universe; 4. The inclusive reality of time; 5. The mutability of the laws of nature; 6. The selective realism of mathematics; Part II. Lee Smolin: 1. Cosmology in crisis; 2. Principles for a cosmological theory; 3. The setting: the puzzles of contemporary cosmology; 4. Hypotheses for a new cosmology; 5. Mathematics; 6. Approaches to solving the metalaw dilemma; 7. Implications of temporal naturalism for philosophy of mind; 8. An agenda for science; 9. Concluding remarks; A note concerning disagreements between our views.

  13. Bianchi type string cosmological models in f(R,T) gravity

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Mishra, B.; Sahoo, Parbati; Pacif, S. K. J.

    2016-09-01

    In this work we have studied Bianchi-III and - VI 0 cosmological models with string fluid source in f( R, T) gravity (T. Harko et al., Phys. Rev. D 84, 024020 (2011)), where R is the Ricci scalar and T the trace of the stress energy-momentum tensor in the context of late time accelerating expansion of the universe as suggested by the present observations. The exact solutions of the field equations are obtained by using a time-varying deceleration parameter. The universe is anisotropic and free from initial singularity. Our model initially shows acceleration for a certain period of time and then decelerates consequently. Several dynamical and physical behaviors of the model are also discussed in detail.

  14. Topology and Singularities in Cosmological Spacetimes Obeying the Null Energy Condition

    NASA Astrophysics Data System (ADS)

    Galloway, Gregory J.; Ling, Eric

    2018-06-01

    We consider globally hyperbolic spacetimes with compact Cauchy surfaces in a setting compatible with the presence of a positive cosmological constant. More specifically, for 3 + 1 dimensional spacetimes which satisfy the null energy condition and contain a future expanding compact Cauchy surface, we establish a precise connection between the topology of the Cauchy surfaces and the occurrence of past singularities. In addition to the Penrose singularity theorem, the proof makes use of some recent advances in the topology of 3-manifolds and of certain fundamental existence results for minimal surfaces.

  15. Non-minimally coupled varying constants quantum cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcerzak, Adam, E-mail: abalcerz@wmf.univ.szczecin.pl

    We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability ofmore » transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.« less

  16. On gravitational waves in Born-Infeld inspired non-singular cosmologies

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.; Rubiera-Garcia, Diego

    2017-10-01

    We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.

  17. Cosmological singularity resolution from quantum gravity: The emergent-bouncing universe

    NASA Astrophysics Data System (ADS)

    Alesci, Emanuele; Botta, Gioele; Cianfrani, Francesco; Liberati, Stefano

    2017-08-01

    Alternative scenarios to the big bang singularity have been subject of intense research for several decades by now. Most popular in this sense have been frameworks were such singularity is replaced by a bounce around some minimal cosmological volume or by some early quantum phase. This latter scenario was devised a long time ago and referred as an "emergent universe" (in the sense that our universe emerged from a constant volume quantum phase). We show here that within an improved framework of canonical quantum gravity (the so-called quantum reduced loop gravity) the Friedmann equations for cosmology are modified in such a way to replace the big bang singularity with a short bounce preceded by a metastable quantum phase in which the volume of the universe oscillates between a series of local maxima and minima. We call this hybrid scenario an "emergent-bouncing universe" since after a pure oscillating quantum phase the classical Friedmann spacetime emerges. Perspective developments and possible tests of this scenario are discussed in the end.

  18. On gravitational waves in Born-Infeld inspired non-singular cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiménez, Jose Beltrán; Heisenberg, Lavinia; Olmo, Gonzalo J.

    We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of themore » gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.« less

  19. Initial conditions for cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Gupt, Brajesh

    2017-02-01

    Penrose proposed that the big bang singularity should be constrained by requiring that the Weyl curvature vanishes there. The idea behind this past hypothesis is attractive because it constrains the initial conditions for the universe in geometric terms and is not confined to a specific early universe paradigm. However, the precise statement of Penrose’s hypothesis is tied to classical space-times and furthermore restricts only the gravitational degrees of freedom. These are encapsulated only in the tensor modes of the commonly used cosmological perturbation theory. Drawing inspiration from the underlying idea, we propose a quantum generalization of Penrose’s hypothesis using the Planck regime in place of the big bang, and simultaneously incorporating tensor as well as scalar modes. Initial conditions selected by this generalization constrain the universe to be as homogeneous and isotropic in the Planck regime as permitted by the Heisenberg uncertainty relations.

  20. Variety of (d + 1) dimensional cosmological evolutions with and without bounce in a class of LQC-inspired models

    NASA Astrophysics Data System (ADS)

    Rama, S. Kalyana

    2017-08-01

    The bouncing evolution of an universe in Loop Quantum Cosmology can be described very well by a set of effective equations, involving a function sin x. Recently, we have generalised these effective equations to (d + 1) dimensions and to any function f( x). Depending on f( x) in these models inspired by Loop Quantum Cosmology, a variety of cosmological evolutions are possible, singular as well as non singular. In this paper, we study them in detail. Among other things, we find that the scale factor a(t) ∝ t^{ 2 q/(2 q - 1) (1 + w) d} for f(x) = x^q, and find explicit Kasner-type solutions if w = 2 q - 1 also. A result which we find particularly fascinating is that, for f(x) = √{x}, the evolution is non singular and the scale factor a( t) grows exponentially at a rate set, not by a constant density, but by a quantum parameter related to the area quantum.

  1. Building cosmological frozen stars

    NASA Astrophysics Data System (ADS)

    Kastor, David; Traschen, Jennie

    2017-02-01

    Janis-Newman-Winicour (JNW) solutions generalize Schwarzschild to include a massless scalar field. While they share the familiar infinite redshift feature of Schwarzschild, they suffer from the presence of naked singularities. Cosmological versions of JNW spacetimes were discovered some years ago, in the most general case, by Fonarev. Fonarev solutions are also plagued by naked singularities, but have the virtue, unlike e.g. Schwarzschild-deSitter, of being dynamical. Given that exact dynamical cosmological black hole solutions are scarce, Fonarev solutions merit further study. We show how Fonarev solutions can be obtained via generalized dimensional reduction from simpler static vacuum solutions. These results may lead towards constructions of actual dynamical cosmological black holes. In particular, we note that cosmological versions of extremal charged dilaton black holes are known. JNW spacetimes represent a different limiting case of the family of charged dilaton black holes, which have been important in the context of string theory, and better understanding their cosmological versions of JNW spacetimes thus provides a second data point towards finding cosmological versions of the entire family.

  2. Anisotropic deformations of spatially open cosmology in massive gravity theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazuet, Charles; Volkov, Mikhail S.; Mukohyama, Shinji, E-mail: charles.mazuet@lmpt.univ-tours.fr, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: volkov@lmpt.univ-tours.fr

    We combine analytical and numerical methods to study anisotropic deformations of the spatially open homogeneous and isotropic cosmology in the ghost free massive gravity theory with flat reference metric. We find that if the initial perturbations are not too strong then the physical metric relaxes back to the isotropic de Sitter state. However, the dumping of the anisotropies is achieved at the expense of exciting the Stueckelberg fields in such a way that the reference metric changes and does not share anymore with the physical metric the same rotational and translational symmetries. As a result, the universe evolves towards amore » fixed point which does not coincide with the original solution, but for which the physical metric is still de Sitter. If the initial perturbation is strong, then its evolution generically leads to a singular anisotropic state or, for some parameter values, to a decay into flat spacetime. We also present an infinite dimensional family of new homogeneous and isotropic cosmologies in the theory.« less

  3. Quantum matter bounce with a dark energy expanding phase

    NASA Astrophysics Data System (ADS)

    Colin, Samuel; Pinto-Neto, Nelson

    2017-09-01

    Analyzing quantum cosmological scenarios containing one scalar field with exponential potential, we have obtained a universe model which realizes a classical dust contraction from very large scales, the initial repeller of the model, and moves to a stiff matter contraction near the singularity, which is avoided due to a quantum bounce. The universe is then launched in a stiff matter expanding phase, which then moves to a dark energy era, finally returning to the dust expanding phase, the final attractor of the model. Hence, one has obtained a nonsingular cosmological model where a single scalar field can describe both the matter contracting phase of a bouncing model, necessary to give an almost scale invariant spectrum of scalar cosmological perturbations, and a transient expanding dark energy phase. As the universe is necessarily dust dominated in the far past, usual adiabatic vacuum initial conditions can be easily imposed in this era, avoiding the usual issues appearing when dark energy is considered in bouncing models.

  4. Towards realistic singularity-free cosmological models

    NASA Astrophysics Data System (ADS)

    Senovilla, José M. M.

    1996-02-01

    We present an explicit general family of inhomogeneous cosmological models. The family contains an arbitrary function of comoving time (interpretable as the cosmological scale factor) and four arbitrary parameters. In general, it is a solution of Einstein's field equations for a fluid with anisotropic pressures, but it also includes a big subfamily of perfect-fluid metrics. The most interesting feature of this family is that it contains both all the diagonal separable singularity-free cosmological models recently found and all the Friedmann-Lemaître-Robertson-Walker standard models. This property allows one to speculate on the construction of some interesting models in which the Universe has been FLRW-like from some time on (for instance, since the nucleeosynthesis time), but it also went through primordial singularity-free inhomogeneous epochs (in fact, there are quite natural possibilities in which these primordial epochs are inflationary) without ever violating energy conditions or other physical properties. Nevertheless, the physical processes leading to the isotropization and homogenization of the Universe are not fixed nor indicated by the models themselves. The interesting properties of the general model are studied in some detail. ¢ 1996 The American Physical Society.

  5. Loop quantum cosmology scalar field models

    NASA Astrophysics Data System (ADS)

    Kleidis, K.; Oikonomou, V. K.

    In this work, we use the Loop Quantum Cosmology (LQC) modified scalar-tensor reconstruction techniques in order to investigate how bouncing and inflationary cosmologies can be realized. With regard to the inflationary cosmologies, we shall be interested in realizing the intermediate inflation and the Type IV singular inflation, while with regard to bouncing cosmologies, we shall realize the superbounce and the symmetric bounce. In all the cases, we shall find the kinetic term of the LQC holonomy corrected scalar-tensor theory and the corresponding scalar potential. In addition, we shall include a study of the effective Equation of State (EoS), emphasizing at the early- and late-time eras. As we demonstrate, in some cases it is possible to have a nearly de Sitter EoS at the late-time era, a result that could be interpreted as the description of a late-time acceleration era. Also, in all cases we shall examine the dynamical stability of the LQC holonomy corrected scalar-tensor theory, and we shall confront the results with those coming from the corresponding classical dynamical stability theory. The most appealing cosmological scenario is that of a Type IV singular inflationary scenario, in which the singularity may occur at the late-time era. As we demonstrate, for this model, during the dark energy era, a transition from non-phantom to a phantom dark energy era occurs.

  6. Cosmological Entropy Bounds

    NASA Astrophysics Data System (ADS)

    Brustein, R.

    I review some basic facts about entropy bounds in general and about cosmological entropy bounds. Then I review the causal entropy bound, the conditions for its validity and its application to the study of cosmological singularities. This article is based on joint work with Gabriele Veneziano and subsequent related research.

  7. Magnetic Bianchi type II string cosmological model in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Rikhvitsky, Victor; Saha, Bijan; Visinescu, Mihai

    2014-07-01

    The loop quantum cosmology of the Bianchi type II string cosmological model in the presence of a homogeneous magnetic field is studied. We present the effective equations which provide modifications to the classical equations of motion due to quantum effects. The numerical simulations confirm that the big bang singularity is resolved by quantum gravity effects.

  8. Space-time slicing in Horndeski theories and its implications for non-singular bouncing solutions

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna

    2018-02-01

    In this paper, we show how the proper choice of gauge is critical in analyzing the stability of non-singular cosmological bounce solutions based on Horndeski theories. We show that it is possible to construct non-singular cosmological bounce solutions with classically stable behavior for all modes with wavelengths above the Planck scale where: (a) the solution involves a stage of null-energy condition violation during which gravity is described by a modification of Einstein's general relativity; and (b) the solution reduces to Einstein gravity both before and after the null-energy condition violating stage. Similar considerations apply to galilean genesis scenarios.

  9. Journeys through antigravity?

    NASA Astrophysics Data System (ADS)

    Carrasco, John Joseph M.; Chemissany, Wissam; Kallosh, Renata

    2014-01-01

    A possibility of journeys through antigravity has recently been proposed, with the suggestion that Weyl-invariant extension of scalars coupled to Einstein gravity allows for an unambiguous classical evolution through cosmological singularities in anisotropic spacetimes. We compute the Weyl invariant curvature squared and find that it blows up for the proposed anisotropic solution both at the Big Crunch as well as at the Big Bang. Therefore the cosmological singularities are not resolved by uplifting Einstein theory to a Weyl invariant model.

  10. Relaxation of vacuum energy in q-theory

    NASA Astrophysics Data System (ADS)

    Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.

    2017-08-01

    The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.

  11. Quantisation of the holographic Ricci dark energy model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albarran, Imanol; Bouhmadi-López, Mariam, E-mail: imanol@ubi.pt, E-mail: mbl@ubi.pt

    2015-08-01

    While general relativity is an extremely robust theory to describe the gravitational interaction in our Universe, it is expected to fail close to singularities like the cosmological ones. On the other hand, it is well known that some dark energy models might induce future singularities; this can be the case for example within the setup of the Holographic Ricci Dark Energy model (HRDE). On this work, we perform a cosmological quantisation of the HRDE model and obtain under which conditions a cosmic doomsday can be avoided within the quantum realm. We show as well that this quantum model not onlymore » avoid future singularities but also the past Big Bang.« less

  12. Non-singular spacetimes with a negative cosmological constant: IV. Stationary black hole solutions with matter fields

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.; Delay, Erwann; Klinger, Paul

    2018-02-01

    We use an elliptic system of equations with complex coefficients for a set of complex-valued tensor fields as a tool to construct infinite-dimensional families of non-singular stationary black holes, real-valued Lorentzian solutions of the Einstein–Maxwell-dilaton-scalar fields-Yang–Mills–Higgs–Chern–Simons-f(R) equations with a negative cosmological constant. The families include an infinite-dimensional family of solutions with the usual AdS conformal structure at conformal infinity.

  13. Out of the white hole: a holographic origin for the Big Bang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhasan, Razieh; Afshordi, Niayesh; Mann, Robert B., E-mail: rpourhasan@perimeterinstitute.ca, E-mail: nafshordi@pitp.ca, E-mail: rbmann@uwaterloo.ca

    While most of the singularities of General Relativity are expected to be safely hidden behind event horizons by the cosmic censorship conjecture, we happen to live in the causal future of the classical Big Bang singularity, whose resolution constitutes the active field of early universe cosmology. Could the Big Bang be also hidden behind a causal horizon, making us immune to the decadent impacts of a naked singularity? We describe a braneworld description of cosmology with both 4d induced and 5D bulk gravity (otherwise known as Dvali-Gabadadze-Porati, or DGP model), which exhibits this feature: the universe emerges as a sphericalmore » 3-brane out of the formation of a 5D Schwarzschild black hole. In particular, we show that a pressure singularity of the holographic fluid, discovered earlier, happens inside the white hole horizon, and thus need not be real or imply any pathology. Furthermore, we outline a novel mechanism through which any thermal atmosphere for the brane, with comoving temperature of ∼20% of the 5D Planck mass can induce scale-invariant primordial curvature perturbations on the brane, circumventing the need for a separate process (such as cosmic inflation) to explain current cosmological observations. Finally, we note that 5D space-time is asymptotically flat, and thus potentially allows an S-matrix or (after minor modifications) an AdS/CFT description of the cosmological Big Bang.« less

  14. Can a man-made universe be achieved by quantum tunneling without an initial singularity?

    NASA Technical Reports Server (NTRS)

    Guth, Alan H.; Haller, K. (Editor); Caldi, D. B. (Editor); Islam, M. M. (Editor); Mallett, R. L. (Editor); Mannheim, P. D. (Editor); Swanson, M. S. (Editor)

    1991-01-01

    Essentially all modern particle theories suggest the possible existence of a false vacuum state; a metastable state with an energy density that cannot be lowered except by means of a very slow phase transition. Inflationary cosmology makes use of such a state to drive the expansion of the big bang, allowing the entire observed universe to evolve from a very small initial mass. A sphere of false vacuum in the present universe, if larger than a certain critical mass, could inflate to form a new universe which would rapidly detach from its parent. A false vacuum bubble of this size, however, cannot be produced classically unless an initial singularity is present from the outset. The possibility is explored that a bubble of subcritical size, which classically would evolve to a maximum size and collapse, might instead tunnel through a barrier to produce a new universe. The tunneling rate using semiclassical quantum gravity is estimated, and some interesting ambiguities in the formulas are discovered.

  15. Stability of singularity-free cosmological solutions in Hořava-Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Misonoh, Yosuke; Fukushima, Mitsuhiro; Miyashita, Shoichiro

    2017-02-01

    We study the stability of singularity-free cosmological solutions with a positive cosmological constant based on the projectable Hořava-Lifshitz (HL) theory. In the HL theory, the isotropic and homogeneous cosmological solutions with bounce can be realized if the spatial curvature is nonzero. By performing a perturbation analysis around nonflat Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime, we derive a quadratic action and discuss the stability, i.e., ghost and tachyon-free conditions. Although the squared effective mass of scalar perturbation must be negative in the infrared regime, we can avoid tachyon instability by considering strong Hubble friction. Additionally, we estimate the backreaction from the perturbations on the background geometry, especially against an anisotropic perturbation in closed FLRW spacetime. It turns out that certain types of bouncing solution may be spoiled even if all perturbation modes are stable.

  16. FLRW Cosmology with Horava-Lifshitz Gravity: Impacts of Equations of State

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; Abou El Dahab, E.

    2017-07-01

    Inspired by Lifshitz theory for quantum critical phenomena in condensed matter, Horava proposed a theory for quantum gravity with an anisotropic scaling in ultraviolet. In Horava-Lifshitz gravity (HLG), we have studied the impacts of six types of equations of state on the evolution of various cosmological parameters such as Hubble parameters and scale factor. From the comparison of the general relativity gravity with the HLG with detailed and without with non-detailed balance conditions, remarkable differences are found. Also, a noticeable dependence of singular and non-singular Big Bang on the equations of state is observed. We conclude that HLG explains various epochs in the early universe and might be able to reproduce the entire cosmic history with and without singular Big Bang.

  17. Emergence of running dark energy from polynomial f( R) theory in Palatini formalism

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander; Borowiec, Andrzej

    2017-09-01

    We consider FRW cosmology in f(R)= R+ γ R^2+δ R^3 modified framework. The Palatini approach reduces its dynamics to the simple generalization of Friedmann equation. Thus we study the dynamics in two-dimensional phase space with some details. After reformulation of the model in the Einstein frame, it reduces to the FRW cosmological model with a homogeneous scalar field and vanishing kinetic energy term. This potential determines the running cosmological constant term as a function of the Ricci scalar. As a result we obtain the emergent dark energy parametrization from the covariant theory. We study also singularities of the model and demonstrate that in the Einstein frame some undesirable singularities disappear.

  18. Note on cosmological Levi-Civita spacetimes in higher dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarioglu, Oezguer; Tekin, Bayram

    2009-04-15

    We find a class of solutions to cosmological Einstein equations that generalizes the four dimensional cylindrically symmetric spacetimes to higher dimensions. The AdS soliton is a special member of this class with a unique singularity structure.

  19. Stability of the Einstein static universe in Einstein-Cartan theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir

    The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.

  20. Evidence for maximal acceleration and singularity resolution in covariant loop quantum gravity.

    PubMed

    Rovelli, Carlo; Vidotto, Francesca

    2013-08-30

    A simple argument indicates that covariant loop gravity (spin foam theory) predicts a maximal acceleration and hence forbids the development of curvature singularities. This supports the results obtained for cosmology and black holes using canonical methods.

  1. Nonsingular solutions and instabilities in Einstein-scalar-Gauss-Bonnet cosmology

    NASA Astrophysics Data System (ADS)

    Sberna, Laura; Pani, Paolo

    2017-12-01

    It is generically believed that higher-order curvature corrections to the Einstein-Hilbert action might cure the curvature singularities that plague general relativity. Here we consider Einstein-scalar-Gauss-Bonnet gravity, the only four-dimensional, ghost-free theory with quadratic curvature terms. For any choice of the coupling function and of the scalar potential, we show that the theory does not allow for bouncing solutions in the flat and open Friedmann universe. For the case of a closed universe, using a reverse-engineering method, we explicitly provide a bouncing solution which is nevertheless linearly unstable in the scalar gravitational sector. Moreover, we show that the expanding, singularity-free, early-time cosmologies allowed in the theory are unstable. These results rely only on analyticity and finiteness of cosmological variables at early times.

  2. The Future of Theoretical Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2003-11-01

    Based on lectures given in honor of Stephen Hawking's 60th birthday, this book comprises contributions from the world's leading theoretical physicists. Popular lectures progress to a critical evaluation of more advanced subjects in modern cosmology and theoretical physics. Topics covered include the origin of the universe, warped spacetime, cosmological singularities, quantum gravity, black holes, string theory, quantum cosmology and inflation. The volume provides a fascinating overview of the variety of subjects to which Stephen Hawking has contributed.

  3. Tachyon cosmology, supernovae data, and the big brake singularity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keresztes, Z.; Gergely, L. A.; Gorini, V.

    2009-04-15

    We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard {lambda}CDM model.

  4. C-field cosmological models: revisited

    NASA Astrophysics Data System (ADS)

    Yadav, Anil Kumar; Tawfiq Ali, Ahmad; Ray, Saibal; Rahaman, Farook; Hossain Sardar, Iftikar

    2016-12-01

    We investigate plane symmetric spacetime filled with perfect fluid in the C-field cosmology of Hoyle and Narlikar. A new class of exact solutions has been obtained by considering the creation field C as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing C-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially showing that some of our solutions of C-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters. We note that the model in a unique way represents both the features of the accelerating as well as decelerating universe depending on the parameters and thus seems to provide glimpses of the oscillating or cyclic model of the universe without invoking any other agent or theory in allowing cyclicity.

  5. Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-10-01

    We study a model of a scalar field minimally coupled to gravity, with a specific potential energy for the scalar field, and include curvature and radiation as two additional parameters. Our goal is to obtain analytically the complete set of configurations of a homogeneous and isotropic universe as a function of time. This leads to a geodesically complete description of the Universe, including the passage through the cosmological singularities, at the classical level. We give all the solutions analytically without any restrictions on the parameter space of the model or initial values of the fields. We find that for generic solutions the Universe goes through a singular (zero-size) bounce by entering a period of antigravity at each big crunch and exiting from it at the following big bang. This happens cyclically again and again without violating the null-energy condition. There is a special subset of geodesically complete nongeneric solutions which perform zero-size bounces without ever entering the antigravity regime in all cycles. For these, initial values of the fields are synchronized and quantized but the parameters of the model are not restricted. There is also a subset of spatial curvature-induced solutions that have finite-size bounces in the gravity regime and never enter the antigravity phase. These exist only within a small continuous domain of parameter space without fine-tuning the initial conditions. To obtain these results, we identified 25 regions of a 6-parameter space in which the complete set of analytic solutions are explicitly obtained.

  6. New singularities in unexpected places

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Graham, Alexander A. H.

    2015-09-01

    Spacetime singularities have been discovered which are physically much weaker than those predicted by the classical singularity theorems. Geodesics evolve through them and they only display infinities in the derivatives of their curvature invariants. So far, these singularities have appeared to require rather exotic and unphysical matter for their occurrence. Here, we show that a large class of singularities of this form can be found in a simple Friedmann cosmology containing only a scalar-field with a power-law self-interaction potential. Their existence challenges several preconceived ideas about the nature of spacetime singularities and has an impact upon the end of inflation in the early universe.

  7. Cosmological perturbations through a non-singular ghost-condensate/Galileon bounce

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battarra, Lorenzo; Koehn, Michael; Lehners, Jean-Luc

    2014-07-01

    We study the propagation of super-horizon cosmological perturbations in a non-singular bounce spacetime. The model we consider combines a ghost condensate with a Galileon term in order to induce a ghost-free bounce. Our calculation is performed in harmonic gauge, which ensures that the linearized equations of motion remain well-defined and non-singular throughout. We find that, despite the fact that near the bounce the speed of sound becomes imaginary, super-horizon curvature perturbations remain essentially constant across the bounce. In fact, we show that there is a time close to the bounce where curvature perturbations of all wavelengths are required to bemore » momentarily exactly constant. We relate our calculations to those performed in other gauges, and comment on the relation to previous results in the literature.« less

  8. Cosmology and Prehistory: Imagination on the Rise. Spotlight: Montessori Potpourri.

    ERIC Educational Resources Information Center

    Hallenberg, Harvey

    2001-01-01

    Presents the Maori cosmological perspective and the modern theory of evolution. Explains how these two creation stories can coexist. Discusses life on earth during its first 3 billion years, including concepts of singularity, Big Bang, time, space, matter, gravity, stars, planets, seas, and life. (DLH)

  9. Approaching the Planck scale from a generally relativistic point of view: A philosophical appraisal of loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Wuthrich, Christian

    My dissertation studies the foundations of loop quantum gravity (LQG), a candidate for a quantum theory of gravity based on classical general relativity. At the outset, I discuss two---and I claim separate---questions: first, do we need a quantum theory of gravity at all; and second, if we do, does it follow that gravity should or even must be quantized? My evaluation of different arguments either way suggests that while no argument can be considered conclusive, there are strong indications that gravity should be quantized. LQG attempts a canonical quantization of general relativity and thereby provokes a foundational interest as it must take a stance on many technical issues tightly linked to the interpretation of general relativity. Most importantly, it codifies general relativity's main innovation, the so-called background independence, in a formalism suitable for quantization. This codification pulls asunder what has been joined together in general relativity: space and time. It is thus a central issue whether or not general relativity's four-dimensional structure can be retrieved in the alternative formalism and how it fares through the quantization process. I argue that the rightful four-dimensional spacetime structure can only be partially retrieved at the classical level. What happens at the quantum level is an entirely open issue. Known examples of classically singular behaviour which gets regularized by quantization evoke an admittedly pious hope that the singularities which notoriously plague the classical theory may be washed away by quantization. This work scrutinizes pronouncements claiming that the initial singularity of classical cosmological models vanishes in quantum cosmology based on LQG and concludes that these claims must be severely qualified. In particular, I explicate why casting the quantum cosmological models in terms of a deterministic temporal evolution fails to capture the concepts at work adequately. Finally, a scheme is developed of how the re-emergence of the smooth spacetime from the underlying discrete quantum structure could be understood.

  10. Quantum Gravity and Cosmology: an intimate interplay

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Mairi

    2017-08-01

    I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.

  11. Cosmological space-times with resolved Big Bang in Yang-Mills matrix models

    NASA Astrophysics Data System (ADS)

    Steinacker, Harold C.

    2018-02-01

    We present simple solutions of IKKT-type matrix models that can be viewed as quantized homogeneous and isotropic cosmological space-times, with finite density of microstates and a regular Big Bang (BB). The BB arises from a signature change of the effective metric on a fuzzy brane embedded in Lorentzian target space, in the presence of a quantized 4-volume form. The Hubble parameter is singular at the BB, and becomes small at late times. There is no singularity from the target space point of view, and the brane is Euclidean "before" the BB. Both recollapsing and expanding universe solutions are obtained, depending on the mass parameters.

  12. Conditional symmetries in axisymmetric quantum cosmologies with scalar fields and the fate of the classical singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zampeli, Adamantia; Pailas, Theodoros; Terzis, Petros A.

    2016-05-01

    In this paper, the classical and quantum solutions of some axisymmetric cosmologies coupled to a massless scalar field are studied in the context of minisuperspace approximation. In these models, the singular nature of the Lagrangians entails a search for possible conditional symmetries. These have been proven to be the simultaneous conformal symmetries of the supermetric and the superpotential. The quantization is performed by adopting the Dirac proposal for constrained systems, i.e. promoting the first-class constraints to operators annihilating the wave function. To further enrich the approach, we follow [1] and impose the operators related to the classical conditional symmetries onmore » the wave function. These additional equations select particular solutions of the Wheeler-DeWitt equation. In order to gain some physical insight from the quantization of these cosmological systems, we perform a semiclassical analysis following the Bohmian approach to quantum theory. The generic result is that, in all but one model, one can find appropriate ranges of the parameters, so that the emerging semiclassical geometries are non-singular. An attempt for physical interpretation involves the study of the effective energy-momentum tensor which corresponds to an imperfect fluid.« less

  13. NEC violation in mimetic cosmology revisited

    DOE PAGES

    Ijjas, Anna; Ripley, Justin; Steinhardt, Paul J.

    2016-06-28

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space–times always decreases while in contracting space–times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show thatmore » mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein–Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. Finally, we also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.« less

  14. NEC violation in mimetic cosmology revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ijjas, Anna; Ripley, Justin; Steinhardt, Paul J.

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space–times always decreases while in contracting space–times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show thatmore » mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein–Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. Finally, we also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.« less

  15. Singularity Crossing, Transformation of Matter Properties and the Problem of Parametrization in Field Theories

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.

    2018-03-01

    We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang-Big Crunch singularities.

  16. Cusp singularities in f(R) gravity: pros and cons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; Yeom, Dong-han

    We investigate cusp singularities in f(R) gravity, especially for Starobinsky and Hu-Sawicki dark energy models. We illustrate that, by using double-null numerical simulations, a cusp singularity can be triggered by gravitational collapses. This singularity can be cured by adding a quadratic term, but this causes a Ricci scalar bump that can be observed by an observer outside the event horizon. Comparing with cosmological parameters, it seems that it would be difficult to see super-Planckian effects by astrophysical experiments. On the other hand, at once there exists a cusp singularity, it can be a mechanism to realize a horizon scale curvaturemore » singularity that can be interpreted by a firewall.« less

  17. Cyclic multiverses

    NASA Astrophysics Data System (ADS)

    Marosek, Konrad; Dąbrowski, Mariusz P.; Balcerzak, Adam

    2016-09-01

    Using the idea of regularization of singularities due to the variability of the fundamental constants in cosmology we study the cyclic universe models. We find two models of oscillating and non-singular mass density and pressure (`non-singular' bounce) regularized by varying gravitational constant G despite the scale factor evolution is oscillating and having sharp turning points (`singular' bounce). Both violating (big-bang) and non-violating (phantom) null energy condition models appear. Then, we extend this idea on to the multiverse containing cyclic individual universes with either growing or decreasing entropy though leaving the net entropy constant. In order to get an insight into the key idea, we consider the doubleverse with the same geometrical evolution of the two `parallel' universes with their physical evolution [physical coupling constants c(t) and G(t)] being different. An interesting point is that there is a possibility to exchange the universes at the point of maximum expansion - the fact which was already noticed in quantum cosmology. Similar scenario is also possible within the framework of Brans-Dicke theory where varying G(t) is replaced by the dynamical Brans-Dicke field φ(t) though these theories are slightly different.

  18. Behavior of Tachyon in String Cosmology Based on Gauged WZW Model

    NASA Astrophysics Data System (ADS)

    Lee, Sunggeun; Nam, Soonkeon

    We investigate a string theoretic cosmological model in the context of the gauged Wess-Zumino-Witten model. Our model is based on a product of non-compact coset space and a spectator flat space; [SL(2, R)/U(1)]k × ℝ2. We extend the formerly studied semiclassical consideration with infinite Kac-Moody level k to a finite one. In this case, the tachyon field appears in the effective action, and we solve the Einstein equation to determine the behavior of tachyon as a function of time. We find that tachyon field dominates over dilaton field in early times. In particular, we consider the energy conditions of the matter fields consisting of the dilaton and the tachyon which affect the initial singularity. We find that not only the strong energy but also the null energy condition is violated.

  19. Gauss-Bonnet cosmology unifying late and early-time acceleration eras with intermediate eras

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2016-07-01

    In this paper we demonstrate that with vacuum F(G) gravity it is possible to describe the unification of late and early-time acceleration eras with the radiation and matter domination era. The Hubble rate of the unified evolution contains two mild singularities, so called Type IV singularities, and the evolution itself has some appealing features, such as the existence of a deceleration-acceleration transition at late times. We also address quantitatively a fundamental question related to modified gravity models description of cosmological evolution: Is it possible for all modified gravity descriptions of our Universe evolution, to produce a nearly scale invariant spectrum of primordial curvature perturbations? As we demonstrate, the answer for the F(G) description is no, since the resulting power spectrum is not scale invariant, in contrast to the F(R) description studied in the literature. Therefore, although the cosmological evolution can be realized in the context of vacuum F(G) gravity, the evolution is not compatible with the observational data, in contrast to the F(R) gravity description of the same cosmological evolution.

  20. Anisotropic cosmological solutions in R + R^2 gravity

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Ricciardone, Angelo; Starobinsky, Alexei A.; Toporensky, Aleksey

    2018-04-01

    In this paper we investigate the past evolution of an anisotropic Bianchi I universe in R+R^2 gravity. Using the dynamical system approach we show that there exists a new two-parameter set of solutions that includes both an isotropic "false radiation" solution and an anisotropic generalized Kasner solution, which is stable. We derive the analytic behavior of the shear from a specific property of f( R) gravity and the analytic asymptotic form of the Ricci scalar when approaching the initial singularity. Finally, we numerically check our results.

  1. Quantum transitions through cosmological singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bramberger, Sebastian F.; Lehners, Jean-Luc; Hertog, Thomas

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddlemore » points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.« less

  2. Quantum transitions through cosmological singularities

    NASA Astrophysics Data System (ADS)

    Bramberger, Sebastian F.; Hertog, Thomas; Lehners, Jean-Luc; Vreys, Yannick

    2017-07-01

    In a quantum theory of cosmology spacetime behaves classically only in limited patches of the configuration space on which the wave function of the universe is defined. Quantum transitions can connect classical evolution in different patches. Working in the saddle point approximation and in minisuperspace we compute quantum transitions connecting inflationary histories across a de Sitter like throat or a singularity. This supplies probabilities for how an inflating universe, when evolved backwards, transitions and branches into an ensemble of histories on the opposite side of a quantum bounce. Generalising our analysis to scalar potentials with negative regions we identify saddle points describing a quantum transition between a classically contracting, crunching ekpyrotic phase and an inflationary universe.

  3. Do sewn up singularities falsify the Palatini cosmology?

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander; Borowiec, Andrzej; Wojnar, Aneta

    2016-10-01

    We investigate further (cf. Borowiec et al. JCAP 1601(01):040, 2016) the Starobinsky cosmological model R+γ R^2 in the Palatini formalism with a Chaplygin gas and baryonic matter as a source in the context of singularities. The dynamics reduces to the 2D sewn dynamical system of a Newtonian type (a piece-wise-smooth dynamical system). We demonstrate that the presence of a sewn up freeze singularity (glued freeze type singularities) for the positive γ is, in this case, a generic feature of the early evolution of the universe. It is demonstrated that γ equal zero is a bifurcation parameter and the dynamics qualitatively changes as the γ sign is changing. On the other side for the case of negative γ instead of the big bang the sudden bounce singularity of a finite scale factor does appear and there is a generic class of bouncing solutions. While the Ω _{γ } > 0 is favored by data only very small values of Ω _{γ } parameter are allowed if we require agreement with the Λ CDM model. From the statistical analysis of astronomical observations, we deduce that the case of only very small negative values of Ω _γ cannot be rejected. Therefore, observation data favor the universe without the ghost states (f'(hat{R})>0) and tachyons (f''(hat{R})>0).

  4. Through the big bang: Continuing Einstein's equations beyond a cosmological singularity

    NASA Astrophysics Data System (ADS)

    Koslowski, Tim A.; Mercati, Flavio; Sloan, David

    2018-03-01

    All measurements are comparisons. The only physically accessible degrees of freedom (DOFs) are dimensionless ratios. The objective description of the universe as a whole thus predicts only how these ratios change collectively as one of them is changed. Here we develop a description for classical Bianchi IX cosmology implementing these relational principles. The objective evolution decouples from the volume and its expansion degree of freedom. We use the relational description to investigate both vacuum dominated and quiescent Bianchi IX cosmologies. In the vacuum dominated case the relational dynamical system predicts an infinite amount of change of the relational DOFs, in accordance with the well known chaotic behaviour of Bianchi IX. In the quiescent case the relational dynamical system evolves uniquely though the point where the decoupled scale DOFs predict the big bang/crunch. This is a non-trivial prediction of the relational description; the big bang/crunch is not the end of physics - it is instead a regular point of the relational evolution. Describing our solutions as spacetimes that satisfy Einstein's equations, we find that the relational dynamical system predicts two singular solutions of GR that are connected at the hypersurface of the singularity such that relational DOFs are continuous and the orientation of the spatial frame is inverted.

  5. The role of energy conditions in f(R) cosmology

    NASA Astrophysics Data System (ADS)

    Capozziello, S.; Nojiri, S.; Odintsov, S. D.

    2018-06-01

    Energy conditions can play an important role in defining the cosmological evolution. Specifically acceleration/deceleration of cosmic fluid, as well as the emergence of Big Rip singularities, can be related to the constraints imposed by the energy conditions. Here we discuss this issue for f (R) gravity considering also conformal transformations. Cosmological solutions and equations of state can be classified according to energy conditions. The qualitative change of some energy conditions when transformation from the Jordan frame to the Einstein frame done is also observed.

  6. Cosmological solutions and finite time singularities in Finslerian geometry

    NASA Astrophysics Data System (ADS)

    Paul, Nupur; de, S. S.; Rahaman, Farook

    2018-03-01

    We consider a very general scenario of our universe where its geometry is characterized by the Finslerian structure on the underlying spacetime manifold, a generalization of the Riemannian geometry. Now considering a general energy-momentum tensor for matter sector, we derive the gravitational field equations in such spacetime. Further, to depict the cosmological dynamics in such spacetime proposing an interesting equation of state identified by a sole parameter γ which for isotropic limit is simply the barotropic equation of state p = (γ ‑ 1)ρ (γ ∈ ℝ being the barotropic index), we solve the background dynamics. The dynamics offers several possibilities depending on this sole parameter as follows: (i) only an exponential expansion, or (ii) a finite time past singularity (big bang) with late accelerating phase, or (iii) a nonsingular universe exhibiting an accelerating scenario at late time which finally predicts a big rip type singularity. We also discuss several energy conditions and the possibility of cosmic bounce. Finally, we establish the first law of thermodynamics in such spacetime.

  7. Bianchi I cosmology in the presence of a causally regularized viscous fluid

    NASA Astrophysics Data System (ADS)

    Montani, Giovanni; Venanzi, Marta

    2017-07-01

    We analyze the dynamics of a Bianchi I cosmology in the presence of a viscous fluid, causally regularized according to the Lichnerowicz approach. We show how the effect induced by shear viscosity is still able to produce a matter creation phenomenon, meaning that also in the regularized theory we address, the Universe is emerging from a singularity with a vanishing energy density value. We discuss the structure of the singularity in the isotropic limit, when bulk viscosity is the only retained contribution. We see that, as far as viscosity is not a dominant effect, the dynamics of the isotropic Universe possesses the usual non-viscous power-law behaviour but in correspondence to an effective equation of state, depending on the bulk viscosity coefficient. Finally, we show that, in the limit of a strong non-thermodynamical equilibrium of the Universe mimicked by a dominant contribution of the effective viscous pressure, a power-law inflation behaviour of the Universe appears, the cosmological horizons are removed and a significant amount of entropy is produced.

  8. The Future of Theoretical Physics and Cosmology

    NASA Astrophysics Data System (ADS)

    Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.

    2009-08-01

    Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space: 31. Adventures in de Sitter space Raphael Bousso; 32. de Sitter space in non-critical string theory Andrew Strominger; 33. Supergravity, M theory and cosmology Renata Kallosh; Part VIII. Quantum Cosmology: 34. The state of the universe James B. Hartle; 35. Quantum cosmology Don Page; 36. Quantum cosmology and eternal inflation A. Vilenkin; 37. Probability in the deterministic theory known as quantum mechanics Bryce de Witt; 38. The interpretation of quantum cosmology and the problem of time J. Halliwell; 39. What local supersymmetry can do for quantum cosmology Peter D'Eath; Part IX. Cosmology: 40. Inflation and cosmological perturbations Alan Guth; 41. The future of cosmology: observational and computational prospects Paul Shellard; 42. The ekpyrotic universe and its cyclic extension Neil Turok; 43. Inflationary theory versus the ekpyrotic/cyclic scenario Andrei Linde; 44. Brane (new) worlds Pierre Binetruy; 45. Publications of Stephen Hawking; Index.

  9. `The Wildest Speculation of All': Lemaître and the Primeval-Atom Universe

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    Although there is no logical connection between the expanding universe and the idea of a big bang, from a historical perspective the two concepts were intimately connected. Four years after his pioneering work on the expanding universe, Lemaître suggested that the entire universe had originated in a kind of explosive act from what he called a primeval atom and which he likened to a huge atomic nucleus. His theory of 1931 was the first realistic finite-age model based upon relativistic cosmology, but it presupposed a material proto-universe and thus avoided an initial singularity. What were the sources of Lemaître's daring proposal? Well aware that his new cosmological model needed to have testable consequences, he argued that the cosmic rays were fossils of the original radioactive explosion. However, this hypothesis turned out to be untenable. The first big-bang model ever was received with a mixture of indifference and hostility. Why? The answer is not that contemporary cosmologists failed to recognize Lemaître's genius, but rather that his model was scientifically unconvincing. Although Lemaître was indeed the father of big-bang cosmology, his brilliant idea was only turned into a viable cosmological theory by later physicists.

  10. Combined cosmological tests of a bivalent tachyonic dark energy scalar field model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keresztes, Zoltán; Gergely, László Á., E-mail: zkeresztes@titan.physx.u-szeged.hu, E-mail: gergely@physx.u-szeged.hu

    A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω{sub b}h{sup 2} = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates intomore » a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω{sub CDM} = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model.« less

  11. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni

    2016-09-01

    We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities in flat Friedmann universes, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail, and a method for the continuation of such cosmological evolutions beyond the singularity is developed. We compare our approach with some other, recently developed, approaches to the problem of the crossing of singularities.

  12. Gauge theories with time dependent couplings and their cosmological duals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awad, Adel; Center for Theoretical Physics, British University of Egypt, Sherouk City 11837, P.O. Box 43; Das, Sumit R.

    2009-02-15

    We consider the N=4 super Yang-Mills theory in flat 3+1-dimensional space-time with a time dependent coupling constant which vanishes at t=0, like g{sub YM}{sup 2}=t{sup p}. In an analogous quantum mechanics toy model we find that the response is singular. The energy diverges at t=0, for a generic state. In addition, if p>1 the phase of the wave function has a wildly oscillating behavior, which does not allow it to be continued past t=0. A similar effect would make the gauge theory singular as well, though nontrivial effects of renormalization could tame this singularity and allow a smooth continuation beyondmore » t=0. The gravity dual in some cases is known to be a time dependent cosmology which exhibits a spacelike singularity at t=0. Our results, if applicable in the gauge theory for the case of the vanishing coupling, imply that the singularity is a genuine sickness and does not admit a meaningful continuation. When the coupling remains nonzero and becomes small at t=0, the curvature in the bulk becomes of order string scale. The gauge theory now admits a time evolution beyond this point. In this case, a finite amount of energy is produced which possibly thermalizes and leads to a black hole in the bulk.« less

  13. Criteria for resolving the cosmological singularity in infinite derivative gravity around expanding backgrounds

    NASA Astrophysics Data System (ADS)

    Edholm, James; Conroy, Aindriú

    2017-12-01

    We derive the conditions whereby null rays "defocus" within infinite derivative gravity for perturbations around an (A)dS background, and show that it is therefore possible to avoid singularities within this framework. This is in contrast to Einstein's theory of general relativity, where singularities are generated unless the null energy condition is violated. We further extend this to an (A)dS-Bianchi I background metric, and also give an example of a specific perturbation where defocusing is possible given certain conditions.

  14. Inflation and acceleration of the universe by nonlinear magnetic monopole fields

    NASA Astrophysics Data System (ADS)

    Övgün, A.

    2017-02-01

    Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.

  15. Phase portraits of general f(T) cosmology

    NASA Astrophysics Data System (ADS)

    Awad, A.; El Hanafy, W.; Nashed, G. G. L.; Saridakis, Emmanuel N.

    2018-02-01

    We use dynamical system methods to explore the general behaviour of f(T) cosmology. In contrast to the standard applications of dynamical analysis, we present a way to transform the equations into a one-dimensional autonomous system, taking advantage of the crucial property that the torsion scalar in flat FRW geometry is just a function of the Hubble function, thus the field equations include only up to first derivatives of it, and therefore in a general f(T) cosmological scenario every quantity is expressed only in terms of the Hubble function. The great advantage is that for one-dimensional systems it is easy to construct the phase space portraits, and thus extract information and explore in detail the features and possible behaviours of f(T) cosmology. We utilize the phase space portraits and we show that f(T) cosmology can describe the universe evolution in agreement with observations, namely starting from a Big Bang singularity, evolving into the subsequent thermal history and the matter domination, entering into a late-time accelerated expansion, and resulting to the de Sitter phase in the far future. Nevertheless, f(T) cosmology can present a rich class of more exotic behaviours, such as the cosmological bounce and turnaround, the phantom-divide crossing, the Big Brake and the Big Crunch, and it may exhibit various singularities, including the non-harmful ones of type II and type IV. We study the phase space of three specific viable f(T) models offering a complete picture. Moreover, we present a new model of f(T) gravity that can lead to a universe in agreement with observations, free of perturbative instabilities, and applying the Om(z) diagnostic test we confirm that it is in agreement with the combination of SNIa, BAO and CMB data at 1σ confidence level.

  16. Criticality and big brake singularities in the tachyonic evolutions of closed Friedmann universes with cold dark matter

    NASA Astrophysics Data System (ADS)

    Horváth, Zsolt; Keresztes, Zoltán; Kamenshchik, Alexander Yu.; Gergely, László Á.

    2015-05-01

    The evolution of a closed Friedmann universe filled by a tachyon scalar field with a trigonometric potential and cold dark matter (CDM) is investigated. A subset of the evolutions consistent to 1 σ confidence level with the Union 2.1 supernova data set is identified. The evolutions of the tachyon field are classified. Some of them evolve into a de Sitter attractor, while others proceed through a pseudotachyonic regime into a sudden future singularity. Critical evolutions leading to big brake singularities in the presence of CDM are found and a new type of cosmological evolution characterized by singularity avoidance in the pseudotachyon regime is presented.

  17. The presence of a phantom field in a Randall–Sundrum scenario

    NASA Astrophysics Data System (ADS)

    Acuña-Cárdenas, Rubén O.; Astorga-Moreno, J. A.; García-Aspeitia, Miguel A.; López-Domínguez, J. C.

    2018-02-01

    The presence of phantom dark energy in brane world cosmology generates important new effects, causing a premature big rip singularity when we increase the presence of extra dimensions and considerably competing with the other components of our Universe. This article first considers only a field with the characteristic equation ω<-1 and then the explicit form of the scalar field with a potential with a maximum (with the aim of avoiding a big rip singularity). In both cases we study the dynamics robustly through dynamical analysis theory, considering in detail parameters such as the deceleration q and the vector field associated to the dynamical system. Results are discussed with the purpose of treating the cosmology with a phantom field as dark energy in a Randall–Sundrum scenario.

  18. A simple all-time model for the birth, big bang, and death of the universe

    NASA Astrophysics Data System (ADS)

    Fischer, Arthur E.

    We model the standard ΛCDM model of the universe by the spatially flat FLRW line element dsΛCDM2 = -c2dt2 + 8πGρm,0 Λc22/3 sinh 1 23Λct4/3dσ Euclid2 which we extend for all time t ∈ (-∞,∞). Although there is a cosmological singularity at the big bang t = 0, since the spatial part of the metric collapses to zero, nevertheless, this line element is defined for all time t ∈ (-∞,∞), is C∞ for all t≠0, is C1 differentiable at t = 0, and is non-degenerate and solves Friedmann’s equation for all t≠0. Thus, we can use this extended line element to model the universe from its past-asymptotic initial state dS4- at t = -∞, through the big bang at t = 0, and onward to its future-asymptotic final state dS4+ at t = ∞. Since in this model the universe existed before the big bang, we conclude that (1) the universe was not created de novo at the big bang and (2) cosmological singularities such as black holes or the big bang itself need not be an end to spacetime. Our model shows that the universe was asymptotically created de novo out of nothing at t = -∞ from an unstable vacuum negative half de Sitter dsdS4-2 initial state and then dies asymptotically at t = ∞ as the stable positive half de Sitter dsdS4+2 final state. Since the de Sitter states are vacuum matter states, our model shows that the universe was created from nothing at t = -∞ and dies at t = ∞ to nothing.

  19. Cancellation of the central singularity of the Schwarzschild solution with natural mass inversion process

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Pierre; D'Agostini, G.

    2015-03-01

    We reconsider the classical Schwarzschild solution in the context of a Janus cosmological model. We show that the central singularity can be eliminated through a simple coordinate change and that the subsequent transit from one fold to the other is accompanied by mass inversion. In such scenario matter swallowed by black holes could be ejected as invisible negative mass and dispersed in space.

  20. Bouncing cosmology from warped extra dimensional scenario

    NASA Astrophysics Data System (ADS)

    Das, Ashmita; Maity, Debaprasad; Paul, Tanmoy; SenGupta, Soumitra

    2017-12-01

    From the perspective of four dimensional effective theory on a two brane warped geometry model, we examine the possibility of "bouncing phenomena"on our visible brane. Our results reveal that the presence of a warped extra dimension lead to a non-singular bounce on the brane scale factor and hence can remove the "big-bang singularity". We also examine the possible parametric regions for which this bouncing is possible.

  1. Bouncing cosmologies from quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Sindoni, Lorenzo; Wilson-Ewing, Edward

    2017-02-01

    We show how the large-scale cosmological dynamics can be obtained from the hydrodynamics of isotropic group field theory condensate states in the Gross-Pitaevskii approximation. The correct Friedmann equations are recovered in the classical limit for some choices of the parameters in the action for the group field theory, and quantum gravity corrections arise in the high-curvature regime causing a bounce which generically resolves the big-bang and big-crunch singularities.

  2. Ghost instabilities of cosmological models with vector fields nonminimally coupled to the curvature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmetoglu, Burak; Peloso, Marco; Contaldi, Carlo R.

    2009-12-15

    We prove that many cosmological models characterized by vectors nonminimally coupled to the curvature (such as the Turner-Widrow mechanism for the production of magnetic fields during inflation, and models of vector inflation or vector curvaton) contain ghosts. The ghosts are associated with the longitudinal vector polarization present in these models and are found from studying the sign of the eigenvalues of the kinetic matrix for the physical perturbations. Ghosts introduce two main problems: (1) they make the theories ill defined at the quantum level in the high energy/subhorizon regime (and create serious problems for finding a well-behaved UV completion), andmore » (2) they create an instability already at the linearized level. This happens because the eigenvalue corresponding to the ghost crosses zero during the cosmological evolution. At this point the linearized equations for the perturbations become singular (we show that this happens for all the models mentioned above). We explicitly solve the equations in the simplest cases of a vector without a vacuum expectation value in a Friedmann-Robertson-Walker geometry, and of a vector with a vacuum expectation value plus a cosmological constant, and we show that indeed the solutions of the linearized equations diverge when these equations become singular.« less

  3. Born-Infeld inspired modifications of gravity

    NASA Astrophysics Data System (ADS)

    Beltrán Jiménez, Jose; Heisenberg, Lavinia; Olmo, Gonzalo J.; Rubiera-Garcia, Diego

    2018-01-01

    General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.

  4. Dissipative universe-inflation with soft singularity

    NASA Astrophysics Data System (ADS)

    Brevik, Iver; Timoshkin, Alexander V.

    We investigate the early-time accelerated universe after the Big Bang. We pay attention to the dissipative properties of the inflationary universe in the presence of a soft type singularity, making use of the parameters of the generalized equation of state of the fluid. Flat Friedmann-Robertson-Walker metric is being used. We consider cosmological models leading to the so-called type IV singular inflation. Our obtained theoretical results are compared with observational data from the Planck satellite. The theoretical predictions for the spectral index turn out to be in agreement with the data, while for the scalar-to-tensor ratio, there are minor deviations.

  5. Role of angular momentum and cosmic censorship in (2+1)-dimensional rotating shell collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, Robert B.; Oh, John J.; Park, Mu-In

    2009-03-15

    We study the gravitational collapse problem of rotating shells in three-dimensional Einstein gravity with and without a cosmological constant. Taking the exterior and interior metrics to be those of stationary metrics with asymptotically constant curvature, we solve the equations of motion for the shells from the Darmois-Israel junction conditions in the corotating frame. We study various collapse scenarios with arbitrary angular momentum for a variety of geometric configurations, including anti-de Sitter, de Sitter, and flat spaces. We find that the collapsing shells can form a BTZ black hole, a three-dimensional Kerr-dS spacetime, and an horizonless geometry of point masses undermore » certain initial conditions. For pressureless dust shells, the curvature singularity is not formed due to the angular momentum barrier near the origin. However when the shell pressure is nonvanishing, we find that for all types of shells with polytropic-type equations of state (including the perfect fluid and the generalized Chaplygin gas), collapse to a naked singularity is possible under generic initial conditions. We conclude that in three dimensions angular momentum does not in general guard against violation of cosmic censorship.« less

  6. Translation invariant time-dependent solutions to massive gravity II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mourad, J.; Steer, D.A., E-mail: mourad@apc.univ-paris7.fr, E-mail: steer@apc.univ-paris7.fr

    2014-06-01

    This paper is a sequel to JCAP 12 (2013) 004 and is also devoted to translation-invariant solutions of ghost-free massive gravity in its moving frame formulation. Here we consider a mass term which is linear in the vielbein (corresponding to a β{sub 3} term in the 4D metric formulation) in addition to the cosmological constant. We determine explicitly the constraints, and from the initial value formulation show that the time-dependent solutions can have singularities at a finite time. Although the constraints give, as in the β{sub 1} case, the correct number of degrees of freedom for a massive spin twomore » field, we show that the lapse function can change sign at a finite time causing a singular time evolution. This is very different to the β{sub 1} case where time evolution is always well defined. We conclude that the β{sub 3} mass term can be pathological and should be treated with care.« less

  7. Gravitational lensing, time delay, and gamma-ray bursts

    NASA Technical Reports Server (NTRS)

    Mao, Shude

    1992-01-01

    The probability distributions of time delay in gravitational lensing by point masses and isolated galaxies (modeled as singular isothermal spheres) are studied. For point lenses (all with the same mass) the probability distribution is broad, and with a peak at delta(t) of about 50 S; for singular isothermal spheres, the probability distribution is a rapidly decreasing function with increasing time delay, with a median delta(t) equals about 1/h month, and its behavior depends sensitively on the luminosity function of galaxies. The present simplified calculation is particularly relevant to the gamma-ray bursts if they are of cosmological origin. The frequency of 'recurrent' bursts due to gravitational lensing by galaxies is probably between 0.05 and 0.4 percent. Gravitational lensing can be used as a test of the cosmological origin of gamma-ray bursts.

  8. New trends in cosmology

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    1978-01-01

    A review of big-bang cosmology is presented, emphasizing the big-bang model, hypotheses on the origin of galaxies, observational tests of the big-bang model that may be possible with the Large Space Telescope, and the scale-covariant theory of gravitation. Detailed attention is given to the equations of general relativity, the redshift-distance relation for extragalactic objects, expansion of the universe, the initial singularity, the discovery of the 3-K blackbody radiation, and measurements of the amount of deuterium in the universe. The curvature of the expanding universe is examined along with the magnitude-redshift relation for quasars and galaxies. Several models for the origin of galaxies are evaluated, and it is suggested that a model of galaxy formation via the formation of black holes is consistent with the model of an expanding universe. Scale covariance is discussed, a scale-covariant theory is developed which contains invariance under scale transformation, and it is shown that Dirac's (1937) large-numbers hypothesis finds a natural role in this theory by relating the atomic and Einstein units.

  9. Physical and Relativistic Numerical Cosmology.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  10. f(T) teleparallel gravity and cosmology.

    PubMed

    Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N

    2016-10-01

    Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable for quantization ventures and cosmological applications.

  11. On the Weyl curvature hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2013-11-15

    The Weyl curvature hypothesis of Penrose attempts to explain the high homogeneity and isotropy, and the very low entropy of the early universe, by conjecturing the vanishing of the Weyl tensor at the Big-Bang singularity. In previous papers it has been proposed an equivalent form of Einstein’s equation, which extends it and remains valid at an important class of singularities (including in particular the Schwarzschild, FLRW, and isotropic singularities). Here it is shown that if the Big-Bang singularity is from this class, it also satisfies the Weyl curvature hypothesis. As an application, we study a very general example of cosmologicalmore » models, which generalizes the FLRW model by dropping the isotropy and homogeneity constraints. This model also generalizes isotropic singularities, and a class of singularities occurring in Bianchi cosmologies. We show that the Big-Bang singularity of this model is of the type under consideration, and satisfies therefore the Weyl curvature hypothesis. -- Highlights: •The singularities we introduce are described by finite geometric/physical objects. •Our singularities have smooth Riemann and Weyl curvatures. •We show they satisfy Penrose’s Weyl curvature hypothesis (Weyl=0 at singularities). •Examples: FLRW, isotropic singularities, an extension of Schwarzschild’s metric. •Example: a large class of singularities which may be anisotropic and inhomogeneous.« less

  12. Consistent scalar and tensor perturbation power spectra in single fluid matter bounce with dark energy era

    NASA Astrophysics Data System (ADS)

    Bacalhau, Anna Paula; Pinto-Neto, Nelson; Vitenti, Sandro Dias Pinto

    2018-04-01

    We investigate cosmological scenarios containing one canonical scalar field with an exponential potential in the context of bouncing models, in which the bounce happens due to quantum cosmological effects. The only possible bouncing solutions in this scenario (discarding an infinitely fine-tuned exception) must have one and only one dark energy phase, occurring either in the contracting era or in the expanding era. Hence, these bounce solutions are necessarily asymmetric. Naturally, the more convenient solution is the one in which the dark energy phase happens in the expanding era, in order to be a possible explanation for the current accelerated expansion indicated by cosmological observations. In this case, one has the picture of a Universe undergoing a classical dust contraction from very large scales, the initial repeller of the model, moving to a classical stiff-matter contraction near the singularity, which is avoided due to the quantum bounce. The Universe is then launched to a dark energy era, after passing through radiation- and dust-dominated phases, finally returning to the dust expanding phase, the final attractor of the model. We calculate the spectral indices and amplitudes of scalar and tensor perturbations numerically, considering the whole history of the model, including the bounce phase itself, without making any approximation nor using any matching condition on the perturbations. As the background model is necessarily dust dominated in the far past, the usual adiabatic vacuum initial conditions can be easily imposed in this era. Hence, this is a cosmological model in which the presence of dark energy behavior in the Universe does not turn the usual vacuum initial conditions prescription for cosmological perturbation in bouncing models problematic. Scalar and tensor perturbations end up being almost scale invariant, as expected. The background parameters can be adjusted, without fine-tunings, to yield the observed amplitude for scalar perturbations and also for the ratio between tensor and scalar amplitudes, r =T /S ≲0.1 . The amplification of scalar perturbations over tensor perturbations takes place only around the bounce, due to quantum effects, and it would not occur if General Relativity has remained valid throughout this phase. Hence, this is a bouncing model in which a single field induces not only an expanding background dark energy phase but also produces all observed features of cosmological perturbations of quantum mechanical origin at linear order.

  13. k-essence in the DGP brane-world cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-Lopez, Mariam; Chimento, Luis P.

    We analyze a Dvali-Gabadadze-Porrati (DGP) brane filled with a k-essence field and assume the k field evolving linearly with the cosmic time of the brane. We then solve analytically the Friedmann equation and deduce the different behavior of the brane at the low- and the high-energy regimes. The asymptotic behavior can be quite different involving accelerating branes, big bangs, big crunches, big rips, or quiescent singularities. The latter correspond to a type of sudden singularity.

  14. Deforming regular black holes

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.

    2017-06-01

    In this work, we have deformed regular black holes which possess a general mass term described by a function which generalizes the Bardeen and Hayward mass functions. By using linear constraints in the energy-momentum tensor to generate metrics, the solutions presented in this work are either regular or singular. That is, within this approach, it is possible to generate regular or singular black holes from regular or singular black holes. Moreover, contrary to the Bardeen and Hayward regular solutions, the deformed regular black holes may violate the weak energy condition despite the presence of the spherical symmetry. Some comments on accretion of deformed black holes in cosmological scenarios are made.

  15. Observational constraints on finite scale factor singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denkiewicz, Tomasz, E-mail: atomekd@wmf.univ.szczecin.pl

    2012-07-01

    We discuss the combined constraints on a Finite Scale Factor Singularity (FSF) universe evolution scenario, which come from the shift parameter R, baryon acoustic oscillations (BAO) A, and from the type Ia supernovae. We show that observations allow existence of such singularities in the 2 × 10{sup 9} years in future (at 1σ CL) which is much farther than a Sudden Future Singularity (SFS), and that at the present moment of the cosmic evolution, one cannot differentiate between cosmological scenario which allow finite scale factor singularities and the standard ΛCDM dark energy models. We also show that there is anmore » allowed value of m = 2/3 within 1σ CL, which corresponds to a dust-filled Einstein-de-Sitter universe limit of the early time evolution and so it is pasted into a standard early-time scenario.« less

  16. The Big Bang Singularity

    NASA Astrophysics Data System (ADS)

    Ling, Eric

    The big bang theory is a model of the universe which makes the striking prediction that the universe began a finite amount of time in the past at the so called "Big Bang singularity." We explore the physical and mathematical justification of this surprising result. After laying down the framework of the universe as a spacetime manifold, we combine physical observations with global symmetrical assumptions to deduce the FRW cosmological models which predict a big bang singularity. Next we prove a couple theorems due to Stephen Hawking which show that the big bang singularity exists even if one removes the global symmetrical assumptions. Lastly, we investigate the conditions one needs to impose on a spacetime if one wishes to avoid a singularity. The ideas and concepts used here to study spacetimes are similar to those used to study Riemannian manifolds, therefore we compare and contrast the two geometries throughout.

  17. Cosmological bouncing solutions in extended teleparallel gravity theories

    NASA Astrophysics Data System (ADS)

    de la Cruz-Dombriz, Álvaro; Farrugia, Gabriel; Said, Jackson Levi; Gómez, Diego Sáez-Chillón

    2018-05-01

    In the context of extended teleparallel gravity theories with a 3 +1 -dimensional Gauss-Bonnet analog term, we address the possibility of these theories reproducing several well-known cosmological bouncing scenarios in a four-dimensional Friedmann-Lemaître-Robertson-Walker geometry. We study which types of gravitational Lagrangians are capable of reconstructing bouncing solutions provided by analytical expressions for symmetric, oscillatory, superbounce, matter bounce, and singular bounce. Some of the Lagrangians discovered are analytical at the origin, having both Minkowski and Schwarzschild vacuum solutions. All these results open up the possibility for such theories to be competitive candidates of extended theories of gravity in cosmological scales.

  18. Computational Cosmology: From the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    2001-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations (and numerical methods applied to specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  19. Computational Cosmology: from the Early Universe to the Large Scale Structure.

    PubMed

    Anninos, Peter

    1998-01-01

    In order to account for the observable Universe, any comprehensive theory or model of cosmology must draw from many disciplines of physics, including gauge theories of strong and weak interactions, the hydrodynamics and microphysics of baryonic matter, electromagnetic fields, and spacetime curvature, for example. Although it is difficult to incorporate all these physical elements into a single complete model of our Universe, advances in computing methods and technologies have contributed significantly towards our understanding of cosmological models, the Universe, and astrophysical processes within them. A sample of numerical calculations addressing specific issues in cosmology are reviewed in this article: from the Big Bang singularity dynamics to the fundamental interactions of gravitational waves; from the quark-hadron phase transition to the large scale structure of the Universe. The emphasis, although not exclusively, is on those calculations designed to test different models of cosmology against the observed Universe.

  20. Self-similar cosmological solutions with dark energy. II. Black holes, naked singularities, and wormholes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Hideki; Department of Physics, International Christian University, 3-10-2 Osawa, Mitaka-shi, Tokyo 181-8585; Graduate School of Science and Engineering, Waseda University, Tokyo 169-8555

    We use a combination of numerical and analytical methods, exploiting the equations derived in a preceding paper, to classify all spherically symmetric self-similar solutions which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=({gamma}-1){mu} with 0<{gamma}<2/3. The expansion of the Friedmann universe is accelerated in this case. We find a one-parameter family of self-similar solutions representing a black hole embedded in a Friedmann background. This suggests that, in contrast to the positive pressure case, black holes in a universe with dark energy can grow as fast as the Hubble horizon if they aremore » not too large. There are also self-similar solutions which contain a central naked singularity with negative mass and solutions which represent a Friedmann universe connected to either another Friedmann universe or some other cosmological model. The latter are interpreted as self-similar cosmological white hole or wormhole solutions. The throats of these wormholes are defined as two-dimensional spheres with minimal area on a spacelike hypersurface and they are all nontraversable because of the absence of a past null infinity.« less

  1. Effective action for noncommutative Bianchi I model

    NASA Astrophysics Data System (ADS)

    Rosenbaum, M.; Vergara, J. D.; Minzoni, A. A.

    2013-06-01

    Quantum Mechanics, as a mini-superspace of Field Theory has been assumed to provide physically relevant information on quantum processes in Field Theory. In the case of Quantum Gravity this would imply using Cosmological models to investigate quantum processes at distances of the order of the Planck scale. However because of the Stone-von Neuman Theorem, it is well known that quantization of Cosmological models by the Wheeler-DeWitt procedure in the context of a Heisenberg-Weyl group with piecewise continuous parameters leads irremediably to a volume singularity. In order to avoid this information catastrophe it has been suggested recently the need to introduce in an effective theory of the quantization some form of reticulation in 3-space. On the other hand, since in the geometry of the General Relativistic formulation of Gravitation space can not be visualized as some underlying static manifold in which the physical system evolves, it would be interesting to investigate whether the effective reticulation which removes the singularity in such simple cosmologies as the Bianchi models has a dynamical origin manifested by a noncommutativity of the generators of the Heisenberg-Weyl algebra, as would be expected from an operational point of view at the Planck length scale.

  2. Scalar and tensor perturbations in loop quantum cosmology: high-order corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Tao; Wang, Anzhong; Wu, Qiang

    2015-10-01

    Loop quantum cosmology (LQC) provides promising resolutions to the trans-Planckian issue and initial singularity arising in the inflationary models of general relativity. In general, due to different quantization approaches, LQC involves two types of quantum corrections, the holonomy and inverse-volume, to both of the cosmological background evolution and perturbations. In this paper, using the third-order uniform asymptotic approximations, we derive explicitly the observational quantities of the slow-roll inflation in the framework of LQC with these quantum corrections. We calculate the power spectra, spectral indices, and running of the spectral indices for both scalar and tensor perturbations, whereby the tensor-to-scalar ratiomore » is obtained. We expand all the observables at the time when the inflationary mode crosses the Hubble horizon. As the upper error bounds for the uniform asymptotic approximation at the third-order are ∼< 0.15%, these results represent the most accurate results obtained so far in the literature. It is also shown that with the inverse-volume corrections, both scalar and tensor spectra exhibit a deviation from the usual shape at large scales. Then, using the Planck, BAO and SN data we obtain new constraints on quantum gravitational effects from LQC corrections, and find that such effects could be within the detection of the forthcoming experiments.« less

  3. Cosmology with a stiff matter era

    NASA Astrophysics Data System (ADS)

    Chavanis, Pierre-Henri

    2015-11-01

    We consider the possibility that the Universe is made of a dark fluid described by a quadratic equation of state P =K ρ2 , where ρ is the rest-mass density and K is a constant. The energy density ɛ =ρ c2+K ρ2 is the sum of two terms: a rest-mass term ρ c2 that mimics "dark matter" (P =0 ) and an internal energy term u =K ρ2=P that mimics a "stiff fluid" (P =ɛ ) in which the speed of sound is equal to the speed of light. In the early universe, the internal energy dominates and the dark fluid behaves as a stiff fluid (P ˜ɛ , ɛ ∝a-6). In the late universe, the rest-mass energy dominates and the dark fluid behaves as pressureless dark matter (P ≃0 , ɛ ∝a-3). We provide a simple analytical solution of the Friedmann equations for a universe undergoing a stiff matter era, a dark matter era, and a dark energy era due to the cosmological constant. This analytical solution generalizes the Einstein-de Sitter solution describing the dark matter era, and the Λ CDM model describing the dark matter era and the dark energy era. Historically, the possibility of a primordial stiff matter era first appeared in the cosmological model of Zel'dovich where the primordial universe is assumed to be made of a cold gas of baryons. A primordial stiff matter era also occurs in recent cosmological models where dark matter is made of relativistic self-gravitating Bose-Einstein condensates (BECs). When the internal energy of the dark fluid mimicking stiff matter is positive, the primordial universe is singular like in the standard big bang theory. It expands from an initial state with a vanishing scale factor and an infinite density. We consider the possibility that the internal energy of the dark fluid is negative (while, of course, its total energy density is positive), so that it mimics anti-stiff matter. This happens, for example, when the BECs have an attractive self-interaction with a negative scattering length. In that case, the primordial universe is nonsingular and bouncing like in loop quantum cosmology. At t =0 , the scale factor is finite and the energy density is equal to zero. The universe first has a phantom behavior where the energy density increases with the scale factor, then a normal behavior where the energy density decreases with the scale factor. For the sake of generality, we consider a cosmological constant of arbitrary sign. When the cosmological constant is positive, the Universe asymptotically reaches a de Sitter regime where the scale factor increases exponentially rapidly with time. This can account for the accelerating expansion of the Universe that we observe at present. When the cosmological constant is negative (anti-de Sitter), the evolution of the Universe is cyclic. Therefore, depending on the sign of the internal energy of the dark fluid and on the sign of the cosmological constant, we obtain analytical solutions of the Friedmann equations describing singular and nonsingular expanding, bouncing, or cyclic universes.

  4. The screening Horndeski cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starobinsky, Alexei A.; Department of General Relativity and Gravitation, Institute of Physics,Kazan Federal University,Kremlevskaya street 18, 420008 Kazan; Sushkov, Sergey V.

    2016-06-06

    We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The modelmore » also admits bounces, as well as peculiar solutions describing “the emergence of time”. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.« less

  5. The screening Horndeski cosmologies

    NASA Astrophysics Data System (ADS)

    Starobinsky, Alexei A.; Sushkov, Sergey V.; Volkov, Mikhail S.

    2016-06-01

    We present a systematic analysis of homogeneous and isotropic cosmologies in a particular Horndeski model with Galileon shift symmetry, containing also a Λ-term and a matter. The model, sometimes called Fab Five, admits a rich spectrum of solutions. Some of them describe the standard late time cosmological dynamic dominated by the Λ-term and matter, while at the early times the universe expands with a constant Hubble rate determined by the value of the scalar kinetic coupling. For other solutions the Λ-term and matter are screened at all times but there are nevertheless the early and late accelerating phases. The model also admits bounces, as well as peculiar solutions describing ``the emergence of time''. Most of these solutions contain ghosts in the scalar and tensor sectors. However, a careful analysis reveals three different branches of ghost-free solutions, all showing a late time acceleration phase. We analyse the dynamical stability of these solutions and find that all of them are stable in the future, since all their perturbations stay bounded at late times. However, they all turn out to be unstable in the past, as their perturbations grow violently when one approaches the initial spacetime singularity. We therefore conclude that the model has no viable solutions describing the whole of the cosmological history, although it may describe the current acceleration phase. We also check that the flat space solution is ghost-free in the model, but it may acquire ghost in more general versions of the Horndeski theory.

  6. De Broglie-Bohm interpretation of a Hořava-Lifshitz quantum cosmology model

    NASA Astrophysics Data System (ADS)

    Oliveira-Neto, G.; Martins, L. G.; Monerat, G. A.; Corrêa Silva, E. V.

    2018-01-01

    In this paper, we consider the De Broglie-Bohm interpretation of a Hořava-Lifshitz quantum cosmology model in the presence of a radiation perfect fluid. We compute the Bohm’s trajectory for the scale factor and show that it never goes to zero. That result gives a strong indication that this model is free from singularities at the quantum level. We also compute the quantum potential. That quantity helps in understanding why the scale factor never vanishes.

  7. Flat space (higher spin) gravity with chemical potentials

    NASA Astrophysics Data System (ADS)

    Gary, Michael; Grumiller, Daniel; Riegler, Max; Rosseel, Jan

    2015-01-01

    We introduce flat space spin-3 gravity in the presence of chemical potentials and discuss some applications to flat space cosmology solutions, their entropy, free energy and flat space orbifold singularity resolution. Our results include flat space Einstein gravity with chemical potentials as special case. We discover novel types of phase transitions between flat space cosmologies with spin-3 hair and show that the branch that continuously connects to spin-2 gravity becomes thermodynamically unstable for sufficiently large temperature or spin-3 chemical potential.

  8. Big-bounce cosmology from quantum gravity: The case of a cyclical Bianchi I universe

    NASA Astrophysics Data System (ADS)

    Moriconi, Riccardo; Montani, Giovanni; Capozziello, Salvatore

    2016-07-01

    We analyze the classical and quantum dynamics of a Bianchi I model in the presence of a small negative cosmological constant characterizing its evolution in term of the dust-time dualism. We demonstrate that in a canonical metric approach, the cosmological singularity is removed in correspondence to a positive defined value of the dust energy density. Furthermore, the quantum big bounce is connected to the Universe's turning point via a well-defined semiclassical limit. Then we can reliably infer that the proposed scenario is compatible with a cyclical universe picture. We also show how, when the contribution of the dust energy density is sufficiently high, the proposed scenario can be extended to the Bianchi IX cosmology and therefore how it can be regarded as a paradigm for the generic cosmological model. Finally, we investigate the origin of the observed cutoff on the cosmological dynamics, demonstrating how the big-bounce evolution can be mimicked by the same semiclassical scenario, where the negative cosmological constant is replaced via a polymer discretization of the Universe's volume. A direct proportionality law between these two parameters is then established.

  9. Antigravity and the big crunch/big bang transition

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-08-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  10. Dynamical approach to the cosmological constant.

    PubMed

    Mukohyama, Shinji; Randall, Lisa

    2004-05-28

    We consider a dynamical approach to the cosmological constant. There is a scalar field with a potential whose minimum occurs at a generic, but negative, value for the vacuum energy, and it has a nonstandard kinetic term whose coefficient diverges at zero curvature as well as the standard kinetic term. Because of the divergent coefficient of the kinetic term, the lowest energy state is never achieved. Instead, the cosmological constant automatically stalls at or near zero. The merit of this model is that it is stable under radiative corrections and leads to stable dynamics, despite the singular kinetic term. The model is not complete, however, in that some reheating is required. Nonetheless, our approach can at the very least reduce fine-tuning by 60 orders of magnitude or provide a new mechanism for sampling possible cosmological constants and implementing the anthropic principle.

  11. Classically Stable Nonsingular Cosmological Bounces

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Steinhardt, Paul J.

    2016-09-01

    One of the fundamental questions of theoretical cosmology is whether the Universe can undergo a nonsingular bounce, i.e., smoothly transit from a period of contraction to a period of expansion through violation of the null energy condition (NEC) at energies well below the Planck scale and at finite values of the scale factor such that the entire evolution remains classical. A common claim has been that a nonsingular bounce either leads to ghost or gradient instabilities or a cosmological singularity. In this Letter, we consider a well-motivated class of theories based on the cubic Galileon action and present a procedure for explicitly constructing examples of a nonsingular cosmological bounce without encountering any pathologies and maintaining a subluminal sound speed for comoving curvature modes throughout the NEC violating phase. We also discuss the relation between our procedure and earlier work.

  12. Class of regular bouncing cosmologies

    NASA Astrophysics Data System (ADS)

    Vasilić, Milovan

    2017-06-01

    In this paper, I construct a class of everywhere regular geometric sigma models that possess bouncing solutions. Precisely, I show that every bouncing metric can be made a solution of such a model. My previous attempt to do so by employing one scalar field has failed due to the appearance of harmful singularities near the bounce. In this work, I use four scalar fields to construct a class of geometric sigma models which are free of singularities. The models within the class are parametrized by their background geometries. I prove that, whatever background is chosen, the dynamics of its small perturbations is classically stable on the whole time axis. Contrary to what one expects from the structure of the initial Lagrangian, the physics of background fluctuations is found to carry two tensor, two vector, and two scalar degrees of freedom. The graviton mass, which naturally appears in these models, is shown to be several orders of magnitude smaller than its experimental bound. I provide three simple examples to demonstrate how this is done in practice. In particular, I show that graviton mass can be made arbitrarily small.

  13. Compact singularity-free Kerr-Newman-de Sitter instantons

    NASA Astrophysics Data System (ADS)

    Chruściel, Piotr T.; Hörzinger, Michael

    2017-04-01

    Generalizing the results in Chruściel and Hörzinger [J. High Energy Phys. 16 (2016) 1, 10.1007/JHEP04(2016)012], we construct further families of compact Einstein-Maxwell instantons associated with the Kerr-Newman metrics with a positive cosmological constant.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svendsen, Harald G.

    In this paper we study a solution of heterotic string theory corresponding to a rotating Kerr-Taub-NUT spacetime. It has an exact CFT description as a heterotic coset model, and a Lagrangian formulation as a gauged WZNW model. It is a generalization of a recently discussed stringy Taub-NUT solution, and is interesting as another laboratory for studying the fate of closed timelike curves and cosmological singularities in string theory. We extend the computation of the exact metric and dilaton to this rotating case, and then discuss some properties of the metric, with particular emphasis on the curvature singularities.

  15. Nonsingular bouncing cosmology: Consistency of the effective description

    NASA Astrophysics Data System (ADS)

    Koehn, Michael; Lehners, Jean-Luc; Ovrut, Burt

    2016-05-01

    We explicitly confirm that spatially flat nonsingular bouncing cosmologies make sense as effective theories. The presence of a nonsingular bounce in a spatially flat universe implies a temporary violation of the null energy condition, which can be achieved through a phase of ghost condensation. We calculate the scale of strong coupling and demonstrate that the ghost-condensate bounce remains trustworthy throughout, and that all perturbation modes within the regime of validity of the effective description remain under control. For this purpose we require the perturbed action up to third order in perturbations, which we calculate in both flat and co-moving gauge—since these two gauges allow us to highlight different physical aspects. Our conclusion is that there exist healthy descriptions of nonsingular bouncing cosmologies providing a viable resolution of the big-bang singularities in cosmological models. Our results also suggest a variant of ekpyrotic cosmology, in which entropy perturbations are generated during the contracting phase, but are only converted into curvature perturbations after the bounce.

  16. On Rosen's theory of gravity and cosmology

    NASA Technical Reports Server (NTRS)

    Barnes, R. C.

    1980-01-01

    Formal similarities between general relativity and Rosen's bimetric theory of gravity were used to analyze various bimetric cosmologies. The following results were found: (1) physically plausible model universes which have a flat static background metric, have a Robertson-Walker fundamental metric, and which allow co-moving coordinates do not exist in bimetric cosmology. (2) it is difficult to use the Robertson-Walker metric for both the background metric (gamma mu nu) and the fundamental metric tensor of Riemannian geometry( g mu nu) and require that g mu nu and gamma mu nu have different time dependences. (3) A consistency relation for using co-moving coordinates in bimetric cosmology was derived. (4) Certain spatially flat bimetric cosmologies of Babala were tested for the presence of particle horizons. (5) An analytic solution for Rosen's k = +1 model was found. (6) Rosen's singularity free k = +1 model arises from what appears to be an arbitary choice for the time dependent part of gamma mu nu.

  17. Homogeneous anisotropic cosmological models with variable gravitational and cosmological ``Constants''

    NASA Astrophysics Data System (ADS)

    Singh, T.; Agrawal, Anil K.

    1993-06-01

    The Einstein field equations with perfect fluid source and variable Λ and G for Bianchi-type universes are studied under the assumption of a power-law time variation of the expansion factor, achieved via a suitable power-law assumption for the Hubble parameter suggested by M. S. Berman. All the models have a power-law variation of pressure and density and are singular at the epoch t=0. The variation of G( t) as 1 /t and Λ( t) as 1 /t 2 is consistent with these models.

  18. Massive gravity and the suppression of anisotropies and gravitational waves in a matter-dominated contracting universe

    NASA Astrophysics Data System (ADS)

    Lin, Chunshan; Quintin, Jerome; Brandenberger, Robert H.

    2018-01-01

    We consider a modified gravity model with a massive graviton, but which nevertheless only propagates two gravitational degrees of freedom and which is free of ghosts. We show that non-singular bouncing cosmological background solutions can be generated. In addition, the mass term for the graviton prevents anisotropies from blowing up in the contracting phase and also suppresses the spectrum of gravitational waves compared to that of the scalar cosmological perturbations. This addresses two of the main problems of the matter bounce scenario.

  19. Do massive compact objects without event horizon exist in infinite derivative gravity?

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexey S.; Mazumdar, Anupam

    2017-10-01

    Einstein's general theory of relativity is plagued by cosmological and black-hole type singularities Recently, it has been shown that infinite derivative, ghost free, gravity can yield nonsingular cosmological and mini-black hole solutions. In particular, the theory possesses a mass-gap determined by the scale of new physics. This paper provides a plausible argument, not a no-go theorem, based on the Area-law of gravitational entropy that within infinite derivative, ghost free, gravity nonsingular compact objects in the static limit need not have horizons.

  20. Pulsation of black holes

    NASA Astrophysics Data System (ADS)

    Gao, Changjun; Lu, Youjun; Shen, You-Gen; Faraoni, Valerio

    2018-01-01

    The Hawking-Penrose singularity theorem states that a singularity forms inside a black hole in general relativity. To remove this singularity one must resort to a more fundamental theory. Using a corrected dynamical equation arising in loop quantum cosmology and braneworld models, we study the gravitational collapse of a perfect fluid sphere with a rather general equation of state. In the frame of an observer comoving with this fluid, the sphere pulsates between a maximum and a minimum size, avoiding the singularity. The exterior geometry is also constructed. There are usually an outer and an inner apparent horizon, resembling the Reissner-Nordström situation. For a distant observer the horizon crossing occurs in an infinite time and the pulsations of the black hole quantum "beating heart" are completely unobservable. However, it may be observable if the black hole is not spherical symmetric and radiates gravitational wave due to the quadrupole moment, if any.

  1. Spherically Symmetric Gravitational Collapse of a Dust Cloud in Third-Order Lovelock Gravity

    NASA Astrophysics Data System (ADS)

    Zhou, Kang; Yang, Zhan-Ying; Zou, De-Cheng; Yue, Rui-Hong

    We investigate the spherically symmetric gravitational collapse of an incoherent dust cloud by considering a LTB-type spacetime in third-order Lovelock Gravity without cosmological constant, and give three families of LTB-like solutions which separately corresponding to hyperbolic, parabolic and elliptic. Notice that the contribution of high-order curvature corrections have a profound influence on the nature of the singularity, and the global structure of spacetime changes drastically from the analogous general relativistic case. Interestingly, the presence of high order Lovelock terms leads to the formation of massive, naked and timelike singularities in the 7D spacetime, which is disallowed in general relativity. Moveover, we point out that the naked singularities in the 7D case may be gravitational weak therefore may not be a serious threat to the cosmic censorship hypothesis, while the naked singularities in the D ≥ 8 inhomogeneous collapse violate the cosmic censorship hypothesis seriously.

  2. Gauging away a big bang

    NASA Astrophysics Data System (ADS)

    Krishnan, Chethan; Raju, Avinash

    2017-08-01

    We argue that in the tensionless phase of string theory where the stringy gauge symmetries are unbroken, (at least some) cosmological singularities can be understood as gauge artefacts. We present two conceptually related, but distinct, pieces of evidence: one relying on spacetime and the other on worldsheet.

  3. Static black hole solutions with a self-interacting conformally coupled scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dotti, Gustavo; Gleiser, Reinaldo J.; Martinez, Cristian

    2008-05-15

    We study static, spherically symmetric black hole solutions of the Einstein equations with a positive cosmological constant and a conformally coupled self-interacting scalar field. Exact solutions for this model found by Martinez, Troncoso, and Zanelli were subsequently shown to be unstable under linear gravitational perturbations, with modes that diverge arbitrarily fast. We find that the moduli space of static, spherically symmetric solutions that have a regular horizon--and satisfy the weak and dominant energy conditions outside the horizon--is a singular subset of a two-dimensional space parametrized by the horizon radius and the value of the scalar field at the horizon. Themore » singularity of this space of solutions provides an explanation for the instability of the Martinez, Troncoso, and Zanelli spacetimes and leads to the conclusion that, if we include stability as a criterion, there are no physically acceptable black hole solutions for this system that contain a cosmological horizon in the exterior of its event horizon.« less

  4. Time varying G and \\varLambda cosmology in f(R,T) gravity theory

    NASA Astrophysics Data System (ADS)

    Tiwari, R. K.; Beesham, A.; Singh, Rameshwar; Tiwari, L. K.

    2017-08-01

    We have studied the time dependence of the gravitational constant G and cosmological constant Λ by taking into account an anisotropic and homogeneous Bianchi type-I space-time in the framework of the modified f(R,T) theory of gravity proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). For a specific choice of f(R,T)=R+2f(T) where f(T)=-λ T, two solutions of the modified gravity field equations have been generated with the help of a variation law between the expansion anisotropy ({σ}/{θ}) and the scale factor (S), together with a general non-linear equation of state. The solution for m≠3 corresponds to singular model of the universe whereas the solution for m=3 represents a non-singular model. We infer that the models entail a constant value of the deceleration parameter. A careful analysis of all the physical parameters of the models has also been carried out.

  5. Solutions with throats in Hořava gravity with cosmological constant

    NASA Astrophysics Data System (ADS)

    Bellorín, Jorge; Restuccia, Alvaro; Sotomayor, Adrián

    2016-10-01

    By combining analytical and numerical methods, we find that the solutions of the complete Hořava theory with negative cosmological constant that satisfy the conditions of staticity, spherical symmetry and vanishing of the shift function are two kinds of geometry: (i) a solution with two sides joined by a throat and (ii) a single side with a naked singularity at the origin. We study the second-order effective action. We consider the case when the coupling constant of the (∂ln N)2 term, which is the unique deviation from general relativity (GR) in the effective action, is small. At one side, the solution with the throat acquires a kind of deformed anti-de Sitter (AdS) asymptotia and at the other side, there is an asymptotic essential singularity. The deformation of AdS essentially means that the lapse function N diverges asymptotically a bit faster than AdS. This can also be interpreted as an anisotropic Lifshitz scaling that the solutions acquire asymptotically.

  6. Polynomial f (R ) Palatini cosmology: Dynamical system approach

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander

    2018-05-01

    We investigate cosmological dynamics based on f (R ) gravity in the Palatini formulation. In this study, we use the dynamical system methods. We show that the evolution of the Friedmann equation reduces to the form of the piecewise smooth dynamical system. This system is reduced to a 2D dynamical system of the Newtonian type. We demonstrate how the trajectories can be sewn to guarantee C0 extendibility of the metric similarly as "Milne-like" Friedmann-Lemaître-Robertson-Walker spacetimes are C0-extendible. We point out that importance of the dynamical system of the Newtonian type with nonsmooth right-hand sides in the context of Palatini cosmology. In this framework, we can investigate singularities which appear in the past and future of the cosmic evolution. We consider cosmological systems in both Einstein and Jordan frames. We show that at each frame the topological structures of phase space are different.

  7. Global dynamics of asymptotically locally AdS spacetimes with negative mass

    NASA Astrophysics Data System (ADS)

    Dold, Dominic

    2018-05-01

    The Einstein vacuum equations in 5D with negative cosmological constant are studied in biaxial Bianchi IX symmetry. We show that if initial data of Eguchi–Hanson type, modelled after the 4D Riemannian Eguchi–Hanson space, have negative mass, the future maximal development does not contain horizons, i. e. the complement of the causal past of null infinity is empty. In particular, perturbations of Eguchi–Hanson–AdS spacetimes within the biaxial Bianchi IX symmetry class cannot form horizons, suggesting that such spacetimes are potential candidates for a naked singularity to form. The proof relies on an extension principle proven for this system and a priori estimates following from the monotonicity of the Hawking mass.

  8. Topology and incompleteness for 2+1-dimensional cosmological spacetimes

    NASA Astrophysics Data System (ADS)

    Fajman, David

    2017-06-01

    We study the long-time behavior of the Einstein flow coupled to matter on 2-dimensional surfaces. We consider massless matter models such as collisionless matter composed of massless particles, massless scalar fields and radiation fluids and show that the maximal globally hyperbolic development of homogeneous and isotropic initial data on the 2-sphere is geodesically incomplete in both time directions, i.e. the spacetime recollapses. This behavior also holds for open sets of initial data. In particular, we construct classes of recollapsing 2+1-dimensional spacetimes with spherical spatial topology which provide evidence for a closed universe recollapse conjecture for massless matter models in 2+1 dimensions. Furthermore, we construct solutions with toroidal and higher genus topology for the massless matter fields, which in both cases are future complete. The spacetimes with toroidal topology are 2+1-dimensional analogies of the Einstein-de Sitter model. In addition, we point out a general relation between the energy-momentum tensor and the Kretschmann scalar in 2+1 dimensions and use it to infer strong cosmic censorship for all these models. In view of this relation, we also recall corresponding models containing massive particles, constructed in a previous work and determine the nature of their initial singularities. We conclude that the global structure of non-vacuum cosmological spacetimes in 2+1 dimensions is determined by the mass of particles and—in the homogeneous and isotropic setting studied here—verifies strong cosmic censorship.

  9. A multi-element cosmological model with a complex space-time topology

    NASA Astrophysics Data System (ADS)

    Kardashev, N. S.; Lipatova, L. N.; Novikov, I. D.; Shatskiy, A. A.

    2015-02-01

    Wormhole models with a complex topology having one entrance and two exits into the same space-time of another universe are considered, as well as models with two entrances from the same space-time and one exit to another universe. These models are used to build a model of a multi-sheeted universe (a multi-element model of the "Multiverse") with a complex topology. Spherical symmetry is assumed in all the models. A Reissner-Norström black-hole model having no singularity beyond the horizon is constructed. The strength of the central singularity of the black hole is analyzed.

  10. Cosmological BCS mechanism and the big bang singularity

    NASA Astrophysics Data System (ADS)

    Alexander, Stephon; Biswas, Tirthabir

    2009-07-01

    We provide a novel mechanism that resolves the big bang singularity present in Friedman-Lemaitre-Robertson-Walker space-times without the need for ghost fields. Building on the fact that a four-fermion interaction arises in general relativity when fermions are covariantly coupled, we show that at early times the decrease in scale factor enhances the correlation between pairs of fermions. This enhancement leads to a BCS-like condensation of the fermions and opens a gap dynamically driving the Hubble parameter H to zero and results in a nonsingular bounce, at least in some special cases.

  11. Generic absence of strong singularities in loop quantum Bianchi-IX spacetimes

    NASA Astrophysics Data System (ADS)

    Saini, Sahil; Singh, Parampreet

    2018-03-01

    We study the generic resolution of strong singularities in loop quantized effective Bianchi-IX spacetime in two different quantizations—the connection operator based ‘A’ quantization and the extrinsic curvature based ‘K’ quantization. We show that in the effective spacetime description with arbitrary matter content, it is necessary to include inverse triad corrections to resolve all the strong singularities in the ‘A’ quantization. Whereas in the ‘K’ quantization these results can be obtained without including inverse triad corrections. Under these conditions, the energy density, expansion and shear scalars for both of the quantization prescriptions are bounded. Notably, both the quantizations can result in potentially curvature divergent events if matter content allows divergences in the partial derivatives of the energy density with respect to the triad variables at a finite energy density. Such events are found to be weak curvature singularities beyond which geodesics can be extended in the effective spacetime. Our results show that all potential strong curvature singularities of the classical theory are forbidden in Bianchi-IX spacetime in loop quantum cosmology and geodesic evolution never breaks down for such events.

  12. Phantom behavior bounce with tachyon and non-minimal derivative coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banijamali, A.; Fazlpour, B., E-mail: a.banijamali@nit.ac.ir, E-mail: b.fazlpour@umz.ac.ir

    2012-01-01

    The bouncing cosmology provides a successful solution of the cosmological singularity problem. In this paper, we study the bouncing behavior of a single scalar field model with tachyon field non-minimally coupled to itself, its derivative and to the curvature. By utilizing the numerical calculations we will show that the bouncing solution can appear in the universe dominated by such a quintom matter with equation of state crossing the phantom divide line. We also investigate the classical stability of our model using the phase velocity of the homogeneous perturbations of the tachyon scalar field.

  13. Born again universe

    NASA Astrophysics Data System (ADS)

    Graham, Peter W.; Kaplan, David E.; Rajendran, Surjeet

    2018-02-01

    We present a class of nonsingular, bouncing cosmologies that evade singularity theorems through the use of vorticity in compact extra dimensions. The vorticity combats the focusing of geodesics during the contracting phase. The construction requires fluids that violate the null energy condition (NEC) in the compact dimensions, where they can be provided by known stable NEC violating sources such as Casimir energy. The four dimensional effective theory contains an NEC violating fluid of Kaluza-Klein excitations of the higher dimensional metric. These spacetime metrics could potentially allow dynamical relaxation to solve the cosmological constant problem. These ideas can also be used to support traversable Lorentzian wormholes.

  14. Pre-Big-Bang bubbles from the gravitational instability of generic string vacua

    NASA Astrophysics Data System (ADS)

    Buonanno, A.; Damour, T.; Veneziano, G.

    1999-03-01

    We formulate the basic postulate of pre-Big-Bang cosmology as one of ``asymptotic past triviality", by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Such a past-trivial ``string vacuum'' is made of an arbitrary ensemble of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, leading to the possible formation of many black holes hiding singular space-like hypersurfaces. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual Big-Bang t=0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the Big-Bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-Big-Bang scenario.

  15. Anisotropic, nonsingular early universe model leading to a realistic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dechant, Pierre-Philippe; Lasenby, Anthony N.; Hobson, Michael P.

    2009-02-15

    We present a novel cosmological model in which scalar field matter in a biaxial Bianchi IX geometry leads to a nonsingular 'pancaking' solution: the hypersurface volume goes to zero instantaneously at the 'big bang', but all physical quantities, such as curvature invariants and the matter energy density remain finite, and continue smoothly through the big bang. We demonstrate that there exist geodesics extending through the big bang, but that there are also incomplete geodesics that spiral infinitely around a topologically closed spatial dimension at the big bang, rendering it, at worst, a quasiregular singularity. The model is thus reminiscent ofmore » the Taub-NUT vacuum solution in that it has biaxial Bianchi IX geometry and its evolution exhibits a dimensionality reduction at a quasiregular singularity; the two models are, however, rather different, as we will show in a future work. Here we concentrate on the cosmological implications of our model and show how the scalar field drives both isotropization and inflation, thus raising the question of whether structure on the largest scales was laid down at a time when the universe was still oblate (as also suggested by [T. S. Pereira, C. Pitrou, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 9 (2007) 6.][C. Pitrou, T. S. Pereira, and J.-P. Uzan, J. Cosmol. Astropart. Phys. 4 (2008) 4.][A. Guemruekcueoglu, C. Contaldi, and M. Peloso, J. Cosmol. Astropart. Phys. 11 (2007) 005.]). We also discuss the stability of our model to small perturbations around biaxiality and draw an analogy with cosmological perturbations. We conclude by presenting a separate, bouncing solution, which generalizes the known bouncing solution in closed FRW universes.« less

  16. Is BTZ a separate superselection sector of CTMG?

    NASA Astrophysics Data System (ADS)

    Deser, S.; Franklin, J.

    2010-10-01

    We exhibit exact solutions of (positive) matter coupled to original “wrong G-sign” cosmological TMG. They all evolve to conical singularity, rather than to black hole - here negative mass - BTZ. This provides evidence that the latter constitute a separate “superselection” sector, one that unlike in GR, is not reachable by physical sources.

  17. Hawking, Stephen W (1942-)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Cosmologist and theoretical astrophysicist, born in Oxford, England, where he studied physics at University College. Moved to Cambridge to take up research in general relativity and cosmology, became Lucasian professor (an appointment earlier held by ISAAC NEWTON, with whom Hawking has been compared). Hawking worked to develop a valid mathematical treatment of the `singularities' in the theor...

  18. A causal viscous cosmology without singularities

    NASA Astrophysics Data System (ADS)

    Laciana, Carlos E.

    2017-05-01

    An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: (a) energy density without singularities along time, (b) scale factor increasing with time, (c) universe accelerated at present time, (d) state equation for dark energy with " w" bounded and close to -1. It is found that those conditions are satisfied for the following two cases. (i) When the transport coefficient (τ _{Π}), associated to the causal correction, is negative, with the additional restriction ζ | τ _{Π}| >2/3, where ζ is the relativistic bulk viscosity coefficient. The state equation is in the "phantom" energy sector. (ii) For τ _{Π} positive, in the "k-essence" sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in relation to (i), because in (ii) the entropy is always increasing, while this does no happen in (i).

  19. Black holes in multi-fractional and Lorentz-violating models

    NASA Astrophysics Data System (ADS)

    Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele

    2017-05-01

    We study static and radially symmetric black holes in the multi-fractional theories of gravity with q-derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length ℓ _*. In the q-derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to ℓ _*. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q-derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.

  20. Macroscopic theory of dark sector

    NASA Astrophysics Data System (ADS)

    Meierovich, Boris

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant [1]. Space-like and time-like massive vector fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves [2]. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe [3]. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution corresponds to the particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to analyse the main properties of the dark sector analytically and avoid unnecessary model assumptions. It opens a possibility to trace how the additional attraction of the space-like dark matter, dominating in the galaxy scale, transforms into the elastic repulsion of the time-like dark matter, dominating in the scale of the Universe. 1. B. E. Meierovich. "Vector fields in multidimensional cosmology". Phys. Rev. D 84, 064037 (2011). 2. B. E. Meierovich. "Galaxy rotation curves driven by massive vector fields: Key to the theory of the dark sector". Phys. Rev. D 87, 103510, (2013). 3. B. E. Meierovich. "Towards the theory of the evolution of the Universe". Phys. Rev. D 85, 123544 (2012).

  1. Stringy Toda cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaloper, N.

    We discuss a particular stringy modular cosmology with two axion fields in seven space-time dimensions, decomposable as a time and two flat three-spaces. The effective equations of motion for the problem are those of the SU(3) Toda molecule and, hence, are integrable. We write down the solutions, and show that all of them are singular. They can be thought of as a generalization of the pre-big-bang cosmology with excited internal degrees of freedom, and still suffering from the graceful exit problem. Some of the solutions, however, show a rather unexpected property: some of their spatial sections shrink to a pointmore » in spite of winding modes wrapped around them. We also comment how more general, anisotropic solutions, with fewer Killing symmetries, can be obtained with the help of STU dualities. {copyright} {ital 1997} {ital The American Physical Society}« less

  2. Singularities and the geometry of spacetime

    NASA Astrophysics Data System (ADS)

    Hawking, Stephen

    2014-11-01

    The aim of this essay is to investigate certain aspects of the geometry of the spacetime manifold in the General Theory of Relativity with particular reference to the occurrence of singularities in cosmological solutions and their relation with other global properties. Section 2 gives a brief outline of Riemannian geometry. In Section 3, the General Theory of Relativity is presented in the form of two postulates and two requirements which are common to it and to the Special Theory of Relativity, and a third requirement, the Einstein field equations, which distinguish it from the Special Theory. There does not seem to be any alternative set of field equations which would not have some undeseriable features. Some exact solutions are described. In Section 4, the physical significance of curvature is investigated using the deviation equation for timelike and null curves. The Riemann tensor is decomposed into the Ricci tensor which represents the gravitational effect at a point of matter at that point and the Welyl tensor which represents the effect at a point of gravitational radiation and matter at other points. The two tensors are related by the Bianchi identities which are presented in a form analogous to the Maxwell equations. Some lemmas are given for the occurrence of conjugate points on timelike and null geodesics and their relation with the variation of timelike and null curves is established. Section 5 is concerned with properties of causal relations between points of spacetime. It is shown that these could be used to determine physically the manifold structure of spacetime if the strong causality assumption held. The concepts of a null horizon and a partial Cauchy surface are introduced and are used to prove a number of lemmas relating to the existence of a timelike curve of maximum length between two sets. In Section 6, the definition of a singularity of spacetime is given in terms of geodesic incompleteness. The various energy assumptions needed to prove the occurrence of singularities are discussed and then a number of theorems are presented which prove the occurrence of singularities in most cosmological solutions. A procedure is given which could be used to describe and classify the singularites and their expected nature is discussed. Sections 2 and 3 are reviews of standard work. In Section 4, the deviation equation is standard but the matrix method used to analyse it is the author's own as is the decomposition given of the Bianchi identities (this was also obtained independently by Trümper). Variation of curves and conjugate points are standard in a positive-definite metric but this seems to be the first full account for timelike and null curves in a Lorentz metric. Except where otherwise indicated in the text, Sections 5 and 6 are the work of the author who, however, apologises if through ignorance or inadvertance he has failed to make acknowledgements where due. Some of this work has been described in [Hawking S.W. 1965b. Occurrence of singularities in open universes. Phys. Rev. Lett. 15: 689-690; Hawking S.W. and G.F.R. Ellis. 1965c. Singularities in homogeneous world models. Phys. Rev. Lett. 17: 246-247; Hawking S.W. 1966a. Singularities in the universe. Phys. Rev. Lett. 17: 444-445; Hawking S.W. 1966c. The occurrence of singularities in cosmology. Proc. Roy. Soc. Lond. A 294: 511-521]. Undoubtedly, the most important results are the theorems in Section 6 on the occurrence of singularities. These seem to imply either that the General Theory of Relativity breaks down or that there could be particles whose histories did not exist before (or after) a certain time. The author's own opinion is that the theory probably does break down, but only when quantum gravitational effects become important. This would not be expected to happen until the radius of curvature of spacetime became about 10-14 cm.

  3. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virbhadra, K. S.; Keeton, C. R.; Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854

    We model the massive dark object at the center of the Galaxy as a Schwarzschild black hole as well as Janis-Newman-Winicour naked singularities, characterized by the mass and scalar charge parameters, and study gravitational lensing (particularly time delay, magnification centroid, and total magnification) by them. We find that the lensing features are qualitatively similar (though quantitatively different) for Schwarzschild black holes, weakly naked, and marginally strongly naked singularities. However, the lensing characteristics of strongly naked singularities are qualitatively very different from those due to Schwarzschild black holes. The images produced by Schwarzschild black hole lenses and weakly naked and marginallymore » strongly naked singularity lenses always have positive time delays. On the other hand, strongly naked singularity lenses can give rise to images with positive, zero, or negative time delays. In particular, for a large angular source position the direct image (the outermost image on the same side as the source) due to strongly naked singularity lensing always has a negative time delay. We also found that the scalar field decreases the time delay and increases the total magnification of images; this result could have important implications for cosmology. As the Janis-Newman-Winicour metric also describes the exterior gravitational field of a scalar star, naked singularities as well as scalar star lenses, if these exist in nature, will serve as more efficient cosmic telescopes than regular gravitational lenses.« less

  4. Building non-commutative spacetimes at the Planck length for Friedmann flat cosmologies

    NASA Astrophysics Data System (ADS)

    Tomassini, Luca; Viaggiu, Stefano

    2014-09-01

    We propose physically motivated spacetime uncertainty relations (STUR) for flat Friedmann-Lemaître cosmologies. We show that the physical features of these STUR crucially depend on whether a particle horizon is present or not. In particular, when this is the case we deduce the existence of a maximal value for the Hubble rate (or equivalently for the matter density), thus providing an indication that quantum effects may rule out a pointlike big bang singularity. Finally, we construct a concrete realization of the corresponding quantum Friedmann spacetime in terms of operators on a Hilbert space. In loving memory of Francesco Saverio de Blasi, mathematician and friend.

  5. Cosmological perturbations in teleparallel Loop Quantum Cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haro, Jaime, E-mail: jaime.haro@upc.edu

    2013-11-01

    Cosmological perturbations in Loop Quantum Cosmology (LQC) are usually studied incorporating either holonomy corrections, where the Ashtekar connection is replaced by a suitable sinus function in order to have a well-defined quantum analogue, or inverse-volume corrections coming from the eigenvalues of the inverse-volume operator. In this paper we will develop an alternative approach to calculate cosmological perturbations in LQC based on the fact that, holonomy corrected LQC in the flat Friedmann-Lemaître-Robertson-Walker (FLRW) geometry could be also obtained as a particular case of teleparallel F(T) gravity (teleparallel LQC). The main idea of our approach is to mix the simple bounce providedmore » by holonomy corrections in LQC with the non-singular perturbation equations given by F(T) gravity, in order to obtain a matter bounce scenario as a viable alternative to slow-roll inflation. In our study, we have obtained an scale invariant power spectrum of cosmological perturbations. However, the ratio of tensor to scalar perturbations is of order 1, which does not agree with the current observations. For this reason, we suggest a model where a transition from the matter domination to a quasi de Sitter phase is produced in order to enhance the scalar power spectrum.« less

  6. Problem of time in slightly inhomogeneous cosmology

    NASA Astrophysics Data System (ADS)

    Anderson, Edward

    2016-07-01

    The problem of time (PoT) is a multi-faceted conceptual incompatibility between various areas of Theoretical Physics. While usually stated as between GR and QM, in fact 8/9ths of it is already present at the classical level. Thus we adopt a ‘top-down’ classical and then quantum approach. I consider a local resolution to the PoT that is Machian, which was previously realized for relational triangle and minisuperspace models. This resolution has three levels: classical, semiclassical and combined semiclassical-histories-records. This article’s specific model is a slightly inhomogeneous cosmology considered for now at the classical level. This is motivated by how the inhomogeneous fluctuations that underlie structure formation—galaxies and CMB hotspots—might have been seeded by quantum cosmological fluctuations, as magnified by some inflationary mechanism. In particular, I consider the perturbations about {{{S}}}3 case of this involving up to second order, which has a number of parallels with the Halliwell-Hawking model but has a number of conceptual differences and useful upgrades. The article’s main features are that the elimination part of the model’s thin sandwich is straightforward, but the modewise split of the constraints fail to be first-class constraints. Thus the elimination part only arises as an intermediate geometry between superspace and Riem. The reduced geometries have surprising singularities influenced by the matter content of the Universe, though the N-body problem anticipates these with its collinear singularities. I also give a ‘basis set’ of Kuchař beables for this model arena.

  7. Homoclinic chaos in axisymmetric Bianchi-IX cosmological models with an ad hoc quantum potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Correa, G. C.; Stuchi, T. J.; Joras, S. E.

    2010-04-15

    In this work we study the dynamics of the axisymmetric Bianchi-IX cosmological model with a term of quantum potential added. As it is well known, this class of Bianchi-IX models is homogeneous and anisotropic with two scale factors, A(t) and B(t), derived from the solution of Einstein's equation for general relativity. The model we use in this work has a cosmological constant and the matter content is dust. To this model we add a quantum-inspired potential that is intended to represent short-range effects due to the general relativistic behavior of matter in small scales and play the role of amore » repulsive force near the singularity. We find that this potential restricts the dynamics of the model to positive values of A(t) and B(t) and alters some qualitative and quantitative characteristics of the dynamics studied previously by several authors. We make a complete analysis of the phase space of the model finding critical points, periodic orbits, stable/unstable manifolds using numerical techniques such as Poincare section, numerical continuation of orbits, and numerical globalization of invariant manifolds. We compare the classical and the quantum models. Our main result is the existence of homoclinic crossings of the stable and unstable manifolds in the physically meaningful region of the phase space [where both A(t) and B(t) are positive], indicating chaotic escape to inflation and bouncing near the singularity.« less

  8. Laser-directed hierarchical assembly of liquid crystal defects and control of optical phase singularities

    PubMed Central

    Ackerman, Paul J.; Qi, Zhiyuan; Lin, Yiheng; Twombly, Christopher W.; Laviada, Mauricio J.; Lansac, Yves; Smalyukh, Ivan I.

    2012-01-01

    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable “optical drawing” of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators. PMID:22679553

  9. Laser-Directed Hierarchical Assembly of Liquid Crystal Defects and Control of Optical Phase Singularities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, P. J.; Qi, Z. Y.; Lin, Y. H.

    2012-06-07

    Topological defect lines are ubiquitous and important in a wide variety of fascinating phenomena and theories in many fields ranging from materials science to early-universe cosmology, and to engineering of laser beams. However, they are typically hard to control in a reliable manner. Here we describe facile erasable 'optical drawing' of self-assembled defect clusters in liquid crystals. These quadrupolar defect clusters, stabilized by the medium's chirality and the tendency to form twisted configurations, are shaped into arbitrary two-dimensional patterns, including reconfigurable phase gratings capable of generating and controlling optical phase singularities in laser beams. Our findings bridge the studies ofmore » defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, diffraction gratings, as well as in both optically- and electrically-addressed pixel-free spatial light modulators.« less

  10. Spherically symmetric vacuum solutions arising from trace dynamics modifications to gravitation

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.; Ramazanoğlu, Fethi M.

    2015-12-01

    We derive the equations governing static, spherically symmetric vacuum solutions to the Einstein equations, as modified by the frame-dependent effective action (derived from trace dynamics) that gives an alternative explanation of the origin of "dark energy". We give analytic and numerical results for the solutions of these equations, first in polar coordinates, and then in isotropic coordinates. General features of the static case are that: (i) there is no horizon, since g00 is nonvanishing for finite values of the polar radius, and only vanishes (in isotropic coordinates) at the internal singularity, (ii) the Ricci scalar R vanishes identically, and (iii) there is a physical singularity at cosmological distances. The large distance singularity may be an artifact of the static restriction, since we find that the behavior at large distances is altered in a time-dependent solution using the McVittie Ansatz.

  11. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    NASA Astrophysics Data System (ADS)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  12. Aquinas and Contemporary Cosmology: Creation and Beginnings

    NASA Astrophysics Data System (ADS)

    Carroll, William E.

    Discussions in the Middle Ages about creation and the temporal beginning of the world involved sophisticated analyses in theology, metaphysics, and natural philosophy. Mediaeval insights on this subject, especially Thomas Aquinas' defense of the intelligibility of an eternal, created universe, can help to clarify reflections about the philosophical and theological implications of contemporary cosmological theories: from the "singularity" of the Big Bang, to "quantum tunneling from nothing," to multiverse scenarios. Thomas' insights help us to see the value of Georges Lemaître's insistence that his cosmological reflections must be kept separate from an analysis of creation. This essay will look at different senses of "beginning" and examine the claim that creation, in its fundamental meaning, tells us nothing about whether there is a temporal beginning to the universe. Multiverse models, like that recently proposed by Stephen Hawking and Leonard Mlodinow, may challenge certain views of a Grand Designer, but not of a Creator.

  13. Generalized Galileons: instabilities of bouncing and Genesis cosmologies and modified Genesis

    NASA Astrophysics Data System (ADS)

    Libanov, M.; Mironov, S.; Rubakov, V.

    2016-08-01

    We study spatially flat bouncing cosmologies and models with the early-time Genesis epoch in a popular class of generalized Galileon theories. We ask whether there exist solutions of these types which are free of gradient and ghost instabilities. We find that irrespectively of the forms of the Lagrangian functions, the bouncing models either are plagued with these instabilities or have singularities. The same result holds for the original Genesis model and its variants in which the scale factor tends to a constant as t → -∞. The result remains valid in theories with additional matter that obeys the Null Energy Condition and interacts with the Galileon only gravitationally. We propose a modified Genesis model which evades our no-go argument and give an explicit example of healthy cosmology that connects the modified Genesis epoch with kination (the epoch still driven by the Galileon field, which is a conventional massless scalar field at that stage).

  14. Primordial magnetic fields from a non-singular bouncing cosmology

    NASA Astrophysics Data System (ADS)

    Membiela, Federico Agustín

    2014-08-01

    Although inflation is a natural candidate to generate the lengths of coherence of magnetic fields needed to explain current observations, it needs to break conformal invariance of electromagnetism to obtain significant magnetic amplitudes. Of the simplest realizations are the kinetically-coupled theories f2(ϕ)FμνF (or IFF theories). However, these are known to suffer from electric fields backreaction or the strong coupling problem. In this work we shall confirm that such class of theories are problematic to support magnetogenesis during inflationary cosmology. On the contrary, we show that a bouncing cosmology with a contracting phase dominated by an equation of state with p>-ρ/3 can support magnetogenesis, evading the backreaction/strong-coupling problem. Finally, we study safe magnetogenesis in a particular bouncing model with an ekpyrotic-like contracting phase. In this case we found that f2(ϕ)F2-instabilities might arise during the final kinetic-driven expanding phase for steep ekpyrotic potentials.

  15. Toroidal configurations of perfect fluid in the Reissner-Nordström-(anti-)de Sitter spacetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucáková, Hana; Slaný, Petr; Stuchlík, Zdenĕk, E-mail: hana.kucakova@centrum.cz, E-mail: petr.slany@fpf.slu.cz, E-mail: zdenek.stuchlik@fpf.slu.cz

    Influence of cosmological constant on toroidal fluid configurations around charged spherically symmetric black holes and naked singularities is demostrated by study of perfect-fluid tori with uniform distribution of specific angular momentum orbiting in the Reissner-Nordström-(anti-)de Sitter spacetimes. Toroidal configurations are allowed only in the spacetimes admitting existence of stable circular geodesics. Configurations with marginally closed equipotential (equipressure) surfaces crossing itself in a cusp allow accretion (through the inner cusp) and/or excretion (through the outer cusp) of matter from the toroidal configuration. Detailed classification of the Reissner-Nordström-(anti-)de Sitter spacetimes according to properties of the marginally stable tori is given. It ismore » demonstrated that in the Reissner-Nordström-de Sitter naked-singularity spacetimes an interesting phenomenon of doubled tori can exist enabling exchange of matter between two tori in both inward and outward directions. In naked-singularity spacetimes the accretion onto the central singularity is impossible due to existence of a potential barrier.« less

  16. Metric dimensional reduction at singularities with implications to Quantum Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoica, Ovidiu Cristinel, E-mail: holotronix@gmail.com

    2014-08-15

    A series of old and recent theoretical observations suggests that the quantization of gravity would be feasible, and some problems of Quantum Field Theory would go away if, somehow, the spacetime would undergo a dimensional reduction at high energy scales. But an identification of the deep mechanism causing this dimensional reduction would still be desirable. The main contribution of this article is to show that dimensional reduction effects are due to General Relativity at singularities, and do not need to be postulated ad-hoc. Recent advances in understanding the geometry of singularities do not require modification of General Relativity, being justmore » non-singular extensions of its mathematics to the limit cases. They turn out to work fine for some known types of cosmological singularities (black holes and FLRW Big-Bang), allowing a choice of the fundamental geometric invariants and physical quantities which remain regular. The resulting equations are equivalent to the standard ones outside the singularities. One consequence of this mathematical approach to the singularities in General Relativity is a special, (geo)metric type of dimensional reduction: at singularities, the metric tensor becomes degenerate in certain spacetime directions, and some properties of the fields become independent of those directions. Effectively, it is like one or more dimensions of spacetime just vanish at singularities. This suggests that it is worth exploring the possibility that the geometry of singularities leads naturally to the spontaneous dimensional reduction needed by Quantum Gravity. - Highlights: • The singularities we introduce are described by finite geometric/physical objects. • Our singularities are accompanied by dimensional reduction effects. • They affect the metric, the measure, the topology, the gravitational DOF (Weyl = 0). • Effects proposed in other approaches to Quantum Gravity are obtained naturally. • The geometric dimensional reduction obtained opens new ways for Quantum Gravity.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Aindriú; Mazumdar, Anupam; Koshelev, Alexey S., E-mail: a.conroy@lancaster.ac.uk, E-mail: alexey@ubi.pt, E-mail: a.mazumdar@lancaster.ac.uk

    Einstein's General theory of relativity permits spacetime singularities, where null geodesic congruences focus in the presence of matter, which satisfies an appropriate energy condition. In this paper, we provide a minimal defocusing condition for null congruences without assuming any ansatz -dependent background solution. The two important criteria are: (1) an additional scalar degree of freedom, besides the massless graviton must be introduced into the spacetime; and (2) an infinite derivative theory of gravity is required in order to avoid tachyons or ghosts in the graviton propagator. In this regard, our analysis strengthens earlier arguments for constructing non-singular bouncing cosmologies withinmore » an infinite derivative theory of gravity, without assuming any ansatz to solve the full equations of motion.« less

  18. Inflationary cosmology with Chaplygin gas in Palatini formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borowiec, Andrzej; Wojnar, Aneta; Stachowski, Aleksander

    2016-01-01

    We present a simple generalisation of the ΛCDM model which on the one hand reaches very good agreement with the present day experimental data and provides an internal inflationary mechanism on the other hand. It is based on Palatini modified gravity with quadratic Starobinsky term and generalized Chaplygin gas as a matter source providing, besides a current accelerated expansion, the epoch of endogenous inflation driven by type III freeze singularity. It follows from our statistical analysis that astronomical data favors negative value of the parameter coupling quadratic term into Einstein-Hilbert Lagrangian and as a consequence the bounce instead of initialmore » Big-Bang singularity is preferred.« less

  19. Inflation and late-time acceleration from a double-well potential with cosmological constant

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Elizalde, Emilio

    2016-06-01

    A model of a universe without big bang singularity is presented, which displays an early inflationary period ending just before a phase transition to a kination epoch. The model produces enough heavy particles so as to reheat the universe at temperatures in the MeV regime. After the reheating, it smoothly matches the standard Λ CDM scenario.

  20. Black holes in multi-fractional and Lorentz-violating models.

    PubMed

    Calcagni, Gianluca; Rodríguez Fernández, David; Ronco, Michele

    2017-01-01

    We study static and radially symmetric black holes in the multi-fractional theories of gravity with q -derivatives and with weighted derivatives, frameworks where the spacetime dimension varies with the probed scale and geometry is characterized by at least one fundamental length [Formula: see text]. In the q -derivatives scenario, one finds a tiny shift of the event horizon. Schwarzschild black holes can present an additional ring singularity, not present in general relativity, whose radius is proportional to [Formula: see text]. In the multi-fractional theory with weighted derivatives, there is no such deformation, but non-trivial geometric features generate a cosmological-constant term, leading to a de Sitter-Schwarzschild black hole. For both scenarios, we compute the Hawking temperature and comment on the resulting black-hole thermodynamics. In the case with q -derivatives, black holes can be hotter than usual and possess an additional ring singularity, while in the case with weighted derivatives they have a de Sitter hair of purely geometric origin, which may lead to a solution of the cosmological constant problem similar to that in unimodular gravity. Finally, we compare our findings with other Lorentz-violating models.

  1. The cosmological constant as an eigenvalue of a Sturm-Liouville problem

    NASA Astrophysics Data System (ADS)

    Astashenok, Artyom V.; Elizalde, Emilio; Yurov, Artyom V.

    2014-01-01

    It is observed that one of Einstein-Friedmann's equations has formally the aspect of a Sturm-Liouville problem, and that the cosmological constant, Λ, plays thereby the role of spectral parameter (what hints to its connection with the Casimir effect). The subsequent formulation of appropriate boundary conditions leads to a set of admissible values for Λ, considered as eigenvalues of the corresponding linear operator. Simplest boundary conditions are assumed, namely that the eigenfunctions belong to L 2 space, with the result that, when all energy conditions are satisfied, they yield a discrete spectrum for Λ>0 and a continuous one for Λ<0. A very interesting situation is seen to occur when the discrete spectrum contains only one point: then, there is the possibility to obtain appropriate cosmological conditions without invoking the anthropic principle. This possibility is shown to be realized in cyclic cosmological models, provided the potential of the matter field is similar to the potential of the scalar field. The dynamics of the universe in this case contains a sudden future singularity.

  2. Magnetogenesis in matter—Ekpyrotic bouncing cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koley, Ratna; Samtani, Sidhartha, E-mail: ratna.physics@presiuniv.ac.in, E-mail: samtanisidhartha@gmail.com

    In the recent past there have been many attempts to associate the generation of primordial magnetic seed fields with the inflationary era, but with limited success. We thus take a different approach by using a model for nonsingular bouncing cosmology. A coupling of the electromagnetic Lagrangian F {sub μν} F {sup μν} with a non background scalar field has been considered for the breaking of conformal invariance. We have shown that non singular bouncing cosmology supports magnetogenesis evading the long standing back reaction and strong coupling problems which have plagued inflationary magnetogenesis. In this model, we have achieved a scalemore » invariant power spectrum for the parameter range compatible with observed CMB anisotropies. The desired strength of the magnetic field has also been obtained that goes in accordance with present observations. It is also important to note that no BKL instability arises within this parameter range. The energy scales for different stages of evolution of the bouncing model are so chosen that they solve certain problems of standard Big Bang cosmology as well.« less

  3. A spatially homogeneous and isotropic Einstein-Dirac cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2011-04-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  4. Watchers of the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriga, Jaume; Vilenkin, Alexander, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu

    2013-05-01

    An unresolved question in inflationary cosmology is the assignment of probabilities to different types of events that can occur in the eternally inflating multiverse. We explore the possibility that the resolution of this ''measure problem'' may rely on non-standard dynamics in regions of high curvature. In particular, ''big crunch'' singularities at the future boundary of bubbles with negative vacuum energy density may lead to bounces, where contraction is replaced by inflationary expansion driven by different vacua in the landscape. Similarly, singularities inside of black holes might be gateways to other inflating vacua. This would drastically affect the global structure ofmore » the inflating multiverse. We consider a measure based on a probe geodesic which undergoes an infinite number of passages through crunches. This can be thought of as the world-line of an eternal ''watcher{sup ,} collecting data in an orderly fashion. We compare this to previous approaches to the measure problem. The watcher's measure is independent of initial conditions and does not suffer from ambiguities associated with the choice of a cut-off surface. Another potential benefit from passing through crunches is that the observations collected by the watcher may easily depart from ergodicity, in very generic landscapes. This may significantly alleviate the problem of Boltzmann Brain dominance.« less

  5. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academymore » of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the global in time existence and uniqueness of a regular solution to the Einstein-Maxwell-Boltzmann system with the cosmological constant. We define and we use the weighted Sobolev separable spaces for the Boltzmann equation; some special spaces for the Einstein equations, then we clearly display all the proofs leading to the global existence theorems.« less

  6. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    NASA Astrophysics Data System (ADS)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the global in time existence and uniqueness of a regular solution to the Einstein-Maxwell-Boltzmann system with the cosmological constant. We define and we use the weighted Sobolev separable spaces for the Boltzmann equation; some special spaces for the Einstein equations, then we clearly display all the proofs leading to the global existence theorems.

  7. Singularities in the classical Rayleigh-Taylor flow - Formation and subsequent motion

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1993-01-01

    The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.

  8. Singularities in the classical Rayleigh-Taylor flow: Formation and subsequent motion

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1992-01-01

    The creation and subsequent motion of singularities of solution to classical Rayleigh-Taylor flow (two dimensional inviscid, incompressible fluid over a vacuum) are discussed. For a specific set of initial conditions, we give analytical evidence to suggest the instantaneous formation of one or more singularities at specific points in the unphysical plane, whose locations depend sensitively on small changes in initial conditions in the physical domain. One-half power singularities are created in accordance with an earlier conjecture; however, depending on initial conditions, other forms of singularities are also possible. For a specific initial condition, we follow a numerical procedure in the unphysical plane to compute the motion of a one-half singularity. This computation confirms our previous conjecture that the approach of a one-half singularity towards the physical domain corresponds to the development of a spike at the physical interface. Under some assumptions that appear to be consistent with numerical calculations, we present analytical evidence to suggest that a singularity of the one-half type cannot impinge the physical domain in finite time.

  9. Hybrid Inflation: Multi-field Dynamics and Cosmological Constraints

    NASA Astrophysics Data System (ADS)

    Clesse, Sébastien

    2011-09-01

    The dynamics of hybrid models is usually approximated by the evolution of a scalar field slowly rolling along a nearly flat valley. Inflation ends with a waterfall phase, due to a tachyonic instability. This final phase is usually assumed to be nearly instantaneous. In this thesis, we go beyond these approximations and analyze the exact 2-field dynamics of hybrid models. Several effects are put in evidence: 1) the possible slow-roll violations along the valley induce the non existence of inflation at small field values. Provided super-planckian fields, the scalar spectrum of the original model is red, in agreement with observations. 2) The initial field values are not fine-tuned along the valley but also occupy a considerable part of the field space exterior to it. They form a structure with fractal boundaries. Using bayesian methods, their distribution in the whole parameter space is studied. Natural bounds on the potential parameters are derived. 3) For the original model, inflation is found to continue for more than 60 e-folds along waterfall trajectories in some part of the parameter space. The scalar power spectrum of adiabatic perturbations is modified and is generically red, possibly in agreement with CMB observations. Topological defects are conveniently stretched outside the observable Universe. 4) The analysis of the initial conditions is extended to the case of a closed Universe, in which the initial singularity is replaced by a classical bounce. In the third part of the thesis, we study how the present CMB constraints on the cosmological parameters could be ameliorated with the observation of the 21cm cosmic background, by future giant radio-telescopes. Forecasts are determined for a characteristic Fast Fourier Transform Telescope, by using both Fisher matrix and MCMC methods.

  10. Dynamical singularities for complex initial conditions and the motion at a real separatrix.

    PubMed

    Shnerb, Tamar; Kay, K G

    2006-04-01

    This work investigates singularities occurring at finite real times in the classical dynamics of one-dimensional double-well systems with complex initial conditions. The objective is to understand the relationship between these singularities and the behavior of the systems for real initial conditions. An analytical treatment establishes that the dynamics of a quartic double well system possesses a doubly infinite sequence of singularities. These are associated with initial conditions that converge to those for the real separatrix as the singularity time becomes infinite. This confluence of singularities is shown to lead to the unstable behavior that characterizes the real motion at the separatrix. Numerical calculations confirm the existence of a large number of singularities converging to the separatrix for this and two additional double-well systems. The approach of singularities to the real axis is of particular interest since such behavior has been related to the formation of chaos in nonintegrable systems. The properties of the singular trajectories which cause this convergence to the separatrix are identified. The hyperbolic fixed point corresponding to the potential energy maximum, responsible for the characteristic motion at a separatrix, also plays a critical role in the formation of the complex singularities by delaying trajectories and then deflecting them into asymptotic regions of space from where they are directly repelled to infinity in a finite time.

  11. An ancient revisits cosmology.

    PubMed Central

    Greenstein, J L

    1993-01-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way. PMID:11607403

  12. An Ancient Revisits Cosmology

    NASA Astrophysics Data System (ADS)

    Greenstein, Jesse L.

    1993-06-01

    In this after-dinner speech, a somewhat light-hearted attempt is made to view the observational side of physical cosmology as a subdiscipline of astrophysics, still in an early stage of sophistication and in need of more theoretical understanding. The theoretical side of cosmology, in contrast, has its deep base in general relativity. A major result of observational cosmology is that an expansion of the Universe arose from a singularity some 15 billion years ago. This has had an enormous impact on the public's view of both astronomy and theology. It places on cosmologists an extra responsibility for clear thinking and interpretation. Recently, gravitational physics caused another crisis from an unexpected observational result that nonbaryonic matter appears to dominate. Will obtaining information about this massive nonbaryonic component require that astronomers cease to rely on measurement of photons? But 40 years ago after radio astronomical techniques uncovered the high-energy universe, we happily introduced new subfields, with techniques from physics and engineering still tied to photon detection. Another historical example shows how a subfield of cosmology, big bang nucleosynthesis, grew in complexity from its spectroscopic astrophysics beginning 40 years ago. Determination of primordial abundances of lighter nuclei does illuminate conditions in the Big Bang, but the observational results faced and overcame many hurdles on the way.

  13. Viscous cosmology for early- and late-time universe

    NASA Astrophysics Data System (ADS)

    Brevik, Iver; Grøn, Øyvind; de Haro, Jaume; Odintsov, Sergei D.; Saridakis, Emmanuel N.

    From a hydrodynamicist’s point of view the inclusion of viscosity concepts in the macroscopic theory of the cosmic fluid would appear most natural, as an ideal fluid is after all an abstraction (exluding special cases such as superconductivity). Making use of modern observational results for the Hubble parameter plus standard Friedmann formalism, we may extrapolate the description of the universe back in time up to the inflationary era, or we may go to the opposite extreme and analyze the probable ultimate fate of the universe. In this review, we discuss a variety of topics in cosmology when it is enlarged in order to contain a bulk viscosity. Various forms of this viscosity, when expressed in terms of the fluid density or the Hubble parameter, are discussed. Furthermore, we consider homogeneous as well as inhomogeneous equations of state. We investigate viscous cosmology in the early universe, examining the viscosity effects on the various inflationary observables. Additionally, we study viscous cosmology in the late universe, containing current acceleration and the possible future singularities, and we investigate how one may even unify inflationary and late-time acceleration. Finally, we analyze the viscosity-induced crossing through the quintessence-phantom divide, we examine the realization of viscosity-driven cosmological bounces, and we briefly discuss how the Cardy-Verlinde formula is affected by viscosity.

  14. Unitary evolution of the quantum Universe with a Brown-Kuchař dust

    NASA Astrophysics Data System (ADS)

    Maeda, Hideki

    2015-12-01

    We study the time evolution of a wave function for the spatially flat Friedmann-Lemaître-Robertson-Walker Universe governed by the Wheeler-DeWitt equation in both analytical and numerical methods. We consider a Brown-Kuchař dust as a matter field in order to introduce a ‘clock’ in quantum cosmology and adopt the Laplace-Beltrami operator-ordering. The Hamiltonian operator admits an infinite number of self-adjoint extensions corresponding to a one-parameter family of boundary conditions at the origin in the minisuperspace. For any value of the extension parameter in the boundary condition, the evolution of a wave function is unitary and the classical initial singularity is avoided and replaced by the big bounce in the quantum system. Exact wave functions show that the expectation value of the spatial volume of the Universe obeys the classical-time evolution in the late time but its variance diverges.

  15. General aspects of Gauss-Bonnet models without potential in dimension four

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santillán, Osvaldo P., E-mail: firenzecita@hotmail.com

    In the present work, the isotropic and homogenous solutions with spatial curvature k =0 of four dimensional Gauss-Bonnet models are characterized. The main assumption is that the scalar field φ which is coupled to the Gauss-Bonnet term has no potential [1]–[2]. Some singular and some eternal solutions are described. The evolution of the universe is given in terms of a curve γ=( H (φ), φ) which is the solution of a polynomial equation P ( H {sup 2}, φ)=0 with φ dependent coefficients. In addition, it is shown that the initial conditions in these models put several restrictions on themore » evolution. For instance, an universe initially contracting will be contracting always for future times and an universe that is expanding was always expanding at past times. Thus, there are no cyclic cosmological solutions for this model. These results are universal, that is, independent on the form of the coupling f (φ) between the scalar field and the Gauss-Bonnet term. In addition, a proof that at a turning point φ-dot →0 a singularity necessarily emerges is presented, except for some specific choices of the coupling. This is valid unless the Hubble constant H → 0 at this point. This proof is based on the Raychaudhuri equation for the model. The description presented here is in part inspired in the works [3]–[4]. However, the mathematical methods that are implemented are complementary of those in these references, and they may be helpful for study more complicated situations in a future.« less

  16. Correlation singularities in a partially coherent electromagnetic beam with initially radial polarization.

    PubMed

    Zhang, Yongtao; Cui, Yan; Wang, Fei; Cai, Yangjian

    2015-05-04

    We have investigated the correlation singularities, coherence vortices of two-point correlation function in a partially coherent vector beam with initially radial polarization, i.e., partially coherent radially polarized (PCRP) beam. It is found that these singularities generally occur during free space propagation. Analytical formulae for characterizing the dynamics of the correlation singularities on propagation are derived. The influence of the spatial coherence length of the beam on the evolution properties of the correlation singularities and the conditions for creation and annihilation of the correlation singularities during propagation have been studied in detail based on the derived formulae. Some interesting results are illustrated. These correlation singularities have implication for interference experiments with a PCRP beam.

  17. Magnetized strange quark model with Big Rip singularity in f(R, T) gravity

    NASA Astrophysics Data System (ADS)

    Sahoo, P. K.; Sahoo, Parbati; Bishi, Binaya K.; Aygün, S.

    2017-07-01

    Locally rotationally symmetric (LRS) Bianchi type-I magnetized strange quark matter (SQM) cosmological model has been studied based on f(R, T) gravity. The exact solutions of the field equations are derived with linearly time varying deceleration parameter, which is consistent with observational data (from SNIa, BAO and CMB) of standard cosmology. It is observed that the model begins with big bang and ends with a Big Rip. The transition of the deceleration parameter from decelerating phase to accelerating phase with respect to redshift obtained in our model fits with the recent observational data obtained by Farook et al. [Astrophys. J. 835, 26 (2017)]. The well-known Hubble parameter H(z) and distance modulus μ(z) are discussed with redshift.

  18. A presocratic cosmological proposal

    NASA Astrophysics Data System (ADS)

    Danezis, E.; Theodossiou, E.; Stathopoulou, M.; Grammenos, Th.

    1999-12-01

    Alcman is known as one of the greatest lyric poets of the ancient world. However, the publication of the Oxyrhynchus papyrus No. 2390 in 1957 caused a great deal of excitement. This papyrus, from the second century AD, contains parts of a comment written in prose, which implies that in one of his poems Alcman deals with a kind of a god-created cosmogony. That cosmogonical view, formulated by Alcman in the middle of the seventh century BC, describes much older considerations that resemble certain modern cosmological conjectures. In terms of the latter, the observable universe emerged out of a point singularity interior to a white hole which, due to the time symmetry of Einstein's field equations, can be considered as a time-reversed black hole.

  19. Numerical relativity beyond astrophysics.

    PubMed

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  20. Numerical relativity beyond astrophysics

    NASA Astrophysics Data System (ADS)

    Garfinkle, David

    2017-01-01

    Though the main applications of computer simulations in relativity are to astrophysical systems such as black holes and neutron stars, nonetheless there are important applications of numerical methods to the investigation of general relativity as a fundamental theory of the nature of space and time. This paper gives an overview of some of these applications. In particular we cover (i) investigations of the properties of spacetime singularities such as those that occur in the interior of black holes and in big bang cosmology. (ii) investigations of critical behavior at the threshold of black hole formation in gravitational collapse. (iii) investigations inspired by string theory, in particular analogs of black holes in more than 4 spacetime dimensions and gravitational collapse in spacetimes with a negative cosmological constant.

  1. A new f(R) model in the light of local gravity test and late-time cosmology

    NASA Astrophysics Data System (ADS)

    Nautiyal, Akhilesh; Panda, Sukanta; Patel, Avani

    We propose a new model of f(R) gravity containing Arctan function in the Lagrangian. We show here that this model satisfies fifth force constraint unlike a similar model in 2013 by Kruglov. In addition to this, we carry out the fixed point analysis as well as comment on the existence of curvature singularity in this model. The cosmological evolution for this f(R) gravity model is also analyzed in the Friedmann-Robertson-Walker (FRW) background. To understand observational significance of the model, cosmological parameters are obtained numerically and compared with those of Lambda cold dark matter (ΛCDM) model. We also scrutinize the model with supernova data. We apply Om diagnostic given by Sahni et al. in 2008 to the model. Using this diagnostic, we detect the distinction between cosmic evolution caused by the f(R) model and ΛCDM. We find best-fit parameter values of the model using baryon acoustic oscillations data.

  2. Generalized Galileons: instabilities of bouncing and Genesis cosmologies and modified Genesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libanov, M.; Moscow Institute of Physics and Technology,Institutskii per. 9, 141700 Dolgoprudny, Moscow Region; Mironov, S.

    2016-08-18

    We study spatially flat bouncing cosmologies and models with the early-time Genesis epoch in a popular class of generalized Galileon theories. We ask whether there exist solutions of these types which are free of gradient and ghost instabilities. We find that irrespectively of the forms of the Lagrangian functions, the bouncing models either are plagued with these instabilities or have singularities. The same result holds for the original Genesis model and its variants in which the scale factor tends to a constant as t→−∞. The result remains valid in theories with additional matter that obeys the Null Energy Condition andmore » interacts with the Galileon only gravitationally. We propose a modified Genesis model which evades our no-go argument and give an explicit example of healthy cosmology that connects the modified Genesis epoch with kination (the epoch still driven by the Galileon field, which is a conventional massless scalar field at that stage).« less

  3. Dynamics of anisotropies close to a cosmological bounce in quantum gravity

    NASA Astrophysics Data System (ADS)

    de Cesare, Marco; Oriti, Daniele; Pithis, Andreas G. A.; Sakellariadou, Mairi

    2018-01-01

    We study the dynamics of perturbations representing deviations from perfect isotropy in the context of the emergent cosmology obtained from the group field theory formalism for quantum gravity. Working in the mean field approximation of the group field theory formulation of the Lorentzian EPRL model, we derive the equations of motion for such perturbations to first order. We then study these equations around a specific simple isotropic background, characterised by the fundamental representation of SU(2) , and in the regime of the effective cosmological dynamics corresponding to the bouncing region replacing the classical singularity, well approximated by the free GFT dynamics. In this particular example, we identify a region in the parameter space of the model such that perturbations can be large at the bounce but become negligible away from it, i.e. when the background enters the non-linear regime. We also study the departures from perfect isotropy by introducing specific quantities, such as the surface-area-to-volume ratio and the effective volume per quantum, which make them quantitative.

  4. Chaos removal in R +q R2 gravity: The mixmaster model

    NASA Astrophysics Data System (ADS)

    Moriconi, Riccardo; Montani, Giovanni; Capozziello, Salvatore

    2014-11-01

    We study the asymptotic dynamics of the mixmaster universe, near the cosmological singularity, considering f (R ) gravity up to a quadratic correction in the Ricci scalar R . The analysis is performed in the scalar-tensor framework and adopting Misner-Chitré-like variables to describe the mixmaster universe, whose dynamics resembles asymptotically a billiard ball in a given domain of the half-Poincaré space. The form of the potential well depends on the spatial curvature of the model and on the particular form of the self-interacting scalar field potential. We demonstrate that the potential walls determine an open domain in the configuration region, allowing the point universe to reach the absolute of the considered Lobachevsky space. In other words, we outline the existence of a stable final Kasner regime in the mixmaster evolution, implying chaos removal near the cosmological singularity. The relevance of the present issue relies both on the general nature of the considered dynamics, allowing its direct extension to the Belinski-Khalatnikov-Lifshitz conjecture too, as well as the possibility to regard the considered modified theory of gravity as the first correction to the Einstein-Hilbert action as a Taylor expansion of a generic function f (R ) (as soon as a cutoff on the space-time curvature takes place).

  5. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    PubMed

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-01-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  6. More on the holographic Ricci dark energy model: smoothing Rips through interaction effects?

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Ouali, Taoufik; Tavakoli, Yaser

    2018-04-01

    The background cosmological dynamics of the late Universe is analysed on the framework of a dark energy model described by an holographic Ricci dark energy component. Several kind of interactions between the dark energy and the dark matter components are considered herein. We solve the background cosmological dynamics for the different choices of interactions with the aim to analyse not only the current evolution of the universe but also its asymptotic behaviour and, in particular, possible future singularities removal. We show that in most of the cases, the Big Rip singularity, a finger print of this model in absence of an interaction between the dark sectors, is substituted by a de Sitter or a Minkowski state. Most importantly, we found two new future bouncing solutions leading to two possible asymptotic behaviours, we named Little Bang and Little Sibling of the Big Bang. At a Little Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate and its cosmic time derivative blow up. In addition, at a Little sibling of the Big Bang, as the size of the universe shrinks to zero in an infinite cosmic time, the Hubble rate blows up but its cosmic time derivative is finite. These two abrupt events can happen as well in the past.

  7. Georges Lemaître: The Priest Who Invented the Big Bang

    NASA Astrophysics Data System (ADS)

    Lambert, Dominique

    This contribution gives a concise survey of Georges Lemaître works and life, shedding some light on less-known aspects. Lemaître is a Belgian catholic priest who gave for the first time in 1927 the explanation of the Hubble law and who proposed in 1931 the "Primeval Atom Hypothesis", considered as the first step towards the Big Bang cosmology. But the scientific work of Lemaître goes far beyond Physical Cosmology. Indeed, he contributed also to the theory of Cosmis Rays, to the Spinor theory, to Analytical mechanics (regularization of 3- Bodies problem), to Numerical Analysis (Fast Fourier Transform), to Computer Science (he introduced and programmed the first computer of Louvain),… Lemaître took part to the "Science and Faith" debate. He defended a position that has some analogy with the NOMA principle, making a sharp distinction between what he called the "two paths to Truth" (a scientific one and a theological one). In particular, he never made a confusion between the theological concept of "creation" and the scientific notion of "natural beginning" (initial singularity). Lemaître was deeply rooted in his faith and sacerdotal vocation. Remaining a secular priest, he belonged to a community of priests called "The Friends of Jesus", characterized by a deep spirituality and special vows (for example the vow of poverty). He had also an apostolic activity amongst Chinese students.

  8. Accelerated and decelerated expansion in a causal dissipative cosmology

    NASA Astrophysics Data System (ADS)

    Cruz, Miguel; Cruz, Norman; Lepe, Samuel

    2017-12-01

    In this work we explore a new cosmological solution for an universe filled with one dissipative fluid, described by a barotropic equation of state (EoS) p =ω ρ , in the framework of the full Israel-Stewart theory. The form of the bulk viscosity has been assumed of the form ξ =ξ0ρ1 /2. The relaxation time is taken to be a function of the EoS, the bulk viscosity and the speed of bulk viscous perturbations, cb. The solution presents an initial singularity, where the curvature scalar diverges as the scale factor goes to zero. Depending on the values for ω , ξ0, cb accelerated and decelerated cosmic expansion can be obtained. In the case of accelerated expansion, the viscosity drives the effective EoS to be of quintessence type, for the single fluid with positive pressure. Nevertheless, we show that only the solution with decelerated expansion satisfies the thermodynamics conditions d S /d t >0 (growth of the entropy) and d2S /d t2<0 (convexity condition). We show that an exact stiff matter EoS is not allowed in the framework of the full causal thermodynamic approach; and in the case of a EoS very close to the stiff matter regime, we found that dissipative effects becomes negligible so the entropy remains constant. Finally, we show numerically that the solution is stable under small perturbations.

  9. Past incompleteness of a bouncing multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilenkin, Alexander; Zhang, Jun, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu

    2014-06-01

    According to classical GR, Anti-de Sitter (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by nonsingular bounces. This may have important implications for the beginning of the multiverse. Geodesics in cosmological spacetimes are known to be past-incomplete, as long as the average expansion rate along the geodesic is positive, but it is not clear that the latter condition is satisfied if the geodesic repeatedly passes through crunching AdS bubbles. We investigate this issue in a simple multiverse model, where the spacetime consistsmore » of a patchwork of FRW regions. The conclusion is that the spacetime is still past-incomplete, even in the presence of AdS bounces.« less

  10. Cosmology in the laboratory: An analogy between hyperbolic metamaterials and the Milne universe

    NASA Astrophysics Data System (ADS)

    Figueiredo, David; Moraes, Fernando; Fumeron, Sébastien; Berche, Bertrand

    2017-11-01

    This article shows that the compactified Milne universe geometry, a toy model for the big crunch/big bang transition, can be realized in hyperbolic metamaterials, a new class of nanoengineered systems which have recently found its way as an experimental playground for cosmological ideas. On one side, Klein-Gordon particles, as well as tachyons, are used as probes of the Milne geometry. On the other side, the propagation of light in two versions of a liquid crystal-based metamaterial provides the analogy. It is shown that ray and wave optics in the metamaterial mimic, respectively, the classical trajectories and wave function propagation, of the Milne probes, leading to the exciting perspective of realizing experimental tests of particle tunneling through the cosmic singularity, for instance.

  11. A presocratic cosmological proposal

    NASA Astrophysics Data System (ADS)

    Danezis, E.; Theodossiou, E.; Stathopoulou, M.; Grammenos, Th.

    Up to now, Alcman was known as one of the greatest lyric poets of the ancient world (650 B.C.). However, the publication of the Oxyrynchus papyrus No 2390 in 1957 caused a great amount of astonishment. This papyrus from the 2nd century A.D. contains parts of a comment written in prose, with implies that, in one of his poems, Alcman deals with a kind of a god-created cosmogony. Undoubtedly, that cosmogonical view formulated by Alcman in the midth of the 7th century B.C., describes much older considerations which resemble certain modern cosmological conjectures. According to the latter, the observable universe has emerged out of a point singularity interior to a white hole which, due to the time symmetry of Einstein' s field equations, can be considered as a time- reversed black hole.

  12. Scalar field cosmologies with inverted potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boisseau, B.; Giacomini, H.; Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr

    Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Bigmore » Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.« less

  13. A no hair theorem and the problem of initial conditions. [in cosmological model

    NASA Technical Reports Server (NTRS)

    Jensen, Lars Gerhard; Stein-Schabes, Jaime A.

    1987-01-01

    It is shown that under very general conditions, any inhomogeneous cosmological model with a positive cosmological constant that can be described in a synchronous reference system will tend asymptotically in time towards the de Sitter solution. This renders the problem of initial conditions less severe.

  14. A Positive Cosmological Constant as Centrifugal Force in an Expanding Kantian Model of the Universe

    NASA Astrophysics Data System (ADS)

    Sternglass, E. J.

    1998-05-01

    Recent redshift measurements of distant Type Ia supernovae appear to indicate that cosmic expansion has speeded up since these distant stars exploded, rather than slowing down under the action of gravity. These results suggest the existence of a repulsive force as originally assumed by Einstein through the introduction of the lambda constant. Such a repulsive force arises naturally as centrifugal force in the evolution of a hierarchically organized cosmological model involving a series of rotating structures of increasing size as originally suggested by Kant in the 18th century when combined with the idea of Lemaitre, according to which the universe and the observed systems arose in the course of repeated divisions by two of a primeval atom. As described in the AIP Conference Proceedings 254,105 (1992), if this atom is assumed to be a highly relativistic form of positronium or "quarkonium" at the Planck density one avoids an initial singularity and requires no other particles. The division process takes place in 27 stages of 10 divisions each beginning with a lower mass excited state of the original Lemaitre atom that forms a central cluster in which a quarter of the particles are initially retained. One then arrives at a model in which all structures are laid down in the form of massive "cold dark matter" during a period of exponential growth or inflation before the Big Bang, leading to an ultimately stable, closed "flat" universe of finite mass that explains the masses, sizes, rotational and expansion velocities and thus the Hubble constants of the various systems as well as the age of the universe since the Big Bang in good agreement with observations, using only e, mo, c and h.

  15. Short time propagation of a singular wave function: Some surprising results

    NASA Astrophysics Data System (ADS)

    Marchewka, A.; Granot, E.; Schuss, Z.

    2007-08-01

    The Schrödinger evolution of an initially singular wave function was investigated. First it was shown that a wide range of physical problems can be described by initially singular wave function. Then it was demonstrated that outside the support of the initial wave function the time evolution is governed to leading order by the values of the wave function and its derivatives at the singular points. Short-time universality appears where it depends only on a single parameter—the value at the singular point (not even on its derivatives). It was also demonstrated that the short-time evolution in the presence of an absorptive potential is different than in the presence of a nonabsorptive one. Therefore, this dynamics can be harnessed to the determination whether a potential is absorptive or not simply by measuring only the transmitted particles density.

  16. Qualitative cosmology - Diagrammatic solutions for Bianchi type IX universes with expansion, rotation, and shear. II.

    NASA Technical Reports Server (NTRS)

    Ryan, M. P., Jr.

    1971-01-01

    The investigation of expanding, rotating, shearing Bianchi type IX universes is extended to the most general case possible. Use is made of the techniques of Arnowitt et al. (1962). It is shown that the conclusion reached by Arnowitt et al. regarding the small effect of rotation on the singularity of type IX universes is true in general. The superspace approach to the motion of the universe is discussed in an appendix.

  17. Multicentered black holes with a negative cosmological constant

    NASA Astrophysics Data System (ADS)

    Chimento, Samuele; Klemm, Dietmar

    2014-01-01

    We present a recipe that allows us to construct multicentered black holes embedded in an arbitrary Friedmann-Lemaître-Robertson-Walker (FLRW) universe. These solutions are completely determined by a function satisfying the conformal Laplace equation on the spatial slices E3, S3, or H3. Since anti-de Sitter (AdS) space can be written in FLRW coordinates, this includes as a special case multicentered black holes in AdS, in the sense that, far away from the black holes, the energy density and the pressure approach the values given by a negative cosmological constant. We study in some detail the physical properties of the single-centered asymptotically AdS case, which does not coincide with the usual Reissner-Nordström-AdS black hole, but is highly dynamical. In particular, we determine the curvature singularities and trapping horizons of this solution, compute the surface gravity of the trapping horizons, and show that the generalized first law of black hole dynamics proposed by Hayward holds in this case. It turns out that the spurious big bang/big crunch singularities that appear when one writes AdS in FLRW form become real in the presence of these dynamical black holes. This implies that actually only one point of the usual conformal boundary of AdS survives in the solutions that we construct. Finally, a generalization to arbitrary dimension is also presented.

  18. Nonpolynomial Lagrangian approach to regular black holes

    NASA Astrophysics Data System (ADS)

    Colléaux, Aimeric; Chinaglia, Stefano; Zerbini, Sergio

    We present a review on Lagrangian models admitting spherically symmetric regular black holes (RBHs), and cosmological bounce solutions. Nonlinear electrodynamics, nonpolynomial gravity, and fluid approaches are explained in details. They consist respectively in a gauge invariant generalization of the Maxwell-Lagrangian, in modifications of the Einstein-Hilbert action via nonpolynomial curvature invariants, and finally in the reconstruction of density profiles able to cure the central singularity of black holes. The nonpolynomial gravity curvature invariants have the special property to be second-order and polynomial in the metric field, in spherically symmetric spacetimes. Along the way, other models and results are discussed, and some general properties that RBHs should satisfy are mentioned. A covariant Sakharov criterion for the absence of singularities in dynamical spherically symmetric spacetimes is also proposed and checked for some examples of such regular metric fields.

  19. The evolution of modern cosmology as seen through a personal walk across six decades

    NASA Astrophysics Data System (ADS)

    Narlikar, Jayant V.

    2018-02-01

    This highly personal account of evolution of cosmology spans a period of approximately six decades 1959-2017. It begins when in 1959 the author, as an undergraduate at Cambridge, was attracted to the subject by the thought provoking lectures by Fred Hoyle as well as by his popular books The Nature of Universe and The Frontiers of Astronomy. The result was that after a successful performance at the Mathematical Tripos (Part III) examination, he enrolled as a research student of Hoyle. In this article the author describes the interesting works in cosmology that kept him busy both in Cambridge and in India. The issues pertinent to cosmological research in the 1960s and 1970s included the Mach's principle, the Wheeler-Feynman theory relating the local electromagnetic arrow of time to the cosmological one, the observational tests of specific expanding universe models, and issues like singularity in quantum cosmology. However, post-1965, the nature of cosmological research changed dramatically with the discovery of the cosmic microwave background radiation (CMBR). Given the assumption that the CMBR is a relic of big bang there has been a host of papers on the early universe, going as close to the big bang as the very early universe would permit: around just 10-36 s. The author argues that despite the popularity of the standard hot big bang cosmology (SBBC) it rests on rather shaky foundations. On the theoretical side there is no well established physical framework to support the SBBC; nor is there independent observational support for its assumptions like the nonbaryonic dark matter, inflation and dark energy. While technological progress has made it possible to explore the universe in greater detail with open mind, today's cosmologists seem caught in a range of speculations in support of the big bang dogma. Thus, in modern times cosmology appears to have lost the Camelot spirit encouraging adventurous studies of the unknown. A spirit of openness is advocated to restore cosmology to its rightful position as the flagship of astronomy.

  20. The evolution of modern cosmology as seen through a personal walk across six decades

    NASA Astrophysics Data System (ADS)

    Narlikar, Jayant V.

    2018-05-01

    This highly personal account of evolution of cosmology spans a period of approximately six decades 1959-2017. It begins when in 1959 the author, as an undergraduate at Cambridge, was attracted to the subject by the thought provoking lectures by Fred Hoyle as well as by his popular books The Nature of Universe and The Frontiers of Astronomy. The result was that after a successful performance at the Mathematical Tripos (Part III) examination, he enrolled as a research student of Hoyle. In this article the author describes the interesting works in cosmology that kept him busy both in Cambridge and in India. The issues pertinent to cosmological research in the 1960s and 1970s included the Mach's principle, the Wheeler-Feynman theory relating the local electromagnetic arrow of time to the cosmological one, the observational tests of specific expanding universe models, and issues like singularity in quantum cosmology. However, post-1965, the nature of cosmological research changed dramatically with the discovery of the cosmic microwave background radiation (CMBR). Given the assumption that the CMBR is a relic of big bang there has been a host of papers on the early universe, going as close to the big bang as the very early universe would permit: around just 10-36 s. The author argues that despite the popularity of the standard hot big bang cosmology (SBBC) it rests on rather shaky foundations. On the theoretical side there is no well established physical framework to support the SBBC; nor is there independent observational support for its assumptions like the nonbaryonic dark matter, inflation and dark energy. While technological progress has made it possible to explore the universe in greater detail with open mind, today's cosmologists seem caught in a range of speculations in support of the big bang dogma. Thus, in modern times cosmology appears to have lost the Camelot spirit encouraging adventurous studies of the unknown. A spirit of openness is advocated to restore cosmology to its rightful position as the flagship of astronomy.

  1. Experimental Non-Violation of the Bell Inequality

    NASA Astrophysics Data System (ADS)

    Palmer, Tim

    2018-05-01

    A finite non-classical framework for physical theory is described which challenges the conclusion that the Bell Inequality has been shown to have been violated experimentally, even approximately. This framework postulates the universe as a deterministic locally causal system evolving on a measure-zero fractal-like geometry $I_U$ in cosmological state space. Consistent with the assumed primacy of $I_U$, and $p$-adic number theory, a non-Euclidean (and hence non-classical) metric $g_p$ is defined on cosmological state space, where $p$ is a large but finite Pythagorean prime. Using number-theoretic properties of spherical triangles, the inequalities violated experimentally are shown to be $g_p$-distant from the CHSH inequality, whose violation would rule out local realism. This result fails in the singular limit $p=\\infty$, at which $g_p$ is Euclidean. Broader implications are discussed.

  2. Probability of lensing magnification by cosmologically distributed galaxies

    NASA Technical Reports Server (NTRS)

    Pei, Yichuan C.

    1993-01-01

    We present the analytical formulae for computing the magnification probability caused by cosmologically distributed galaxies. The galaxies are assumed to be singular, truncated-isothermal spheres without both evolution and clustering in redshift. We find that, for a fixed total mass, extended galaxies produce a broader shape in the magnification probability distribution and hence are less efficient as gravitational lenses than compact galaxies. The high-magnification tail caused by large galaxies is well approximated by an A exp -3 form, while the tail by small galaxies is slightly shallower. The mean magnification as a function of redshift is, however, found to be independent of the size of the lensing galaxies. In terms of the flux conservation, our formulae for the isothermal galaxy model predict a mean magnification to within a few percent with the Dyer-Roeder model of a clumpy universe.

  3. Value of H, space-time patterns, vacuum, matter, expansion of the Universe, alternative cosmologies

    NASA Astrophysics Data System (ADS)

    Gonzalez-Mestres, Luis

    2017-12-01

    To the experimental uncertainties on the present value H0 of the Lundmark - Lemaître-Hubble constant, fundamental theoretical uncertainties of several kinds should also be added. In standard Cosmology, consistency problems are really serious. The cosmological constant is a source of well-known diffculties while the associated dark energy is assumed to be at the origin of the observed acceleration of the expansion of the Universe. But in alternative cosmologies, possible approaches without these problems exist. An example is the pattern based on the spinorial space-time (SST) we introduced in 1996-97 where the H t = 1 relation (t = cosmic time = age of the Universe) is automatically generated by a pre-existing cosmic geometry before standard matter and conventional forces, including gravitation and relativity, are introduced. We analyse present theoretical, experimental and observational uncertainties, focusing also on the possible sources of the acceleration of the expansion of the Universe as well as on the structure of the physical vacuum and its potential cosmological role. Particular attention is given to alternative approaches to both Particle Physics and Cosmology including possible preonic constituents of the physical vacuum and associated pre-Big Bang patterns. A significant example is provided by the cosmic SST geometry together with the possibility that the expanding cosmological vacuum releases energy in the form of standard matter and dark matter, thus modifying the dependence of the matter energy density with respect to the age and size of our Universe. The SST naturally generates a new leading contribution to the value of H. If the matter energy density decreases more slowly than in standard patterns, it can naturally be at the origin of the observed acceleration of the expansion of the Universe. The mathematical and dynamical structure of standard Physics at very short distances can also be modified by an underlying preonic structure. If preons are the constituents of the physical vacuum, as postulated two decades ago with the superbradyon (superluminal preon) hypothesis, the strongest implication would be the possibility that vacuum actually drives the expansion of the Universe. If an unstable (metastable) vacuum permanently expands, it can release energy in the form of conventional matter and of its associated kinetic energy. The SST can be the expression of such an expanding vacuum at cosmic level. We briefly discuss these and related issues, as well as relevant open questions including the problematics of the initial singularity and the cosmic vacuum dynamics in a pre-Big Bang era. The possibility to obtain experimental information on the preonic internal structure of vacuum is also considered.

  4. A Solution to the Cosmological Problem of Relativity Theory

    NASA Astrophysics Data System (ADS)

    Janzen, Daryl

    After nearly a century of scientific investigation, the standard cosmological theory continues to have many unexplained problems, which invariably amount to one troubling statement: we know of no good reason for the Universe to appear just as it does, which is described extremely well by the flat ΛCDM cosmological model. Therefore, the problem is not that the physical model is at all incompatible with observation, but that, as our empirical results have been increasingly constrained, it has also become increasingly obvious that the Universe does not meet our prior expectations; e.g., the evidence suggests that the Universe began from a singularity of the theory that is used to describe it, and with space expanding thereafter in cosmic time, even though relativity theory is thought to imply that no such objective foliation of the spacetime continuum should reasonably exist. Furthermore, the expanding Universe is well-described as being flat, isotropic, and homogeneous, even though its shape and expansion rate are everywhere supposed to be the products of local energy-content---and the necessary prior uniform distribution, of just the right amount of matter for all three of these conditions to be met, could not have been causally determined to begin with. And finally, the empirically constrained density parameters now indicate that all of the matter that we directly observe should make up only four percent of the total, so that the dominant forms of energy in the Universe should be dark energy in the form of a cosmological constant, Λ, and cold dark matter (CDM). The most common ways of attacking these problems have been: to apply modifications to the basic physical model, e.g. as in the inflation and quintessence theories which strive to resolve the horizon, flatness, and cosmological constant problems; to use particle physics techniques in order to formulate the description of dark matter candidates that might fit with observations; and, in the case of the Big Bang singularity, to appeal to the need for a quantum theory of gravity. This thesis takes a very different approach to the problem, in hypothesising that, because our physical model really does appear to do a very good job of describing the observed cosmic expansion rate, and all the data indicate that our Universe might well expand precisely according to the flat ΛCDM scale-factor, it may not be the model, but our basic expectations that need to be modified in order to derive a physical theory that stands in reasonable agreement with the empirical results; i.e., that it may actually be that we need to re-examine, and rationally modify our expectations of what should theoretically be, so that we might derive a theory to explain the empirical results of cosmology, which would be based solely on reasonably acceptable first principles. Therefore, a self-consistent theory is constructed here, upon re-consideration of the cosmological foundations of relativity theory, which eventually does afford an explanation of the cosmological problem, as it provides good reason to actually expect observations in the fundamental rest-frame to be described precisely by the flat ΛCDM scale-factor which has been empirically constrained.

  5. Pre-Big Bang Bubbles from the Gravitational Instability of Generic String Vacua

    NASA Astrophysics Data System (ADS)

    Buonanno, A.; Damour, T.; Veneziano, G.

    1998-06-01

    We formulate the basic postulate of pre-big bang cosmology as one of 'asymptotic past triviality', by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual big-bang t = 0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically-symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the big bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-gib bang scenario.

  6. Brane SUSY breaking and inflation: Implications for scalar fields and CMB distortion

    NASA Astrophysics Data System (ADS)

    Sagnotti, Augusto

    2014-12-01

    I elaborate on a link between the string-scale breaking of supersymmetry that occurs in a class of superstring models and the onset of inflation. The link rests on spatially flat cosmologies supported by a scalar field driven by an exponential potential. If, as in String Theory, this potential is steep enough, under some assumptions that are spelled out in the text the scalar can only climb up as it emerges from an initial singularity. In the presence of another mild exponential, slow-roll inflation is thus injected during the ensuing descent and definite imprints are left in the CMB power spectrum: the quadrupole is systematically reduced and, depending on the choice of two parameters, an oscillatory behavior can also emerge for low multipoles l < 50, in qualitative agreement with WMAP9 and PLANCK data. The experimentally favored value of the spectral index, n s ≈ 0.96, points to a potentially important role for the NS fivebrane, which is unstable in this class of models, in the Early Universe.

  7. Quantum dynamics of the Einstein-Rosen wormhole throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2011-02-15

    We consider the polymer quantization of the Einstein wormhole throat theory for an eternal Schwarzschild black hole. We numerically solve the difference equation describing the quantum evolution of an initially Gaussian, semiclassical wave packet. As expected from previous work on loop quantum cosmology, the wave packet remains semiclassical until it nears the classical singularity at which point it enters a quantum regime in which the fluctuations become large. The expectation value of the radius reaches a minimum as the wave packet is reflected from the origin and emerges to form a near-Gaussian but asymmetrical semiclassical state at late times. Themore » value of the minimum depends in a nontrivial way on the initial mass/energy of the pulse, its width, and the polymerization scale. For wave packets that are sufficiently narrow near the bounce, the semiclassical bounce radius is obtained. Although the numerics become difficult to control in this limit, we argue that for pulses of finite width the bounce persists as the polymerization scale goes to zero, suggesting that in this model the loop quantum gravity effects mimicked by polymer quantization do not play a crucial role in the quantum bounce.« less

  8. Growth of matter perturbation in quintessence cosmology

    NASA Astrophysics Data System (ADS)

    Mulki, Fargiza A. M.; Wulandari, Hesti R. T.

    2017-01-01

    Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.

  9. Cosmology with an interacting van der Waals fluid

    NASA Astrophysics Data System (ADS)

    Elizalde, E.; Khurshudyan, M.

    A model for the late-time accelerated expansion of the Universe is considered where a van der Waals fluid interacting with matter plays the role of dark energy. The transition towards this phase in the cosmic evolution history is discussed in detail and, moreover, a complete classification of the future finite-time singularities is obtained for six different possible forms of the nongravitational interaction between dark energy (the van der Waals fluid) and dark matter. This study shows, in particular, that a Universe with a noninteracting three-parameter van der Waals fluid can evolve into a Universe characterized by a type IV (generalized sudden) singularity. On the other hand, for certain values of the parameters, exit from the accelerated expanding phase is possible in the near future, what means that the expansion of the Universe in the future could become decelerated - to our knowledge, this interesting situation is not commonplace in the literature. On the other hand, our study shows that space can be divided into different regions. For some of them, in particular, the nongravitational interactions Q = 3Hbρde, Q = 3Hbρdm and Q = 3Hb(ρde + ρde) may completely suppress future finite-time singularity formation, for sufficiently high values of b. On the other hand, for some other regions of the parameter space, the mentioned interactions would not affect the singularity type, namely the type IV singularity generated in the case of the noninteracting model would be preserved. A similar conclusion has been archived for the cases of Q = 3bHρdeρdm/(ρde + ρdm), Q = 3bHρdm2/(ρ de + ρdm) and Q = 3bHρde2/(ρ de + ρdm) nongravitational interactions, with only one difference: the Q = 3bHρdm2/(ρ de + ρdm) interaction will change the type IV singularity of the noninteracting model into a type II (the sudden) singularity.

  10. Quantum Oscillations Can Prevent the Big Bang Singularity in an Einstein-Dirac Cosmology

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Hainzl, Christian

    2010-01-01

    We consider a spatially homogeneous and isotropic system of Dirac particles coupled to classical gravity. The dust and radiation dominated closed Friedmann-Robertson-Walker space-times are recovered as limiting cases. We find a mechanism where quantum oscillations of the Dirac wave functions can prevent the formation of the big bang or big crunch singularity. Thus before the big crunch, the collapse of the universe is stopped by quantum effects and reversed to an expansion, so that the universe opens up entering a new era of classical behavior. Numerical examples of such space-times are given, and the dependence on various parameters is discussed. Generically, one has a collapse after a finite number of cycles. By fine-tuning the parameters we construct an example of a space-time which satisfies the dominant energy condition and is time-periodic, thus running through an infinite number of contraction and expansion cycles.

  11. Dynamical behavior in f (T, TG) cosmology

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Leon, Genly; Saridakis, Emmanuel N.

    2014-09-01

    The f(T,{{T}_{G}}) class of gravitational modification, based on the quadratic torsion scalar T as well as on the new quartic torsion scalar TG, which is the teleparallel equivalent of the Gauss-Bonnet term, is a novel theory, different from both f (T) and f(R,G) ones. We perform a detailed dynamical analysis of a spatially flat universe governed by the simplest non-trivial model of f(T,{{T}_{G}}) gravity which does not introduce a new mass scale. We find that the universe can result in dark-energy dominated, quintessence-like, cosmological-constant-like, or phantom-like solutions, according to the parameter choices. Additionally, it may result in a dark energy-dark matter scaling solution; thus it can alleviate the coincidence problem. Finally, the analysis ‘at infinity’ reveals that the universe may exhibit future, past, or intermediate singularities, depending on the parameters.

  12. Boundary singularities produced by the motion of soap films.

    PubMed

    Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I

    2014-06-10

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.

  13. The generalized second law implies a quantum singularity theorem

    NASA Astrophysics Data System (ADS)

    Wall, Aron C.

    2013-08-01

    The generalized second law can be used to prove a singularity theorem, by generalizing the notion of a trapped surface to quantum situations. Like Penrose’s original singularity theorem, it implies that spacetime is null-geodesically incomplete inside black holes, and to the past of spatially infinite Friedmann-Robertson-Walker cosmologies. If space is finite instead, the generalized second law requires that there only be a finite amount of entropy producing processes in the past, unless there is a reversal of the arrow of time. In asymptotically flat spacetime, the generalized second law also rules out traversable wormholes, negative masses, and other forms of faster-than-light travel between asymptotic regions, as well as closed timelike curves. Furthermore it is impossible to form baby universes which eventually become independent of the mother universe, or to restart inflation. Since the semiclassical approximation is used only in regions with low curvature, it is argued that the results may hold in full quantum gravity. The introduction describes the second law and its time-reverse, in ordinary and generalized thermodynamics, using either the fine-grained or the coarse-grained entropy. (The fine-grained version is used in all results except those relating to the arrow of time.)

  14. Some classes of gravitational shock waves from higher order theories of gravity

    NASA Astrophysics Data System (ADS)

    Oikonomou, V. K.

    2017-02-01

    We study the gravitational shock wave generated by a massless high energy particle in the context of higher order gravities of the form F(R,R_{μν}R^{μν},R_{μναβ}R^{μν αβ}). In the case of F(R) gravity, we investigate the gravitational shock wave solutions corresponding to various cosmologically viable gravities, and as we demonstrate the solutions are rescaled versions of the Einstein-Hilbert gravity solution. Interestingly enough, other higher order gravities result to the general relativistic solution, except for some specific gravities of the form F(R_{μν}R^{μν}) and F(R,R_{μν}R^{μν}), which we study in detail. In addition, when realistic Gauss-Bonnet gravities of the form R+F(G) are considered, the gravitational shock wave solutions are identical to the general relativistic solution. Finally, the singularity structure of the gravitational shock waves solutions is studied, and it is shown that the effect of higher order gravities makes the singularities milder in comparison to the general relativistic solutions, and in some particular cases the singularities seem to be absent.

  15. Horizons versus singularities in spherically symmetric space-times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronnikov, K. A.; Elizalde, E.; Odintsov, S. D.

    We discuss different kinds of Killing horizons possible in static, spherically symmetric configurations and recently classified as 'usual', 'naked', and 'truly naked' ones depending on the near-horizon behavior of transverse tidal forces acting on an extended body. We obtain the necessary conditions for the metric to be extensible beyond a horizon in terms of an arbitrary radial coordinate and show that all truly naked horizons, as well as many of those previously characterized as naked and even usual ones, do not admit an extension and therefore must be considered as singularities. Some examples are given, showing which kinds of mattermore » are able to create specific space-times with different kinds of horizons, including truly naked ones. Among them are fluids with negative pressure and scalar fields with a particular behavior of the potential. We also discuss horizons and singularities in Kantowski-Sachs spherically symmetric cosmologies and present horizon regularity conditions in terms of an arbitrary time coordinate and proper (synchronous) time. It turns out that horizons of orders 2 and higher occur in infinite proper times in the past or future, but one-way communication with regions beyond such horizons is still possible.« less

  16. Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Maeda, Hideki; Carr, B. J.

    2008-01-01

    Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=(γ-1)μ with 0<γ<2/3. This corresponds to a “dark energy” fluid and the Friedmann solution is accelerated in this case due to antigravity. This extends the previous analysis of spherically symmetric self-similar solutions for fluids with positive pressure (γ>1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically “quasi-Friedmann,” in the sense that they exhibit an angle deficit at large distances. In the 0<γ<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions.

  17. Self-similar cosmological solutions with dark energy. I. Formulation and asymptotic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Tomohiro; Maeda, Hideki; Centro de Estudios Cientificos

    2008-01-15

    Based on the asymptotic analysis of ordinary differential equations, we classify all spherically symmetric self-similar solutions to the Einstein equations which are asymptotically Friedmann at large distances and contain a perfect fluid with equation of state p=({gamma}-1){mu} with 0<{gamma}<2/3. This corresponds to a 'dark energy' fluid and the Friedmann solution is accelerated in this case due to antigravity. This extends the previous analysis of spherically symmetric self-similar solutions for fluids with positive pressure ({gamma}>1). However, in the latter case there is an additional parameter associated with the weak discontinuity at the sonic point and the solutions are only asymptotically 'quasi-Friedmann',more » in the sense that they exhibit an angle deficit at large distances. In the 0<{gamma}<2/3 case, there is no sonic point and there exists a one-parameter family of solutions which are genuinely asymptotically Friedmann at large distances. We find eight classes of asymptotic behavior: Friedmann or quasi-Friedmann or quasistatic or constant-velocity at large distances, quasi-Friedmann or positive-mass singular or negative-mass singular at small distances, and quasi-Kantowski-Sachs at intermediate distances. The self-similar asymptotically quasistatic and quasi-Kantowski-Sachs solutions are analytically extendible and of great cosmological interest. We also investigate their conformal diagrams. The results of the present analysis are utilized in an accompanying paper to obtain and physically interpret numerical solutions.« less

  18. Loop quantum cosmology of Bianchi IX: effective dynamics

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Montoya, Edison

    2017-03-01

    We study solutions to the effective equations for the Bianchi IX class of spacetimes within loop quantum cosmology (LQC). We consider Bianchi IX models whose matter content is a massless scalar field, by numerically solving the loop quantum cosmology effective equations, with and without inverse triad corrections. The solutions are classified using certain geometrically motivated classical observables. We show that both effective theories—with lapse N  =  V and N  =  1—resolve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the positive spatial curvature, there is an infinite number of bounces and recollapses. We study the limit of large field momentum and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k  =  0,1 FLRW as well as Bianchi I, II, and VII0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII0 phases, which had not been studied before. We comment on the possible implications of these results for a quantum modification to the classical BKL behaviour.

  19. Boundary singularities produced by the motion of soap films

    PubMed Central

    Goldstein, Raymond E.; McTavish, James; Moffatt, H. Keith; Pesci, Adriana I.

    2014-01-01

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a “neck-pinching” boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck’s geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures. PMID:24843162

  20. A compact codimension-two braneworld with precisely one brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerblom, Nikolas; Cornelissen, Gunther; Department of Mathematics, Utrecht University

    Building on earlier work on football-shaped extra dimensions, we construct a compact codimension-two braneworld with precisely one brane. The two extra dimensions topologically represent a 2-torus which is stabilized by a bulk cosmological constant and magnetic flux. The torus has positive constant curvature almost everywhere, except for a single conical singularity at the location of the brane. In contradistinction to the football-shaped case, there is no fine-tuning required for the brane tension. We also present some plausibility arguments why the model should not suffer from serious stability issues.

  1. Bulk Viscous Anisotropic Cosmological Models with Variable G and Λ

    NASA Astrophysics Data System (ADS)

    Pradhan, Anirudh; Yadav, Vinod Kumar; Dolgov, A.

    The Einstein field equations with bulk viscosity and variable G and Λ for Bianchi-type universes are studied under the assumption of a power-law time variation of the expansion factor, achieved via a suitable power-law assumption for the Hubble parameter suggested by M. S. Berman. All the models have a power-law variation of pressure and density and are singular at the epoch t = 0. The variation of G(t) as (1)/(t) and Λ(t) as (1)/(t2) is consistent with these models.

  2. On the formalism of dark energy accretion onto black- and worm-holes

    NASA Astrophysics Data System (ADS)

    Martín-Moruno, Prado

    2008-01-01

    In this work a general formalism for the accretion of dark energy onto astronomical objects, black holes and wormholes, is considered. It is shown that in models with four dimensions or more, any singularity with a divergence in the Hubble parameter may be avoided by a big trip, if it is assumed that there is no coupling between the bulk and this accreting object. If this is not the case in more than four dimensions, the evolution of the cosmological object depends on the particular model.

  3. Particle creation in (2+1) circular dust collapse

    NASA Astrophysics Data System (ADS)

    Gutti, Sashideep; Singh, T. P.

    2007-09-01

    We investigate the quantum particle creation during the circularly symmetric collapse of a 2+1 dust cloud, for the cases when the cosmological constant is either zero or negative. We derive the Ford-Parker formula for the 2+1 case, which can be used to compute the radiated quantum flux in the geometric optics approximation. It is shown that no particles are created when the collapse ends in a naked singularity, unlike in the 3+1 case. When the collapse ends in a Banados-Teitelboim-Zanelli black hole, we recover the expected Hawking radiation.

  4. Shell-crossing in quasi-one-dimensional flow

    NASA Astrophysics Data System (ADS)

    Rampf, Cornelius; Frisch, Uriel

    2017-10-01

    Blow-up of solutions for the cosmological fluid equations, often dubbed shell-crossing or orbit crossing, denotes the breakdown of the single-stream regime of the cold-dark-matter fluid. At this instant, the velocity becomes multi-valued and the density singular. Shell-crossing is well understood in one dimension (1D), but not in higher dimensions. This paper is about quasi-one-dimensional (Q1D) flow that depends on all three coordinates but differs only slightly from a strictly 1D flow, thereby allowing a perturbative treatment of shell-crossing using the Euler-Poisson equations written in Lagrangian coordinates. The signature of shell-crossing is then just the vanishing of the Jacobian of the Lagrangian map, a regular perturbation problem. In essence, the problem of the first shell-crossing, which is highly singular in Eulerian coordinates, has been desingularized by switching to Lagrangian coordinates, and can then be handled by perturbation theory. Here, all-order recursion relations are obtained for the time-Taylor coefficients of the displacement field, and it is shown that the Taylor series has an infinite radius of convergence. This allows the determination of the time and location of the first shell-crossing, which is generically shown to be taking place earlier than for the unperturbed 1D flow. The time variable used for these statements is not the cosmic time t but the linear growth time τ ˜ t2/3. For simplicity, calculations are restricted to an Einstein-de Sitter universe in the Newtonian approximation, and tailored initial data are used. However it is straightforward to relax these limitations, if needed.

  5. Pre-inflationary clues from String Theory?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitazawa, N.; Sagnotti, A., E-mail: kitazawa@phys.se.tmu.ac.jp, E-mail: sagnotti@sns.it

    2014-04-01

    ''Brane supersymmetry breaking'' occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infraredmore » suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the χ{sup 2} fits for the low-ℓ CMB angular power spectrum are clearly compatible with an almost scale invariant behavior, they display nonetheless an eye-catching preference for this type of setting within a perturbative string regime.« less

  6. Lectures on gravitation

    NASA Astrophysics Data System (ADS)

    Das, Ashok

    1. Basics of geometry and relativity. 1.1. Two dimensional geometry. 1.2. Inertial and gravitational masses. 1.3. Relativity -- 2. Relativistic dynamics. 2.1. Relativistic point particle. 2.2. Current and charge densities. 2.3. Maxwell's equations in the presence of sources. 2.4. Motion of a charged particle in EM field. 2.5. Energy-momentum tensor. 2.6. Angular momentum -- 3. Principle of general covariance. 3.1. Principle of equivalence. 3.2. Principle of general covariance. 3.3. Tensor densities -- 4. Affine connection and covariant derivative. 4.1. Parallel transport of a vector. 4.2. Christoffel symbol. 4.3. Covariant derivative of contravariant tensors. 4.4. Metric compatibility. 4.5. Covariant derivative of covariant and mixed tensors. 4.6. Electromagnetic analogy. 4.7. Gradient, divergence and curl -- 5. Geodesic equation. 5.1. Covariant differentiation along a curve. 5.2. Curvature from derivatives. 5.3. Parallel transport along a closed curve. 5.4. Geodesic equation. 5.5. Derivation of geodesic equation from a Lagrangian -- 6. Applications of the geodesic equation. 6.1. Geodesic as representing gravitational effect. 6.2. Rotating coordinate system and the Coriolis force. 6.3. Gravitational red shift. 6.4. Twin paradox and general covariance. 6.5. Other equations in the presence of gravitation -- 7. Curvature tensor and Einstein's equation. 7.1. Curvilinear coordinates versus gravitational field. 7.2. Definition of an inertial coordinate frame. 7.3. Geodesic deviation. 7.4. Properties of the curvature tensor. 7.5. Einstein's equation. 7.6. Cosmological constant. 7.7. Initial value problem. 7.8. Einstein's equation from an action -- 8. Schwarzschild solution. 8.1. Line element. 8.2. Connection. 8.3. Solution of the Einstein equation. 8.4. Properties of the Schwarzschild solution. 8.5. Isotropic coordinates -- 9. Tests of general relativity. 9.1. Radar echo experiment. 9.2. Motion of a particle in a Schwarzschild background. 9.3. Motion of light rays in a Schwarzschild background. 9.4. Perihelion advance of Mercury -- 10. Black holes. 10.1. Singularities of the metric. 10.2. Singularities of the Schwarzschild metric. 10.3. Black holes -- 11. Cosmological models and the big bang theory. 11.1. Homogeneity and isotropy. 11.2. Different models of the universe. 11.3. Hubble's law. 11.4. Evolution equation. 11.5. Big bang theory and blackbody radiation.

  7. On the no-boundary proposal for ekpyrotic and cyclic cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battarra, Lorenzo; Lehners, Jean-Luc, E-mail: lorenzo.battarra@aei.mpg.de, E-mail: jlehners@aei.mpg.de

    2014-12-01

    The no-boundary proposal provides a compelling theory for the initial conditions of our universe. We study the implications of such initial conditions for ekpyrotic and cyclic cosmologies. These cosmologies allow for the existence of a new type of ''ekpyrotic instanton'', which describes the creation of a universe in the ekpyrotic contraction phase. Remarkably, we find that the ekpyrotic attractor can explain how the universe became classical. In a cyclic context, in addition to the ekpyrotic instantons there exist de Sitter-like instantons describing the emergence of the universe in the dark energy phase. Our results show that typically the ekpyrotic instantonsmore » yield a higher probability. In fact, in a potential energy landscape allowing both inflationary and cyclic cosmologies, the no-boundary proposal implies that the probability for ekpyrotic and cyclic initial conditions is vastly higher than that for inflationary ones.« less

  8. Singular-Arc Time-Optimal Trajectory of Aircraft in Two-Dimensional Wind Field

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan

    2006-01-01

    This paper presents a study of a minimum time-to-climb trajectory analysis for aircraft flying in a two-dimensional altitude dependent wind field. The time optimal control problem possesses a singular control structure when the lift coefficient is taken as a control variable. A singular arc analysis is performed to obtain an optimal control solution on the singular arc. Using a time-scale separation with the flight path angle treated as a fast state, the dimensionality of the optimal control solution is reduced by eliminating the lift coefficient control. A further singular arc analysis is used to decompose the original optimal control solution into the flight path angle solution and a trajectory solution as a function of the airspeed and altitude. The optimal control solutions for the initial and final climb segments are computed using a shooting method with known starting values on the singular arc The numerical results of the shooting method show that the optimal flight path angle on the initial and final climb segments are constant. The analytical approach provides a rapid means for analyzing a time optimal trajectory for aircraft performance.

  9. Stability analysis and future singularity of the m{sup 2} R □{sup -2} R model of non-local gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirian, Yves; Mitsou, Ermis, E-mail: yves.dirian@unige.ch, E-mail: ermis.mitsou@unige.ch

    2014-10-01

    We analyse the classical stability of the model proposed by Maggiore and Mancarella, where gravity is modified by a term ∼ m{sup 2} R □{sup -2} R to produce the late-time acceleration of the expansion of the universe. Our study takes into account all excitations of the metric that can potentially drive an instability. There are some subtleties in identifying these modes, as a non-local field theory contains dynamical fields which yet do not correspond to degrees of freedom. Since some of them are ghost-like, we clarify the impact of such modes on the stability of the solutions of interest that are the flatmore » space-time and cosmological solutions. We then find that flat space-time is unstable under scalar perturbations, but the instability manifests itself only at cosmological scales, i.e. out of the region of validity of this solution. It is therefore the stability of the FLRW solution which is relevant there, in which case the scalar perturbations are known to be well-behaved by numerical studies. By finding the analytic solution for the late-time behaviour of the scale factor, which leads to a big rip singularity, we argue that the linear perturbations are bounded in the future because of the domination of Hubble friction. In particular, this effect damps the scalar ghost perturbations which were responsible for destabilizing Minkowski space-time. Thus, the model remains phenomenologically viable.« less

  10. PREFACE: The Sixth International Conference on Gravitation & Cosmology

    NASA Astrophysics Data System (ADS)

    Date, Ghanashyam; Souradeep, Tarun

    2008-07-01

    The sixth International Conference on Gravitation & Cosmology (ICGC-2007) was organized at IUCAA, Pune, 17-21 December 2007. This series of international meetings, held every four years under the auspices of the Indian Association for General Relativity and Gravitation (IAGRG), has now spanned two decades. Previous ICGC meetings were held at Cochin University of Science and Technology (2004), Indian Institute of Technology, Kharagpur (2000), IUCAA, Pune (1995), Physical Research Laboratory, Ahmedabad (1991) & Goa (1987). These meetings have broad international participation and feature leading experts in the field of Cosmology, gravitational waves and quantum gravity. The frontier of research in Gravitation and Cosmology has seen remarkable progress in the past decades. On the theoretical front, black holes and cosmological singularities continue to challenge and attract quantum gravity researchers. The quest for the detection of Gravitational waves and the promise of gravitational wave astronomy continues to grow and breakthroughs of the past couple of years indicate that numerical relativity is catching up too. The past few years have also seen very ambitious experimental efforts to verify general relativity as the theory of gravitation. Cosmology has been veritably transformed into a precision science with the tremendous improvement in the quantity and quality of cosmological observations. The exquisite measurements not only allow refinement of the cosmological model parameters but have begun to allow observational tests of underlying fundamental assumptions and hunt for subtle deviations that could be the key to understanding the early universe. The sixth meeting brought together active scientists from all over the globe to present the state of the art at the frontiers of research. It also offered younger Indian researchers an opportunity for interaction with experts from within India and abroad. The meeting was attended by over 160 participants. The scientific programme had 21 plenary talks on current theoretical, observational and experimental topics in Cosmology, General Relativity, detection of gravitational waves, and various approaches to Quantum gravity. The meeting also included three intensive parallel workshops focused on Cosmology, Classical General Relativity & Gravitational waves and Quantum Gravity, respectively. The workshops had around 75 oral presentations. The immensely rich and diverse scientific programme was highlighted in the concluding remarks by the late Professor Juergen Ehlers. A public lecture on `Oldest light in the Universe' by NASA scientist, Professor Gary Hinshaw, who is a member of the WMAP team (formerly, also a member of the COBE-DMR team that won the Nobel prize in 2006) was also organized as part of ICGC-07 and drew sizable audience from the public in Pune. The proceedings contains articles by the plenary speakers, the concluding remarks and a summary of each of the three workshops. We also include an obituary for Professor Juergen Ehlers, who passed away on 20 May 2008. The sentiments expressed in the obituary are shared by the editors and members of IAGRG. Professor Ehlers had participated very actively during the meeting and delivered an excellent concluding talk on the conference. We are indeed fortunate to able to include in this volume, what is perhaps, his last article. A possible reflection of the tight schedule of researchers in the booming period of research in Cosmology and Gravitation is the number of missing articles by plenary speakers. Due to various reasons, we were able to get only 11 of the 21 plenary talks for publication in this volume. In order to ensure that the volume is published within a year of the conference, we decided to publish the proceedings with the available articles. The meeting was financially supported by generous contribution from Indian organizations: ISRO, CSIR, DST, BNRS and IAGRG; and from Indian institutes: HRI (Allahabad), IIA (Bangalore), IMSc (Chennai), RRI (Bangalore), SINP (Kolkata) and IUCAA. The conference banquet was sponsored by Hewlett-Packard and the reception dinner was sponsored by the Bank of Baroda. We thank them all. It is a pleasure to thank Professor Naresh Dadhich, Director, IUCAA, members of the IAGRG council, members of the SOC and members of the LOC for their pivotal role in the organization of the conference, and the speakers, the participants, and the IUCAA staff for their efforts which made the sixth ICGC a very successful meeting. Ghanashyam Date Institute for Mathematical Science, Chennai Tarun Souradeep Inter-University Centre for Astronomy & Astrophysics, Pune Scientific Organizing Committee Ghanashyam Date (Chairman, SOC, IMSc, India) Abhay Ashtekar (Pennsylvania State Univ., US) Bhuvnesh Jain (Univ. of Pennsylvania, US) Carlo Rovelli (CPT, Marseille, France) Clifford M. Will (Washington Univ., US) Gabriela Gonza'lez (Lousiana State Univ., US) Hideo Kodama (Kyoto Univ. Japan) John Ellis (CERN, Switzerland) Luc Blanchet (IAP, France) Madhavan Varadarajan (RRI, India) Masaru Shibata (Univ. of Tokyo, Japan) Narayan Banerjee (Jadavpur Univ. India) Parthasarathi Mitra (SINP, India) Rajesh Gopakumar (HRI, India) Sanjeev Dhurandhar (IUCAA, India) Somnath Bharadwaj (IITKGP, India) Subhendra Mohanty (PRL, India) Subir Sarkar (Univ. of Oxford, UK) Tarun Souradeep (IUCAA, India) T. P. Singh (TIFR, India) Local Organizing Committee Tarun Souradeep (Chairman, LOC) Biswajit Pandey Gaurang Mahajan Manjiri Mahabal Maulik Parikh Minu Joy Moumita Aich Niranjan Abhyankar Nirupama Bawdekar Ratna Rao Saugata Chatterjee Savita Dalvi Sharanya Sur Snehlata Shankar Subharthi Ray Sudhanshu Barway Tuhin Ghosh Plenary Speakers and Talks The Plenary Talks are available at http://meghnad.iucaa.ernet.in/~icgc07/ Gary Hinshaw Status of WMAP Data Andrew Jaffe The Future of CMB Studies Subir Sarkar Cosmology beyond the Standard Model HongSheng Zhao Dark Matter and Dark Energy: Puzzles and an Alternative Solution Subhabrata Majumdar Cosmology with Clusters David Langlois Cosmological Perturbations from Inflation John Conklin The Gravity Probe B Experiment and Results B. Sathyaprakash Physics, Astrophysics and Cosmology with Gravitational Waves Rana Adhikari Survey of Gravitational Waves Experiments John Baker Survey of Numerical Relativity Results Maria Alessandra Papa Data Analysis for Gravitational Wave Detectors Alessandra Buonanno Interfacing analytical and numerical relativity in modeling binary black hole coalescences Andy Fabian X-ray detection of spinning black hole Alejandro Corichi Black Holes in Loop Quantum Gravity Madhavan Varadarajan Black Hole Information Loss Puzzle in LQG Parampreet Singh Big Bang Singularity Resolution in Loop Quantum Cosmology Sumit Das Cosmological Singularities in String Theory and Gauge-Gravity Duality Samir Mathur What do black holes tell us about the state of the early Universe? Martin Reuter Asymptotic Safety in Quantum Gravity Keiichi Maeda Beyond the Einstein-Hilbert Action Jurgen Ehlers Concluding Remarks

  11. Naked singularity, firewall, and Hawking radiation.

    PubMed

    Zhang, Hongsheng

    2017-06-21

    Spacetime singularity has always been of interest since the proof of the Penrose-Hawking singularity theorem. Naked singularity naturally emerges from reasonable initial conditions in the collapsing process. A recent interesting approach in black hole information problem implies that we need a firewall to break the surplus entanglements among the Hawking photons. Classically, the firewall becomes a naked singularity. We find some vacuum analytical solutions in R n -gravity of the firewall-type and use these solutions as concrete models to study the naked singularities. By using standard quantum theory, we investigate the Hawking radiation emitted from the black holes with naked singularities. Here we show that the singularity itself does not destroy information. A unitary quantum theory works well around a firewall-type singularity. We discuss the validity of our result in general relativity. Further our result demonstrates that the temperature of the Hawking radiation still can be expressed in the form of the surface gravity divided by 2π. This indicates that a naked singularity may not compromise the Hakwing evaporation process.

  12. An infrared divergence in the cosmological measure theory and the anthropic reasoning

    NASA Astrophysics Data System (ADS)

    Yurov, A. V.; Yurov, V. A.; Astashenok, A. V.; Shpilevoi, A. A.

    2011-10-01

    An anthropic principle has made it possible to answer the difficult question of why the observable value of cosmological constant ( Λ˜10-47 GeV4) is so disconcertingly tiny compared to the predicted value of vacuum energy density ρ SUSY˜1012 GeV4. Unfortunately, there is a darker side to this argument; being combined with the cosmic heat death scenario, it consequently leads to another absurd prediction: the probability of randomly selected observer observing Λ=0 ends up being exactly equal to 1. We shall call this controversy an infrared divergence problem. It is shown that the IRD prediction can be avoided with the help of a singular runaway measure coupled with the calculation of relative Bayesian probabilities by the means of the doomsday argument. Moreover, it is shown that while the IRD problem occurs for the prediction stage of value of Λ, it disappears at the explanatory stage when Λ has already been measured by the observer.

  13. Finite Cosmology and a CMB Cold Spot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, R.J.; /Stanford U., HEPL; Bjorken, J.D.

    2006-03-20

    The standard cosmological model posits a spatially flat universe of infinite extent. However, no observation, even in principle, could verify that the matter extends to infinity. In this work we model the universe as a finite spherical ball of dust and dark energy, and obtain a lower limit estimate of its mass and present size: the mass is at least 5 x 10{sup 23}M{sub {circle_dot}} and the present radius is at least 50 Gly. If we are not too far from the dust-ball edge we might expect to see a cold spot in the cosmic microwave background, and there mightmore » be suppression of the low multipoles in the angular power spectrum. Thus the model may be testable, at least in principle. We also obtain and discuss the geometry exterior to the dust ball; it is Schwarzschild-de Sitter with a naked singularity, and provides an interesting picture of cosmogenesis. Finally we briefly sketch how radiation and inflation eras may be incorporated into the model.« less

  14. Integrability from point symmetries in a family of cosmological Horndeski Lagrangians

    NASA Astrophysics Data System (ADS)

    Dimakis, N.; Giacomini, Alex; Paliathanasis, Andronikos

    2017-07-01

    For a family of Horndeski theories, formulated in terms of a generalized Galileon model, we study the integrability of the field equations in a Friedmann-Lemaître-Robertson-Walker space-time. We are interested in point transformations which leave invariant the field equations. Noether's theorem is applied to determine the conservation laws for a family of models that belong to the same general class. The cosmological scenarios with or without an extra perfect fluid with constant equation of state parameter are the two important cases of our study. The de Sitter universe and ideal gas solutions are derived by using the invariant functions of the symmetry generators as a demonstration of our result. Furthermore, we discuss the connection of the different models under conformal transformations while we show that when the Horndeski theory reduces to a canonical field the same holds for the conformal equivalent theory. Finally, we discuss how singular solutions provides nonsingular universes in a different frame and vice versa.

  15. Solutions on a brane in a bulk spacetime with Kalb–Ramond field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Sumanta, E-mail: sumanta@iucaa.in; SenGupta, Soumitra, E-mail: tpssg@iacs.res.in

    Effective gravitational field equations on a brane have been derived, when the bulk spacetime is endowed with the second rank antisymmetric Kalb–Ramond field. Since both the graviton and the Kalb–Ramond field are closed string excitations, they can propagate in the bulk. After deriving the effective gravitational field equations on the brane, we solve them for a static spherically symmetric solution. It turns out that the solution so obtained represents a black hole or naked singularity depending on the parameter space of the model. The stability of this model is also discussed. Cosmological solutions to the gravitational field equations have beenmore » obtained, where the Kalb–Ramond field is found to behave as normal pressure free matter. For certain specific choices of the parameters in the cosmological solution, the solution exhibits a transition in the behaviour of the scale factor and hence a transition in the expansion history of the universe. The possibility of accelerated expansion of the universe in this scenario is also discussed.« less

  16. Entangled singularity patterns of photons in Ince-Gauss modes

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Fickler, Robert; Huber, Marcus; Lapkiewicz, Radek; Plick, William; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional quantum experiments and for novel quantum information tasks. Here we show entanglement of photons with complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number of singularities vary depending on the mode parameters. We verify two-dimensional and three-dimensional entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we nonlocally steer the singularity structure of its entangled partner, while the initial singularity structure of the photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible use in future quantum communication protocols.

  17. Linear perturbations in spherically symmetric dust cosmologies including a cosmological constant

    NASA Astrophysics Data System (ADS)

    Meyer, Sven; Bartelmann, Matthias

    2017-12-01

    We study the dynamical behaviour of gauge-invariant linear perturbations in spherically symmetric dust cosmologies including a cosmological constant. In contrast to spatially homogeneous FLRW models, the reduced degree of spatial symmetry causes a non-trivial dynamical coupling of gauge-invariant quantities already at first order perturbation theory and the strength and influence of this coupling on the spacetime evolution is investigated here. We present results on the underlying dynamical equations augmented by a cosmological constant and integrate them numerically. We also present a method to derive cosmologically relevant initial variables for this setup. Estimates of angular power spectra for each metric variable are computed and evaluated on the central observer's past null cone. By comparing the full evolution to the freely evolved initial profiles, the coupling strength will be determined for a best fit radially inhomogeneous patch obtained in previous works (see [1]). We find that coupling effects are not noticeable within the cosmic variance limit and can therefore safely be neglected for a relevant cosmological scenario. On the contrary, we find very strong coupling effects in a best fit spherical void model matching the distance redshift relation of SNe which is in accordance with previous findings using parametric void models.

  18. Relativistic initial conditions for N-body simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fidler, Christian; Tram, Thomas; Crittenden, Robert

    2017-06-01

    Initial conditions for (Newtonian) cosmological N-body simulations are usually set by re-scaling the present-day power spectrum obtained from linear (relativistic) Boltzmann codes to the desired initial redshift of the simulation. This back-scaling method can account for the effect of inhomogeneous residual thermal radiation at early times, which is absent in the Newtonian simulations. We analyse this procedure from a fully relativistic perspective, employing the recently-proposed Newtonian motion gauge framework. We find that N-body simulations for ΛCDM cosmology starting from back-scaled initial conditions can be self-consistently embedded in a relativistic space-time with first-order metric potentials calculated using a linear Boltzmann code.more » This space-time coincides with a simple ''N-body gauge'' for z < 50 for all observable modes. Care must be taken, however, when simulating non-standard cosmologies. As an example, we analyse the back-scaling method in a cosmology with decaying dark matter, and show that metric perturbations become large at early times in the back-scaling approach, indicating a breakdown of the perturbative description. We suggest a suitable ''forwards approach' for such cases.« less

  19. Initial conditions for accurate N-body simulations of massive neutrino cosmologies

    NASA Astrophysics Data System (ADS)

    Zennaro, M.; Bel, J.; Villaescusa-Navarro, F.; Carbone, C.; Sefusatti, E.; Guzzo, L.

    2017-04-01

    The set-up of the initial conditions in cosmological N-body simulations is usually implemented by rescaling the desired low-redshift linear power spectrum to the required starting redshift consistently with the Newtonian evolution of the simulation. The implementation of this practical solution requires more care in the context of massive neutrino cosmologies, mainly because of the non-trivial scale-dependence of the linear growth that characterizes these models. In this work, we consider a simple two-fluid, Newtonian approximation for cold dark matter and massive neutrinos perturbations that can reproduce the cold matter linear evolution predicted by Boltzmann codes such as CAMB or CLASS with a 0.1 per cent accuracy or below for all redshift relevant to non-linear structure formation. We use this description, in the first place, to quantify the systematic errors induced by several approximations often assumed in numerical simulations, including the typical set-up of the initial conditions for massive neutrino cosmologies adopted in previous works. We then take advantage of the flexibility of this approach to rescale the late-time linear power spectra to the simulation initial redshift, in order to be as consistent as possible with the dynamics of the N-body code and the approximations it assumes. We implement our method in a public code (REPS rescaled power spectra for initial conditions with massive neutrinos https://github.com/matteozennaro/reps) providing the initial displacements and velocities for cold dark matter and neutrino particles that will allow accurate, I.e. 1 per cent level, numerical simulations for this cosmological scenario.

  20. Finding a spherically symmetric cosmology from observations in observational coordinates — advantages and challenges

    NASA Astrophysics Data System (ADS)

    Araújo, M. E.; Stoeger, W. R.

    2011-07-01

    One of the continuing challenges in cosmology has been to determine the large-scale space-time metric from observations with a minimum of assumptions — without, for instance, assuming that the universe is almost Friedmann-Lemaître-Robertson-Walker (FLRW). If we are lucky enough this would be a way of demonstrating that our universe is FLRW, instead of presupposing it or simply showing that the observations are consistent with FLRW. Showing how to do this within the more general spherically symmetric, inhomogeneous space-time framework takes us a long way towards fulfilling this goal. In recent work researchers have shown how this can be done both in the traditional Lemaître-Tolman-Bondi (LTB) 3 + 1 coordinate framework, and in the observational coordinate (OC) framework, in which the radial coordinate y is null (light-like) and measured down the past light cone of the observer. In this paper we investigate the stability of solutions, and the use of data in the OC field equations including their time evolution — i.e. our procedure is not restricted to our past light cone — and compare both approaches with respect to the singularity problem at the maximum of the angular-diameter distance, the stability of solutions, and the use of data in the field equations. We also compare the two approaches with regard to determining the cosmological constant Λ. This allows a more detailed account and assessment of the OC integration procedure, and enables a comparison of the relative advantages of the two equivalent solution frameworks. Both formulations and integration procedures should, in principle, lead to the same results. However, as we show in this paper, the OC procedure manifests certain advantages, particularly in the avoidance of coordinate singularities at the maximum of the angular-diameter distance, and in the stability of the solutions obtained. This particular feature is what allows us to do the best fitting of the data to smooth data functions and the possibility of constructing analytic solutions to the field equations. Smoothed data functions enable us to include properties that data must have within the model.

  1. Nonsingular cosmology with a scale-invariant spectrum of cosmological perturbations from Lee-Wick theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Yifu; Qiu Taotao; Brandenberger, Robert

    2009-07-15

    We study the cosmology of a Lee-Wick type scalar field theory. First, we consider homogeneous and isotropic background solutions and find that they are nonsingular, leading to cosmological bounces. Next, we analyze the spectrum of cosmological perturbations which result from this model. Unless either the potential of the Lee-Wick theory or the initial conditions are finely tuned, it is impossible to obtain background solutions which have a sufficiently long period of inflation after the bounce. More interestingly, however, we find that in the generic noninflationary bouncing cosmology, perturbations created from quantum vacuum fluctuations in the contracting phase have the correctmore » form to lead to a scale-invariant spectrum of metric inhomogeneities in the expanding phase. Since the background is nonsingular, the evolution of the fluctuations is defined unambiguously through the bounce. We also analyze the evolution of fluctuations which emerge from thermal initial conditions in the contracting phase. The spectrum of gravitational waves stemming from quantum vacuum fluctuations in the contracting phase is also scale-invariant, and the tensor to scalar ratio is not suppressed.« less

  2. Classical analogous of quantum cosmological perfect fluid models

    NASA Astrophysics Data System (ADS)

    Batista, A. B.; Fabris, J. C.; Gonçalves, S. V. B.; Tossa, J.

    2001-05-01

    Quantization in the minisuperspace of a gravity system coupled to a perfect fluid, leads to a solvable model which implies singularity free solutions through the construction of a superposition of the wavefunctions. We show that such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid with an equation of state pQ= ρQ is present. This leads to speculate on the true nature of this quantization procedure. A perturbative analysis of the classical system reveals the condition for the stability of the classical system in terms of the existence of an anti-gravity phase.

  3. Integrability in conformally coupled gravity: Taub-NUT spacetimes and rotating black holes

    NASA Astrophysics Data System (ADS)

    Bardoux, Yannis; Caldarelli, Marco M.; Charmousis, Christos

    2014-05-01

    We consider four dimensional stationary and axially symmetric spacetimes for conformally coupled scalar-tensor theories. We show that, in analogy to the Lewis-Papapetrou problem in General Relativity (GR), the theory at hand can be recast in an analogous integrable form. We give the relevant rod formalism, introduced by Weyl for vacuum GR, explicitly giving the rod structure of the black hole of Bocharova et al. and Bekenstein (BBMB), in complete analogy to the Schwarzschild solution. The additional scalar field is shown to play the role of an extra Weyl potential. We then employ the Ernst method as a concrete solution generating example to obtain the Taub-NUT version of the BBMB hairy black hole. The solution is easily extended to include a cosmological constant. We show that the anti-de Sitter hyperbolic version of this solution is free of closed timelike curves that plague usual Taub-NUT metrics, and thus consists of a rotating, asymptotically locally anti-de Sitter black hole. This stationary solution has no curvature singularities whatsoever in the conformal frame, and the NUT charge is shown here to regularize the central curvature singularity of the corresponding static black hole. Given our findings we discuss the anti-de Sitter hyperbolic version of Taub-NUT in four dimensions, and show that the curvature singularity of the NUT-less solution is now replaced by a neighbouring chronological singularity screened by horizons. We argue that the properties of this rotating black hole are very similar to those of the rotating BTZ black hole in three dimensions.

  4. Inhomogeneous anisotropic cosmology

    DOE PAGES

    Kleban, Matthew; Senatore, Leonardo

    2016-10-12

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less

  5. Inhomogeneous anisotropic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleban, Matthew; Senatore, Leonardo

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here in this paper, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with "flat'' (including toroidal) and "open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarilymore » large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with "flat'' or "open" topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less

  6. Inhomogeneous anisotropic cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleban, Matthew; Senatore, Leonardo; Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuationsmore » and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.« less

  7. Singularity: Scientific containers for mobility of compute.

    PubMed

    Kurtzer, Gregory M; Sochat, Vanessa; Bauer, Michael W

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science.

  8. Singularity: Scientific containers for mobility of compute

    PubMed Central

    Kurtzer, Gregory M.; Bauer, Michael W.

    2017-01-01

    Here we present Singularity, software developed to bring containers and reproducibility to scientific computing. Using Singularity containers, developers can work in reproducible environments of their choosing and design, and these complete environments can easily be copied and executed on other platforms. Singularity is an open source initiative that harnesses the expertise of system and software engineers and researchers alike, and integrates seamlessly into common workflows for both of these groups. As its primary use case, Singularity brings mobility of computing to both users and HPC centers, providing a secure means to capture and distribute software and compute environments. This ability to create and deploy reproducible environments across these centers, a previously unmet need, makes Singularity a game changing development for computational science. PMID:28494014

  9. Singular flow dynamics in three space dimensions driven by advection

    NASA Astrophysics Data System (ADS)

    Karimov, A. R.; Schamel, H.

    2002-03-01

    The initial value problem of an ideal, compressible fluid is investigated in three space dimensions (3D). Starting from a situation where the inertia terms dominate over the force terms in Euler's equation we explore by means of the Lagrangian flow description the basic flow properties. Special attention is drawn to the appearance of singularities in the flow pattern at finite time. Classes of initial velocity profiles giving rise to collapses of density and vorticity are found. This paper, hence, furnishes evidence of focused singularities for coherent structures obeying the 3D Euler equation and applies to potential as well as vortex flows.

  10. Cosmology and particle physics

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.

    1988-01-01

    The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.

  11. Coarse graining the distribution function of cold dark matter - II

    NASA Astrophysics Data System (ADS)

    Henriksen, R. N.

    2004-12-01

    We study analytically the coarse- and fine-grained distribution function (DF) established by the self-similar infall of collisionless matter. We find this function explicitly for isotropic and spherically symmetric systems in terms of cosmological initial conditions. The coarse-grained function is structureless and steady but the familiar phase-space sheet substructure is recovered in the fine-grained limit. By breaking the self-similarity of the halo infall we are able to argue for a central density flattening. In addition there will be an edge steepening. The best-fitting analytic density function is likely to be provided by a high-order polytrope fit smoothly to an outer power law of index -3 for isolated systems. There may be a transition to a -4 power law in the outer regions of tidally truncated systems. As we find that the central flattening is progressive in time, dynamically young systems such as galaxy clusters may well possess a Navarro, Frenk and White type density profile, while primordial dwarf galaxies, for example, are expected to have cores. This progressive flattening is expected to end either in the non-singular isothermal sphere, or in the non-singular metastable polytropic cores; as the DFs associated with each of these arise naturally in the bulk halo during the infall. We suggest, based on previous studies of the evolution of de-stabilized polytropes, that a collisionless system may pass through a family of polytropes of increasing order, finally approaching the limit of the non-singular isothermal sphere, if the `violent' collective relaxation is frequently re-excited by `merger' events. Thus central dominant (cD) galaxies, and indeed all bright galaxies that have grown in this fashion, should be in polytropic states. Our results suggest that no physics beyond that of wave-particle scattering is necessary to explain the nature of dark matter density profiles. However, this may be assisted by the scattering of particles from the centre of the system by the infall of dwarf galaxies, galactic nuclei or black holes (e.g. Nakano & Makino), all of which would restart pure dynamical relaxation.

  12. Initial-boundary layer associated with the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system

    NASA Astrophysics Data System (ADS)

    Fei, Mingwen; Han, Daozhi; Wang, Xiaoming

    2017-01-01

    In this paper, we study the vanishing Darcy number limit of the nonlinear Darcy-Brinkman-Oberbeck-Boussinesq system (DBOB). This singular perturbation problem involves singular structures both in time and in space giving rise to initial layers, boundary layers and initial-boundary layers. We construct an approximate solution to the DBOB system by the method of multiple scale expansions. The convergence with optimal convergence rates in certain Sobolev norms is established rigorously via the energy method.

  13. Forbidden tangential orbit transfers between intersecting Keplerian orbits

    NASA Technical Reports Server (NTRS)

    Burns, Rowland E.

    1990-01-01

    The classical problem of tangential impulse transfer between coplanar Keplerian orbits is addressed. A completely analytic solution which does not rely on sequential calculation is obtained and this solution is used to demonstrate that certain initially chosen angles can produce singularities in the parameters of the transfer orbit. A necessary and sufficient condition for such singularities is that the initial and final orbits intersect.

  14. Quantum supersymmetric Bianchi IX cosmology

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Spindel, Philippe

    2014-11-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle effect" between small-volume universes and large-volume ones, and to a possible reduction of the continuous spectrum to a discrete spectrum of quantum states looking like excited versions of the Planckian-size universes described by the discrete states at fermionic levels NF=0 and 1.

  15. Singularities in water waves and Rayleigh-Taylor instability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1991-01-01

    Singularities in inviscid two-dimensional finite-amplitude water waves and inviscid Rayleigh-Taylor instability are discussed. For the deep water gravity waves of permanent form, through a combination of analytical and numerical methods, results describing the precise form, number, and location of singularities in the unphysical domain as the wave height is increased are presented. It is shown how the information on the singularity in the unphysical region has the same form as for deep water waves. However, associated with such a singularity is a series of image singularities at increasing distances from the physical plane with possibly different behavior. Furthermore, for the Rayleigh-Taylor problem of motion of fluid over a vacuum and for the unsteady water wave problem, integro-differential equations valid in the unphysical region are derived, and how these equations can give information on the nature of singularities for arbitrary initial conditions is shown.

  16. Emergent universe with wormholes in massive gravity

    NASA Astrophysics Data System (ADS)

    Paul, B. C.; Majumdar, A. S.

    2018-03-01

    An emergent universe (EU) scenario is proposed to obtain a universe free from big-bang singularity. In this framework the present universe emerged from a static Einstein universe phase in the infinite past. A flat EU scenario is found to exist in Einstein’s gravity with a non-linear equation of state (EoS). It has been shown subsequently that a physically realistic EU model can be obtained considering cosmic fluid composed of interacting fluids with a non-linear equation of state. It results a viable cosmological model accommodating both early inflation and present accelerating phases. In the present paper, the origin of an initial static Einstein universe needed in the EU model is explored in a massive gravity theory which subsequently emerged to be a dynamically evolving universe. A new gravitational instanton solution in a flat universe is obtained in the massive gravity theory which is a dynamical wormhole that might play an important role in realizing the origin of the initial state of the emergent universe. The emergence of a Lorentzian universe from a Euclidean gravity is understood by a Wick rotation τ = i t . A universe with radiation at the beginning finally transits into the present observed universe with a non-linear EoS as the interactions among the fluids set in. Thus a viable flat EU scenario where the universe stretches back into time infinitely, with no big bang is permitted in a massive gravity.

  17. Anisotropic k-essence cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chimento, Luis P.; Forte, Monica

    We investigate a Bianchi type-I cosmology with k-essence and find the set of models which dissipate the initial anisotropy. There are cosmological models with extended tachyon fields and k-essence having a constant barotropic index. We obtain the conditions leading to a regular bounce of the average geometry and the residual anisotropy on the bounce. For constant potential, we develop purely kinetic k-essence models which are dust dominated in their early stages, dissipate the initial anisotropy, and end in a stable de Sitter accelerated expansion scenario. We show that linear k-field and polynomial kinetic function models evolve asymptotically to Friedmann-Robertson-Walker cosmologies.more » The linear case is compatible with an asymptotic potential interpolating between V{sub l}{proportional_to}{phi}{sup -{gamma}{sub l}}, in the shear dominated regime, and V{sub l}{proportional_to}{phi}{sup -2} at late time. In the polynomial case, the general solution contains cosmological models with an oscillatory average geometry. For linear k-essence, we find the general solution in the Bianchi type-I cosmology when the k field is driven by an inverse square potential. This model shares the same geometry as a quintessence field driven by an exponential potential.« less

  18. Cosmic curvature from de Sitter equilibrium cosmology.

    PubMed

    Albrecht, Andreas

    2011-10-07

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  19. Loop quantum cosmology with self-dual variables

    NASA Astrophysics Data System (ADS)

    Wilson-Ewing, Edward

    2015-12-01

    Using the complex-valued self-dual connection variables, the loop quantum cosmology of a closed Friedmann space-time coupled to a massless scalar field is studied. It is shown how the reality conditions can be imposed in the quantum theory by choosing a particular inner product for the kinematical Hilbert space. While holonomies of the self-dual Ashtekar connection are not well defined in the kinematical Hilbert space, it is possible to introduce a family of generalized holonomylike operators of which some are well defined; these operators in turn are used in the definition of the Hamiltonian constraint operator where the scalar field can be used as a relational clock. The resulting quantum theory is closely related, although not identical, to standard loop quantum cosmology constructed from the Ashtekar-Barbero variables with a real Immirzi parameter. Effective Friedmann equations are derived which provide a good approximation to the full quantum dynamics for sharply peaked states whose volume remains much larger than the Planck volume, and they show that for these states quantum gravity effects resolve the big-bang and big-crunch singularities and replace them by a nonsingular bounce. Finally, the loop quantization in self-dual variables of a flat Friedmann space-time is recovered in the limit of zero spatial curvature and is identical to the standard loop quantization in terms of the real-valued Ashtekar-Barbero variables.

  20. Predictability of a Coupled Model of ENSO Using Singular Vector Analysis: Optimal Growth and Forecast Skill.

    NASA Astrophysics Data System (ADS)

    Xue, Yan

    The optimal growth and its relationship with the forecast skill of the Zebiak and Cane model are studied using a simple statistical model best fit to the original nonlinear model and local linear tangent models about idealized climatic states (the mean background and ENSO cycles in a long model run), and the actual forecast states, including two sets of runs using two different initialization procedures. The seasonally varying Markov model best fit to a suite of 3-year forecasts in a reduced EOF space (18 EOFs) fits the original nonlinear model reasonably well and has comparable or better forecast skill. The initial error growth in a linear evolution operator A is governed by the eigenvalues of A^{T}A, and the square roots of eigenvalues and eigenvectors of A^{T}A are named singular values and singular vectors. One dominant growing singular vector is found, and the optimal 6 month growth rate is largest for a (boreal) spring start and smallest for a fall start. Most of the variation in the optimal growth rate of the two forecasts is seasonal, attributable to the seasonal variations in the mean background, except that in the cold events it is substantially suppressed. It is found that the mean background (zero anomaly) is the most unstable state, and the "forecast IC states" are more unstable than the "coupled model states". One dominant growing singular vector is found, characterized by north-south and east -west dipoles, convergent winds on the equator in the eastern Pacific and a deepened thermocline in the whole equatorial belt. This singular vector is insensitive to initial time and optimization time, but its final pattern is a strong function of initial states. The ENSO system is inherently unpredictable for the dominant singular vector can amplify 5-fold to 24-fold in 6 months and evolve into the large scales characteristic of ENSO. However, the inherent ENSO predictability is only a secondary factor, while the mismatches between the model and data is a primary factor controlling the current forecast skill.

  1. Linearized Israel matching conditions for cosmological perturbations in a moving brane background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucher, Martin; DAMTP, University of Cambridge, Cambridge CB3 0WA; Carvalho, Carla

    2005-04-15

    In the Randall-Sundrum cosmological models, a (3+1)-dimensional brane subject to a Z{sub 2} orbifold symmetry is embedded in a (4+1)-dimensional bulk spacetime empty except for a negative cosmological constant. The unperturbed braneworld cosmological solutions, subject to homogeneity and isotropy in the three transverse spatial dimensions, are most simply presented by means of a moving brane description. Owing to a generalization of Birkhoff's theorem, as long as there are no perturbations violating the three-dimensional spatial homogeneity and isotropy, the bulk spacetime remains stationary and trivial. For the spatially flat case, the bulk spacetime is described by one of three bulk solutions:more » a pure AdS{sup 5} solution, an AdS{sup 5}-Schwarzschild black hole solution, or an AdS{sup 5}-Schwarzschild naked singularity solution. The brane moves on the boundary of one of these simple bulk spacetimes, its trajectory determined by the evolution of the stress-energy localized on the brane. We derive here the form of the Israel matching conditions for the linearized cosmological perturbations in this moving brane picture. These Israel matching conditions must be satisfied in any gauge. However, they are not sufficient to determine how to describe in a specific gauge the reflection of the bulk gravitational waves off the brane boundary. In this paper we adopt a fully covariant Lorentz gauge condition in the bulk and find the supplementary gauge conditions that must be imposed on the boundary to ensure that the reflected waves do not violate the Lorentz gauge condition. Compared to the form obtained from Gaussian normal coordinates, the form of the Israel matching conditions obtained here is more complex. However, the propagation of the bulk gravitons is simpler because the coordinates used for the background exploit fully the symmetry of the bulk background solution.« less

  2. Resurgence and hydrodynamic attractors in Gauss-Bonnet holography

    NASA Astrophysics Data System (ADS)

    Casalderrey-Solana, Jorge; Gushterov, Nikola I.; Meiring, Ben

    2018-04-01

    We study the convergence of the hydrodynamic series in the gravity dual of Gauss-Bonnet gravity in five dimensions with negative cosmological constant via holography. By imposing boost invariance symmetry, we find a solution to the Gauss-Bonnet equation of motion in inverse powers of the proper time, from which we can extract high order corrections to Bjorken flow for different values of the Gauss-Bonnet parameter λGB. As in all other known examples the gradient expansion is, at most, an asymptotic series which can be understood through applying the techniques of Borel-Padé summation. As expected from the behaviour of the quasi-normal modes in the theory, we observe that the singularities in the Borel plane of this series show qualitative features that interpolate between the infinitely strong coupling limit of N=4 Super Yang Mills theory and the expectation from kinetic theory. We further perform the Borel resummation to constrain the behaviour of hydrodynamic attractors beyond leading order in the hydrodynamic expansion. We find that for all values of λGB considered, the convergence of different initial conditions to the resummation and its hydrodynamization occur at large and comparable values of the pressure anisotropy.

  3. The Cosmological Dependence of Galaxy Cluster Morphologies

    NASA Astrophysics Data System (ADS)

    Crone, Mary Margaret

    1995-01-01

    Measuring the density of the universe has been a fundamental problem in cosmology ever since the "Big Bang" model was developed over sixty years ago. In this simple and successful model, the age and eventual fate of the universe are determined by its density, its rate of expansion, and the value of a universal "cosmological constant". Analytic models suggest that many properties of galaxy clusters are sensitive to cosmological parameters. In this thesis, I use N-body simulations to examine cluster density profiles, abundances, and degree of subclustering to test the feasibility of using them as cosmological tests. The dependence on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k)~ k n. Einstein-deSitter ( Omegao=1), open ( Omegao=0.2 and 0.1) and flat, low density (Omegao=0.2, lambdao=0.8) models are studied, with initial spectral indices n=-2, -1 and 0. Of particular interest are the results for cluster profiles and substructure. The average density profiles are well fit by a power law p(r)~ r ^{-alpha} for radii where the local density contrast is between 100 and 3000. There is a clear trend toward steeper slopes with both increasing n and decreasing Omegao, with profile slopes in the open models consistently higher than Omega=1 values for the range of n examined. The amount of substructure in each model is quantified and explained in terms of cluster merger histories and the behavior of substructure statistics. The statistic which best distinguishes models is a very simple measure of deviations from symmetry in the projected mass distribution --the "Center-of-Mass Shift" as a function of overdensity. Some statistics which are quite sensitive to substructure perform relatively poorly as cosmological indicators. Density profiles and the Center-of-Mass test are both well-suited for comparison with weak lensing data and galaxy distributions. Such data are currently being collected and should be available within the next few years. At that time the predictions described here can be used to set useful cosmological constraints.

  4. The little sibling of the big rip singularity

    NASA Astrophysics Data System (ADS)

    Bouhmadi-López, Mariam; Errahmani, Ahmed; Martín-Moruno, Prado; Ouali, Taoufik; Tavakoli, Yaser

    2015-07-01

    In this paper, we present a new cosmological event, which we named the little sibling of the big rip. This event is much smoother than the big rip singularity. When the little sibling of the big rip is reached, the Hubble rate and the scale factor blow up, but the cosmic derivative of the Hubble rate does not. This abrupt event takes place at an infinite cosmic time where the scalar curvature explodes. We show that a doomsday à la little sibling of the big rip is compatible with an accelerating universe, indeed at present it would mimic perfectly a ΛCDM scenario. It turns out that, even though the event seems to be harmless as it takes place in the infinite future, the bound structures in the universe would be unavoidably destroyed on a finite cosmic time from now. The model can be motivated by considering that the weak energy condition should not be strongly violated in our universe, and it could give us some hints about the status of recently formulated nonlinear energy conditions.

  5. Nonsingular, big-bounce cosmology from spinor-torsion coupling

    NASA Astrophysics Data System (ADS)

    Popławski, Nikodem

    2012-05-01

    The Einstein-Cartan-Sciama-Kibble theory of gravity removes the constraint of general relativity that the affine connection be symmetric by regarding its antisymmetric part, the torsion tensor, as a dynamical variable. The minimal coupling between the torsion tensor and Dirac spinors generates a spin-spin interaction which is significant in fermionic matter at extremely high densities. We show that such an interaction averts the unphysical big-bang singularity, replacing it with a cusp-like bounce at a finite minimum scale factor, before which the Universe was contracting. This scenario also explains why the present Universe at largest scales appears spatially flat, homogeneous and isotropic.

  6. The Cosmologic continuum from physics to consciousness.

    PubMed

    Torday, John S; Miller, William B

    2018-04-13

    Reduction of developmental biology to self-referential cell-cell communication offers a portal for understanding fundamental mechanisms of physiology as derived from physics through quantum mechanics. It is argued that self-referential organization is implicit to the Big Bang and its further expression is a recoil reaction to that Singularity. When such a frame is considered, in combination with experimental evidence for the importance of epigenetic inheritance, the unicellular state can be reappraised as the primary object of selection. This framework provides a significant shift in understanding the relationship between physics and biology, providing novel insights to the nature and origin of consciousness. Copyright © 2018. Published by Elsevier Ltd.

  7. Canonical quantization of general relativity in discrete space-times.

    PubMed

    Gambini, Rodolfo; Pullin, Jorge

    2003-01-17

    It has long been recognized that lattice gauge theory formulations, when applied to general relativity, conflict with the invariance of the theory under diffeomorphisms. We analyze discrete lattice general relativity and develop a canonical formalism that allows one to treat constrained theories in Lorentzian signature space-times. The presence of the lattice introduces a "dynamical gauge" fixing that makes the quantization of the theories conceptually clear, albeit computationally involved. The problem of a consistent algebra of constraints is automatically solved in our approach. The approach works successfully in other field theories as well, including topological theories. A simple cosmological application exhibits quantum elimination of the singularity at the big bang.

  8. The Dual-Time Physics of the Universe

    NASA Astrophysics Data System (ADS)

    Suh, Paul

    2008-04-01

    Novel physics founded on a dual and commensurate space-time universe explicates the nature of dark matter and energy [see APS 2007 Spring Meeting]. Its governing principles also illuminate how the dark matter and energy become unobservable, why the dark energy still suffuses the universe while the observable energy had long faded into the cosmic microwave background, how the black hole singularity is circumvented, why the supernovae shone brighter eight billion years ago, what energy had powered the big-bang inflationary expansion, how the expansion of the universe began to accelerate about five billion years go, and other formidable cosmological puzzles. This paper is available on request to pksuh@msn.com.

  9. A Solution to the Cosmic Conundrum including Cosmological Constant and Dark Energy Problems

    NASA Astrophysics Data System (ADS)

    Singh, A.

    2009-12-01

    A comprehensive solution to the cosmic conundrum is presented that also resolves key paradoxes of quantum mechanics and relativity. A simple mathematical model, the Gravity Nullification model (GNM), is proposed that integrates the missing physics of the spontaneous relativistic conversion of mass to energy into the existing physics theories, specifically a simplified general theory of relativity. Mechanistic mathematical expressions are derived for a relativistic universe expansion, which predict both the observed linear Hubble expansion in the nearby universe and the accelerating expansion exhibited by the supernova observations. The integrated model addresses the key questions haunting physics and Big Bang cosmology. It also provides a fresh perspective on the misconceived birth and evolution of the universe, especially the creation and dissolution of matter. The proposed model eliminates singularities from existing models and the need for the incredible and unverifiable assumptions including the superluminous inflation scenario, multiple universes, multiple dimensions, Anthropic principle, and quantum gravity. GNM predicts the observed features of the universe without any explicit consideration of time as a governing parameter.

  10. Classical and quantum cosmology of the little rip abrupt event

    NASA Astrophysics Data System (ADS)

    Albarran, Imanol; Bouhmadi-López, Mariam; Kiefer, Claus; Marto, João; Vargas Moniz, Paulo

    2016-09-01

    We analyze from a classical and quantum point of view the behavior of the Universe close to a little rip, which can be interpreted as a big rip sent towards the infinite future. Like a big rip singularity, a little rip implies the destruction of all bounded structures in the Universe and is thus an event where quantum effects could be important. We present here a new phantom scalar field model for the little rip. The quantum analysis is performed in quantum geometrodynamics, with the Wheeler-DeWitt equation as its central equation. We find that the little rip can be avoided in the sense of the DeWitt criterion, that is, by having a vanishing wave function at the place of the little rip. Therefore our analysis completes the answer to the question: can quantum cosmology smoothen or avoid the divergent behavior genuinely caused by phantom matter? We show that this can indeed happen for the little rip, similar to the avoidance of a big rip and a little sibling of the big rip.

  11. Strong lensing probability in TeVeS (tensor-vector-scalar) theory

    NASA Astrophysics Data System (ADS)

    Chen, Da-Ming

    2008-01-01

    We recalculate the strong lensing probability as a function of the image separation in TeVeS (tensor-vector-scalar) cosmology, which is a relativistic version of MOND (MOdified Newtonian Dynamics). The lens is modeled by the Hernquist profile. We assume an open cosmology with Ωb = 0.04 and ΩΛ = 0.5 and three different kinds of interpolating functions. Two different galaxy stellar mass functions (GSMF) are adopted: PHJ (Panter, Heavens and Jimenez 2004 Mon. Not. R. Astron. Soc. 355 764) determined from SDSS data release 1 and Fontana (Fontana et al 2006 Astron. Astrophys. 459 745) from GOODS-MUSIC catalog. We compare our results with both the predicted probabilities for lenses from singular isothermal sphere galaxy halos in LCDM (Lambda cold dark matter) with a Schechter-fit velocity function, and the observational results for the well defined combined sample of the Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). It turns out that the interpolating function μ(x) = x/(1+x) combined with Fontana GSMF matches the results from CLASS/JVAS quite well.

  12. Perturbative instability of inflationary cosmology from quantum potentials

    NASA Astrophysics Data System (ADS)

    Tawfik, A.; Diab, A.; Abou El Dahab, E.

    2017-09-01

    It was argued that the Raychaudhuri equation with a quantum correction term seems to avoid the Big Bang singularity and to characterize an everlasting Universe (Ali and Das in Phys Lett B 741:276, 2015). Critical comments on both conclusions and on the correctness of the key expressions of this work were discussed in literature (Lashin in Mod Phys Lett 31:1650044, 2016). In the present work, we have analyzed the perturbative (in)stability conditions in the inflationary era of the early Universe. We conclude that both unstable and stable modes are incompatible with the corresponding ones obtained in the standard FLRW Universe. We have shown that unstable modes do exist at small (an)isotropic perturbation and for different equations of state. Inequalities for both unstable and stable solutions with the standard FLRW space were derived. They reveal that in the FLRW flat Universe both perturbative instability and stability are likely. While negative stability modes have been obtained for radiation- and matter-dominated eras, merely, instability modes exist in case of a finite cosmological constant and also if the vacuum energy dominates the cosmic background geometry.

  13. Kerr–anti-de Sitter/de Sitter black hole in perfect fluid dark matter background

    NASA Astrophysics Data System (ADS)

    Xu, Zhaoyi; Hou, Xian; Wang, Jiancheng

    2018-06-01

    We obtain the Kerr–anti-de-sitter (Kerr–AdS) and Kerr–de-sitter (Kerr–dS) black hole (BH) solutions to the Einstein field equation in the perfect fluid dark matter background using the Newman–Janis method and Mathematica package. We discuss in detail the black hole properties and obtain the following main results: (i) From the horizon equation g rr   =  0, we derive the relation between the perfect fluid dark matter parameter α and the cosmological constant Λ when the cosmological horizon exists. For , we find that α is in the range for and for . For positive cosmological constant Λ (Kerr–AdS BH), decreases if , and increases if . For negative cosmological constant (Kerr–dS BH), increases if and decreases if ; (ii) An ergosphere exists between the event horizon and the outer static limit surface. The size of the ergosphere evolves oppositely for and , while decreasing with the increasing . When there is sufficient dark matter around the black hole, the black hole spacetime changes remarkably; (iii) The singularity of these black holes is the same as that of rotational black holes. In addition, we study the geodesic motion using the Hamilton–Jacobi formalism and find that when α is in the above ranges for , stable orbits exist. Furthermore, the rotational velocity of the black hole in the equatorial plane has different behaviour for different α and the black hole spin a. It is asymptotically flat and independent of α if while is asymptotically flat only when α is close to zero if . We anticipate that Kerr–Ads/dS black holes could exist in the universe and our future work will focus on the observational effects of the perfect fluid dark matter on these black holes.

  14. Addressing Beyond Standard Model physics using cosmology

    NASA Astrophysics Data System (ADS)

    Ghalsasi, Akshay

    We have consensus models for both particle physics (i.e. standard model) and cosmology (i.e. LambdaCDM). Given certain assumptions about the initial conditions of the universe, the marriage of the standard model (SM) of particle physics and LambdaCDM cosmology has been phenomenally successful in describing the universe we live in. However it is quite clear that all is not well. The three biggest problems that the SM faces today are baryogenesis, dark matter and dark energy. These problems, along with the problem of neutrino masses, indicate the existence of physics beyond SM. Evidence of baryogenesis, dark matter and dark energy all comes from astrophysical and cosmological observations. Cosmology also provides the best (model dependent) constraints on neutrino masses. In this thesis I will try address the following problems 1) Addressing the origin of dark energy (DE) using non-standard neutrino cosmology and exploring the effects of the non-standard neutrino cosmology on terrestrial and cosmological experiments. 2) Addressing the matter anti-matter asymmetry of the universe.

  15. Baryon isocurvature scenario in inflationary cosmology - A particle physics model and its astrophysical implications

    NASA Technical Reports Server (NTRS)

    Yokoyama, Jun'ichi; Suto, Yasushi

    1991-01-01

    A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.

  16. Book Review:

    NASA Astrophysics Data System (ADS)

    Wainwright, John

    2007-04-01

    The present volume is an introduction to general relativity and cosmology, at a level suitable for beginning graduate students or advanced undergraduates. The book consists of two main parts, the first entitled `Elements of differential geometry', and the second `The theory of gravitation'. Chapters 2-7, part I, introduce the basic ideas of differential geometry in a general setting, and are based on previously unpublished notes by one of the authors. On the one hand, the treatment is modern in that it uses a `top-down' approach, i.e. starting with general differentiable manifolds, and deferring the introduction of a metric tensor until after the notions of affine connection and curvature have been introduced. On the other hand, the treatment is classical in that it relies heavily, though not exclusively, on index notation. The general material, chapters 1-7, is then followed by four more specialized chapters dealing with matters of specific interest for general relativity. Topics include symmetry groups acting on Riemannian manifolds, with spherically symmetric spacetimes and spatially homogeneous spacetimes as examples, the efficient calculation of curvature, and the Petrov classification of the Weyl curvature tensor using spinors. Part II deals with general relativity and cosmology. The basic assumptions of the theory and its application to spherically symmetric gravitational fields are discussed in two chapters, and there is some historical material and motivation for the basic assumptions at the beginning of the book. The final chapter contains a detailed discussion of the Kerr solution. But the main emphasis in part II is on relativistic cosmology, in particular the analysis of cosmological models more general than the familiar Friedmann-Lemaitre (FL) models. The material on cosmology begins with a discussion of relativistic hydrodynamics and thermodynamics. The kinematical quantities (rate of expansion, shear, etc, of a timelike congruence) are introduced and their evolution equations are derived. There follows a description of the fluid model of the Universe and optical observations in such a model, within the framework of a general spacetime geometry. The discussion is subsequently specialized to the Robertson-Walker geometry and the FL models. The rest of part II, two lengthy chapters, deals with two classes of solutions of Einstein's field equations that represent spatially inhomogeneous cosmological models, and that contain the FL models as a special case. The first is the family of Lemaitre-Tolman solutions, whose discovery dates back to the 1930s. They are spherically symmetric solutions of Einstein's field equations with pressure-free matter and a cosmological constant as the matter-energy content. The second class is the family of Szekeres solutions, which can be thought of as generalizations of the Lemaitre-Tolman solutions without any symmetries. Parts of these two chapters are based on Krasinski's book on inhomogeneous cosmologies [4], with the difference that the present work does not attempt to be comprehensive, but instead provides clear derivations of the most important results. A potential reader may ask how this book differs from other texts on general relativity. It is unique in a number of respects. First is the authors' emphasis on spatially inhomogeneous cosmological models, i.e. models that do not satisfy the cosmological principle. The authors appear to have reservations about the almost universal preference in the cosmological community for working within the framework of the FL models, combined with the inflationary scenario in the very early universe (see in particular, pages 235-6, and sections 17.8-17.10), and these reservations motivate the above emphasis. They remind the reader that the FL models are based on the cosmological principle, which has a philosophical rather than a physical status, since it cannot be directly tested by observation. In other words, observations alone do not uniquely select the FL models (see also [3], section 5.5, in this regard). Moreover the interpretation of cosmological observations depends on the choice of the underlying spacetime geometry. For example, there is ambiguity in inferring the spatial distribution of matter from redshift measurements. The authors discuss in some detail the work of Kurki-Suonio and Liang [5] to illustrate this point. They also refer to Celerier [1] who shows that the high redshift type Ia supernovae observations are compatible with a Lemaitre-Tolman model with zero cosmological constant, i.e. these observations do not imply that the universe is accelerating if one considers models more general than the FL models, in contrast to the usual interpretation. The authors also give a critique of the cosmological inflation scenario, arguing that the problems that it aims to solve (the so-called horizon problem and the flatness problem) are a consequence of the very special geometry of the FL models. In particular, the flatness problem loses its urgency when one broadens the class of cosmological models, since the condition for flatness depends on spatial position. They also discuss in detail an analysis due to Celerier and Schneider [2] showing how the horizon problem can be resolved using a delayed big-bang singularity in a Lemaitre-Tolman cosmology (section 18.17). We comment on two notable omissions as regards cosmology. First, the authors only refer in passing to the notion of the density parameter, which plays an important role in the analysis of the FL models, and which can also be introduced in more general models. Second, there is no discussion of perturbations of the FL models, although two related concepts, the density contrast and the curvature contrast, are analysed in the Lemaitre-Tolman models (section 18.19). A second unusual feature is that there is a considerable emphasis on exact solutions, their derivation and physical interpretation. Derivations that are given in detail are for the spatially homogeneous solution of Bianchi type I with pressure-free matter, the Lemaitre-Tolman solutions, the Szekeres solutions and the Kerr solution (the original derivation using the Kerr-Schild metric, and Carter's derivation using separability of the Klein-Gordon equation). Readers may wish to compare the above-mentioned derivation of the Bianchi type I solutions, which uses metric components and coordinates, with the derivation given in [3] (see section 5.3), using the orthonormal frame formalism. In summary, this book is an interesting and informative introduction to general relativity and cosmology. The unconventional choice of topics and emphasis may, however, lead some readers to conclude that it may be more suitable as a reference work than as the text for a course. References [1] Celerier M N 2000 Do we really see a cosmological constant in the supernovae data? Astron. Astrophys. 353 63 [2] Celerier M N and Schneider J 1998 A solution to the horizon problem: a delayed big bang singularity Phys. Lett. A 249 37 [3] Ellis G F R and van Elst H 1999 Cosmological models Theoretical and Observational Cosmology ed M Lachieze-Rey (Dordrecht: Kluwer) [4] Krasinski A 1997 Inhomogeneous Cosmological Models (Cambridge: Cambridge University Press) [5] Kurki-Suonio H and Liang E 1992 Relation of redshift surveys to matter distribution in spherically symmetric dust Universes Astrophys. J. 390 5

  17. Stanley Corrsin Award Talk: The role of singularities in hydrodynamics

    NASA Astrophysics Data System (ADS)

    Eggers, Jens

    2017-11-01

    If a tap is opened slowly, a drop will form. The separation of the drop is described by a singularity of the Navier-Stokes equation with a free surface. Shock waves are singular solutions of the equations of ideal, compressible hydrodynamics. These examples show that singularities are characteristic for the tendency of the hydrodynamic equations to develop small scale features spontaneously, starting from smooth initial conditions. As a result, new structures are created, which form the building blocks of more complicated flows. The mathematical structure of singularities is self-similar, and their characteristics are fixed by universal properties. This will be illustrated by physical examples, as well as by applications to engineering problems such as printing, coating, or air entrainment. Finally, more recent developments will be discussed: the increasing complexity underlying the self-similar behavior of some singularities, and the spatial structure of shock waves.

  18. Representing massive gravitons, as a way to quantify early universe magnetic field contributions to space-time, created by non linear electrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckwith, Andrew Walcott, E-mail: Rwill9955b@gmail.com

    We review a relationship between cosmological vacuum energy and massive gravitons as given by Garattini and also the nonlinear electrodynamics of Camara et.al (2004) for a non singular universe and NLED. . In evaluating the Garattini result, we find that having the scale factor close to zero due to a given magnetic field value in, an early universe magnetic field affects how we would interpret Garattini’s linkage of the ‘cosmological constant’ value and non zero graviton mass.. We close as to how these initial conditions affect the issue of an early universe initial pressure and its experimental similarities and differencesmore » with results by Corda and Questa as to negative pressure at the surface of a star. Note, that in theDupays et.al. article , the star in question is rapidly spinning, which is not. assumed in the Camara et.al article , for an early universe. Also, Corda and Questa do not assume a spinning star. We conclude with a comparison between the Lagrangian Dupays and other authors bring up for non linear electrodynamics which is for rapidly spinning neutron stars , and a linkage between the Goldstone theorem and NLED. Our conclusion is for generalizing results seen in the Dupays neutron star Lagrangian with conditions which may confirm C. A. Escobar and L. F. Urrutia’s work on the Goldstone theorem and non linear electrodynamics, for some future projects we have in mind. If the universe does not spin, then we will stick with the density analogy given by adapting density as proportional to one over the fourth power of the minimum value of the scale factor as computed by adaptation of the Camara et.al.(2004) theory for non spinning universes. What may happen is that the Camara (2004) density and Quintessential density are both simultaneously satisfied, which would put additional restrictions on the magnetic field, which is one of our considerations, regardless if a universe spins, akin to spinning neutron stars. The spinning universe though may allow for easier reconciliation of the ‘Goldstone’ behavior of gravity and NLED though.« less

  19. Geometrical shock dynamics, formation of singularities and topological bifurcations of converging shock fronts

    NASA Astrophysics Data System (ADS)

    Suramlishvili, Nugzar; Eggers, Jens; Fontelos, Marco

    2014-11-01

    We are concerned with singularities of the shock fronts of converging perturbed shock waves. Our considerations are based on Whitham's theory of geometrical shock dynamics. The recently developed method of local analysis is applied in order to determine generic singularities. In this case the solutions of partial differential equations describing the geometry of the shock fronts are presented as families of smooth maps with state variables and the set of control parameters dependent on Mach number, time and initial conditions. The space of control parameters of the singularities is analysed, the unfoldings describing the deformations of the canonical germs of shock front singularities are found and corresponding bifurcation diagrams are constructed. Research is supported by the Leverhulme Trust, Grant Number RPG-2012-568.

  20. Detecting dark energy in orbit: The cosmological chameleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2004-12-15

    We show that the chameleon scalar field can drive the current phase of cosmic acceleration for a large class of scalar potentials that are also consistent with local tests of gravity. These provide explicit realizations of a quintessence model where the quintessence scalar field couples directly to baryons and dark matter with gravitational strength. We analyze the cosmological evolution of the chameleon field and show the existence of an attractor solution with the chameleon following the minimum of its effective potential. For a wide range of initial conditions, spanning many orders of magnitude in initial chameleon energy density, the attractormore » is reached before nucleosynthesis. Surprisingly, the range of allowed initial conditions leading to a successful cosmology is wider than in normal quintessence. We discuss applications to the cyclic model of the universe and show how the chameleon mechanism weakens some of the constraints on cyclic potentials.« less

  1. Nonequilibrium evolution of scalar fields in FRW cosmologies

    NASA Astrophysics Data System (ADS)

    Boyanovsky, D.; de Vega, H. J.; Holman, R.

    1994-03-01

    We derive the effective equations for the out of equilibrium time evolution of the order parameter and the fluctuations of a scalar field theory in spatially flat FRW cosmologies. The calculation is performed both to one loop and in a nonperturbative, self-consistent Hartree approximation. The method consists of evolving an initial functional thermal density matrix in time and is suitable for studying phase transitions out of equilibrium. The renormalization aspects are studied in detail and we find that the counterterms depend on the initial state. We investigate the high temperature expansion and show that it breaks down at long times. We also obtain the time evolution of the initial Boltzmann distribution functions, and argue that to one-loop order or in the Hartree approximation the time evolved state is a ``squeezed'' state. We illustrate the departure from thermal equilibrium by numerically studying the case of a free massive scalar field in de Sitter and radiation-dominated cosmologies. It is found that a suitably defined nonequilibrium entropy per mode increases linearly with comoving time in a de Sitter cosmology, whereas it is not a monotonically increasing function in the radiation-dominated case.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehghani, M.H.; Department of Physics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1; Perimeter Institute for Theoretical Physics, 35 Caroline Street North, Waterloo, Ontario

    We investigate the existence of Taub-NUT (Newman-Unti-Tamburino) and Taub-bolt solutions in Gauss-Bonnet gravity and obtain the general form of these solutions in d dimensions. We find that for all nonextremal NUT solutions of Einstein gravity having no curvature singularity at r=N, there exist NUT solutions in Gauss-Bonnet gravity that contain these solutions in the limit that the Gauss-Bonnet parameter {alpha} goes to zero. Furthermore there are no NUT solutions in Gauss-Bonnet gravity that yield nonextremal NUT solutions to Einstein gravity having a curvature singularity at r=N in the limit {alpha}{yields}0. Indeed, we have nonextreme NUT solutions in 2+2k dimensions withmore » nontrivial fibration only when the 2k-dimensional base space is chosen to be CP{sup 2k}. We also find that the Gauss-Bonnet gravity has extremal NUT solutions whenever the base space is a product of 2-torii with at most a two-dimensional factor space of positive curvature. Indeed, when the base space has at most one positively curved two-dimensional space as one of its factor spaces, then Gauss-Bonnet gravity admits extreme NUT solutions, even though there a curvature singularity exists at r=N. We also find that one can have bolt solutions in Gauss-Bonnet gravity with any base space with factor spaces of zero or positive constant curvature. The only case for which one does not have bolt solutions is in the absence of a cosmological term with zero curvature base space.« less

  3. Non-singular black holes and the limiting curvature mechanism: a Hamiltonian perspective

    NASA Astrophysics Data System (ADS)

    Ben Achour, J.; Lamy, F.; Liu, H.; Noui, K.

    2018-05-01

    We revisit the non-singular black hole solution in (extended) mimetic gravity with a limiting curvature from a Hamiltonian point of view. We introduce a parameterization of the phase space which allows us to describe fully the Hamiltonian structure of the theory. We write down the equations of motion that we solve in the regime deep inside the black hole, and we recover that the black hole has no singularity, due to the limiting curvature mechanism. Then, we study the relation between such black holes and effective polymer black holes which have been introduced in the context of loop quantum gravity. As expected, contrary to what happens in the cosmological sector, mimetic gravity with a limiting curvature fails to reproduce the usual effective dynamics of spherically symmetric loop quantum gravity which are generically not covariant. Nonetheless, we exhibit a theory in the class of extended mimetic gravity whose dynamics reproduces the general shape of the effective corrections of spherically symmetric polymer models, but in an undeformed covariant manner. These covariant effective corrections are found to be always metric dependent, i.e. within the bar mu-scheme, underlying the importance of this ingredient for inhomogeneous polymer models. In that respect, extended mimetic gravity can be viewed as an effective covariant theory which naturally implements a covariant notion of point wise holonomy-like corrections. The difference between the mimetic and polymer Hamiltonian formulations provides us with a guide to understand the deformation of covariance in inhomogeneous polymer models.

  4. Silent initial conditions for cosmological perturbations with a change of spacetime signature

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Linsefors, Linda; Barrau, Aurelien

    Recent calculations in loop quantum cosmology suggest that a transition from a Lorentzian to a Euclidean spacetime might take place in the very early universe. The transition point leads to a state of silence, characterized by a vanishing speed of light. This behavior can be interpreted as a decoupling of different space points, similar to the one characterizing the BKL phase. In this study, we address the issue of imposing initial conditions for the cosmological perturbations at the transition point between the Lorentzian and Euclidean phases. Motivated by the decoupling of space points, initial conditions characterized by a lack of correlations are investigated. We show that the “white noise” gains some support from analysis of the vacuum state in the deep Euclidean regime. Furthermore, the possibility of imposing the silent initial conditions at the trans-Planckian surface, characterized by a vanishing speed for the propagation of modes with wavelengths of the order of the Planck length, is studied. Such initial conditions might result from the loop deformations of the Poincaré algebra. The conversion of the silent initial power spectrum to a scale-invariant one is also examined.

  5. Emergent cosmology revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bag, Satadru; Sahni, Varun; Shtanov, Yuri

    We explore the possibility of emergent cosmology using the effective potential formalism. We discover new models of emergent cosmology which satisfy the constraints posed by the cosmic microwave background (CMB). We demonstrate that, within the framework of modified gravity, the emergent scenario can arise in a universe which is spatially open/closed. By contrast, in general relativity (GR) emergent cosmology arises from a spatially closed past-eternal Einstein Static Universe (ESU). In GR the ESU is unstable, which creates fine tuning problems for emergent cosmology. However, modified gravity models including Braneworld models, Loop Quantum Cosmology (LQC) and Asymptotically Free Gravity result inmore » a stable ESU. Consequently, in these models emergent cosmology arises from a larger class of initial conditions including those in which the universe eternally oscillates about the ESU fixed point. We demonstrate that such an oscillating universe is necessarily accompanied by graviton production. For a large region in parameter space graviton production is enhanced through a parametric resonance, casting serious doubts as to whether this emergent scenario can be past-eternal.« less

  6. Continuations of the nonlinear Schrödinger equation beyond the singularity

    NASA Astrophysics Data System (ADS)

    Fibich, G.; Klein, M.

    2011-07-01

    We present four continuations of the critical nonlinear Schrödinger equation (NLS) beyond the singularity: (1) a sub-threshold power continuation, (2) a shrinking-hole continuation for ring-type solutions, (3) a vanishing nonlinear-damping continuation and (4) a complex Ginzburg-Landau (CGL) continuation. Using asymptotic analysis, we explicitly calculate the limiting solutions beyond the singularity. These calculations show that for generic initial data that lead to a loglog collapse, the sub-threshold power limit is a Bourgain-Wang solution, both before and after the singularity, and the vanishing nonlinear-damping and CGL limits are a loglog solution before the singularity, and have an infinite-velocity expanding core after the singularity. Our results suggest that all NLS continuations share the universal feature that after the singularity time Tc, the phase of the singular core is only determined up to multiplication by eiθ. As a result, interactions between post-collapse beams (filaments) become chaotic. We also show that when the continuation model leads to a point singularity and preserves the NLS invariance under the transformation t → -t and ψ → ψ*, the singular core of the weak solution is symmetric with respect to Tc. Therefore, the sub-threshold power and the shrinking-hole continuations are symmetric with respect to Tc, but continuations which are based on perturbations of the NLS equation are generically asymmetric.

  7. Homogeneous cosmological models and new inflation

    NASA Technical Reports Server (NTRS)

    Turner, Michael S.; Widrow, Lawrence M.

    1986-01-01

    The promise of the inflationary-universe scenario is to free the present state of the universe from extreme dependence upon initial data. Paradoxically, inflation is usually analyzed in the context of the homogeneous and isotropic Robertson-Walker cosmological models. It is shown that all but a small subset of the homogeneous models undergo inflation. Any initial anisotropy is so strongly damped that if sufficient inflation occurs to solve the flatness and horizon problems, the universe today would still be very isotropic.

  8. Primordial cosmology in mimetic born-infeld gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhmadi-Lopez, Mariam; Chen, Che -Yu; Chen, Pisin

    Here, the Eddington-inspired-Born-Infeld (EiBI) model is reformulated within the mimetic approach. In the presence of a mimetic field, the model contains non-trivial vacuum solutions which could be free of spacetime singularity because of the Born-Infeld nature of the theory. We study a realistic primordial vacuum universe and prove the existence of regular solutions, such as primordial inflationary solutions of de Sitter type or bouncing solutions. Besides, the linear instabilities present in the EiBI model are found to be avoidable for some interesting bouncing solutions in which the physical metric as well as the auxiliary metric are regular at the backgroundmore » level.« less

  9. Primordial cosmology in mimetic born-infeld gravity

    DOE PAGES

    Bouhmadi-Lopez, Mariam; Chen, Che -Yu; Chen, Pisin

    2017-11-29

    Here, the Eddington-inspired-Born-Infeld (EiBI) model is reformulated within the mimetic approach. In the presence of a mimetic field, the model contains non-trivial vacuum solutions which could be free of spacetime singularity because of the Born-Infeld nature of the theory. We study a realistic primordial vacuum universe and prove the existence of regular solutions, such as primordial inflationary solutions of de Sitter type or bouncing solutions. Besides, the linear instabilities present in the EiBI model are found to be avoidable for some interesting bouncing solutions in which the physical metric as well as the auxiliary metric are regular at the backgroundmore » level.« less

  10. Quantum nature of the big bang.

    PubMed

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet

    2006-04-14

    Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field is shown to serve as an internal clock, thereby providing a detailed realization of the "emergent time" idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously; (iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the quantum evolution is deterministic across the deep Planck regime.

  11. Aspects of noncommutative (1+1)-dimensional black holes

    NASA Astrophysics Data System (ADS)

    Mureika, Jonas R.; Nicolini, Piero

    2011-08-01

    We present a comprehensive analysis of the spacetime structure and thermodynamics of (1+1)-dimensional black holes in a noncommutative framework. It is shown that a wider variety of solutions are possible than the commutative case considered previously in the literature. As expected, the introduction of a minimal length θ cures singularity pathologies that plague the standard two-dimensional general relativistic case, where the latter solution is recovered at large length scales. Depending on the choice of input parameters (black hole mass M, cosmological constant Λ, etc.), black hole solutions with zero, up to six, horizons are possible. The associated thermodynamics allows for the either complete evaporation, or the production of black hole remnants.

  12. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    NASA Technical Reports Server (NTRS)

    Baker, Gregory; Siegel, Michael; Tanveer, Saleh

    1995-01-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. This situation is disastrous for numerical computation, as small round-off errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. The method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out.

  13. Vaidya spacetime in the diagonal coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berezin, V. A., E-mail: berezin@inr.ac.ru; Dokuchaev, V. I., E-mail: dokuchaev@inr.ac.ru; Eroshenko, Yu. N., E-mail: eroshenko@inr.ac.ru

    We have analyzed the transformation from initial coordinates (v, r) of the Vaidya metric with light coordinate v to the most physical diagonal coordinates (t, r). An exact solution has been obtained for the corresponding metric tensor in the case of a linear dependence of the mass function of the Vaidya metric on light coordinate v. In the diagonal coordinates, a narrow region (with a width proportional to the mass growth rate of a black hole) has been detected near the visibility horizon of the Vaidya accreting black hole, in which the metric differs qualitatively from the Schwarzschild metric andmore » cannot be represented as a small perturbation. It has been shown that, in this case, a single set of diagonal coordinates (t, r) is insufficient to cover the entire range of initial coordinates (v, r) outside the visibility horizon; at least three sets of diagonal coordinates are required, the domains of which are separated by singular surfaces on which the metric components have singularities (either g{sub 00} = 0 or g{sub 00} = ∞). The energy–momentum tensor diverges on these surfaces; however, the tidal forces turn out to be finite, which follows from an analysis of the deviation equations for geodesics. Therefore, these singular surfaces are exclusively coordinate singularities that can be referred to as false fire-walls because there are no physical singularities on them. We have also considered the transformation from the initial coordinates to other diagonal coordinates (η, y), in which the solution is obtained in explicit form, and there is no energy–momentum tensor divergence.« less

  14. Observational exclusion of a consistent loop quantum cosmology scenario

    NASA Astrophysics Data System (ADS)

    Bolliet, Boris; Barrau, Aurélien; Grain, Julien; Schander, Susanne

    2016-06-01

    It is often argued that inflation erases all the information about what took place before it started. Quantum gravity, relevant in the Planck era, seems therefore mostly impossible to probe with cosmological observations. In general, only very ad hoc scenarios or hyper fine-tuned initial conditions can lead to observationally testable theories. Here we consider a well-defined and well-motivated candidate quantum cosmology model that predicts inflation. Using the most recent observational constraints on the cosmic microwave background B-modes, we show that the model is excluded for all its parameter space, without any tuning. Some important consequences are drawn for the deformed algebra approach to loop quantum cosmology. We emphasize that neither loop quantum cosmology in general nor loop quantum gravity are disfavored by this study but their falsifiability is established.

  15. Complete conformal classification of the Friedmann–Lemaître–Robertson–Walker solutions with a linear equation of state

    NASA Astrophysics Data System (ADS)

    Harada, Tomohiro; Carr, B. J.; Igata, Takahisa

    2018-05-01

    We completely classify Friedmann–Lemaître–Robertson–Walker solutions with spatial curvature and equation of state , according to their conformal structure, singularities and trapping horizons. We do not assume any energy conditions and allow , thereby going beyond the usual well-known solutions. For each spatial curvature, there is an initial spacelike big-bang singularity for w  >  ‑1/3 and , while there is no big-bang singularity for w  <  ‑1 and . For K  =  0 or  ‑1, ‑1  <  w  <  ‑1/3 and , there is an initial null big-bang singularity. For each spatial curvature, there is a final spacelike future big-rip singularity for w  <  ‑1 and , with null geodesics being future complete for but incomplete for w  <  ‑5/3. For w  =  ‑1/3, the expansion speed is constant. For  ‑1  <  w  <  ‑1/3 and K  =  1, the universe contracts from infinity, then bounces and expands back to infinity. For K  =  0, the past boundary consists of timelike infinity and a regular null hypersurface for  ‑5/3  <  w  <  ‑1, while it consists of past timelike and past null infinities for . For w  <  ‑1 and K  =  1, the spacetime contracts from an initial spacelike past big-rip singularity, then bounces and blows up at a final spacelike future big-rip singularity. For w  <  ‑1 and K  =  ‑1, the past boundary consists of a regular null hypersurface. The trapping horizons are timelike, null and spacelike for , and , respectively. A negative energy density () is possible only for K  =  ‑1. In this case, for w  >  ‑1/3, the universe contracts from infinity, then bounces and expands to infinity; for  ‑1  <  w  <  ‑1/3, it starts from a big-bang singularity and contracts to a big-crunch singularity; for w  <  ‑1, it expands from a regular null hypersurface and contracts to another regular null hypersurface.

  16. Reconstruction of phase maps from the configuration of phase singularities in two-dimensional manifolds.

    PubMed

    Herlin, Antoine; Jacquemet, Vincent

    2012-05-01

    Phase singularity analysis provides a quantitative description of spiral wave patterns observed in chemical or biological excitable media. The configuration of phase singularities (locations and directions of rotation) is easily derived from phase maps in two-dimensional manifolds. The question arises whether one can construct a phase map with a given configuration of phase singularities. The existence of such a phase map is guaranteed provided that the phase singularity configuration satisfies a certain constraint associated with the topology of the supporting medium. This paper presents a constructive mathematical approach to numerically solve this problem in the plane and on the sphere as well as in more general geometries relevant to atrial anatomy including holes and a septal wall. This tool can notably be used to create initial conditions with a controllable spiral wave configuration for cardiac propagation models and thus help in the design of computer experiments in atrial electrophysiology.

  17. Friedmann Cosmology with Matter Creation in Modified f( R, T) Gravity

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Singh, C. P.

    2016-02-01

    The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f( R, T) ( R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f( R, T)= R+2 f( T) with "gamma-law" equation of state p = ( γ-1) ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3 β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.

  18. Primordial non-Gaussianity and power asymmetry with quantum gravitational effects in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Zhu, Tao; Wang, Anzhong; Kirsten, Klaus; Cleaver, Gerald; Sheng, Qin

    2018-02-01

    Loop quantum cosmology provides a resolution of the classical big bang singularity in the deep Planck era. The evolution, prior to the usual slow-roll inflation, naturally generates excited states at the onset of the slow-roll inflation. It is expected that these quantum gravitational effects could leave its fingerprints on the primordial perturbation spectrum and non-Gaussianity, and lead to some observational evidences in the cosmic microwave background. While the impact of the quantum effects on the primordial perturbation spectrum has been already studied and constrained by current data, in this paper we continue to study such effects but now on the non-Gaussianity of the primordial curvature perturbations. We present detailed and analytical calculations of the non-Gaussianity and show explicitly that the corrections due to the quantum effects are at the same magnitude of the slow-roll parameters in the observable scales and thus are well within current observational constraints. Despite this, we show that the non-Gaussianity in the squeezed limit can be enhanced at superhorizon scales and it is these effects that can yield a large statistical anisotropy on the power spectrum through the Erickcek-Kamionkowski-Carroll mechanism.

  19. Strong lensing probability in TeVeS (tensor-vector-scalar) theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Daming, E-mail: cdm@bao.ac.cn

    2008-01-15

    We recalculate the strong lensing probability as a function of the image separation in TeVeS (tensor-vector-scalar) cosmology, which is a relativistic version of MOND (MOdified Newtonian Dynamics). The lens is modeled by the Hernquist profile. We assume an open cosmology with {Omega}{sub b} = 0.04 and {Omega}{sub {Lambda}} = 0.5 and three different kinds of interpolating functions. Two different galaxy stellar mass functions (GSMF) are adopted: PHJ (Panter, Heavens and Jimenez 2004 Mon. Not. R. Astron. Soc. 355 764) determined from SDSS data release 1 and Fontana (Fontana et al 2006 Astron. Astrophys. 459 745) from GOODS-MUSIC catalog. We comparemore » our results with both the predicted probabilities for lenses from singular isothermal sphere galaxy halos in LCDM (Lambda cold dark matter) with a Schechter-fit velocity function, and the observational results for the well defined combined sample of the Cosmic Lens All-Sky Survey (CLASS) and Jodrell Bank/Very Large Array Astrometric Survey (JVAS). It turns out that the interpolating function {mu}(x) = x/(1+x) combined with Fontana GSMF matches the results from CLASS/JVAS quite well.« less

  20. Generalized quantum theory of recollapsing homogeneous cosmologies

    NASA Astrophysics Data System (ADS)

    Craig, David; Hartle, James B.

    2004-06-01

    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic “JṡdΣ” rule of quantum cosmology, as well as a generalization of this rule to generic initial states.

  1. Naked singularities as particle accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Mandar; Joshi, Pankaj S.

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energymore » of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.« less

  2. Relational evolution of effectively interacting group field theory quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Pithis, Andreas G. A.; Sakellariadou, Mairi

    2017-03-01

    We study the impact of effective interactions onto relationally evolving group field theory (GFT) condensates based on real-valued fields. In a first step we show that a free condensate configuration in an isotropic restriction settles dynamically into a low-spin configuration of the quantum geometry. This goes hand in hand with the accelerated and exponential expansion of its volume, as well as the vanishing of its relative uncertainty which suggests the classicalization of the quantum geometry. The dynamics of the emergent space can then be given in terms of the classical Friedmann equations. In contrast to models based on complex-valued fields, solutions avoiding the singularity problem can only be found if the initial conditions are appropriately chosen. We then turn to the analysis of the influence of effective interactions on the dynamics by studying in particular the Thomas-Fermi regime. In this context, at the cost of fine-tuning, an epoch of inflationary expansion of quantum geometric origin can be implemented. Finally, and for the first time, we study anisotropic GFT condensate configurations and show that such systems tend to isotropize quickly as the value of the relational clock grows. This paves the way to a more systematic investigation of anisotropies in the context of GFT condensate cosmology.

  3. Fractal analysis of the dark matter and gas distributions in the Mare-Nostrum universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaite, José, E-mail: jose.gaite@upm.es

    2010-03-01

    We develop a method of multifractal analysis of N-body cosmological simulations that improves on the customary counts-in-cells method by taking special care of the effects of discreteness and large scale homogeneity. The analysis of the Mare-Nostrum simulation with our method provides strong evidence of self-similar multifractal distributions of dark matter and gas, with a halo mass function that is of Press-Schechter type but has a power-law exponent -2, as corresponds to a multifractal. Furthermore, our analysis shows that the dark matter and gas distributions are indistinguishable as multifractals. To determine if there is any gas biasing, we calculate the cross-correlationmore » coefficient, with negative but inconclusive results. Hence, we develop an effective Bayesian analysis connected with information theory, which clearly demonstrates that the gas is biased in a long range of scales, up to the scale of homogeneity. However, entropic measures related to the Bayesian analysis show that this gas bias is small (in a precise sense) and is such that the fractal singularities of both distributions coincide and are identical. We conclude that this common multifractal cosmic web structure is determined by the dynamics and is independent of the initial conditions.« less

  4. Radiation bounce from the Lee-Wick construction?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karouby, Johanna; Brandenberger, Robert

    2010-09-15

    It was recently realized that matter modeled by the scalar field sector of the Lee-Wick standard model yields, in the context of a homogeneous and isotropic cosmological background, a bouncing cosmology. However, bouncing cosmologies induced by pressureless matter are in general unstable to the addition of relativistic matter (i.e. radiation). Here we study the possibility of obtaining a bouncing cosmology if we add not only radiation, but also its Lee-Wick partner, to the matter sector. We find that, in general, no bounce occurs. The only way to obtain a bounce is to choose initial conditions with very special phases ofmore » the radiation field and its Lee-Wick partner.« less

  5. Gravity with free initial conditions: A solution to the cosmological constant problem testable by CMB B -mode polarization

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori

    2017-10-01

    In standard general relativity the universe cannot be started with arbitrary initial conditions, because four of the ten components of the Einstein's field equations (EFE) are constraints on initial conditions. In the previous work it was proposed to extend the gravity theory to allow free initial conditions, with a motivation to solve the cosmological constant problem. This was done by setting four constraints on metric variations in the action principle, which is reasonable because the gravity's physical degrees of freedom are at most six. However, there are two problems about this theory; the three constraints in addition to the unimodular condition were introduced without clear physical meanings, and the flat Minkowski spacetime is unstable against perturbations. Here a new set of gravitational field equations is derived by replacing the three constraints with new ones requiring that geodesic paths remain geodesic against metric variations. The instability problem is then naturally solved. Implications for the cosmological constant Λ are unchanged; the theory converges into EFE with nonzero Λ by inflation, but Λ varies on scales much larger than the present Hubble horizon. Then galaxies are formed only in small Λ regions, and the cosmological constant problem is solved by the anthropic argument. Because of the increased degrees of freedom in metric dynamics, the theory predicts new non-oscillatory modes of metric anisotropy generated by quantum fluctuation during inflation, and CMB B -mode polarization would be observed differently from the standard predictions by general relativity.

  6. Cosmological implications of quantum entanglement in the multiverse

    NASA Astrophysics Data System (ADS)

    Kanno, Sugumi

    2015-12-01

    We explore the cosmological implications of quantum entanglement between two causally disconnected universes in the multiverse. We first consider two causally separated de Sitter spaces with a state which is initially entangled. We derive the reduced density matrix of our universe and compute the spectrum of vacuum fluctuations. We then consider the same system with an initially non-entangled state. We find that due to quantum interference scale dependent modulations may enter the spectrum for the case of initially non-entangled state. This gives rise to the possibility that the existence of causally disconnected universes may be experimentally tested by analyzing correlators in detail.

  7. Multivalued classical mechanics arising from singularity loops in complex time

    NASA Astrophysics Data System (ADS)

    Koch, Werner; Tannor, David J.

    2018-02-01

    Complex-valued classical trajectories in complex time encounter singular times at which the momentum diverges. A closed time contour around such a singular time may result in final values for q and p that differ from their initial values. In this work, we develop a calculus for determining the exponent and prefactor of the asymptotic time dependence of p from the singularities of the potential as the singularity time is approached. We identify this exponent with the number of singularity loops giving distinct solutions to Hamilton's equations of motion. The theory is illustrated for the Eckart, Coulomb, Morse, and quartic potentials. Collectively, these potentials illustrate a wide variety of situations: poles and essential singularities at finite and infinite coordinate values. We demonstrate quantitative agreement between analytical and numerical exponents and prefactors, as well as the connection between the exponent and the time circuit count. This work provides the theoretical underpinnings for the choice of time contours described in the studies of Doll et al. [J. Chem. Phys. 58(4), 1343-1351 (1973)] and Petersen and Kay [J. Chem. Phys. 141(5), 054114 (2014)]. It also has implications for wavepacket reconstruction from complex classical trajectories when multiple branches of trajectories are involved.

  8. Using Singular Value Decomposition to Investigate Degraded Chinese Character Recognition: Evidence from Eye Movements during Reading

    ERIC Educational Resources Information Center

    Wang, Hsueh-Cheng; Schotter, Elizabeth R.; Angele, Bernhard; Yang, Jinmian; Simovici, Dan; Pomplun, Marc; Rayner, Keith

    2013-01-01

    Previous research indicates that removing initial strokes from Chinese characters makes them harder to read than removing final or internal ones. In the present study, we examined the contribution of important components to character configuration via singular value decomposition. The results indicated that when the least important segments, which…

  9. A well-posed numerical method to track isolated conformal map singularities in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, G.; Siegel, M.; Tanveer, S.

    1995-09-01

    We present a new numerical method for calculating an evolving 2D Hele-Shaw interface when surface tension effects are neglected. In the case where the flow is directed from the less viscous fluid into the more viscous fluid, the motion of the interface is ill-posed; small deviations in the initial condition will produce significant changes in the ensuing motion. The situation is disastrous for numerical computation, as small roundoff errors can quickly lead to large inaccuracies in the computed solution. Our method of computation is most easily formulated using a conformal map from the fluid domain into a unit disk. Themore » method relies on analytically continuing the initial data and equations of motion into the region exterior to the disk, where the evolution problem becomes well-posed. The equations are then numerically solved in the extended domain. The presence of singularities in the conformal map outside of the disk introduces specific structures along the fluid interface. Our method can explicitly track the location of isolated pole and branch point singularities, allowing us to draw connections between the development of interfacial patterns and the motion of singularities as they approach the unit disk. In particular, we are able to relate physical features such as finger shape, side-branch formation, and competition between fingers to the nature and location of the singularities. The usefulness of this method in studying the formation of topological singularities (self-intersections of the interface) is also pointed out. 47 refs., 10 figs., 1 tab.« less

  10. The cosmological dependence of cluster density profiles

    NASA Technical Reports Server (NTRS)

    Crone, Mary M.; Evrard, August E.; Richstone, Douglas O.

    1994-01-01

    We use N-body simulations to study the shape of mean cluster density and velocity profiles in the nonlinear regime formed via gravitational instability. The dependence of the final structure on both cosmology and initial density field is examined, using a grid of cosmologies and scale-free initial power spectra P(k) varies as k(exp n). Einstein-de Sitter, open (Omega(sub 0) = 0.2 and 0.1) and flat, low density (Omega(sub 0) = 0.2 lambda(sub 0) = 0.8) models are examined, with initial spectral indices n = -2, -1 and 0. For each model, we stack clusters in an appropriately scaled manner to define an average density profile in the nonlinear regime. The profiles are well fit by a power law rho(r) varies as r(exp -alpha) for radii whereat the local density contrast is between 100 and 3000. This covers 99% of the cluster volume. We find a clear trend toward steeper slopes (larger alphas) with both increasing n and decreasing Omega(sub 0). The Omega(sub 0) dependence is partially masked by the n dependence; there is degeneracy in the values of alpha between the Einstein-de Sitter and flat, low-density cosmologies. However, the profile slopes in the open models are consistently higher than the Omega = 1 values for the range of n examined. Cluster density profiles are thus potentially useful cosmological diagnostics. We find no evidence for a constant density core in any of the models, although the density profiles do tend to flatten at small radii. Much of the flattening is due to the force softening required by the simulations. An attempt is made to recover the unsoftened profiles assuming angular momentum invariance. The recovered profiles in Einstein-de Sitter cosmologies are consistent with a pure power law up to the highest density contrasts (10(exp 6)) accessible with our resolution. The low-density models show significant deviation from a power law above density contrasts approximately 10(exp 5). We interpret this curvature as reflecting the non-scale-invariant nature of the background cosmology in these models. These results are at the limit of our resolution and so should be tested in the future using simulations with larger numbers of particles. Such simulations will also provide insight on the broader problem of understanding, in a statistical sense, the full phase space structure of collapsed, cosmological halos.

  11. Gravitational collapse in Husain space-time for Brans-Dicke gravity theory with power-law potential

    NASA Astrophysics Data System (ADS)

    Rudra, Prabir; Biswas, Ritabrata; Debnath, Ujjal

    2014-12-01

    The motive of this work is to study gravitational collapse in Husain space-time in Brans-Dicke gravity theory. Among many scalar-tensor theories of gravity, Brans-Dicke is the simplest and the impact of it can be regulated by two parameters associated with it, namely, the Brans-Dicke parameter, ω, and the potential-scalar field dependency parameter n respectively. V. Husain's work on exact solution for null fluid collapse in 1996 has influenced many authors to follow his way to find the end-state of the homogeneous/inhomogeneous dust cloud. Vaidya's metric is used all over to follow the nature of future outgoing radial null geodesics. Detecting whether the central singularity is naked or wrapped by an event horizon, by the existence of future directed radial null geodesic emitted in past from the singularity is the basic objective. To point out the existence of positive trajectory tangent solution, both particular parametric cases (through tabular forms) and wide range contouring process have been applied. Precisely, perfect fluid's EoS satisfies a wide range of phenomena: from dust to exotic fluid like dark energy. We have used the EoS parameter k to determine the end state of collapse in different cosmological era. Our main target is to check low ω (more deviations from Einstein gravity-more Brans Dicke effect) and negative k zones. This particularly throws light on the nature of the end-state of collapse in accelerated expansion in Brans Dicke gravity. It is seen that for positive values of EoS parameter k, the collapse results in a black hole, whereas for negative values of k, naked singularity is the only outcome. It is also to be noted that "low ω" leads to the possibility of getting more naked singularities even for a non-accelerating universe.

  12. Gravitational Collapse in Husain space-time for Brans-Dicke Gravity Theory with Power-law Potential.

    NASA Astrophysics Data System (ADS)

    Rudra, Prabir

    2016-07-01

    The motive of this work is to study gravitational collapse in Husain space-time in Brans-Dicke gravity theory. Among many scalar-tensor theories of gravity, Brans-Dicke is the simplest and the impact of it can be regulated by two parameters associated with it, namely, the Brans-Dicke parameter, ω, and the potential-scalar field dependency parameter 'n' respectively. V. Husain's work on exact solution for null fluid collapse in 1996 has influenced many authors to follow his way to find the end-state of the homogeneous/inhomogeneous dust cloud. Vaidya's metric is used all over to follow the nature of future outgoing radial null geodesics. Detecting whether the central singularity is naked or wrapped by an event horizon, by the existence of future directed radial null geodesic emitted in past from the singularity is the basic objective. To point out the existence of positive trajectory tangent solution, both particular parametric cases(through tabular forms) and wide range contouring process have been applied. Precisely, perfect fluid's equation of state satisfies a wide range of phenomena : from dust to exotic fluid like dark energy. We have used the equation of state parameter 'k' to determine the end state of collapse in different cosmological era. Our main target is to check low ω (more deviations from Einstein gravity-more Brans Dicke effect) and negative 'k' zones. This particularly throws light on the nature of the end-state of collapse in accelerated expansion in Brans Dicke gravity. It is seen that for positive values of EoS parameter 'k', the collapse results in a black hole, whereas for negative values of 'k', naked singularity is the only outcome. It is also to be noted that "low ω" leads to the possibility of getting more naked singularities even for a non-accelerating universe.

  13. Inflation, quintessence, and the origin of mass

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2015-08-01

    In a unified picture both inflation and present dynamical dark energy arise from the same scalar field. The history of the Universe describes a crossover from a scale invariant "past fixed point" where all particles are massless, to a "future fixed point" for which spontaneous breaking of the exact scale symmetry generates the particle masses. The cosmological solution can be extrapolated to the infinite past in physical time - the universe has no beginning. This is seen most easily in a frame where particle masses and the Planck mass are field-dependent and increase with time. In this "freeze frame" the Universe shrinks and heats up during radiation and matter domination. In the equivalent, but singular Einstein frame cosmic history finds the familiar big bang description. The vicinity of the past fixed point corresponds to inflation. It ends at a first stage of the crossover. A simple model with no more free parameters than ΛCDM predicts for the primordial fluctuations a relation between the tensor amplitude r and the spectral index n, r = 8.19 (1 - n) - 0.137. The crossover is completed by a second stage where the beyond-standard-model sector undergoes the transition to the future fixed point. The resulting increase of neutrino masses stops a cosmological scaling solution, relating the present dark energy density to the present neutrino mass. At present our simple model seems compatible with all observational tests. We discuss how the fixed points can be rooted within quantum gravity in a crossover between ultraviolet and infrared fixed points. Then quantum properties of gravity could be tested both by very early and late cosmology.

  14. Stability issues of nonlocal gravity during primordial inflation

    NASA Astrophysics Data System (ADS)

    Belgacem, Enis; Cusin, Giulia; Foffa, Stefano; Maggiore, Michele; Mancarella, Michele

    2018-01-01

    We study the cosmological evolution of some nonlocal gravity models, when the initial conditions are set during a phase of primordial inflation. We examine in particular three models, the so-called RT, RR and Δ4 models, previously introduced by our group. We find that, during inflation, the RT model has a viable background evolution, but at the level of cosmological perturbations develops instabilities that make it nonviable. In contrast, the RR and Δ4 models have a viable evolution even when their initial conditions are set during a phase of primordial inflation.

  15. The Zeldovich & Adhesion approximations and applications to the local universe

    NASA Astrophysics Data System (ADS)

    Hidding, Johan; van de Weygaert, Rien; Shandarin, Sergei

    2016-10-01

    The Zeldovich approximation (ZA) predicts the formation of a web of singularities. While these singularities may only exist in the most formal interpretation of the ZA, they provide a powerful tool for the analysis of initial conditions. We present a novel method to find the skeleton of the resulting cosmic web based on singularities in the primordial deformation tensor and its higher order derivatives. We show that the A 3 lines predict the formation of filaments in a two-dimensional model. We continue with applications of the adhesion model to visualise structures in the local (z < 0.03) universe.

  16. A new way of setting the phases for cosmological multiscale Gaussian initial conditions

    NASA Astrophysics Data System (ADS)

    Jenkins, Adrian

    2013-09-01

    We describe how to define an extremely large discrete realization of a Gaussian white noise field that has a hierarchical structure and the property that the value of any part of the field can be computed quickly. Tiny subregions of such a field can be used to set the phase information for Gaussian initial conditions for individual cosmological simulations of structure formation. This approach has several attractive features: (i) the hierarchical structure based on an octree is particularly well suited for generating follow-up resimulation or zoom initial conditions; (ii) the phases are defined for all relevant physical scales in advance so that resimulation initial conditions are, by construction, consistent both with their parent simulation and with each other; (iii) the field can easily be made public by releasing a code to compute it - once public, phase information can be shared or published by specifying a spatial location within the realization. In this paper, we describe the principles behind creating such realizations. We define an example called Panphasia and in a companion paper by Jenkins and Booth (2013) make public a code to compute it. With 50 octree levels Panphasia spans a factor of more than 1015 in linear scale - a range that significantly exceeds the ratio of the current Hubble radius to the putative cold dark matter free-streaming scale. We show how to modify a code used for making cosmological and resimulation initial conditions so that it can take the phase information from Panphasia and, using this code, we demonstrate that it is possible to make good quality resimulation initial conditions. We define a convention for publishing phase information from Panphasia and publish the initial phases for several of the Virgo Consortium's most recent cosmological simulations including the 303 billion particle MXXL simulation. Finally, for reference, we give the locations and properties of several dark matter haloes that can be resimulated within these volumes.

  17. Palatini actions and quantum gravity phenomenology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmo, Gonzalo J., E-mail: gonzalo.olmo@csic.es

    2011-10-01

    We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropicmore » cosmologies of this model also avoid the big bang singularity by means of a big bounce.« less

  18. Dynamical system analysis of interacting models

    NASA Astrophysics Data System (ADS)

    Carneiro, S.; Borges, H. A.

    2018-01-01

    We perform a dynamical system analysis of a cosmological model with linear dependence between the vacuum density and the Hubble parameter, with constant-rate creation of dark matter. We show that the de Sitter spacetime is an asymptotically stable critical point, future limit of any expanding solution. Our analysis also shows that the Minkowski spacetime is an unstable critical point, which eventually collapses to a singularity. In this way, such a prescription for the vacuum decay not only predicts the correct future de Sitter limit, but also forbids the existence of a stable Minkowski universe. We also study the effect of matter creation on the growth of structures and their peculiar velocities, showing that it is inside the current errors of redshift space distortions observations.

  19. A note on singularities of the 3-D Euler equation

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1994-01-01

    In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.

  20. Stable and unstable singularities in the unforced Hele-Shaw cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almgren, R.; Bertozzi, A.; Brenner, M.P.

    We study singularity formation in the lubrication model for the unforced Hele-Shaw system, describing the breaking in two of a fluid droplet confined between two narrowly spaced glass plates. By varying the initial data, we exhibit four different scenarios: (1) the droplet breaks in finite time, with two pinch points moving toward each other and merging at the singular time; (2) the droplet breaks in finite time, with two asymmetric pinch points propagating away from each other; (3) the droplet breaks in finite time, with a single symmetric pinch point; or (4) the droplet relaxes to a stable equilibrium shapemore » without a finite time breakup. Each of the three singular scenarios has a self-similar structure with different scaling laws; the first scenario has not been observed before in other Hele-Shaw studies. We demonstrate instabilities of the second and third scenarios, in which the solution changes its behavior at a thickness that can be arbitrarily small depending on the initial condition. These transitions can be identified by examining the structure of the solution in the intermediate scaling region. {copyright} {ital 1996 American Institute of Physics.}« less

  1. Analytic Evolution of Singular Distribution Amplitudes in QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandogan Kunkel, Asli

    2014-08-01

    Distribution amplitudes (DAs) are the basic functions that contain information about the quark momentum. DAs are necessary to describe hard exclusive processes in quantum chromodynamics. We describe a method of analytic evolution of DAs that have singularities such as nonzero values at the end points of the support region, jumps at some points inside the support region and cusps. We illustrate the method by applying it to the evolution of a at (constant) DA, antisymmetric at DA, and then use the method for evolution of the two-photon generalized distribution amplitude. Our approach to DA evolution has advantages over the standardmore » method of expansion in Gegenbauer polynomials [1, 2] and over a straightforward iteration of an initial distribution with evolution kernel. Expansion in Gegenbauer polynomials requires an infinite number of terms in order to accurately reproduce functions in the vicinity of singular points. Straightforward iteration of an initial distribution produces logarithmically divergent terms at each iteration. In our method the logarithmic singularities are summed from the start, which immediately produces a continuous curve. Afterwards, in order to get precise results, only one or two iterations are needed.« less

  2. Integrable Scalar Cosmologies I. Foundations and links with String Theory

    NASA Astrophysics Data System (ADS)

    Fré, P.; Sagnotti, A.; Sorin, A. S.

    2013-12-01

    We build a number of integrable one-scalar spatially flat cosmologies, which play a natural role in inflationary scenarios, examine their behavior in several cases and draw from them some general lessons on this type of systems, whose potentials involve combinations of exponential functions, and on similar non-integrable ones. These include the impossibility for the scalar to emerge from the initial singularity descending along asymptotically exponential potentials with logarithmic slopes exceeding a critical value (“climbing phenomenon”) and the inevitable collapse in a Big Crunch whenever the scalar tries to settle at negative extrema of the potential. We also elaborate on the links between these types of potentials and “brane supersymmetry breaking”, a mechanism that ties together string scale and scale of supersymmetry breaking in a class of orientifold models. Our Universe is highly isotropic and homogeneous at large scales, while its current state of acceleration is well accounted for by a small positive cosmological constant; Our Universe is spatially flat, which brings to the forefront metrics of the form ds2=e dt2-a2(t) dxṡdx. Special “gauge functions” B(t) can result in simpler expressions for the scale factor a(t), which becomes a quantity of utmost interest for Theoretical Physics; Vacuum energy accounts for about 70% of the present contents of the Universe, dark matter of unknown origin for another 24%, so that only 6% is left for conventional baryonic matter in the form of luminous stars and galaxies. The climbing phenomenon, whereby the scalar field cannot emerge from the initial singularity climbing down potentials that are asymptotically exponential with logarithmic slopes exceeding a critical value. Or, if you will, the impossibility for scalar fields to overcome, in a contracting phase, the attractive force of such potential ends. The physical meaning of this phenomenon was first elucidated in [18] in the simple exponential potential, although the corresponding solutions have a long history [19,20]. Possible imprints on the low-ℓ tail of the CMB power spectrum were then discussed in [21], while an analysis of the mechanism near the initial singularity was recently presented in [22]; The eventual collapse in a Big Crunch of systems of this type whenever the scalar tends to settle at a negative extremum of the potential V(ϕ). This was expected: it reflects the fact that AdS has no spatially flat metrics, or that negative extrema are non-admissible fixed points for the corresponding dynamical systems. The fields hi associated with the Cartan generators of the Lie algebra of G, whose number equals the rank r of the coset and whose kinetic terms, determined by the invariant metric of G/H, are canonical up to an overall constant; The axions bI associated with the roots of the Lie algebra of G, whose kinetic terms depend instead on both the Cartan fields hi and the bI. Can the integrable models that we have identified be realized within conventional gauged Supergravity, and for what choices of fluxes? This proviso is important, since some of the simplest potentials in our list do appear, albeit in versions where SUSY is non-linearly realized. Can integrable potentials provide interesting insights on inflationary scenarios behind the slow-roll regime, in addition to those encoded by the single-exponential potential, the simplest member of the set, that already revealed the existence of the climbing phenomenon? How much can one learn from integrable potentials about Cosmology with similar non-integrable potentials? The first question is perhaps the most difficult one, but it is also particularly interesting since a proper understanding of the issue will encode low-energy manifestations of non-perturbative string effects present in these contexts even with supersymmetry broken at high scales. It will be dealt with in detail elsewhere [27].The second question has encouraging answers. There are indeed two classes of handily integrable models where an early climbing phase leaves way to inflation during the ensuing descent (models (2) and (9) in Table 1). This setting can leave interesting imprints on the low-ℓ portion of the CMB power spectrum [21] that are qualitatively along the lines of WMAP and PLANCK data and is close to BSB orientifold models, although not quite identical to them. Model (6) in Table 1 is perhaps the most interesting of all the examples that we are presenting, since it can even combine, in a rather elegant and relatively handy fashion, an early climbing phase with tens of e-folds of slow-roll inflation and with a graceful exit to an eventual phase of decelerated expansion.Finally, the extensive literature on two-dimensional dynamical systems implies a positive answer to the third question. It turns out, in fact, that the dynamical system counterparts of our cosmological equations experience behaviors that are largely determined by the nature of their fixed points, and more specifically by the eigenvalues of their linear approximations in the vicinity of them. As a result, when an integrable potential has the same type of fixed points as a physically interesting non-integrable one, its exact solutions are expected to provide trustable clues on the actual physical system. This result is very appealing, despite the absence of general estimates of the error, and will be illustrated further in [27] comparing analytical and numerical solutions for interesting families of potential wells that include the physically relevant case of the STU model [28].Summarizing, we have constructed a wide list of one-field integrable cosmologies and we have examined in detail the properties of their most significant solutions, arriving in this fashion at a qualitative grasp of the general case. We have also addressed the question of whether the integrable models provide valuable approximations of similar non-integrable models, and in this respect we have obtained encouraging results that find a rationale in the ascertained behavior of corresponding two-dimensional dynamical systems.The structure of the paper is as follows. In Section 2 we derive an effective dynamical model that encompasses the possible d-dimensional Friedman-Lemaitre-Robertson-Walker (FLRW) spatially flat cosmologies driven by a scalar field ϕ with canonical kinetic term and self interaction produced by a potential function V(ϕ). In Section 3 we describe the methods used to build integrable dynamical systems and identify nine different families of one-scalar cosmologies that are integrable for suitable choices of the gauge function B(t) of Eq. (1.1). In Section 4 we analyze the generic properties of dynamical systems in two variables, we describe the general classification of their fixed points and we illustrate the corresponding behavior of the solutions of Section 3. We then discuss in detail the exact solutions of several particularly significant systems identified in Section 3 and illustrate a number of instructive lessons that can be drawn from them. In Section 5.1 we describe the gross features of 26 additional sporadic potentials and elaborate on the qualitative behavior of their solutions, on the basis of the key lessons drawn from the simpler examples of Section 4. We also elaborate briefly on the links with other integrable systems. In Section 6 we illustrate how exponential potentials accompany in String Theory a mechanism for supersymmetry breaking brought about by classically stable vacuum configurations of D branes and orientifolds with broken supersymmetry and discuss their behavior in lower dimensions. Under some assumptions that are spelled out in Section 6, we also describe the types of exponential potentials that can emerge, in four dimensions, from various types of branes present in String Theory. Insofar as possible, we work in a generic number of dimensions, but with critical superstrings in our mind, so that in most of the paper 4⩽d⩽10. Finally Section 7 contains our conclusions, an assessment of our current views on the role of integrability in cosmological models emerging from a Fundamental Theory and some anticipations of results that are going to appear elsewhere [27,29].

  3. Singular dynamics of a q-difference Painlevé equation in its initial-value space

    NASA Astrophysics Data System (ADS)

    Joshi, N.; Lobb, S. B.

    2016-01-01

    We construct the initial-value space of a q-discrete first Painlevé equation explicitly and describe the behaviours of its solutions w(n) in this space as n\\to ∞ , with particular attention paid to neighbourhoods of exceptional lines and irreducible components of the anti-canonical divisor. These results show that trajectories starting in domains bounded away from the origin in initial value space are repelled away from such singular lines. However, the dynamical behaviours in neighbourhoods containing the origin are complicated by the merger of two simple base points at the origin in the limit. We show that these lead to a saddle-point-type behaviour in a punctured neighbourhood of the origin.

  4. zeldovich-PLT: Zel'dovich approximation initial conditions generator

    NASA Astrophysics Data System (ADS)

    Eisenstein, Daniel; Garrison, Lehman

    2016-05-01

    zeldovich-PLT generates Zel'dovich approximation (ZA) initial conditions (i.e. first-order Lagrangian perturbation theory) for cosmological N-body simulations, optionally applying particle linear theory (PLT) corrections.

  5. Comparison of cosmology and seabed acoustics measurements using statistical inference from maximum entropy

    NASA Astrophysics Data System (ADS)

    Knobles, David; Stotts, Steven; Sagers, Jason

    2012-03-01

    Why can one obtain from similar measurements a greater amount of information about cosmological parameters than seabed parameters in ocean waveguides? The cosmological measurements are in the form of a power spectrum constructed from spatial correlations of temperature fluctuations within the microwave background radiation. The seabed acoustic measurements are in the form of spatial correlations along the length of a spatial aperture. This study explores the above question from the perspective of posterior probability distributions obtained from maximizing a relative entropy functional. An answer is in part that the seabed in shallow ocean environments generally has large temporal and spatial inhomogeneities, whereas the early universe was a nearly homogeneous cosmological soup with small but important fluctuations. Acoustic propagation models used in shallow water acoustics generally do not capture spatial and temporal variability sufficiently well, which leads to model error dominating the statistical inference problem. This is not the case in cosmology. Further, the physics of the acoustic modes in cosmology is that of a standing wave with simple initial conditions, whereas for underwater acoustics it is a traveling wave in a strongly inhomogeneous bounded medium.

  6. Numerical Tests of the Cosmic Censorship Conjecture via Event-Horizon Finding

    NASA Astrophysics Data System (ADS)

    Okounkova, Maria; Ott, Christian; Scheel, Mark; Szilagyi, Bela

    2015-04-01

    We present the current state of our research on the possibility of naked singularity formation in gravitational collapse, numerically testing both the cosmic censorship conjecture and the hoop conjecture. The former of these posits that all singularities lie behind an event horizon, while the later conjectures that this is true if collapse occurs from an initial configuration with all circumferences C <= 4 πM . We reconsider the classical Shapiro & Teukolsky (1991) prolate spheroid naked singularity scenario. Using the exponentially error-convergent Spectral Einstein Code (SpEC) we simulate the collapse of collisionless matter and probe for apparent horizons. We propose a new method to probe for the existence of an event horizon by following characteristic from regions near the singularity, using methods commonly employed in Cauchy characteristic extraction. This research was partially supported by NSF under Award No. PHY-1404569.

  7. T-duality of singular spacetime compactifications in an H-flux

    NASA Astrophysics Data System (ADS)

    Linshaw, Andrew; Mathai, Varghese

    2018-07-01

    We begin by presenting a symmetric version of the circle equivariant T-duality result in a joint work of the second author with Siye Wu, thereby generalizing the results there. We then initiate the study of twisted equivariant Courant algebroids and equivariant generalized geometry and apply it to our context. As before, T-duality exchanges type IIA and type IIB string theories. In our theory, both spacetime and the T-dual spacetime can be singular spaces when the fixed point set is non-empty; the singularities correspond to Kaluza-Klein monopoles. We propose that the Ramond-Ramond charges of type II string theories on the singular spaces are classified by twisted equivariant cohomology groups, consistent with the previous work of Mathai and Wu, and prove that they are naturally isomorphic. We also establish the corresponding isomorphism of twisted equivariant Courant algebroids.

  8. Inflationary Axion Cosmology

    DOE R&D Accomplishments Database

    Wilczek, Frank; Turner, Michael S.

    1990-09-01

    If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.

  9. Codimension-2 Brane Black Holes

    NASA Astrophysics Data System (ADS)

    Zamorano, Nelson; Arias, Cesar; Ordenes, Ariel; Guzman, Francisco

    2012-03-01

    We analyze the geometry associated to a six dimensional solution of the Einstein's equations. It describes a Schwarzschild de-Sitter black hole on a 3-brane, surrounded by a two dimensional compact bulk. A four dimensional effective cosmological constant and a Planck mass are matched to their six dimensional counterpart. Deviation from Newton's law are computed in both of the solutions found. To learn about the geometry of the bulk, we study the geodesics in this sector. At least, in our opinion, there are some features of these solutions that makes worth to pursue this analysis. The singularity associated to the warped bulk is controlled by the mass M of the black hole. It vanishes if we set M=0. In the same context, it makes an interesting problem to study the Gregory-Laflamme instability in this context [1]. Another feature is the rugby ball type of geometry exhibited by these solutions [2]. They end up in two conical singularities at its respective poles. The branes are located precisely at the poles. Besides, a Wick's rotation generates a connection between different solutions. [4pt] [1] R. Gregory and R. Laflamme, Phys. Rev Lett., 70,2837 (1993)[0pt] [2] S. M. Carroll and M. M. Guica, arXiv:hep-th/0302067

  10. ATTITUDE FILTERING ON SO(3)

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    2005-01-01

    A new method is presented for the simultaneous estimation of the attitude of a spacecraft and an N-vector of bias parameters. This method uses a probability distribution function defined on the Cartesian product of SO(3), the group of rotation matrices, and the Euclidean space W N .The Fokker-Planck equation propagates the probability distribution function between measurements, and Bayes s formula incorporates measurement update information. This approach avoids all the issues of singular attitude representations or singular covariance matrices encountered in extended Kalman filters. In addition, the filter has a consistent initialization for a completely unknown initial attitude, owing to the fact that SO(3) is a compact space.

  11. Group theoretical quantization of isotropic loop cosmology

    NASA Astrophysics Data System (ADS)

    Livine, Etera R.; Martín-Benito, Mercedes

    2012-06-01

    We achieve a group theoretical quantization of the flat Friedmann-Robertson-Walker model coupled to a massless scalar field adopting the improved dynamics of loop quantum cosmology. Deparemetrizing the system using the scalar field as internal time, we first identify a complete set of phase space observables whose Poisson algebra is isomorphic to the su(1,1) Lie algebra. It is generated by the volume observable and the Hamiltonian. These observables describe faithfully the regularized phase space underlying the loop quantization: they account for the polymerization of the variable conjugate to the volume and for the existence of a kinematical nonvanishing minimum volume. Since the Hamiltonian is an element in the su(1,1) Lie algebra, the dynamics is now implemented as SU(1, 1) transformations. At the quantum level, the system is quantized as a timelike irreducible representation of the group SU(1, 1). These representations are labeled by a half-integer spin, which gives the minimal volume. They provide superselection sectors without quantization anomalies and no factor ordering ambiguity arises when representing the Hamiltonian. We then explicitly construct SU(1, 1) coherent states to study the quantum evolution. They not only provide semiclassical states but truly dynamical coherent states. Their use further clarifies the nature of the bounce that resolves the big bang singularity.

  12. Quantum cosmology of a Bianchi III LRS geometry coupled to a source free electromagnetic field

    NASA Astrophysics Data System (ADS)

    Karagiorgos, A.; Pailas, T.; Dimakis, N.; Terzis, Petros A.; Christodoulakis, T.

    2018-03-01

    We consider a Bianchi type III axisymmetric geometry in the presence of an electromagnetic field. A first result at the classical level is that the symmetry of the geometry need not be applied on the electromagnetic tensor Fμν the algebraic restrictions, implied by the Einstein field equations to the stress energy tensor Tμν, suffice to reduce the general Fμν to the appropriate form. The classical solution thus found contains a time dependent electric and a constant magnetic charge. The solution is also reachable from the corresponding mini-superspace action, which is strikingly similar to the Reissner-Nordstr{öm one. This points to a connection between the black hole geometry and the cosmological solution here found, which is the analog of the known correlation between the Schwarzschild and the Kantowski-Sachs metrics. The configuration space is drastically modified by the presence of the magnetic charge from a 3D flat to a 3D pp wave geometry. We map the emerging linear and quadratic classical integrals of motion, to quantum observables. Along with the Wheeler-DeWitt equation these observables provide unique, up to constants, wave functions. The employment of a Bohmian interpretation of these quantum states results in deterministic (semi-classical) geometries most of which are singularity free.

  13. Splash singularity for water waves.

    PubMed

    Castro, Angel; Córdoba, Diego; Fefferman, Charles L; Gancedo, Francisco; Gómez-Serrano, Javier

    2012-01-17

    We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time.

  14. Splash singularity for water waves

    PubMed Central

    Castro, Angel; Córdoba, Diego; Fefferman, Charles L.; Gancedo, Francisco; Gómez-Serrano, Javier

    2012-01-01

    We exhibit smooth initial data for the two-dimensional (2D) water-wave equation for which we prove that smoothness of the interface breaks down in finite time. Moreover, we show a stability result together with numerical evidence that there exist solutions of the 2D water-wave equation that start from a graph, turn over, and collapse in a splash singularity (self-intersecting curve in one point) in finite time. PMID:22219372

  15. Eventful horizons: String theory in de Sitter and anti-de Sitter

    NASA Astrophysics Data System (ADS)

    Kleban, Matthew Benjamin

    String theory purports to be a theory of quantum gravity. As such, it should have much to say about the deep mysteries surrounding the very early stages of our universe. For this reason, although the theory is notoriously difficult to directly test, data from experimental cosmology may provide a way to probe the high energy physics of string theory. In the first part of this thesis, I will address the important issue of the testability of string theory using observations of the cosmic microwave background radiation. In the second part, I will study some formal difficulties that arise in attempting to understand string theory in de Sitter spacetime. In the third part, I will study the singularity of an eternal anti de Sitter Schwarzschild black hole, using the AdS/CFT correspondence.

  16. A comparison of cosmological models using strong gravitational lensing galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng, E-mail: fmelia@email.arizona.edu, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn

    2015-01-01

    Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the R{sub h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, thoughmore » the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out R{sub h}=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead R{sub h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the R{sub h}=ct universe eventually emerge as the correct cosmology, its lack of any free parameters for this kind of work will provide a remarkably powerful probe of the mass structure in lensing galaxies, and a means of better understanding the origin of the bulge-halo conspiracy.« less

  17. Possible evidence for the existence of antimatter on a cosmological scale in the universe.

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Morgan, D. L., Jr.; Bredekamp, J.

    1971-01-01

    Initial results of a detailed calculation of the cosmological gamma-ray spectrum from matter-antimatter annihilation in the universe. The similarity between the calculated spectrum and the present observations of the gamma-ray background spectrum above 1 MeV suggests that such observations may be evidence of the existence of antimatter on a large scale in the universe.

  18. Sufficient condition for a finite-time singularity in a high-symmetry Euler flow: Analysis and statistics

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Bhattacharjee, A.

    1996-08-01

    A sufficient condition is obtained for the development of a finite-time singularity in a highly symmetric Euler flow, first proposed by Kida [J. Phys. Soc. Jpn. 54, 2132 (1995)] and recently simulated by Boratav and Pelz [Phys. Fluids 6, 2757 (1994)]. It is shown that if the second-order spatial derivative of the pressure (pxx) is positive following a Lagrangian element (on the x axis), then a finite-time singularity must occur. Under some assumptions, this Lagrangian sufficient condition can be reduced to an Eulerian sufficient condition which requires that the fourth-order spatial derivative of the pressure (pxxxx) at the origin be positive for all times leading up to the singularity. Analytical as well as direct numerical evaluation over a large ensemble of initial conditions demonstrate that for fixed total energy, pxxxx is predominantly positive with the average value growing with the numbers of modes.

  19. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    NASA Astrophysics Data System (ADS)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2012-10-01

    A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bag, Satadru; Sahni, Varun; Viznyuk, Alexander

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, w {sub eff} < −1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the 'Weyl fluid' or 'dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which resultsmore » in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch ( z ∼< 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.« less

  1. Exponents of non-linear clustering in scale-free one-dimensional cosmological simulations

    NASA Astrophysics Data System (ADS)

    Benhaiem, David; Joyce, Michael; Sicard, François

    2013-03-01

    One-dimensional versions of dissipationless cosmological N-body simulations have been shown to share many qualitative behaviours of the three-dimensional problem. Their interest lies in the fact that they can resolve a much greater range of time and length scales, and admit exact numerical integration. We use such models here to study how non-linear clustering depends on initial conditions and cosmology. More specifically, we consider a family of models which, like the three-dimensional Einstein-de Sitter (EdS) model, lead for power-law initial conditions to self-similar clustering characterized in the strongly non-linear regime by power-law behaviour of the two-point correlation function. We study how the corresponding exponent γ depends on the initial conditions, characterized by the exponent n of the power spectrum of initial fluctuations, and on a single parameter κ controlling the rate of expansion. The space of initial conditions/cosmology divides very clearly into two parts: (1) a region in which γ depends strongly on both n and κ and where it agrees very well with a simple generalization of the so-called stable clustering hypothesis in three dimensions; and (2) a region in which γ is more or less independent of both the spectrum and the expansion of the universe. The boundary in (n, κ) space dividing the `stable clustering' region from the `universal' region is very well approximated by a `critical' value of the predicted stable clustering exponent itself. We explain how this division of the (n, κ) space can be understood as a simple physical criterion which might indeed be expected to control the validity of the stable clustering hypothesis. We compare and contrast our findings to results in three dimensions, and discuss in particular the light they may throw on the question of `universality' of non-linear clustering in this context.

  2. Multiscale Analysis in the Compressible Rotating and Heat Conducting Fluids

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam; Maltese, David; Novotný, Antonín

    2017-06-01

    We consider the full Navier-Stokes-Fourier system under rotation in the singular regime of small Mach and Rossby, and large Reynolds and Péclet numbers, with ill prepared initial data on an infinite straight 3-D layer rotating with respect to the axis orthogonal to the layer. We perform the singular limit in the framework of weak solutions and identify the 2-D Euler-Boussinesq system as the target problem.

  3. Polarization singularity indices in Gaussian laser beams

    NASA Astrophysics Data System (ADS)

    Freund, Isaac

    2002-01-01

    Two types of point singularities in the polarization of a paraxial Gaussian laser beam are discussed in detail. V-points, which are vector point singularities where the direction of the electric vector of a linearly polarized field becomes undefined, and C-points, which are elliptic point singularities where the ellipse orientations of elliptically polarized fields become undefined. Conventionally, V-points are characterized by the conserved integer valued Poincaré-Hopf index η, with generic value η=±1, while C-points are characterized by the conserved half-integer singularity index IC, with generic value IC=±1/2. Simple algorithms are given for generating V-points with arbitrary positive or negative integer indices, including zero, at arbitrary locations, and C-points with arbitrary positive or negative half-integer or integer indices, including zero, at arbitrary locations. Algorithms are also given for generating continuous lines of these singularities in the plane, V-lines and C-lines. V-points and C-points may be transformed one into another. A topological index based on directly measurable Stokes parameters is used to discuss this transformation. The evolution under propagation of V-points and C-points initially embedded in the beam waist is studied, as is the evolution of V-dipoles and C-dipoles.

  4. Cosmological constraints on Brans-Dicke theory.

    PubMed

    Avilez, A; Skordis, C

    2014-07-04

    We report strong cosmological constraints on the Brans-Dicke (BD) theory of gravity using cosmic microwave background data from Planck. We consider two types of models. First, the initial condition of the scalar field is fixed to give the same effective gravitational strength Geff today as the one measured on Earth, GN. In this case, the BD parameter ω is constrained to ω>692 at the 99% confidence level, an order of magnitude improvement over previous constraints. In the second type, the initial condition for the scalar is a free parameter leading to a somewhat stronger constraint of ω>890, while Geff is constrained to 0.981

  5. Anomaly-free cosmological perturbations in effective canonical quantum gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrau, Aurelien; Bojowald, Martin; Kagan, Mikhail

    2015-05-01

    This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.

  6. The abundance of galaxy clusters in modified Newtonian dynamics: cosmological simulations with massive neutrinos

    NASA Astrophysics Data System (ADS)

    Angus, G. W.; Diaferio, Antonaldo

    2011-10-01

    We present a new particle mesh cosmological N-body code for accurately solving the modified Poisson equation of the quasi-linear formulation of modified Newtonian dynamics (MOND). We generate initial conditions for the Angus cosmological model, which is identical to Λ cold dark matter (ΛCDM) except that the CDM is switched for a single species of thermal sterile neutrinos. We set the initial conditions at z= 250 for a (512 Mpc h-1)3 box with 2563 particles, and we evolve them down to z= 0. We clearly demonstrate the ability of MOND to develop the large-scale structure in a hot dark matter cosmology and contradict the naive expectation that MOND cannot form galaxy clusters. We find that the correct order of magnitude of X-ray clusters (with TX > 4.5 keV) can be formed, but that we overpredict the number of very rich clusters and seriously underpredict the number of lower mass clusters. We present evidence that suggests the density profiles of our simulated clusters are compatible with those of the observed X-ray clusters in MOND. As a last test, we computed the relative velocity between pairs of haloes within 10 Mpc and find that pairs with velocities larger than 3000 km s-1, like the bullet cluster, can form without difficulty.

  7. Local properties and global structure of McVittie spacetimes with non-flat Friedmann-Lemaître-Robertson-Walker backgrounds

    NASA Astrophysics Data System (ADS)

    Nolan, Brien C.

    2017-11-01

    McVittie spacetimes embed the vacuum Schwarzschild(-(anti) de Sitter) spacetime in an isotropic, Friedmann-Lemaître-Robertson-Walker (FLRW) background universe. The global structure of such spacetimes is well understood when the FLRW background is spatially flat. In this paper, we study the global structure of McVittie spacetimes with spatially non-flat FLRW backgrounds. We derive some basic results on the metric, curvature and matter content of these spacetimes and provide a representation of the metric that makes the study of their global properties possible. In the closed case, we find that at each instant of time, the spacetime is confined to a region bounded by a (positive) minimum and a maximum area radius, and is bounded either to the future or to the past by a scalar curvature singularity. This allowed region only exists when the background scale factor is above a certain minimum, and so is bounded away from the Big Bang singularity, as in the flat case. In the open case, the situation is different, and we focus mainly on this case. In K<0 McVittie spacetimes, radial null geodesics originate in finite affine time in the past at a boundary formed by the union of the Big Bang singularity of the FLRW background and a hypersurface (of varying causal character) which is non-singular in the sense of scalar curvature. Furthermore, in the case of eternally expanding open universes with Λ≥slant0 , we prove that black holes are ubiquitous: ingoing radial null geodesics extend in finite affine time to a hypersurface that forms the boundary of the region from which photons can escape to future null infinity. We determine the structure of the conformal diagrams that can arise in the open case. Finally, we revisit the black hole interpretation of McVittie spacetimes in the spatially flat case, and show that this interpretation holds also in the case of a vanishing cosmological constant, contrary to a previous claim of ours.

  8. Initial conditions of inhomogeneous universe and the cosmological constant problem

    NASA Astrophysics Data System (ADS)

    Totani, Tomonori

    2016-06-01

    Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variation. This can be avoided by introducing a constraint 0δ(√-g) = to metric variations δ gμν, and then the cosmological constant Λ emerges as an integration constant. This is a removal of one of the four constraints on initial conditions forced by EFE at the birth of the universe, and it may imply that EFE are unnecessarily restrictive about initial conditions. I then adopt a principle that the theory of gravity should be able to solve time evolution starting from arbitrary inhomogeneous initial conditions about spacetime and matter. The equations of gravitational fields satisfying this principle are obtained, by setting four auxiliary constraints on δ gμν to extract six degrees of freedom for gravity. The cost of achieving this is a loss of general covariance, but these equations constitute a consistent theory if they hold in the special coordinate systems that can be uniquely specified with respect to the initial space-like hypersurface when the universe was born. This theory predicts that gravity is described by EFE with non-zero Λ in a homogeneous patch of the universe created by inflation, but Λ changes continuously across different patches. Then both the smallness and coincidence problems of the cosmological constant are solved by the anthropic argument. This is just a result of inhomogeneous initial conditions, not requiring any change of the fundamental physical laws in different patches.

  9. Quadratic genetic modifications: a streamlined route to cosmological simulations with controlled merger history

    NASA Astrophysics Data System (ADS)

    Rey, Martin P.; Pontzen, Andrew

    2018-02-01

    Recent work has studied the interplay between a galaxy's history and its observable properties using `genetically modified' cosmological zoom simulations. The approach systematically generates alternative histories for a halo, while keeping its cosmological environment fixed. Applications to date altered linear properties of the initial conditions, such as the mean overdensity of specified regions; we extend the formulation to include quadratic features, such as local variance, that determines the overall importance of smooth accretion relative to mergers in a galaxy's history. We introduce an efficient algorithm for this new class of modification and demonstrate its ability to control the variance of a region in a one-dimensional toy model. Outcomes of this work are twofold: (i) a clarification of the formulation of genetic modifications and (ii) a proof of concept for quadratic modifications leading the way to a forthcoming implementation in cosmological simulations.

  10. Fully pseudospectral solution of the conformally invariant wave equation near the cylinder at spacelike infinity. III: nonspherical Schwarzschild waves and singularities at null infinity

    NASA Astrophysics Data System (ADS)

    Frauendiener, Jörg; Hennig, Jörg

    2018-03-01

    We extend earlier numerical and analytical considerations of the conformally invariant wave equation on a Schwarzschild background from the case of spherically symmetric solutions, discussed in Frauendiener and Hennig (2017 Class. Quantum Grav. 34 045005), to the case of general, nonsymmetric solutions. A key element of our approach is the modern standard representation of spacelike infinity as a cylinder. With a decomposition into spherical harmonics, we reduce the four-dimensional wave equation to a family of two-dimensional equations. These equations can be used to study the behaviour at the cylinder, where the solutions turn out to have, in general, logarithmic singularities at infinitely many orders. We derive regularity conditions that may be imposed on the initial data, in order to avoid the first singular terms. We then demonstrate that the fully pseudospectral time evolution scheme can be applied to this problem leading to a highly accurate numerical reconstruction of the nonsymmetric solutions. We are particularly interested in the behaviour of the solutions at future null infinity, and we numerically show that the singularities spread to null infinity from the critical set, where the cylinder approaches null infinity. The observed numerical behaviour is consistent with similar logarithmic singularities found analytically on the critical set. Finally, we demonstrate that even solutions with singularities at low orders can be obtained with high accuracy by virtue of a coordinate transformation that converts solutions with logarithmic singularities into smooth solutions.

  11. Einstein-Langevin and Einstein-Fokker-Planck equations for Oppenheimer-Snyder gravitational collapse in a spacetime with conformal vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Miller, Steven David

    1999-10-01

    A consistent extension of the Oppenheimer-Snyder gravitational collapse formalism is presented which incorporates stochastic, conformal, vacuum fluctuations of the metric tensor. This results in a tractable approach to studying the possible effects of vacuum fluctuations on collapse and singularity formation. The motivation here, is that it is known that coupling stochastic noise to a classical field theory can lead to workable methodologies that accommodate or reproduce many aspects of quantum theory, turbulence or structure formation. The effect of statistically averaging over the metric fluctuations gives the appearance of a deterministic Riemannian structure, with an induced non-vanishing cosmological constant arising from the nonlinearity. The Oppenheimer-Snyder collapse of a perfect fluid or dust star in the fluctuating or `turbulent' spacetime, is reformulated in terms of nonlinear Einstein-Langevin field equations, with an additional noise source in the energy-momentum tensor. The smooth deterministic worldlines of collapsing matter within the classical Oppenheimer-Snyder model, now become nonlinear Brownian motions due to the backreaction induced by vacuum fluctuations. As the star collapses, the matter worldlines become increasingly randomized since the backreaction coupling to the vacuum fluctuations is nonlinear; the input assumptions of the Hawking-Penrose singularity theorems should then be violated. Solving the nonlinear Einstein-Langevin field equation for collapse - via the Ito interpretation - gives a singularity-free solution, which is equivalent to the original Oppenheimer solution but with higher-order stochastic corrections; the original singular solution is recovered in the limit of zero vacuum fluctuations. The `geometro-hydrodynamics' of noisy gravitational collapse, were also translated into an equivalent mathematical formulation in terms of nonlinear Einstein-Fokker-Planck (EFP) continuity equations with respect to comoving coordinates: these describe the collapse as a conserved flow of probability. A solution was found in the dilute limit of weak fluctuations where the EFP equation is linearized. There is zero probability that the star collapses to a singular state in the presence of background vacuum fluctuations, but the singularity returns with unit probability when the fluctuations are reduced to zero. Finally, an EFP equation was considered with respect to standard exterior coordinates. Using the thermal Brownian motion paradigm, an exact stationary or equilibrium solution was found in the infinite standard time relaxation limit. The solution gives the conditions required for the final collapsed object (a black hole) to be in thermal equilibrium with the background vacuum fluctuations. From this solution, one recovers the Hawking temperature without using field theory. The stationary solution then seems to correspond to a black hole in thermal equilibrium with a fluctuating conformal scalar field; or the Hawking-Hartle state.

  12. Aircraft Range Optimization Using Singular Perturbations

    NASA Technical Reports Server (NTRS)

    Oconnor, Joseph Taffe

    1973-01-01

    An approximate analytic solution is developed for the problem of maximizing the range of an aircraft for a fixed end state. The problem is formulated as a singular perturbation and solved by matched inner and outer asymptotic expansions and the minimum principle of Pontryagin. Cruise in the stratosphere, and on transition to and from cruise at constant Mach number are discussed. The state vector includes altitude, flight path angle, and mass. Specific fuel consumption becomes a linear function of power approximating that of the cruise values. Cruise represents the outer solution; altitude and flight path angle are constants, and only mass changes. Transitions between cruise and the specified initial and final conditions correspond to the inner solutions. The mass is constant and altitude and velocity vary. A solution is developed which is valid for cruise but which is not for the initial and final conditions. Transforming of the independent variable near the initial and final conditions result in solutions which are valid for the two inner solutions but not for cruise. The inner solutions can not be obtained without simplifying the state equations. The singular perturbation approach overcomes this difficulty. A quadratic approximation of the state equations is made. The resulting problem is solved analytically, and the two inner solutions are matched to the outer solution.

  13. Modified first-order Hořava-Lifshitz gravity: Hamiltonian analysis of the general theory and accelerating FRW cosmology in a power-law F(R) model

    NASA Astrophysics Data System (ADS)

    Carloni, Sante; Chaichian, Masud; Nojiri, Shin'Ichi; Odintsov, Sergei D.; Oksanen, Markku; Tureanu, Anca

    2010-09-01

    We propose the most general modified first-order Hořava-Lifshitz gravity, whose action does not contain time derivatives higher than the second order. The Hamiltonian structure of this theory is studied in all the details in the case of the spatially-flat Friedmann-Robertson-Walker (FRW) space-time, demonstrating many of the features of the general theory. It is shown that, with some plausible assumptions, including the projectability of the lapse function, this model is consistent. As a large class of such theories, the modified Hořava-Lifshitz F(R) gravity is introduced. The study of its ultraviolet properties shows that its z=3 version seems to be renormalizable in the same way as the original Hořava-Lifshitz proposal. The Hamiltonian analysis of the modified Hořava-Lifshitz F(R) gravity shows that it is in general a consistent theory. The F(R) gravity action is also studied in the fixed-gauge form, where the appearance of a scalar field is particularly illustrative. Then the spatially-flat FRW cosmology for this F(R) gravity is investigated. It is shown that a special choice of parameters for this theory leads to the same equations of motion as in the case of traditional F(R) gravity. Nevertheless, the cosmological structure of the modified Hořava-Lifshitz F(R) gravity turns out to be much richer than for its traditional counterpart. The emergence of multiple de Sitter solutions indicates the possibility of unification of early-time inflation with late-time acceleration within the same model. Power-law F(R) theories are also investigated in detail. It is analytically shown that they have a quite rich cosmological structure: early-/late-time cosmic acceleration of quintessence, as well as of phantom types. Also it is demonstrated that all the four known types of finite-time future singularities may occur in the power-law Hořava-Lifshitz F(R) gravity. Finally, a covariant proposal for (renormalizable) F(R) gravity within the Hořava-Lifshitz spirit is presented.

  14. Problems of interaction longitudinal shear waves with V-shape tunnels defect

    NASA Astrophysics Data System (ADS)

    Popov, V. G.

    2018-04-01

    The problem of determining the two-dimensional dynamic stress state near a tunnel defect of V-shaped cross-section is solved. The defect is located in an infinite elastic medium, where harmonic longitudinal shear waves are propagating. The initial problem is reduced to a system of two singular integral or integro-differential equations with fixed singularities. A numerical method for solving these systems with regard to the true asymptotics of the unknown functions is developed.

  15. Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barenboim, Gabriela; /Valencia U.; Lykken, Joseph D.

    2006-08-01

    Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {Lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction ofmore » the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {Lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.« less

  16. Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology

    NASA Astrophysics Data System (ADS)

    Barenboim, Gabriela; Lykken, Joseph D.

    2006-12-01

    Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard ΛCDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to ΛCDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yi; Xue, Wei, E-mail: yw366@cam.ac.uk, E-mail: wei.xue@sissa.it

    We study the tilt of the primordial gravitational waves spectrum. A hint of blue tilt is shown from analyzing the BICEP2 and POLARBEAR data. Motivated by this, we explore the possibilities of blue tensor spectra from the very early universe cosmology models, including null energy condition violating inflation, inflation with general initial conditions, and string gas cosmology, etc. For the simplest G-inflation, blue tensor spectrum also implies blue scalar spectrum. In general, the inflation models with blue tensor spectra indicate large non-Gaussianities. On the other hand, string gas cosmology predicts blue tensor spectrum with highly Gaussian fluctuations. If further experimentsmore » do confirm the blue tensor spectrum, non-Gaussianity becomes a distinguishing test between inflation and alternatives.« less

  18. Phases of unstable conifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, K.

    2007-03-15

    We explore the phase structure induced by closed string tachyon condensation of toric nonsupersymmetric conifold-like singularities described by an integral charge matrix Q=(n{sub 1}n{sub 2}-n{sub 3}-n{sub 4}), n{sub i}>0, iQ{sub i}{ne}0, initiated by Narayan [J. High Energy Phys. 03 (2006) 036]. Using gauged linear sigma model renormalization group flows and toric geometry techniques, we see a cascadelike phase structure containing decays to lower order conifold-like singularities, including, in particular, the supersymmetric conifold and the Y{sup pq} spaces. This structure is consistent with the Type II GSO projection obtained previously for these singularities. Transitions between the various phases of these geometriesmore » include flips and flops.« less

  19. The Cucker-Smale Equation: Singular Communication Weight, Measure-Valued Solutions and Weak-Atomic Uniqueness

    NASA Astrophysics Data System (ADS)

    Mucha, Piotr B.; Peszek, Jan

    2018-01-01

    The Cucker-Smale flocking model belongs to a wide class of kinetic models that describe a collective motion of interacting particles that exhibit some specific tendency, e.g. to aggregate, flock or disperse. This paper examines the kinetic Cucker-Smale equation with a singular communication weight. Given a compactly supported measure as an initial datum we construct a global in time weak measure-valued solution in the space {C_{weak}(0,∞M)}. The solution is defined as a mean-field limit of the empirical distributions of particles, the dynamics of which is governed by the Cucker-Smale particle system. The studied communication weight is {ψ(s)=|s|^{-α}} with {α \\in (0,1/2)}. This range of singularity admits the sticking of characteristics/trajectories. The second result concerns the weak-atomic uniqueness property stating that a weak solution initiated by a finite sum of atoms, i.e. Dirac deltas in the form {m_i δ_{x_i} ⊗ δ_{v_i}}, preserves its atomic structure. Hence these coincide with unique solutions to the system of ODEs associated with the Cucker-Smale particle system.

  20. Dynamical insurance models with investment: Constrained singular problems for integrodifferential equations

    NASA Astrophysics Data System (ADS)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2016-01-01

    Previous and new results are used to compare two mathematical insurance models with identical insurance company strategies in a financial market, namely, when the entire current surplus or its constant fraction is invested in risky assets (stocks), while the rest of the surplus is invested in a risk-free asset (bank account). Model I is the classical Cramér-Lundberg risk model with an exponential claim size distribution. Model II is a modification of the classical risk model (risk process with stochastic premiums) with exponential distributions of claim and premium sizes. For the survival probability of an insurance company over infinite time (as a function of its initial surplus), there arise singular problems for second-order linear integrodifferential equations (IDEs) defined on a semiinfinite interval and having nonintegrable singularities at zero: model I leads to a singular constrained initial value problem for an IDE with a Volterra integral operator, while II model leads to a more complicated nonlocal constrained problem for an IDE with a non-Volterra integral operator. A brief overview of previous results for these two problems depending on several positive parameters is given, and new results are presented. Additional results are concerned with the formulation, analysis, and numerical study of "degenerate" problems for both models, i.e., problems in which some of the IDE parameters vanish; moreover, passages to the limit with respect to the parameters through which we proceed from the original problems to the degenerate ones are singular for small and/or large argument values. Such problems are of mathematical and practical interest in themselves. Along with insurance models without investment, they describe the case of surplus completely invested in risk-free assets, as well as some noninsurance models of surplus dynamics, for example, charity-type models.

  1. Naked singularities as particle accelerators. II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as themore » final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.« less

  2. Natural inflation from polymer quantization

    NASA Astrophysics Data System (ADS)

    Ali, Masooma; Seahra, Sanjeev S.

    2017-11-01

    We study the polymer quantization of a homogeneous massive scalar field in the early Universe using a prescription inequivalent to those previously appearing in the literature. Specifically, we assume a Hilbert space for which the scalar field momentum is well defined but its amplitude is not. This is closer in spirit to the quantization scheme of loop quantum gravity, in which no unique configuration operator exists. We show that in the semiclassical approximation, the main effect of this polymer quantization scheme is to compactify the phase space of chaotic inflation in the field amplitude direction. This gives rise to an effective scalar potential closely resembling that of hybrid natural inflation. Unlike polymer schemes in which the scalar field amplitude is well defined, the semiclassical dynamics involves a past cosmological singularity; i.e., this approach does not mitigate the big bang.

  3. Gravastars with higher dimensional spacetimes

    NASA Astrophysics Data System (ADS)

    Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2018-07-01

    We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.

  4. Higher-dimensional gravitational collapse of perfect fluid spherically symmetric spacetime in f(R, T) gravity

    NASA Astrophysics Data System (ADS)

    Khan, Suhail; Khan, Muhammad Shoaib; Ali, Amjad

    2018-04-01

    In this paper, our aim is to study (n + 2)-dimensional collapse of perfect fluid spherically symmetric spacetime in the context of f(R, T) gravity. The matching conditions are acquired by considering a spherically symmetric non-static (n + 2)-dimensional metric in the inner region and Schwarzschild (n + 2)-dimensional metric in the outer region of the star. To solve the field equations for above settings in f(R, T) gravity, we choose the stress-energy tensor trace and the Ricci scalar as constants. It is observed that two physical horizons, namely, cosmological and black hole horizons appear as a consequence of this collapse. A singularity is also formed after the birth of both the horizons. It is also observed that the term f(R0, T0) slows down the collapsing process.

  5. On the initial regime of pre-big bang cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasperini, M., E-mail: gasperini@ba.infn.it

    The production of a background of super-horizon curvature perturbations with the appropriate (red) spectrum needed to trigger the cosmic anisotropies observed on large scales is associated, in the context of pre-big bang inflation, with a phase of growing string coupling. The extension towards the past of such a phase is not limited in time by the dynamical backreaction of the quantum perturbations of the cosmological geometry and of its sources. A viable, slightly red spectrum of scalar perturbations can thus be the output of an asymptotic, perturbative regime which is well compatible with an initial string-vacuum state satisfying the postulatemore » of 'Asymptotic Past Triviality'.« less

  6. A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet Shekhar

    1992-01-01

    General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.

  7. Black Hole Paradoxes

    NASA Astrophysics Data System (ADS)

    Joshi, Pankaj S.; Narayan, Ramesh

    2016-10-01

    We propose here that the well-known black hole paradoxes such as the information loss and teleological nature of the event horizon are restricted to a particular idealized case, which is the homogeneous dust collapse model. In this case, the event horizon, which defines the boundary of the black hole, forms initially, and the singularity in the interior of the black hole at a later time. We show that, in contrast, gravitational collapse from physically more realistic initial conditions typically leads to the scenario in which the event horizon and space-time singularity form simultaneously. We point out that this apparently simple modification can mitigate the causality and teleological paradoxes, and also lends support to two recently suggested solutions to the information paradox, namely, the ‘firewall’ and ‘classical chaos’ proposals.

  8. Loss of regularity in the {K(m, n)} equations

    NASA Astrophysics Data System (ADS)

    Zilburg, Alon; Rosenau, Philip

    2018-06-01

    Using a priori estimates we prove that initially nonnegative, smooth and compactly supported solutions of the equations must lose their smoothness within a finite time. Formation of a singularity is a prerequisite for the subsequent emergence of compactons. Numerical studies are presented that demonstrate two manifestations of the emerging singularity: either propagation of the right front downstream or the formation of an oscillatory tail upstream. Formation of one type of motion does not preclude the possible formation of the other at a later time.

  9. Workshop on Condition Based Maintenance Held in Atlantic Beach, North Carolina on November 15 - 17, 1993

    DTIC Science & Technology

    1993-11-17

    pounds of Torque Over Three Minutes Continuous Operation IYMCO1A 14 DMAE Corporation C-130 Engine Gearbox January 19925 Stress Wave Analysis - I in’. I...FaUi.O The CBM needs associated with surface initiated failure mechanisms can be divided into I singular defects and low (h/a) operation. Singular defec-t...These include nicks, scratches, corrosion pits and dents caused by third’ body particles (hard or soft). These defects cause local stress risers

  10. Singular growth shapes in turbulent field theories

    NASA Astrophysics Data System (ADS)

    Conrado, Claudine V.; Bohr, Tomas

    1994-05-01

    In this work we study deterministic, turbulent partial differential equations (the Kuramoto-Sivashinsky equation and generalizations) with initial conditions which are nonzero only in a small region. We demonstrate that the asymptotic state has a well-defined growth shape, which can be determined by the combination of nonlinear growth velocities, and front propagation governed by the linear instabilities. We show that the growth shapes are, in general, singular and that a new type of instability occurs when the growth shape becomes discontinuous.

  11. Cosmological rotating black holes in five-dimensional fake supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozawa, Masato; Maeda, Kei-ichi; Waseda Research Institute for Science and Engineering, Okubo 3-4-1, Shinjuku, Tokyo 169-8555

    2011-01-15

    In recent series of papers, we found an arbitrary dimensional, time-evolving, and spatially inhomogeneous solution in Einstein-Maxwell-dilaton gravity with particular couplings. Similar to the supersymmetric case, the solution can be arbitrarily superposed in spite of nontrivial time-dependence, since the metric is specified by a set of harmonic functions. When each harmonic has a single point source at the center, the solution describes a spherically symmetric black hole with regular Killing horizons and the spacetime approaches asymptotically to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology. We discuss in this paper that in 5 dimensions, this equilibrium condition traces back to the first-order 'Killing spinor'more » equation in 'fake supergravity' coupled to arbitrary U(1) gauge fields and scalars. We present a five-dimensional, asymptotically FLRW, rotating black-hole solution admitting a nontrivial 'Killing spinor', which is a spinning generalization of our previous solution. We argue that the solution admits nondegenerate and rotating Killing horizons in contrast with the supersymmetric solutions. It is shown that the present pseudo-supersymmetric solution admits closed timelike curves around the central singularities. When only one harmonic is time-dependent, the solution oxidizes to 11 dimensions and realizes the dynamically intersecting M2/M2/M2-branes in a rotating Kasner universe. The Kaluza-Klein-type black holes are also discussed.« less

  12. 100th anniversary of the birth of E M Lifshitz (Scientific session of the Physical Sciences Division of the Russian Academy of Sciences, 26 March 2015)

    NASA Astrophysics Data System (ADS)

    2015-09-01

    A scientific session of the Physical Sciences Division of the Russian Academy of Sciences dedicated to the 100th anniversary of the birth of Academician E M Lifshitz was held in the conference hall of the institute of Physical Problems, RAS, on 26 March 2015. The agenda of the session announced on the website www.gpad.ac.ru of the PSD RAS contains the reports: (1) Khalatnikov I M (Landau Institute for Theoretical Physics, RAS, Moscow) "Problem of singularity in cosmology"; (2) Kats E I (Landau Institute for Theoretical Physics, RAS, Moscow) "Van der Waals, Casimir, and Lifshitz forces in soft matter"; (3) Volovik G E (Landau Institute for Theoretical Physics, RAS, Moscow) "Superfluids in rotation: Onsager-Feynman vortices and Landau-Lifshitz vortex sheets." Papers written on the basis of oral presentations 1-3 are published below. • Stochastic cosmology, perturbation theories, and Lifshitz gravity, I M Khalatnikov, A Yu Kamenshchik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 878-891 • Van der Waals, Casimir, and Lifshitz forces in soft matter, E I Kats Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 892-896 • Superfluids in rotation: Landau-Lifshitz vortex sheets vs Onsager-Feynman vortices, G E Volovik Physics-Uspekhi, 2015, Volume 58, Number 9, Pages 897-905

  13. Running with rugby balls: bulk renormalization of codimension-2 branes

    NASA Astrophysics Data System (ADS)

    Williams, M.; Burgess, C. P.; van Nierop, L.; Salvio, A.

    2013-01-01

    We compute how one-loop bulk effects renormalize both bulk and brane effective interactions for geometries sourced by codimension-two branes. We do so by explicitly integrating out spin-zero, -half and -one particles in 6-dimensional Einstein-Maxwell-Scalar theories compactified to 4 dimensions on a flux-stabilized 2D geometry. (Our methods apply equally well for D dimensions compactified to D - 2 dimensions, although our explicit formulae do not capture all divergences when D > 6.) The renormalization of bulk interactions are independent of the boundary conditions assumed at the brane locations, and reproduce standard heat-kernel calculations. Boundary conditions at any particular brane do affect how bulk loops renormalize this brane's effective action, but not the renormalization of other distant branes. Although we explicitly compute our loops using a rugby ball geometry, because we follow only UV effects our results apply more generally to any geometry containing codimension-two sources with conical singularities. Our results have a variety of uses, including calculating the UV sensitivity of one-loop vacuum energy seen by observers localized on the brane. We show how these one-loop effects combine in a surprising way with bulk back-reaction to give the complete low-energy effective cosmological constant, and comment on the relevance of this calculation to proposed applications of codimension-two 6D models to solutions of the hierarchy and cosmological constant problems.

  14. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'Ichi; Odintsov, Sergei D.

    2011-08-01

    The classical generalization of general relativity is considered as the gravitational alternative for a unified description of the early-time inflation with late-time cosmic acceleration. The structure and cosmological properties of a number of modified theories, including traditional F(R) and Hořava-Lifshitz F(R) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, non-minimally coupled models, and power-counting renormalizable covariant gravity are discussed. Different representations of and relations between such theories are investigated. It is shown that some versions of the above theories may be consistent with local tests and may provide a qualitatively reasonable unified description of inflation with the dark energy epoch. The cosmological reconstruction of different modified gravities is provided in great detail. It is demonstrated that eventually any given universe evolution may be reconstructed for the theories under consideration, and the explicit reconstruction is applied to an accelerating spatially flat Friedmann-Robertson-Walker (FRW) universe. Special attention is paid to Lagrange multiplier constrained and conventional F(R) gravities, for latter F(R) theory, the effective ΛCDM era and phantom divide crossing acceleration are obtained. The occurrences of the Big Rip and other finite-time future singularities in modified gravity are reviewed along with their solutions via the addition of higher-derivative gravitational invariants.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capela, Fabio; Ramazanov, Sabir, E-mail: fc403@cam.ac.uk, E-mail: Sabir.Ramazanov@ulb.ac.be

    At large scales and for sufficiently early times, dark matter is described as a pressureless perfect fluid—dust— non-interacting with Standard Model fields. These features are captured by a simple model with two scalars: a Lagrange multiplier and another playing the role of the velocity potential. That model arises naturally in some gravitational frameworks, e.g., the mimetic dark matter scenario. We consider an extension of the model by means of higher derivative terms, such that the dust solutions are preserved at the background level, but there is a non-zero sound speed at the linear level. We associate this Modified Dust withmore » dark matter, and study the linear evolution of cosmological perturbations in that picture. The most prominent effect is the suppression of their power spectrum for sufficiently large cosmological momenta. This can be relevant in view of the problems that cold dark matter faces at sub-galactic scales, e.g., the missing satellites problem. At even shorter scales, however, perturbations of Modified Dust are enhanced compared to the predictions of more common particle dark matter scenarios. This is a peculiarity of their evolution in radiation dominated background. We also briefly discuss clustering of Modified Dust. We write the system of equations in the Newtonian limit, and sketch the possible mechanism which could prevent the appearance of caustic singularities. The same mechanism may be relevant in light of the core-cusp problem.« less

  16. On the initial value problem for the wave equation in Friedmann-Robertson-Walker space-times.

    PubMed

    Abbasi, Bilal; Craig, Walter

    2014-09-08

    The propagator W ( t 0 , t 1 )( g , h ) for the wave equation in a given space-time takes initial data ( g ( x ), h ( x )) on a Cauchy surface {( t , x ) :  t = t 0 } and evaluates the solution ( u ( t 1 , x ),∂ t u ( t 1 , x )) at other times t 1 . The Friedmann-Robertson-Walker space-times are defined for t 0 , t 1 >0, whereas for t 0 →0, there is a metric singularity. There is a spherical means representation for the general solution of the wave equation with the Friedmann-Robertson-Walker background metric in the three spatial dimensional cases of curvature K =0 and K =-1 given by S. Klainerman and P. Sarnak. We derive from the expression of their representation three results about the wave propagator for the Cauchy problem in these space-times. First, we give an elementary proof of the sharp rate of time decay of solutions with compactly supported data. Second, we observe that the sharp Huygens principle is not satisfied by solutions, unlike in the case of three-dimensional Minkowski space-time (the usual Huygens principle of finite propagation speed is satisfied, of course). Third, we show that for 0< t 0 < t the limit, [Formula: see text] exists, it is independent of h ( x ), and for all reasonable initial data g ( x ), it gives rise to a well-defined solution for all t >0 emanating from the space-time singularity at t =0. Under reflection t →- t , the Friedmann-Robertson-Walker metric gives a space-time metric for t <0 with a singular future at t =0, and the same solution formulae hold. We thus have constructed solutions u ( t , x ) of the wave equation in Friedmann-Robertson-Walker space-times which exist for all [Formula: see text] and [Formula: see text], where in conformally regularized coordinates, these solutions are continuous through the singularity t =0 of space-time, taking on specified data u (0,⋅)= g (⋅) at the singular time.

  17. Anamorphic quasiperiodic universes in modified and Einstein gravity with loop quantum gravity corrections

    NASA Astrophysics Data System (ADS)

    Amaral, Marcelo M.; Aschheim, Raymond; Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.; Woolridge, Daniel

    2017-09-01

    The goal of this work is to elaborate on new geometric methods of constructing exact and parametric quasiperiodic solutions for anamorphic cosmology models in modified gravity theories, MGTs, and general relativity, GR. There exist previously studied generic off-diagonal and diagonalizable cosmological metrics encoding gravitational and matter fields with quasicrystal like structures, QC, and holonomy corrections from loop quantum gravity, LQG. We apply the anholonomic frame deformation method, AFDM, in order to decouple the (modified) gravitational and matter field equations in general form. This allows us to find integral varieties of cosmological solutions determined by generating functions, effective sources, integration functions and constants. The coefficients of metrics and connections for such cosmological configurations depend, in general, on all spacetime coordinates and can be chosen to generate observable (quasi)-periodic/aperiodic/fractal/stochastic/(super) cluster/filament/polymer like (continuous, stochastic, fractal and/or discrete structures) in MGTs and/or GR. In this work, we study new classes of solutions for anamorphic cosmology with LQG holonomy corrections. Such solutions are characterized by nonlinear symmetries of generating functions for generic off-diagonal cosmological metrics and generalized connections, with possible nonholonomic constraints to Levi-Civita configurations and diagonalizable metrics depending only on a time like coordinate. We argue that anamorphic quasiperiodic cosmological models integrate the concept of quantum discrete spacetime, with certain gravitational QC-like vacuum and nonvacuum structures. And, that of a contracting universe that homogenizes, isotropizes and flattens without introducing initial conditions or multiverse problems.

  18. A quasi-static approach to structure formation in black hole universes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durk, Jessie; Clifton, Timothy, E-mail: j.durk@qmul.ac.uk, E-mail: t.clifton@qmul.ac.uk

    Motivated by the existence of hierarchies of structure in the Universe, we present four new families of exact initial data for inhomogeneous cosmological models at their maximum of expansion. These data generalise existing black hole lattice models to situations that contain clusters of masses, and hence allow the consequences of cosmological structures to be considered in a well-defined and non-perturbative fashion. The degree of clustering is controlled by a parameter λ, in such a way that for λ ∼ 0 or 1 we have very tightly clustered masses, whilst for λ ∼ 0.5 all masses are separated by cosmological distancemore » scales. We study the consequences of structure formation on the total net mass in each of our clusters, as well as calculating the cosmological consequences of the interaction energies both within and between clusters. The locations of the shared horizons that appear around groups of black holes, when they are brought sufficiently close together, are also identified and studied. We find that clustering can have surprisingly large effects on the scale of the cosmology, with models that contain thousands of black holes sometimes being as little as 30% of the size of comparable Friedmann models with the same total proper mass. This deficit is comparable to what might be expected to occur from neglecting gravitational interaction energies in Friedmann cosmology, and suggests that these quantities may have a significant influence on the properties of the large-scale cosmology.« less

  19. Graviton production in inflationary cosmology

    NASA Astrophysics Data System (ADS)

    Abbott, L. F.; Harari, D. D.

    1986-01-01

    We provide a completely quantum-mechanical derivation of the spectrum of gravitational waves producedin any inflationary cosmology. The gravitational waves result from a sequence of Bogoliubov transformations between creation and annihilation operators defined in de Sitter space and in radiation- and matter-dominated Robertson-Walker spacetimes. We discuss how the results depend on the initial state at the beginning of the inflationary period. Supported by a Fellowship from the Consejo Nacional de Investigaciones Científicas y Técnicas, República Argentina.

  20. Kurtosis, skewness, and non-Gaussian cosmological density perturbations

    NASA Technical Reports Server (NTRS)

    Luo, Xiaochun; Schramm, David N.

    1993-01-01

    Cosmological topological defects as well as some nonstandard inflation models can give rise to non-Gaussian density perturbations. Skewness and kurtosis are the third and fourth moments that measure the deviation of a distribution from a Gaussian. Measurement of these moments for the cosmological density field and for the microwave background temperature anisotropy can provide a test of the Gaussian nature of the primordial fluctuation spectrum. In the case of the density field, the importance of measuring the kurtosis is stressed since it will be preserved through the weakly nonlinear gravitational evolution epoch. Current constraints on skewness and kurtosis of primeval perturbations are obtained from the observed density contrast on small scales and from recent COBE observations of temperature anisotropies on large scales. It is also shown how, in principle, future microwave anisotropy experiments might be able to reveal the initial skewness and kurtosis. It is shown that present data argue that if the initial spectrum is adiabatic, then it is probably Gaussian, but non-Gaussian isocurvature fluctuations are still allowed, and these are what topological defects provide.

  1. Formation of current singularity in a topologically constrained plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yao; Huang, Yi-Min; Qin, Hong

    2016-02-01

    Recently a variational integrator for ideal magnetohydrodynamics in Lagrangian labeling has been developed. Its built-in frozen-in equation makes it optimal for studying current sheet formation. We use this scheme to study the Hahm-Kulsrud-Taylor problem, which considers the response of a 2D plasma magnetized by a sheared field under sinusoidal boundary forcing. We obtain an equilibrium solution that preserves the magnetic topology of the initial field exactly, with a fluid mapping that is non-differentiable. Unlike previous studies that examine the current density output, we identify a singular current sheet from the fluid mapping. These results are benchmarked with a constrained Grad-Shafranovmore » solver. The same signature of current singularity can be found in other cases with more complex magnetic topologies.« less

  2. On the Occurrence of Mass Inflation for the Einstein-Maxwell-Scalar Field System with a Cosmological Constant and an Exponential Price Law

    NASA Astrophysics Data System (ADS)

    Costa, João L.; Girão, Pedro M.; Natário, José; Silva, Jorge Drumond

    2018-03-01

    In this paper we study the spherically symmetric characteristic initial data problem for the Einstein-Maxwell-scalar field system with a positive cosmological constant in the interior of a black hole, assuming an exponential Price law along the event horizon. More precisely, we construct open sets of characteristic data which, on the outgoing initial null hypersurface (taken to be the event horizon), converges exponentially to a reference Reissner-Nördstrom black hole at infinity. We prove the stability of the radius function at the Cauchy horizon, and show that, depending on the decay rate of the initial data, mass inflation may or may not occur. In the latter case, we find that the solution can be extended across the Cauchy horizon with continuous metric and Christoffel symbols in {L^2_{loc}} , thus violating the Christodoulou-Chruściel version of strong cosmic censorship.

  3. Implications of Planck2015 for inflationary, ekpyrotic and anamorphic bouncing cosmologies

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Steinhardt, Paul J.

    2016-02-01

    The results from Planck2015, when combined with earlier observations from the Wilkinson Microwave Anisotropy Probe, Atacama Cosmology Telescope, South Pole Telescope and other experiments, were the first observations to disfavor the ‘classic’ inflationary paradigm. To satisfy the observational constraints, inflationary theorists have been forced to consider plateau-like inflaton potentials that introduce more parameters and more fine-tuning, problematic initial conditions, multiverse-unpredictability issues, and a new ‘unlikeliness problem’. Some propose turning instead to a ‘postmodern’ inflationary paradigm in which the cosmological properties in our observable Universe are only locally valid and set randomly, with completely different properties (and perhaps even different physical laws) existing in most regions outside our horizon. By contrast, the new results are consistent with the simplest versions of ekpyrotic cyclic models in which the Universe is smoothed and flattened during a period of slow contraction followed by a bounce, and another promising bouncing theory, anamorphic cosmology, has been proposed that can produce distinctive predictions.

  4. Through the looking glass: why the `cosmic horizon' is not a horizon

    NASA Astrophysics Data System (ADS)

    van Oirschot, Pim; Kwan, Juliana; Lewis, Geraint F.

    2010-06-01

    The present standard model of cosmology, Λ cold dark matter (ΛCDM), contains some intriguing coincidences. Not only are the dominant contributions to the energy density approximately of the same order at the present epoch, but we also note that contrary to the emergence of cosmic acceleration as a recent phenomenon, the time-averaged value of the deceleration parameter over the age of the Universe is nearly zero. Curious features like these in ΛCDM give rise to a number of alternate cosmologies being proposed to remove them, including models with an equation of state w = -1/3. In this paper, we examine the validity of some of these alternate models and we also address some persistent misconceptions about the Hubble sphere and the event horizon that lead to erroneous conclusions about cosmology. Research undertaken as part of the Commonwealth Cosmology Initiative (CCI: http://www.thecci.org), an international collaboration supported by the Australian Research Council. E-mail: pimvanoirschot@gmail.com

  5. On the ghost-induced instability on de Sitter background

    NASA Astrophysics Data System (ADS)

    Peter, Patrick; Salles, Filipe de O.; Shapiro, Ilya L.

    2018-03-01

    It is known that the perturbative instability of tensor excitations in higher derivative gravity may not take place if the initial frequency of the gravitational waves is below the Planck threshold. One can assume that this is a natural requirement if the cosmological background is sufficiently mild, since in this case the situation is qualitatively close to the free gravitational wave in flat space. Here, we explore the opposite situation and consider the effect of a very far from Minkowski radiation-dominated or de Sitter cosmological background with a large Hubble rate, e.g., typical of an inflationary period. It turns out that, then, for initial Planckian or even trans-Planckian frequencies, the instability is rapidly suppressed by the very fast expansion of the Universe.

  6. Cosmological explosions from cold dark matter perturbations

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    The cosmological-explosion model is examined for a universe dominated by cold dark matter in which explosion seeds are produced from the growth of initial density perturbations of a given form. Fragmentation of the exploding shells is dominated by the dark-matter potential wells rather than the self-gravity of the shells, and particular conditions are required for the explosions to bootstrap up to very large scales. The final distribution of dark matter is strongly correlated with the baryons on small scales, but uncorrelated on large scales.

  7. Baryon symmetric big-bang cosmology. [matter-antimatter symmetry

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    The framework of baryon-symmetric big-bang cosmology offers the greatest potential for deducing the evolution of the universe as a consequence of physical laws and processes with the minimum number of arbitrary assumptions as to initial conditions in the big-bang. In addition, it offers the possibility of explaining the photon-baryon ratio in the universe and how galaxies and galaxy clusters are formed, and also provides the only acceptable explanation at present for the origin of the cosmic gamma ray background radiation.

  8. Initial conditions for cosmological N-body simulations of the scalar sector of theories of Newtonian, Relativistic and Modified Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valkenburg, Wessel; Hu, Bin, E-mail: valkenburg@lorentz.leidenuniv.nl, E-mail: hu@lorentz.leidenuniv.nl

    2015-09-01

    We present a description for setting initial particle displacements and field values for simulations of arbitrary metric theories of gravity, for perfect and imperfect fluids with arbitrary characteristics. We extend the Zel'dovich Approximation to nontrivial theories of gravity, and show how scale dependence implies curved particle paths, even in the entirely linear regime of perturbations. For a viable choice of Effective Field Theory of Modified Gravity, initial conditions set at high redshifts are affected at the level of up to 5% at Mpc scales, which exemplifies the importance of going beyond Λ-Cold Dark Matter initial conditions for modifications of gravitymore » outside of the quasi-static approximation. In addition, we show initial conditions for a simulation where a scalar modification of gravity is modelled in a Lagrangian particle-like description. Our description paves the way for simulations and mock galaxy catalogs under theories of gravity beyond the standard model, crucial for progress towards precision tests of gravity and cosmology.« less

  9. Do we live in the universe successively dominated by matter and antimatter?

    NASA Astrophysics Data System (ADS)

    Hajdukovic, Dragan Slavkov

    2011-08-01

    We wonder if a cyclic universe may be dominated alternatively by matter and antimatter. Such a scenario demands a mechanism for transformation of matter to antimatter (or antimatter to matter) during the final stage of a big crunch. By giving an example, we have shown that in principle such a mechanism is possible. Our mechanism is based on a hypothetical repulsion between matter and antimatter, existing at least deep inside the horizon of a black hole. When universe is reduced to a supermassive black hole of a small size, a very strong field of the conjectured force might create (through a Schwinger type mechanism) particle-antiparticle pairs from the quantum vacuum. The amount of antimatter created from the vacuum is equal to the decrease of mass of the black hole and violently repelled from it. When the size of the black hole is sufficiently small, the creation of antimatter may become so fast, that matter of our Universe might be transformed to antimatter in a fraction of second. Such a fast conversion of matter into antimatter may look as a Big Bang. Our mechanism prevents a singularity; a new cycle might start with an initial size more than 30 orders of magnitude greater than the Planck length, suggesting that there is no need for inflationary scenario in Cosmology. In addition, there is no need to invoke CP violation for explanation of matter-antimatter asymmetry. Simply, our present day Universe is dominated by matter, because the previous universe was dominated by antimatter.

  10. Singularity detection by wavelet approach: application to electrocardiogram signal

    NASA Astrophysics Data System (ADS)

    Jalil, Bushra; Beya, Ouadi; Fauvet, Eric; Laligant, Olivier

    2010-01-01

    In signal processing, the region of abrupt changes contains the most of the useful information about the nature of the signal. The region or the points where these changes occurred are often termed as singular point or singular region. The singularity is considered to be an important character of the signal, as it refers to the discontinuity and interruption present in the signal and the main purpose of the detection of such singular point is to identify the existence, location and size of those singularities. Electrocardiogram (ECG) signal is used to analyze the cardiovascular activity in the human body. However the presence of noise due to several reasons limits the doctor's decision and prevents accurate identification of different pathologies. In this work we attempt to analyze the ECG signal with energy based approach and some heuristic methods to segment and identify different signatures inside the signal. ECG signal has been initially denoised by empirical wavelet shrinkage approach based on Steins Unbiased Risk Estimate (SURE). At the second stage, the ECG signal has been analyzed by Mallat approach based on modulus maximas and Lipschitz exponent computation. The results from both approaches has been discussed and important aspects has been highlighted. In order to evaluate the algorithm, the analysis has been done on MIT-BIH Arrhythmia database; a set of ECG data records sampled at a rate of 360 Hz with 11 bit resolution over a 10mv range. The results have been examined and approved by medical doctors.

  11. A singular value decomposition approach for improved taxonomic classification of biological sequences

    PubMed Central

    2011-01-01

    Background Singular value decomposition (SVD) is a powerful technique for information retrieval; it helps uncover relationships between elements that are not prima facie related. SVD was initially developed to reduce the time needed for information retrieval and analysis of very large data sets in the complex internet environment. Since information retrieval from large-scale genome and proteome data sets has a similar level of complexity, SVD-based methods could also facilitate data analysis in this research area. Results We found that SVD applied to amino acid sequences demonstrates relationships and provides a basis for producing clusters and cladograms, demonstrating evolutionary relatedness of species that correlates well with Linnaean taxonomy. The choice of a reasonable number of singular values is crucial for SVD-based studies. We found that fewer singular values are needed to produce biologically significant clusters when SVD is employed. Subsequently, we developed a method to determine the lowest number of singular values and fewest clusters needed to guarantee biological significance; this system was developed and validated by comparison with Linnaean taxonomic classification. Conclusions By using SVD, we can reduce uncertainty concerning the appropriate rank value necessary to perform accurate information retrieval analyses. In tests, clusters that we developed with SVD perfectly matched what was expected based on Linnaean taxonomy. PMID:22369633

  12. The Zel'dovich approximation: key to understanding cosmic web complexity

    NASA Astrophysics Data System (ADS)

    Hidding, Johan; Shandarin, Sergei F.; van de Weygaert, Rien

    2014-02-01

    We describe how the dynamics of cosmic structure formation defines the intricate geometric structure of the spine of the cosmic web. The Zel'dovich approximation is used to model the backbone of the cosmic web in terms of its singularity structure. The description by Arnold et al. in terms of catastrophe theory forms the basis of our analysis. This two-dimensional analysis involves a profound assessment of the Lagrangian and Eulerian projections of the gravitationally evolving four-dimensional phase-space manifold. It involves the identification of the complete family of singularity classes, and the corresponding caustics that we see emerging as structure in Eulerian space evolves. In particular, as it is instrumental in outlining the spatial network of the cosmic web, we investigate the nature of spatial connections between these singularities. The major finding of our study is that all singularities are located on a set of lines in Lagrangian space. All dynamical processes related to the caustics are concentrated near these lines. We demonstrate and discuss extensively how all 2D singularities are to be found on these lines. When mapping this spatial pattern of lines to Eulerian space, we find a growing connectedness between initially disjoint lines, resulting in a percolating network. In other words, the lines form the blueprint for the global geometric evolution of the cosmic web.

  13. Psyche=singularity: A comparison of Carl Jung's transpersonal psychology and Leonard Susskind's holographic string theory

    NASA Astrophysics Data System (ADS)

    Desmond, Timothy

    In this dissertation I discern what Carl Jung calls the mandala image of the ultimate archetype of unity underlying and structuring cosmos and psyche by pointing out parallels between his transpersonal psychology and Stanford physicist Leonard Susskind's string theory. Despite his atheistic, materialistically reductionist interpretation of it, I demonstrate how Susskind's string theory of holographic information conservation at the event horizons of black holes, and the cosmic horizon of the universe, corroborates the following four topics about which Jung wrote: (1) his near-death experience of the cosmic horizon after a heart attack in 1944; ( 2) his equation relating psychic energy to mass, "Psyche=highest intensity in the smallest space" (1997, 162), which I translate into the equation, Psyche=Singularity; (3) his theory that the mandala, a circle or sphere with a central point, is the symbolic image of the ultimate archetype of unity through the union of opposites, which structures both cosmos and psyche, and which rises spontaneously from the collective unconscious to compensate a conscious mind torn by irreconcilable demands (1989, 334-335, 396-397); and (4) his theory of synchronicity. I argue that Susskind's inside-out black hole model of our Big Bang universe forms a geometrically perfect mandala: a central Singularity encompassed by a two-dimensional sphere which serves as a universal memory bank. Moreover, in precise fulfillment of Jung's theory, Susskind used that mandala to reconcile the notoriously incommensurable paradigms of general relativity and quantum mechanics, providing in the process a mathematically plausible explanation for Jung's near-death experience of his past, present, and future life simultaneously at the cosmic horizon. Finally, Susskind's theory also provides a plausible cosmological model to explain Jung's theory of synchronicity--meaningful coincidences may be tied together by strings at the cosmic horizon, from which they radiate inward as the holographic "movie" of our three-dimensional world.

  14. Phantom of the Hartle–Hawking instanton: Connecting inflation with dark energy

    DOE PAGES

    Chen, Pisin; Qiu, Taotao; Yeom, Dong -han

    2016-02-20

    If the Hartle–Hawking wave function is the correct boundary condition of our universe, the history of our universe will be well approximated by an instanton. Although this instanton should be classicalized at infinity, as long as we are observing a process of each history, we may detect a non-classicalized part of field combinations. When we apply it to a dark energy model, this non-classicalized part of fields can be well embedded to a quintessence and a phantom model, i.e., a quintom model. Because of the property of complexified instantons, the phantomness will be naturally free from a big rip singularity.more » This phantomness does not cause perturbative instabilities, as it is an effect emergent from the entire wave function. Lastly, our work may thus provide a theoretical basis for the quintom models, whose equation of state can cross the cosmological constant boundary phenomenologically.« less

  15. Physics of Gravitational Interaction: Geometry of Space or Quantum Field in Space

    NASA Astrophysics Data System (ADS)

    Baryshev, Yurij

    2006-03-01

    Thirring-Feynman's tensor field approach to gravitation opens new understanding on the physics of gravitational interaction and stimulates novel experiments on the nature of gravity. According to Field Gravity, the universal gravity force is caused by exchange of gravitons - the quanta of gravity field. Energy of this field is well-defined and excludes the singularity. All classical relativistic effects are the same as in General Relativity. The intrinsic scalar (spin 0) part of gravity field corresponds to ``antigravity'' and only together with the pure tensor (spin 2) part gives the usual Newtonian force. Laboratory and astrophysical experiments which may test the predictions of FG, will be performed in near future. In particular, observations at gravity observatories with bar and interferometric detectors, like Explorer, Nautilus, LIGO and VIRGO, will check the predicted scalar gravitational waves from supernova explosions. New types of cosmological models in Minkowski space are possible too.

  16. Cosmology, Cosmomicrophysics and Gravitation Properties of the Gravitational Lens Mapping in the Vicinity of a Cusp Caustic

    NASA Astrophysics Data System (ADS)

    Alexandrov, A. N.; Zhdanov, V. I.; Koval, S. M.

    We derive approximate formulas for the coordinates and magnification of critical images of a point source in a vicinity of a cusp caustic arising in the gravitational lens mapping. In the lowest (zero-order) approximation, these formulas were obtained in the classical work by Schneider&Weiss (1992) and then studied by a number of authors; first-order corrections in powers of the proximity parameter were treated by Congdon, Keeton and Nordgren. We have shown that the first-order corrections are solely due to the asymmetry of the cusp. We found expressions for the second-order corrections in the case of general lens potential and for an arbitrary position of the source near a symmetric cusp. Applications to a lensing galaxy model represented by a singular isothermal sphere with an external shear y are studied and the role of the second-order corrections is demonstrated.

  17. Phantom of the Hartle-Hawking instanton: connecting inflation with dark energy

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Qiu, Taotao; Yeom, Dong-han

    2016-02-01

    If the Hartle-Hawking wave function is the correct boundary condition of our universe, the history of our universe will be well approximated by an instanton. Although this instanton should be classicalized at infinity, as long as we are observing a process of each history, we may detect a non-classicalized part of field combinations. When we apply it to a dark energy model, this non-classicalized part of fields can be well embedded to a quintessence and a phantom model, i.e., a quintom model. Because of the property of complexified instantons, the phantomness will be naturally free from a big rip singularity. This phantomness does not cause perturbative instabilities, as it is an effect emergent from the entire wave function. Our work may thus provide a theoretical basis for the quintom models, whose equation of state can cross the cosmological constant boundary phenomenologically.

  18. The Royal Typographer and the Alchemist: John Dee, Willem Silvius, and the Diagrammatic Alchemy of the Monas Hieroglyphica.

    PubMed

    Clucas, Stephen

    2017-05-01

    John Dee's Monas Hieroglyphica (1564) was a work which involved a close collaboration between its author and his "singular friend" the Antwerp printer Willem Silvius, in whose house Dee was living whilst he composed the work and saw it through the press. This article considers the reasons why Dee chose to collaborate with Silvius, and the importance of the intellectual culture - and the print trade - of the Low Countries to the development of Dee's outlook. Dee's Monas was probably the first alchemical work which focused exclusively on the diagrammatic representation of the alchemical process, combining diagrams, cosmological schemes, and various forms of tabular grid. It is argued that in the Monas the boundaries between typography and alchemy are blurred as the diagrams "anatomising" his hieroglyphic sign (the "Monad") are seen as revealing truths about alchemical substances and processes.

  19. Solution of linear systems by a singular perturbation technique

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1976-01-01

    An approximate solution is obtained for a singularly perturbed system of initial valued, time invariant, linear differential equations with multiple boundary layers. Conditions are stated under which the approximate solution converges uniformly to the exact solution as the perturbation parameter tends to zero. The solution is obtained by the method of matched asymptotic expansions. Use of the results for obtaining approximate solutions of general linear systems is discussed. An example is considered to illustrate the method and it is shown that the formulas derived give a readily computed uniform approximation.

  20. Maneuvering strategies using CMGs

    NASA Technical Reports Server (NTRS)

    Oh, H. S.; Vadali, S. R.

    1988-01-01

    This paper considers control strategies for maneuvering spacecraft using Single-Gimbal Control Momentum Gyros (CMGs). A pyramid configuration using four gyros is utilized. Preferred initial gimbal angles for maximum utilization of CMG momentum are obtained for some known torque commands. Feedback control laws are derived from the stability point of view by using the Liapunov's Second Theorem. The gyro rates are obtained by the pseudo-inverse technique. The effect of gimbal rate bounds on controllability are studied for an example maneuver. Singularity avoidance is based on limiting the gyro rates depending on a singularity index.

  1. Optimal control of dissipative nonlinear dynamical systems with triggers of coupled singularities

    NASA Astrophysics Data System (ADS)

    Stevanović Hedrih, K.

    2008-02-01

    This paper analyses the controllability of motion of nonconservative nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is shown that the phase plane method is useful for the analysis of nonlinear dynamics of nonconservative systems with one degree of freedom of control strategies and also shows the way it can be used for controlling the relative motion in rheonomic systems having equivalent scleronomic conservative or nonconservative system For the system with one generalized coordinate described by nonlinear differential equation of nonlinear dynamics with trigger of coupled singularities, the functions of system potential energy and conservative force must satisfy some conditions defined by a Theorem on the existence of a trigger of coupled singularities and the separatrix in the form of "an open a spiral form" of number eight. Task of the defined dynamical nonconservative system optimal control is: by using controlling force acting to the system, transfer initial state of the nonlinear dynamics of the system into the final state of the nonlinear dynamics in the minimal time for that optimal control task

  2. Resolution convergence in cosmological hydrodynamical simulations using adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Snaith, Owain N.; Park, Changbom; Kim, Juhan; Rosdahl, Joakim

    2018-06-01

    We have explored the evolution of gas distributions from cosmological simulations carried out using the RAMSES adaptive mesh refinement (AMR) code, to explore the effects of resolution on cosmological hydrodynamical simulations. It is vital to understand the effect of both the resolution of initial conditions (ICs) and the final resolution of the simulation. Lower initial resolution simulations tend to produce smaller numbers of low-mass structures. This will strongly affect the assembly history of objects, and has the same effect of simulating different cosmologies. The resolution of ICs is an important factor in simulations, even with a fixed maximum spatial resolution. The power spectrum of gas in simulations using AMR diverges strongly from the fixed grid approach - with more power on small scales in the AMR simulations - even at fixed physical resolution and also produces offsets in the star formation at specific epochs. This is because before certain times the upper grid levels are held back to maintain approximately fixed physical resolution, and to mimic the natural evolution of dark matter only simulations. Although the impact of hold-back falls with increasing spatial and IC resolutions, the offsets in the star formation remain down to a spatial resolution of 1 kpc. These offsets are of the order of 10-20 per cent, which is below the uncertainty in the implemented physics but are expected to affect the detailed properties of galaxies. We have implemented a new grid-hold-back approach to minimize the impact of hold-back on the star formation rate.

  3. Relativistic numerical cosmology with silent universes

    NASA Astrophysics Data System (ADS)

    Bolejko, Krzysztof

    2018-01-01

    Relativistic numerical cosmology is most often based either on the exact solutions of the Einstein equations, or perturbation theory, or weak-field limit, or the BSSN formalism. The silent universe provides an alternative approach to investigate relativistic evolution of cosmological systems. The silent universe is based on the solution of the Einstein equations in 1  +  3 comoving coordinates with additional constraints imposed. These constraints include: the gravitational field is sourced by dust and cosmological constant only, both rotation and magnetic part of the Weyl tensor vanish, and the shear is diagnosable. This paper describes the code simsilun (free software distributed under the terms of the reposi General Public License), which implements the equations of the silent universe. The paper also discusses applications of the silent universe and it uses the Millennium simulation to set up the initial conditions for the code simsilun. The simulation obtained this way consists of 16 777 216 worldlines, which are evolved from z  =  80 to z  =  0. Initially, the mean evolution (averaged over the whole domain) follows the evolution of the background ΛCDM model. However, once the evolution of cosmic structures becomes nonlinear, the spatial curvature evolves from ΩK =0 to ΩK ≈ 0.1 at the present day. The emergence of the spatial curvature is associated with ΩM and Ω_Λ being smaller by approximately 0.05 compared to the ΛCDM.

  4. Black hole formation in a contracting universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quintin, Jerome; Brandenberger, Robert H., E-mail: jquintin@physics.mcgill.ca, E-mail: rhb@hep.physics.mcgill.ca

    We study the evolution of cosmological perturbations in a contracting universe. We aim to determine under which conditions density perturbations grow to form large inhomogeneities and collapse into black holes. Our method consists in solving the cosmological perturbation equations in complete generality for a hydrodynamical fluid. We then describe the evolution of the fluctuations over the different length scales of interest and as a function of the equation of state for the fluid, and we explore two different types of initial conditions: quantum vacuum and thermal fluctuations. We also derive a general requirement for black hole collapse on sub-Hubble scales,more » and we use the Press-Schechter formalism to describe the black hole formation probability. For a fluid with a small sound speed (e.g., dust), we find that both quantum and thermal initial fluctuations grow in a contracting universe, and the largest inhomogeneities that first collapse into black holes are of Hubble size and the collapse occurs well before reaching the Planck scale. For a radiation-dominated fluid, we find that no black hole can form before reaching the Planck scale. In the context of matter bounce cosmology, it thus appears that only models in which a radiation-dominated era begins early in the cosmological evolution are robust against the formation of black holes. Yet, the formation of black holes might be an interesting feature for other models. We comment on a number of possible alternative early universe scenarios that could take advantage of this feature.« less

  5. Constraining the cosmology of the phantom brane using distance measures

    NASA Astrophysics Data System (ADS)

    Alam, Ujjaini; Bag, Satadru; Sahni, Varun

    2017-01-01

    The phantom brane has several important distinctive features: (i) Its equation of state is phantomlike, but there is no future "big rip" singularity, and (ii) the effective cosmological constant on the brane is dynamically screened, because of which the expansion rate is smaller than that in Λ CDM at high redshifts. In this paper, we constrain the Phantom braneworld using distance measures such as type-Ia supernovae (SNeIa), baryon acoustic oscillations (BAO), and the compressed cosmic microwave background (CMB) data. We find that the simplest braneworld models provide a good fit to the data. For instance, BAO +SNeIa data can be accommodated by the braneworld for a large region in parameter space 0 ≤Ωℓ≲0.3 at 1 σ . The Hubble parameter can be as high as H0≲78 km s-1 Mpc-1 , and the effective equation of state at present can show phantomlike behavior with w0≲-1.2 at 1 σ . We note a correlation between H0 and w0, with higher values of H0 leading to a lower, and more phantomlike, value of w0. Inclusion of CMB data provides tighter constraints Ωℓ≲0.1 . (Here Ωℓ encodes the ratio of the five- and four-dimensional Planck mass.) The Hubble parameter in this case is more tightly constrained to H0≲71 km s-1 Mpc-1 , and the effective equation of state to w0≲-1.1 . Interestingly, we find that the Universe is allowed to be closed or open, with -0.5 ≲Ωκ≲0.5 , even on including the compressed CMB data. There appears to be some tension in the low and high-z BAO data which may either be resolved by future data, or act as a pointer to interesting new cosmology.

  6. Initial conditions of inhomogeneous universe and the cosmological constant problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Totani, Tomonori, E-mail: totani@astron.s.u-tokyo.ac.jp

    Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variation. This can be avoided by introducing a constraint 0δ(√− g ) = to metric variations δ g {sup μν}, and then the cosmological constant Λ emerges as an integration constant. This is a removal of one of the four constraints on initial conditions forced by EFE at the birth of the universe, and it may imply that EFE are unnecessarily restrictive about initialmore » conditions. I then adopt a principle that the theory of gravity should be able to solve time evolution starting from arbitrary inhomogeneous initial conditions about spacetime and matter. The equations of gravitational fields satisfying this principle are obtained, by setting four auxiliary constraints on δ g {sup μν} to extract six degrees of freedom for gravity. The cost of achieving this is a loss of general covariance, but these equations constitute a consistent theory if they hold in the special coordinate systems that can be uniquely specified with respect to the initial space-like hypersurface when the universe was born. This theory predicts that gravity is described by EFE with non-zero Λ in a homogeneous patch of the universe created by inflation, but Λ changes continuously across different patches. Then both the smallness and coincidence problems of the cosmological constant are solved by the anthropic argument. This is just a result of inhomogeneous initial conditions, not requiring any change of the fundamental physical laws in different patches.« less

  7. Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors

    NASA Astrophysics Data System (ADS)

    Pazó, Diego; Rodríguez, Miguel A.; López, Juan M.

    2010-05-01

    We study the evolution of finite perturbations in the Lorenz ‘96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.

  8. Spatio-temporal evolution of perturbations in ensembles initialized by bred, Lyapunov and singular vectors

    NASA Astrophysics Data System (ADS)

    Pazó, Diego; Rodríguez, Miguel A.; López, Juan M.

    2010-01-01

    We study the evolution of finite perturbations in the Lorenz `96 model, a meteorological toy model of the atmosphere. The initial perturbations are chosen to be aligned along different dynamic vectors: bred, Lyapunov, and singular vectors. Using a particular vector determines not only the amplification rate of the perturbation but also the spatial structure of the perturbation and its stability under the evolution of the flow. The evolution of perturbations is systematically studied by means of the so-called mean-variance of logarithms diagram that provides in a very compact way the basic information to analyse the spatial structure. We discuss the corresponding advantages of using those different vectors for preparing initial perturbations to be used in ensemble prediction systems, focusing on key properties: dynamic adaptation to the flow, robustness, equivalence between members of the ensemble, etc. Among all the vectors considered here, the so-called characteristic Lyapunov vectors are possibly optimal, in the sense that they are both perfectly adapted to the flow and extremely robust.

  9. Collisional evolution - an analytical study for the nonsteady-state mass distribution

    NASA Astrophysics Data System (ADS)

    Martins, R. Vieira

    1999-05-01

    To study the collisional evolution of asteroidal groups we can use an analytical solutionfor the self-similar collision cascades. This solution is suitable to study the steady-state massdistribution of the collisional fragmentation. However, out of the steady-state conditions, thissolution is not satisfactory for some values of the collisional parameters. In fact, for some valuesfor the exponent of the mass distribution power law of an asteroidal group and its relation to theexponent of the function which describes how rocks break we arrive at singular points for theequation which describes the collisional evolution. These singularities appear since someapproximations are usually made in the laborious evaluation of many integrals that appear in theanalytical calculations. They concern the cutoff for the smallest and the largest bodies. Thesesingularities set some restrictions to the study of the analytical solution for the collisionalequation. To overcome these singularities we performed an algebraic computationconsidering the smallest and the largest bodies and we obtained the analytical expressions for theintegrals that describe the collisional evolution without restriction on the parameters. However,the new distribution is more sensitive to the values of the collisional parameters. In particular thesteady-state solution for the differential mass distribution has exponents slightly different from11⧸6 for the usual parameters in the Asteroid Belt. The sensitivity of this distribution with respectto the parameters is analyzed for the usual values in the asteroidal groups. With anexpression for the mass distribution without singularities, we can evaluate also its time evolution.We arrive at an analytical expression given by a power series of terms constituted by a smallparameter multiplied by the mass to an exponent, which depends on the initial power lawdistribution. This expression is a formal solution for the equation which describes the collisionalevolution. Furthermore, the first-order term for this solution is the time rate of the distribution atthe initial time. In particular the solution shows the fundamental importance played by theexponent of the power law initial condition in the evolution of the system.

  10. No ``explosion'' in Big Bang cosmology: teaching kids the truth of what cosmologists really know

    NASA Astrophysics Data System (ADS)

    Gangui, Alejandro

    2011-06-01

    Common wisdom says that cosmologists are smart: they have developed a theory that can explain the ``origin of the universe''. Every time an astro-related, heavily funded ``big-science'' project comes to the media, naturally the question arises: will science -through this or that experiment- explain the origin of the cosmos? Can this be done with the LHC, for example? Will this dream machine create other universes? Of course, the very words we employ in cosmology reinforce this misconception: so Big Bang must be associated with an ``explosion'', even if a ``peculiar'' one, as it took place nowhere (there was presumably no space before the beginning) and happened virtually in no time (supposedly, space-time was created on this peculiar -singular- event). Right, the issue sounds confusing. Let us imagine what kids may get out of all this. We have recently presented a series of brief astronomy and cosmology books aimed at helping both kids and their teachers in these and other arcane subjects, all introduced with carefully chosen words and images that young children can understand. In particular, Volume Four deals with the Big Bang and emphasizes the notion of ``evolution'' as opposed to the -wrong- notion of ``origin'' behind the scientific model. We then explain some of the pillars of Big Bang cosmology: the expansion of space that drags away distant galaxies, as seen in the redshift of their emitted light; the build-up of light elements in a cooling bath of radiation, as explained by primordial nucleosynthesis; and the existence and main features of the ubiquitous cosmic microwave background radiation, where theory and observations agree to a highly satisfactory degree. Of course, one cannot attempt to answer the ``origins'' question when it is well known that all theories so far break down close to this origin (if there was actually an origin). It is through observations, analyses, lively discussions and recognition of the basic limitations of current theories and ideas, that we are led to try and reconstruct the past and predict the future evolution of our universe. Just that. Sound science turns out to be much more attractive when we tell the truth of what we really know.

  11. Concordance cosmology without dark energy

    NASA Astrophysics Data System (ADS)

    Rácz, Gábor; Dobos, László; Beck, Róbert; Szapudi, István; Csabai, István

    2017-07-01

    According to the separate universe conjecture, spherically symmetric sub-regions in an isotropic universe behave like mini-universes with their own cosmological parameters. This is an excellent approximation in both Newtonian and general relativistic theories. We estimate local expansion rates for a large number of such regions, and use a scale parameter calculated from the volume-averaged increments of local scale parameters at each time step in an otherwise standard cosmological N-body simulation. The particle mass, corresponding to a coarse graining scale, is an adjustable parameter. This mean field approximation neglects tidal forces and boundary effects, but it is the first step towards a non-perturbative statistical estimation of the effect of non-linear evolution of structure on the expansion rate. Using our algorithm, a simulation with an initial Ωm = 1 Einstein-de Sitter setting closely tracks the expansion and structure growth history of the Λ cold dark matter (ΛCDM) cosmology. Due to small but characteristic differences, our model can be distinguished from the ΛCDM model by future precision observations. Moreover, our model can resolve the emerging tension between local Hubble constant measurements and the Planck best-fitting cosmology. Further improvements to the simulation are necessary to investigate light propagation and confirm full consistency with cosmic microwave background observations.

  12. THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Changbom; Choi, Yun-Young; Kim, Sungsoo S.

    2012-11-01

    Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e., the flat {Lambda}CDM model). Here we show that the existence of the SGW is perfectly consistent with the {Lambda}CDM model, a result that onlymore » our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the {Lambda}CDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primordial Gaussian random phase density fluctuations growing in accordance with the general relativity can explain the richness and size of the observed large-scale structures in the SDSS. Using the HR2 simulation we predict that a future galaxy redshift survey about four times deeper or with 3 mag fainter limit than the SDSS should reveal a largest structure of bright galaxies about twice as big as the SGW.« less

  13. General Relativity solutions in modified gravity

    NASA Astrophysics Data System (ADS)

    Motohashi, Hayato; Minamitsuji, Masato

    2018-06-01

    Recent gravitational wave observations of binary black hole mergers and a binary neutron star merger by LIGO and Virgo Collaborations associated with its optical counterpart constrain deviation from General Relativity (GR) both on strong-field regime and cosmological scales with high accuracy, and further strong constraints are expected by near-future observations. Thus, it is important to identify theories of modified gravity that intrinsically possess the same solutions as in GR among a huge number of theories. We clarify the three conditions for theories of modified gravity to allow GR solutions, i.e., solutions with the metric satisfying the Einstein equations in GR and the constant profile of the scalar fields. Our analysis is quite general, as it applies a wide class of single-/multi-field scalar-tensor theories of modified gravity in the presence of matter component, and any spacetime geometry including cosmological background as well as spacetime around black hole and neutron star, for the latter of which these conditions provide a necessary condition for no-hair theorem. The three conditions will be useful for further constraints on modified gravity theories as they classify general theories of modified gravity into three classes, each of which possesses i) unique GR solutions (i.e., no-hair cases), ii) only hairy solutions (except the cases that GR solutions are realized by cancellation between singular coupling functions in the Euler-Lagrange equations), and iii) both GR and hairy solutions, for the last of which one of the two solutions may be selected dynamically.

  14. Decoherence can relax cosmic acceleration: an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markkanen, Tommi, E-mail: tommi.markkanen@kcl.ac.uk

    We investigate back reaction in de Sitter space in an approach where only states that are observationally accessible are included in the density matrix. Using the Bunch-Davies vacuum as the initial condition we find for a conformal scalar field and a cosmological constant that tracing over the unobservable states beyond the cosmological horizon leads to a thermal spectrum of particles and that such a configuration is unstable under semi-classical back reaction. It is concluded that this prescription results in an instability of de Sitter space with a gradually increasing horizon size.

  15. Cosmological cosmic strings

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1988-01-01

    The effect of an infinite cosmic string on a cosmological background is investigated. It is found that the metric is approximately a scaled version of the empty space string metric, i.e., conical in nature. Results are used to place bounds on the amount of cylindrical gravitational radiation currently emitted by such a string. The gravitational radiation equations are then analyzed explicitly and it is shown that even initially large disturbances are rapidly damped as the expansion proceeds. The implications of the gravitational radiation background and the limitations of the quadrupole formula are discussed.

  16. The dark side of cosmology: dark matter and dark energy.

    PubMed

    Spergel, David N

    2015-03-06

    A simple model with only six parameters (the age of the universe, the density of atoms, the density of matter, the amplitude of the initial fluctuations, the scale dependence of this amplitude, and the epoch of first star formation) fits all of our cosmological data . Although simple, this standard model is strange. The model implies that most of the matter in our Galaxy is in the form of "dark matter," a new type of particle not yet detected in the laboratory, and most of the energy in the universe is in the form of "dark energy," energy associated with empty space. Both dark matter and dark energy require extensions to our current understanding of particle physics or point toward a breakdown of general relativity on cosmological scales. Copyright © 2015, American Association for the Advancement of Science.

  17. A dynamical system approach to Bianchi III cosmology for Hu-Sawicki type f( R) gravity

    NASA Astrophysics Data System (ADS)

    Banik, Sebika Kangsha; Banik, Debika Kangsha; Bhuyan, Kalyan

    2018-02-01

    The cosmological dynamics of spatially homogeneous but anisotropic Bianchi type-III space-time is investigated in presence of a perfect fluid within the framework of Hu-Sawicki model. We use the dynamical system approach to perform a detailed analysis of the cosmological behaviour of this model for the model parameters n=1, c_1=1, determining all the fixed points, their stability and corresponding cosmological evolution. We have found stable fixed points with de Sitter solution along with unstable radiation like fixed points. We have identified a matter like point which act like an unstable spiral and when the initial conditions of a trajectory are very close to this point, it stabilizes at a stable accelerating point. Thus, in this model, the universe can naturally approach to a phase of accelerated expansion following a radiation or a matter dominated phase. It is also found that the isotropisation of this model is affected by the spatial curvature and that all the isotropic fixed points are found to be spatially flat.

  18. A laboratory analogue of the event horizon using slow light in an atomic medium.

    PubMed

    Leonhardt, Ulf

    2002-01-24

    Singularities underlie many optical phenomena. The rainbow, for example, involves a particular type of singularity-a ray catastrophe-in which light rays become infinitely intense. In practice, the wave nature of light resolves these infinities, producing interference patterns. At the event horizon of a black hole, time stands still and waves oscillate with infinitely small wavelengths. However, the quantum nature of light results in evasion of the catastrophe and the emission of Hawking radiation. Here I report a theoretical laboratory analogue of an event horizon: a parabolic profile of the group velocity of light brought to a standstill in an atomic medium can cause a wave singularity similar to that associated with black holes. In turn, the quantum vacuum is forced to create photon pairs with a characteristic spectrum, a phenomenon related to Hawking radiation. The idea may initiate a theory of 'quantum' catastrophes, extending classical catastrophe theory.

  19. Recurrent noise-induced phase singularities in drifting patterns.

    PubMed

    Clerc, M G; Coulibaly, S; del Campo, F; Garcia-Nustes, M A; Louvergneaux, E; Wilson, M

    2015-11-01

    We show that the key ingredients for creating recurrent traveling spatial phase defects in drifting patterns are a noise-sustained structure regime together with the vicinity of a phase transition, that is, a spatial region where the control parameter lies close to the threshold for pattern formation. They both generate specific favorable initial conditions for local spatial gradients, phase, and/or amplitude. Predictions from the stochastic convective Ginzburg-Landau equation with real coefficients agree quite well with experiments carried out on a Kerr medium submitted to shifted optical feedback that evidence noise-induced traveling phase slips and vortex phase-singularities.

  20. Heating of the corona by magnetic singularities

    NASA Technical Reports Server (NTRS)

    Antiochos, Spiro K.

    1990-01-01

    Theoretical models of current-sheet formation and magnetic heating in the solar corona are examined analytically. The role of photospheric connectivity in determining the topology of the coronal magnetic field and its equilibrium properties is explored; nonequilibrium models of current-sheet formation (assuming an initially well connected field) are described; and particular attention is given to models with discontinuous connectivity, where magnetic singularities arise from smooth footpoint motions. It is shown that current sheets arise from connectivities in which the photospheric flux structure is complex, with three or more polarity regions and a magnetic null point within the corona.

  1. Fingering patterns in Hele-Shaw flows are density shock wave solutions of dispersionless KdV hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodorescu, Razvan; Lee, S - Y; Wiegmann, P

    We investigate the hydrodynamics of a Hele-Shaw flow as the free boundary evolves from smooth initial conditions into a generic cusp singularity (of local geometry type x{sup 3} {approx} y{sup 2}), and then into a density shock wave. This novel solution preserves the integrability of the dynamics and, unlike all the weak solutions proposed previously, is not underdetermined. The evolution of the shock is such that the net vorticity remains zero, as before the critical time, and the shock can be interpreted as a singular line distribution of fluid deficit.

  2. Primer Vector Optimization: Survey of Theory, New Analysis and Applications

    NASA Technical Reports Server (NTRS)

    Guzman, J. J.; Mailhe, L. M.; Schiff, C.; Hughes, S. P.; Folta, D. C.

    2002-01-01

    In this paper, a summary of primer vector theory is presented. The applicability of primer vector theory is examined in an effort to understand when and why the theory can fail. For example, since the Calculus of Variations is based on "small" variations, singularities in the linearized (variational) equations of motion along the arcs must be taken into account. These singularities are a recurring problem in analyse that employ small variations. Two examples, the initialization of an orbit and a line of apsides rotation, are presented. Recommendations, future work, and the possible addition of other optimization techniques are also discussed.

  3. Global-Local Finite Element Analysis for Thermo-Mechanical Stresses in Bonded Joints

    NASA Technical Reports Server (NTRS)

    Shkarayev, S.; Madenci, Erdogan; Camarda, C. J.

    1997-01-01

    An analysis of adhesively bonded joints using conventional finite elements does not capture the singular behavior of the stress field in regions where two or three dissimilar materials form a junction with or without free edges. However, these regions are characteristic of the bonded joints and are prone to failure initiation. This study presents a method to capture the singular stress field arising from the geometric and material discontinuities in bonded composites. It is achieved by coupling the local (conventional) elements with global (special) elements whose interpolation functions are constructed from the asymptotic solution.

  4. Contact and crack problems for an elastic wedge. [stress concentration in elastic half spaces

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Gupta, G. D.

    1974-01-01

    The contact and the crack problems for an elastic wedge of arbitrary angle are considered. The problem is reduced to a singular integral equation which, in the general case, may have a generalized Cauchy kernel. The singularities under the stamp as well as at the wedge apex were studied, and the relevant stress intensity factors are defined. The problem was solved for various wedge geometries and loading conditions. The results may be applicable to certain foundation problems and to crack problems in symmetrically loaded wedges in which cracks initiate from the apex.

  5. Singularity formations for a surface wave model

    NASA Astrophysics Data System (ADS)

    Castro, Angel; Córdoba, Diego; Gancedo, Francisco

    2010-11-01

    In this paper we study the Burgers equation with a nonlocal term of the form Hu where H is the Hilbert transform. This system has been considered as a quadratic approximation for the dynamics of a free boundary of a vortex patch (see Biello and Hunter 2010 Commun. Pure Appl. Math. LXIII 0303-36 Marsden and Weinstein 1983 Physica D 7 305-23). We prove blowup in finite time for a large class of initial data with finite energy. Considering a more general nonlocal term, of the form ΛαHu for 0 < α < 1, finite time singularity formation is also shown.

  6. An iterative reconstruction of cosmological initial density fields

    NASA Astrophysics Data System (ADS)

    Hada, Ryuichiro; Eisenstein, Daniel J.

    2018-05-01

    We present an iterative method to reconstruct the linear-theory initial conditions from the late-time cosmological matter density field, with the intent of improving the recovery of the cosmic distance scale from the baryon acoustic oscillations (BAOs). We present tests using the dark matter density field in both real and redshift space generated from an N-body simulation. In redshift space at z = 0.5, we find that the reconstructed displacement field using our iterative method are more than 80% correlated with the true displacement field of the dark matter particles on scales k < 0.10h Mpc-1. Furthermore, we show that the two-point correlation function of our reconstructed density field matches that of the initial density field substantially better, especially on small scales (<40h-1 Mpc). Our redshift-space results are improved if we use an anisotropic smoothing so as to account for the reduced small-scale information along the line of sight in redshift space.

  7. Cosmological perturbation theory and the spherical collapse model - II. Non-Gaussian initial conditions

    NASA Astrophysics Data System (ADS)

    Gaztanaga, Enrique; Fosalba, Pablo

    1998-12-01

    In Paper I of this series, we introduced the spherical collapse (SC) approximation in Lagrangian space as a way of estimating the cumulants xi_J of density fluctuations in cosmological perturbation theory (PT). Within this approximation, the dynamics is decoupled from the statistics of the initial conditions, so we are able to present here the cumulants for generic non-Gaussian initial conditions, which can be estimated to arbitrary order including the smoothing effects. The SC model turns out to recover the exact leading-order non-linear contributions up to terms involving non-local integrals of the J-point functions. We argue that for the hierarchical ratios S_J, these non-local terms are subdominant and tend to compensate each other. The resulting predictions show a non-trivial time evolution that can be used to discriminate between models of structure formation. We compare these analytic results with non-Gaussian N-body simulations, which turn out to be in very good agreement up to scales where sigma<~1.

  8. The AGORA High-resolution Galaxy Simulations Comparison Project

    NASA Astrophysics Data System (ADS)

    Kim, Ji-hoon; Abel, Tom; Agertz, Oscar; Bryan, Greg L.; Ceverino, Daniel; Christensen, Charlotte; Conroy, Charlie; Dekel, Avishai; Gnedin, Nickolay Y.; Goldbaum, Nathan J.; Guedes, Javiera; Hahn, Oliver; Hobbs, Alexander; Hopkins, Philip F.; Hummels, Cameron B.; Iannuzzi, Francesca; Keres, Dusan; Klypin, Anatoly; Kravtsov, Andrey V.; Krumholz, Mark R.; Kuhlen, Michael; Leitner, Samuel N.; Madau, Piero; Mayer, Lucio; Moody, Christopher E.; Nagamine, Kentaro; Norman, Michael L.; Onorbe, Jose; O'Shea, Brian W.; Pillepich, Annalisa; Primack, Joel R.; Quinn, Thomas; Read, Justin I.; Robertson, Brant E.; Rocha, Miguel; Rudd, Douglas H.; Shen, Sijing; Smith, Britton D.; Szalay, Alexander S.; Teyssier, Romain; Thompson, Robert; Todoroki, Keita; Turk, Matthew J.; Wadsley, James W.; Wise, John H.; Zolotov, Adi; AGORA Collaboration29,the

    2014-01-01

    We introduce the Assembling Galaxies Of Resolved Anatomy (AGORA) project, a comprehensive numerical study of well-resolved galaxies within the ΛCDM cosmology. Cosmological hydrodynamic simulations with force resolutions of ~100 proper pc or better will be run with a variety of code platforms to follow the hierarchical growth, star formation history, morphological transformation, and the cycle of baryons in and out of eight galaxies with halo masses M vir ~= 1010, 1011, 1012, and 1013 M ⊙ at z = 0 and two different ("violent" and "quiescent") assembly histories. The numerical techniques and implementations used in this project include the smoothed particle hydrodynamics codes GADGET and GASOLINE, and the adaptive mesh refinement codes ART, ENZO, and RAMSES. The codes share common initial conditions and common astrophysics packages including UV background, metal-dependent radiative cooling, metal and energy yields of supernovae, and stellar initial mass function. These are described in detail in the present paper. Subgrid star formation and feedback prescriptions will be tuned to provide a realistic interstellar and circumgalactic medium using a non-cosmological disk galaxy simulation. Cosmological runs will be systematically compared with each other using a common analysis toolkit and validated against observations to verify that the solutions are robust—i.e., that the astrophysical assumptions are responsible for any success, rather than artifacts of particular implementations. The goals of the AGORA project are, broadly speaking, to raise the realism and predictive power of galaxy simulations and the understanding of the feedback processes that regulate galaxy "metabolism." The initial conditions for the AGORA galaxies as well as simulation outputs at various epochs will be made publicly available to the community. The proof-of-concept dark-matter-only test of the formation of a galactic halo with a z = 0 mass of M vir ~= 1.7 × 1011 M ⊙ by nine different versions of the participating codes is also presented to validate the infrastructure of the project.

  9. Voids in cosmological simulations over cosmic time

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Powell, Devon; Abel, Tom

    2016-06-01

    We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well-developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids' evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard Λ-cold-dark-matter cosmological model and study evolution of basic properties of typical voids (with effective radii 6 h-1 Mpc < Rv < 20 h-1 Mpc at redshift z = 0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in initial conditions. Shapes of voids evolve in a collective way which barely modifies the overall distribution of the axial ratios. The evolution appears to have a weak impact on mutual alignments of voids implying that the present state is in large part set up by the primordial density field. We present evolution of dark matter density profiles computed on isodensity surfaces which comply with the actual shapes of voids. Unlike spherical density profiles, this approach enables us to demonstrate development of theoretically predicted bucket-like shape of the final density profiles indicating a wide flat core and a sharp transition to high-density void walls.

  10. Cauchy problem with general discontinuous initial data along a smooth curve for 2-d Euler system

    NASA Astrophysics Data System (ADS)

    Chen, Shuxing; Li, Dening

    2014-09-01

    We study the Cauchy problems for the isentropic 2-d Euler system with discontinuous initial data along a smooth curve. All three singularities are present in the solution: shock wave, rarefaction wave and contact discontinuity. We show that the usual restrictive high order compatibility conditions for the initial data are automatically satisfied. The local existence of piecewise smooth solution containing all three waves is established.

  11. Analysis on singular spaces: Lie manifolds and operator algebras

    NASA Astrophysics Data System (ADS)

    Nistor, Victor

    2016-07-01

    We discuss and develop some connections between analysis on singular spaces and operator algebras, as presented in my sequence of four lectures at the conference Noncommutative geometry and applications, Frascati, Italy, June 16-21, 2014. Therefore this paper is mostly a survey paper, but the presentation is new, and there are included some new results as well. In particular, Sections 3 and 4 provide a complete short introduction to analysis on noncompact manifolds that is geared towards a class of manifolds-called ;Lie manifolds; -that often appears in practice. Our interest in Lie manifolds is due to the fact that they provide the link between analysis on singular spaces and operator algebras. The groupoids integrating Lie manifolds play an important background role in establishing this link because they provide operator algebras whose structure is often well understood. The initial motivation for the work surveyed here-work that spans over close to two decades-was to develop the index theory of stratified singular spaces. Meanwhile, several other applications have emerged as well, including applications to Partial Differential Equations and Numerical Methods. These will be mentioned only briefly, however, due to the lack of space. Instead, we shall concentrate on the applications to Index theory.

  12. The unfolding of the historical style in modern cosmology: Emergence, evolution, entrenchment

    NASA Astrophysics Data System (ADS)

    Pearce, Jacob

    2017-02-01

    This paper traces the emergence, evolution and subsequent entrenchment of the historical style in the shifting scene of modern cosmological inquiry. It argues that the historical style in cosmology was forged in the early decades of the 20th century and continued to evolve in the century that followed. Over time, the scene of cosmological inquiry has gradually become dominated and entirely constituted by historicist explanations. Practices such as forwards and backwards temporal extrapolation (thinking about the past evolutionary history of the universe with different initial conditions and other parameters) are now commonplace. The non-static geometrization of the cosmos in the early 20th century led to inquires thinking about the cosmos in evolutionary terms. Drawing on the historical approach of Gamow (and contrasting this with the ahistorical approach of Bondi), the paper then argues that the historical style became a major force as inquirers began scouring the universe for fossils and other relics as a new form of scientific practice-cosmic palaeontology. By the 1970s the historical style became the bedrock of the discipline and the presupposition of new lines of inquiry. By the end of the 20th century, the historical style was pushed to its very limits as temporal reasoning began to occur beyond a linear historical narrative. With the atemporal 'ensemble' type multiverse proposals, a certain type of ahistorical reasoning has been reintroduced to cosmological discourse, which, in a sense, represents a radical de-historicization of the historical style in cosmology. Some are now even attempting to explain the laws of physics in terms of their historicity.

  13. Relaxing the cosmological constant: a proof of concept

    NASA Astrophysics Data System (ADS)

    Alberte, Lasma; Creminelli, Paolo; Khmelnitsky, Andrei; Pirtskhalava, David; Trincherini, Enrico

    2016-12-01

    We propose a technically natural scenario whereby an initially large cosmological constant (c.c.) is relaxed down to the observed value due to the dynamics of a scalar evolving on a very shallow potential. The model crucially relies on a sector that violates the null energy condition (NEC) and gets activated only when the Hubble rate becomes sufficiently small — of the order of the present one. As a result of NEC violation, this low-energy universe evolves into inflation, followed by reheating and the standard Big Bang cosmology. The symmetries of the theory force the c.c. to be the same before and after the NEC-violating phase, so that a late-time observer sees an effective c.c. of the correct magnitude. Importantly, our model allows neither for eternal inflation nor for a set of possible values of dark energy, the latter fixed by the parameters of the theory.

  14. Isocurvature forecast in the anthropic axion window

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamann, J.; Hannestad, S.; Raffelt, G.G.

    2009-06-01

    We explore the cosmological sensitivity to the amplitude of isocurvature fluctuations that would be caused by axions in the ''anthropic window'' where the axion decay constant f{sub a} >> 10{sup 12} GeV and the initial misalignment angle Θ{sub i} << 1. In a minimal ΛCDM cosmology extended with subdominant scale-invariant isocurvature fluctuations, existing data constrain the isocurvature fraction to α < 0.09 at 95% C.L. If no signal shows up, Planck can improve this constraint to 0.042 while an ultimate CMB probe limited only by cosmic variance in both temperature and E-polarisation can reach 0.017, about a factor of fivemore » better than the current limit. In the parameter space of f{sub a} and H{sub I} (Hubble parameter during inflation) we identify a small region where axion detection remains within the reach of realistic cosmological probes.« less

  15. Dark interactions and cosmological fine-tuning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quartin, Miguel; Calvao, Mauricio O; Joras, Sergio E

    2008-05-15

    Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the {Lambda}CDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme,more » this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.« less

  16. Noether symmetry approach in the cosmological alpha-attractors

    NASA Astrophysics Data System (ADS)

    Kaewkhao, Narakorn; Kanesom, Thanyagamon; Channuie, Phongpichit

    2018-06-01

    In cosmological framework, Noether symmetry technique has revealed a useful tool in order to examine exact solutions. In this work, we first introduce the Jordan-frame Lagrangian and apply the conformal transformation in order to obtain the Lagrangian equivalent to Einstein-frame form. We then analyze the dynamics of the field in the cosmological alpha-attractors using the Noether symmetry approach by focusing on the single field scenario in the Einstein-frame form. We show that with a Noether symmetry the corresponding dynamical system can be completely integrated and the potential exhibited by the symmetry can be exactly obtained. With the proper choice of parameters, the behavior of the scale factor displays an exponential (de Sitter) behavior at the present epoch. Moreover, we discover that the Hubble parameters strongly depends on the initial values of parameters exhibited by the Noether symmetry. Interestingly, it can retardedly evolve and becomes a constant in the present epoch in all cases.

  17. Physics of singularities in pressure-impulse theory

    NASA Astrophysics Data System (ADS)

    Krechetnikov, R.

    2018-05-01

    The classical solution in the pressure-impulse theory for the inviscid, incompressible, and zero-surface-tension water impact of a flat plate at zero dead-rise angle exhibits both singular-in-time initial fluid acceleration, ∂v /∂ t |t =0˜δ (t ) , and a near-plate-edge spatial singularity in the velocity distribution, v ˜r-1 /2 , where r is the distance from the plate edge. The latter velocity divergence also leads to the interface being stretched infinitely right after the impact, which is another nonphysical artifact. From the point of view of matched asymptotic analysis, this classical solution is a singular limit when three physical quantities achieve limiting values: sound speed c0→∞ , fluid kinematic viscosity ν →0 , and surface tension σ →0 . This leaves open a question on how to resolve these singularities mathematically by including the neglected physical effects—compressibility, viscosity, and surface tension—first one by one and then culminating in the local compressible viscous solution valid for t →0 and r →0 , demonstrating a nontrivial flow structure that changes with the degree of the bulk compressibility. In the course of this study, by starting with the general physically relevant formulation of compressible viscous flow, we clarify the parameter range(s) of validity of the key analytical solutions including classical ones (inviscid incompressible and compressible, etc.) and understand the solution structure, its intermediate asymptotics nature, characteristics influencing physical processes, and the role of potential and rotational flow components. In particular, it is pointed out that sufficiently close to the plate edge surface tension must be taken into account. Overall, the idea is to highlight the interesting physics behind the singularities in the pressure-impulse theory.

  18. Generalized Quantum Theory of Bianchi IX Cosmologies

    NASA Astrophysics Data System (ADS)

    Craig, David; Hartle, James

    2003-04-01

    We apply sum-over-histories generalized quantum theory to the closed homogeneous minisuperspace Bianchi IX cosmological model. We sketch how the probabilities in decoherent sets of alternative, coarse-grained histories of this model universe are calculated. We consider in particular, the probabilities for classical evolution in a suitable coarse-graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not, illustrating the prediction that these universes will evolve in an approximately classical manner with a probability near unity.

  19. New type of hill-top inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barvinsky, A.O.; Department of Physics, Tomsk State University,Lenin Ave. 36, Tomsk 634050; Department of Physics and Astronomy, Pacific Institue for Theoretical Physics,University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1

    2016-01-20

    We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on themore » background of a slowly varying inflaton, which guarantees smallness of slow roll parameters ϵ and η of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and R{sup 2}-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.« less

  20. New type of hill-top inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barvinsky, A.O.; Nesterov, D.V.; Kamenshchik, A.Yu., E-mail: barvin@td.lpi.ru, E-mail: Alexander.Kamenshchik@bo.infn.it, E-mail: nesterov@td.lpi.ru

    2016-01-01

    We suggest a new type of hill-top inflation originating from the initial conditions in the form of the microcanonical density matrix for the cosmological model with a large number of quantum fields conformally coupled to gravity. Initial conditions for inflation are set up by cosmological instantons describing underbarrier oscillations in the vicinity of the inflaton potential maximum. These periodic oscillations of the inflaton field and cosmological scale factor are obtained within the approximation of two coupled oscillators subject to the slow roll regime in the Euclidean time. This regime is characterized by rapid oscillations of the scale factor on themore » background of a slowly varying inflaton, which guarantees smallness of slow roll parameters ε and η of the following inflation stage. A hill-like shape of the inflaton potential is shown to be generated by logarithmic loop corrections to the tree-level asymptotically shift-invariant potential in the non-minimal Higgs inflation model and R{sup 2}-gravity. The solution to the problem of hierarchy between the Planckian scale and the inflation scale is discussed within the concept of conformal higher spin fields, which also suggests the mechanism bringing the model below the gravitational cutoff and, thus, protecting it from large graviton loop corrections.« less

  1. Attitude guidance and tracking for spacecraft with two reaction wheels

    NASA Astrophysics Data System (ADS)

    Biggs, James D.; Bai, Yuliang; Henninger, Helen

    2018-04-01

    This paper addresses the guidance and tracking problem for a rigid-spacecraft using two reaction wheels (RWs). The guidance problem is formulated as an optimal control problem on the special orthogonal group SO(3). The optimal motion is solved analytically as a function of time and is used to reduce the original guidance problem to one of computing the minimum of a nonlinear function. A tracking control using two RWs is developed that extends previous singular quaternion stabilisation controls to tracking controls on the rotation group. The controller is proved to locally asymptotically track the generated reference motions using Lyapunov's direct method. Simulations of a 3U CubeSat demonstrate that this tracking control is robust to initial rotation errors and angular velocity errors in the controlled axis. For initial angular velocity errors in the uncontrolled axis and under significant disturbances the control fails to track. However, the singular tracking control is combined with a nano-magnetic torquer which simply damps the angular velocity in the uncontrolled axis and is shown to provide a practical control method for tracking in the presence of disturbances and initial condition errors.

  2. Topics in General Relativity theory: Gravitational-wave measurements of black-hole parameters; gravitational collapse of a cylindrical body; and classical-particle evolution in the presence of closed, timelike curves

    NASA Astrophysics Data System (ADS)

    Echeverria, Fernando

    I study three different topics in general relativity. The first study investigates the accuracy with which the mass and angular momentum of a black hole can be determined by measurements of gravitational waves from the hole, using a gravitational-wave detector. The black hole is assumed to have been strongly perturbed and the detector measures the waves produced by its resulting vibration and ring-down. The uncertainties in the measured parameters arise from the noise present in the detector. It is found that the faster the hole rotates, the more accurate the measurements will be, with the uncertainty in the angular momentum decreasing rapidly with increasing rotation speed. The second study is an analysis of the gravitational collapse of an infinitely long, cylindrical dust shell, an idealization of more realistic, finite-length bodies. It is found that the collapse evolves into a naked singularity in finite time. Analytical expressions for the variables describing the collapse are found at late times, near the singularity. The collapse is also followed, with a numerical simulation, from the start until very close to the singularity. The singularity is found to be strong, in the sense that an observer riding on the shell will be infinitely stretched in one direction and infinitely compressed in another. The gravitational waves emitted from the collapse are also analyzed. The last study focuses on the consequences of the existence of closed time like curves in a worm hole space time. One might expect that such curves might cause a system with apparently well-posed initial conditions to have no self-consistent evolution. We study the case of a classical particle with a hard-sphere potential, focusing attention on initial conditions for which the evolution, if followed naively, is self-inconsistent: the ball travels to the past through the worm hole colliding with its younger self, preventing itself from entering the worm hole. We find, surprisingly, that for all such 'dangerous' initial conditions, there are an infinite number of self-consistent solutions. We also find that for many non-dangerous initial conditions, there also exist an infinity of possible evolutions.

  3. Brane decay and an initial spacelike singularity.

    PubMed

    Kawai, Shinsuke; Keski-Vakkuri, Esko; Leigh, Robert G; Nowling, Sean

    2006-01-27

    We present a novel string theory scenario where matter in a spacetime originates from a decaying brane at the origin of time. The decay could be considered as a big-bang-like event at X0=0. The closed string interpretation is a time-dependent spacetime with a semi-infinite time direction, with the initial energy of the brane converted into energy flux from the origin. The open string interpretation can be viewed as a string theoretic nonsingular initial condition.

  4. The wave equation in Friedmann-Robertson-Walker space-times and asymptotics of the intensity and distance relationship of a localised source

    NASA Astrophysics Data System (ADS)

    Starko, Darij; Craig, Walter

    2018-04-01

    Variations in redshift measurements of Type 1a supernovae and intensity observations from large sky surveys are an indicator of a component of acceleration in the rate of expansion of space-time. A key factor in the measurements is the intensity-distance relation for Maxwell's equations in Friedmann-Robertson-Walker (FRW) space-times. In view of future measurements of the decay of other fields on astronomical time and spatial scales, we determine the asymptotic behavior of the intensity-distance relationship for the solution of the wave equation in space-times with an FRW metric. This builds on previous work done on initial value problems for the wave equation in FRW space-time [Abbasi, B. and Craig, W., Proc. R. Soc. London, Ser. A 470, 20140361 (2014)]. In this paper, we focus on the precise intensity decay rates of the special cases for curvature k = 0 and k = -1, as well as giving a general derivation of the wave solution for -∞ < k < 0. We choose a Cauchy surface {(t, x) : t = t0 > 0} where t0 represents the time of an initial emission source, relative to the Big Bang singularity at t = 0. The initial data [g(x), h(x)] are assumed to be compactly supported; supp(g, h) ⊆ BR(0) and terms in the expression for the fundamental solution for the wave equation with the slowest decay rate are retained. The intensities calculated for coordinate time {t : t > 0} contain correction terms proportional to the ratio of t0 and the time differences ρ = t - t0. For the case of general curvature k, these expressions for the intensity reduce by scaling to the same form as for k = -1, from which we deduce the general formula. We note that for typical astronomical events such as Type 1a supernovae, the first order correction term for all curvatures -∞ < k < 0 is on the order of 10-4 smaller than the zeroth order term. These correction terms are small but may be significant in applications to alternative observations of cosmological space-time expansion rates.

  5. High accuracy heat capacity measurements through the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbanks, W. M.; Lipa, J. A.

    1984-01-01

    A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.

  6. Hydrodynamical simulations of coupled and uncoupled quintessence models - II. Galaxy clusters

    NASA Astrophysics Data System (ADS)

    Carlesi, Edoardo; Knebe, Alexander; Lewis, Geraint F.; Yepes, Gustavo

    2014-04-01

    We study the z = 0 properties of clusters (and large groups) of galaxies within the context of interacting and non-interacting quintessence cosmological models, using a series of adiabatic SPH simulations. Initially, we examine the average properties of groups and clusters, quantifying their differences in ΛCold Dark Matter (ΛCDM), uncoupled Dark Energy (uDE) and coupled Dark Energy (cDE) cosmologies. In particular, we focus upon radial profiles of the gas density, temperature and pressure, and we also investigate how the standard hydrodynamic equilibrium hypothesis holds in quintessence cosmologies. While we are able to confirm previous results about the distribution of baryons, we also find that the main discrepancy (with differences up to 20 per cent) can be seen in cluster pressure profiles. We then switch attention to individual structures, mapping each halo in quintessence cosmology to its ΛCDM counterpart. We are able to identify a series of small correlations between the coupling in the dark sector and halo spin, triaxiality and virialization ratio. When looking at spin and virialization of dark matter haloes, we find a weak (5 per cent) but systematic deviation in fifth force scenarios from ΛCDM.

  7. Causality in time-neutral cosmologies

    NASA Astrophysics Data System (ADS)

    Kent, Adrian

    1999-02-01

    Gell-Mann and Hartle (GMH) have recently considered time-neutral cosmological models in which the initial and final conditions are independently specified, and several authors have investigated experimental tests of such models. We point out here that GMH time-neutral models can allow superluminal signaling, in the sense that it can be possible for observers in those cosmologies, by detecting and exploiting regularities in the final state, to construct devices which send and receive signals between space-like separated points. In suitable cosmologies, any single superluminal message can be transmitted with probability arbitrarily close to one by the use of redundant signals. However, the outcome probabilities of quantum measurements generally depend on precisely which past and future measurements take place. As the transmission of any signal relies on quantum measurements, its transmission probability is similarly context dependent. As a result, the standard superluminal signaling paradoxes do not apply. Despite their unusual features, the models are internally consistent. These results illustrate an interesting conceptual point. The standard view of Minkowski causality is not an absolutely indispensable part of the mathematical formalism of relativistic quantum theory. It is contingent on the empirical observation that naturally occurring ensembles can be naturally pre-selected but not post-selected.

  8. Entropy in universes evolving from initial to final de Sitter eras

    NASA Astrophysics Data System (ADS)

    Mimoso, José P.; Pavón, Diego

    2014-05-01

    This work studies the behavior of entropy in recent cosmological models that start with an initial de Sitter expansion phase, go through the conventional radiation and matter dominated eras to be followed by a final de Sitter epoch. In spite of their seemingly similarities (observationally they are close to the Λ-CDM model), different models deeply differ in their physics. The second law of thermodynamics encapsulates the underlying microscopic, statistical description, and hence we investigate it in the present work. Our study reveals that the entropy of the apparent horizon plus that of matter and radiation inside it, increases and is a concave function of the scale factor. Thus thermodynamic equilibrium is approached in the last de Sitter era, and this class of models is thermodynamically correct. Cosmological models that do not approach equilibrium appear in conflict with the second law of thermodynamics. (Based on Mimoso & Pavon 2013)

  9. Primordial inhomogeneities in the expanding universe. II - General features of spherical models at late times

    NASA Technical Reports Server (NTRS)

    Olson, D. W.; Silk, J.

    1979-01-01

    This paper studies the density profile that forms around a spherically symmetric bound central core immersed in a homogeneous-background k = 0 or k = -1 Friedmann-Robertson-Walker cosmological model, with zero pressure. Although the density profile in the linearized regime is almost arbitrary, in the nonlinear regime certain universal features of the density profile are obtained that are independent of the details of the initial conditions. The formation of 'halos' ('holes') with densities greater than (less than) the average cosmological density is discussed. It is shown that in most regions 'halos' form, and universal values are obtained for the slope of the ln (density)-ln (radius) profile in those 'halos' at late times, independently of the shape of the initial density profile. Restrictions are derived on where it is possible for 'holes' to exist at late times and on how such 'holes' must have evolved.

  10. Particle number dependence in the non-linear evolution of N-body self-gravitating systems

    NASA Astrophysics Data System (ADS)

    Benhaiem, D.; Joyce, M.; Sylos Labini, F.; Worrakitpoonpon, T.

    2018-01-01

    Simulations of purely self-gravitating N-body systems are often used in astrophysics and cosmology to study the collisionless limit of such systems. Their results for macroscopic quantities should then converge well for sufficiently large N. Using a study of the evolution from a simple space of spherical initial conditions - including a region characterized by so-called 'radial orbit instability' - we illustrate that the values of N at which such convergence is obtained can vary enormously. In the family of initial conditions we study, good convergence can be obtained up to a few dynamical times with N ∼ 103 - just large enough to suppress two body relaxation - for certain initial conditions, while in other cases such convergence is not attained at this time even in our largest simulations with N ∼ 105. The qualitative difference is due to the stability properties of fluctuations introduced by the N-body discretisation, of which the initial amplitude depends on N. We discuss briefly why the crucial role which such fluctuations can potentially play in the evolution of the N body system could, in particular, constitute a serious problem in cosmological simulations of dark matter.

  11. Exact solution of the Lifshitz equations governing the growth of fluctuations in cosmology

    NASA Technical Reports Server (NTRS)

    Adams, P. J.; Canuto, V.

    1975-01-01

    The exact solution of the Lifshitz equations governing the cosmological evolution of an initial fluctuation is presented. Lifshitz results valid for squares of the sound velocity equal to zero and 1/3 are extended in closed form to any equation of state where the pressure equals the total energy density times the square of the sound velocity. The solutions embody all the results found previously for special cases of the square of the sound velocity. It is found that the growth of any initial fluctuation is only an exponential function of time with an exponent of not more than 4/3 and is insufficient to produce galaxies unless the initial fluctuation is very large. A possible way to produce very large initial fluctuations by modifying the equation of state by including gravitational interactions is also examined. It is found that a phase transition can occur at baryonic density of 1 nucleon per cubic Planck length or equivalently, at a time of about 10 to the -43rd power sec. At those early times, the masses allowed by causality requirements are too small to be of interest in galaxy formation.

  12. New method for initial density reconstruction

    NASA Astrophysics Data System (ADS)

    Shi, Yanlong; Cautun, Marius; Li, Baojiu

    2018-01-01

    A theoretically interesting and practically important question in cosmology is the reconstruction of the initial density distribution provided a late-time density field. This is a long-standing question with a revived interest recently, especially in the context of optimally extracting the baryonic acoustic oscillation (BAO) signals from observed galaxy distributions. We present a new efficient method to carry out this reconstruction, which is based on numerical solutions to the nonlinear partial differential equation that governs the mapping between the initial Lagrangian and final Eulerian coordinates of particles in evolved density fields. This is motivated by numerical simulations of the quartic Galileon gravity model, which has similar equations that can be solved effectively by multigrid Gauss-Seidel relaxation. The method is based on mass conservation, and does not assume any specific cosmological model. Our test shows that it has a performance comparable to that of state-of-the-art algorithms that were very recently put forward in the literature, with the reconstructed density field over ˜80 % (50%) correlated with the initial condition at k ≲0.6 h /Mpc (1.0 h /Mpc ). With an example, we demonstrate that this method can significantly improve the accuracy of BAO reconstruction.

  13. Vortices in rotating superfluid 3He.

    PubMed

    Lounasmaa, O V; Thuneberg, E

    1999-07-06

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe.

  14. Vortices in rotating superfluid 3He

    PubMed Central

    Lounasmaa, Olli V.; Thuneberg, Erkki

    1999-01-01

    In this review we first present an introduction to 3He and to the ROTA collaboration under which most of the knowledge on vortices in superfluid 3He has been obtained. In the physics part, we start from the exceptional properties of helium at millikelvin temperatures. The dilemma of rotating superfluids is presented. In 4He and in 3He-B the problem is solved by nucleating an array of singular vortex lines. Their experimental detection in 3He by NMR is described next. The vortex cores in 3He-B have two different structures, both of which have spontaneously broken symmetry. A spin-mass vortex has been identified as well. This object is characterized by a flow of spins around the vortex line, in addition to the usual mass current. A great variety of vortices exist in the A phase of 3He; they are either singular or continuous, and their structure can be a line or a sheet or fill the whole liquid. Altogether seven different types of vortices have been detected in 3He by NMR. We also describe briefly other experimental methods that have been used by ROTA scientists in studying vortices in 3He and some important results thus obtained. Finally, we discuss the possible applications of experiments and theory of 3He to particle physics and cosmology. In particular, we report on experiments where superfluid 3He-B was heated locally by absorption of single neutrons. The resulting events can be used to test theoretical models of the Big Bang at the beginning of our universe. PMID:10393895

  15. Evidencing `Tight Bound States' in the Hydrogen Atom:. Empirical Manipulation of Large-Scale XD in Violation of QED

    NASA Astrophysics Data System (ADS)

    Amoroso, Richard L.; Vigier, Jean-Pierre

    2013-09-01

    In this work we extend Vigier's recent theory of `tight bound state' (TBS) physics and propose empirical protocols to test not only for their putative existence, but also that their existence if demonstrated provides the 1st empirical evidence of string theory because it occurs in the context of large-scale extra dimensionality (LSXD) cast in a unique M-Theoretic vacuum corresponding to the new Holographic Anthropic Multiverse (HAM) cosmological paradigm. Physicists generally consider spacetime as a stochastic foam containing a zero-point field (ZPF) from which virtual particles restricted by the quantum uncertainty principle (to the Planck time) wink in and out of existence. According to the extended de Broglie-Bohm-Vigier causal stochastic interpretation of quantum theory spacetime and the matter embedded within it is created annihilated and recreated as a virtual locus of reality with a continuous quantum evolution (de Broglie matter waves) governed by a pilot wave - a `super quantum potential' extended in HAM cosmology to be synonymous with the a `force of coherence' inherent in the Unified Field, UF. We consider this backcloth to be a covariant polarized vacuum of the (generally ignored by contemporary physicists) Dirac type. We discuss open questions of the physics of point particles (fermionic nilpotent singularities). We propose a new set of experiments to test for TBS in a Dirac covariant polarized vacuum LSXD hyperspace suggestive of a recently tested special case of the Lorentz Transformation put forth by Kowalski and Vigier. These protocols reach far beyond the recent battery of atomic spectral violations of QED performed through NIST.

  16. Inverse construction of the ΛLTB model from a distance-redshift relation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokutake, Masato; Yoo, Chul-Moon, E-mail: tokutake@gravity.phys.nagoya-u.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp

    2016-10-01

    Spherically symmetric dust universe models with a positive cosmological constant Λ, known as Λ-Lemaȋtre-Tolman-Bondi (ΛLTB) models, are considered. We report a method to construct the ΛLTB model from a given distance-redshift relation observed at the symmetry center. The spherical inhomogeneity is assumed to be composed of growing modes. We derive a set of ordinary differential equations for three functions of the redshift, which specify the spherical inhomogeneity. Once a distance-redshift relation is given, with careful treatment of possible singular points, we can uniquely determine the model by solving the differential equations for each value of Λ. As a demonstration, wemore » fix the distance-redshift relation as that of the flat ΛCDM model with (Ω{sup dis}{sub m0}, Ω{sup dis}{sub Λ0})=(0.3,0.7), where Ω{sup dis}{sub m0} and Ω{sup dis}{sub Λ0} are the normalized matter density and the cosmological constant, respectively. Then, we construct the ΛLTB model for several values of Ω{sub Λ0}:=Λ/(3 H {sub 0}{sup 2}), where H {sub 0} is the present Hubble parameter observed at the symmetry center. We obtain void (over dense) structure around the symmetry center for Ω{sub Λ0} < Ω{sup dis}{sub Λ0}(Ω{sub Λ0} > Ω{sup dis}{sub Λ0}). We show the relation between the ratio Ω{sub Λ0}/Ω{sup dis}{sub Λ0} and the amplitude of the inhomogeneity.« less

  17. Supergravity, dark energy, and the fate of the universe

    NASA Astrophysics Data System (ADS)

    Kallosh, Renata; Linde, Andrei; Prokushkin, Sergey; Shmakova, Marina

    2002-12-01

    We propose a description of dark energy and acceleration of the universe in extended supergravities with de Sitter (dS) solutions. Some of them are related to M theory with noncompact internal spaces. Masses of ultralight scalars in these models are quantized in units of the Hubble constant: m2=nH2. If the dS solution corresponds to a minimum of the effective potential, the universe eventually becomes dS space. If the dS solution corresponds to a maximum or a saddle point, which is the case in all known models based on N=8 supergravity, the flat universe eventually stops accelerating and collapses to a singularity. We show that in these models, as well as in the simplest models of dark energy based on N=1 supergravity, the typical time remaining before the global collapse is comparable to the present age of the universe, t=O(1010) yr. We discuss the possibility of distinguishing between various models and finding our destiny using cosmological observations.

  18. A palace for astronomy in Buenos Aires

    NASA Astrophysics Data System (ADS)

    Gangui, Alejandro

    2011-06-01

    In no other epoch of Western history like in the Middle Ages, cosmology was so key an element of culture and, one way or another, the motion of the heavens ended up impregnating the literature of that time. Among the most noteworthy poets we find Dante Alighieri, who became famous for his Commedia, a monumental poem written roughly between 1307 and his death in 1321, and which the critics from 16th century onwards dubbed Divina. In this and other works, Dante pictures the cosmic image for the world, summing up the current trends of Neoplatonic and Islamic traditions. The Barolo Palace in the city of Buenos Aires is a singular combination of both astronomy and the worldview displayed in Dante's poetic masterpiece. Some links of the Palace's main architectural structure with the three realms of the Comedy have been studied in the past. In this note we consider its unique astronomical flavor, an issue which has not been sufficiently emphasized yet.

  19. Avoidance of singularities in asymptotically safe Quantum Einstein Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofinas, Georgios; Zarikas, Vasilios; Department of Physics, Aristotle University of Thessaloniki,54124 Thessaloniki

    2015-10-30

    New general spherically symmetric solutions have been derived with a cosmological “constant” Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) ismore » timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.« less

  20. Avoidance of singularities in asymptotically safe Quantum Einstein Gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofinas, Georgios; Zarikas, Vasilios, E-mail: gkofinas@aegean.gr, E-mail: vzarikas@teilam.gr

    2015-10-01

    New general spherically symmetric solutions have been derived with a cosmological ''constant'' Λ as a source. This Λ term is not constant but it satisfies the properties of the asymptotically safe gravity at the ultraviolet fixed point. The importance of these solutions comes from the fact that they may describe the near to the centre region of black hole spacetimes as this is modified by the Renormalization Group scaling behaviour of the fields. The consistent set of field equations which respect the Bianchi identities is derived and solved. One of the solutions (with conventional sign of temporal-radial metric components) ismore » timelike geodesically complete, and although there is still a curvature divergent origin, this is never approachable by an infalling massive particle which is reflected at a finite distance due to the repulsive origin. Another family of solutions (of both signatures) range from a finite radius outwards, they cannot be extended to the centre of spherical symmetry, and the curvature invariants are finite at the minimum radius.« less

Top