Sample records for initial decomposition product

  1. Influence of density and environmental factors on decomposition kinetics of amorphous polylactide - Reactive molecular dynamics studies.

    PubMed

    Mlyniec, A; Ekiert, M; Morawska-Chochol, A; Uhl, T

    2016-06-01

    In this work, we investigate the influence of the surrounding environment and the initial density on the decomposition kinetics of polylactide (PLA). The decomposition of the amorphous PLA was investigated by means of reactive molecular dynamics simulations. A computational model simulates the decomposition of PLA polymer inside the bulk, due to the assumed lack of removal of reaction products from the polymer matrix. We tracked the temperature dependency of the water and carbon monoxide production to extract the activation energy of thermal decomposition of PLA. We found that an increased density results in decreased activation energy of decomposition by about 50%. Moreover, initiation of decomposition of the amorphous PLA is followed by a rapid decline in activation energy caused by reaction products which accelerates the hydrolysis of esters. The addition of water molecules decreases initial energy of activation as well as accelerates the decomposition process. Additionally, we have investigated the dependency of density on external loading. Comparison of pressures needed to obtain assumed densities shows that this relationship is bilinear and the slope changes around a density equal to 1.3g/cm(3). The conducted analyses provide an insight into the thermal decomposition process of the amorphous phase of PLA, which is particularly susceptible to decomposition in amorphous and semi-crystalline PLA polymers. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Initial mechanisms for the unimolecular decomposition of electronically excited bisfuroxan based energetic materials.

    PubMed

    Yuan, Bing; Bernstein, Elliot R

    2017-01-07

    Unimolecular decomposition of energetic molecules, 3,3'-diamino-4,4'-bisfuroxan (labeled as A) and 4,4'-diamino-3,3'-bisfuroxan (labeled as B), has been explored via 226/236 nm single photon laser excitation/decomposition. These two energetic molecules, subsequent to UV excitation, create NO as an initial decomposition product at the nanosecond excitation energies (5.0-5.5 eV) with warm vibrational temperature (1170 ± 50 K for A, 1400 ± 50 K for B) and cold rotational temperature (<55 K). Initial decomposition mechanisms for these two electronically excited, isolated molecules are explored at the complete active space self-consistent field (CASSCF(12,12)/6-31G(d)) level with and without MP2 correction. Potential energy surface calculations illustrate that conical intersections play an essential role in the calculated decomposition mechanisms. Based on experimental observations and theoretical calculations, NO product is released through opening of the furoxan ring: ring opening can occur either on the S 1 excited or S 0 ground electronic state. The reaction path with the lowest energetic barrier is that for which the furoxan ring opens on the S 1 state via the breaking of the N1-O1 bond. Subsequently, the molecule moves to the ground S 0 state through related ring-opening conical intersections, and an NO product is formed on the ground state surface with little rotational excitation at the last NO dissociation step. For the ground state ring opening decomposition mechanism, the N-O bond and C-N bond break together in order to generate dissociated NO. With the MP2 correction for the CASSCF(12,12) surface, the potential energies of molecules with dissociated NO product are in the range from 2.04 to 3.14 eV, close to the theoretical result for the density functional theory (B3LYP) and MP2 methods. The CASMP2(12,12) corrected approach is essential in order to obtain a reasonable potential energy surface that corresponds to the observed decomposition behavior of these molecules. Apparently, highly excited states are essential for an accurate representation of the kinetics and dynamics of excited state decomposition of both of these bisfuroxan energetic molecules. The experimental vibrational temperatures of NO products of A and B are about 800-1000 K lower than previously studied energetic molecules with NO as a decomposition product.

  3. Desensitization of Explosive Materials

    DTIC Science & Technology

    1979-12-01

    Decomposition of FEFO and DFF ...... o................. 20 Proposed Reaction Sequence of Initiation ......... o............ 29 Thermal Decomposition of...molecules are admitted to the reactor and, on an average, first decomposition products are analyzed without further reaction . The advantages of the VLPP... Reaction System Decomposition (Pmoles) Nitric acid 24 115 N02/N 204 < I tr Nitric acidc -- 100 aThe reactions were conducted at 100%C for 1 hour in

  4. Initial decomposition mechanism for the energy release from electronically excited energetic materials: FOX-7 (1,1-diamino-2,2-dinitroethene, C{sub 2}H{sub 4}N{sub 4}O{sub 4})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu

    Decomposition of the energetic material FOX-7 (1,1-diamino-2,2-dinitroethylene, C{sub 2}H{sub 4}N{sub 4}O{sub 4}) is investigated both theoretically and experimentally. The NO molecule is observed as an initial decomposition product subsequent to electronic excitation. The observed NO product is rotationally cold (<35 K) and vibrationally hot (2800 K). The initial decomposition mechanism is explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S{sub 2} FOX-7 can radiationlessly relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{submore » 1}/S{sub 0}){sub CI} conical intersections and undergo a nitro-nitrite isomerization to generate NO product on the S{sub 0} state. The theoretically predicted mechanism is consistent with the experimental results. As FOX-7 decomposes on the ground electronic state, thus, the vibrational energy of the NO product from FOX-7 is high. The observed rotational energy distribution for NO is consistent with the final transition state structure on the S{sub 0} state. Ground state FOX-7 decomposition agrees with previous work: the nitro-nitrite isomerization has the lowest average energy barrier, the C–NH{sub 2} bond cleavage is unlikely under the given excitation conditions, and HONO formation on the ground state surface is energy accessible but not the main process.« less

  5. Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20.

    PubMed

    Isayev, Olexandr; Gorb, Leonid; Qasim, Mo; Leszczynski, Jerzy

    2008-09-04

    CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane or HNIW) is a high-energy nitramine explosive. To improve atomistic understanding of the thermal decomposition of CL-20 gas and solid phases, we performed a series of ab initio molecular dynamics simulations. We found that during unimolecular decomposition, unlike other nitramines (e.g., RDX, HMX), CL-20 has only one distinct initial reaction channelhomolysis of the N-NO2 bond. We did not observe any HONO elimination reaction during unimolecular decomposition, whereas the ring-breaking reaction was followed by NO 2 fission. Therefore, in spite of limited sampling, that provides a mostly qualitative picture, we proposed here a scheme of unimolecular decomposition of CL-20. The averaged product population over all trajectories was estimated at four HCN, two to four NO2, two to four NO, one CO, and one OH molecule per one CL-20 molecule. Our simulations provide a detailed description of the chemical processes in the initial stages of thermal decomposition of condensed CL-20, allowing elucidation of key features of such processes as composition of primary reaction products, reaction timing, and Arrhenius behavior of the system. The primary reactions leading to NO2, NO, N 2O, and N2 occur at very early stages. We also estimated potential activation barriers for the formation of NO2, which essentially determines overall decomposition kinetics and effective rate constants for NO2 and N2. The calculated solid-phase decomposition pathways correlate with available condensed-phase experimental data.

  6. Azole energetic materials: Initial mechanisms for the energy release from electronical excited nitropyrazoles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu

    2014-01-21

    Decomposition of energetic material 3,4-dinitropyrazole (DNP) and two model molecules 4-nitropyrazole and 1-nitropyrazole is investigated both theoretically and experimentally. The initial decomposition mechanisms for these three nitropyrazoles are explored with complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from all three materials subsequent to UV excitation. Observed NO products are rotationally cold (<50 K) for all three systems. The vibrational temperature of the NO product from DNP is (3850 ± 50) K, 1350 K hotter than that of the two model species. Potential energy surface calculations at the CASSCF(12,8)/6-31+G(d) level illustratemore » that conical intersections plays an essential role in the decomposition mechanism. Electronically excited S{sub 2} nitropyraozles can nonradiatively relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{sub 1}/S{sub 0}){sub CI} conical intersection and undergo a nitro-nitrite isomerization to generate NO product either in the S{sub 1} state or S{sub 0} state. In model systems, NO is generated in the S{sub 1} state, while in the energetic material DNP, NO is produced on the ground state surface, as the S{sub 1} decomposition pathway is energetically unavailable. The theoretically predicted mechanism is consistent with the experimental results, as DNP decomposes in a lower electronic state than do the model systems and thus the vibrational energy in the NO product from DNP should be hotter than from the model systems. The observed rotational energy distributions for NO are consistent with the final structures of the respective transition states for each molecule.« less

  7. Initial mechanisms for the decomposition of electronically excited energetic materials: 1,5′-BT, 5,5′-BT, and AzTT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu

    2015-03-28

    Decomposition of nitrogen-rich energetic materials 1,5′-BT, 5,5′-BT, and AzTT (1,5′-Bistetrazole, 5,5′-Bistetrazole, and 5-(5-azido-(1 or 4)H-1,2,4-triazol-3-yl)tetrazole, respectively), following electronic state excitation, is investigated both experimentally and theoretically. The N{sub 2} molecule is observed as an initial decomposition product from the three materials, subsequent to UV excitation, with a cold rotational temperature (<30 K). Initial decomposition mechanisms for these three electronically excited materials are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S{sub 1} molecules can non-adiabatically relaxmore » to their ground electronic states through (S{sub 1}/S{sub 0}){sub CI} conical intersections. 1,5′-BT and 5,5′-BT materials have several (S{sub 1}/S{sub 0}){sub CI} conical intersections between S{sub 1} and S{sub 0} states, related to different tetrazole ring opening positions, all of which lead to N{sub 2} product formation. The N{sub 2} product for AzTT is formed primarily by N–N bond rupture of the –N{sub 3} group. The observed rotational energy distributions for the N{sub 2} products are consistent with the final structures of the respective transition states for each molecule on its S{sub 0} potential energy surface. The theoretically derived vibrational temperature of the N{sub 2} product is high, which is similar to that found for energetic salts and molecules studied previously.« less

  8. Effects of defects on thermal decomposition of HMX via ReaxFF molecular dynamics simulations.

    PubMed

    Zhou, Ting-Ting; Huang, Feng-Lei

    2011-01-20

    Effects of molecular vacancies on the decomposition mechanisms and reaction dynamics of condensed-phase β-HMX at various temperatures were studied using ReaxFF molecular dynamics simulations. Results show that three primary initial decomposition mechanisms, namely, N-NO(2) bond dissociation, HONO elimination, and concerted ring fission, exist at both high and lower temperatures. The contribution of the three mechanisms to the initial decomposition of HMX is influenced by molecular vacancies, and the effects vary with temperature. At high temperature (2500 K), molecular vacancies remarkably promote N-N bond cleavage and concerted ring breaking but hinder HONO formation. N-N bond dissociation and HONO elimination are two primary competing reaction mechanisms, and the former is dominant in the initial decomposition. Concerted ring breaking of condensed-phase HMX is not favored at high temperature. At lower temperature (1500 K), the most preferential initial decomposition pathway is N-N bond dissociation followed by the formation of NO(3) (O migration), although all three mechanisms are promoted by molecular vacancies. The promotion effect on concerted ring breaking is considerable at lower temperature. Products resulting from concerted ring breaking appear in the defective system but not in the perfect crystal. The mechanism of HONO elimination is less important at lower temperature. We also estimated the reaction rate constant and activation barriers of initial decomposition with different vacancy concentrations. Molecular vacancies accelerate the decomposition of condensed-phase HMX by increasing the reaction rate constant and reducing activation barriers.

  9. Molecular Mechanisms in the shock induced decomposition of FOX-7

    NASA Astrophysics Data System (ADS)

    Mishra, Ankit; Tiwari, Subodh C.; Nakano, Aiichiro; Vashishta, Priya; Kalia, Rajiv; CACS Team

    Experimental and first principle computational studies on FOX 7 have either involved a very small system consisting of a few atoms or they did not take into account the decomposition mechanisms under extreme conditions of temperature and pressure. We have performed a large-scale reactive MD simulation using ReaxFF-lg force field to study the shock decomposition of FOX 7. The chemical composition of the principal decomposition products correlates well with experimental observations. Furthermore, we observed that the production of N2 and H2O was inter molecular in nature and was through different chemical pathways. Moreover, the production of CO and CO2 was delayed due to production of large stable C,O atoms cluster. These critical insights into the initial processes involved in the shock induced decomposition of FOX-7 will greatly help in understanding the factors playing an important role in the insensitiveness of this high energy material. This research is supported by AFOSR Award No. FA9550-16-1-0042.

  10. Thermal Decomposition of RP-2 with Stabilizing Additives

    DTIC Science & Technology

    2010-04-01

    was analyzed by gas chromatography . The increase in a suite of light decomposition products was used to monitor the extent of decomposition. The...approximate initial pressure of 34.5 MPa (5000 psi). After each reaction, the thermally stressed liquid phase was analyzed by gas chromatography . The...and operational specifications for these fluids and facilitate new applications. 14,15 The thermophysical properties that are being measured include

  11. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-07-01

    The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

  12. Effect of Structure on the Initiation and Ignition Chemistry of Energetic Ionic Liquids

    DTIC Science & Technology

    2010-06-30

    Thermolysis In the confined rapid thermolysis (CRT)/FTIR/ToFMS studies, the thermal decomposition is limited to a volume confined between two heated ...Jordan) is equipped with a 1m flight tube and a 44 mm microchannel plate (MCP) detector. Here, the recharging of the MCP detector limits the...conditions achieved by initially heating the sample at rates of approximately 2000 K/s. The products formed by decomposition under the afore

  13. A density functional theory study of the decomposition mechanism of nitroglycerin.

    PubMed

    Pei, Liguan; Dong, Kehai; Tang, Yanhui; Zhang, Bo; Yu, Chang; Li, Wenzuo

    2017-08-21

    The detailed decomposition mechanism of nitroglycerin (NG) in the gas phase was studied by examining reaction pathways using density functional theory (DFT) and canonical variational transition state theory combined with a small-curvature tunneling correction (CVT/SCT). The mechanism of NG autocatalytic decomposition was investigated at the B3LYP/6-31G(d,p) level of theory. Five possible decomposition pathways involving NG were identified and the rate constants for the pathways at temperatures ranging from 200 to 1000 K were calculated using CVT/SCT. There was found to be a lower energy barrier to the β-H abstraction reaction than to the α-H abstraction reaction during the initial step in the autocatalytic decomposition of NG. The decomposition pathways for CHOCOCHONO 2 (a product obtained following the abstraction of three H atoms from NG by NO 2 ) include O-NO 2 cleavage or isomer production, meaning that the autocatalytic decomposition of NG has two reaction pathways, both of which are exothermic. The rate constants for these two reaction pathways are greater than the rate constants for the three pathways corresponding to unimolecular NG decomposition. The overall process of NG decomposition can be divided into two stages based on the NO 2 concentration, which affects the decomposition products and reactions. In the first stage, the reaction pathway corresponding to O-NO 2 cleavage is the main pathway, but the rates of the two autocatalytic decomposition pathways increase with increasing NO 2 concentration. However, when a threshold NO 2 concentration is reached, the NG decomposition process enters its second stage, with the two pathways for NG autocatalytic decomposition becoming the main and secondary reaction pathways.

  14. The spectral properties of uranium hexafluoride and its thermal decomposition products

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1976-01-01

    This investigation was initiated to provide basic spectral data for gases of interest to the plasma core reactor concept. The attenuation of vacuum ultraviolet (VUV) radiation by helium at pressures up to 20 atm over path lengths of about 61 cm and in the approximate wavelength range between 80 and 300 nm was studied. Measurements were also conducted to provide basic VUV data with respect to UF6 and UF6/argon mixtures in the wavelength range between 80 and 120 nm. Finally, an investigation was initiated to provide basic spectral emission and absorption data for UF6 and possible thermal decomposition products of UF6 at elevated temperatures.

  15. Excited electronic state decomposition mechanisms and dynamics of nitramine energetic materials and model systems

    NASA Astrophysics Data System (ADS)

    Greenfield, Margo

    Energetic materials play an important role in aeronautics, the weapon industry, and the propellant industry due to their broad applications as explosives and fuels. RDX (1,3,5-trinitrohexahydro-s-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) are compounds which contain high energy density. Although RDX and HMX have been studied extensively over the past several decades a complete understanding of their decomposition mechanisms and dynamics is unknown. Time of flight mass spectroscopy (TOFMS) UV photodissociation (ns) experiments of gas phase RDX, HMX, and CL-20 generate the NO molecule as the initial decomposition product. Four different vibronic transitions of the initial decomposition product, the NO molecule, are observed: A2Sigma(upsilon'=0)←X 2pi(upsilon"=0,1,2,3). Simulations of the rovibronic intensities for the A←X transitions demonstrate that NO dissociated from RDX, HMX, and CL-20 is rotationally cold (˜20 K) and vibrationally hot (˜1800 K). Conversely, experiments on the five model systems (nitromethane, dimethylnitramine (DMNA), nitropyrrolidine, nitropiperidine and dinitropiperazine) produce rotationally hot and vibrationally cold spectra. Laser induced fluorescence (LIF) experiments are performed to rule out the possible decomposition product OH, generated along with NO, perhaps from the suggested HONO elimination mechanism. The OH radical is not observed in the fluorescence experiments, indicating the HONO decomposition intermediate is not an important pathway for the excited electronic state decomposition of cyclic nitramines. The NO molecule is also employed to measure the dynamics of the excited state decomposition. A 226 nm, 180 fs light pulse is utilized to photodissociate the gas phase systems. Stable ion states of DMNA and nitropyrrolidine are observed while the energetic materials and remaining model systems present the NO molecule as the only observed product. Pump-probe transients of the resonant A←X (0-0) transition of the NO molecule show a constant signal indicating these materials decompose faster than the time duration of the 226 nm laser light. Calculational results together with the experimental results indicate the energetic materials decompose through an internal conversion to very highly excited (˜5 eV of vibrational energy) vibrational states of their ground electronic state, while the model systems follow an excited electronic state decomposition pathway.

  16. Interactions of Hydrazine and Blowby Gases

    NASA Technical Reports Server (NTRS)

    Meagher, Nancy E.

    2003-01-01

    The interactions between hydrazine and blowby gases from pyrovalves was explored in this research project. Investigating the decomposition chemistry of hydrazine through detailed chemical kinetic modeling is a project started last summer while participating in the Summer Faculty Fellowship program. During the 1999-2000 academic year, the chemical kinetic mechanism for hydrazine decomposition developed while a SFF at NASA's White Sands Test Facility was further revised and validated against the limited experimental data in the literature. This mechanism was then used in assessing the effects of blowby gas species on hydrazine decomposition. The combustion products introduced into the fuel line by pyrovalve actuation consist primarily of hydrogen gas. Hydrogen is also a product of the decomposition of hydrazine. Additional gaseous chemical species are introduced into the fuel, as well as metals and metal salts that deposit onto the walls of the fuel line. The deposition process is undoubtedly very rapid, and exothermic. Therefore, the major focus of this summer's work was examining the effects of hydrogen presence on hydrazine decomposition, with some representative calculations including the remaining gaseous species found to exist in blowby gases. Since hydrogen is a product of hydrazine decomposition, all reactions necessary to evaluate its effect on hydrazine decomposition chemistry were in the original mechanism developed. However, the mechanism needed to be considerably expanded to include the reactions of the other gaseous blowby species with hydrazine, all the intermediate species formed in its decomposition, and each other. The expanded mechanism consists of 70 species interacting via a network of 452 reactions. Calculations with molecular hydrogen introduced into hydrazine gas in an inert bath gas indicate that H2 presence as an initial reactant in substantial amounts can dramatically impact the decomposition process for hydrazine. The other gaseous blowby species (CO, CO2, H2O, CH4, O2, and N2) were found to have little effect compared to the inclusion of hydrogen itself as an initial reagent. This result is undoubtedly due, in part, to the fact that the blowby gas used in these calculations consisted of 94.6% H2. A more rigorous examination of the behavior of the full detailed mechanism under a variety of conditions was not performed.

  17. Ab initio molecular dynamics simulations of the initial stages of solid-electrolyte interphase formation on lithium ion battery graphitic anodes.

    PubMed

    Leung, Kevin; Budzien, Joanne L

    2010-07-07

    The decomposition of ethylene carbonate (EC) during the initial growth of solid-electrolyte interphase (SEI) films at the solvent-graphitic anode interface is critical to lithium ion battery operations. Ab initio molecular dynamics simulations of explicit liquid EC/graphite interfaces are conducted to study these electrochemical reactions. We show that carbon edge terminations are crucial at this stage, and that achievable experimental conditions can lead to surprisingly fast EC breakdown mechanisms, yielding decomposition products seen in experiments but not previously predicted.

  18. Flash Pyrolysis of t-Butyl Hydroperoxide and Di-t-butyl Peroxide: Evidence of Roaming in the Decomposition of Organic Hydroperoxides.

    PubMed

    Jones, Paul J; Riser, Blake; Zhang, Jingsong

    2017-10-19

    Thermal decomposition of t-butyl hydroperoxide and di-t-butyl peroxide was investigated using flash pyrolysis (in a short reaction time of <100 μs) and vacuum-ultraviolet (λ = 118.2 nm) single-photon ionization time-of-flight mass spectrometry (VUV-SPI-TOFMS) at temperatures up to 1120 K and quantum computational methods. Acetone and methyl radical were detected as the predominant products in the initial decomposition of di-t-butyl peroxide via O-O bond fission. In the initial dissociation of t-butyl hydroperoxide, acetone, methyl radical, isobutylene, and isobutylene oxide products were identified. The novel detection of the unimolecular formation of isobutylene oxide, as supported by the computational study, was found to proceed via a roaming hydroxyl radical facilitated by a hydrogen-bonded intermediate. This new pathway could provide a new class of reactions to consider in the modeling of the low temperature oxidation of alkanes.

  19. Biochemical Control of Fungal Biomass and Enzyme Production During Native Hawaiian Litter Degradation

    NASA Astrophysics Data System (ADS)

    Amatangelo, K. L.; Cordova, T. P.; Vitousek, P. M.

    2007-12-01

    Microbial growth and enzyme production during decomposition is controlled by the availability of carbon substrates, essential elements, and the ratios of these (such as lignin:N). We manipulated carbon:nutrient stoichiometry during decomposition using a natural fertility gradient in Hawaii and litter of varying initial biochemistry. We collected freshly senesced litter of seven biochemically distinct species from three sites offering differing levels of N, P, cations, and 15N , but similar yearly rainfall and temperature patterns. Litter types were decomposed at both the sites they were collected, and at the other site(s) that species was found. Litter was collected at multiple time points, and after one year of decomposition, calculated K constants varied an order of magnitude, from 0.276 to 2.76. Decomposition rates varied significantly with both litter site of origin and deployment, except at the oldest, P-limited site, where litter site of origin was not significantly correlated with decomposition within species. As microbial exocellular enzymes provide the catalyst for the breakdown of organic molecules including phenols, cellulose, and cutin, we assayed polyphenol oxidase, cellobiohydrolase, cutinase, chitinase, and lignin peroxidase to evaluate the breakdown sequence of different litter types. To measure the fungal biomass accumulating during decomposition, we extracted (22E)-Ergosta-5,7,22-trien-3beta- ol (ergosterol) on a subset of samples. The production of particular exocellular enzymes on litter species responded distinctly to origin and decomposition sites: after six months, chitinase and cellobiohydrolase were significantly affected by origin site, whereas polyphenol oxidase activity was controlled by deployment site. We conclude that site characteristics can alter the interaction between litter carbon:nutrient ratios and decomposition rate, mediated through microbial biomass and enzyme production.

  20. Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF.

    PubMed

    Rom, Naomi; Zybin, Sergey V; van Duin, Adri C T; Goddard, William A; Zeiri, Yehuda; Katz, Gil; Kosloff, Ronnie

    2011-09-15

    The decomposition mechanism of hot liquid nitromethane at various compressions was studied using reactive force field (ReaxFF) molecular dynamics simulations. A competition between two different initial thermal decomposition schemes is observed, depending on compression. At low densities, unimolecular C-N bond cleavage is the dominant route, producing CH(3) and NO(2) fragments. As density and pressure rise approaching the Chapman-Jouget detonation conditions (∼30% compression, >2500 K) the dominant mechanism switches to the formation of the CH(3)NO fragment via H-transfer and/or N-O bond rupture. The change in the decomposition mechanism of hot liquid NM leads to a different kinetic and energetic behavior, as well as products distribution. The calculated density dependence of the enthalpy change correlates with the change in initial decomposition reaction mechanism. It can be used as a convenient and useful global parameter for the detection of reaction dynamics. Atomic averaged local diffusion coefficients are shown to be sensitive to the reactions dynamics, and can be used to distinguish between time periods where chemical reactions occur and diffusion-dominated, nonreactive time periods. © 2011 American Chemical Society

  1. Thermal Decomposition Mechanism of CL-20 at Different Temperatures by ReaxFF Reactive Molecular Dynamics Simulations.

    PubMed

    Wang, Fuping; Chen, Lang; Geng, Deshen; Wu, Junying; Lu, Jianying; Wang, Chen

    2018-04-26

    Hexanitrohexaazaisowurtzitane (CL-20) has a high detonation velocity and pressure, but its sensitivity is also high, which somewhat limits its applications. Therefore, it is important to understand the mechanism and characteristics of thermal decomposition of CL-20. In this study, a ε-CL-20 supercell was constructed and ReaxFF-lg reactive molecular dynamics simulations were performed to investigate thermal decomposition of ε-CL-20 at various temperatures (2000, 2500, 2750, 3000, 3250, and 3500 K). The mechanism of thermal decomposition of CL-20 was analyzed from the aspects of potential energy evolution, the primary reactions, and the intermediate and final product species. The effect of temperature on thermal decomposition of CL-20 is also discussed. The initial reaction path of thermal decomposition of CL-20 is N-NO 2 cleavage to form NO 2 , followed by C-N cleavage, leading to the destruction of the cage structure. A small number of clusters appear in the early reactions and disappear at the end of the reactions. The initial reaction path of CL-20 decomposition is the same at different temperatures. However, as the temperature increases, the decomposition rate of CL-20 increases and the cage structure is destroyed earlier. The temperature greatly affects the rate constants of H 2 O and N 2 , but it has little effect on the rate constants of CO 2 and H 2 .

  2. Thermal Decomposition of the Solid Phase of Nitromethane: Ab Initio Molecular Dynamics Simulations

    NASA Astrophysics Data System (ADS)

    Chang, Jing; Lian, Peng; Wei, Dong-Qing; Chen, Xiang-Rong; Zhang, Qing-Ming; Gong, Zi-Zheng

    2010-10-01

    The Car-Parrinello molecular dynamics simulations were employed to investigate thermal decomposition of the solid nitromethane. It is found that it undergoes chemical decomposition at about 2200 K under ambient pressure. The initiation of reactions involves both proton transfer and commonly known C-N bond cleavage. About 75 species and 100 elementary reactions were observed with the final products being H2O, CO2, N2, and CNCNC. It represents the first complete simulation of solid-phase explosive reactions reported to date, which is of far-reaching implication for design and development of new energetic materials.

  3. NOx formation in apokamp-type atmospheric pressure plasma jets in air initiated by a pulse-repetitive discharge

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Didenko, Maria V.; Panarin, Victor A.; Skakun, Victor S.; Tarasenko, Victor F.; Liu, Dongping P.; Song, Ying

    2018-04-01

    The decomposition products of atmospheric pressure plasma of repetitive pulsed discharge in apokamp and corona modes were determined by optical and chemical methods. It is shown, that the decomposition products contain mainly nitrogen oxides NOx. A brief review of the plasma- and thermochemical reactions in the pulsed discharges was made. The review and experimental data allow us to explain the reactive oxygen species formation mechanisms in a potential discharge channel with apokamp. The possible applications of this plasma source for treatment of seeds of agricultural crops are discussed.

  4. The decomposition of fine and coarse roots: their global patterns and controlling factors

    PubMed Central

    Zhang, Xinyue; Wang, Wei

    2015-01-01

    Fine root decomposition represents a large carbon (C) cost to plants, and serves as a potential soil C source, as well as a substantial proportion of net primary productivity. Coarse roots differ markedly from fine roots in morphology, nutrient concentrations, functions, and decomposition mechanisms. Still poorly understood is whether a consistent global pattern exists between the decomposition of fine (<2 mm root diameter) and coarse (≥2 mm) roots. A comprehensive terrestrial root decomposition dataset, including 530 observations from 71 sampling sites, was thus used to compare global patterns of decomposition of fine and coarse roots. Fine roots decomposed significantly faster than coarse roots in middle latitude areas, but their decomposition in low latitude regions was not significantly different from that of coarse roots. Coarse root decomposition showed more dependence on climate, especially mean annual temperature (MAT), than did fine roots. Initial litter lignin content was the most important predictor of fine root decomposition, while lignin to nitrogen ratios, MAT, and mean annual precipitation were the most important predictors of coarse root decomposition. Our study emphasizes the necessity of separating fine roots and coarse roots when predicting the response of belowground C release to future climate changes. PMID:25942391

  5. Substrate quality and nutrient availability influence CO2 production from tropical peat decomposition

    NASA Astrophysics Data System (ADS)

    Swails, E.; Jaye, D.; Verchot, L. V.; Hergoualc'h, K.; Wahyuni, N. S.; Borchard, N.; Lawrence, D.

    2015-12-01

    In Indonesia, peatlands are a major and growing source of greenhouse gas emissions due to increasing pressure from oil palm and pulp wood plantations. We are using a combination of field measures, laboratory experiments, and remote sensing to investigate relationships among land use, climatic factors and biogeochemical controls, and their influence on trace gas fluxes from tropical peat soils. Analysis of soils collected from peat sites on two major islands indicated substantial variation in peat substrate quality and nutrient content among land uses and geographic location. We conducted laboratory incubations to test the influence of substrate quality and nutrient availability on CO2 production from peat decomposition. Differences in peat characteristics attributable to land use change were tested by comparison of forest and oil palm peat samples collected from the same peat dome in Kalimantan. Regional differences in peat characteristics were tested by comparison of samples from Sumatra with samples from Kalimantan. We conducted additional experiments to test the influence of N and P availability and labile carbon on CO2 production. Under moisture conditions typical of oil palm plantations, CO2 production was higher from peat forest samples than from oil palm samples. CO2 production from Sumatra and Kalimantan oil palm samples was not different, despite apparent differences in nutrient content of these soils. N and P treatments representative of fertilizer application rates raised CO2 production from forest samples but not oil palm samples. Labile carbon treatments raised CO2 production in all samples. Our results suggest that decomposition of peat forest soils is nutrient limited, while substrate quality controls decomposition of oil palm soils post-conversion. Though fertilizer application could accelerate peat decomposition initially, fertilizer application may not influence long-term CO2 emissions from oil palm on peat.

  6. Thermal decomposition of the solid phase of nitromethane: ab initio molecular dynamics simulations.

    PubMed

    Chang, Jing; Lian, Peng; Wei, Dong-Qing; Chen, Xiang-Rong; Zhang, Qing-Ming; Gong, Zi-Zheng

    2010-10-29

    The Car-Parrinello molecular dynamics simulations were employed to investigate thermal decomposition of the solid nitromethane. It is found that it undergoes chemical decomposition at about 2200 K under ambient pressure. The initiation of reactions involves both proton transfer and commonly known C-N bond cleavage. About 75 species and 100 elementary reactions were observed with the final products being H2O, CO2, N2, and CNCNC. It represents the first complete simulation of solid-phase explosive reactions reported to date, which is of far-reaching implication for design and development of new energetic materials.

  7. Density functional theory study of HfCl4, ZrCl4, and Al(CH3)3 decomposition on hydroxylated SiO2: Initial stage of high-k atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jeloaica, L.; Estève, A.; Djafari Rouhani, M.; Estève, D.

    2003-07-01

    The initial stage of atomic layer deposition of HfO2, ZrO2, and Al2O3 high-k films, i.e., the decomposition of HfCl4, ZrCl4, and Al(CH3)3 precursor molecules on an OH-terminated SiO2 surface, is investigated within density functional theory. The energy barriers are determined using artificial activation of vibrational normal modes. For all precursors, reaction proceeds through the formation of intermediate complexes that have equivalent formation energies (˜-0.45 eV), and results in HCl and CH4 formation with activation energies of 0.88, 0.91, and 1.04 eV for Hf, Zr, and Al based precursors, respectively. The reaction product of Al(CH3)3 decomposition is found to be more stable (by -1.45 eV) than the chemisorbed intermediate complex compared to the endothermic decomposition of HfCl4 and ZrCl4 chemisorbed precursors (0.26 and 0.29 eV, respectively).

  8. Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst.

    PubMed

    Damte, Jemal Yimer; Lyu, Shang-Lin; Leggesse, Ermias Girma; Jiang, Jyh Chiang

    2018-04-04

    The decomposition of methanol is currently attracting research attention due to the potential widespread applications of its end products. In this work, density functional theory (DFT) calculations have been performed to investigate the adsorption and decomposition of methanol on a Ru-Pt/boron doped graphene surface. We find that the most favorable reaction pathway is methanol (CH3OH) decomposition through O-H bond breaking to form methoxide (CH3O) as the initial step, followed by further dehydrogenation steps which generate formaldehyde (CH2O), formyl (CHO), and carbon monoxide (CO). The calculations illustrate that CH3OH and CO groups prefer to adsorb at the Ru-top sites, while CH2OH, CH3O, CH2O, CHO, and H2 groups favor the Ru-Pt bridge sites, indicating the preference of Ru atoms to adsorb the active intermediates or species having lone-pair electrons. Based on the results, it is found that the energy barrier for CH3OH decomposition through the initial O-H bond breaking is less than its desorption energy of 0.95 eV, showing that CH3OH prefers to undergo decomposition to CH3O rather than direct desorption. The study provides in-depth theoretical insights into the potentially enhanced catalytic activity of Ru-Pt/boron doped graphene surfaces for methanol decomposition reactions, thereby contributing to the understanding and designing of an efficient catalyst under optimum conditions.

  9. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches.

    PubMed

    Hori, Hisao; Hayakawa, Etsuko; Einaga, Hisahiro; Kutsuna, Shuzo; Koike, Kazuhide; Ibusuki, Takashi; Kiatagawa, Hiroshi; Arakawa, Ryuichi

    2004-11-15

    The decomposition of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water by UV-visible light irradiation, by H202 with UV-visible light irradiation, and by a tungstic heteropolyacid photocatalyst was examined to develop a technique to counteract stationary sources of PFOA. Direct photolysis proceeded slowly to produce CO2, F-, and short-chain perfluorocarboxylic acids. Compared to the direct photolysis, H2O2 was less effective in PFOA decomposition. On the other hand, the heteropolyacid photocatalyst led to efficient PFOA decomposition and the production of F- ions and CO2. The photocatalyst also suppressed the accumulation of short-chain perfluorocarboxylic acids in the reaction solution. PFOA in the concentrations of 0.34-3.35 mM, typical of those in wastewaters after an emulsifying process in fluoropolymer manufacture, was completely decomposed by the catalyst within 24 h of irradiation from a 200-W xenon-mercury lamp, with no accompanying catalyst degradation, permitting the catalyst to be reused in consecutive runs. Gas chromatography/mass spectrometry (GC/MS) measurements showed no trace of environmentally undesirable species such as CF4, which has a very high global-warming potential. When the (initial PFOA)/(initial catalyst) molar ratio was 10: 1, the turnover number for PFOA decomposition reached 4.33 over 24 h of irradiation.

  10. Laboratory Measurements of Gas Phase Pyrolysis Products from Southern Wildland Fuels using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scharko, N.; Safdari, S.; Danby, T. O.; Howarth, J.; Beiswenger, T. N.; Weise, D.; Myers, T. L.; Fletcher, T. H.; Johnson, T. J.

    2017-12-01

    Combustion is an oxidation reaction that occurs when there is less fuel available than oxidizers, while pyrolysis is a thermal decomposition process that occurs under "fuel rich" conditions where all of the available oxidizers are consumed leaving some fuel(s) either unreacted or partially reacted. Gas-phase combustion products from biomass burning experiments have been studied extensively; less is known, however, about pyrolysis processes and products. Pyrolysis is the initial reaction occurring in the burning process and generates products that are subsequently oxidized during combustion, yielding highly-oxidized chemicals. This laboratory study investigates the pyrolysis processes by using an FTIR spectrometer to detect and quantify the gas-phase products from thermal decomposition of intact understory fuels from forests in the southeastern United States. In particular, a laboratory flat-flame burner operating under fuel rich conditions (no oxygen) was used to heat individual leaves to cause decomposition. The gas-phase products were introduced to an 8 meter gas cell coupled to an infrared spectrometer were used to monitor the products. Trace gas emissions along with emission ratios, which are calculated by dividing the change in the amount of the trace gas by the change in the amount of CO, for the plant species, gallberry (Ilex glabra) and swampbay (Persea palustris) were determined. Preliminary measurements observed species such as CO2, CO, C2H2, C2H4, HCHO, CH3OH, isoprene, 1,3-butadiene, phenol and NH3 being produced as part of the thermal decomposition process. It is important to note that FTIR will not detect H2.

  11. How does low temperature coupled with different pressures affect initiation mechanisms and subsequent decompositions in nitramine explosive HMX?

    PubMed

    Wu, Qiong; Xiong, Guolin; Zhu, Weihua; Xiao, Heming

    2015-09-21

    We have performed ab initio molecular dynamics simulations to study coupling effects of temperature (534-873 K) and pressure (1-20 GPa) on the initiation mechanisms and subsequent chemical decompositions of nitramine explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). A new initiation decomposition mechanism of HMX was found to be the unimolecular C-H bond breaking, and this mechanism was independent of the coupling effects of different temperatures and pressures. The formed hydrogen radicals could promote subsequent decompositions of HMX. Subsequent decompositions were very sensitive to the pressure at low temperatures (534 and 608 K), while the temperature became the foremost factor that affected the decomposition at a high temperature (873 K) instead of the pressure. Our study may provide a new insight into understanding the coupling effects of the temperature and pressure on the initiation decomposition mechanisms of nitramine explosives.

  12. Thermal decomposition of high-nitrogen energetic compounds: TAGzT and GUzT

    NASA Astrophysics Data System (ADS)

    Hayden, Heather F.

    The U.S. Navy is exploring high-nitrogen compounds as burning-rate additives to meet the growing demands of future high-performance gun systems. Two high-nitrogen compounds investigated as potential burning-rate additives are bis(triaminoguanidinium) 5,5-azobitetrazolate (TAGzT) and bis(guanidinium) 5,5'-azobitetrazolate (GUzT). Small-scale tests showed that formulations containing TAGzT exhibit significant increases in the burning rates of RDX-based gun propellants. However, when GUzT, a similarly structured molecule was incorporated into the formulation, there was essentially no effect on the burning rate of the propellant. Through the use of simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) and Fourier-Transform ion cyclotron resonance (FTICR) mass spectrometry methods, an investigation of the underlying chemical and physical processes that control the thermal decomposition behavior of TAGzT and GUzT alone and in the presence of RDX, was conducted. The objective was to determine why GUzT is not as good a burning-rate enhancer in RDX-based gun propellants as compared to TAGzT. The results show that TAGzT is an effective burning-rate modifier in the presence of RDX because the decomposition of TAGzT alters the initial stages of the decomposition of RDX. Hydrazine, formed in the decomposition of TAGzT, reacts faster with RDX than RDX can decompose itself. The reactions occur at temperatures below the melting point of RDX and thus the TAGzT decomposition products react with RDX in the gas phase. Although there is no hydrazine formed in the decomposition of GUzT, amines formed in the decomposition of GUzT react with aldehydes, formed in the decomposition of RDX, resulting in an increased reaction rate of RDX in the presence of GUzT. However, GUzT is not an effective burning-rate modifier because its decomposition does not alter the initial gas-phase decomposition of RDX. The decomposition of GUzT occurs at temperatures above the melting point of RDX. Therefore, the decomposition of GUzT affects reactions that are dominant in the liquid phase of RDX. Although GUzT is not an effective burning-rate modifier, features of its decomposition where the reaction between amines formed in the decomposition of GUzT react with the aldehydes, formed in the decomposition of RDX, may have implications from an insensitive-munitions perspective.

  13. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    USGS Publications Warehouse

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  14. Modeling Oil Shale Pyrolysis: High-Temperature Unimolecular Decomposition Pathways for Thiophene.

    PubMed

    Vasiliou, AnGayle K; Hu, Hui; Cowell, Thomas W; Whitman, Jared C; Porterfield, Jessica; Parish, Carol A

    2017-10-12

    The thermal decomposition mechanism of thiophene has been investigated both experimentally and theoretically. Thermal decomposition experiments were done using a 1 mm × 3 cm pulsed silicon carbide microtubular reactor, C 4 H 4 S + Δ → Products. Unlike previous studies these experiments were able to identify the initial thiophene decomposition products. Thiophene was entrained in either Ar, Ne, or He carrier gas, passed through a heated (300-1700 K) SiC microtubular reactor (roughly ≤100 μs residence time), and exited into a vacuum chamber. The resultant molecular beam was probed by photoionization mass spectroscopy and IR spectroscopy. The pyrolysis mechanisms of thiophene were also investigated with the CBS-QB3 method using UB3LYP/6-311++G(2d,p) optimized geometries. In particular, these electronic structure methods were used to explore pathways for the formation of elemental sulfur as well as for the formation of H 2 S and 1,3-butadiyne. Thiophene was found to undergo unimolecular decomposition by five pathways: C 4 H 4 S → (1) S═C═CH 2 + HCCH, (2) CS + HCCCH 3 , (3) HCS + HCCCH 2 , (4) H 2 S + HCC-CCH, and (5) S + HCC-CH═CH 2 . The experimental and theoretical findings are in excellent agreement.

  15. First-principles study on the initial decomposition process of CH3NH3PbI3

    NASA Astrophysics Data System (ADS)

    Xue, Yuanbin; Shan, Yueyue; Xu, Hu

    2017-09-01

    Hybrid perovskites are promising materials for high-performance photovoltaics. Unfortunately, hybrid perovskites readily decompose in particular under humid conditions, and the mechanisms of this phenomenon have not yet been fully understood. In this work, we systematically studied the possible mechanisms and the structural properties during the initial decomposition process of MAPbI3 (MA = CH3NH3+) using first-principles calculations. The theoretical results show that it is energetically favorable for PbI2 to nucleate and crystalize from the MAPbI3 matrix ahead of other decomposition products. Additionally, the structural instability is an intrinsic property of MAPbI3, regardless of whether the system is exposed to humidity. We find that H2O could facilitate the desorption of gaseous components, acting as a catalyst to transfer the H+ ion. These results provide insight into the cause of the instability of MAPbI3 and may improve our understanding of the properties of hybrid perovskites.

  16. Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles

    2013-06-01

    A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.

  17. Reactivity continuum modeling of leaf, root, and wood decomposition across biomes

    NASA Astrophysics Data System (ADS)

    Koehler, Birgit; Tranvik, Lars J.

    2015-07-01

    Large carbon dioxide amounts are released to the atmosphere during organic matter decomposition. Yet the large-scale and long-term regulation of this critical process in global carbon cycling by litter chemistry and climate remains poorly understood. We used reactivity continuum (RC) modeling to analyze the decadal data set of the "Long-term Intersite Decomposition Experiment," in which fine litter and wood decomposition was studied in eight biome types (224 time series). In 32 and 46% of all sites the litter content of the acid-unhydrolyzable residue (AUR, formerly referred to as lignin) and the AUR/nitrogen ratio, respectively, retarded initial decomposition rates. This initial rate-retarding effect generally disappeared within the first year of decomposition, and rate-stimulating effects of nutrients and a rate-retarding effect of the carbon/nitrogen ratio became more prevalent. For needles and leaves/grasses, the influence of climate on decomposition decreased over time. For fine roots, the climatic influence was initially smaller but increased toward later-stage decomposition. The climate decomposition index was the strongest climatic predictor of decomposition. The similar variability in initial decomposition rates across litter categories as across biome types suggested that future changes in decomposition may be dominated by warming-induced changes in plant community composition. In general, the RC model parameters successfully predicted independent decomposition data for the different litter-biome combinations (196 time series). We argue that parameterization of large-scale decomposition models with RC model parameters, as opposed to the currently common discrete multiexponential models, could significantly improve their mechanistic foundation and predictive accuracy across climate zones and litter categories.

  18. Kinetics of electron-induced decomposition of CF2Cl2 coadsorbed with water (ice): A comparison with CCl4

    NASA Astrophysics Data System (ADS)

    Faradzhev, N. S.; Perry, C. C.; Kusmierek, D. O.; Fairbrother, D. H.; Madey, T. E.

    2004-11-01

    The kinetics of decomposition and subsequent chemistry of adsorbed CF2Cl2, activated by low-energy electron irradiation, have been examined and compared with CCl4. These molecules have been adsorbed alone and coadsorbed with water ice films of different thicknesses on metal surfaces (Ru; Au) at low temperatures (25 K; 100 K). The studies have been performed with temperature programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and x-ray photoelectron spectroscopy (XPS). TPD data reveal the efficient decomposition of both halocarbon molecules under electron bombardment, which proceeds via dissociative electron attachment (DEA) of low-energy secondary electrons. The rates of CF2Cl2 and CCl4 dissociation increase in an H2O (D2O) environment (2-3×), but the increase is smaller than that reported in recent literature. The highest initial cross sections for halocarbon decomposition coadsorbed with H2O, using 180 eV incident electrons, are measured (using TPD) to be 1.0±0.2×10-15 cm2 for CF2Cl2 and 2.5±0.2×10-15 cm2 for CCl4. RAIRS and XPS studies confirm the decomposition of halocarbon molecules codeposited with water molecules, and provide insights into the irradiation products. Electron-induced generation of Cl- and F- anions in the halocarbon/water films and production of H3O+, CO2, and intermediate compounds COF2 (for CF2Cl2) and COCl2, C2Cl4 (for CCl4) under electron irradiation have been detected using XPS, TPD, and RAIRS. The products and the decomposition kinetics are similar to those observed in our recent experiments involving x-ray photons as the source of ionizing irradiation.

  19. Interactions of tissue and fertilizer nitrogen on decomposition dynamics of lignin-rich conifer litter

    USGS Publications Warehouse

    Perakis, Steven S.; Matkins, Joselin J.; Hibbs, David E.

    2012-01-01

    High tissue nitrogen (N) accelerates decomposition of high-quality leaf litter in the early phases of mass loss, but the influence of initial tissue N variation on the decomposition of lignin-rich litter is less resolved. Because environmental changes such as atmospheric N deposition and elevated CO2 can alter tissue N levels within species more rapidly than they alter the species composition of ecosystems, it is important to consider how within-species variation in tissue N may shape litter decomposition and associated N dynamics. Douglas-fir (Pseudotsuga menziesii ) is a widespread lignin-rich conifer that dominates forests of high carbon (C) storage across western North America, and displays wide variation in tissue and litter N that reflects landscape variation in soil N. We collected eight unique Douglas-fir litter sources that spanned a two-fold range in initial N concentrations (0.67–1.31%) with a narrow range of lignin (29–35%), and examined relationships between initial litter chemistry, decomposition, and N dynamics in both ambient and N fertilized plots at four sites over 3 yr. High initial litter N slowed decomposition rates in both early (0.67 yr) and late (3 yr) stages in unfertilized plots. Applications of N fertilizer to litters accelerated early-stage decomposition, but slowed late-stage decomposition, and most strongly affected low-N litters, which equalized decomposition rates across litters regardless of initial N concentrations. Decomposition of N-fertilized litters correlated positively with initial litter manganese (Mn) concentrations, with litter Mn variation reflecting faster turnover of canopy foliage in high N sites, producing younger litterfall with high N and low Mn. Although both internal and external N inhibited decomposition at 3 yr, most litters exhibited net N immobilization, with strongest immobilization in low-N litter and in N-fertilized plots. Our observation for lignin-rich litter that high initial N can slow decomposition yet accelerate N release differs from findings where litter quality variation across species promotes coupled C and N release during decomposition. We suggest reevaluation of ecosystem models and projected global change effects to account for a potential decoupling of ecosystem C and N feedbacks through litter decomposition in lignin-rich conifer forests.

  20. The Relative Importance of Methanogenesis in the Decomposition of Organic Matter in Northern Peatlands

    NASA Technical Reports Server (NTRS)

    Corbett, J. Elizabeth; Tfaily, Malak M.; Burdige, David J.; Glaser, Paul H.; Chanton, Jeffrey P.

    2015-01-01

    Using an isotope-mass balance approach and assuming the equimolar production of CO2 and CH4 from methanogenesis (e.g., anaerobic decomposition of cellulose), we calculate that the proportion of total CO2 production from methanogenesis varies from 37 to 83% across a variety of northern peatlands. In a relative sense, methanogenesis was a more important pathway for decomposition in bogs (80 +/- 13% of CO2 production) than in fens (64 +/- 5.7% of CO2 production), but because fens contain more labile substrates they may support higher CH4 production overall. The concentration of CO2 produced from methanogenesis (CO2-meth) can be considered equivalent to CH4 concentration before loss due to ebullition, plant-mediated transport, or diffusion. Bogs produced slightly less CO2-meth than fens (2.9 +/- 1.3 and 3.7 +/- 1.4 mmol/L, respectively). Comparing the quantity of CH4 present to CO2-meth, fens lost slightly more CH4 than bogs (89 +/- 2.8% and 82 +/- 5.3%, respectively) likely due to the presence of vascular plant roots. In collapsed permafrost wetlands, bog moats produced half the amount of CO2-meth (0.8 +/- 0.2mmol/L) relative to midbogs (1.6 +/- 0.6 mmol/L) and methanogenesis was less important (42 +/- 6.6% of total CO2 production relative to 55 +/- 8.1%).We hypothesize that the lower methane production potential in collapsed permafrost wetlands occurs because recently thawed organic substrates are being first exposed to the initial phases of anaerobic decomposition following collapse and flooding. Bog moats lost a comparable amount of CH4 as midbogs (63 +/- 7.0% and 64 +/- 9.3%).

  1. The relative importance of methanogenesis in the decomposition of organic matter in northern peatlands

    NASA Astrophysics Data System (ADS)

    Corbett, J. Elizabeth; Tfaily, Malak M.; Burdige, David J.; Glaser, Paul H.; Chanton, Jeffrey P.

    2015-02-01

    Using an isotope-mass balance approach and assuming the equimolar production of CO2 and CH4 from methanogenesis (e.g., anaerobic decomposition of cellulose), we calculate that the proportion of total CO2 production from methanogenesis varies from 37 to 83% across a variety of northern peatlands. In a relative sense, methanogenesis was a more important pathway for decomposition in bogs (80 ± 13% of CO2 production) than in fens (64 ± 5.7% of CO2 production), but because fens contain more labile substrates they may support higher CH4 production overall. The concentration of CO2 produced from methanogenesis (CO2-meth) can be considered equivalent to CH4 concentration before loss due to ebullition, plant-mediated transport, or diffusion. Bogs produced slightly less CO2-meth than fens (2.9 ± 1.3 and 3.7 ± 1.4 mmol/L, respectively). Comparing the quantity of CH4 present to CO2-meth, fens lost slightly more CH4 than bogs (89 ± 2.8% and 82 ± 5.3%, respectively) likely due to the presence of vascular plant roots. In collapsed permafrost wetlands, bog moats produced half the amount of CO2-meth (0.8 ± 0.2 mmol/L) relative to midbogs (1.6 ± 0.6 mmol/L) and methanogenesis was less important (42 ± 6.6% of total CO2 production relative to 55 ± 8.1%). We hypothesize that the lower methane production potential in collapsed permafrost wetlands occurs because recently thawed organic substrates are being first exposed to the initial phases of anaerobic decomposition following collapse and flooding. Bog moats lost a comparable amount of CH4 as midbogs (63 ± 7.0% and 64 ± 9.3%).

  2. Biomass is the main driver of changes in ecosystem process rates during tropical forest succession.

    PubMed

    Lohbeck, Madelon; Poorter, Lourens; Martínez-Ramos, Miguel; Bongers, Frans

    2015-05-01

    Over half of the world's forests are disturbed, and the rate at which ecosystem processes recover after disturbance is important for the services these forests can provide. We analyze the drivers' underlying changes in rates of key ecosystem processes (biomass productivity, litter productivity, actual litter decomposition, and potential litter decomposition) during secondary succession after shifting cultivation in wet tropical forest of Mexico. We test the importance of three alternative drivers of ecosystem processes: vegetation biomass (vegetation quantity hypothesis), community-weighted trait mean (mass ratio hypothesis), and functional diversity (niche complementarity hypothesis) using structural equation modeling. This allows us to infer the relative importance of different mechanisms underlying ecosystem process recovery. Ecosystem process rates changed during succession, and the strongest driver was aboveground biomass for each of the processes. Productivity of aboveground stem biomass and leaf litter as well as actual litter decomposition increased with initial standing vegetation biomass, whereas potential litter decomposition decreased with standing biomass. Additionally, biomass productivity was positively affected by community-weighted mean of specific leaf area, and potential decomposition was positively affected by functional divergence, and negatively by community-weighted mean of leaf dry matter content. Our empirical results show that functional diversity and community-weighted means are of secondary importance for explaining changes in ecosystem process rates during tropical forest succession. Instead, simply, the amount of vegetation in a site is the major driver of changes, perhaps because there is a steep biomass buildup during succession that overrides more subtle effects of community functional properties on ecosystem processes. We recommend future studies in the field of biodiversity and ecosystem functioning to separate the effects of vegetation quality (community-weighted mean trait values and functional diversity) from those of vegetation quantity (biomass) on ecosystem processes and services.

  3. Reaction mechanisms in cellulose pyrolysis: a literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molton, P.M.; Demmitt, T.F.

    1977-08-01

    A bibliographic review of 195 references is presented outlining the history of the research into the mechanisms of cellulose pyrolysis. Topics discussed are: initial product identification, mechanism of initial formation of levoglucosan, from cellulose and from related compounds, decomposition of cellulose to other compounds, formation of aromatics, pyrolysis of levoglucosan, crosslinking of cellulose, pyrolytic reactions of cellulose derivatives, and the effects of inorganic salts on the pyrolysis mechanism. (JSR)

  4. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    NASA Astrophysics Data System (ADS)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  5. Decomposition of atrazine traces in water by combination of non-thermal electrical discharge and adsorption on nanofiber membrane.

    PubMed

    Vanraes, Patrick; Willems, Gert; Daels, Nele; Van Hulle, Stijn W H; De Clerck, Karen; Surmont, Pieter; Lynen, Frederic; Vandamme, Jeroen; Van Durme, Jim; Nikiforov, Anton; Leys, Christophe

    2015-04-01

    In recent decades, several types of persistent substances are detected in the aquatic environment at very low concentrations. Unfortunately, conventional water treatment processes are not able to remove these micropollutants. As such, advanced treatment methods are required to meet both current and anticipated maximally allowed concentrations. Plasma discharge in contact with water is a promising new technology, since it produces a wide spectrum of oxidizing species. In this study, a new type of reactor is tested, in which decomposition by atmospheric pulsed direct barrier discharge (pDBD) plasma is combined with micropollutant adsorption on a nanofiber polyamide membrane. Atrazine is chosen as model micropollutant with an initial concentration of 30 μg/L. While the H2O2 and O3 production in the reactor is not influenced by the presence of the membrane, there is a significant increase in atrazine decomposition when the membrane is added. With membrane, 85% atrazine removal can be obtained in comparison to only 61% removal without membrane, at the same experimental parameters. The by-products of atrazine decomposition identified by HPLC-MS are deethylatrazine and ammelide. Formation of these by-products is more pronounced when the membrane is added. These results indicate the synergetic effect of plasma discharge and pollutant adsorption, which is attractive for future applications of water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Carbon cluster formation during thermal decomposition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine and 1,3,5-triamino-2,4,6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations.

    PubMed

    Zhang, Luzheng; Zybin, Sergey V; van Duin, Adri C T; Dasgupta, Siddharth; Goddard, William A; Kober, Edward M

    2009-10-08

    We report molecular dynamics (MD) simulations using the first-principles-based ReaxFF reactive force field to study the thermal decomposition of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) at various densities and temperatures. TATB is known to produce a large amount (15-30%) of high-molecular-weight carbon clusters, whereas detonation of nitramines such as HMX and RDX (1,3,5-trinitroperhydro-1,3,5-triazine) generate predominantly low-molecular-weight products. In agreement with experimental observation, these simulations predict that TATB decomposition quickly (by 30 ps) initiates the formation of large carbonaceous clusters (more than 4000 amu, or approximately 15-30% of the total system mass), and HMX decomposition leads almost exclusively to small-molecule products. We find that HMX decomposes readily on this time scale at lower temperatures, for which the decomposition rate of TATB is about an order of magnitude slower. Analyzing the ReaxFF MD results leads to the detailed atomistic structure of this carbon-rich phase of TATB and allows characterization of the kinetics and chemistry related to this phase and their dependence on system density and temperature. The carbon-rich phase formed from TATB contains mainly polyaromatic rings with large oxygen content, leading to graphitic regions. We use these results to describe the initial reaction steps of thermal decomposition of HMX and TATB in terms of the rates for forming primary and secondary products, allowing comparison to experimentally derived models. These studies show that MD using the ReaxFF reactive force field provides detailed atomistic information that explains such macroscopic observations as the dramatic difference in carbon cluster formation between TATB and HMX. This shows that ReaxFF MD captures the fundamental differences in the mechanisms of such systems and illustrates how the ReaxFF may be applied to model complex chemical phenomena in energetic materials. The studies here illustrate this for modestly sized systems and modest periods; however, ReaxFF calculations of reactive processes have already been reported on systems with approximately 10(6) atoms. Thus, with suitable computational facilities, one can study the atomistic level chemical processes in complex systems under extreme conditions.

  7. Viscosity effects on the thermal decomposition of bis(perfluoro-2-N-propoxypropionyl) peroxide in dense carbon dioxide and fluorinated solvents.

    PubMed

    Bunyard, W C; Kadla, J F; DeYoung, J; DeSimone, J M

    2001-08-01

    The thermal decomposition of the free-radical initiator bis(perfluoro-2-N-propoxyprionyl) peroxide (BPPP) was studied in dense carbon dioxide and a series of fluorinated solvents. For the fluorinated solvents, the observed first-order decomposition rate constants, k(obs), increased with decreasing solvent viscosity, suggesting a single-bond decomposition mechanism. The k(obs) values are comparatively larger in dense carbon dioxide and similar to the "zero-viscosity" rate constants extrapolated from the decomposition kinetics in the fluorinated solvents. The decomposition activation parameters demonstrate a compensation behavior of the activation enthalpy with the activation entropy upon change in solvent viscosity. Comparison of the change in activation parameter values upon change in solvent viscosity for BPPP with two additional initiators, acetyl peroxide (AP) and trifluoroacetyl peroxide (TFAP), further suggests that carbon dioxide exerts a very minimal influence on the decomposition mechanism of these initiators through solvent-cage effects.

  8. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    PubMed

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  9. Litter decomposition patterns and dynamics across biomes: Initial results from the global TeaComposition initiative

    NASA Astrophysics Data System (ADS)

    Djukic, Ika; Kappel Schmidt, Inger; Steenberg Larsen, Klaus; Beier, Claus

    2017-04-01

    Litter decomposition represents one of the largest fluxes in the global terrestrial carbon cycle and a number of large-scale decomposition experiments have been conducted focusing on this fundamental soil process. However, previous studies were most often based on site-specific litters and methodologies. The contrasting litter and soil types used and the general lack of common protocols still poses a major challenge as it adds major uncertainty to meta-analyses across different experiments and sites. In the TeaComposition initiative, we aim to investigate the potential litter decomposition by using standardized substrates (tea) for comparison of temporal litter decomposition rates across different ecosystems worldwide. To this end, Lipton tea bags (Rooibos and Green Tea) has been buried in the H-A or Ah horizon and incubated over the period of 36 months within 400 sites covering diverse ecosystems in 9 zonobiomes. We measured initial litter chemistry and litter mass loss 3 months after the start of decomposition and linked the decomposition rates to site and climatic conditions as well as to the existing decompositions rates of the local litter. We will present and discuss the outcomes of this study. Acknowledgment: We are thankful to colleagues from more than 300 sites who were participating in the implementation of this initiative and who are not mentioned individually as co-authors yet.

  10. Shock wave and modeling study of the thermal decomposition reactions of pentafluoroethane and 2-H-heptafluoropropane.

    PubMed

    Cobos, C J; Sölter, L; Tellbach, E; Troe, J

    2014-06-07

    The thermal decomposition reactions of CF3CF2H and CF3CFHCF3 have been studied in shock waves by monitoring the appearance of CF2 radicals. Temperatures in the range 1400-2000 K and Ar bath gas concentrations in the range (2-10) × 10(-5) mol cm(-3) were employed. It is shown that the reactions are initiated by C-C bond fission and not by HF elimination. Differing conclusions in the literature about the primary decomposition products, such as deduced from experiments at very low pressures, are attributed to unimolecular falloff effects. By increasing the initial reactant concentrations in Ar from 60 to 1000 ppm, a retardation of CF2 formation was observed while the final CF2 yields remained close to two CF2 per C2F5H or three CF2 per C3F7H decomposed. This is explained by secondary bimolecular reactions which lead to comparably stable transient species like CF3H, releasing CF2 at a slower rate. Quantum-chemical calculations and kinetic modeling help to identify the reaction pathways and provide estimates of rate constants for a series of primary and secondary reactions in the decomposition mechanism.

  11. Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde

    NASA Astrophysics Data System (ADS)

    Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney

    2013-09-01

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  12. Chapter 8: Pyrolysis Mechanisms of Lignin Model Compounds Using a Heated Micro-Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, David J.; Nimlos, Mark R.; Ellison, G. Barney

    2015-10-03

    Lignin is an important component of biomass, and the decomposition of its thermal deconstruction products is important in pyrolysis and gasification. In this chapter, we investigate the unimolecular pyrolysis chemistry through the use of singly and doubly substituted benzene molecules that are model compounds representative of lignin and its primary pyrolysis products. These model compounds are decomposed in a heated micro-reactor, and the products, including radicals and unstable intermediates, are measured using photoionization mass spectrometry and matrix isolation infrared spectroscopy. We show that the unimolecular chemistry can yield insight into the initial decomposition of these species. At pyrolysis and gasificationmore » severities, singly substituted benzenes typically undergo bond scission and elimination reactions to form radicals. Some require radical-driven chain reactions. For doubly substituted benzenes, proximity effects of the substituents can change the reaction pathways.« less

  13. Microbial plant litter decomposition in aquatic and terrestrial boreal systems along a natural fertility gradient

    NASA Astrophysics Data System (ADS)

    Soares, A. Margarida P. M.; Kritzberg, Emma S.; Rousk, Johannes

    2017-04-01

    Plant litter decomposition is a global ecosystem process, with a crucial role in carbon and nutrient cycling. The majority of litter processing occurs in terrestrial systems, but an important fraction also takes place in inland waters. Among environmental factors, pH impacts the litter decomposition through its selective influence on microbial decomposers. Fungal communities are less affected by pH than bacteria, possibly owing to a wider pH tolerance by this group. On the other hand, bacterial pH optima are constrained to a narrower range of pH values. The microbial decomposition of litter is universally nutrient limited; but few comparisons exist between terrestrial and aquatic systems. We investigated the microbial colonisation and decomposition of plant litter along a fertility gradient, which varied in both pH and N availability in both soil and adjacent water. To do this we installed litterbags with birch (Betula pendula) in streams and corresponding soils in adjacent riparian areas in a boreal system, in Krycklan, Sweden. During the four months covering the ice-free growth season we monitored the successional dynamics of fungal (acetate incorporation into ergosterol) and bacterial growth (thymidine incorporation), microbial respiration in leaf litter, and quantitative and qualitative changes in litter over time. We observed that bacterial growth rates were initially higher in litter decomposing in streams than those in soils, but differences between terrestrial and aquatic bacterial production converged towards the end of the experiment. In litter bags installed in soils, bacterial growth was lower at sites with more acidic pH and lower N availability, while aquatic bacteria were relatively unaffected by the fertility level. Fungal growth rates were two-fold higher for litter decomposing in streams than in soils. In aquatic systems, fungal growth was initially lower in low fertility sites, but differences gradually disappeared over the time course. Fungal growth rates measured on litter-bags in soils were relatively stable over time, with unclear links to fertility. Microbial respiration rates were highest in litterbags buried in soils, and only initially negatively affected by pH. There was a large decrease in litter mass loss initially in aquatic systems. Subsequently the rates of loss stabilized to similar values to those in terrestrial systems, to finally be exceeded by the rates of loss in terrestrial systems. In conclusion, initial decomposition of litter appeared to be N-limited in aquatic systems, which was associated with a fungal dominance. In contrast, litter decomposition in terrestrial systems appeared to be lower in acidic sites, which coincided with lower growth rates of bacteria. Litter degradation was initially faster in aquatic systems, but overall mass-loss over the full time course was higher in terrestrial systems.

  14. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor); Ashcraft, A. C., Jr.; Wise, E. W.

    1971-01-01

    Various experimental factors were examined to determine the source of difficulty in an isoprene polymerization in the 5-gallon reactor which gave a non-uniform product of low functionality. It was concluded that process improvements relating to initiator and monomer purity were desirable, but that the main difficulty was in the initiator feed system. A new pumping system was installed and an analog simulation of the reactor, feed system and initiator decomposition kinetics was devised which permits the selection of initial initiator concentrations and feed rates to use to give a nearly uniform initiator concentration throughout a polymerization run. An isoprene polymerization was run in which the process improvements were implemented.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bing; Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu

    Unimolecular decomposition of nitrogen-rich energetic molecules 1,2-bis(1H-tetrazol-1-yl)ethane (1-DTE), 1,2-bis(1H-tetrazol-5-yl)ethane (5-DET), N,N-bis(1H-tetrazol-5-yl)amine (BTA), and 5,5’-bis(tetrazolyl)hydrazine (BTH) has been explored via 283 nm two photon laser excitation. The maximum absorption wavelength in the UV-vis spectra of all four materials is around 186–222 nm. The N{sub 2} molecule, with a cold rotational temperature (<30 K), is observed as an initial decomposition product from the four molecules, subsequent to UV excitation. Initial decomposition mechanisms for these four electronically excited isolated molecules are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersectionsmore » play an essential role in the decomposition mechanism. The tetrazole ring opens on the S{sub 1} excited state and through conical intersections (S{sub 1}/S{sub 0}){sub CI}, N{sub 2} product is formed on the ground state potential energy surface without rotational excitation. The tetrazole rings of all four energetic molecules open at the N1—N2 ring bond with the lowest energy barrier: the C—N bond opening has higher energy barrier than that for any of the N—N ring bonds. Therefore, the tetrazole rings open at their N—N bonds to release N{sub 2}. The vibrational temperatures of N{sub 2} product from all four energetic materials are hot based on theoretical calculations. The different groups (CH{sub 2}—CH{sub 2}, NH—NH, and NH) joining the tetrazole rings can cause apparent differences in explosive behavior of 1-DTE, 5-DTE, BTA, and BTH. Conical intersections, non-Born-Oppenheimer interactions, and dynamics are the key features for excited electronic state chemistry of organic molecules, in general, and energetic molecules, in particular.« less

  16. Acidic attack of perfluorinated alkyl ether lubricant molecules by metal oxide surfaces

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Faut, Owen D.

    1990-01-01

    The reactions of linear perfluoropolyalkylether (PFAE) lubricants with alpha-Fe203 and Fe203-based solid superacids were studied. The reaction with alpha-Fe203 proceeds in two stages. The first stage is an initial slow catalytic decomposition of the fluid. This reaction releases reactive gaseous products which attach the metal oxide and convert it to FeF3. The second stage is a more rapid decomposition of the fluid, effected by the surface FeF3. A study of the initial breakdown step was performed using alpha-Fe203, alpha-Fe203 preconverted to FeF3, and sulfate-promoted alpha-Fe203 superacids. The results indicate that the breakdown reaction involves acidic attack at fluorine atoms on acetal carbons in the linear PFAE. Possible approaches to combat the problem are outlined.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Bing; Bernstein, Elliot R., E-mail: erb@Colostate.edu

    Unimolecular decomposition of nitrogen-rich energetic salt molecules bis(ammonium)5,5′-bistetrazolate (NH{sub 4}){sub 2}BT and bis(triaminoguanidinium) 5,5′-azotetrazolate TAGzT, has been explored via 283 nm laser excitation. The N{sub 2} molecule, with a cold rotational temperature (<30 K), is observed as an initial decomposition product, subsequent to UV excitation. Initial decomposition mechanisms for the two electronically excited salt molecules are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) ((NH{sub 4}){sub 2}BT) and ONIOM (CASSCF/6-31G(d):UFF) (TAGzT) levels illustrate that conical intersections play an essential role in the decomposition mechanism as they provide non-adiabatic, ultrafast radiationless internalmore » conversion between upper and lower electronic states. The tetrazole ring opens on the S{sub 1} excited state surface and, through conical intersections (S{sub 1}/S{sub 0}){sub CI}, N{sub 2} product is formed on the ground state potential energy surface without rotational excitation. The tetrazole rings open at the N2—N3 ring bond with the lowest energy barrier: the C—N ring bond opening has a higher energy barrier than that for any of the N—N ring bonds: this is consistent with findings for other nitrogen-rich neutral organic energetic materials. TAGzT can produce N{sub 2} either by the opening of tetrazole ring or from the N=N group linking its two tetrazole rings. Nonetheless, opening of a tetrazole ring has a much lower energy barrier. Vibrational temperatures of N{sub 2} products are hot based on theoretical predictions. Energy barriers for opening of the tetrazole ring for all the nitrogen-rich energetic materials studied thus far, including both neutral organic molecules and salts, are in the range from 0.31 to 2.71 eV. Energy of the final molecular structure of these systems with dissociated N{sub 2} product is in the range from −1.86 to 3.11 eV. The main difference between energetic salts and neutral nitrogen-rich energetic material is that energetic salts usually have lower excitation energy.« less

  18. Methanol Oxidation on Pt3Sn(111) for Direct Methanol Fuel Cells: Methanol Decomposition.

    PubMed

    Lu, Xiaoqing; Deng, Zhigang; Guo, Chen; Wang, Weili; Wei, Shuxian; Ng, Siu-Pang; Chen, Xiangfeng; Ding, Ning; Guo, Wenyue; Wu, Chi-Man Lawrence

    2016-05-18

    PtSn alloy, which is a potential material for use in direct methanol fuel cells, can efficiently promote methanol oxidation and alleviate the CO poisoning problem. Herein, methanol decomposition on Pt3Sn(111) was systematically investigated using periodic density functional theory and microkinetic modeling. The geometries and energies of all of the involved species were analyzed, and the decomposition network was mapped out to elaborate the reaction mechanisms. Our results indicated that methanol and formaldehyde were weakly adsorbed, and the other derivatives (CHxOHy, x = 1-3, y = 0-1) were strongly adsorbed and preferred decomposition rather than desorption on Pt3Sn(111). The competitive methanol decomposition started with the initial O-H bond scission followed by successive C-H bond scissions, (i.e., CH3OH → CH3O → CH2O → CHO → CO). The Brønsted-Evans-Polanyi relations and energy barrier decomposition analyses identified the C-H and O-H bond scissions as being more competitive than the C-O bond scission. Microkinetic modeling confirmed that the vast majority of the intermediates and products from methanol decomposition would escape from the Pt3Sn(111) surface at a relatively low temperature, and the coverage of the CO residue decreased with an increase in the temperature and decrease in partial methanol pressure.

  19. An ab initio molecular dynamics study of thermal decomposition of 3,6-di(azido)-1,2,4,5-tetrazine.

    PubMed

    Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2014-10-21

    Ab initio molecular dynamics simulations were performed to study the thermal decomposition of isolated and crystal 3,6-di(azido)-1,2,4,5-tetrazine (DiAT). During unimolecular decomposition, the three different initiation mechanisms were observed to be N-N2 cleavage, ring opening, and isomerization, respectively. The preferential initial decomposition step is the homolysis of the N-N2 bond in the azido group. The release mechanisms of nitrogen gas are found to be very different in the early and later decomposition stages of crystal DiAT. In the early decomposition, DiAT decomposes very fast and drastically without forming any stable long-chains or heterocyclic clusters, and most of the nitrogen gases are released through rapid rupture of nitrogen-nitrogen and carbon-nitrogen bonds. But in the later decomposition stage, the release of nitrogen gas is inhibited due to low mobility, long distance from each other, and strong carbon-nitrogen bonds. To overcome the obstacles, the nitrogen gases are released through slow formation and disintegration of polycyclic networks. Our simulations suggest a new decomposition mechanism for the organic polyazido initial explosive at the atomistic level.

  20. Vacancy-induced initial decomposition of condensed phase NTO via bimolecular hydrogen transfer mechanisms at high pressure: a DFT-D study.

    PubMed

    Liu, Zhichao; Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2015-04-28

    Density functional theory with dispersion-correction (DFT-D) was employed to study the effects of vacancy and pressure on the structure and initial decomposition of crystalline 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (β-NTO), a high-energy insensitive explosive. A comparative analysis of the chemical behaviors of NTO in the ideal bulk crystal and vacancy-containing crystals under applied hydrostatic compression was considered. Our calculated formation energy, vacancy interaction energy, electron density difference, and frontier orbitals reveal that the stability of NTO can be effectively manipulated by changing the molecular environment. Bimolecular hydrogen transfer is suggested to be a potential initial chemical reaction in the vacancy-containing NTO solid at 50 GPa, which is prior to the C-NO2 bond dissociation as its initiation decomposition in the gas phase. The vacancy defects introduced into the ideal bulk NTO crystal can produce a localized site, where the initiation decomposition is preferentially accelerated and then promotes further decompositions. Our results may shed some light on the influence of the molecular environments on the initial pathways in molecular explosives.

  1. Decompositions of the polyhedral product functor with applications to moment-angle complexes and related spaces

    PubMed Central

    Bahri, A.; Bendersky, M.; Cohen, F. R.; Gitler, S.

    2009-01-01

    This article gives a natural decomposition of the suspension of a generalized moment-angle complex or partial product space which arises as the polyhedral product functor described below. The introduction and application of the smash product moment-angle complex provides a precise identification of the stable homotopy type of the values of the polyhedral product functor. One direct consequence is an analysis of the associated cohomology. For the special case of the complements of certain subspace arrangements, the geometrical decomposition implies the homological decomposition in earlier work of others as described below. Because the splitting is geometric, an analogous homological decomposition for a generalized moment-angle complex applies for any homology theory. Implied, therefore, is a decomposition for the Stanley–Reisner ring of a finite simplicial complex, and natural generalizations. PMID:19620727

  2. Decompositions of the polyhedral product functor with applications to moment-angle complexes and related spaces.

    PubMed

    Bahri, A; Bendersky, M; Cohen, F R; Gitler, S

    2009-07-28

    This article gives a natural decomposition of the suspension of a generalized moment-angle complex or partial product space which arises as the polyhedral product functor described below. The introduction and application of the smash product moment-angle complex provides a precise identification of the stable homotopy type of the values of the polyhedral product functor. One direct consequence is an analysis of the associated cohomology. For the special case of the complements of certain subspace arrangements, the geometrical decomposition implies the homological decomposition in earlier work of others as described below. Because the splitting is geometric, an analogous homological decomposition for a generalized moment-angle complex applies for any homology theory. Implied, therefore, is a decomposition for the Stanley-Reisner ring of a finite simplicial complex, and natural generalizations.

  3. Thermal decomposition of gaseous ammonium nitrate at low pressure: kinetic modeling of product formation and heterogeneous decomposition of nitric acid.

    PubMed

    Park, J; Lin, M C

    2009-12-03

    The thermal decomposition of ammonium nitrate, NH(4)NO(3) (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH(4)NO(3) at 423 K was proposed to produce equal amounts of NH(3) and HNO(3), followed by the decomposition reaction of HNO(3), HNO(3) + M --> OH + NO(2) + M (where M = third-body and reactor surface). The absolute yields of N(2), N(2)O, H(2)O, and NH(3), which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH(3)-NO(2) (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO(3) itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO(3) in our kinetic modeling. The heterogeneous decomposition rate of HNO(3), HNO(3) + (B(2)O(3)/SiO(2)) --> OH + NO(2) + (B(2)O(3)/SiO(2)), was determined by varying its rate to match the modeled result to the measured concentrations of NH(3) and H(2)O; the rate could be represented by k(2b) = 7.91 x 10(7) exp(-12 600/T) s(-1), which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO(3) decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  4. Thermal Decomposition of Gaseous Ammonium Nitrate at Low Pressure: Kinetic Modeling of Product Formation and Heterogeneous Decomposition of Nitric Acid

    NASA Astrophysics Data System (ADS)

    Park, J.; Lin, M. C.

    2009-10-01

    The thermal decomposition of ammonium nitrate, NH4NO3 (AN), in the gas phase has been studied at 423-56 K by pyrolysis/mass spectrometry under low-pressure conditions using a Saalfeld reactor coated with boric acid. The sublimation of NH4NO3 at 423 K was proposed to produce equal amounts of NH3 and HNO3, followed by the decomposition reaction of HNO3, HNO3 + M → OH + NO2 + M (where M = third-body and reactor surface). The absolute yields of N2, N2O, H2O, and NH3, which can be unambiguously measured and quantitatively calibrated under a constant pressure at 5-6.2 torr He are kinetically modeled using the detailed [H,N,O]-mechanism established earlier for the simulation of NH3-NO2 (Park, J.; Lin, M. C. Technologies and Combustion for a Clean Environment. Proc. 4th Int. Conf. 1997, 34-1, 1-5) and ADN decomposition reactions (Park, J.; Chakraborty, D.; Lin, M. C. Proc. Combust. Inst. 1998, 27, 2351-2357). Since the homogeneous decomposition reaction of HNO3 itself was found to be too slow to account for the consumption of reactants and the formation of products, we also introduced the heterogeneous decomposition of HNO3 in our kinetic modeling. The heterogeneous decomposition rate of HNO3, HNO3 + (B2O3/SiO2) → OH + NO2 + (B2O3/SiO2), was determined by varying its rate to match the modeled result to the measured concentrations of NH3 and H2O; the rate could be represented by k2b = 7.91 × 107 exp(-12 600/T) s-1, which appears to be consistent with those reported by Johnston and co-workers (Johnston, H. S.; Foering, L.; Tao, Y.-S.; Messerly, G. H. J. Am. Chem. Soc. 1951, 73, 2319-2321) for HNO3 decomposition on glass reactors at higher temperatures. Notably, the concentration profiles of all species measured could be satisfactorily predicted by the existing [H,N,O]-mechanism with the heterogeneous initiation process.

  5. Resolving Some Paradoxes in the Thermal Decomposition Mechanism of Acetaldehyde

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaramakrishnan, Raghu; Michael, Joe V.; Harding, Lawrence B.

    2015-07-16

    The mechanism for the thermal decomposition of acetaldehyde has been revisited with an analysis of literature kinetics experiments using theoretical kinetics. The present modeling study was motivated by recent observations, with very sensitive diagnostics, of some unexpected products in high temperature micro-tubular reactor experiments on the thermal decomposition of CH3CHO and its deuterated analogs, CH3CDO, CD3CHO, and CD3CDO. The observations of these products prompted the authors of these studies to suggest that the enol tautomer, CH2CHOH (vinyl alcohol), is a primary intermediate in the thermal decomposition of acetaldehyde. The present modeling efforts on acetaldehyde decomposition incorporate a master equation re-analysismore » of the CH3CHO potential energy surface (PES). The lowest energy process on this PES is an isomerization of CH3CHO to CH2CHOH. However, the subsequent product channels for CH2CHOH are substantially higher in energy, and the only unimolecular process that can be thermally accessed is a re-isomerization to CH3CHO. The incorporation of these new theoretical kinetics predictions into models for selected literature experiments on CH3CHO thermal decomposition confirms our earlier experiment and theory based conclusions that the dominant decomposition process in CH3CHO at high temperatures is C-C bond fission with a minor contribution (~10-20%) from the roaming mechanism to form CH4 and CO. The present modeling efforts also incorporate a master-equation analysis of the H + CH2CHOH potential energy surface. This bimolecular reaction is the primary mechanism for removal of CH2CHOH, which can accumulate to minor amounts at high temperatures, T > 1000 K, in most lab-scale experiments that use large initial concentrations of CH3CHO. Our modeling efforts indicate that the observation of ketene, water and acetylene in the recent micro-tubular experiments are primarily due to bimolecular reactions of CH3CHO and CH2CHOH with H-atoms, and have no bearing on the unimolecular decomposition mechanism of CH3CHO. The present simulations also indicate that experiments using these micro-tubular reactors when interpreted with the aid of high-level theoretical calculations and kinetics modeling can offer insights into the chemistry of elusive intermediates in high temperature pyrolysis of organic molecules.« less

  6. Decomposition Techniques for Icesat/glas Full-Waveform Data

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Gao, X.; Li, G.; Chen, J.

    2018-04-01

    The geoscience laser altimeter system (GLAS) on the board Ice, Cloud, and land Elevation Satellite (ICESat), is the first long-duration space borne full-waveform LiDAR for measuring the topography of the ice shelf and temporal variation, cloud and atmospheric characteristics. In order to extract the characteristic parameters of the waveform, the key step is to process the full waveform data. In this paper, the modified waveform decomposition method is proposed to extract the echo components from full-waveform. First, the initial parameter estimation is implemented through data preprocessing and waveform detection. Next, the waveform fitting is demonstrated using the Levenberg-Marquard (LM) optimization method. The results show that the modified waveform decomposition method can effectively extract the overlapped echo components and missing echo components compared with the results from GLA14 product. The echo components can also be extracted from the complex waveforms.

  7. Influence of ultrasonication on anaerobic bioconversion of sludge.

    PubMed

    Mao, Taohong; Show, Kuan-Yeow

    2007-04-01

    The influence of ultrasonication on hydrolysis, acidogenesis, and methanogenesis in anaerobic decomposition of sludge was investigated. The sonicated sludge exhibited prehydrolysis and preacidogenesis effects in the anaerobic decomposition process. First-order hydrolysis rates increased from 0.0384 day(-1) in the control digester to 0.0672 day(-1) in the digester fed, with sludge sonicated at 0.52 W/mL. The sonication appeared to be ineffective in relation to acidogenesis reaction rates, but it provided a better buffering capacity to diminish the adverse effect of acidification. Digesters fed with sonicated sludge demonstrated enhanced methanogenesis over the control unit. Determination by coenzyme F420 verified that sonication is able to promote the growth of methanogenic biomass and facilitate a positive methanogenic microbial development in suppressing the initial methanogenesis limitation. The results suggest that ultrasonication could enhance anaerobic decomposition of sludge, resulting in an accelerated bioconversion, improved organics degradation, improved biogas production, and increased methane content.

  8. Degradation of sulfamethazine by gamma irradiation in the presence of hydrogen peroxide.

    PubMed

    Liu, Yuankun; Wang, Jianlong

    2013-04-15

    The gamma irradiation-induced degradation of sulfamethazine (SMT) in aqueous solution in the presence of hydrogen peroxide (H2O2) was investigated. The initial SMT concentration was 20mg/L and it was irradiated in the presence of extra H2O2 with initial concentration of 0, 10 and 30 mg/L. The results showed that gamma irradiation was effective for removing SMT in aqueous solution and its degradation conformed to the pseudo first-order kinetics under the applied conditions. When initial H2O2 concentration was in the range of 0-30 mg/L, higher concentration of H2O2 was more effective for the decomposition and mineralization of SMT. However, the removal of total organic carbon (TOC) was not as effective as that of SMT. Total nitrogen (TN) was not removed even at absorbed dose of 5 kGy, which was highest dose applied in this study. Major decomposition products of SMT, including degradation intermediates, organic acids and some inorganic ions were detected by high performance liquid chromatography (HPLC) and ion chromatography (IC). Sulfate (SO4(2-)), formic acid (HCOOH), acetic acid (CH3COOH), 4-aminophenol, 4-nitrophenol were identified in the irradiated solutions. Possible pathways for SMT decomposition by gamma irradiation in aqueous solution were proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Enhanced simulations of CH4 and CO2 production in permafrost-affected soils address soil moisture controls on anaerobic decomposition

    NASA Astrophysics Data System (ADS)

    Graham, D. E.; Zheng, J.; Moon, J. W.; Painter, S. L.; Thornton, P. E.; Gu, B.; Wullschleger, S. D.

    2017-12-01

    Rapid warming of Arctic ecosystems exposes soil organic carbon (SOC) to accelerated microbial decomposition, leading to increased emissions of carbon dioxide (CO2) and methane (CH4) that have a positive feedback on global warming. The magnitude, timing, and form of carbon release will depend not only on changes in temperature, but also on biogeochemical and hydrological properties of soils. In this synthesis study, we assessed the decomposability of thawed organic carbon from active layer soils and permafrost from the Barrow Environmental Observatory across different microtopographic positions under anoxic conditions. The main objectives of this study were to (i) examine environmental conditions and soil properties that control anaerobic carbon decomposition and carbon release (as both CO2 and CH4); (ii) develop a common set of parameters to simulate anaerobic CO2 and CH4 production; and (iii) evaluate uncertainties generated from representations of pH and temperature effects in the current model framework. A newly developed anaerobic carbon decomposition framework simulated incubation experiment results across a range of soil water contents. Anaerobic CO2 and CH4 production have different temperature and pH sensitivities, which are not well represented in current biogeochemical models. Distinct dynamics of CH4 production at -2° C suggest methanogen biomass and growth rate limit activity in these near-frozen soils, compared to warmer temperatures. Anaerobic CO2 production is well constrained by the model using data-informed labile carbon pool and fermentation rate initialization to accurately simulate its temperature sensitivity. On the other hand, CH4 production is controlled by water content, methanogenesis biomass, and the presence of alternative electron acceptors, producing a high temperature sensitivity with large uncertainties for methanogenesis. This set of environmental constraints to methanogenesis is likely to undergo drastic changes due to permafrost thawing, and extrapolation of methanogenesis rates into a future warmer climate remains challenging.

  10. Interrelationships among shrub encroachment, land management, and litter decomposition in a semidesert grassland.

    PubMed

    Throop, Heather L; Archer, Steven R

    2007-09-01

    Encroachment of woody plants into grasslands, and subsequent brush management, are among the most prominent changes to occur in arid and semiarid systems over the past century. Despite the resulting widespread changes in landcover, substantial uncertainty about the biogeochemical impacts of woody proliferation and brush management exists. We explored the role of shrub encroachment and brush management on leaf litter decomposition in a semidesert grassland where velvet mesquite (Prosopis velutina) abundance has increased over the past 100 years. This change in physiognomy may affect decomposition directly, through altered litter quality or quantity, and indirectly through altered canopy structure. To assess the direct and indirect impacts of shrubs on decomposition, we quantified changes in mass, nitrogen, and carbon in litterbags deployed under mesquite canopies and in intercanopy zones. Litterbags contained foliage from mesquite and Lehmann lovegrass (Eragrostis lehmanniana), a widespread, nonnative grass in southern Arizona. To explore short- and long-term influences of brush management on the initial stages of decomposition, litterbags were deployed at sites where mesquite canopies were removed three weeks, 45 years, or 70 years prior to study initiation. Mesquite litter decomposed more rapidly than lovegrass, but negative indirect influences of mesquite canopies counteracted positive direct effects. Decomposition was positively correlated with soil infiltration into litterbags, which varied with microsite placement, and was lowest under canopies. Low under-canopy decomposition was ostensibly due to decreased soil movement associated with high under-canopy herbaceous biomass. Decomposition rates where canopies were removed three weeks prior to study initiation were comparable to those beneath intact canopies, suggesting that decomposition was driven by mesquite legacy effects on herbaceous cover-soil movement linkages. Decomposition rates where shrubs were removed 45 and 70 years prior to study initiation were comparable to intercanopy rates, suggesting that legacy effects persist less than 45 years. Accurate decomposition modeling has proved challenging in arid and semiarid systems but is critical to understanding biogeochemical responses to woody encroachment and brush management. Predicting brush-management effects on decomposition will require information on shrub-grass interactions and herbaceous biomass influences on soil movement at decadal timescales. Inclusion of microsite factors controlling soil accumulation on litter would improve the predictive capability of decomposition models.

  11. Does increasing pressure always accelerate the condensed material decay initiated through bimolecular reactions? A case of the thermal decomposition of TKX-50 at high pressures.

    PubMed

    Lu, Zhipeng; Zeng, Qun; Xue, Xianggui; Zhang, Zengming; Nie, Fude; Zhang, Chaoyang

    2017-08-30

    Performances and behaviors under high temperature-high pressure conditions are fundamentals for many materials. We study in the present work the pressure effect on the thermal decomposition of a new energetic ionic salt (EIS), TKX-50, by confining samples in a diamond anvil cell, using Raman spectroscopy measurements and ab initio simulations. As a result, we find a quadratic increase in decomposition temperature (T d ) of TKX-50 with increasing pressure (P) (T d = 6.28P 2 + 12.94P + 493.33, T d and P in K and GPa, respectively, and R 2 = 0.995) and the decomposition under various pressures initiated by an intermolecular H-transfer reaction (a bimolecular reaction). Surprisingly, this finding is contrary to a general observation about the pressure effect on the decomposition of common energetic materials (EMs) composed of neutral molecules: increasing pressure will impede the decomposition if it starts from a bimolecular reaction. Our results also demonstrate that increasing pressure impedes the H-transfer via the enhanced long-range electrostatic repulsion of H +δ H +δ of neighboring NH 3 OH + , with blue shifts of the intermolecular H-bonds. And the subsequent decomposition of the H-transferred intermediates is also suppressed, because the decomposition proceeds from a bimolecular reaction to a unimolecular one, which is generally prevented by compression. These two factors are the basic root for which the decomposition retarded with increasing pressure of TKX-50. Therefore, our finding breaks through the previously proposed concept that, for the condensed materials, increasing pressure will accelerate the thermal decomposition initiated by bimolecular reactions, and reveals a distinct mechanism of the pressure effect on thermal decomposition. That is to say, increasing pressure does not always promote the condensed material decay initiated through bimolecular reactions. Moreover, such a mechanism may be feasible to other EISs due to the similar intermolecular interactions.

  12. Rate of hexabromocyclododecane decomposition and production of brominated polycyclic aromatic hydrocarbons during combustion in a pilot-scale incinerator.

    PubMed

    Miyake, Yuichi; Tokumura, Masahiro; Wang, Qi; Amagai, Takashi; Horii, Yuichi

    2017-11-01

    Here, we examined the incineration of extruded polystyrene containing hexabromocyclododecane (HBCD) in a pilot-scale incinerator under various combustion temperatures (800-950°C) and flue gas residence times (2-8sec). Rates of HBCD decomposition ranged from 99.996% (800°C, 2sec) to 99.9999% (950°C, 8sec); the decomposition of HBCD, except during the initial stage of combustion (flue gas residence time<2sec), followed a pseudo-first-order kinetics model. An Arrhenius plot revealed that the activation energy and frequency factor of the decomposition of HBCD by combustion were 14.2kJ/mol and 1.69sec -1 , respectively. During combustion, 11 brominated polycyclic aromatic hydrocarbons (BrPAHs) were detected as unintentional by-products. Of the 11 BrPAHs detected, 2-bromoanthracene and 1-bromopyrene were detected at the highest concentrations. The mutagenic and carcinogenic BrPAHs 1,5-dibromoanthracene and 1-bromopyrene were most frequently detected in the flue gases analyzed. The total concentration of BrPAHs exponentially increased (range, 87.8-2,040,000ng/m 3 ) with increasing flue gas residence time. Results from a qualitative analysis using gas chromatography/high-resolution mass spectrometry suggest that bromofluorene and bromopyrene (or fluoranthene) congeners were also produced during the combustion. Copyright © 2017. Published by Elsevier B.V.

  13. Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces

    DOE PAGES

    Camacho-Forero, Luis E.; Smith, Taylor W.; Balbuena, Perla B.

    2016-12-16

    The use of high concentration salts in electrolyte solutions of lithium-sulfur (Li-S) batteries has been shown beneficial for mitigating some effects such as polysulfide shuttle and dendrite growth at the Li metal anode. Such complex solutions have structural, dynamical, and reactivity associated issues that need to be analyzed for a better understanding of the reasons behind such beneficial effects. A passivation interfacial layer known as solid-electrolyte interphase (SEI) is generated during battery cycling as a result of electron transfer from the metal anode causing electrolyte decomposition. Here in this work, we investigate using density functional theory and ab initio molecularmore » dynamics simulations the salt decomposition, solvation effects, interactions among intermediate products and other species, and potential components of the SEI layer as a function of chemical nature and concentration of the salt, for lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) at 1M and 4M concentrations in dimethoxyethane. It is found that LiTFSI undergoes a less complete reduction and facilitates charge transfer from the anode, whereas LiFSI shows a more complete decomposition forming LiF as one of the main SEI products. In addition, the specific decomposition mechanisms of each salt clearly point to the initial SEI components and the potential main products derived from them. Finally, very complex networks are found among the salt and solvent molecules in their attempt to maximize Li ion solvation that is quantified through the determination of coordination numbers.« less

  14. Influences of operational practices on municipal solid waste landfill storage capacity.

    PubMed

    Li, Yu-Chao; Liu, Hai-Long; Cleall, Peter John; Ke, Han; Bian, Xue-Cheng

    2013-03-01

    The quantitative effects of three operational factors, that is initial compaction, decomposition condition and leachate level, on municipal solid waste (MSW) landfill settlement and storage capacity are investigated in this article via consideration of a hypothetical case. The implemented model for calculating landfill compression displacement is able to consider decreases in compressibility induced by biological decomposition and load dependence of decomposition compression for the MSW. According to the investigation, a significant increase in storage capacity can be achieved by intensive initial compaction, adjustment of decomposition condition and lowering of leachate levels. The quantitative investigation presented aims to encourage landfill operators to improve management to enhance storage capacity. Furthermore, improving initial compaction and creating a preferential decomposition condition can also significantly reduce operational and post-closure settlements, respectively, which helps protect leachate and gas management infrastructure and monitoring equipment in modern landfills.

  15. Theoretical study of the reaction mechanism of CH₃NO₂ with NO₂, NO and CO: the bimolecular reactions that cannot be ignored.

    PubMed

    Zhang, Ji-Dong; Kang, Li-Hua; Cheng, Xin-Lu

    2015-01-01

    The intriguing decompositions of nitro-containing explosives have been attracting interest. While theoretical investigations have long been concentrated mainly on unimolecular decompositions, bimolecular reactions have received little theoretical attention. In this paper, we investigate theoretically the bimolecular reactions between nitromethane (CH3NO2)-the simplest nitro-containing explosive-and its decomposition products, such as NO2, NO and CO, that are abundant during the decomposition process of CH3NO2. The structures and potential energy surface (PES) were explored at B3LYP/6-31G(d), B3P86/6-31G(d) and MP2/6-311 + G(d,p) levels, and energies were refined using CCSD(T)/cc-pVTZ methods. Quantum chemistry calculations revealed that the title reactions possess small barriers that can be comparable to, or smaller than, that of the initial decomposition reactions of CH3NO2. Considering that their reactants are abundant in the decomposition process of CH3NO2, we consider bimolecular reactions also to be of great importance, and worthy of further investigation. Moreover, our calculations show that NO2 can be oxidized by CH3NO2 to NO3 radical, which confirms the conclusion reached formerly by Irikura and Johnson [(2006) J Phys Chem A 110:13974-13978] that NO3 radical can be formed during the decomposition of nitramine explosives.

  16. On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate

    NASA Astrophysics Data System (ADS)

    Moezzi, Amir; Cortie, Michael; Dowd, Annette; McDonagh, Andrew

    2014-04-01

    The decomposition of zinc hydroxide carbonate, Zn5(CO3)2(OH)6 (ZHC), into the high surface area form of ZnO known as "active zinc oxide" is examined. In particular, the nucleation and evolution of the ZnO nanocrystals is of interest as the size of these particles controls the activity of the product. The decomposition process was studied using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. At about 240 °C ZHC decomposes to porous ZnO in a single step. The product material has a specific surface area in the range of 47-65 m2 g-1 and initially has a crystallite size that is of the order of 10 nm. A further increase in temperature, however, causes the particles to coarsen to over 25 nm in diameter. In principle, the coarsening phenomenon may be interrupted to control the particle size.

  17. Theoretical studies of the decomposition mechanisms of 1,2,4-butanetriol trinitrate.

    PubMed

    Pei, Liguan; Dong, Kehai; Tang, Yanhui; Zhang, Bo; Yu, Chang; Li, Wenzuo

    2017-12-06

    Density functional theory (DFT) and canonical variational transition-state theory combined with a small-curvature tunneling correction (CVT/SCT) were used to explore the decomposition mechanisms of 1,2,4-butanetriol trinitrate (BTTN) in detail. The results showed that the γ-H abstraction reaction is the initial pathway for autocatalytic BTTN decomposition. The three possible hydrogen atom abstraction reactions are all exothermic. The rate constants for autocatalytic BTTN decomposition are 3 to 10 40 times greater than the rate constants for the two unimolecular decomposition reactions (O-NO 2 cleavage and HONO elimination). The process of BTTN decomposition can be divided into two stages according to whether the NO 2 concentration is above a threshold value. HONO elimination is the main reaction channel during the first stage because autocatalytic decomposition requires NO 2 and the concentration of NO 2 is initially low. As the reaction proceeds, the concentration of NO 2 gradually increases; when it exceeds the threshold value, the second stage begins, with autocatalytic decomposition becoming the main reaction channel.

  18. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complexe.

    PubMed

    Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling

    2018-06-14

    Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.

  19. Bacterial secondary production on vascular plant detritus: relationships to detritus composition and degradation rate.

    PubMed Central

    Moran, M A; Hodson, R E

    1989-01-01

    Bacterial production at the expense of vascular plant detritus was measured for three emergent plant species (Juncus effusus, Panicum hemitomon, and Typha latifolia) degrading in the littoral zone of a thermally impacted lake. Bacterial secondary production, measured as tritiated thymidine incorporation into DNA, ranged from 0.01 to 0.81 microgram of bacterial C mg of detritus-1 day-1. The three plant species differed with respect to the amount of bacterial productivity they supported per milligram of detritus, in accordance with the predicted biodegradability of the plant material based on initial nitrogen content, lignin content, and C/N ratio. Bacterial production also varied throughout the 22 weeks of in situ decomposition and was positively related to the nitrogen content and lignin content of the remaining detritus, as well as to the temperature of the lake water. Over time, production was negatively related to the C/N ratio and cellulose content of the degrading plant material. Bacterial production on degrading plant material was also calculated on the basis of plant surface area and ranged from 0.17 to 1.98 micrograms of bacterial C cm-2 day-1. Surface area-based calculations did not correlate well with either initial plant composition or changing composition of the remaining detritus during decomposition. The rate of bacterial detritus degradation, calculated from measured production of surface-attached bacteria, was much lower than the actual rate of weight loss of plant material. This discrepancy may be attributable to the importance of nonbacterial organisms in the degradation and loss of plant material from litterbags or to the microbially mediated solubilization of particulate material prior to bacterial utilization, or both. PMID:2802603

  20. Conversion of (Meth)acrylic acids to methane granular sludge: Initiation by specific anerobic microflora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.

    1995-03-01

    The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizingmore » propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.« less

  1. Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-tiazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger.

    PubMed

    Bhushan, Bharat; Halasz, Annamaria; Spain, Jim; Thiboutot, Sonia; Ampleman, Guy; Hawari, Jalal

    2002-07-15

    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can be efficiently mineralized with anaerobic domestic sludge, but the initial enzymatic processes involved in its transformation are unknown. To test the hypothesis that the initial reaction involves reduction of nitro group(s), we designed experiments to test the ability of a nitrate reductase (EC 1.6.6.2) to catalyze the initial reaction leading to ring cleavage and subsequent decomposition. A nitrate reductase from Aspergillus niger catalyzed the biotransformation of RDX most effectively at pH 7.0 and 30 degrees C under anaerobic conditions using NADPH as electron donor. LC/MS (ES-) chromatograms showed the formation of hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and methylenedinitramine as key initial products of RDX, but neither the dinitroso neither (DNX) nor trinitroso (TNX) derivatives were observed. None of the above detected products persisted, and their disappearance was accompanied by the accumulation of nitrous oxide (N20), formaldehyde (HCHO), and ammonium ion (NH4+). Stoichiometric studies showed that three NADPH molecules were consumed, and one molecule of methylenedinitramine was produced per RDX molecule. The carbon and nitrogen mass balances were 96.14% and 82.10%, respectively. The stoichiometries and mass balance measurements supported a mechanism involving initial transformation of RDX to MNX via a two-electron reduction mechanism. Subsequent reduction of MNX followed by rapid ring cleavage gave methylenedinitramine which in turn decomposed in water to produce quantitatively N2O and HCHO. The results clearly indicate that an initial reduction of a nitro group by nitrate reductase is sufficient for the decomposition of RDX.

  2. Validating the performance of one-time decomposition for fMRI analysis using ICA with automatic target generation process.

    PubMed

    Yao, Shengnan; Zeng, Weiming; Wang, Nizhuan; Chen, Lei

    2013-07-01

    Independent component analysis (ICA) has been proven to be effective for functional magnetic resonance imaging (fMRI) data analysis. However, ICA decomposition requires to optimize the unmixing matrix iteratively whose initial values are generated randomly. Thus the randomness of the initialization leads to different ICA decomposition results. Therefore, just one-time decomposition for fMRI data analysis is not usually reliable. Under this circumstance, several methods about repeated decompositions with ICA (RDICA) were proposed to reveal the stability of ICA decomposition. Although utilizing RDICA has achieved satisfying results in validating the performance of ICA decomposition, RDICA cost much computing time. To mitigate the problem, in this paper, we propose a method, named ATGP-ICA, to do the fMRI data analysis. This method generates fixed initial values with automatic target generation process (ATGP) instead of being produced randomly. We performed experimental tests on both hybrid data and fMRI data to indicate the effectiveness of the new method and made a performance comparison of the traditional one-time decomposition with ICA (ODICA), RDICA and ATGP-ICA. The proposed method demonstrated that it not only could eliminate the randomness of ICA decomposition, but also could save much computing time compared to RDICA. Furthermore, the ROC (Receiver Operating Characteristic) power analysis also denoted the better signal reconstruction performance of ATGP-ICA than that of RDICA. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Thermal decomposition of condensed-phase nitromethane from molecular dynamics from ReaxFF reactive dynamics.

    PubMed

    Han, Si-ping; van Duin, Adri C T; Goddard, William A; Strachan, Alejandro

    2011-05-26

    We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH(3)NO(2)) using molecular dynamics with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000-3000 K) and density 1.97 g/cm(3) for times up to 200 ps. At T = 3000 K the first reaction in the decomposition of nitromethane is an intermolecular proton transfer leading to CH(3)NOOH and CH(2)NO(2). For lower temperatures (T = 2500 and 2000 K) the first reaction during decomposition is often an isomerization reaction involving the scission of the C-N bond the formation of a C-O bond to form methyl nitrate (CH(3)ONO). Also at very early times we observe intramolecular proton transfer events. The main product of these reactions is H(2)O which starts forming following those initiation steps. The appearance of H(2)O marks the beginning of the exothermic chemistry. Recent quantum-mechanics-based molecular dynamics simulations on the chemical reactions and time scales for decomposition of a crystalline sample heated to T = 3000 K for a few picoseconds are in excellent agreement with our results, providing an important, direct validation of ReaxFF.

  4. [Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China].

    PubMed

    Yang, Lin; Deng, Chang-chun; Chen Ya-mei; He, Run-lian; Zhang, Jian; Liu, Yang

    2015-12-01

    The relationships between litter decomposition rate and their initial quality of 14 representative plants in the alpine forest ecotone of western Sichuan were investigated in this paper. The decomposition rate k of the litter ranged from 0.16 to 1.70. Woody leaf litter and moss litter decomposed much slower, and shrubby litter decomposed a little faster. Then, herbaceous litters decomposed fastest among all plant forms. There were significant linear regression relationships between the litter decomposition rate and the N content, lignin content, phenolics content, C/N, C/P and lignin/N. Lignin/N and hemicellulose content could explain 78.4% variation of the litter decomposition rate (k) by path analysis. The lignin/N could explain 69.5% variation of k alone, and the direct path coefficient of lignin/N on k was -0.913. Principal component analysis (PCA) showed that the contribution rate of the first sort axis to k and the decomposition time (t) reached 99.2%. Significant positive correlations existed between lignin/N, lignin content, C/N, C/P and the first sort axis, and the closest relationship existed between lignin/N and the first sort axis (r = 0.923). Lignin/N was the key quality factor affecting plant litter decomposition rate across the alpine timberline ecotone, with the higher the initial lignin/N, the lower the decomposition rate of leaf litter.

  5. Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston

    NASA Astrophysics Data System (ADS)

    Garber, Jonathan H.

    1984-06-01

    The decomposition of cultured marine phytoplankton ( Skeletonema costatum) and natural estuarine seston from Narragansett Bay, RI, was studied at two temperatures (8°C and 18°C) in bottles containing sterile bay-water (30‰) and in bay-water with micro-organisms small enough to pass through a glass fibre filter (nominally < 1μ). About 50% of the particulate organic nitrogen (PON) and particulate phosphorus (PP) was immediately released to the water in dissolved organic forms from both types of organic matter. Comparison of changes in the dissolved organic nitrogen (DON) fraction in the sterile and non-sterile systems indicated that nearly all of the DON initially released was subsequently remineralized. Ammonification proceeded only in non-sterile bay-water. 20-25% of the PP was converted to dissolved inorganic-P (DIP) fraction after only 7 h in both sterile and non-sterile bay-water. Following autolytic releases of DON, DOP and DIP the initial rates of N and P remineralization were temperature dependent: Q 10 values for PON and PP decay during first phase of microbially mediated decomposition ranged from 1·3 to 6·4. Rates of remineralization then slowed so that about equal amounts of nutrients were remineralized (45-50% of the N and 57-60% of the P in the phytoplankton and 60-63% of the N and 36-60% of the P in the natural seston) after 30 days storage at either temperature. During 30 days of decomposition in non-sterile seawater the N/P ratios in the dissolved inorganic fractions converged on the ratios of total-N/total-P initially present in the bottles. Kinetic analysis of the decay of total organic-N (TON) and total organic-P (TOP) in the non-sterile systems and analysis of similar sets found in the literature showed that the initial stages of the decomposition of N and P from planktonic POM in vitro could be modelled as the sequential decay, at first-order rates, of two particulate fractions. The first, more labile, fraction comprised about 60% of the particulate N and P. First-order rate constants (- k, base e) for decomposition during the 1st and 2nd phases were 0·02 to 0·2 day -1 and 0·003 to 0·02 day -1, respectively. The decay rates are far too slow to account for the 'rapid in situ recycling' of nutrients needed to support phytoplankton production when other means of nutrient resupply (by advection, fixation, rainfall, etc.) are very low.

  6. Electrochemical and Infrared Absorption Spectroscopy Detection of SF₆ Decomposition Products.

    PubMed

    Dong, Ming; Zhang, Chongxing; Ren, Ming; Albarracín, Ricardo; Ye, Rixin

    2017-11-15

    Sulfur hexafluoride (SF₆) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF₆ decomposition and ultimately generates several types of decomposition products. These SF₆ decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF₆ decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF₆ gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF₆ decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF₆ gas decomposition and is verified to reliably and accurately detect the gas components and concentrations.

  7. Decomposition and reactivity of tellurium alkyls in the liquid and gas phases; dihex-5-enyltellurium and dipent-4-enyltellurium as mechanistic probes

    NASA Astrophysics Data System (ADS)

    Bell, William; McQueen, A. Ewan D.; Walton, John C.; Foster, Douglas F.; Cole-Hamilton, David J.; Hails, Janet E.

    1992-02-01

    The new tellurium alkyls, dihex-5-enyltellurium and dipent-4-enyltellurium have been prepared and pyrolysed in the gas and liquid phases. in the liquid phase, at 200°C some decomposition occurs but the main isolated products are the tellurium alkyls, bis(cyclopentylmethyl)tellurium and 2-methyltelluracyclopentane respectively. A further product, cyclopentylmethylhex-5-enyltellurium is observed as an intermediate in the rearrangement of dihex-5-enyltellurium, whilst (2-telluracyclopentylmethyl)pent-4-enyltellurium together with pent-1-ene and 1,4-pentadiene is obtained from dipent-4-enyltellurium. These products are interpreted as providing direct evidence for initial homolytic cleavage of the Te-C bonds followed by cyclisation of some of the formed radicals and radical chain reactions. In the gas phase, at 500°C similar products to those obtained in the liquid phase are formed from dipent-4-enyltellurium, although not compounds containing more than one Te atom. Dihex-5-enyltellurium, however, decomposes completely in the gas phase at 700°C to give a mixture of hydrocarbons. Substantial quantities of methylcyclopentane and methylenecyclopentane again confirm that a free radical pathway makes a major contribution to the mechanism. The origin of the other products, especially cyclohexene (the major C 6 product) and cyclohexane is also interpreted in terms of a free radical mechanism leading to the 6-tellurahex-1-enyl radical which cyclises to give the 3-telluracycloheptylradical. This radical rearranges to cyclohexyl Te· which in turn acts as the source of cyclohexene and cyclohexane by H· abstraction or addition. There is little evidence that mechanisms other than free radical operate for decomposition of these metal alkyls.

  8. Development of rate expressions for the thermal decomposition of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, K.L.; Behrens, R. Jr.; Bulusu, S.

    Decomposition and combustion of energetic materials involve processes in both condensed and gas phases. Development of reliable models for design, performance, stability, and hazard analyses requires detailed understanding of the mechanisms for both the initial condensed phase decomposition of the energetic material and the subsequent reaction of the decomposition species to form the ultimate reaction products. Those mechanisms must be described in terms of constitutive rate expressions that can be incorporated into mathematical models. The thermal decomposition of RDX has been studied by Behrens and Bulusu using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS). Their work provides a basis formore » developing some of the constitutive rate expressions that are needed in models for design, performance, stability and hazard analyses involving RDX. Behrens and Bulusu have identified four primary reaction pathways that control the liquid-phase decomposition of RDX at temperatures between 200 and 215{degrees}C, and one that controls solid-phase decomposition at temperatures below 200{degrees}C. Two of the liquid-phase pathways appear to be first order in RDX. Arrhenius parameters for the first-order rate constants were evaluated from data reported by Behrens and Bulusu. Reaction rates extrapolated to temperatures between 370 and 450{degrees}C are in good agreement with global reaction rates observed by Trott et al. using high-speed photography and laser-heated thin-film samples. Furthermore, the STMBMS results of Behrens and Bulusu appear to be consistent with condensed-phase infrared results reported by Trott et al. and Erickson et al.« less

  9. Development of rate expressions for the thermal decomposition of RDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, K.L.; Behrens, R. Jr.; Bulusu, S.

    Decomposition and combustion of energetic materials involve processes in both condensed and gas phases. Development of reliable models for design, performance, stability, and hazard analyses requires detailed understanding of the mechanisms for both the initial condensed phase decomposition of the energetic material and the subsequent reaction of the decomposition species to form the ultimate reaction products. Those mechanisms must be described in terms of constitutive rate expressions that can be incorporated into mathematical models. The thermal decomposition of RDX has been studied by Behrens and Bulusu using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS). Their work provides a basis formore » developing some of the constitutive rate expressions that are needed in models for design, performance, stability and hazard analyses involving RDX. Behrens and Bulusu have identified four primary reaction pathways that control the liquid-phase decomposition of RDX at temperatures between 200 and 215[degrees]C, and one that controls solid-phase decomposition at temperatures below 200[degrees]C. Two of the liquid-phase pathways appear to be first order in RDX. Arrhenius parameters for the first-order rate constants were evaluated from data reported by Behrens and Bulusu. Reaction rates extrapolated to temperatures between 370 and 450[degrees]C are in good agreement with global reaction rates observed by Trott et al. using high-speed photography and laser-heated thin-film samples. Furthermore, the STMBMS results of Behrens and Bulusu appear to be consistent with condensed-phase infrared results reported by Trott et al. and Erickson et al.« less

  10. Initial decomposition of the condensed-phase β-HMX under shock waves: molecular dynamics simulations.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Ji, Guang-Fu; Chen, Xiang-Rong; Zhao, Feng; Wei, Dong-Qing

    2012-11-26

    We have performed quantum-based multiscale simulations to study the initial chemical processes of condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock wave loading. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. The results show that the initial decomposition of shocked HMX is triggered by the N-NO(2) bond breaking under the low velocity impact (8 km/s). As the shock velocity increases (11 km/s), the homolytic cleavage of the N-NO(2) bond is suppressed under high pressure, the C-H bond dissociation becomes the primary pathway for HMX decomposition in its early stages. It is accompanied by a five-membered ring formation and hydrogen transfer from the CH(2) group to the -NO(2) group. Our simulations suggest that the initial chemical processes of shocked HMX are dependent on the impact velocity, which gain new insights into the initial decomposition mechanism of HMX upon shock loading at the atomistic level, and have important implications for understanding and development of energetic materials.

  11. 46 CFR 95.16-1 - Application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... personnel created by the effects of extinguishing agent decomposition products and combustion products, especially the effects of decomposition product hydrogen fluoride (HF), if applicable; (3) Be accompanied by...

  12. 46 CFR 95.16-1 - Application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... personnel created by the effects of extinguishing agent decomposition products and combustion products, especially the effects of decomposition product hydrogen fluoride (HF), if applicable; (3) Be accompanied by...

  13. 46 CFR 95.16-1 - Application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... personnel created by the effects of extinguishing agent decomposition products and combustion products, especially the effects of decomposition product hydrogen fluoride (HF), if applicable; (3) Be accompanied by...

  14. Theoretical study of the decomposition pathways and products of C5- perfluorinated ketone (C5 PFK)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yuwei; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Li, Xi

    Due to the high global warming potential (GWP) and increasing environmental concerns, efforts on searching the alternative gases to SF{sub 6}, which is predominantly used as insulating and interrupting medium in high-voltage equipment, have become a hot topic in recent decades. Overcoming the drawbacks of the existing candidate gases, C5- perfluorinated ketone (C5 PFK) was reported as a promising gas with remarkable insulation capacity and the low GWP of approximately 1. Experimental measurements of the dielectric strength of this novel gas and its mixtures have been carried out, but the chemical decomposition pathways and products of C5 PFK during breakdownmore » are still unknown, which are the essential factors in evaluating the electric strength of this gas in high-voltage equipment. Therefore, this paper is devoted to exploring all the possible decomposition pathways and species of C5 PFK by density functional theory (DFT). The structural optimizations, vibrational frequency calculations and energy calculations of the species involved in a considered pathway were carried out with DFT-(U)B3LYP/6-311G(d,p) method. Detailed potential energy surface was then investigated thoroughly by the same method. Lastly, six decomposition pathways of C5 PFK decomposition involving fission reactions and the reactions with a transition states were obtained. Important intermediate products were also determined. Among all the pathways studied, the favorable decomposition reactions of C5 PFK were found, involving C-C bond ruptures producing Ia and Ib in pathway I, followed by subsequent C-C bond ruptures and internal F atom transfers in the decomposition of Ia and Ib presented in pathways II + III and IV + V, respectively. Possible routes were pointed out in pathway III and lead to the decomposition of IIa, which is the main intermediate product found in pathway II of Ia decomposition. We also investigated the decomposition of Ib, which can undergo unimolecular reactions to give the formation of IV a, IV b and products of CF{sub 3} + CF-CF{sub 3} in pathway IV. Although IV a is dominant to a lesser extent due to its relative high energy barrier, its complicated decomposition pathway V was also studied and CF{sub 3}, C = CF{sub 2} as well as C-CF{sub 3} species were found as the ultimate products. To complete the decomposition of C5 PFK, pathway V I of Ic decomposition was fully explored and the final products were obtained. Therefore, the integrate decomposition scheme of C5 PFK was proposed, which contains six pathways and forty-eight species (including all the reactants, products and transition states). This work is hopeful to lay a theoretical basis for the insulating properties of C5 PFK.« less

  15. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by post-mortem...

  16. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by post-mortem...

  17. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by post-mortem...

  18. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall be...

  19. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall be...

  20. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall be...

  1. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.93 Decomposition. Carcasses of poultry deleteriously affected by post mortem changes shall be...

  2. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Decomposition. 354.131 Section 354.131 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by post-mortem...

  3. Thermophilic methanogenesis in a hot-spring algal-bacterial mat (71 to 30/sup 0/C)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, D.M.

    1978-06-01

    Algal-bacterial mats which grow in the effluent channels of alkaline hot springs provided an environment suitable for studying natural thermophilic methane-producing bacteria. Methane was rapidly produced in cores taken from the mat and appeared to be an end product of decomposition of the algal-bacterial organic matter. Formaldehyde prevented production of methane. Initial methanogenic rate was lower and methanogenesis became exponential when samples were permitted to cool before laboratory incubation. Methanogenesis occurred and methanogenic bateria were present over a range of 68 to 30/sup 0/C, with optimum methanogenesis near 45/sup 0/C. The temperature distribution of methanogenesis in the mat is discussedmore » relative to published results on standing crop, primary production, and decomposition in the thermal gradient. The depth distribution of methanogenesis was similar to that of freshwater sediments, with a zone of intense methanogenesis near the mat surface. Methanogenesis in deeper mat layers was very low or undetectable despite large numbers of viable methanogenic bacteria and could not be stimulated by addition of anoxic source water, sulfide, or a macronutrient solution.« less

  4. Effect of CaO on the selectivity of N2O decomposition products: A combined experimental and DFT study

    NASA Astrophysics Data System (ADS)

    Wu, Lingnan; Hu, Xiaoying; Qin, Wu; Gao, Pan; Dong, Changqing; Yang, Yongping

    2016-09-01

    The effect of CaO on N2O decomposition and the selectivity of its decomposition products (NO and N2) was investigated using a fixed-bed flow reactor with varying temperatures from 317 °C to 947 °C. The selectivity of NO from CaO-catalyzed N2O decomposition is much lower than the N2 selectivity with the N2/NO products ratio greater than 12.1. Compared to N2O homogeneous decomposition with the minimum N2/NO products ratio of 6.2 at 718 °C, CaO also decreases the NO selectivity from 718 °C to 947 °C. Density functional theory calculations provide possible N2O decomposition routes on the CaO (1 0 0) surface considering both N2 and NO as N2O decomposition products. The N2 formation route is more favorable than the NO formation route in terms of energy barrier and reaction energy, and NO formation on the CaO (1 0 0) surface is likely to proceed via N2O + Osurf2- → N2 + O2 , surf2- and N2O + O2 , surf2- → 2NO + Osurf2-.

  5. Electrochemical and Infrared Absorption Spectroscopy Detection of SF6 Decomposition Products

    PubMed Central

    Dong, Ming; Ren, Ming; Ye, Rixin

    2017-01-01

    Sulfur hexafluoride (SF6) gas-insulated electrical equipment is widely used in high-voltage (HV) and extra-high-voltage (EHV) power systems. Partial discharge (PD) and local heating can occur in the electrical equipment because of insulation faults, which results in SF6 decomposition and ultimately generates several types of decomposition products. These SF6 decomposition products can be qualitatively and quantitatively detected with relevant detection methods, and such detection contributes to diagnosing the internal faults and evaluating the security risks of the equipment. At present, multiple detection methods exist for analyzing the SF6 decomposition products, and electrochemical sensing (ES) and infrared (IR) spectroscopy are well suited for application in online detection. In this study, the combination of ES with IR spectroscopy is used to detect SF6 gas decomposition. First, the characteristics of these two detection methods are studied, and the data analysis matrix is established. Then, a qualitative and quantitative analysis ES-IR model is established by adopting a two-step approach. A SF6 decomposition detector is designed and manufactured by combining an electrochemical sensor and IR spectroscopy technology. The detector is used to detect SF6 gas decomposition and is verified to reliably and accurately detect the gas components and concentrations. PMID:29140268

  6. Carbon-coated copper nanoparticles prepared by detonation method and their thermocatalysis on ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    An, Chongwei; Ding, Penghui; Ye, Baoyun; Geng, Xiaoheng; Wang, Jingyu

    2017-03-01

    Carbon-coated copper nanoparticles (CCNPs) were prepared by initiating a high-density charge pressed with a mixture of microcrystalline wax, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and copper nitrate hydrate (Cu(NO3)2.3H2O) in an explosion vessel filled with nitrogen gas. The detonation products were characterized by transmission electron microcopy (TEM), high resolution transmission electron microcopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy. The effects of CCNPs on thermal decomposition of ammonium perchlorate (AP) were also investigated by differential scanning calorimeter (DSC). Results indicated that the detonation products were spherical, 25-40 nm in size, and had an apparent core-shell structure. In this structure, the carbon shell was 3-5 nm thick and mainly composed of graphite, C8 (a kind of carbyne), and amorphous carbon. When 5 wt.% CCNPs was mixed with 95 wt.% AP, the high-temperature decomposition peak of AP decreased by 95.97, 96.99, and 96.69 °Cat heating rates of 5, 10, and 20 °C/min, respectively. Moreover, CCNPs decreased the activation energy of AP as calculated through Kissinger's method by 25%, which indicated outstanding catalysis for the thermal decomposition of AP.

  7. ESR evidence for radical production from the reaction of ozone with unsaturated lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, D.F.; McAdams, M.L..; Pryor, W.A.

    1991-03-15

    The authors report electron spin resonance (ESR) spin trapping evidence for radical production by the reaction of ozone with unsaturated compounds. Soy and egg phosphatidylcholine liposomes, fatty acid emulsions, and homogeneous aqueous solutions of 3-hexenoic acid were treated with ozone in the presence of the spin trap {alpha}-phenyl-N-tert-butyl nitrone (PBN). Under these conditions, they observe spin adducts resulting from the trapping of both organic carbon- and oxygen-centered radicals. When the lipid-soluble antioxidant alpha-tocopherol is included in the liposomal systems, the formation of spin adducts is completely inhibited. The authors suggest that radicals giving rise to these spin adducts arise formmore » the rapid decomposition of the 1,2,3-trioxolane intermediate that is initially formed when ozone reacts with the carbon-carbon double bonds of the substrates. These free radicals are not formed by the decomposition of the Criegee ozonide, since little of the ozonide is formed in the presence of water. Although hydrogen peroxide is the predominate peroxidic product of the ozone/alkene reaction, its decomposition is not responsible for the observed radical production since neither catalase nor iron chelators significantly affect the spin adduct yield. The radical yield is approximately 1%. Since a polyunsaturated fatty acid (PUFA) such as linoleic acid produces much higher concentrations of spin trappable radicals than does the monounsaturated fatty oleic acid, the results also suggest that sites in the lung containing higher levels of PUFA may be an important target for radical formation.« less

  8. The initial changes of fat deposits during the decomposition of human and pig remains.

    PubMed

    Notter, Stephanie J; Stuart, Barbara H; Rowe, Rebecca; Langlois, Neil

    2009-01-01

    The early stages of adipocere formation in both pig and human adipose tissue in aqueous environments have been investigated. The aims were to determine the short-term changes occurring to fat deposits during decomposition and to ascertain the suitability of pigs as models for human decomposition. Subcutaneous adipose tissue from both species after immersion in distilled water for up to six months was compared using Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry and inductively coupled plasma-mass spectrometry. Changes associated with decomposition were observed, but no adipocere was formed during the initial month of decomposition for either tissue type. Early-stage adipocere formation in pig samples during later months was detected. The variable time courses for adipose tissue decomposition were attributed to differences in the distribution of total fatty acids between species. Variations in the amount of sodium, potassium, calcium, and magnesium were also detected between species. The study shows that differences in total fatty acid composition between species need to be considered when interpreting results from experimental decomposition studies using pigs as human body analogs.

  9. Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions.

    PubMed

    Yang, Man; Chen, Xianfeng; Wang, Yujie; Yuan, Bihe; Niu, Yi; Zhang, Ying; Liao, Ruoyu; Zhang, Zumin

    2017-09-05

    In order to analyze the thermal decomposition characteristics of ammonium nitrate (AN), its thermal behavior and stability under different conditions are studied, including different atmospheres, heating rates and gas flow rates. The evolved decomposition gases of AN in air and nitrogen are analyzed with a quadrupole mass spectrometer. Thermal stability of AN at different heating rates and gas flow rates are studied by differential scanning calorimetry, thermogravimetric analysis, paired comparison method and safety parameter evaluation. Experimental results show that the major evolved decomposition gases in air are H 2 O, NH 3 , N 2 O, NO, NO 2 and HNO 3 , while in nitrogen, H 2 O, NH 3 , NO and HNO 3 are major components. Compared with nitrogen atmosphere, lower initial and end temperatures, higher heat flux and broader reaction temperature range are obtained in air. Meanwhile, higher air gas flow rate tends to achieve lower reaction temperature and to reduce thermal stability of AN. Self-accelerating decomposition temperature of AN in air is much lower than that in nitrogen. It is considered that thermostability of AN is influenced by atmosphere, heating rate and gas flow rate, thus changes of boundary conditions will influence its thermostability, which is helpful to its safe production, storage, transportation and utilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. HNO and NO release from a primary amine-based diazeniumdiolate as a function of pH

    PubMed Central

    Salmon, Debra J.; Torres de Holding, Claudia L.; Thomas, Lynta; Peterson, Kyle V.; Goodman, Gens P.; Saavedra, Joseph E.; Srinivasan, Aloka; Davies, Keith M.; Keefer, Larry K.; Miranda, Katrina M.

    2011-01-01

    The growing evidence that nitroxyl (HNO) has a rich pharmacological potential that differs from that of nitric oxide (NO) has intensified interest in HNO donors. Recently, the diazeniumdiolate (NONOate) based on isopropylamine (IPA/NO; Na[(CH3)2CHNH(N(O)NO)]) was demonstrated to function under physiological conditions as an organic analogue to the commonly used HNO donor Angeli’s salt (Na2N2O3). The decomposition mechanism of Angeli’s salt is dependent on pH, with transition from an HNO to an NO donor occurring abruptly near pH 3. Here, pH is shown to also affect product formation from IPA/NO. Chemical analysis of HNO and NO production led to refinement of an earlier, quantum mechanically based prediction of the pH-dependent decomposition mechanisms of primary amine NONOates such as IPA/NO. Under basic conditions, the amine proton of IPA/NO is able to initiate decomposition to HNO by tautomerization to the nitroso nitrogen (N2). At lower pH, protonation activates a competing pathway to NO production. At pH 8, the donor properties of IPA/NO and Angeli’s salt are demonstrated to be comparable, suggesting that at or above this pH, IPA/NO is primarily an HNO donor. Below pH 5, NO is the major product, while IPA/NO functions as a dual donor of HNO and NO at intermediate pH. This pH-dependent variability in product formation may prove useful in examination of the chemistry of NO and HNO. Furthermore, primary amine NONOates may serve as a tunable class of nitrogen oxide donor. PMID:21405089

  11. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G [Westmont, IL; Thiyagarajan, Pappannan [Germantown, MD

    2012-04-10

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically egg-shaped and spherical-shaped solid carbons. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  12. Basic dye decomposition kinetics in a photocatalytic slurry reactor.

    PubMed

    Wu, Chun-Hsing; Chang, Hung-Wei; Chern, Jia-Ming

    2006-09-01

    Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 degrees C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well.

  13. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.

    PubMed

    Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam

    2010-09-02

    Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.

  14. Leaf and root litter decomposition is discontinued at high altitude tropical montane rainforests contributing to carbon sequestration.

    PubMed

    Marian, Franca; Sandmann, Dorothee; Krashevska, Valentyna; Maraun, Mark; Scheu, Stefan

    2017-08-01

    We investigated how altitude affects the decomposition of leaf and root litter in the Andean tropical montane rainforest of southern Ecuador, that is, through changes in the litter quality between altitudes or other site-specific differences in microenvironmental conditions. Leaf litter from three abundant tree species and roots of different diameter from sites at 1,000, 2,000, and 3,000 m were placed in litterbags and incubated for 6, 12, 24, 36, and 48 months. Environmental conditions at the three altitudes and the sampling time were the main factors driving litter decomposition, while origin, and therefore quality of the litter, was of minor importance. At 2,000 and 3,000 m decomposition of litter declined for 12 months reaching a limit value of ~50% of initial and not decomposing further for about 24 months. After 36 months, decomposition commenced at low rates resulting in an average of 37.9% and 44.4% of initial remaining after 48 months. In contrast, at 1,000 m decomposition continued for 48 months until only 10.9% of the initial litter mass remained. Changes in decomposition rates were paralleled by changes in microorganisms with microbial biomass decreasing after 24 months at 2,000 and 3,000 m, while varying little at 1,000 m. The results show that, irrespective of litter origin (1,000, 2,000, 3,000 m) and type (leaves, roots), unfavorable microenvironmental conditions at high altitudes inhibit decomposition processes resulting in the sequestration of carbon in thick organic layers.

  15. Shock chemistry in SX358 foams

    NASA Astrophysics Data System (ADS)

    Maerzke, Katie; Coe, Joshua; Fredenburg, Anthony; Lang, John; Dattelbaum, Dana

    2017-06-01

    We have developed new equation of state models for SX358, a cross-linked PDMS polymer. Recent experiments on SX358 over a range of initial densities (0-65% porous) have yielded new data that allow for a more thorough calibration of the equations of state. SX358 chemically decomposes under shock compression, as evidenced by a cusp in the shock locus. We therefore treat this material using two equations of state, specifically a SESAME model for the unreacted material and a free energy minimization assuming full chemical and thermodynamic equilibrium for the decomposition products. The shock locus of porous SX358 is found to be ``anomalous'' in that the decomposition reaction causes a volume expansion, rather than a volume collapse. Similar behavior has been observed in other polymer foams, notably polyurethane.

  16. Can species-specific differences in foliar chemistry influence leaf litter decomposition in grassland species?

    NASA Astrophysics Data System (ADS)

    Sanaullah, M.; Chabbi, A.; Rumpel, C.

    2009-04-01

    The influence of litter quality on its rate of decomposition is a crucial aspect of C cycle. In this study we concentrated on grassland ecosystems where leaf litter is one of the major sources of C input. To quantify the contribution of initial leaf chemistry within different plant species, the decomposition of chemically different leaf litter of three grassland species (Lolium perenne, Festuca arundinacea and Dactylis glomerata) was monitored, using the litter bag technique. Litter of different maturity stages i.e. green (fresh leaves) and brown litter (brown leaves were still attached to the plant), were incubated on bare soil surface. Samples were taken at different time intervals (0, 2, 4, 8, 20 and 44 weeks) and were analyzed for mass loss, organic C and N contents and stable isotopic signatures (C and N). Changes in litter chemistry were addressed by determining lignin-derived phenols after CuO oxidation and non-cellulosic polysaccharides after acid hydrolysis followed by gas chromatography. Green litter was chemically different from brown litter due to higher initial N and lower lignin contents. While in grassland species, both L. perenne and D. glomerata were similar in their initial chemical composition compared with F. arundinacea. Green litter showed higher rate of degradation. In green litter, Percent lignin remaining of initial (% OI) followed the similar decomposition pattern as of C remaining indicating lignin as controlling factor in decomposition. Constant Acid-to-Aldehyde ratios of lignin-derived phenols (vanillyl and syringyl) did not suggest any transformation in lignin structures. In green litter, increase in non-cellulosic polysaccharides ratios (C6/C5 and deoxy/C5) proposed microbial-derived sugars, while there was no significant increase in these ratios in brown litter. In conclusion, due to the differences in initial chemical composition (initial N and lignin contents), green litter decomposition was higher than brown litter in all grassland species. Regardless of similarities in initial composition of grassland species, green and brown litter of Lolium perenne decomposed more rapidly compared with other two species. So, Species related differences in initial litter chemistry did not control its degradation.

  17. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting.

    PubMed

    Nakasaki, Kiyohiko; Ohtaki, Akihito; Takemoto, Minoru; Fujiwara, Shunrokuro

    2011-03-01

    The effect of various operational conditions on the decomposition of organic material during the composting of night-soil treatment sludge was quantitatively examined. The optimum composting conditions were found to be a temperature of ca. 60°C and an initial pH value of 8. Rapid decomposition of organic matter ceased by the sixth day of composting under these optimum conditions, and the final value of the cumulative emission of carbon (E(C)), which represents the degree of organic matter decomposition, was less than 40%, indicating that the sludge contained only a small amount of easily degradable organic material. A plant growth assay using Komatsuna (Brassica campestris L. var. rapiferafroug) in a 1/5000a standard cultivation pot was then conducted for the compost at various degrees of organic matter decomposition: the raw composting material, the final compost obtained on day 6, and the 2 intermediate compost products (i.e., E(C)=10% and 20%). It was found that the larger the E(C), the greater the yield of Komatsuna growth. It was also found that 6 days of composting is sufficient to promote Komatsuna growth at the standard loading level, which is equivalent to a 1.5 g N/pot, since the promotion effect was as high as that obtained using chemical fertilizer. It can therefore be concluded that well-matured compost could be obtained in a short period of time (i.e., as early as 6 days), when night-soil sludge is composted under optimum conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Decomposition of the polycyclic nitramine explosive, CL-20, by Fe(0).

    PubMed

    Balakrishnan, Vimal K; Monteil-Rivera, Fanny; Halasz, Annamaria; Corbeanu, Aurelian; Hawari, Jalal

    2004-12-15

    CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), C6H6N12O12, is an emerging energetic chemical that may replace RDX, but its degradation pathways are not well-known. In the present study, zerovalent iron was used to degrade CL-20 with the aim of determining its products and degradation pathways. In the absence of O2, CL-20 underwent a rapid decomposition with the concurrent formation of nitrite to ultimately produce nitrous oxide, ammonium, formate, glyoxal, and glycolate. LC/MS (ES-) showed the presence of several key products carrying important information on the initial reactions involved in the degradation of CL-20. For instance, a doubly denitrated intermediate of CL-20 was detected together with the mono- and dinitroso derivatives of the energetic chemical. Two other intermediates with [M-H]- at 392 and 376 Da, matching empirical formulas of C6H7N11O10 and C6H7N11O9, respectively, were detected. Using 15N-labeled CL-20, the two intermediates were tentatively identified as the denitrohydrogenated products of CL-20 and its mononitroso derivative, respectively. The present experimental findings suggest that CL-20 degraded via at least two initial routes: one involving denitration and the second involving sequential reduction of the N-NO2 to the corresponding nitroso (N-NO) derivatives prior to denitration and ring cleavage.

  19. Effects of additives on 2,4,6-trinitrotoluene (TNT) removal and its mineralization in aqueous solution by gamma irradiation.

    PubMed

    Lee, Byungjin; Jeong, Seung-Woo

    2009-06-15

    The effects of additives (i.e., methanol, EDTA, mannitol, thiourea, nitrous oxide, oxygen and ozone) on gamma irradiation of 2,4,6-trinitrotoluene (TNT) were investigated to elucidate the initial reaction mechanism of TNT degradation and suggest an practical method for complete by-product removal. All additives, except thiourea, significantly increased the TNT removal efficiency by gamma irradiation. The overall results of the additive experiments implied that the TNT decomposition would be initiated by *OH, e(aq)(-), and HO(2*)/O(2*)(-), and also implied that *H did not have any direct effect on the TNT decomposition. Additions of methanol and nitrous oxide were more effective in TNT removal than the other additives, achieving complete removal of TNT at doses below 20 kGy. Total organic carbon (TOC) of the irradiated solution was analyzed to evaluate the degree of TNT mineralization under the additive conditions. TOC under the nitrous oxide addition was removed rapidly, and complete TNT mineralization was thus achieved at 50 kGy. Methanol addition was very effective in the TNT removal, but it was not effective in reduction in TOC. Trinitrobenzene (TNB), oxalic acid and glyoxalic acid were detected as radiolytic organic by-products, while ammonia and nitrate were detected as radiolytic inorganic by-products. The most efficient TNT removal and its mineralization by gamma irradiation would be achieved by supersaturating the solution with nitrous oxide before irradiation.

  20. Decomposition of dimethylamine gas with dielectric barrier discharge.

    PubMed

    Ye, Zhaolian; Zhao, Jie; Huang, Hong ying; Ma, Fei; Zhang, Renxi

    2013-09-15

    The decomposition of dimethylamine (DMA) with gas under high flow rate was investigated with dielectric barrier discharge (DBD) technology. Different parameters including removal efficiency, energy yield, carbon balance and CO2 selectivity, secondary products, as well as pathways and mechanisms of DMA degradation were studied. The experimental results showed that removal efficiency of DMA depended on applied voltage and gas flow rate, but had no obvious correlation with initial concentration. Excellent energy performance was obtained using present DBD technology for DMA abatement. When experiment conditions were controlled at: gas flow rate of 14.9 m(3)/h, initial concentration of 2104 mg/m(3), applied voltage of 4.8 kV, removal efficiency of DMA and energy yield can reach 85.2% and 953.9 g/kWh, respectively. However, carbon balance (around 40%) was not ideal due to shorter residence time (about 0.1s), implying that some additional conditions should be considered to improve the total oxidation of DMA. Moreover, secondary products in outlet gas stream were detected via gas chromatogram-mass spectrum and the amounts of NO3(-) and NO2(-) were analyzed by ion chromatogram. The obtained data demonstrated that NOx might be suppressed due to reductive NH radical form DMA dissociation. The likely reaction pathways and mechanisms for the removal of DMA were suggested based on products analysis. Experimental results demonstrated the application potential of DBD as a clean technology for organic nitrogen-containing gas elimination from gas streams. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Research on technology of online gas chromatograph for SF6 decomposition products

    NASA Astrophysics Data System (ADS)

    Li, L.; Fan, X. P.; Zhou, Y. Y.; Tang, N.; Zou, Z. L.; Liu, M. Z.; Huang, G. J.

    2017-12-01

    Sulfur hexafluoride (SF6) decomposition products were qualitatively and quantitatively analyzed by several gas chromatographs in the laboratory. Test conditions and methods were selected and optimized to minimize and eliminate the SF6’ influences on detection of other trace components. The effective separation and detection of selected characteristic gases were achieved. And by comparison among different types of gas chromatograph, it was found that GPTR-S101 can effectively separate and detect SF6 decomposition products and has best the best detection limit and sensitivity. On the basis of GPTR-S101, online gas chromatograph for SF6decomposition products (GPTR-S201) was developed. It lays the foundation for further online monitoring and diagnosis of SF6.

  2. Process for remediation of plastic waste

    DOEpatents

    Pol, Vilas G; Thiyagarajan, Pappannan

    2013-11-12

    A single step process for degrading plastic waste by converting the plastic waste into carbonaceous products via thermal decomposition of the plastic waste by placing the plastic waste into a reactor, heating the plastic waste under an inert or air atmosphere until the temperature of about 700.degree. C. is achieved, allowing the reactor to cool down, and recovering the resulting decomposition products therefrom. The decomposition products that this process yields are carbonaceous materials, and more specifically carbon nanotubes having a partially filled core (encapsulated) adjacent to one end of the nanotube. Additionally, in the presence of a transition metal compound, this thermal decomposition process produces multi-walled carbon nanotubes.

  3. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community.

    PubMed

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices.

  4. Effects of Residue Management on Decomposition in Irrigated Rice Fields Are Not Related to Changes in the Decomposer Community

    PubMed Central

    Schmidt, Anja; John, Katharina; Arida, Gertrudo; Auge, Harald; Brandl, Roland; Horgan, Finbarr G.; Hotes, Stefan; Marquez, Leonardo; Radermacher, Nico; Settele, Josef; Wolters, Volkmar; Schädler, Martin

    2015-01-01

    Decomposers provide an essential ecosystem service that contributes to sustainable production in rice ecosystems by driving the release of nutrients from organic crop residues. During a single rice crop cycle we examined the effects of four different crop residue management practices (rice straw or ash of burned straw scattered on the soil surface or incorporated into the soil) on rice straw decomposition and on the abundance of aquatic and soil-dwelling invertebrates. Mass loss of rice straw in litterbags of two different mesh sizes that either prevented or allowed access of meso- and macro-invertebrates was used as a proxy for decomposition rates. Invertebrates significantly increased total loss of litter mass by up to 30%. Initially, the contribution of invertebrates to decomposition was significantly smaller in plots with rice straw scattered on the soil surface; however, this effect disappeared later in the season. We found no significant responses in microbial decomposition rates to management practices. The abundance of aquatic fauna was higher in fields with rice straw amendment, whereas the abundance of soil fauna fluctuated considerably. There was a clear separation between the overall invertebrate community structure in response to the ash and straw treatments. However, we found no correlation between litter mass loss and abundances of various lineages of invertebrates. Our results indicate that invertebrates can contribute to soil fertility in irrigated paddy fields by decomposing rice straw, and that their abundance as well as efficiency in decomposition may be promoted by crop residue management practices. PMID:26225556

  5. Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates

    Treesearch

    E. Carol Adair; William J. Parton; Steven J. Del Grosso; Shendee L. Silver; Mark E. Harmon; Sonia A. Hall; Ingrid C. Burke; Stephen C. Hart

    2008-01-01

    As atmospheric CO2 increases, ecosystem carbon sequestration will largely depend on how global changes in climate will alter the balance between net primary production and decomposition. The response of primary production to climatic change has been examined using well-validated mechanistic models, but the same is not true for decomposition, a...

  6. Kinetics of the cellular decomposition of supersaturated solid solutions

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Naumuk, A. Yu.

    2014-09-01

    A consistent description of the kinetics of the cellular decomposition of supersaturated solid solutions with the development of a spatially periodic structure of lamellar (platelike) type, which consists of alternating phases of precipitates on the basis of the impurity component and depleted initial solid solution, is given. One of the equations, which determines the relationship between the parameters that describe the process of decomposition, has been obtained from a comparison of two approaches in order to determine the rate of change in the free energy of the system. The other kinetic parameters can be described with the use of a variational method, namely, by the maximum velocity of motion of the decomposition boundary at a given temperature. It is shown that the mutual directions of growth of the lamellae of different phases are determined by the minimum value of the interphase surface energy. To determine the parameters of the decomposition, a simple thermodynamic model of states with a parabolic dependence of the free energy on the concentrations has been used. As a result, expressions that describe the decomposition rate, interlamellar distance, and the concentration of impurities in the phase that remain after the decomposition have been derived. This concentration proves to be equal to the half-sum of the initial concentration and the equilibrium concentration corresponding to the decomposition temperature.

  7. Atomic-batched tensor decomposed two-electron repulsion integrals

    NASA Astrophysics Data System (ADS)

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-01

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  8. Atomic-batched tensor decomposed two-electron repulsion integrals.

    PubMed

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-07

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  9. DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Liu, D.; Gao, Z. Y.; Wang, X. C.; Zeng, J.; Li, Y. M.

    2017-12-01

    Recently, it has been reported that the hydrogen production rate of formic acid decomposition can be significantly increased using Pd-Au binary alloy nano-catalysts [Wang et al. J. Mater. Chem. A 1 (2013) 12721-12725]. To explain the reaction mechanism of this alloy catalysis method, formic acid decomposition reactions on pure Pd and Pd-Au alloy nanoclusters are studied via density functional theory simulations. The simulation results indicate that the addition of inert element Au would not influence formic acid decomposition on Pd surface sites of Pd-Au alloy nanoclusters. On the other hand, the existence of Au surface sites brings relative weak hydrogen atom adsorption. On Pd-Au alloy nanoclusters, the dissociated hydrogen atoms from formic acid are easier to combine as hydrogen molecules than that on pure Pd clusters. Via the synergetic effect between Pd and Au, both formic acid decomposition and hydrogen production are events with large probability, which eventually results in high hydrogen production rate.

  10. Composition of riparian litter input regulates organic matter decomposition: Implications for headwater stream functioning in a managed forest landscape.

    PubMed

    Lidman, Johan; Jonsson, Micael; Burrows, Ryan M; Bundschuh, Mirco; Sponseller, Ryan A

    2017-02-01

    Although the importance of stream condition for leaf litter decomposition has been extensively studied, little is known about how processing rates change in response to altered riparian vegetation community composition. We investigated patterns of plant litter input and decomposition across 20 boreal headwater streams that varied in proportions of riparian deciduous and coniferous trees. We measured a suite of in-stream physical and chemical characteristics, as well as the amount and type of litter inputs from riparian vegetation, and related these to decomposition rates of native (alder, birch, and spruce) and introduced (lodgepole pine) litter species incubated in coarse- and fine-mesh bags. Total litter inputs ranged more than fivefold among sites and increased with the proportion of deciduous vegetation in the riparian zone. In line with differences in initial litter quality, mean decomposition rate was highest for alder, followed by birch, spruce, and lodgepole pine (12, 55, and 68% lower rates, respectively). Further, these rates were greater in coarse-mesh bags that allow colonization by macroinvertebrates. Variance in decomposition rate among sites for different species was best explained by different sets of environmental conditions, but litter-input composition (i.e., quality) was overall highly important. On average, native litter decomposed faster in sites with higher-quality litter input and (with the exception of spruce) higher concentrations of dissolved nutrients and open canopies. By contrast, lodgepole pine decomposed more rapidly in sites receiving lower-quality litter inputs. Birch litter decomposition rate in coarse-mesh bags was best predicted by the same environmental variables as in fine-mesh bags, with additional positive influences of macroinvertebrate species richness. Hence, to facilitate energy turnover in boreal headwaters, forest management with focus on conifer production should aim at increasing the presence of native deciduous trees along streams, as they promote conditions that favor higher decomposition rates of terrestrial plant litter.

  11. The Spatial Variability of Organic Matter and Decomposition Processes at the Marsh Scale

    NASA Astrophysics Data System (ADS)

    Yousefi Lalimi, Fateme; Silvestri, Sonia; D'Alpaos, Andrea; Roner, Marcella; Marani, Marco

    2017-04-01

    Coastal salt marshes sequester carbon as they respond to the local Rate of Relative Sea Level Rise (RRSLR) and their accretion rate is governed by inorganic soil deposition, organic soil production, and soil organic matter (SOM) decomposition. It is generally recognized that SOM plays a central role in marsh vertical dynamics, but while existing limited observations and modelling results suggest that SOME varies widely at the marsh scale, we lack systematic observations aimed at understanding how SOM production is modulated spatially as a result of biomass productivity and decomposition rate. Marsh topography and distance to the creek can affect biomass and SOM production, while a higher topographic elevation increases drainage, evapotranspiration, aeration, thereby likely inducing higher SOM decomposition rates. Data collected in salt marshes in the northern Venice Lagoon (Italy) show that, even though plant productivity decreases in the lower areas of a marsh located farther away from channel edges, the relative contribution of organic soil production to the overall vertical soil accretion tends to remain constant as the distance from the channel increases. These observations suggest that the competing effects between biomass production and aeration/decomposition determine a contribution of organic soil to total accretion which remains approximately constant with distance from the creek, in spite of the declining plant productivity. Here we test this hypothesis using new observations of SOM and decomposition rates from marshes in North Carolina. The objective is to fill the gap in our understanding of the spatial distribution, at the marsh scale, of the organic and inorganic contributions to marsh accretion in response to RRSLR.

  12. Effect of temperature on methanogenesis stage of two-stage anaerobic digestion of palm oil mill effluent (POME) into biogas

    NASA Astrophysics Data System (ADS)

    Trisakti, B.; Irvan, Mahdalena; Taslim; Turmuzi, M.

    2017-06-01

    This study aimed to determine the effect of temperature on methanogenesis stage of conversion of palm oil mill effluent into biogas. Methanogenesis is the second stage of methanogenic anaerobic digestion. Improved performance of the methanogenesis process was determined by measuring the growth of microorganisms, degradation of organic materials, biogas production and composition. Initially, the suitable loading up was determined by varying the HRT 100, 40, 6, and 4.0 days in the continuous stirred tank reactor (CSTR) with mixing rate 100 rpm, pH 6.7-7.5 at room temperature. Next, effect of temperature on the process was determined by varying temperature at mesophilic range (30-42°C) and thermophilic range (43-55°C). Analysis of total solids (TS), volatile solids (VS), total suspended solids (TSS), volatile suspended solids (VSS), and chemical oxygen demand (COD) were conducted in order to study the growth of microorganisms and their abilities in converting organic compound to produce biogas. Degradation of organic content i.e. VS decomposition and COD removal increased with the increasing of temperature. At mesophilic range, VS decomposition and COD removal were 51.56 ± 8.30 and 79.82 ± 6.03, respectively. Meanwhile at thermopilic range, VS decomposition and COD removal were 67.44 ± 3.59 and 79.16 ± 1.75, respectively. Biogas production and its methane content also increased with the increasing of temperature, but CO2 content also increased. Biogas production at mesophilic range was 31.77 ± 3.46 L/kg-ΔVS and methane content was 75 . Meanwhile, biogas production at thermopilic range was 37.03 ± 5.16 L/kg-ΔVS and methane content was 62.25 ± 5.50 .

  13. Factors Influencing Decomposition of Surface Litter from the Cerrado in Central Brazil

    EPA Science Inventory

    It is well-established that light-induced decomposition can accelerate the decomposition of the organic matter in aquatic environments. In this study, using the production of carbon monoxide as an indicator of decomposition, we investigated the wavelength dependence of the photod...

  14. Explosive decomposition of hydrazine by rapid compression of a gas volume

    NASA Technical Reports Server (NTRS)

    Bunker, R. L.; Baker, D. L.; Lee, J. H. S.

    1991-01-01

    In the present investigation of the initiation mechanism and the explosion mode of hydrazine decomposition, a 20 cm-long column of liquid hydrazine was accelerated into a column of gaseous nitrogen, from which it was separated by a thin Teflon diaphragm, in a close-ended cylindrical chamber. Video data obtained reveal the formation of a froth generated by the acceleration of hydrazine into nitrogen at the liquid hydrazine-gaseous nitrogen interface. The explosive hydrazine decomposition had as its initiation mechanism the formation of a froth at a critical temperature; the explosion mode of hydrazine is a confined thermal runaway reaction.

  15. 9 CFR 381.93 - Decomposition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Decomposition. 381.93 Section 381.93 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... CERTIFICATION POULTRY PRODUCTS INSPECTION REGULATIONS Post Mortem Inspection; Disposition of Carcasses and Parts...

  16. Behavior of decomposition of rifampicin in the presence of isoniazid in the pH range 1-3.

    PubMed

    Sankar, R; Sharda, Nishi; Singh, Saranjit

    2003-08-01

    The extent of decomposition of rifampicin in the presence of isoniazid was determined in the pH range 1-3 at 37 degrees C in 50 min, the mean stomach residence time. With increase in pH, the degradation initially increased from pH 1 to 2 and then decreased, resulting in a bell-shaped pH-decomposition profile. This showed that rifampicin degraded in the presence of isoniazid to a higher extent at pH 2, the maximum pH in the fasting condition, under which antituberculosis fixed-dose combination (FDC) products are administered. At this pH and in 50 min, rifampicin decomposed by approximately 34%, while the fall of isoniazid was 10%. The extent of decomposition for the two drugs was also determined in marketed formulations, and the values ranged between 13-35% and 4-11%, respectively. The extents of decomposition at stomach residence times of 15 min and 3 h were 11.94% and 62.57%, respectively, for rifampicin and 4.78% and 11.12%, respectively, for isoniazid. The results show that quite an extensive loss of rifampicin and isoniazid can occur as a result of interaction between them in fasting pH conditions. This emphasizes that antituberculosis FDC formulations, which contain both drugs, should be designed in a manner that the interaction of the two drugs is prevented when the formulations are administered on an empty stomach.

  17. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts.

    PubMed

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-09-29

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil.

  18. Sparse decomposition of seismic data and migration using Gaussian beams with nonzero initial curvature

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Wang, Yanfei

    2018-04-01

    We study problems associated with seismic data decomposition and migration imaging. We first represent the seismic data utilizing Gaussian beam basis functions, which have nonzero curvature, and then consider the sparse decomposition technique. The sparse decomposition problem is an l0-norm constrained minimization problem. In solving the l0-norm minimization, a polynomial Radon transform is performed to achieve sparsity, and a fast gradient descent method is used to calculate the waveform functions. The waveform functions can subsequently be used for sparse Gaussian beam migration. Compared with traditional sparse Gaussian beam methods, the seismic data can be properly reconstructed employing fewer Gaussian beams with nonzero initial curvature. The migration approach described in this paper is more efficient than the traditional sparse Gaussian beam migration.

  19. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production.

    PubMed

    Zhang, Liang; Tang, Yan; Guo, Zhongpeng; Shi, Guiyang

    2013-10-01

    Glycerol is a major by-product of industrial ethanol production and its formation consumes up to 4 % of the sugar substrate. This study modified the glycerol decomposition pathway of an industrial strain of Saccharomyces cerevisiae to optimize the consumption of substrate and yield of ethanol. This study is the first to couple glycerol degradation with ethanol formation, to the best of our knowledge. The recombinant strain overexpressing GCY1 and DAK1, encoding glycerol dehydrogenase and dihydroxyacetone kinase, respectively, in glycerol degradation pathway, exhibited a moderate increase in ethanol yield (2.9 %) and decrease in glycerol yield (24.9 %) compared to the wild type with the initial glucose concentration of 15 % under anaerobic conditions. However, when the mhpF gene, encoding acetylating NAD⁺-dependent acetaldehyde dehydrogenase from Escherichia coli, was co-expressed in the aforementioned recombinant strain, a further increase in ethanol yield by 5.5 % and decrease in glycerol yield by 48 % were observed for the resultant recombinant strain GDMS1 when acetic acid was added into the medium prior to inoculation compared to the wild type. The process outlined in this study which enhances glycerol consumption and cofactor regulation in an industrial yeast is a promising metabolic engineering strategy to increase ethanol production by reducing the formation of glycerol.

  20. Photocatalytic decomposition of carboxylated molecules on light-exposed martian regolith and its relation to methane production on Mars.

    PubMed

    Shkrob, Ilya A; Chemerisov, Sergey D; Marin, Timothy W

    2010-05-01

    We propose that the paucity of organic compounds in martian soil can be accounted for by efficient photocatalytic decomposition of carboxylated molecules due to the occurrence of the photo-Kolbe reaction at the surface of particulate iron(III) oxides that are abundant in the martian regolith. This photoreaction is initiated by the absorption of UVA light, and it readily occurs even at low temperature. The decarboxylation is observed for miscellaneous organic carboxylates, including the nonvolatile products of kerogen oxidation (that are currently thought to accumulate in the soil) as well as alpha-amino acids and peptides. Our study indicates that there may be no "safe haven" for these organic compounds on Mars; oxidation by reactive radicals, such as hydroxyl, is concerted with photocatalytic reactions on the oxide particles. Acting together, these two mechanisms result in mineralization of the organic component. The photooxidation of acetate (the terminal product of radical oxidation of the aliphatic component of kerogen) on the iron(III) oxides results in the formation of methane; this reaction may account for seasonably variable production of methane on Mars. The concomitant reduction of Fe(III) in the regolith leads to the formation of highly soluble ferrous ions that contribute to weathering of the soil particles.

  1. On the Possibility of Studying the Reactions of the Thermal Decomposition of Energy Substances by the Methods of High-Resolution Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Vaks, V. L.; Domracheva, E. G.; Chernyaeva, M. B.; Pripolzin, S. I.; Revin, L. S.; Tretyakov, I. V.; Anfertyev, V. A.; Yablokov, A. A.; Lukyanenko, I. A.; Sheikov, Yu. V.

    2018-02-01

    We show prospects for using the method of high-resolution terahertz spectroscopy for a continuous analysis of the decomposition products of energy substances in the gas phase (including short-lived ones) in a wide temperature range. The experimental setup, which includes a terahertz spectrometer for studying the thermal decomposition reactions, is described. The results of analysis of the gaseous decomposition products of energy substances by the example of ammonium nitrate heated from room temperature to 167°C are presented.

  2. Dechlorination of polychlorinated biphenyls by iron and its oxides.

    PubMed

    Sun, Yifei; Liu, Xiaoyuan; Kainuma, Masashi; Wang, Wei; Takaoka, Masaki; Takeda, Nobuo

    2015-10-01

    The decomposition efficiency of polychlorinated biphenyls (PCBs) was determined using elemental iron (Fe) and three iron (hydr)oxides, i.e., α-Fe2O3, Fe3O4, and α-FeOOH, as catalysts. The experiments were performed using four distinct PCB congeners (PCB-209, PCB-153, and the coplanar PCB-167 and PCB-77) at temperatures ranging from 180 °C to 380 °C and under an inert, oxidizing or reducing atmosphere composed of N2, N2+O2, or N2+H2. From these three options N2 showed to provide the best reaction atmosphere. Among the iron compounds tested, Fe3O4 showed the highest activity for decomposing PCBs. The decomposition efficiencies of PCB-209, PCB-167, PCB-153, and PCB-77 by Fe3O4 in an N2 atmosphere at 230 °C were 88.5%, 82.5%, 69.9%, and 66.4%, respectively. Other inorganic chlorine (Cl) products which were measured by the amount of inorganic Cl ions represented 82.5% and 76.1% of the reaction products, showing that ring cleavage of PCBs was the main elimination process. Moreover, the dechlorination did not require a particular hydrogen donor. We used X-ray photoelectron spectroscopy to analyze the elemental distribution at the catalyst's surface. The O/Fe ratio influenced upon the decomposition efficiency of PCBs: the lower this ratio, the higher the decomposition efficiency. X-ray absorption near edge structure spectra showed that α-Fe2O3 effectively worked as a catalyst, while Fe3O4 and α-FeOOH were consumed as reactants, as their final state is different from their initial state. Finally, a decomposition pathway was postulated in which the Cl atoms in ortho-positions were more difficult to eliminate than those in the para- or meta-positions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Coupling experimental data and a prototype model to probe the physical and chemical processes of 2,4-dinitroimidazole solid-phase thermal decomposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Behrens, R.; Minier, L.; Bulusu, S.

    1998-12-31

    The time-dependent, solid-phase thermal decomposition behavior of 2,4-dinitroimidazole (2,4-DNI) has been measured utilizing simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) methods. The decomposition products consist of gaseous and non-volatile polymeric products. The temporal behavior of the gas formation rates of the identified products indicate that the overall thermal decomposition process is complex. In isothermal experiments with 2,4-DNI in the solid phase, four distinguishing features are observed: (1) elevated rates of gas formation are observed during the early stages of the decomposition, which appear to be correlated to the presence of exogenous water in the sample; (2) this is followed bymore » a period of relatively constant rates of gas formation; (3) next, the rates of gas formation accelerate, characteristic of an autocatalytic reaction; (4) finally, the 2,4-DNI is depleted and gaseous decomposition products continue to evolve at a decreasing rate. A physicochemical and mathematical model of the decomposition of 2,4-DNI has been developed and applied to the experimental results. The first generation of this model is described in this paper. Differences between the first generation of the model and the experimental data collected under different conditions suggest refinements for the next generation of the model.« less

  4. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry.

    PubMed

    Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H

    2014-08-08

    For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production.

    PubMed

    Sihi, Debjani; Inglett, Patrick W; Gerber, Stefan; Inglett, Kanika S

    2018-01-01

    Temperature sensitivity of anaerobic carbon mineralization in wetlands remains poorly represented in most climate models and is especially unconstrained for warmer subtropical and tropical systems which account for a large proportion of global methane emissions. Several studies of experimental warming have documented thermal acclimation of soil respiration involving adjustments in microbial physiology or carbon use efficiency (CUE), with an initial decline in CUE with warming followed by a partial recovery in CUE at a later stage. The variable CUE implies that the rate of warming may impact microbial acclimation and the rate of carbon-dioxide (CO 2 ) and methane (CH 4 ) production. Here, we assessed the effects of warming rate on the decomposition of subtropical peats, by applying either a large single-step (10°C within a day) or a slow ramping (0.1°C/day for 100 days) temperature increase. The extent of thermal acclimation was tested by monitoring CO 2 and CH 4 production, CUE, and microbial biomass. Total gaseous C loss, CUE, and MBC were greater in the slow (ramp) warming treatment. However, greater values of CH 4 -C:CO 2 -C ratios lead to a greater global warming potential in the fast (step) warming treatment. The effect of gradual warming on decomposition was more pronounced in recalcitrant and nutrient-limited soils. Stable carbon isotopes of CH 4 and CO 2 further indicated the possibility of different carbon processing pathways under the contrasting warming rates. Different responses in fast vs. slow warming treatment combined with different endpoints may indicate alternate pathways with long-term consequences. Incorporations of experimental results into organic matter decomposition models suggest that parameter uncertainties in CUE and CH 4 -C:CO 2 -C ratios have a larger impact on long-term soil organic carbon and global warming potential than uncertainty in model structure, and shows that particular rates of warming are central to understand the response of wetland soils to global climate change. © 2017 John Wiley & Sons Ltd.

  6. Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system.

    PubMed

    Gu, Yurong; Liu, Tongzhou; Wang, Hongjie; Han, Huili; Dong, Wenyi

    2017-12-31

    As one of the most reactive species, hydrated electron (e aq - ) is promising for reductive decomposition of recalcitrant organic pollutants, such as perfluorooctane sulfonate (PFOS). In this study, PFOS decomposition using a vacuum ultraviolet (VUV)/sulfite system was systematically investigated in comparison with sole VUV and ultraviolet (UV)/sulfite systems. A fast and nearly complete (97.3%) PFOS decomposition was observed within 4h from its initial concentration of 37.2μM in the VUV/sulfite system. The observed rate constant (k obs ) for PFOS decomposition in the studied system was 0.87±0.0060h -1 , which was nearly 7.5 and 2 folds faster than that in sole VUV and UV/sulfite systems, respectively. Compared to previously studied UV/sulfite system, VUV/sulfite system enhanced PFOS decomposition in both weak acidic and alkaline pH conditions. In weak acidic condition (pH6.0), PFOS predominantly decomposed via direct VUV photolysis, whereas in alkaline condition (pH>9.0), PFOS decomposition was mainly induced by e aq - generated from both sulfite and VUV photolytic reactions. At a fixed initial solution pH (pH10.0), PFOS decomposition kinetics showed a positive linear dependence with sulfite dosage. The co-presence of humic acid (HA) and NO 3 - obviously suppressed PFOS decomposition, whereas HCO 3 - showed marginal inhibition. A few amount of short chain perfluorocarboxylic acids (PFCAs) were detected in PFOS decomposition process, and a high defluorination efficiency (75.4%) was achieved. These results suggested most fluorine atoms in PFOS molecule ultimately mineralized into fluoride ions, and the mechanisms for PFOS decomposition in the VUV/sulfite system were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: Decomposition pathways, residual antibacterial activity and toxicity.

    PubMed

    Cai, Qinqing; Hu, Jiangyong

    2017-02-05

    In this study, continuous LED/UVA/TiO 2 photocatalytic decomposition of sulfamethoxazole (SMX) and trimethoprim (TMP) was investigated. More than 90% of SMX and TMP were removed within 20min by the continuous photoreactor (with the initial concentration of 400ppb for each). The removal rates of SMX and TMP decreased with higher initial antibiotics loadings. SMX was much easier decomposed in acidic condition, while pH affected little on TMP's decomposition. 0.003% was found to be the optimum H 2 O 2 dosage to enhance SMX photocatalytic decomposition. Decomposition pathways of SMX and TMP were proposed based on the intermediates identified by using LC-MS-MS and GC-MS. Aniline was identified as a new intermediate generated during SMX photocatalytic decomposition. Antibacterial activity study with a reference Escherichia coli strain was also conducted during the photocatalytic process. Results indicated that with every portion of TMP removed, the residual antibacterial activity decreased by one portion. However, the synergistic effect between SMX and TMP tended to slow down the antibacterial activity removal of SMX and TMP mixture. Chronic toxicity studies conducted with Vibrio fischeri exhibited 13-20% bioluminescence inhibition during the decomposition of 1ppm SMX and 1ppm TMP, no acute toxicity to V. fischeri was observed during the photocatalytic process. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Challenges of including nitrogen effects on decomposition in earth system models

    NASA Astrophysics Data System (ADS)

    Hobbie, S. E.

    2011-12-01

    Despite the importance of litter decomposition for ecosystem fertility and carbon balance, key uncertainties remain about how this fundamental process is affected by nitrogen (N) availability. Nevertheless, resolving such uncertainties is critical for mechanistic inclusion of such processes in earth system models, towards predicting the ecosystem consequences of increased anthropogenic reactive N. Towards that end, we have conducted a series of experiments examining nitrogen effects on litter decomposition. We found that both substrate N and externally supplied N (regardless of form) accelerated the initial decomposition rate. Faster initial decomposition rates were linked to the higher activity of carbohydrate-degrading enzymes associated with externally supplied N and the greater relative abundances of Gram negative and Gram positive bacteria associated with green leaves and externally supplied organic N (assessed using phospholipid fatty acid analysis, PLFA). By contrast, later in decomposition, externally supplied N slowed decomposition, increasing the fraction of slowly decomposing litter and reducing lignin-degrading enzyme activity and relative abundances of Gram negative and Gram positive bacteria. Our results suggest that elevated atmospheric N deposition may have contrasting effects on the dynamics of different soil carbon pools, decreasing mean residence times of active fractions comprising very fresh litter, while increasing those of more slowly decomposing fractions including more processed litter. Incorporating these contrasting effects of N on decomposition processes into models is complicated by lingering uncertainties about how these effects generalize across ecosystems and substrates.

  9. Decomposition and nitrogen dynamics of 15N-labeled leaf, root, and twig litter in temperate coniferous forests

    Treesearch

    T.L. van Huysen; M.E. Harmon; S.S. Perakis; H. Chen

    2013-01-01

    Litter nutrient dynamics contribute significantly to biogeochemical cycling in forest ecosystems. We examined how site environment and initial substrate quality influence decomposition and nitrogen (N) dynamics of multiple litter types. A 2.5-year decomposition study was installed in the Oregon Coast Range and West Cascades using 15N-labeled...

  10. Land-use legacies regulate decomposition dynamics following bioenergy crop conversion

    DOE PAGES

    Kallenbach, Cynthia M.; Stuart Grandy, A.

    2014-07-14

    Land-use conversion into bioenergy crop production can alter litter decomposition processes tightly coupled to soil carbon and nutrient dynamics. Yet, litter decomposition has been poorly described in bioenergy production systems, especially following land-use conversion. Predicting decomposition dynamics in postconversion bioenergy production systems is challenging because of the combined influence of land-use legacies with current management and litter quality. To evaluate how land-use legacies interact with current bioenergy crop management to influence litter decomposition in different litter types, we conducted a landscape-scale litterbag decomposition experiment. We proposed land-use legacies regulate decomposition, but their effects are weakened under higher quality litter andmore » when current land use intensifies ecosystem disturbance relative to prior land use. We compared sites left in historical land uses of either agriculture (AG) or Conservation Reserve Program grassland (CRP) to those that were converted to corn or switchgrass bioenergy crop production. Enzyme activities, mass loss, microbial biomass, and changes in litter chemistry were monitored in corn stover and switchgrass litter over 485 days, accompanied by similar soil measurements. Across all measured variables, legacy had the strongest effect (P < 0.05) relative to litter type and current management, where CRP sites maintained higher soil and litter enzyme activities and microbial biomass relative to AG sites. Decomposition responses to conversion depended on legacy but also current management and litter type. Within the CRP sites, conversion into corn increased litter enzymes, microbial biomass, and litter protein and lipid abundances, especially on decomposing corn litter, relative to nonconverted CRP. However, conversion into switchgrass from CRP, a moderate disturbance, often had no effect on switchgrass litter decomposition parameters. Thus, legacies shape the direction and magnitude of decomposition responses to bioenergy crop conversion and therefore should be considered a key influence on litter and soil C cycling under bioenergy crop management.« less

  11. Decomposition reactions of (hydroxyalkyl) nitrosoureas and related compounds: possible relationship to carcinogenicity.

    PubMed

    Singer, S S

    1985-08-01

    (Hydroxyalkyl)nitrosoureas and the related cyclic carbamates N-nitrosooxazolidones are potent carcinogens. The decompositions of four such compounds, 1-nitroso-1-(2-hydroxyethyl)urea (I), 3-nitrosooxazolid-2-one (II), 1-nitroso-1-(2-hydroxypropyl)urea (III), and 5-methyl-3-nitrosooxazolid-2-one (IV), in aqueous buffers at physiological pH were studied to determine if any obvious differences in decomposition pathways could account for the variety of tumors obtained from these four compounds. The products predicted by the literature mechanisms for nitrosourea and nitrosooxazolidone decompositions (which were derived from experiments at pH 10-12) were indeed the products formed, including glycols, active carbonyl compounds, epoxides, and, from the oxazolidones, cyclic carbonates. Furthermore, it was shown that in pH 6.4-7.4 buffer epoxides were stable reaction products. However, in the presence of hepatocytes, most of the epoxide was converted to glycol. The analytical methods developed were then applied to the analysis of the decomposition products of some related dialkylnitrosoureas, and similar results were obtained. The formation of chemically reactive secondary products and the possible relevance of these results to carcinogenesis studies are discussed.

  12. Sensory irritation and incapacitation evoked by thermal decomposition products of polymers and comparisons with known sensory irritants.

    PubMed

    Barrow, C S; Alarie, Y; Stock, M F

    1978-01-01

    A decrease in respiratory rate in mice during exposure to irritating airborne chemicals has been utilized as a response parameter to characterize the degree of upper respiratory tract irritation (sensory irritation) to the thermal decomposition products of various polymers. These included polystyrene, polyvinyl chloride, flexible polyurethane foam, polytetrafluorethylene, a fiber glass reinforced polyester resin, and Douglas Fir. Each of the materials was thermally decomposed in a low-mass vertical furnace in an air atmosphere at a programmed heating rate of 20 degrees C/min. Mice, in groups of four, were exposed to graded concentrations of the thermal decomposition products of each of the above materials. Dose-response curves were obtained by utilizing the maximum percent decrease in respiratory rate as the response parameter during each exposure. Comparison of these dose-response curves with other sensory irritants such as chlorine, ammonia, hydrogen chloride, sulfur dioxide, and toluene diisocyanate gave an indication of the sensory irrtation potential of the thermal decomposition products of these various polymers versus that of well-known single airborne chemical irritants. Total stress and incapacitation of the organism during exposure to sensory irritants such as from the thermal decomposition products of synthetic polymers is discussed.

  13. Stability of nicotinate and dodecyl sulfate in a Lewis acidic ionic liquid for aluminum electroplating and characterization of their degradation products.

    PubMed

    Kosmus, Patrick; Steiner, Oliver; Goessler, Walter; Gollas, Bernhard; Fauler, Gisela

    2016-04-01

    Plating bath additives are essential for optimization of the morphology of electroplated layers. The ionic liquid 1-ethyl-3-methylimidazolium (EMIM) chloride plus 1.5 mol equivalents of AlCl3 has great potential for electroplating of aluminum. In this study, the chemical and electrochemical stability of the additives EMIM-nicotinate and sodium dodecyl sulfate and their effect on the stability of EMIM was investigated and analyzed. Nicotinate and its electrochemical decomposition product β-picoline could be detected and we show with a single HPLC-UV-MS method that EMIM is not affected by the decomposition of this additive. An adapted standard HPLC-UV-MS method together with GC-MS and ion chromatography was used to analyze the decomposition products of SDS and possible realkylation products of EMIM. Several volatile medium and short chain-length alkanes as well as sulfate ions have been found as decomposition products of SDS. Alkenium ions formed as intermediates during the decomposition of SDS realkylate EMIM to produce mono- up to pentasubstituted alkyl-imidazoles. A reaction pathway involving Wagner-Meerwein rearrangements and Friedel-Crafts alkylations has been suggested to account for the formation of the detected products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Radiolysis of aqueous solutions of thiamine

    NASA Astrophysics Data System (ADS)

    Chijate, C.; Albarran, G.; Negron-Mendoza, A.

    1998-06-01

    The results of the radiolysis of aqueous solutions of thiamine (vitamin B 1) are presented. The yields for decomposition of thiamine and the product of radiolytic products were determined. The G values decrease as the dose increases. Some radiolytic products were identified. Decomposition of thiamine was slightly dependent on the presence of oxygen and on the pH of the solution. At pH 4.4 with a concentration of 2.5 × 10 -4 mol L -1 of thiamine in an oxygen free aqueous solution, the G 0 value for decomposition is 5.0.

  15. Loblolly pine needle decomposition and nutrient dynamics as affected by irrigation, fertilization, and substrate quality

    Treesearch

    Felipe G. Sanchez

    2001-01-01

    This study examined the effects of initial litter quality and irrigation and fertilization treatments on litter decomposition rates and nutrient dynamics (N, Ca, K, Mg, and P) of loblolly (Pinus taeda L.) pine needles in the North Carolina Sand Hills over 3 years. Litter quality was based on the initial C/N ratios, with the high-quality litter having...

  16. Intramolecular energy transfer and mode-specific effects in unimolecular reactions of 1,2-difluoroethane

    NASA Astrophysics Data System (ADS)

    Raff, Lionel M.

    1989-06-01

    The unimolecular decomposition reactions of 1,2-difluoroethane upon mode-specific excitation to a total internal energy of 7.5 eV are investigated using classical trajectory methods and a previously formulated empirical potential-energy surface. The decomposition channels for 1,2-difluoroethane are, in order of importance, four-center HF elimination, C-C bond rupture, and hydrogen-atom dissociation. This order is found to be independent of the particular vibrational mode excited. Neither fluorine-atom nor F2 elimination reactions are ever observed even though these dissociation channels are energetically open. For four-center HF elimination, the average fraction of the total energy partitioned into internal HF motion varies between 0.115-0.181 depending upon the particular vibrational mode initially excited. The internal energy of the fluoroethylene product lies in the range 0.716-0.776. Comparison of the present results with those previously obtained for a random distribution of the initial 1,2-difluoroethane internal energy [J. Phys. Chem. 92, 5111 (1988)], shows that numerous mode-specific effects are present in these reactions in spite of the fact that intramolecular energy transfer rates for this system are 5.88-25.5 times faster than any of the unimolecular reaction rates. Mode-specific excitation always leads to a total decomposition rate significantly larger than that obtained for a random distribution of the internal energy. Excitation of different 1,2-difluoroethane vibrational modes is found to produce as much as a 51% change in the total decomposition rate. Mode-specific effects are also seen in the product energy partitioning. The rate coefficients for decomposition into the various channels are very sensitive to the particular mode excited. A comparison of the calculated mode-specific effects with the previously determined mode-to-mode energy transfer rate coefficients [J. Chem. Phys. 89, 5680 (1988)] shows that, to some extent, the presence of mode-specific chemistry is correlated with the magnitude of the energy transfer rate. However, the particular pathways for energy flow seem to be more important than the magnitude of the rate coefficients. It is suggested that the propensity for the energy to remain isolated in small subset of modes, such as the CH2F deformation modes or the rocking modes, is primarily responsible for the observation of mode-specific chemistry. The results clearly demonstrate that an intramolecular energy transfer rate that is fast relative to the unimolecular reaction rate is not a sufficient condition to ensure the absence of mode-specific chemical effects.

  17. Chemical Changes during Anaerobic Decomposition of Hardwood, Softwood, and Old Newsprint under Mesophilic and Thermophilic Conditions

    Treesearch

    Florentino B. De la Cruz; Daniel J. Yelle; Hanna S. Gracz; Morton A. Barlaz

    2014-01-01

    The anaerobic decomposition of plant biomass is an important aspect of global organic carbon cycling. While the anaerobic metabolism of cellulose and hemicelluloses to methane and carbon dioxide are well-understood, evidence for the initial stages of lignin decomposition is fragmentary. The objective of this study was to look for evidence of chemical transformations of...

  18. Decomposition rate of peat-forming plants in the oligotrophic peatland at the first stages of destruction

    NASA Astrophysics Data System (ADS)

    Nikonova, L. G.; Golovatskaya, E. A.; Terechshenko, N. N.

    2018-03-01

    The research presents quantitative estimates of the decomposition rate of plant residues at the initial stages of the decay of two plant species (Eriophorum vaginatum and Sphagnum fuscum) in a peat deposit of the oligotrophic bog in the southern taiga subzone of Western Siberia. We also studied a change in the content of total carbon and nitrogen in plant residues and the activity of microflora in the initial stages of decomposition. At the initial stage of the transformation process of peat-forming plants the losses of mass of Sph. fuscum is 2.5 times lower then E. vaginatum. The most active mass losses, as well as a decrease in the total carbon content, is observed after four months of the experiment. The most active carbon removal is characteristic for E. vaginatum. During the decomposition of plant residues, the nitrogen content decreases, and the most intense nitrogen losses were characteristic for Sph. fuscum. The microorganisms assimilating organic and mineral nitrogen are more active in August, the oligotrophic and cellulolytic microorganisms – in July.

  19. Short-term standard litter decomposition across three different ecosystems in middle taiga zone of West Siberia

    NASA Astrophysics Data System (ADS)

    Filippova, Nina V.; Glagolev, Mikhail V.

    2018-03-01

    The method of standard litter (tea) decomposition was implemented to compare decomposition rate constants (k) between different peatland ecosystems and coniferous forests in the middle taiga zone of West Siberia (near Khanty-Mansiysk). The standard protocol of TeaComposition initiative was used to make the data usable for comparisons among different sites and zonobiomes worldwide. This article sums up the results of short-term decomposition (3 months) on the local scale. The values of decomposition rate constants differed significantly between three ecosystem types: it was higher in forest compared to bogs, and treed bogs had lower decomposition constant compared to Sphagnum lawns. In general, the decomposition rate constants were close to ones reported earlier for similar climatic conditions and habitats.

  20. Identification of radicals produced by gamma-irradiation of vitamins

    NASA Astrophysics Data System (ADS)

    Forrester, Alexander R.; Davidson, Iain G.

    γ-Irradiation of food is known to cause destruction of vitamins. However, the reactions involved have not been fully elucidated. Accordingly, several powdered vitamins have been γ-irradiated and the free radicals formed spin trapped by dissolution in aqueous 2-methyl-2-nitrosopropane or in a solution of nitrosodurene in an organic solvent. In this way, several of the radicals initially formed from the vitamins have been identified and shown to be related to the known decomposition products of the vitamins.

  1. Regional Contingencies in the Relationship between Aboveground Biomass and Litter in the World’s Grasslands

    PubMed Central

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Chengjin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M. H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex. PMID:23405103

  2. Regional contingencies in the relationship between aboveground Bbomass and litter in the world’s grasslands

    USGS Publications Warehouse

    O’Halloran, Lydia R.; Borer, Elizabeth T.; Seabloom, Eric W.; MacDougall, Andrew S.; Cleland, Elsa E.; McCulley, Rebecca L.; Hobbie, Sarah; Harpole, W. Stan; DeCrappeo, Nicole M.; Chu, Cheng-Jin; Bakker, Jonathan D.; Davies, Kendi F.; Du, Guozhen; Firn, Jennifer; Hagenah, Nicole; Hofmockel, Kirsten S.; Knops, Johannes M.H.; Li, Wei; Melbourne, Brett A.; Morgan, John W.; Orrock, John L.; Prober, Suzanne M.; Stevens, Carly J.

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a single vegetation type across multiple regions, obfuscating the drivers and generality of the association between production and decomposition. Furthermore, our understanding of the relationships between production and decomposition rests heavily on separate meta-analyses of each response, because no studies have simultaneously measured production and the accumulation or decomposition of litter using consistent methods at globally relevant scales. Here, we use a multi-country grassland dataset collected using a standardized protocol to show that live plant biomass (an estimate of aboveground net primary production) and litter disappearance (represented by mass loss of aboveground litter) do not strongly covary. Live biomass and litter disappearance varied at different spatial scales. There was substantial variation in live biomass among continents, sites and plots whereas among continent differences accounted for most of the variation in litter disappearance rates. Although there were strong associations among aboveground biomass, litter disappearance and climatic factors in some regions (e.g. U.S. Great Plains), these relationships were inconsistent within and among the regions represented by this study. These results highlight the importance of replication among regions and continents when characterizing the correlations between ecosystem processes and interpreting their global-scale implications for carbon flux. We must exercise caution in parameterizing litter decomposition and aboveground production in future regional and global carbon models as their relationship is complex.

  3. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    PubMed Central

    Bothwell, Lori D.; Giardina, Christian P.; Litton, Creighton M.

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming. PMID:25493213

  4. Chemical Properties, Decomposition, and Methane Production of Tertiary Relict Plant Litters: Implications for Atmospheric Trace Gas Production in the Early Tertiary

    NASA Astrophysics Data System (ADS)

    Yavitt, J. B.; Bartella, T. M.; Williams, C. J.

    2006-12-01

    Throughout the early Tertiary (ca. 65-38 Ma) Taxodiaceae-dominated (redwood) wetland forests occupied the high latitudes and were circumpolar in their distribution. Many of these forests had high standing biomass with moderate primary productivity. The geographic extent and amount of Tertiary coals and fossil forests throughout Arctic Canada suggests large areas of wetland forests that may have cycled substantial quantities of carbon, particularly methane until they were replaced by cold tolerant Pinus, Picea, and Larix following climatic cooling associated with the Terminal Eocene Event. To test this hypothesis we compared physiochemical properties, decomposition, and trace gas production of litter from extant Metasequoia, Pinus, Picea, and Larix. Initial results from plantation-grown trees indicate Metasequoia litter is a better source of labile organic substrate than pinaceous litter. Metasequoia litter contained the least lignin and highest amounts of water-soluble compounds of the four litter types studied. Analysis of the lignin structure using cupric oxide oxidation indicates that Metasequoia lignin is enriched in 4'-hydroxyacetophenone and 4'- Hydroxy-3'-methoxyacetophenone relative to the pinaceous litter. In a 12-month decomposition study using litterbags, average litter mass loss was greater for Metasequoia litter (62%) compared to the pinaceous species (50%). Moreover, Metasequoia litter incubated under anoxic conditions produced nearly twice as much CO2 (ca. 4.2 umol/g.day) and CH4 (2.1 umol/g.day) as the pinaceous litter (2.4 umol/g.day for CO2; 1.2 umol/g.day for CH4). Our results support the idea of greater decomposability and palatability of Metasequoia litter as compared to Larix, Picea, or Pinus. Provided that the biochemical properties of Metasequoia have remained relatively stable through geologic time, it appears that early Tertiary Metasequoia-dominated wetland forests may have had higher microbial driven trace gas production than the Pinaceae-dominated forests that replaced them in the late Tertiary.

  5. Climatic effects on decomposing litter and substrate chemistry along climatological gradients.

    NASA Astrophysics Data System (ADS)

    Berg, B.

    2009-04-01

    Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.

  6. A Deep Insight into the Details of the Interisomerization and Decomposition Mechanism of o-Quinolyl and o-Isoquinolyl Radicals. Quantum Chemical Calculations and Computer Modeling.

    PubMed

    Dubnikova, Faina; Tamburu, Carmen; Lifshitz, Assa

    2016-09-29

    The isomerization of o-quinolyl ↔ o-isoquinolyl radicals and their thermal decomposition were studied by quantum chemical methods, where potential energy surfaces of the reaction channels and their kinetics rate parameters were determined. A detailed kinetics scheme containing 40 elementary steps was constructed. Computer simulations were carried out to determine the isomerization mechanism and the distribution of reaction products in the decomposition. The calculated mole percent of the stable products was compared to the experimental values that were obtained in this laboratory in the past, using the single pulse shock tube. The agreement between the experimental and the calculated mole percents was very good. A map of the figures containing the mole percent's of eight stable products of the decomposition plotted vs T are presented. The fast isomerization of o-quinolyl → o-isoquinolyl radicals via the intermediate indene imine radical and the attainment of fast equilibrium between these two radicals is the reason for the identical product distribution regardless whether the reactant radical is o-quinolyl or o-isoquinolyl. Three of the main decomposition products of o-quinolyl radical, are those containing the benzene ring, namely, phenyl, benzonitrile, and phenylacetylene radicals. They undergo further decomposition mainly at high temperatures via two types of reactions: (1) Opening of the benzene ring in the radicals, followed by splitting into fragments. (2) Dissociative attachment of benzonitrile and phenyl acetylene by hydrogen atoms to form hydrogen cyanide and acetylene.

  7. The fate of H2O2 during managed aquifer recharge: A residual from advanced oxidation processes for drinking water production.

    PubMed

    Wang, F; van Halem, D; van der Hoek, J P

    2016-04-01

    The fate of H2O2 residual from advanced oxidation process (AOP) preceding managed aquifer recharge (MAR) is of concern because H2O2 could lead to undesired effects on organisms in the MAR aquatic and soil ecosystem. The objective of this study was to distinguish between factors affecting H2O2 decomposition in MAR systems, simulated in batch reactors with synthetic MAR water and slow sand filter sand. The results showed that pure sand and soil organic matter had no considerable effect on H2O2 decomposition, whereas naturally occurring inorganic substances on the surface of sand grains and microbial biomass are the two main factors accelerating H2O2 decomposition in MAR systems. Additionally, the results showed that the H2O2 decompositions with different initial concentrations fitted first-order kinetics in 2-6 h in a mixture of slow sand filter sand (as a substitute for sand from a MAR system) and synthetic MAR water with high bacterial population. An estimation indicated that low concentrations of H2O2 (<3 mg/L) could decompose to the provisional standard of 0.25 mg/L in the first centimeters of MAR systems with the influent water containing high microbial biomass 38 ng ATP/mL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Mechanisms of charcoal degradation during its initial stages of decomposition

    NASA Astrophysics Data System (ADS)

    Singh, Nimisha; Abiven, Samuel; Schmidt, Michael W. I.

    2010-05-01

    Future climatic changes might result in an increased potential for wildfires, whereby incorporation of charred biomass into soil would increase. The incomplete combustion of biomass results in the production of a chemically heterogeneous class of highly condensed compounds known as pyrogenic C (PyC), which is generally considered resistant to microbial degradation. Recently, studies based on short-term laboratory incubations with soil have indicated that PyC can also eventually degrade (Baldock and Smernik, 2002; Hamer et al., 2004) and it is now widely accepted that a significant quantity of these resistant fraction of soil must have undergone degradation in terrestrial environments. Charcoal has been shown to decompose faster in the initial stages (first 2-3 months) and stabilize later (Kuzyakov et al., 2009). However, studies describing charcoal transformation processes remain scarce. The different potential degradation mechanisms have not yet been studied in combination, and therefore the relative importance for PyC degradation has not been evaluated. We are conducting an incubation experiment to study the biological, chemical and physical degradation/stabilization processes of PyC in soil under controlled conditions. We use Pinus ponderosa 13C/15N labeled (13C: 800 per mil, 15N: 4.2 atom %) wood and charcoal (pyrolysed at 450 °C under N2 atmosphere). We incubate soil from Lägeren forest (Wettingen, Switzerland) with three kind of organic inputs, labeled wood, char and no littler control. The decomposition rates would be estimated based on 13C of CO2 entrapped in NaOH. Time course destructive sampling would be done during the study. Lyophilized soil subsamples will be used for analysis of the amount of 13C incorporation in the microbial biomass using fumigation extraction method and phospholipids fatty acid analysis (PLFA). The remaining PyC in the soil would be characterized for the changes in its chemistry at the molecular level using Benzenepolycarboxlic acid (BPCA) molecular marker method and 13C 15N NMR. This communication aims to report the first four months results of this study at a higher time resolution. The outcome of this study would facilitate in elucidating the potential decomposition rate of charcoal and consequent changes in its physical, chemical and biological properties in the soil during the initial stages of decomposition. In addition, application of highly labeled 13C PyC would enable us in this study to trace the transformation products. References Baldock, J.A., and Smernik, R.J. (2002). Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood. Organic Geochemistry 33, 1093-1109. Hamer, U., Marschner, B., Brodowski, S., and Amelung, W. (2004). Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry 35, 823-830. Kuzyakov, Y., Subbotina, I., Chen, H.Q., Bogomolova, I., and Xu, X.L. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biology and Biochemistry 41, 210-219.

  9. Rank-based decompositions of morphological templates.

    PubMed

    Sussner, P; Ritter, G X

    2000-01-01

    Methods for matrix decomposition have found numerous applications in image processing, in particular for the problem of template decomposition. Since existing matrix decomposition techniques are mainly concerned with the linear domain, we consider it timely to investigate matrix decomposition techniques in the nonlinear domain with applications in image processing. The mathematical basis for these investigations is the new theory of rank within minimax algebra. Thus far, only minimax decompositions of rank 1 and rank 2 matrices into outer product expansions are known to the image processing community. We derive a heuristic algorithm for the decomposition of matrices having arbitrary rank.

  10. Plane-wave decomposition by spherical-convolution microphone array

    NASA Astrophysics Data System (ADS)

    Rafaely, Boaz; Park, Munhum

    2004-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  11. Design and Evaluation of a Boron Dipyrrin Electrophore for Redox Flow Batteries.

    PubMed

    Heiland, Niklas; Cidarér, Clemens; Rohr, Camilla; Piescheck, Mathias; Ahrens, Johannes; Bröring, Martin; Schröder, Uwe

    2017-08-29

    A boron dipyrrin (BODIPY) dye was designed as a molecular single-component electrophore for redox flow batteries. All positions of the BODIPY core were assessed on the basis of literature data, in particular cyclic voltammetry and density functional calculations, and a minimum required substitution pattern was designed to provide solubility, aggregation, radical cation and anion stabilities, a large potential window, and synthetic accessibility. In-depth electrochemical and physical studies of this electrophore revealed suitable cathodic behavior and stability of the radical anion but rapid anodic decomposition of the radical cation. The three products that formed under the conditions of controlled oxidative electrolysis were isolated, and their structures were determined by spectroscopy and comparison with a synthetic model compound. From these structures, a benzylic radical reactivity, initiated by one-electron oxidation, was concluded to play the major role in this unexpected decomposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structures, electronic properties and reaction paths from Fe(CO)5 molecule to small Fe clusters

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Zhao, Zhen

    2018-04-01

    The geometries, electrical characters and reaction paths from Fe(CO)5 molecule to small Fe clusters were investigated by using all-electron density functional theory. The results show that in the decomposition process of pentacarbonyl-iron, Fe(CO)5 molecule prefers to remove a carbon monoxide and adsorb another Fe(CO)5 molecule to produce nonacarbonyldiiron Fe2(CO)9 then Fe2(CO)9 gradually removes carbon monoxide to produce small Fe clusters. As It can be seen from the highest occupied molecule orbital-lowest unoccupied molecule orbital gap curves, the Fe(CO)n=3, and 5 and Fe2(CO)n=3, 7 and 9 intermediates have higher chemical stability than their neighbors. The local magnetic moment of the carbon monoxide is aligning anti-ferromagnetic. The effect of external magnetic field to the initial decomposition products of Fe(CO)5 can be ignored.

  13. Water dissociation in a radio-frequency electromagnetic field with ex situ electrodes—decomposition of perfluorooctanoic acid and tetrahydrofuran

    NASA Astrophysics Data System (ADS)

    Schneider, Jens; Holzer, Frank; Kraus, Markus; Kopinke, Frank-Dieter; Roland, Ulf

    2016-10-01

    The application of radio waves with a frequency of 13.56 MHz on electrolyte solutions in a capillary reactor led to the formation of reactive hydrogen and oxygen species and finally to molecular oxygen and hydrogen. This process of water splitting can be principally used for the elimination of hazardous chemicals in water. Two compounds, namely perfluorooctanoic acid (PFOA) and tetrahydrofuran, were converted using this process. Their main decomposition products were highly volatile and therefore transferred to a gas phase, where they could be identified by GC-MS analyses. It is remarkable that the chemical reactions could benefit from both the oxidizing and reducing species formed in the plasma process, which takes place in gas bubbles saturated with water vapor. The breaking of C-C and C-F bonds was proven in the case of PFOA, probably initiated by electron impacts and radical reactions.

  14. Decomposition of 2,4-dichlorophenoxyacetic acid by ozonation, ionizing radiation as well as ozonation combined with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Drzewicz, Przemyslaw; Trojanowicz, Marek; Zona, Robert; Solar, Sonja; Gehringer, Peter

    2004-03-01

    Electron beam (EB), ozone (O 3) and the combination EB/O 3 were used to study the oxidative decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D) in local tap water. Using an EB treatment, a dose of 10 kGy was required for complete 2,4-D degradation, and a 90% conversion of organic chlorine into chloride ions. Using additionally 1.33 mmol dm -3 O 3 during irradiation, the same result was achieved with a dose of 2.7 kGy. The yields of products acetate and formate were almost doubled by the combined EB/O 3 treatment, compared to those obtained with the same dose by EB irradiation. Gamma radiolysis showed that the degradation dose was proportional to the initial concentration of 2,4-D in the range of 50-2260 μmol dm -3.

  15. Acidic attack of perfluorinated alkyl ether lubricant molecules by metal oxide surfaces

    NASA Technical Reports Server (NTRS)

    Zehe, Michael J.; Faut, Owen D.

    1989-01-01

    The reactions of linear perfluoropolyalkylether (PFAE) lubricants with alpha-Fe2O3 and Fe2O3-based solid superacids were studied. The reaction with alpha-Fe2O3 proceeds in two stages. The first stage is an initial slow catalytic decomposition of the fluid. This reaction releases reactive gaseous products which attach the metal oxide and convert it to FeF3. The second stage is a more rapid decomposition of the fluid, effected by the surface FeF3. A study of the inital breakdown step was performed using alpha-Fe2O3, alpha-Fe2O3 preconverted to FeF3, and sulfate-promoted alpha-Fe2O3 superacids. The results indicate that the breakdown reaction involves acidic attack at fluorine atoms on acetal carbons in the linear PFAE. Possible approaches to combat the problem are outlined.

  16. Elevated tropospheric CO2 and O3 may not alter initial wood decomposition rate or wood-decaying fungal community composition of Northern hardwoods

    Treesearch

    Emmanuel Ebanyenle; Andrew J. Burton; Andrew J. Storer; Dana L. Richter; Jessie A. Glaeser

    2016-01-01

    We examined the effects of elevated CO2 and/or O3 on the wood-decaying basidiomycete fungal community and wood decomposition rates at the Aspen Free-Air CO2 and O3 Enrichment (Aspen FACE) project. Mass loss rates were determined after one year of log decomposition on the soil...

  17. Soil organic matter decomposition follows plant productivity response to sea-level rise

    NASA Astrophysics Data System (ADS)

    Mueller, Peter; Jensen, Kai; Megonigal, James Patrick

    2015-04-01

    The accumulation of soil organic matter (SOM) is an important mechanism for many tidal wetlands to keep pace with sea-level rise. SOM accumulation is governed by the rates of production and decomposition of organic matter. While plant productivity responses to sea-level rise are well understood, far less is known about the response of SOM decomposition to accelerated sea-level rise. Here we quantified the effects of sea-level rise on SOM decomposition by exposing planted and unplanted tidal marsh monoliths to experimentally manipulated flood duration. The study was performed in a field-based mesocosm facility at the Smithsonian Global Change Research Wetland, a micro tidal brackish marsh in Maryland, US. SOM decomposition was quantified as CO2 efflux, with plant- and SOM-derived CO2 separated using a stable carbon isotope approach. Despite the dogma that decomposition rates are inversely related to flooding, SOM mineralization was not sensitive to varying flood duration over a 35 cm range in surface elevation in unplanted mesocoms. In the presence of plants, decomposition rates were strongly and positively related to aboveground biomass (p≤0.01, R2≥0.59). We conclude that rates of soil carbon loss through decomposition are driven by plant responses to sea level in this intensively studied tidal marsh. If our result applies more generally to tidal wetlands, it has important implications for modeling carbon sequestration and marsh accretion in response to accelerated sea-level rise.

  18. Decomposition dynamics of mixed litter in a seasonally flooded forest near the Orinoco river

    NASA Astrophysics Data System (ADS)

    Bastianoni, Alessia; Chacón, Noemí; Méndez, Carlos L.; Flores, Saúl

    2015-04-01

    We evaluated the decomposition of a litter mixture in the seasonally flooded forest of a tributary of the Orinoco river. This mixture was prepared using three litter species, based on the litter fall rate observed over a complete hydro-period (2012-2013). The mixture loading ratio was 0.46 of Pouteria orinocoensis (Sapotaceae), 0.38 of Alibertia latifolia (Rubiaceae) and 0.16 of Acosmium nitens (Fabaceae). The initial chemical composition of each single litter species was also determined. Litterbags (20 × 20 cm, 2 mm opening) containing either each single species or the mixture, were deployed on the flooded forest soil and sampled after 30, 240, 270, 300 and 330 days. There were differences in initial total N and P concentrations, with A. nitens (AN) showing the highest nutrient concentrations (%NAN = 1.86 ± 0.19; %PAN = 0.058 ± 0.008) and P. orinocoensis (PO) and A. latifolia (AL) the lowest (%NPO = 0.92 ± 0.06; %NAL = 1.04 ± 0.04; %PPO = 0.029 ± 0.005; %PAL = 0.032 ± 0.001). Litter from AN showed the greatest mass loss (55%) and fastest decomposition rate (k = 0.00185 ± 0.00028) while litter from AL and the mixture showed the smallest mass loss (24% and 27% respectively) and the slowest decomposition rate (kAL = 0.00078 ± 0.00012 and kMIX = 0.00077 ± 0.00006). Decomposition rates were significantly and positively correlated with initial N (r = 0.556, p < 0.05) and P concentrations (r = 0.482, p < 0.05). Nevertheless, there were no significant differences between the expected decomposition rate and the observed decomposition rate of the mixture (additive response). To test the nature of the additivity, an enhancement factor (f) on decomposition rates for each single species was calculated. The species with the highest and smallest value of f were AN and AL, respectively. The fact that two out of the three species had values significantly different from 1, suggests that the additivity detected in our mixture was a consequence of the counterbalancing of the positive and negative effects of each species over the decomposition of the litter mixture.

  19. Shock response of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX): The C-N bond scission studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuan, Jiao-Nan; Wei, Yong-Kai; Zhang, Xiu-Qing; Chen, Xiang-Rong; Ji, Guang-Fu; Kotni, Meena Kumari; Wei, Dong-Qing

    2017-10-01

    The shock response has a great influence on the design, synthesis, and application of energetic materials in both industrial and military areas. Therefore, the initial decomposition mechanism of bond scission at the atomistic level of condensed-phase α-RDX under shock loading has been studied based on quantum molecular dynamics simulations in combination with a multi-scale shock technique. First, based on the frontier molecular orbital theory, our calculated result shows that the N-NO2 bond is the weakest bond in the α-RDX molecule in the ground state, which may be the initial bond for pyrolysis. Second, the changes of bonds under shock loading are investigated by the changes of structures, kinetic bond lengths, and Laplacian bond orders during the simulation. Also, the variation of thermodynamic properties with time in shocked α-RDX at 10 km/s along the lattice vector a for a timescale of up to 3.5 ps is presented. By analyzing the detailed structural changes of RDX under shock loading, we find that the shocked RDX crystal undergoes a process of compression and rotation, which leads to the C-N bond initial rupture. The time variation of dynamic bond lengths in a shocked RDX crystal is calculated, and the result indicates that the C-N bond is easier to rupture than other bonds. The Laplacian bond orders are used to predict the molecular reactivity and stability. The values of the calculated bond orders show that the C-N bonds are more sensitive than other bonds under shock loading. In a word, the C-N bond scission has been validated as the initial decomposition in a RDX crystal shocked at 10 km/s. Finally, the bond-length criterion has been used to identify individual molecules in the simulation. The distance thresholds up to which two particles are considered direct neighbors and assigned to the same cluster have been tested. The species and density numbers of the initial decomposition products are collected according to the trajectory.

  20. A hybrid Dantzig-Wolfe, Benders decomposition and column generation procedure for multiple diet production planning under uncertainties

    NASA Astrophysics Data System (ADS)

    Udomsungworagul, A.; Charnsethikul, P.

    2018-03-01

    This article introduces methodology to solve large scale two-phase linear programming with a case of multiple time period animal diet problems under both nutrients in raw materials and finished product demand uncertainties. Assumption of allowing to manufacture multiple product formulas in the same time period and assumption of allowing to hold raw materials and finished products inventory have been added. Dantzig-Wolfe decompositions, Benders decomposition and Column generations technique has been combined and applied to solve the problem. The proposed procedure was programmed using VBA and Solver tool in Microsoft Excel. A case study was used and tested in term of efficiency and effectiveness trade-offs.

  1. Decomposition Mechanism of C5F10O: An Environmentally Friendly Insulation Medium.

    PubMed

    Zhang, Xiaoxing; Li, Yi; Xiao, Song; Tang, Ju; Tian, Shuangshuang; Deng, Zaitao

    2017-09-05

    SF 6 , the most widely used electrical-equipment-insulation gas, has serious greenhouse effects. C 5 F 10 O has attracted much attention as an alternative gas in recent two years, but the environmental impact of its decomposition products is unclear. In this work, the decomposition characteristics of C 5 F 10 O were studied based on gas chromatography-mass spectrometry and density functional theory. We found that the amount of decomposition products of C 5 F 10 O, namely, CF 4 , C 2 F 6 , C 3 F 6 , C 3 F 8 , C 4 F 10 , and C 6 F 14 , increased with increased number of discharges. Under a high-energy electric field, the C-C bond of C 5 F 10 O between carbonyl carbon and α-carbon atoms was most likely to break and generate CF 3 CO•, C 3 F 7 • or C 3 F 7 CO•, CF 3 • free radicals. CF 3 •, and C 3 F 7 • free radicals produced by the breakage more easily recombined to form small molecular products. By analyzing the ionization parameters, toxicity, and environmental effects of C 5 F 10 O and its decomposition products, we found that C 5 F 10 O gas mixtures exhibit great decomposition and environmental characteristics with low toxicity, with great potential to replace SF 6 .

  2. Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO{sub 2}/SiO{sub 2} nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czech, Bożena, E-mail: bczech@hektor.umcs.lublin.pl; Buda, Waldemar

    For the photocatalytic removal of bisphenol A (BPA) and carbamazepine (CBZ) from water solution a new multiwall-carbon nanotubes and TiO{sub 2}/SiO{sub 2} nanocomposites (MWCNT–TiO{sub 2}–SiO{sub 2}) were applied. Nanocomposites with the addition of 0.15–17.8 wt% MWCNT show high potential for the removal of both pollutants. The starting concentration of each contaminant was halved during 20 min of UVA irradiation. The decomposition process of CBZ over investigated nanocomposites proceeded differently than it was observed for the classical photocatalyst P25. The kinetics of the removal followed as a pseudo-first order regime with the k{sub 1} in range 0.0827–0.1751 min{sup −1} for BPA andmore » 0.0131–0.0743 min{sup −1} for CBZ. Toxicity to Vibrio fischeri and Daphnia magna was significantly reduced indicating formation of non-toxic products of photooxidation of tested contaminants. - Highlights: • MWCNT enhanced TiO{sub 2} activity in UVA and the removal of BPA and CBZ. • At least 50% PPCPs removal during 30 min of photocatalytic treatment was observed. • MWCNT changed the mechanism of CBZ decomposition but not BPA. • Decomposition products of both BPA and CBZ possessed low toxicity. • Photocatalysis may be recommended for the initial treatment of pharmaceutical wastewater.« less

  3. Performance of a plastic-wrapped composting system for biosecure emergency disposal of disease-related swine mortalities.

    PubMed

    Glanville, Thomas D; Ahn, Heekwon; Akdeniz, Neslihan; Crawford, Benjamin P; Koziel, Jacek A

    2016-02-01

    A passively-ventilated plastic-wrapped composting system initially developed for biosecure disposal of poultry mortalities caused by avian influenza was adapted and tested to assess its potential as an emergency disposal option for disease-related swine mortalities. Fresh air was supplied through perforated plastic tubing routed through the base of the compost pile. The combined air inlet and top vent area is ⩽∼1% of the gas exchange surface of a conventional uncovered windrow. Parameters evaluated included: (1) spatial and temporal variations in matrix moisture content (m.c.), leachate production, and matrix O2 concentrations; (2) extent of soft tissue decomposition; and (3) internal temperature and the success rate in achieving USEPA time/temperature (T) criteria for pathogen reduction. Six envelope materials (wood shavings, corn silage, ground cornstalks, ground oat straw, ground soybean straw, or ground alfalfa hay) and two initial m.c.'s (15-30% w.b. for materials stored indoors, and 45-65% w.b. to simulate materials exposed to precipitation) were tested to determine their effect on performance parameters (1-3). Results of triple-replicated field trials showed that the composting system did not accumulate moisture despite the 150kg carcass water load (65% of 225kg total carcass mass) released during decomposition. Mean compost m.c. in the carcass layer declined by ∼7 percentage points during 8-week trials, and a leachate accumulation was rare. Matrix O2 concentrations for all materials other than silage were ⩾10% using the equivalent of 2m inlet/vent spacing. In silage O2 dropped below 5% in some cases even when 0.5m inlet/vent spacing was used. Eight week soft tissue decomposition ranged from 87% in cornstalks to 72% in silage. Success rates for achievement of USEPA Class B time/temperature criteria ranged from 91% for silage to 33-57% for other materials. Companion laboratory biodegradation studies suggest that Class B success rates can be improved by slightly increasing envelope material m.c. Moistening initially dry (15% m.c.) envelope materials to 35% m.c. nearly doubled their heat production potential, boosting it to levels ⩾silage. The 'contradictory' silage test results showing high temperatures paired with slow soft tissue degradation are likely due to this material's high density, low gas permeability and low water vapor loss. While slow decomposition typically suggests low microbial activity and heat production, it does not rule out high internal temperatures if the heat produced is conserved. Occasional short-term odor releases during the first 2weeks of composting were associated with top-to-bottom gas flow which is contrary to the typical bottom-to-top flow typically observed in conventional compost piles. In cases where biosecurity concerns are paramount, results of this study show the plastic-wrapped passively-ventilated composting method to have good potential for above-ground swine mortality disposal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Quantum Chemical Molecular Dynamics Simulations of 1,3-Dichloropropene Combustion.

    PubMed

    Ahubelem, Nwakamma; Shah, Kalpit; Moghtaderi, Behdad; Page, Alister J

    2015-09-03

    Oxidative decomposition of 1,3-dichloropropene was investigated using quantum chemical molecular dynamics (QM/MD) at 1500 and 3000 K. Thermal oxidation of 1,3-dichloropropene was initiated by (1) abstraction of allylic H/Cl by O2 and (2) intra-annular C-Cl bond scission and elimination of allylic Cl. A kinetic analysis shows that (2) is the more dominant initiation pathway, in agreement with QM/MD results. These QM/MD simulations reveal new routes to the formation of major products (H2O, CO, HCl, CO2), which are propagated primarily by the chloroperoxy (ClO2), OH, and 1,3-dichloropropene derived radicals. In particular, intra-annular C-C/C-H bond dissociation reactions of intermediate aldehydes/ketones are shown to play a dominant role in the formation of CO and CO2. Our simulations demonstrate that both combustion temperature and radical concentration can influence the product yield, however not the combustion mechanism.

  5. Behaviors of glucose decomposition during acid-catalyzed hydrothermal hydrolysis of pretreated Gelidium amansii.

    PubMed

    Jeong, Tae Su; Choi, Chang Ho; Lee, Ji Ye; Oh, Kyeong Keun

    2012-07-01

    Acid-catalyzed hydrothermal hydrolysis is one path to cellulosic glucose and subsequently to its dehydration end products such as hydroxymethyl furfural (HMF), formic acid and levulinic acid. The effect of sugar decomposition not only lowers the yield of fermentable sugars but also forms decomposition products that inhibit subsequent fermentation. The present experiments were conducted with four different acid catalysts (H(2)SO(4), HNO(3), HCl, and H(3)PO(4)) at various acid normalities (0.5-2.1N) in batch reactors at 180-210 °C. From the results, H(2)SO(4) was the most suitable catalyst for glucose production, but glucose decomposition occurred during the hydrolysis. The glucose production was maximized at 160.7 °C, 2.0% (w/v) H(2)SO(4), and 40 min, but resulted in a low glucan yield of 33.05% due to the decomposition reactions, which generated formic acid and levulinic acid. The highest concentration of levulinic acid, 7.82 g/L, was obtained at 181.2 °C, 2.0% (w/v) H(2)SO(4), and 40 min. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Thermal behavior of vehicle plastic blends contained acrylonitrile-butadiene-styrene (ABS) in pyrolysis using TG-FTIR.

    PubMed

    Liu, Guicai; Liao, Yanfen; Ma, Xiaoqian

    2017-03-01

    As important plastic blends in End-of-Life vehicles (ELV), pyrolysis profiles of ABS/PVC, ABS/PA6 and ABS/PC were investigated using thermogravimetric-Fourier transform infrared spectrometer (TG-FTIR). Also, CaCO 3 was added as plastic filler to discuss its effects on the pyrolysis of these plastics. The results showed that the interaction between ABS and PVC made PVC pyrolysis earlier and HCl emission slightly accelerated. The mixing of ABS and PA6 made their decomposition temperature closer, and ketones in PA6 pyrolysis products were reduced. The presence of ABS made PC pyrolysis earlier, and phenyl compounds in PC pyrolysis products could be transferred into alcohol or H 2 O. The interaction between ABS and other polymers in pyrolysis could be attributed to the intermolecular radical transfer, and free radicals from the polymer firstly decomposed led to a fast initiation the decomposition of the other polymer. As plastic filler, CaCO 3 promoted the thermal decomposition of PA6 and PC, and had no obvious effects on ABS and PVC pyrolysis process. Also, CaCO 3 made the pyrolysis products from PA6 and PC further decomposed into small-molecule compounds like CO 2 . The kinetics analysis showed that isoconversional method like Starink method was more suitable for these polymer blends. Starink method showed the average activation energy of ABS50/PVC50, ABS50/PA50 and ABS50/PC50 was 186.63kJ/mol, 239.61kJ/mol and 248.95kJ/mol, respectively, and the interaction among them could be reflected by the activation energy variation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Nuclear driven water decomposition plant for hydrogen production

    NASA Technical Reports Server (NTRS)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  8. Management intensity alters decomposition via biological pathways

    USGS Publications Warehouse

    Wickings, Kyle; Grandy, A. Stuart; Reed, Sasha; Cleveland, Cory

    2011-01-01

    Current conceptual models predict that changes in plant litter chemistry during decomposition are primarily regulated by both initial litter chemistry and the stage-or extent-of mass loss. Far less is known about how variations in decomposer community structure (e.g., resulting from different ecosystem management types) could influence litter chemistry during decomposition. Given the recent agricultural intensification occurring globally and the importance of litter chemistry in regulating soil organic matter storage, our objectives were to determine the potential effects of agricultural management on plant litter chemistry and decomposition rates, and to investigate possible links between ecosystem management, litter chemistry and decomposition, and decomposer community composition and activity. We measured decomposition rates, changes in litter chemistry, extracellular enzyme activity, microarthropod communities, and bacterial versus fungal relative abundance in replicated conventional-till, no-till, and old field agricultural sites for both corn and grass litter. After one growing season, litter decomposition under conventional-till was 20% greater than in old field communities. However, decomposition rates in no-till were not significantly different from those in old field or conventional-till sites. After decomposition, grass residue in both conventional- and no-till systems was enriched in total polysaccharides relative to initial litter, while grass litter decomposed in old fields was enriched in nitrogen-bearing compounds and lipids. These differences corresponded with differences in decomposer communities, which also exhibited strong responses to both litter and management type. Overall, our results indicate that agricultural intensification can increase litter decomposition rates, alter decomposer communities, and influence litter chemistry in ways that could have important and long-term effects on soil organic matter dynamics. We suggest that future efforts to more accurately predict soil carbon dynamics under different management regimes may need to explicitly consider how changes in litter chemistry during decomposition are influenced by the specific metabolic capabilities of the extant decomposer communities.

  9. Gas Pressure Monitored Iodide-Catalyzed Decomposition Kinetics of H[subscript 2]O[subscript 2]: Initial-Rate and Integrated-Rate Methods in the General Chemistry Lab

    ERIC Educational Resources Information Center

    Nyasulu, Frazier; Barlag, Rebecca

    2010-01-01

    The reaction kinetics of the iodide-catalyzed decomposition of [subscript 2]O[subscript 2] using the integrated-rate method is described. The method is based on the measurement of the total gas pressure using a datalogger and pressure sensor. This is a modification of a previously reported experiment based on the initial-rate approach. (Contains 2…

  10. Controlled synthesis, formation mechanism, and carbon oxidation properties of Ho2Cu2O5 nanoplates prepared with a coordination-complex method

    NASA Astrophysics Data System (ADS)

    Guo, Rui; You, Junhua; Han, Fei; Li, Chaoyang; Zheng, Guiyuan; Xiao, Weicheng; Liu, Xuanwen

    2017-02-01

    Ho2Cu2O5 nanoplates with perovskite structures were synthesized via a simple solution method (SSM) and a coordination-complex method (CCM) using [HoCu(3,4-pdc)2(OAc)(H2O)3]·8H2O (L = 3,4-pyridinedicarboxylic acid) as a precursor. The CCM was also performed in an N2 environment (CCMN) under various calcination conditions. The crystallization processes were characterized using X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy. Ho2Cu2O5 formed through the diffusion of CuO into Ho2O3 particles. Cu2+ diffused faster than Ho3+ during this process. The initial products of CCMN (along with the thermal decomposition products) were initially laminarized in the N2 atmosphere, which prevented the growth of CuO particles and decreased the size of the Ho2Cu2O5 particles. The final Ho2Cu2O5 particles from CCMN had a nanoplate morphology with an average thickness of 75 nm. The decomposition of organic molecules and protection from N2 played important roles in determining the morphology of the resulting Ho2Cu2O5. The catalytic oxidation activity of Ho2Cu2O5 samples for carbon was characterized using a specific surface area measurement and thermogravimetric analysis, which revealed that the samples produced by CCMN had the highest catalytic activity.

  11. In situ spectroscopic studies on vapor phase catalytic decomposition of dimethyl oxalate.

    PubMed

    Hegde, Shweta; Tharpa, Kalsang; Akuri, Satyanarayana Reddy; K, Rakesh; Kumar, Ajay; Deshpande, Raj; Nair, Sreejit A

    2017-03-15

    Dimethyl Oxalate (DMO) has recently gained prominence as a valuable intermediate for the production of compounds of commercial importance. The stability of DMO is poor and hence this can result in the decomposition of DMO under reaction conditions. The mechanism of DMO decomposition is however not reported and more so on catalytic surfaces. Insights into the mechanism of decomposition would help in designing catalysts for its effective molecular transformation. It is well known that DMO is sensitive to moisture, which can also be a factor contributing to its decomposition. The present work reports the results of decomposition of DMO on various catalytic materials. The materials studied consist of acidic (γ-Al 2 O 3 ), basic (MgO), weakly acidic (ZnAl 2 O 4 ) and neutral surfaces such as α-Al 2 O 3 and mesoporous precipitated SiO 2 . Infrared spectroscopy is used to identify the nature of adsorption of the molecule on the various surfaces. The spectroscopy study is done at a temperature of 200 °C, which is the onset of gas phase decomposition of DMO. The results indicate that the stability of DMO is lower than the corresponding acid, i.e. oxalic acid. It is also one of the products of decomposition. Spectroscopic data suggest that DMO decomposition is related to surface acidity and the extent of decomposition depends on the number of surface hydroxyl groups. Decomposition was also observed on α-Al 2 O 3 , which was attributed to the residual surface hydroxyl groups. DMO decomposition to oxalic acid was not observed on the basic surface (MgO).

  12. Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3 for benzene decomposition with synergetic effect and nano particle by-product reduction.

    PubMed

    Mao, Lingai; Chen, Zhizong; Wu, Xinyue; Tang, Xiujuan; Yao, Shuiliang; Zhang, Xuming; Jiang, Boqiong; Han, Jingyi; Wu, Zuliang; Lu, Hao; Nozaki, Tomohiro

    2018-04-05

    A dielectric barrier discharge (DBD) catalyst hybrid reactor with CeO 2 /γ-Al 2 O 3 catalyst balls was investigated for benzene decomposition at atmospheric pressure and 30 °C. At an energy density of 37-40 J/L, benzene decomposition was as high as 92.5% when using the hybrid reactor with 5.0wt%CeO 2 /γ-Al 2 O 3 ; while it was 10%-20% when using a normal DBD reactor without a catalyst. Benzene decomposition using the hybrid reactor was almost the same as that using an O 3 catalyst reactor with the same CeO 2 /γ-Al 2 O 3 catalyst, indicating that O 3 plays a key role in the benzene decomposition. Fourier transform infrared spectroscopy analysis showed that O 3 adsorption on CeO 2 /γ-Al 2 O 3 promotes the production of adsorbed O 2 - and O 2 2‒ , which contribute benzene decomposition over heterogeneous catalysts. Nano particles as by-products (phenol and 1,4-benzoquinone) from benzene decomposition can be significantly reduced using the CeO 2 /γ-Al 2 O 3 catalyst. H 2 O inhibits benzene decomposition; however, it improves CO 2 selectivity. The deactivated CeO 2 /γ-Al 2 O 3 catalyst can be regenerated by performing discharges at 100 °C and 192-204 J/L. The decomposition mechanism of benzene over CeO 2 /γ-Al 2 O 3 catalyst was proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Conceptual design optimization study

    NASA Technical Reports Server (NTRS)

    Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.

    1990-01-01

    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.

  14. The Composition of Intermediate Products of the Thermal Decomposition of (NH4)2ZrF6 to ZrO2 from Vibrational-Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Voit, E. I.; Didenko, N. A.; Gaivoronskaya, K. A.

    2018-03-01

    Thermal decomposition of (NH4)2ZrF6 resulting in ZrO2 formation within the temperature range of 20°-750°C has been investigated by means of thermal and X-ray diffraction analysis and IR and Raman spectroscopy. It has been established that thermolysis proceeds in six stages. The vibrational-spectroscopy data for the intermediate products of thermal decomposition have been obtained, systematized, and summarized.

  15. Hydrogen and carbon nanotube production via catalytic decomposition of methane

    NASA Astrophysics Data System (ADS)

    Deniz, Cansu; Karatepe, Nilgün

    2013-09-01

    The future energy demand is expected to increase significantly due to an increasing world population and demands for higher standards of living and better air quality. Hydrogen is considered as an energy carrier because of its high conversion efficiency and low pollutant emissions. It can be produced from various sources and transformed into electricity and other energy forms with a low pollution. The catalytic decomposition of hydrocarbon has been seen as a really useful method for production of pure hydrogen and for the environmental concern. The objective of this study was to assess the impact of catalyst composition and processing parameters on COx-free hydrogen production and to produce an available solid form of co-product carbon as carbon nanotubes via catalytic decomposition of methane. The optimum experimental conditions for methane decomposition have been investigated. Fe, Co and Ni are used as catalysts (nano materials) over different substrates as SiO2 and MgO to produce hydrogen at optimum temperatures.

  16. Role of litter turnover in soil quality in tropical degraded lands of Colombia.

    PubMed

    León, Juan D; Osorio, Nelson W

    2014-01-01

    Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition) is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6-13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems.

  17. Tensor products of U{sub q}{sup Prime }sl-caret(2)-modules and the big q{sup 2}-Jacobi function transform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gade, R. M.

    2013-01-15

    Four tensor products of evaluation modules of the quantum affine algebra U{sub q}{sup Prime }sl-caret(2) obtained from the negative and positive series, the complementary and the strange series representations are investigated. Linear operators R(z) satisfying the intertwining property on finite linear combinations of the canonical basis elements of the tensor products are described in terms of two sets of infinite sums {l_brace}{tau}{sup (r,t)}{r_brace}{sub r,t Element-Of Z{sub {>=}{sub 0}}} and {l_brace}{tau}{sup (r,t)}{r_brace}{sub r,t Element-Of Z{sub {>=}{sub 0}}} involving big q{sup 2}-Jacobi functions or related nonterminating basic hypergeometric series. Inhomogeneous recurrence relations can be derived for both sets. Evaluations of the simplestmore » sums provide the corresponding initial conditions. For the first set of sums the relations entail a big q{sup 2}-Jacobi function transform pair. An integral decomposition is obtained for the sum {tau}{sup (r,t)}. A partial description of the relation between the decompositions of the tensor products with respect to U{sub q}sl(2) or with respect to its complement in U{sub q}{sup Prime }sl-caret(2) can be formulated in terms of Askey-Wilson function transforms. For a particular combination of two tensor products, the occurrence of proper U{sub q}{sup Prime }sl-caret(2)-submodules is discussed.« less

  18. Nutrient dynamics and decomposition of riparian Arundinaria gigantea (Walt.)Muhl. leaves in southern Illinois

    USDA-ARS?s Scientific Manuscript database

    Leaf litter quality and quantity can influence soil nutrient dynamics and stream productivity through decomposition and serving as allochthonous stream inputs. Leaf deposition, nitrogen (N)-resorption efficiency and proficiency, and decomposition rates were analyzed in riparian stands of Arundinaria...

  19. A simple method for decomposition of peracetic acid in a microalgal cultivation system.

    PubMed

    Sung, Min-Gyu; Lee, Hansol; Nam, Kibok; Rexroth, Sascha; Rögner, Matthias; Kwon, Jong-Hee; Yang, Ji-Won

    2015-03-01

    A cost-efficient process devoid of several washing steps was developed, which is related to direct cultivation following the decomposition of the sterilizer. Peracetic acid (PAA) is known to be an efficient antimicrobial agent due to its high oxidizing potential. Sterilization by 2 mM PAA demands at least 1 h incubation time for an effective disinfection. Direct degradation of PAA was demonstrated by utilizing components in conventional algal medium. Consequently, ferric ion and pH buffer (HEPES) showed a synergetic effect for the decomposition of PAA within 6 h. On the contrary, NaNO3, one of the main components in algal media, inhibits the decomposition of PAA. The improved growth of Chlorella vulgaris and Synechocystis PCC6803 was observed in the prepared BG11 by decomposition of PAA. This process involving sterilization and decomposition of PAA should help cost-efficient management of photobioreactors in a large scale for the production of value-added products and biofuels from microalgal biomass.

  20. XPS study of thermal and electron-induced decomposition of Ni and Co acetylacetonate thin films for metal deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Theodor; Warneke, Jonas; Zielasek, Volkmar, E-mail: zielasek@uni-bremen.de

    2016-07-15

    Optimizing thin metal film deposition techniques from metal-organic precursors such as atomic layer deposition, chemical vapor deposition (CVD), or electron beam-induced deposition (EBID) with the help of surface science analysis tools in ultrahigh vacuum requires a contamination-free precursor delivery technique, especially in the case of the less volatile precursors. For this purpose, the preparation of layers of undecomposed Ni(acac){sub 2} and Co(acac){sub 2} was tried via pulsed spray evaporation of a liquid solution of the precursors in ethanol into a flow of nitrogen on a CVD reactor. Solvent-free layers of intact precursor molecules were obtained when the substrate was heldmore » at a temperature of 115 °C. A qualitative comparison of thermally initiated and electron-induced precursor decomposition and metal center reduction was carried out. All deposited films were analyzed with respect to chemical composition quasi in situ by x-ray photoelectron spectroscopy. Thermally initiated decomposition yielded higher metal-to-metal oxide ratios in the deposit than the electron-induced process for which ratios of 60:40 and 20:80 were achieved for Ni and Co, resp. Compared to continuous EBID processes, all deposits showed low levels of carbon impurities of ∼10 at. %. Therefore, postdeposition irradiation of metal acetylacetonate layers by a focused electron beam and subsequent removal of intact precursor by dissolution in ethanol or by heating is proposed as electron beam lithography technique on the laboratory scale for the production of the metal nanostructures.« less

  1. Climate Induced Changes in Global-Scale Litter Decomposition and Long-term Relationships with Net Primary Productivity

    NASA Astrophysics Data System (ADS)

    Silver, W. L.; Smith, W. K.; Parton, W. J.; Wieder, W. R.; DelGrosso, S.

    2016-12-01

    Surface litter decomposition represents the largest annual carbon (C) flux to the atmosphere from terrestrial ecosystems (Esser et al. 1982). Using broad-scale long-term datasets we show that litter decomposition rates are largely predicted by a climate-decomposition index (CDI) at a global scale, and use CDI to estimate patterns in litter decomposition over the 110 years from 1901-2011. There were rapid changes in CDI over the last 30 y of the record amounting to a 4.3% increase globally. Boreal forests (+13.9%), tundra (+12.2%), savannas (+5.3%), and temperate (+2.4%) and tropical (+2.1%) forests all experienced accelerated decomposition. During the same period, most biomes experienced corresponding increases in a primary production index (PPI) estimated from an ensemble of long-term, observation-based productivity indices. The percent increase in PPI was only half that of decomposition globally. Tropical forests and savannas showed no increase in PPI to offset greater decomposition rates. Temperature-limited ecosystems (i.e., tundra, boreal, and temperate forests) showed the greatest differences between CDI and PPI, highlighting potentially large decoupling of C fluxes in these biomes. Precipitation and actual evapotranspiration were the best climate predictors of CDI at a global scale, while PPI varied consistently with actual evapotranspiration. As expected, temperature was the best predictor of PPI across temperature limited ecosystems. Our results show that climate change could be leading to a decoupling of C uptake and losses, potentially resulting in lower C storage in northern latitudes, temperate and tropical forests, and savannas.

  2. Decomposition of a symmetric second-order tensor

    NASA Astrophysics Data System (ADS)

    Heras, José A.

    2018-05-01

    In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.

  3. Pyrolysis and Matrix-Isolation FTIR of Acetoin

    NASA Astrophysics Data System (ADS)

    Cole, Sarah; Ellis, Martha; Sowards, John; McCunn, Laura R.

    2017-06-01

    Acetoin, CH_3C(O)CH(OH)CH_3, is an additive used in foods and cigarettes as well as a common component of biomass pyrolysate during the production of biofuels, yet little is known about its thermal decomposition mechanism. In order to identify thermal decomposition products of acetoin, a gas-phase mixture of approximately 0.3% acetoin in argon was subject to pyrolysis in a resistively heated SiC microtubular reactor at 1100-1500 K. Matrix-isolation FTIR spectroscopy was used to identify pyrolysis products. Many products were observed in analysis of the spectra, including acetylene, propyne, ethylene, and vinyl alcohol. These results provide clues to the overall mechanism of thermal decomposition and are important for predicting emissions from many industrial and residential processes.

  4. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.

    2018-05-01

    The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.

  5. Catalytic Decomposition of Hydroxylammonium Nitrate Ionic Liquid: Enhancement of NO Formation.

    PubMed

    Chambreau, Steven D; Popolan-Vaida, Denisia M; Vaghjiani, Ghanshyam L; Leone, Stephen R

    2017-05-18

    Hydroxylammonium nitrate (HAN) is a promising candidate to replace highly toxic hydrazine in monopropellant thruster space applications. The reactivity of HAN aerosols on heated copper and iridium targets was investigated using tunable vacuum ultraviolet photoionization time-of-flight aerosol mass spectrometry. The reaction products were identified by their mass-to-charge ratios and their ionization energies. Products include NH 3 , H 2 O, NO, hydroxylamine (HA), HNO 3 , and a small amount of NO 2 at high temperature. No N 2 O was detected under these experimental conditions, despite the fact that N 2 O is one of the expected products according to the generally accepted thermal decomposition mechanism of HAN. Upon introduction of iridium catalyst, a significant enhancement of the NO/HA ratio was observed. This observation indicates that the formation of NO via decomposition of HA is an important pathway in the catalytic decomposition of HAN.

  6. Stable hydrogen production from ethanol through steam reforming reaction over nickel-containing smectite-derived catalyst.

    PubMed

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-12-25

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2.

  7. Stable Hydrogen Production from Ethanol through Steam Reforming Reaction over Nickel-Containing Smectite-Derived Catalyst

    PubMed Central

    Yoshida, Hiroshi; Yamaoka, Ryohei; Arai, Masahiko

    2014-01-01

    Hydrogen production through steam reforming of ethanol was investigated with conventional supported nickel catalysts and a Ni-containing smectite-derived catalyst. The former is initially active, but significant catalyst deactivation occurs during the reaction due to carbon deposition. Side reactions of the decomposition of CO and CH4 are the main reason for the catalyst deactivation, and these reactions can relatively be suppressed by the use of the Ni-containing smectite. The Ni-containing smectite-derived catalyst contains, after H2 reduction, stable and active Ni nanocrystallites, and as a result, it shows a stable and high catalytic performance for the steam reforming of ethanol, producing H2. PMID:25547495

  8. Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil

    PubMed Central

    Wild, Birgit; Schnecker, Jörg; Alves, Ricardo J. Eloy; Barsukov, Pavel; Bárta, Jiří; Čapek, Petr; Gentsch, Norman; Gittel, Antje; Guggenberger, Georg; Lashchinskiy, Nikolay; Mikutta, Robert; Rusalimova, Olga; Šantrůčková, Hana; Shibistova, Olga; Urich, Tim; Watzka, Margarete; Zrazhevskaya, Galina; Richter, Andreas

    2014-01-01

    Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM (“priming effect”). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze–thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate. PMID:25089062

  9. Decomposition of forest products buried in landfills.

    PubMed

    Wang, Xiaoming; Padgett, Jennifer M; Powell, John S; Barlaz, Morton A

    2013-11-01

    The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal waste components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C+H) loss of up to 38%, while loss for the other wood types was 0-10% in most samples. The C+H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27gOCg(-1) dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The interactive effect of the degradation of cotton clothing and decomposition fluid production associated with decaying remains.

    PubMed

    Ueland, Maiken; Nizio, Katie D; Forbes, Shari L; Stuart, Barbara H

    2015-10-01

    Textiles are a commonly encountered source of evidence in forensic cases. In the past, most research has been focused on how textiles affect the decomposition process while little attention has been paid to how the decomposition products interact with the textiles. While some studies have shown that the presence of remains will have an effect on the degradation of clothing associated with a decaying body, very little work has been carried out on the specific mechanisms that prevent or delay textile degradation when in contact with decomposing remains. In order to investigate the effect of decomposition fluid on textile degradation, three clothed domestic pig (Sus scrofa domesticus) carcasses were placed on a soil surface, textile specimens were collected over a period of a year and were then analysed using ATR-FTIR spectroscopy and GC-MS. Multivariate statistical analysis was used to analyse the data. Cotton specimens not associated with remains degraded markedly, whereas the samples exposed to decomposition fluids remained relatively intact over the same time frame. An investigation of the decomposition by-products found that the protein-related bands remained stable and unchanged throughout the experiment. Lipid components, on the other hand, demonstrated a significant change; this was confirmed with the use of both ATR-FTIR spectroscopy and GC-MS. Through an advanced statistical approach, information about the decomposition by-products and their characteristics was obtained. There is potential that the lipid profile in a textile specimen could be a valuable tool used in the examination of clothing located at a crime scene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. The influence of photocatalytic interior paints on indoor air quality

    NASA Astrophysics Data System (ADS)

    Auvinen, Joonas; Wirtanen, Leif

    2008-06-01

    A clean indoor air is important for the well-being and health of people. Lately, new photocatalytic paints have been launched on the market, which are claimed to have air-purifying effects. Photocatalysis initiates radical reactions. Radicals are formed when a photocatalyst (e.g. TiO2) is subjected to radiation. Typical radicals are the hydroxyl radical (radOH) and the superoxide radical (radO2-). Radicals cause chain reactions, which degrade and decompose organic compounds. The end products of these chain reactions are water and carbon dioxide, if the reactions are fully completed (mineralization). If mineralization does not take place, then a great number of side products can be formed, whose properties are not well understood. The side products of photocatalytic reactions can be permanent and stabile. The decomposition of indoor air impurities on the surface of photocatalytic paints is not obvious. The ability of photocatalytic indoor paints to reduce chemical indoor air impurities is the key issue of this study. Six different paints with different binder systems, such as lime, polyorganic siloxane, silica sol-gel and organic binders, were examined. The experiments were divided into three topics: degradation of an organic binder, photocatalytic decomposition of formaldehyde, and a volatile organic compound (VOC) mixture consisting of five different indoor air VOCs. All tests were carried out in an environmental test chamber under dynamic conditions. The test results indicate that many indoor pollutants are generated under normal- and UVA-light. Typical compounds formed include formaldehyde, acetone, acetaldehyde, etc. A clear decrease of formaldehyde or the VOC mixture concentration was not observed. All possibly generated compounds could not be collected or analyzed in this research project, but the measurements show that photocatalytic reactions do not generate only carbon dioxide and water. Photocatalytic decomposition of indoor air impurities can, however, produce many side products, which may be stabile and harmful.

  12. Study of the solid-phase thermal decomposition of NTO using Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS)

    NASA Technical Reports Server (NTRS)

    Minier, L.; Behrens, R.; Burkey, T. J.

    1997-01-01

    The solid phase thermal reaction chemistry of NTO between 190 and 250 C is presently being evaluated by utilizing STMBMS, a technique that enables the authors to measure the vapor pressure of NTO and to explore the reaction mechanisms and chemical kinetics associated with the NTO thermal decomposition process. The vapor pressure of NTO is expressed as Log(sub 10) p(torr) = 12.5137 + 6,296.553(1/t(k)) and the Delta-H(sub subl) = 28.71 +/- 0.07 kcal/mol (120.01 +/- 0.29 kJ/mol). The pyrolysis of NTO results in the formation of gaseous products and a condensed-phase residue. The identity of the major gaseous products and their origin from within the NTO molecules are determined based on the results from pyrolysis of NTO, NTO-3-C-13, NTO-1,2- (15)N2 and NTO-(2)H2. Identification of the products show the major gaseous products to be N2, CO2, NO, HNCO, H2O and some N2O, CO, HCN and NH3. The N2 is mostly derived from the N-1 and N-2 positions with some being from the N-4 and N-1 or N-2 positions. The CO2 is derived from both carbons in the NTO molecule in comparable amounts. The residue has an elemental formula of C(2.1)H(.26)N(2.9)O and FTIR analysis suggests that the residue is polyurea- and polycarbamate- like in nature. The temporal behaviors of the rates of formation of the gaseous products indicate that the overall thermal decomposition of NTO in the temperature range evaluated involves four major processes: (1) NTO sublimation; (2) an apparent solid-solid phase transition between 190 and 195 C; (3) a decomposition regime induced by the presence of exogenous H2O at the onset of decomposition; and (4) a decomposition regime that occurs at the onset of decomposition and continues until the depletion of NTO. Decomposition pathways that are consistent with the data are presented.

  13. Decomposition of forest products buried in landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiaoming, E-mail: xwang25@ncsu.edu; Padgett, Jennifer M.; Powell, John S.

    Highlights: • This study tracked chemical changes of wood and paper in landfills. • A decomposition index was developed to quantify carbohydrate biodegradation. • Newsprint biodegradation as measured here is greater than previous reports. • The field results correlate well with previous laboratory measurements. - Abstract: The objective of this study was to investigate the decomposition of selected wood and paper products in landfills. The decomposition of these products under anaerobic landfill conditions results in the generation of biogenic carbon dioxide and methane, while the un-decomposed portion represents a biogenic carbon sink. Information on the decomposition of these municipal wastemore » components is used to estimate national methane emissions inventories, for attribution of carbon storage credits, and to assess the life-cycle greenhouse gas impacts of wood and paper products. Hardwood (HW), softwood (SW), plywood (PW), oriented strand board (OSB), particleboard (PB), medium-density fiberboard (MDF), newsprint (NP), corrugated container (CC) and copy paper (CP) were buried in landfills operated with leachate recirculation, and were excavated after approximately 1.5 and 2.5 yr. Samples were analyzed for cellulose (C), hemicellulose (H), lignin (L), volatile solids (VS), and organic carbon (OC). A holocellulose decomposition index (HOD) and carbon storage factor (CSF) were calculated to evaluate the extent of solids decomposition and carbon storage. Samples of OSB made from HW exhibited cellulose plus hemicellulose (C + H) loss of up to 38%, while loss for the other wood types was 0–10% in most samples. The C + H loss was up to 81%, 95% and 96% for NP, CP and CC, respectively. The CSFs for wood and paper samples ranged from 0.34 to 0.47 and 0.02 to 0.27 g OC g{sup −1} dry material, respectively. These results, in general, correlated well with an earlier laboratory-scale study, though NP and CC decomposition measured in this study were higher than previously reported.« less

  14. Inhalation toxicology. V., Evaluation of relative toxicity to rats of thermal decomposition products from two aircraft seat fire-blocking materials.

    DOT National Transportation Integrated Search

    1985-11-01

    Two fire-blocking layer (FBL) materials, designed to delay the thermal decomposition of polyurethane foam seat cushions during an aircraft cabin fire, were evaluated for the relative toxicity of their gaseous combustion products. Each materials was t...

  15. Investigation of MIS-sensor sensitivity to vapor of unsymmetrical dimethylgydrazine in air

    NASA Astrophysics Data System (ADS)

    Filipchuk, D. V.; Litvinov, A. V.; Etrekova, M. O.; Nozdrya, D. A.

    2018-01-01

    The sensitivity of MIS-sensor to the products of thermal decomposition of unsymmetrical dimethylhydrazine was investigated. It is shown that MIS sensor is able to detect the concentrations of the test substance by the means of the certain products of its thermal decomposition (ammonia and nitric dioxide).

  16. Wood waste decomposition in landfills: An assessment of current knowledge and implications for emissions reporting.

    PubMed

    O'Dwyer, Jean; Walshe, Dylan; Byrne, Kenneth A

    2018-03-01

    Large quantities of wood products have historically been disposed of in landfills. The fate of this vast pool of carbon plays an important role in national carbon balances and accurate emission reporting. The Republic of Ireland, like many EU countries, utilises the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines for greenhouse gas reporting in the waste sector, which provides default factors for emissions estimation. For wood products, the release of carbon is directly proportional to the decomposition of the degradable organic carbon fraction of the product, for which the IPCC provides a value of 0.5 (50%). However, in situ analytic results of the decomposition rates of carbon in landfilled wood do not corroborate this figure; suggesting that carbon emissions are likely overestimated. To assess the impact of this overestimation on emission reporting, carbon decomposition values obtained from literature and the IPCC default factor were applied to the Irish wood fraction of landfilled waste for the years 1957-2016 and compared. Univariate analysis found a statistically significant difference between carbon (methane) emissions calculated using the IPCC default factor and decomposition factors from direct measurements for softwoods (F = 45.362, p = <.001), hardwoods (F = 20.691, p = <.001) and engineered wood products (U = 4.726, p = <.001). However, there was no significant difference between emissions calculated using only the in situ analytic decomposition factors, regardless of time in landfill, location or subsequently, climate. This suggests that methane emissions from the wood fraction of landfilled waste in Ireland could be drastically overestimated; potentially by a factor of 56. The results of this study highlight the implications of emission reporting at a lower tierand prompts further research into the decomposition of wood products in landfills at a national level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Seasonal variation of carcass decomposition and gravesoil chemistry in a cold (Dfa) climate.

    PubMed

    Meyer, Jessica; Anderson, Brianna; Carter, David O

    2013-09-01

    It is well known that temperature significantly affects corpse decomposition. Yet relatively few taphonomy studies investigate the effects of seasonality on decomposition. Here, we propose the use of the Köppen-Geiger climate classification system and describe the decomposition of swine (Sus scrofa domesticus) carcasses during the summer and winter near Lincoln, Nebraska, USA. Decomposition was scored, and gravesoil chemistry (total carbon, total nitrogen, ninhydrin-reactive nitrogen, ammonium, nitrate, and soil pH) was assessed. Gross carcass decomposition in summer was three to seven times greater than in winter. Initial significant changes in gravesoil chemistry occurred following approximately 320 accumulated degree days, regardless of season. Furthermore, significant (p < 0.05) correlations were observed between ammonium and pH (positive correlation) and between nitrate and pH (negative correlation). We hope that future decomposition studies employ the Köppen-Geiger climate classification system to understand the seasonality of corpse decomposition, to validate taphonomic methods, and to facilitate cross-climate comparisons of carcass decomposition. © 2013 American Academy of Forensic Sciences.

  18. A procedure for the assessment of the toxicity of intermediates and products formed during the accidental thermal decomposition of a chemical species.

    PubMed

    Di Somma, Ilaria; Pollio, Antonino; Pinto, Gabriele; De Falco, Maria; Pizzo, Elio; Andreozzi, Roberto

    2010-04-15

    The knowledge of the substances which form when a molecule undergoes chemical reactions under unusual conditions is required by European legislation to evaluate the risks associated with an industrial chemical process. A thermal decomposition is often the result of a loss of control of the process which leads to the formation of many substances in some cases not easily predictable. The evaluation of the change of an overall toxicity passing from the parent compound to the mixture of its thermal decomposition products has been already proposed as a practical approach to this problem when preliminary indications about the temperature range in which the molecule decomposes are available. A new procedure is proposed in this work for the obtainment of the mixtures of thermal decomposition products also when there is no previous information about the thermal behaviour of investigated molecules. A scanning calorimetric run that is aimed to identify the onset temperature of the decomposition process is coupled to an isoperibolic one in order to obtain and collect the products. An algal strain is adopted for toxicological assessments of chemical compounds and mixtures. An extension of toxicological investigations to human cells is also attempted. 2009 Elsevier B.V. All rights reserved.

  19. Lyman α photolysis of solid nitromethane (CH3NO2) and D3-nitromethane (CD3NO2)--untangling the reaction mechanisms involved in the decomposition of model energetic materials.

    PubMed

    Maksyutenko, Pavlo; Muzangwa, Lloyd G; Jones, Brant M; Kaiser, Ralf I

    2015-03-21

    Solid nitromethane (CH3NO2) along with its isotopically labelled counterpart D3-nitromethane (CD3NO2) ices were exposed to Lyman α photons to investigate the mechanism involved in the decomposition of energetic materials in the condensed phase. The chemical processes in the ices were monitored online and in situ via infrared spectroscopy complimented by temperature programmed desorption studies utilizing highly sensitive reflectron time-of-flight mass spectrometry coupled with pulsed photoionization (ReTOF-PI) at 10.49 eV. The infrared data revealed the formation of cis-methylnitrite (CH3ONO), formaldehyde (H2CO), water (H2O), carbon monoxide (CO), and carbon dioxide (CO2). Upon sublimation of the irradiated samples, three classes of higher molecular weight products, which are uniquely formed in the condensed phase, were identified via ReTOF-PI: (i) nitroso compounds [nitrosomethane (CH3NO), nitrosoethane (C2H5NO), nitrosopropane (C3H7NO)], (ii) nitrite compounds [methylnitrite (CH3ONO), ethylnitrite (C2H5ONO), propylnitrite (C3H7ONO)], and (iii) higher molecular weight molecules [CH3NONOCH3, CH3NONO2CH3, CH3OCH2NO2, ONCH2CH2NO2]. The mechanistical information obtained in the present study suggest that the decomposition of nitromethane in the condensed phase is more complex compared to the gas phase under collision-free conditions opening up not only hitherto unobserved decomposition pathways of nitromethane (hydrogen atom loss, oxygen atom loss, retro carbene insertion), but also the blocking of several initial decomposition steps due to the 'matrix cage effect'.

  20. Pathways of anaerobic organic matter decomposition in tundra soils from Barrow, Alaska

    DOE PAGES

    Herndon, Elizabeth M.; Mann, Benjamin F.; Chowdhury, Taniya Roy; ...

    2015-11-23

    Arctic tundra soils store a large quantity of organic carbon that is susceptible to decomposition and release to the atmosphere as methane (CH 4) and carbon dioxide (CO 2) under a warming climate. Anaerobic processes that generate CH 4 and CO 2 remain unclear because previous studies have focused on aerobic decomposition pathways. To predict releases of CO 2 and CH 4 from tundra soils, it is necessary to identify pathways of soil organic matter decomposition under the anoxic conditions that are prevalent in Arctic ecosystems. Here molecular and spectroscopic techniques were used to monitor biological degradation of water-extractable organicmore » carbon (WEOC) during anoxic incubation of tundra soils from a region of continuous permafrost in northern Alaska. Organic and mineral soils from the tundra active layer were incubated at –2, +4, or +8°C for up to 60 days to mimic the short-term thaw season. Results suggest that, under anoxic conditions, fermentation converted complex organic molecules into simple organic acids that were used in concomitant Fe-reduction and acetoclastic methanogenesis reactions. Nonaromatic compounds increased over time as WEOC increased. Organic acid metabolites initially accumulated in soils but were mostly depleted by day 60 because organic acids were consumed to produce Fe(II), CO 2, and CH 4. We conclude that fermentation of nonprotected organic matter facilitates methanogenesis and Fe reduction reactions, and that the proportion of organic acids consumed by methanogenesis increases relative to Fe reduction with increasing temperature. As a result, the decomposition pathways observed in this study are important to consider in numerical modeling of greenhouse gas production in the Arctic.« less

  1. Preliminary Results of Solid Gas Generator Micropropulsion

    NASA Technical Reports Server (NTRS)

    deGroot, Wilhelmus A.; Reed, Brian D.; Brenizer, Marshall

    1999-01-01

    A decomposing solid thruster concept, which creates a more benign thermal and chemical environment than solid propellant combustion, while maintaining, performance similar to solid combustion, is described. A Micro-Electro-Mechanical (MEMS) thruster concept with diode laser and fiber-optic initiation is proposed, and thruster components fabricated with MEMS technology are presented. A high nitrogen content solid gas generator compound is evaluated and tested in a conventional axisymmetric thrust chamber with nozzle throat area ratio of 100. Results show incomplete decomposition of this compound in both low pressure (1 kPa) and high pressure (1 MPa) environments, with decomposition of up to 80% of the original mass. Chamber pressures of 1.1 MPa were obtained, with maximum calculated thrust of approximately 2.7 N. Resistively heated wires and resistively heated walls were used to initiate decomposition. Initiation tests using available lasers were unsuccessful, but infrared spectra of the compound show that the laser initiation tests used inappropriate wavelengths for optimal propellant absorption. Optimal wavelengths for laser ignition were identified. Data presented are from tests currently in progress. Alternative solid gas generator compounds are being evaluated for future tests.

  2. 75 FR 13555 - Compliance Policy Guide Sec. 540.375 Canned Salmon - Adulteration Involving Decomposition (CPG...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ...] (Formerly Docket No. 1998N-0046) Compliance Policy Guide Sec. 540.375 Canned Salmon -- Adulteration... of Compliance Policy Guide Sec. 540.375 Canned Salmon -- Adulteration Involving Decomposition (CPG... relating to decomposition in fish and fishery products, including canned salmon, is provided in CPG Sec...

  3. Ab initio calculations of the effects of H+ and NH4+ on the initial decomposition of HMX.

    PubMed

    Wang, Luoxin; Tuo, Xinlin; Yi, Changhai; Wang, Xiaogong

    2008-10-01

    In this work, the effects of H(+) and NH(4)(+) on the initial decomposition of HMX were investigated on the basis of the B3P86/6-31G** and B3LYP/6-31G* calculations. Three initial decomposition pathways including the N-NO(2) bond fission, HONO elimination and C-N bond dissociation were considered for the complexes formed by HMX with H(+) (PHMX1 and PHMX2) or with NH(4)(+) (AHMX). We found that H(+) and NH(4)(+) did not evidently induce the HMX to trigger the N-NO(2) heterolysis because the energy barrier of N-NO(2) heterolysis was found to be higher than the bond dissociation energy of N-NO(2) homolytic cleavage. Meanwhile, the transition state barriers of the HONO elimination from the complexes were found to be similar to that from the isolated HMX, which means that the HONO elimination reaction of HMX was not affected by the H(+) and NH(4)(+). As for the ring-opening reaction of HMX due to the C-N bond dissociation, the calculated potential energy profile showed that the energy of the complex (AHMX) went uphill along the C-N bond length and no transition state existed on the curve. However, the transition state energy barriers of C-N bond dissociation were calculated to be only 5.0 kcal/mol and 5.5 kcal/mol for the PHMX1 and PHMX2 complexes, respectively, which were much lower than the C-N bond dissociation energy of isolated HMX. Moreover, among the three initial decomposition reactions, the C-N bond dissociation was also the most energetically favorable pathway for the PHMX1 and PHMX2. Our calculation results showed that the H(+) can significantly promote the initial thermal decomposition of C-N bond of HMX, which, however, is influenced by NH(4)(+) slightly.

  4. Modelling carbon in permafrost soils from preindustrial to the future

    NASA Astrophysics Data System (ADS)

    Kleinen, T.; Brovkin, V.

    2015-12-01

    The carbon release from thawing permafrost soils constitutes one of the large uncertainties in the carbon cycle under future climate change. Analysing the problem further, this uncertainty results from an uncertainty about the total amount of C that is stored in frozen soils, combined with an uncertainty about the areas where soils might thaw under a particular climate change scenario, as well as an uncertainty about the decomposition product since some of the decomposed C might result the release of CH4 as well as CO2. We use the land surface model JSBACH, part of the Max Planck Institute Earth System Model MPI-ESM, to quantify the release of soil carbon from thawing permafrost soils. We have extended the soil carbon model YASSO by introducing carbon storages in frozen soils, with increasing fractions of C being available to decomposition as permafrost thaws. In order to quantify the amount of carbon released as CH4, as opposed to CO2, we have also implemented a TOPMODEL-based wetland scheme, as well as anaerobic C decomposition and methane transport. We initialise the soil C pools for the preindustrial climate state from the Northern Circumpolar Soil Carbon Database to insure initial C pool sizes close to measurements. We then determine changes in soil C storage in transient model experiments following historical and future climate changes under RCP 8.5. Based on these experiments, we quantify the greenhouse gas release from permafrost C decomposition, determining both CH4 and CO2 emissions.

  5. Reactive molecular dynamics simulation of solid nitromethane impact on (010) surfaces induced and nonimpact thermal decomposition.

    PubMed

    Guo, Feng; Cheng, Xin-lu; Zhang, Hong

    2012-04-12

    Which is the first step in the decomposition process of nitromethane is a controversial issue, proton dissociation or C-N bond scission. We applied reactive force field (ReaxFF) molecular dynamics to probe the initial decomposition mechanisms of nitromethane. By comparing the impact on (010) surfaces and without impact (only heating) for nitromethane simulations, we found that proton dissociation is the first step of the pyrolysis of nitromethane, and the C-N bond decomposes in the same time scale as in impact simulations, but in the nonimpact simulation, C-N bond dissociation takes place at a later time. At the end of these simulations, a large number of clusters are formed. By analyzing the trajectories, we discussed the role of the hydrogen bond in the initial process of nitromethane decompositions, the intermediates observed in the early time of the simulations, and the formation of clusters that consisted of C-N-C-N chain/ring structures.

  6. Surface-Accelerated Decomposition of δ-HMX.

    PubMed

    Sharia, Onise; Tsyshevsky, Roman; Kuklja, Maija M

    2013-03-07

    Despite extensive efforts to study the explosive decomposition of HMX, a cyclic nitramine widely used as a solid fuel, explosive, and propellant, an understanding of the physicochemical processes, governing the sensitivity of condensed HMX to detonation initiation is not yet achieved. Experimental and theoretical explorations of the initiation of chemistry are equally challenging because of many complex parallel processes, including the β-δ phase transition and the decomposition from both phases. Among four known polymorphs, HMX is produced in the most stable β-phase, which transforms into the most reactive δ-phase under heat or pressure. In this study, the homolytic NO2 loss and HONO elimination precursor reactions of the gas-phase, ideal crystal, and the (100) surface of δ-HMX are explored by first principles modeling. Our calculations revealed that the high sensitivity of δ-HMX is attributed to interactions of surfaces and molecular dipole moments. While both decomposition reactions coexist, the exothermic HONO-isomer formation catalyzes the N-NO2 homolysis, leading to fast violent explosions.

  7. Stabilization of carbon in composts and biochars in relation to carbon sequestration and soil fertility.

    PubMed

    Bolan, N S; Kunhikrishnan, A; Choppala, G K; Thangarajan, R; Chung, J W

    2012-05-01

    There have been increasing interests in the conversion of organic residues into biochars in order to reduce the rate of decomposition, thereby enhancing carbon (C) sequestration in soils. However energy is required to initiate the pyrolysis process during biochar production which can also lead to the release of greenhouse gasses. Alternative methods can be used to stabilize C in composts and other organic residues without impacting their quality. The objectives of this study include: (i) to compare the rate of decomposition among various organic amendments and (ii) to examine the effect of clay materials on the stabilization of C in organic amendments. The decomposition of a number of organic amendments (composts and biochars) was examined by monitoring the release of carbon-dioxide using respiration experiments. The results indicated that the rate of decomposition as measured by half life (t(1/2)) varied between the organic amendments and was higher in sandy soil than in clay soil. The half life value ranged from 139 days in the sandy soil and 187 days in the clay soil for poultry manure compost to 9989 days for green waste biochar. Addition of clay materials to compost decreased the rate of decomposition, thereby increasing the stabilization of C. The half life value for poultry manure compost increased from 139 days to 620, 806 and 474 days with the addition of goethite, gibbsite and allophane, respectively. The increase in the stabilization of C with the addition of clay materials may be attributed to the immobilization of C, thereby preventing it from microbial decomposition. Stabilization of C in compost using clay materials did not impact negatively the value of composts in improving soil quality as measured by potentially mineralizable nitrogen and microbial biomass carbon in soil. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Destruction of 4-phenolsulfonic acid in water by anodic contact glow discharge electrolysis.

    PubMed

    Yang, Haiming; An, Baigang; Wang, Shaoyan; Li, Lixiang; Jin, Wenjie; Li, Lihua

    2013-06-01

    Destruction of 4-phenolsulfonic acid (4-PSA) in water was carried out using anodic contact glow discharge electrolysis. Accompanying the decay of 4-PSA, the amount of total organic carbon (TOC) in water correspondingly decreased, while the sulfonate group of 4-PSA was released as sulfate ion. Oxalate and formate were obtained as minor by-products. Additionally, phenol, 1,4-hydroquinone, hydroxyquinol and 1,4-benzoquinone were detected as primary intermediates in the initial stages of decomposition of 4-PSA. A reaction pathway involving successive attacks of hydroxyl and hydrogen radicals was assumed on the basis of the observed products and kinetics. It was revealed that the decay of both 4-PSA and TOC obeyed a first-order rate law. The effects of different Fe ions and initial concentrations of 4-PSA on the degradation rate were investigated. It was found that the presence of Fe ions could increase the degradation rate of 4-PSA, while initial concentrations lower than 80 mmol/L had no significant effect on kinetic behaviour. The disappearance rate of 4-PSA was significantly affected by pH.

  9. Ionization-Enhanced Decomposition of 2,4,6-Trinitrotoluene (TNT) Molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bin; Wright, David; Cliffel, David

    2011-01-01

    The unimolecular decomposition reaction of TNT can in principle be used to design ways to either detect or remove TNT from the environment. Here, we report the results of a density functional theory study of possible ways to lower the reaction barrier for this decomposition process by ionization, so that decomposition and/or detection can occur at room temperature. We find that ionizing TNT lowers the reaction barrier for the initial step of this decomposition. We further show that a similar effect can occur if a positive moiety is bound to the TNT molecule. The positive charge produces a pronounced electronmore » redistribution and dipole formation in TNT with minimal charge transfer from TNT to the positive moiety.« less

  10. Predicting the decomposition of Scots pine, Norway spruce, and birch stems in Finland.

    PubMed

    Mäkinen, Harri; Hynynen, Jari; Siitonen, Juha; Sievänen, Risto

    2006-10-01

    Models were developed for predicting the decomposition of dead wood for the main tree species in Finland, based on data collected from long-term thinning experiments in southern and central Finland. The decomposition rates were strongly related to the number of years after tree death. In contrast to previous studies, which have used the first-order exponential model, we found that the decomposition rate was not constant. Therefore, the Gompertz and Chapman-Richard's functions were fitted to the data. The slow initial decomposition period was mainly due to the fact that most dead trees remained standing as snags after their death. The initial period was followed by a period of rapid decomposition and, finally, by a period of moderately slow decomposition. Birch stems decomposed more rapidly than Scots pine and Norway spruce stems. Decomposition rates of Norway spruce stems were somewhat lower than those of Scots pine. Because the carbon concentration of decaying boles was relatively stable (about 50%) the rate of carbon loss follows that of mass loss. Models were also developed for the probability that a dead tree remains standing as a snag. During the first years after death, the probability was high. Thereafter, it decreased rapidly, the decrease being faster for birch stems than for Scots pine and Norway spruce stems. Almost all stems had fallen down within 40 years after their death. In Scots pine and Norway spruce, most snags remained hard and belonged to decay class 1. In birch, a higher proportion of snags belonged to the more advanced decay classes. The models provide a framework for predicting dead wood dynamics in managed as well as dense unthinned stands. The models can be incorporated into forest management planning systems, thereby facilitating estimates of carbon dynamics.

  11. Effects of Increased Summer Precipitation and Nitrogen Addition on Root Decomposition in a Temperate Desert

    PubMed Central

    Zhao, Hongmei; Huang, Gang; Li, Yan; Ma, Jian; Sheng, Jiandong; Jia, Hongtao; Li, Congjuan

    2015-01-01

    Background Climate change scenarios that include precipitation shifts and nitrogen (N) deposition are impacting carbon (C) budgets in arid ecosystems. Roots constitute an important part of the C cycle, but it is still unclear which factors control root mass loss and nutrient release in arid lands. Methodology/Principal Findings Litterbags were used to investigate the decomposition rate and nutrient dynamics in root litter with water and N-addition treatments in the Gurbantunggut Desert in China. Water and N addition had no significant effect on root mass loss and the N and phosphorus content of litter residue. The loss of root litter and nutrient releases were strongly controlled by the initial lignin content and the lignin:N ratio, as evidenced by the negative correlations between decomposition rate and litter lignin content and the lignin:N ratio. Fine roots of Seriphidium santolinum (with higher initial lignin content) had a slower decomposition rate in comparison to coarse roots. Conclusion/Significance Results from this study indicate that small and temporary changes in rainfall and N deposition do not affect root decomposition patterns in the Gurbantunggut Desert. Root decomposition rates were significantly different between species, and also between fine and coarse roots, and were determined by carbon components, especially lignin content, suggesting that root litter quality may be the primary driver of belowground carbon turnover. PMID:26544050

  12. Prediction of in situ root decomposition rates in an interspecific context from chemical and morphological traits

    PubMed Central

    Aulen, Maurice; Shipley, Bill; Bradley, Robert

    2012-01-01

    Background and Aims We quantitatively relate in situ root decomposition rates of a wide range of trees and herbs used in agroforestry to root chemical and morphological traits in order to better describe carbon fluxes from roots to the soil carbon pool across a diverse group of plant species. Methods In situ root decomposition rates were measured over an entire year by an intact core method on ten tree and seven herb species typical of agroforestry systems and were quantified using decay constants (k values) from Olson's single exponential model. Decay constants were related to root chemical (total carbon, nitrogen, soluble carbon, cellulose, hemicellulose, lignin) and morphological (specific root length, specific root length) traits. Traits were measured for both absorbing and non-absorbing roots. Key Results From 61 to 77 % of the variation in the different root traits and 63 % of that in root decomposition rates was interspecific. N was positively correlated, but total carbon and lignin were negatively correlated with k values. Initial root traits accounted for 75 % of the variation in interspecific decomposition rates using partial least squares regressions; partial slopes attributed to each trait were consistent with functional ecology expectations. Conclusions Easily measured initial root traits can be used to predict rates of root decomposition in soils in an interspecific context. PMID:22003237

  13. 9 CFR 354.131 - Decomposition.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTIFICATION VOLUNTARY INSPECTION OF RABBITS AND EDIBLE PRODUCTS THEREOF Disposition of Diseased Rabbit Carcasses and Parts § 354.131 Decomposition. Carcasses of rabbits deleteriously affected by post-mortem...

  14. Chemical indicators of cryoturbation and microbial processing throughout an alaskan permafrost soil depth profile

    USDA-ARS?s Scientific Manuscript database

    Although permafrost soils contain vast stores of carbon, we know relatively little about the chemical composition of their constituent organic matter. Soil organic matter chemistry is an important predictor of decomposition rates, especially in the initial stages of decomposition. Permafrost, organi...

  15. Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater.

    PubMed

    Wert, Eric C; Rosario-Ortiz, Fernando L; Snyder, Shane A

    2009-03-01

    Three tertiary-treated wastewater effluents were evaluated to determine the impact of wastewater quality (i.e. effluent organic matter (EfOM), nitrite, and alkalinity) on ozone (O(3)) decomposition and subsequent removal of 31 organic contaminants including endocrine disrupting compounds, pharmaceuticals, and personal care products. The O(3) dose was normalized based upon total organic carbon (TOC) and nitrite to allow comparison between the different wastewaters with respect to O(3) decomposition. EfOM with higher molecular weight components underwent greater transformation, which corresponded to increased O(3) decomposition when compared on a TOC basis. Hydroxyl radical (()OH) exposure, measured by parachlorobenzoic acid (pCBA), showed that limited ()OH was available for contaminant destruction during the initial stage of O(3) decomposition (t<30s) due to the effect of the scavenging by the water quality. Advanced oxidation using O(3) and hydrogen peroxide did not increase the net production of ()OH compared to O(3) under the conditions studied. EfOM reactivity impacted the removal of trace contaminants when evaluated based on the O(3):TOC ratio. Trace contaminants with second order reaction rate constants with O(3)(k(O)(3))>10(5)M(-1)s(-1) and ()OH (k(OH))>10(9)M(-1)s(-1), including carbamazepine, diclofenac, naproxen, sulfamethoxazole, and triclosan, were >95% removed independent of water quality when the O(3) exposure (integralO(3)t) was measurable (0-0.8mgmin/L). O(3) exposure would be a conservative surrogate to assess the removal of trace contaminants that are fast-reacting with O(3). Removal of contaminants with k(O)(3) < 10M(-1)S(-1) , and k(OH)>10(9)M(-1)s(-1), including atrazine, iopromide, diazepam, and ibuprofen, varied when O(3) exposure could not be measured, and appeared to be dependent upon the compound specific k(OH). Atrazine, diazepam, ibuprofen and iopromide provided excellent linear correlation with pCBA (R(2)>0.86) making them good indicators of ()OH availability.

  16. Unimolecular thermal decomposition of phenol and d5-phenol: Direct observation of cyclopentadiene formation via cyclohexadienone

    NASA Astrophysics Data System (ADS)

    Scheer, Adam M.; Mukarakate, Calvin; Robichaud, David J.; Nimlos, Mark R.; Carstensen, Hans-Heinrich; Barney Ellison, G.

    2012-01-01

    The pyrolyses of phenol and d5-phenol (C6H5OH and C6D5OH) have been studied using a high temperature, microtubular (μtubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the μtubular reactor of approximately 50-100 μs. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at the onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C6H5OH → c-C6H6 = O → c-C5H6 + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C5H6 → c-C5H5 + H → HC≡CH + HCCCH2. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C6H5O-H → C6H5O + H → c-C5H5 + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C6H4-OH) and hydroquinone (p-HO-C6H4-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.

  17. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    NASA Astrophysics Data System (ADS)

    Sun, Hongyan; Vaghjiani, Ghanshyam L.

    2015-05-01

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation of (NO2 + H2O) to be the major decomposition path. Furthermore, we provide fundamental interpretations for the experimental results of Klapötke et al. [Combust. Flame 139, 358-366 (2004)] regarding the thermal stability of MNB and DNB, and their decomposition products. Notably, a fundamental understanding of fuel stability, decomposition mechanism, and key reactions leading to ignition is essential in the design and manipulation of molecular systems for the development of new energetic materials for advanced propulsion applications.

  18. Ab Initio Kinetics and Thermal Decomposition Mechanism of Mononitrobiuret and 1,5- Dinitrobiuret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hongyan; Vaghjiani, Ghanshyam G.

    2015-05-26

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was foundmore » that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which reveal the formation of (NO2 + H2O) to be the major decomposition path. Furthermore, we provide fundamental interpretations for the experimental results of Klapötke et al. [Combust. Flame 139, 358–366 (2004)] regarding the thermal stability of MNB and DNB, and their decomposition products. Notably, a fundamental understanding of fuel stability, decomposition mechanism, and key reactions leading to ignition is essential in the design and manipulation of molecular systems for the development of new energetic materials for advanced propulsion applications.« less

  19. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret.

    PubMed

    Sun, Hongyan; Vaghjiani, Ghanshyam L

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation of (NO2 + H2O) to be the major decomposition path. Furthermore, we provide fundamental interpretations for the experimental results of Klapötke et al. [Combust. Flame 139, 358-366 (2004)] regarding the thermal stability of MNB and DNB, and their decomposition products. Notably, a fundamental understanding of fuel stability, decomposition mechanism, and key reactions leading to ignition is essential in the design and manipulation of molecular systems for the development of new energetic materials for advanced propulsion applications.

  20. Role of Litter Turnover in Soil Quality in Tropical Degraded Lands of Colombia

    PubMed Central

    León, Juan D.; Osorio, Nelson W.

    2014-01-01

    Land degradation is the result of soil mismanagement that reduces soil productivity and environmental services. An alternative to improve degraded soils through reactivation of biogeochemical nutrient cycles (via litter production and decomposition) is the establishment of active restoration models using new forestry plantations, agroforestry, and silvopastoral systems. On the other hand, passive models of restoration consist of promoting natural successional processes with native plants. The objective in this review is to discuss the role of litter production and decomposition as a key strategy to reactivate biogeochemical nutrient cycles and thus improve soil quality in degraded land of the tropics. For this purpose the results of different projects of land restoration in Colombia are presented based on the dynamics of litter production, nutrient content, and decomposition. The results indicate that in only 6–13 years it is possible to detect soil properties improvements due to litter fall and decomposition. Despite that, low soil nutrient availability, particularly of N and P, seems to be major constraint to reclamation of these fragile ecosystems. PMID:24696656

  1. HCOOH decomposition on Pt(111): A DFT study

    DOE PAGES

    Scaranto, Jessica; Mavrikakis, Manos

    2015-10-13

    Formic acid (HCOOH) decomposition on transition metal surfaces is important for hydrogen production and for its electro-oxidation in direct HCOOH fuel cells. HCOOH can decompose through dehydrogenation leading to formation of CO 2 and H 2 or dehydration leading to CO and H 2O; because CO can poison metal surfaces, dehydrogenation is typically the desirable decomposition path. Here we report a mechanistic analysis of HCOOH decomposition on Pt(111), obtained from a plane wave density functional theory (DFT-PW91) study. We analyzed the dehydrogenation mechanism by considering the two possible pathways involving the formate (HCOO) or the carboxyl (COOH) intermediate. We alsomore » considered several possible dehydration paths leading to CO formation. We studied HCOO and COOH decomposition both on the clean surface and in the presence of other relevant co-adsorbates. The results suggest that COOH formation is energetically more difficult than HCOO formation. In contrast, COOH dehydrogenation is easier than HCOO decomposition. Here, we found that CO 2 is the main product through both pathways and that CO is produced mainly through the dehydroxylation of the COOH intermediate.« less

  2. HCOOH decomposition on Pt(111): A DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scaranto, Jessica; Mavrikakis, Manos

    Formic acid (HCOOH) decomposition on transition metal surfaces is important for hydrogen production and for its electro-oxidation in direct HCOOH fuel cells. HCOOH can decompose through dehydrogenation leading to formation of CO 2 and H 2 or dehydration leading to CO and H 2O; because CO can poison metal surfaces, dehydrogenation is typically the desirable decomposition path. Here we report a mechanistic analysis of HCOOH decomposition on Pt(111), obtained from a plane wave density functional theory (DFT-PW91) study. We analyzed the dehydrogenation mechanism by considering the two possible pathways involving the formate (HCOO) or the carboxyl (COOH) intermediate. We alsomore » considered several possible dehydration paths leading to CO formation. We studied HCOO and COOH decomposition both on the clean surface and in the presence of other relevant co-adsorbates. The results suggest that COOH formation is energetically more difficult than HCOO formation. In contrast, COOH dehydrogenation is easier than HCOO decomposition. Here, we found that CO 2 is the main product through both pathways and that CO is produced mainly through the dehydroxylation of the COOH intermediate.« less

  3. RIO: a new computational framework for accurate initial data of binary black holes

    NASA Astrophysics Data System (ADS)

    Barreto, W.; Clemente, P. C. M.; de Oliveira, H. P.; Rodriguez-Mueller, B.

    2018-06-01

    We present a computational framework ( Rio) in the ADM 3+1 approach for numerical relativity. This work enables us to carry out high resolution calculations for initial data of two arbitrary black holes. We use the transverse conformal treatment, the Bowen-York and the puncture methods. For the numerical solution of the Hamiltonian constraint we use the domain decomposition and the spectral decomposition of Galerkin-Collocation. The nonlinear numerical code solves the set of equations for the spectral modes using the standard Newton-Raphson method, LU decomposition and Gaussian quadratures. We show the convergence of the Rio code. This code allows for easy deployment of large calculations. We show how the spin of one of the black holes is manifest in the conformal factor.

  4. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials.

    PubMed

    Tsyshevsky, Roman V; Sharia, Onise; Kuklja, Maija M

    2016-02-19

    This review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our own first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.

  5. Molecular Theory of Detonation Initiation: Insight from First Principles Modeling of the Decomposition Mechanisms of Organic Nitro Energetic Materials

    DOE PAGES

    Tsyshevsky, Roman; Sharia, Onise; Kuklja, Maija

    2016-02-19

    Our review presents a concept, which assumes that thermal decomposition processes play a major role in defining the sensitivity of organic energetic materials to detonation initiation. As a science and engineering community we are still far away from having a comprehensive molecular detonation initiation theory in a widely agreed upon form. However, recent advances in experimental and theoretical methods allow for a constructive and rigorous approach to design and test the theory or at least some of its fundamental building blocks. In this review, we analyzed a set of select experimental and theoretical articles, which were augmented by our ownmore » first principles modeling and simulations, to reveal new trends in energetic materials and to refine known existing correlations between their structures, properties, and functions. Lastly, our consideration is intentionally limited to the processes of thermally stimulated chemical reactions at the earliest stage of decomposition of molecules and materials containing defects.« less

  6. [Decomposition dynamics of leaf litter in logging residue of a secondary Castanopsis carlesii plantation and its chemical composition changes].

    PubMed

    Ren, Wei-ling; Guo, Jian-fen; Wu, Bo-bo; Wan, Jing-juan; Ji, Shu-rong; Liu, Xiao-fei

    2015-04-01

    A field experiment was conducted to understand the decomposition rates and chemical composition changes of leaf litter in logging residues of a 35-year-old secondary Castanopsis carlesii plantation over a period of one year. Mass loss rate of leaf litter showed an exponential decrease with time from May 2012 to April 2013, with a total 80% loss of initial dry mass. Net potassium (K) release was observed during this period, with only 5% of initial K remained. Nitrogen ( N) featured a pattern of accumulation at the early stage and release later, while phosphorus (P) exhibited a sequence of release, accumulation, and release. The remaining of N and P were 19% and 16% of their initial mass, respectively. The release rate was highest for K and the lowest for N. Decomposition of lignin indicated a trend of release-accumulation-release from May 2012 to October 2012, with no further significant change from November 2012 to the end of the experiment. The concentration of cellulose nearly unchanged during the experiment. The N/P rate increased with decomposition, ranging from 18.6 to 21.1. The lignin/N rate fluctuated greatly at the early stage and then almost stabilized thereafter.

  7. Bicarbonate is a recycling substrate for cyanase.

    PubMed

    Johnson, W V; Anderson, P M

    1987-07-05

    Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to ammonia and bicarbonate. Previous studies provided evidence that carbamate is an initial product and that the kinetic mechanism is rapid equilibrium random (bicarbonate serving as substrate as opposed to activator); the following mechanism was proposed (Anderson, P. M. (1980) Biochemistry 19, 2282-2888; Anderson, P. M., and Little, R. M. (1986) Biochemistry 25, 1621-1626). (formula; see text) Direct evidence for this mechanism was obtained in this study by 1) determining whether CO2 or HCO3- serves as substrate and is formed as product, 2) identifying the products formed from [14C]HCO3- and [14C] OCN-, 3) identifying the products formed from [13C] HCO3- and [12C]OCN- in the presence of [18O]H2O, and 4) determining whether 18O from [18O]HCO3- is incorporated into CO2 derived from OCN-. Bicarbonate (not CO2) is the substrate. Carbon dioxide (not HCO3-) is produced in stoichiometric amounts from both HCO3- and OCN-. 18O from [18O]H2O is not incorporated into CO2 formed from either HCO3- or OCN-. Oxygen-18 from [18O]HCO3- is incorporated into CO2 derived from OCN-. These results support the above mechanism, indicating that decomposition of cyanate catalyzed by cyanase is not a hydrolysis reaction and that bicarbonate functions as a recycling substrate.

  8. Experiment to Capture Gaseous Products from Shock-Decomposed Materials

    NASA Astrophysics Data System (ADS)

    Holt, William; Mock, Willis, Jr.

    2001-06-01

    Recent gas gun experiments have been performed in which initially porous polytetrafluoroethylene (PTFE) powder specimens were shock compressed inside a closed steel container and soft recovered^1,2. Although a powder decomposition residue was produced in the container and analyzed in situ, no attempt was made to recover any gaseous decomposition products for analysis. The purpose of the present experiment is to extend these earlier studies to include the capture of gaseous products. The specimen container is constructed from two metal flanges and a metal gasket, held together by high-strength bolts. A cavity between the flanges contains a porous powder specimen of material to be shock-decomposed, and is connected to a gas sample cylinder via a metal tube and a valve. The system is evacuated prior to the experiment. A gas-gun-accelerated metal disk impacts the flat surface of one of the flanges. On impact, a stress wave passes through the flange and into the specimen material. If gaseous products are formed, they can be collected in the sample cylinder for subsequent analyses by mass spectrometry. Results will be presented for PTFE powder specimens. Work supported by the NSWCDD Independent Research Office. ^1W. Mock, Jr., W. H. Holt, and G. I. Kerley, in Shock Compression of Condensed Matter - 1997, S. C. Schmidt, D. P. Dandekar, and J. W. Forbes (AIP, New York, 1998), p. 671. ^2W. H. Holt, W. Mock, Jr., and F. Santiago, J. Appl. Phys. 88, 5485 (2000).

  9. Moisture drives surface decomposition in thawing tundra

    NASA Astrophysics Data System (ADS)

    Hicks Pries, Caitlin E.; Schuur, E. A. G.; Vogel, Jason G.; Natali, Susan M.

    2013-07-01

    Permafrost thaw can affect decomposition rates by changing environmental conditions and litter quality. As permafrost thaws, soils warm and thermokarst (ground subsidence) features form, causing some areas to become wetter while other areas become drier. We used a common substrate to measure how permafrost thaw affects decomposition rates in the surface soil in a natural permafrost thaw gradient and a warming experiment in Healy, Alaska. Permafrost thaw also changes plant community composition. We decomposed 12 plant litters in a common garden to test how changing plant litter inputs would affect decomposition. We combined species' tissue-specific decomposition rates with species and tissue-level estimates of aboveground net primary productivity to calculate community-weighted decomposition constants at both the thaw gradient and warming experiment. Moisture, specifically growing season precipitation and water table depth, was the most significant driver of decomposition. At the gradient, an increase in growing season precipitation from 200 to 300 mm increased mass loss of the common substrate by 100%. At the warming experiment, a decrease in the depth to the water table from 30 to 15 cm increased mass loss by 100%. At the gradient, community-weighted decomposition was 21% faster in extensive than in minimal thaw, but was similar when moss production was included. Overall, the effect of climate change and permafrost thaw on surface soil decomposition are driven more by precipitation and soil environment than by changes to plant communities. Increasing soil moisture is thereby another mechanism by which permafrost thaw can become a positive feedback to climate change.

  10. Time-resolved spectroscopic measurements of shock-wave induced decomposition in cyclotrimethylene trinitramine (RDX) crystals: anisotropic response.

    PubMed

    Dang, Nhan C; Dreger, Zbigniew A; Gupta, Yogendra M; Hooks, Daniel E

    2010-11-04

    Plate impact experiments on the (210), (100), and (111) planes were performed to examine the role of crystalline anisotropy on the shock-induced decomposition of cyclotrimethylenetrinitramine (RDX) crystals. Time-resolved emission spectroscopy was used to probe the decomposition of single crystals shocked to peak stresses ranging between 7 and 20 GPa. Emission produced by decomposition intermediates was analyzed in terms of induction time to emission, emission intensity, and the emission spectra shapes as a function of stress and time. Utilizing these features, we found that the shock-induced decomposition of RDX crystals exhibits considerable anisotropy. Crystals shocked on the (210) and (100) planes were more sensitive to decomposition than crystals shocked on the (111) plane. The possible sources of the observed anisotropy are discussed with regard to the inelastic deformation mechanisms of shocked RDX. Our results suggest that, despite the anisotropy observed for shock initiation, decomposition pathways for all three orientations are similar.

  11. Effects of Litter Manipulation on Litter Decomposition in a Successional Gradients of Tropical Forests in Southern China

    PubMed Central

    Chen, Hao; Gurmesa, Geshere A.; Liu, Lei; Zhang, Tao; Fu, Shenglei; Liu, Zhanfeng; Dong, Shaofeng; Ma, Chuan; Mo, Jiangming

    2014-01-01

    Global changes such as increasing CO2, rising temperature, and land-use change are likely to drive shifts in litter inputs to forest floors, but the effects of such changes on litter decomposition remain largely unknown. We initiated a litter manipulation experiment to test the response of litter decomposition to litter removal/addition in three successional forests in southern China, namely masson pine forest (MPF), mixed coniferous and broadleaved forest (MF) and monsoon evergreen broadleaved forest (MEBF). Results showed that litter removal decreased litter decomposition rates by 27%, 10% and 8% and litter addition increased litter decomposition rates by 55%, 36% and 14% in MEBF, MF and MPF, respectively. The magnitudes of changes in litter decomposition were more significant in MEBF forest and less significant in MF, but not significant in MPF. Our results suggest that change in litter quantity can affect litter decomposition, and this impact may become stronger with forest succession in tropical forest ecosystem. PMID:24901698

  12. Long term impact of anthropogenic emissions of halogenated hydrocarbons on stratospheric ozone level

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Reaction kinetics are studied for stratospheric chlorine atoms, OH initiated degradation of carbon-chlorine compounds, the chemical decomposition of stratospheric HCl and ClONO2. A photochemical study is made of the decomposition of O3 over the wavelength range 2935 to 3165 deg A.

  13. Development of Novel Decontamination and Inerting Techniques for Explosives Contaminated Facilities. Phase 1. Identification and Evaluation of Novel Decontamination Concepts. Volume 1

    DTIC Science & Technology

    1983-07-01

    the decomposition reaction (Leider, 1981; Kageyama, 1973; Wolfrom, 1956), 2) Hydrolysis of linkages between glucose units (Urbanski, 1964), 3... dehydration ), 2) Acceleration period (to 50 percent decomposition ), 3) First order reaction rate period. The products of thermal decomposition of...simple mechanism to clean an entire building at once. o Depending on the contaminant, thermal decomposition and or hydrolysis may occur. o May be

  14. Temporal dynamics of phosphorus during aquatic and terrestrial litter decomposition in an alpine forest.

    PubMed

    Peng, Yan; Yang, Wanqin; Yue, Kai; Tan, Bo; Huang, Chunping; Xu, Zhenfeng; Ni, Xiangyin; Zhang, Li; Wu, Fuzhong

    2018-06-17

    Plant litter decomposition in forested soil and watershed is an important source of phosphorus (P) for plants in forest ecosystems. Understanding P dynamics during litter decomposition in forested aquatic and terrestrial ecosystems will be of great importance for better understanding nutrient cycling across forest landscape. However, despite massive studies addressing litter decomposition have been carried out, generalizations across aquatic and terrestrial ecosystems regarding the temporal dynamics of P loss during litter decomposition remain elusive. We conducted a two-year field experiment using litterbag method in both aquatic (streams and riparian zones) and terrestrial (forest floors) ecosystems in an alpine forest on the eastern Tibetan Plateau. By using multigroup comparisons of structural equation modeling (SEM) method with different litter mass-loss intervals, we explicitly assessed the direct and indirect effects of several biotic and abiotic drivers on P loss across different decomposition stages. The results suggested that (1) P concentration in decomposing litter showed similar patterns of early increase and later decrease across different species and ecosystems types; (2) P loss shared a common hierarchy of drivers across different ecosystems types, with litter chemical dynamics mainly having direct effects but environment and initial litter quality having both direct and indirect effects; (3) when assessing at the temporal scale, the effects of initial litter quality appeared to increase in late decomposition stages, while litter chemical dynamics showed consistent significant effects almost in all decomposition stages across aquatic and terrestrial ecosystems; (4) microbial diversity showed significant effects on P loss, but its effects were lower compared with other drivers. Our results highlight the importance of including spatiotemporal variations and indicate the possibility of integrating aquatic and terrestrial decomposition into a common framework for future construction of models that account for the temporal dynamics of P in decomposing litter. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Permafrost Thaw, Soil Moisture and Plant Community Change Alter Organic Matter Decomposition in Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Natali, S.; Mauritz, M.; Pegoraro, E.; Schuur, E.

    2015-12-01

    Climate warming in arctic tundra has been associated with increased plant productivity and a shift in plant community composition, specifically an increase in shrub cover, which can impact soil organic matter through changes in the size and composition of the leaf litter pool. Shifts in litter quantity and quality will in turn interact with changes in the soil environment as the climate continues to warm. We examined the effects of permafrost thaw, soil moisture changes, and plant community composition on leaf litter decomposition in an upland tundra ecosystem in Interior Alaska. We present warming and drying effects on decomposition rates of graminoid-dominated and shrub-dominated leaf litter mixtures over three years (2 cm depth), and annual decomposition of a common cellulose substrate (0-10 cm and 10-20 cm) over five years at a permafrost thaw and soil drying experiment. We expected that warming and drying would increase decomposition, and that decomposition would be greater in the shrub litter than in the graminoid litter mix. Decomposition of Betula nana, the dominant shrub, was 50% greater in the shrub-dominated litter mix compared to the graminoid-dominated litter. Surprisingly, there was no significant difference in total litter mass loss between graminoid and shrub litter mixtures, despite significant differences in decomposition rates of the dominant plant species when decomposed alone and in community mixtures. Drying decreased decomposition of B. nana and of the shrub community litter overall, but after two years there was no detected warming effect on shrub-community decomposition. In contrast to leaf litter decomposition, both warming and drying increased decomposition of the common substrate. Warming caused an almost twofold increase in cellulose decomposition in surface soil (0-10cm), and drying caused a twofold increase in cellulose decomposition from deeper organic layer soils (10-20cm). These results demonstrate the importance of interactions among temperature, moisture and vegetation changes on organic matter decomposition, and the potential for increased plant productivity and vegetation changes to alter the size and composition of the soil organic matter pool.

  16. Indigenous microorganisms production and the effect on composting process

    NASA Astrophysics Data System (ADS)

    Abu-Bakar, Nurul-Ain; Ibrahim, Nazlina

    2013-11-01

    In this study, production of indigenous microorganisms (IMO) and effect on addition of IMO in composting process were done. Production of IMO was done in a series of steps to allow propagation of beneficial microorganisms. Effect of IMO addition in composting process was investigated by having 4 treatments; 1) rice straw without IMO nor manure and rice bran, 2) rice straw with IMO only, 3) rice straw with manure and rice bran, 4) rice straw with IMO, manure and rice bran. Production of IMO using cooked rice yields white molds. Addition of IMO during composting did not affect temperature increment. However, there were differences in numbers of microorganisms found during each stages of composting. Initial composting stage was dominated by mesophilic bacteria and actinomycetes, followed by thermophilic bacteria and later by actinomycetes upon composting completion. In conclusion, this study showed that IMO addition in composting increased microorganisms which are responsible in organic decomposition.

  17. Understanding paper degradation: identification of products of cellulosic paper decomposition at the wet-dry "tideline" interface using GC-MS.

    PubMed

    Sladkevich, Sergey; Dupont, Anne-Laurence; Sablier, Michel; Seghouane, Dalila; Cole, Richard B

    2016-11-01

    Cellulose paper degradation products forming in the "tideline" area at the wet-dry interface of pure cellulose paper were analyzed using gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) and high-resolution electrospray ionization-mass spectrometry (ESI-MS, LTQ Orbitrap) techniques. Different extraction protocols were employed in order to solubilize the products of oxidative cellulose decomposition, i.e., a direct solvent extraction or a more laborious chromophore release and identification (CRI) technique aiming to reveal products responsible for paper discoloration in the tideline area. Several groups of low molecular weight compounds were identified, suggesting a complex pathway of cellulose decomposition in the tidelines formed at the cellulose-water-oxygen interface. Our findings, namely the appearance of a wide range of linear saturated carboxylic acids (from formic to nonanoic), support the oxidative autocatalytic mechanism of decomposition. In addition, the identification of several furanic compounds (which can be, in part, responsible for paper discoloration) plus anhydro carbohydrate derivatives sheds more light on the pathways of cellulose decomposition. Most notably, the mechanisms of tideline formation in the presence of molecular oxygen appear surprisingly similar to pathways of pyrolytic cellulose degradation. More complex chromophore compounds were not detected in this study, thereby revealing a difference between this short-term tideline experiment and longer-term cellulose aging.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon

    Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O 2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO 2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely ofmore » central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O 2 and QOOH + O 2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.« less

  19. Comparison of the decomposition characteristics of aromatic VOCs using an electron beam hybrid system

    NASA Astrophysics Data System (ADS)

    Son, Youn-Suk; Kim, Ki-Joon; Kim, Ji-Yong; Kim, Jo-Chun

    2010-12-01

    We applied a hybrid technique to assess the decomposition characteristics of ethylbenzene and toluene that annexed the catalyst technique with existing electron beam (EB) technology. The removal efficiency of ethylbenzene in the EB-catalyst hybrid turned out to be 30% greater than that of EB-only treatment. We concluded that ethylbenzene was decomposed more easily than toluene by EB irradiation. We compared the independent effects of the EB-catalyst hybrid and catalyst-only methods, and observed that the efficiency of the EB-catalyst hybrid demonstrated approximately 6% improvement for decomposing toluene and 20% improvement for decomposing ethylbenzene. The G-values for ethylbenzene increased with initial concentration and reactor type: for example, the G-values by reactor type at 2800 ppmC were 7.5-10.9 (EB-only) and 12.9-25.7 (EB-catalyst hybrid). We also observed a significant decrease in by-products as well as in the removal efficiencies associated with the EB-catalyst hybrid technique.

  20. Thermal stability and haemolytic effects of depolymerized guar gum derivatives.

    PubMed

    Hussain, Majid; Zahoor, Tahir; Akhtar, Saeed; Ismail, Amir; Hameed, Aneela

    2018-03-01

    The purpose of current study was to purify and partially depolymerize guar gum by β-mannanase, HCl, Ba(OH) 2 actions and subjected to inspect compositional, thermogravimetric analysis (TGA) and haemolytic activity. Chemical composition revealed mannose and galactose ratio remained un-altered even after process of purification and hydrolysis. TGA thermograms affirmed initial and final decomposition temperature in various zones. Major decomposition stages apparently revealed partially hydrolyzed guar gum (PHGG) exhibited better heat stable properties having more zones of degradation than crude one. Furthermore, all guar fractions (2.5-250 mg/mL) were subjected to haemolysis to evaluate toxic effects during process of hydrolysis. The crude and hydrolyzed guar galactomannans exhibited minor haemolytic activity (1.9 ± 0.03-7.24 ± 0.02%) when compared to 0.1% Triton-X 100 (100% haemolysis) showing no toxic effects to human RBC's. Conclusively, hydrolyzed guar-galactomannans are safe and can be used in food products with improved heat stability.

  1. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codesmore » (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the reactivity of TATB well into the formation of several stable gas products, such as H{sub 2}O, N{sub 2}, and CO{sub 2}. Although complex chemical transformations are occurring continuously in the dynamical, high temperature, reactive environment of our simulations, a simple overall scheme for the decomposition of TATB emerges: Water is the earliest decomposition products to form, followed by a polymerization (or condensation) process in which several TATB remaining fragments are joined together, initiating the early step in the formation of high-nitrogen clusters, along with stable products such as N{sub 2} and CO{sub 2}. Remarkably, these clusters with high concentration of carbon and nitrogen (and little oxygen) remain dynamically stable for the remaining period of the simulations. Our simulations, thus, reveal a hitherto unidentified region of high concentrations of nitrogen-rich heterocyclic clusters in reacting TATB, whose persistence impede further reactivity towards final products of fluid N{sub 2} and solid carbon. These simulations also predict significant populations of charged species such as NCO{sup -}, H{sup +}, OH{sup -}, H{sub 3}O{sup +}, and O{sup -2}, the first such observation in a reacting explosive. Finally, A reduced four steps, global reaction mechanism with Arrhenius kinetic rates for the decomposition of TATB, along with comparative Cheetah decomposition kinetics at various temperatures has been constructed and will be discussed.« less

  2. Regional contingencies in the relationship between aboveground biomass and litter in the world’s grasslands

    Treesearch

    L.R. O' Halloran; E.T. Borer; E.W. Seabloom; A.S. MacDougall; E.E. Cleland; R.L. McCulley; S. Hobbie; S. Harpole; N.M. DeCrappeo; C.-J. Chu; J.D. Bakker; K.F. Davies; G. Du; J. Firn; N. Hagenah; K.S. Hofmockel; J.M.H. Knops; W. Li; B.A. Melbourne; J.W. Morgan; J.L. Orrock; S.M. Prober; C.J. Stevens

    2013-01-01

    Based on regional-scale studies, aboveground production and litter decomposition are thought to positively covary, because they are driven by shared biotic and climatic factors. Until now we have been unable to test whether production and decomposition are generally coupled across climatically dissimilar regions, because we lacked replicated data collected within a...

  3. Quantitative separation of tetralin hydroperoxide from its decomposition products by high performance liquid chromatography

    NASA Technical Reports Server (NTRS)

    Worstell, J. H.; Daniel, S. R.

    1981-01-01

    A method for the separation and analysis of tetralin hydroperoxide and its decomposition products by high pressure liquid chromatography has been developed. Elution with a single, mixed solvent from a micron-Porasil column was employed. Constant response factors (internal standard method) over large concentration ranges and reproducible retention parameters are reported.

  4. Investigation of induced unimolecular decomposition for development of visible chemical lasers. Quarterly progress report, 1 August 1976--30 October 1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piper, L G; Taylor, R L

    This report summarizes progress during the second quarterly period of the subject contract. The methods available for the production of excited electronic states following azide decomposition are summarized. It is concluded that an experiment designed to study the kinetics of and branching ratios for electronically excited products from azide radicals reactions will be most productive in elucidating excitation mechanisms for potential chemical lasers. A flow reactor is described in which these studies may be undertaken. The major feature of this apparatus is a clean azide radical source based upon the thermal decomposition of solid, ionic azides. The contruction of themore » experimental apparatus has been started.« less

  5. Chemical, physical and biological factors affecting wood decomposition in forest soils

    Treesearch

    Martin Jurgensen; Peter Laks; David Reed; Anne Collins; Deborah Page-Dumroese; Douglas Crawford

    2004-01-01

    Organic matter (OM) decomposition is an important variable in forest productivity and determining the potential of forest soils to sequester atmospheric CO2 (Grigal and Vance 2000; Kimble et al. 2003). Studies using OM from a particular location gives site-specific decomposition information, but differences in OM type and quality make it difficult to compare results...

  6. Parameter identification of thermophilic anaerobic degradation of valerate.

    PubMed

    Flotats, Xavier; Ahring, Birgitte K; Angelidaki, Irini

    2003-01-01

    The considered mathematical model of the decomposition of valerate presents three unknown kinetic parameters, two unknown stoichiometric coefficients, and three unknown initial concentrations for biomass. Applying a structural identifiability study, we concluded that it is necessary to perform simultaneous batch experiments with different initial conditions for estimating these parameters. Four simultaneous batch experiments were conducted at 55 degrees C, characterized by four different initial acetate concentrations. Product inhibition of valerate degradation by acetate was considered. Practical identification was done optimizing the sum of the multiple determination coefficients for all measured state variables and for all experiments simultaneously. The estimated values of kinetic parameters and stoichiometric coefficients were characterized by the parameter correlation matrix, the confidence interval, and the student's t-test at 5% significance level with positive results except for the saturation constant, for which more experiments for improving its identifiability should be conducted. In this article, we discuss kinetic parameter estimation methods.

  7. Decoupling the direct and indirect effects of climate on plant litter decomposition: Accounting for stress-induced modifications in plant chemistry.

    PubMed

    Suseela, Vidya; Tharayil, Nishanth

    2018-04-01

    Decomposition of plant litter is a fundamental ecosystem process that can act as a feedback to climate change by simultaneously influencing both the productivity of ecosystems and the flux of carbon dioxide from the soil. The influence of climate on decomposition from a postsenescence perspective is relatively well known; in particular, climate is known to regulate the rate of litter decomposition via its direct influence on the reaction kinetics and microbial physiology on processes downstream of tissue senescence. Climate can alter plant metabolism during the formative stage of tissues and could shape the final chemical composition of plant litter that is available for decomposition, and thus indirectly influence decomposition; however, these indirect effects are relatively poorly understood. Climatic stress disrupts cellular homeostasis in plants and results in the reprogramming of primary and secondary metabolic pathways, which leads to changes in the quantity, composition, and organization of small molecules and recalcitrant heteropolymers, including lignins, tannins, suberins, and cuticle within the plant tissue matrix. Furthermore, by regulating metabolism during tissue senescence, climate influences the resorption of nutrients from senescing tissues. Thus, the final chemical composition of plant litter that forms the substrate of decomposition is a combined product of presenescence physiological processes through the production and resorption of metabolites. The changes in quantity, composition, and localization of the molecular construct of the litter could enhance or hinder tissue decomposition and soil nutrient cycling by altering the recalcitrance of the lignocellulose matrix, the composition of microbial communities, and the activity of microbial exo-enzymes via various complexation reactions. Also, the climate-induced changes in the molecular composition of litter could differentially influence litter decomposition and soil nutrient cycling. Compared with temperate ecosystems, the indirect effects of climate on litter decomposition in the tropics are not well understood, which underscores the need to conduct additional studies in tropical biomes. We also emphasize the need to focus on how climatic stress affects the root chemistry as roots contribute significantly to biogeochemical cycling, and on utilizing more robust analytical approaches to capture the molecular composition of tissue matrix that fuel microbial metabolism. © 2017 John Wiley & Sons Ltd.

  8. Dynamic Responses and Initial Decomposition under Shock Loading: A DFTB Calculation Combined with MSST Method for β-HMX with Molecular Vacancy.

    PubMed

    He, Zheng-Hua; Chen, Jun; Ji, Guang-Fu; Liu, Li-Min; Zhu, Wen-Jun; Wu, Qiang

    2015-08-20

    Despite extensive efforts on studying the decomposition mechanism of HMX under extreme condition, an intrinsic understanding of mechanical and chemical response processes, inducing the initial chemical reaction, is not yet achieved. In this work, the microscopic dynamic response and initial decomposition of β-HMX with (1 0 0) surface and molecular vacancy under shock condition, were explored by means of the self-consistent-charge density-functional tight-binding method (SCC-DFTB) in conjunction with multiscale shock technique (MSST). The evolutions of various bond lengths and charge transfers were analyzed to explore and understand the initial reaction mechanism of HMX. Our results discovered that the C-N bond close to major axes had less compression sensitivity and higher stretch activity. The charge was transferred mainly from the N-NO2 group along the minor axes and H atom to C atom during the early compression process. The first reaction of HMX primarily initiated with the fission of the molecular ring at the site of the C-N bond close to major axes. Further breaking of the molecular ring enhanced intermolecular interactions and promoted the cleavage of C-H and N-NO2 bonds. More significantly, the dynamic response behavior clearly depended on the angle between chemical bond and shock direction.

  9. Health care in the CIS countries : the case of hospitals in Ukraine.

    PubMed

    Pilyavsky, Anatoly; Staat, Matthias

    2006-09-01

    The study analyses the technical efficiency of community hospitals in Ukraine during 1997-2001. Hospital cost amount to two-thirds of Ukrainian spending on health care. Data are available on the number of beds, physicians and nurses employed, surgical procedures performed, and admissions and patient days. We employ data envelopment analysis to calculate the efficiency of hospitals and to assess productivity changes over time. The scores calculated with an output-oriented model assuming constant returns to scale range from 150% to 110%. Average relative inefficiency of the hospitals is initially above 30% and later drops to 15% or below. The average productivity change is positive but below 1%; a Malmquist index decomposition reveals that negative technological progress is overcompensated by positive catching-up.

  10. Trichloroethylene decomposition and in-situ dry sorption of Cl-products by calcium oxides prepared from hydrated limes.

    PubMed

    Gotoh, Yoshimi; Iwata, Goichi; Choh, Kyaw; Kubota, Mitsuhiro; Matsuda, Hitoki

    2011-10-01

    A comparison of CaOs produced by calcining two types of hydrated lime and calcium carbonate was made for decomposition of trichloroethylene and in-situ dry sorption of the decomposed Cl-products using a lab-scale gas flow type tubular packed bed reactor. About 20 mg of CaO sample was mixed with about 2 g of Al2O3 particles and packed in the reactor and allowed to react with a flowing standard gas containing 500 ppm of C2HCl3 (N2 balance) at 673 and 873 K, under the condition that the reaction of CaO with C2HCl3 might be completed within a few hours. It was found that no thermal decomposition of C2HCl3 at or below 673 K was observed in a reactor packed only with Al2O3 particles. However, a considerable amount of decomposition of C2HCl3 was obtained in a reactor packed with CaO and Al2O3, even at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 673 K, decomposition of 0.42 mol of C2HCl3 and in-situ absorption product of 0.53 mol of CaCl2 were obtained. At 873 K, about 46% of C2HCl3 was thermally decomposed. The total amount of C2HCl3 decomposed in CaO-Al2O3 particle bed at 873 K became nearly twice larger than that at 673 K. For 1 mol of CaO prepared by calcining highly reactive Ca(OH)2 at 873 K, decomposition of 0.59 mol of C2HCl3 and in-situ absorption product of 0.67 mol of CaCl2 were obtained. Small amounts of C2Cl2, C2Cl4, CCl4, etc. were detected during decomposition of C2HCl3 at 673 and 873 K. It was recognized that the data on decomposition of C2HCl3 as well as in-situ dry sorption of Cl-products in CaO particle bed were correlated with specific surface area of the CaO employed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Gaussian Decomposition of Laser Altimeter Waveforms

    NASA Technical Reports Server (NTRS)

    Hofton, Michelle A.; Minster, J. Bernard; Blair, J. Bryan

    1999-01-01

    We develop a method to decompose a laser altimeter return waveform into its Gaussian components assuming that the position of each Gaussian within the waveform can be used to calculate the mean elevation of a specific reflecting surface within the laser footprint. We estimate the number of Gaussian components from the number of inflection points of a smoothed copy of the laser waveform, and obtain initial estimates of the Gaussian half-widths and positions from the positions of its consecutive inflection points. Initial amplitude estimates are obtained using a non-negative least-squares method. To reduce the likelihood of fitting the background noise within the waveform and to minimize the number of Gaussians needed in the approximation, we rank the "importance" of each Gaussian in the decomposition using its initial half-width and amplitude estimates. The initial parameter estimates of all Gaussians ranked "important" are optimized using the Levenburg-Marquardt method. If the sum of the Gaussians does not approximate the return waveform to a prescribed accuracy, then additional Gaussians are included in the optimization procedure. The Gaussian decomposition method is demonstrated on data collected by the airborne Laser Vegetation Imaging Sensor (LVIS) in October 1997 over the Sequoia National Forest, California.

  12. THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S{sup 4}G): MULTI-COMPONENT DECOMPOSITION STRATEGIES AND DATA RELEASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salo, Heikki; Laurikainen, Eija; Laine, Jarkko

    The Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) is a deep 3.6 and 4.5 μm imaging survey of 2352 nearby (<40 Mpc) galaxies. We describe the S{sup 4}G data analysis pipeline 4, which is dedicated to two-dimensional structural surface brightness decompositions of 3.6 μm images, using GALFIT3.0. Besides automatic 1-component Sérsic fits, and 2-component Sérsic bulge + exponential disk fits, we present human-supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge Sérsicmore » index and bulge-to-total light ratio (B/T), confirming earlier results. Here, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the data products released via IRSA and via our web page (www.oulu.fi/astronomy/S4G-PIPELINE4/MAIN). These products include all the input data and decomposition files in electronic form, making it easy to extend the decompositions to suit specific science purposes. We also provide our IDL-based visualization tools (GALFIDL) developed for displaying/running GALFIT-decompositions, as well as our mask editing procedure (MASK-EDIT) used in data preparation. A detailed analysis of the bulge, disk, and bar parameters derived from multi-component decompositions will be published separately.« less

  13. Additive effect on reductive decomposition and binding of carbonate-based solvent toward solid electrolyte interphase formation in lithium-ion battery.

    PubMed

    Ushirogata, Keisuke; Sodeyama, Keitaro; Okuno, Yukihiro; Tateyama, Yoshitaka

    2013-08-14

    The solid-electrolyte interphase (SEI) formed through the reductive decomposition of solvent molecules plays a crucial role in the stability and capability of a lithium-ion battery (LIB). Here we investigated the effects of adding vinylene carbonate (VC) to ethylene carbonate (EC) solvent, a typical electrolyte in LIBs, on the reductive decomposition. We focused on both thermodynamics and kinetics of the possible processes and used density functional theory-based molecular dynamics with explicit solvent and Blue-moon ensemble technique for the free energy change. We considered Li(+) in only EC solvent (EC system) and in EC solvent with a VC additive (EC/VC system) to elucidate the additive effects. In addition to clarifying the equilibrium properties, we evaluated the free energy changes along several EC or VC decomposition pathways under one-electron (1e) reduction condition. Two-electron (2e) reduction and attacks of anion radicals to intact molecules were also examined. The present results completely reproduce the gaseous products observed in the experiments. We also found a new mechanism involving the VC additive: the VC additive preferentially reacts with the EC anion radical to suppress the 2e reduction of EC and enhance the initial SEI formation, contrary to the conventional scenario in which VC additive is sacrificially reduced and its radical oligomerization becomes the source of SEI. Because our mechanism needs only 1e reduction, the irreversible capacity at the SEI formation will decrease, which is also consistent with the experimental observations. These results reveal the primary role of VC additive in the EC solvent.

  14. Mechanistic insight into the hydrazine decomposition on Rh(111): effect of reaction intermediate on catalytic activity.

    PubMed

    Deng, Zhigang; Lu, Xiaoqing; Wen, Zengqiang; Wei, Shuxian; Liu, Yunjie; Fu, Dianling; Zhao, Lianming; Guo, Wenyue

    2013-10-14

    Periodic density functional theory (DFT) calculations have been performed to systematically investigate the effect of reaction intermediate on catalytic activity for hydrazine (N2H4) decomposition on Rh(111). Reaction mechanisms via intramolecular and NH2-assisted N2H4 decompositions are comparatively analyzed, including adsorption configuration, reaction energy and barrier of elementary step, and reaction network. Our results show that the most favorable N2H4 decomposition pathway starts with the initial N-N bond scission to the NH2 intermediate, followed by stepwise H stripping from adsorbed N2Hx (x = 1-4) species, and finally forms the N2 and NH3 products. Comparatively, the stepwise intramolecular dehydrogenation via N2H4→ N2H3→ N2H2→ N2H → N2, and N2H4→ NH2→ NH → N with or without NH2 promotion effect, are unfavorable due to higher energy barriers encountered. Energy barrier analysis, reaction rate constants, and electronic structures are used to identify the crucial competitive route. The promotion effect of the NH2 intermediate is structurally reflected in the weakening of the N-H bond and strengthening of the N-N bond in N2Hx in the coadsorption system; it results intrinsically from the less structural deformation of the adsorbate, and weakening of the interaction between dehydrogenated fragment and departing H in transition state. Our results highlight the crucial effect of reaction intermediate on catalytic activity and provide a theoretical approach to analyze the effect.

  15. Energy index decomposition methodology at the plant level

    NASA Astrophysics Data System (ADS)

    Kumphai, Wisit

    Scope and method of study. The dissertation explores the use of a high level energy intensity index as a facility-level energy performance monitoring indicator with a goal of developing a methodology for an economically based energy performance monitoring system that incorporates production information. The performance measure closely monitors energy usage, production quantity, and product mix and determines the production efficiency as a part of an ongoing process that would enable facility managers to keep track of and, in the future, be able to predict when to perform a recommissioning process. The study focuses on the use of the index decomposition methodology and explored several high level (industry, sector, and country levels) energy utilization indexes, namely, Additive Log Mean Divisia, Multiplicative Log Mean Divisia, and Additive Refined Laspeyres. One level of index decomposition is performed. The indexes are decomposed into Intensity and Product mix effects. These indexes are tested on a flow shop brick manufacturing plant model in three different climates in the United States. The indexes obtained are analyzed by fitting an ARIMA model and testing for dependency between the two decomposed indexes. Findings and conclusions. The results concluded that the Additive Refined Laspeyres index decomposition methodology is suitable to use on a flow shop, non air conditioned production environment as an energy performance monitoring indicator. It is likely that this research can be further expanded in to predicting when to perform a recommissioning process.

  16. Thermal aging of electrolytes used in lithium-ion batteries - An investigation of the impact of protic impurities and different housing materials

    NASA Astrophysics Data System (ADS)

    Handel, Patricia; Fauler, Gisela; Kapper, Katja; Schmuck, Martin; Stangl, Christoph; Fischer, Roland; Uhlig, Frank; Koller, Stefan

    2014-12-01

    Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC-MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC-MS. Acid-base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

  17. The Elusive Universal Post-Mortem Interval Formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vass, Arpad Alexander

    The following manuscript details our initial attempt at developing universal post-mortem interval formulas describing human decomposition. These formulas are empirically derived from data collected over the last 20 years from the University of Tennessee's Anthropology Research Facility, in Knoxville, Tennessee, USA. Two formulas were developed (surface decomposition and burial decomposition) based on temperature, moisture, and the partial pressure of oxygen, as being three of the four primary drivers for human decomposition. It is hoped that worldwide application of these formulas to environments and situations not readily studied in Tennessee will result in interdisciplinary cooperation between scientists and law enforcement personnelmore » that will allow for future refinements of these models leading to increased accuracy.« less

  18. The decomposition of wood products in landfills in Sydney, Australia.

    PubMed

    Ximenes, F A; Gardner, W D; Cowie, A L

    2008-11-01

    Three landfill sites that had been closed for 19, 29 and 46 years and had been operated under different management systems were excavated in Sydney. The mean moisture content of the wood samples ranged from 41.6% to 66.8%. The wood products recovered were identified to species, and their carbon, cellulose, hemicellulose and lignin concentration were determined and compared to those of matched samples of the same species. No significant loss of dry mass was measured in wood products buried for 19 and 29 years, but where refuse had been buried for 46 years, the measured loss of carbon (as a percentage of dry biomass) was 8.7% for hardwoods and 9.1% for softwoods, equating to 18% and 17% of their original carbon content, respectively. The results indicate that published decomposition factors based on laboratory research significantly overestimate the decomposition of wood products in landfill.

  19. Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts.

    PubMed

    Bailey, Gwendolyn A; Foscato, Marco; Higman, Carolyn S; Day, Craig S; Jensen, Vidar R; Fogg, Deryn E

    2018-06-06

    The correlation between rapid initiation and rapid decomposition in olefin metathesis is probed for a series of fast-initiating, phosphine-free Ru catalysts: the Hoveyda catalyst HII, RuCl 2 (L)(═CHC 6 H 4 - o-O i Pr); the Grela catalyst nG (a derivative of HII with a nitro group para to O i Pr); the Piers catalyst PII, [RuCl 2 (L)(═CHPCy 3 )]OTf; the third-generation Grubbs catalyst GIII, RuCl 2 (L)(py) 2 (═CHPh); and dianiline catalyst DA, RuCl 2 (L)( o-dianiline)(═CHPh), in all of which L = H 2 IMes = N,N'-bis(mesityl)imidazolin-2-ylidene. Prior studies of ethylene metathesis have established that various Ru metathesis catalysts can decompose by β-elimination of propene from the metallacyclobutane intermediate RuCl 2 (H 2 IMes)(κ 2 -C 3 H 6 ), Ru-2. The present work demonstrates that in metathesis of terminal olefins, β-elimination yields only ca. 25-40% propenes for HII, nG, PII, or DA, and none for GIII. The discrepancy is attributed to competing decomposition via bimolecular coupling of methylidene intermediate RuCl 2 (H 2 IMes)(═CH 2 ), Ru-1. Direct evidence for methylidene coupling is presented, via the controlled decomposition of transiently stabilized adducts of Ru-1, RuCl 2 (H 2 IMes)L n (═CH 2 ) (L n = py n' ; n' = 1, 2, or o-dianiline). These adducts were synthesized by treating in situ-generated metallacyclobutane Ru-2 with pyridine or o-dianiline, and were isolated by precipitating at low temperature (-116 or -78 °C, respectively). On warming, both undergo methylidene coupling, liberating ethylene and forming RuCl 2 (H 2 IMes)L n . A mechanism is proposed based on kinetic studies and molecular-level computational analysis. Bimolecular coupling emerges as an important contributor to the instability of Ru-1, and a potentially major pathway for decomposition of fast-initiating, phosphine-free metathesis catalysts.

  20. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient

    USGS Publications Warehouse

    Stagg, Camille L.; Baustian, Melissa M.; Perry, Carey L.; Carruthers, Tim J.B.; Hall, Courtney T.

    2018-01-01

    Coastal wetlands store more carbon than most ecosystems globally. As sea level rises, changes in flooding and salinity will potentially impact ecological functions, such as organic matter decomposition, that influence carbon storage. However, little is known about the mechanisms that control organic matter loss in coastal wetlands at the landscape scale. As sea level rises, how will the shift from fresh to salt-tolerant plant communities impact organic matter decomposition? Do long-term, plant-mediated, effects of sea-level rise differ from direct effects of elevated salinity and flooding?We identified internal and external factors that regulated indirect and direct pathways of sea-level rise impacts, respectively, along a landscape-scale salinity gradient that incorporated changes in wetland type (fresh, oligohaline, mesohaline and polyhaline marshes). We found that indirect and direct impacts of sea-level rise had opposing effects on organic matter decomposition.Salinity had an indirect effect on litter decomposition that was mediated through litter quality. Despite significant variation in environmental conditions along the landscape gradient, the best predictors of above- and below-ground litter decomposition were internal drivers, initial litter nitrogen content and initial litter lignin content respectively. Litter decay constants were greatest in the oligohaline marsh and declined with increasing salinity, and the fraction of litter remaining (asymptote) was greatest in the mesohaline marsh. In contrast, direct effects of salinity and flooding were positive. External drivers, salinity and flooding, stimulated cellulytic activity, which was highest in the polyhaline marsh.Synthesis. Our results indicate that as sea level rises, initial direct effects of salinity will stimulate decay of labile carbon, but over time as plant communities shift from fresh to polyhaline marsh, litter decay will decline, yielding greater potential for long-term carbon storage. These findings highlight the importance of quantifying carbon loss at multiple temporal scales, not only in coastal wetlands but also in other ecosystems where plant-mediated responses to climate change will have significant impacts on carbon cycling.

  1. The products of the thermal decomposition of CH{sub 3}CHO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasiliou, AnGayle; National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401; Piech, Krzysztof M.

    2011-07-07

    We have used a heated 2 cm x 1 mm SiC microtubular ({mu}tubular) reactor to decompose acetaldehyde: CH{sub 3}CHO +{Delta}{yields} products. Thermal decomposition is followed at pressures of 75-150 Torr and at temperatures up to 1675 K, conditions that correspond to residence times of roughly 50-100 {mu}s in the {mu}tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: vacuum ultraviolet photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH{sub 3}CHO, we have studied three isotopologues, CH{sub 3}CDO, CD{sub 3}CHO, and CD{sub 3}CDO. We have identified the thermal decomposition productsmore » CH{sub 3} (PIMS), CO (IR, PIMS), H (PIMS), H{sub 2} (PIMS), CH{sub 2}CO (IR, PIMS), CH{sub 2}=CHOH (IR, PIMS), H{sub 2}O (IR, PIMS), and HC{identical_to}CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH{sub 3}CHO; namely, radical decomposition: CH{sub 3}CHO +{Delta}{yields} CH{sub 3}+[HCO]{yields} CH{sub 3}+ H + CO; elimination: CH{sub 3}CHO +{Delta}{yields} H{sub 2}+ CH{sub 2}=C=O; isomerization/elimination: CH{sub 3}CHO +{Delta}{yields}[CH{sub 2}=CH-OH]{yields} HC{identical_to}CH + H{sub 2}O. An interesting result is that both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH{sub 2}=C:, as an intermediate in the decomposition of vinyl alcohol: CH{sub 2}=CH-OH +{Delta}{yields}[CH{sub 2}=C:]+ H{sub 2}O {yields} HC{identical_to}CH + H{sub 2}O.« less

  2. A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction

    NASA Astrophysics Data System (ADS)

    Valdés, Cristian; Alzate-Morales, Jans; Osorio, Edison; Villaseñor, Jorge; Navarro-Retamal, Carlos

    2015-11-01

    Phenol is one of the worst contaminants at date, and its degradation has been a crucial task over years. Here, the decomposition process of phenol, in a Fenton reaction, is described. Using scavengers, it was observed that decomposition of phenol was mainly influenced by production of hydroxyl radicals. Experimental and theoretical activation energies (Ea) for phenol oxidation intermediates were calculated. According to these Ea, phenol decomposition is a two-step reaction mechanism mediated predominantly by hydroxyl radicals, producing a decomposition yield order given as hydroquinone > catechol > resorcinol. Furthermore, traces of reaction derived acids were detected by HPLC and GS-MS.

  3. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine.

    PubMed

    Weiss, Ingrid M; Muth, Christina; Drumm, Robert; Kirchner, Helmut O K

    2018-01-01

    The pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products. Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H 2 O, some NH 3 and no CO 2 . Cysteine produces CO 2 and little else. The reactions are described by polynomials, AA→ a NH 3 + b H 2 O+ c CO 2 + d H 2 S+ e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds. Eight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C.

  4. A pilot stability study on four-drug fixed-dose combination anti-tuberculosis products.

    PubMed

    Singh, S; Mohan, B

    2003-03-01

    A pilot stability study was carried out on four fixed-dose combination anti-tuberculosis products at 40 degrees C and 75% RH. The strip-packed products were stable, while the blister-packed products showed both physical and chemical changes. The products in unpacked conditions showed severe (approximately 60%) decomposition of rifampicin and extensive physical changes. The main decomposition product in the solid state was isonicotinyl hydrazone of 3-formylrifamycin and isoniazid. It is suggested that attention should be paid to the detection and quantitation of this product in the marketed formulations. The packing material used in the manufacture of FDC products should also be of the highest quality.

  5. In Silico Alkaline Hydrolysis of Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Density Functional Theory Investigation.

    PubMed

    Sviatenko, Liudmyla K; Gorb, Leonid; Hill, Frances C; Leszczynska, Danuta; Shukla, Manoj K; Okovytyy, Sergiy I; Hovorun, Dmytro; Leszczynski, Jerzy

    2016-09-20

    HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an energetic material used in military applications, may be released to the environment during manufacturing, transportation, storage, training, and disposal. A detailed investigation of a possible mechanism of alkaline hydrolysis, as one of the most promising methods for HMX remediation, was performed by computational study at PCM(Pauling)/M06-2X/6-311++G(d,p) level. Obtained results suggest that HMX hydrolysis at pH 10 represents a highly exothermic multistep process involving initial deprotonation and nitrite elimination, hydroxide attachment accompanied by cycle cleavage, and further decomposition of cycle-opened intermediate to the products caused by a series of C-N bond ruptures, hydroxide attachments, and proton transfers. Computationally predicted products of HMX hydrolysis such as nitrite, 4-nitro-2,4-diazabutanal, formaldehyde, nitrous oxide, formate, and ammonia correspond to experimentally observed species. Based on computed reaction pathways for HMX decomposition by alkaline hydrolysis, the kinetics of the entire process was modeled. Very low efficiency of this reaction at pH 10 was observed. Computations predict significant increases (orders of magnitude) of the hydrolysis rate for hydrolysis reactions undertaken at pH 11, 12, and 13.

  6. Eutrophication triggers contrasting multilevel feedbacks on litter accumulation and decomposition in fens.

    PubMed

    Emsens, W-J; Aggenbach, C J S; Grootjans, A P; Nfor, E E; Schoelynck, J; Struyf, E; van Diggelen, R

    2016-10-01

    Eutrophication is a major threat for the persistence of nutrient-poor fens, as multilevel feedbacks on decomposition rates could trigger carbon loss and increase nutrient cycling. Here, we experimentally investigate the effects of macronutrient (NPK) enrichment on litter quality of six species of sedge (Carex sp.), which we relate to litter decomposition rates in a nutrient-poor and nutrient-rich environment. Our research focused on four levels: we examined how eutrophication alters (1) fresh litter production ("productivity shift"), (2) litter stoichiometry within the same species ("intraspecific shift"), (3) overall litter stoichiometry of the vegetation under the prediction that low-competitive species are outcompeted by fast-growing competitors ("interspecific shift"), and (4) litter decomposition rates due to an altered external environment (e.g., shifts in microbial activity; "exogenous shift"). Eutrophication triggered a strong increase in fresh litter production. Moreover, individuals of the same species produced litter with lower C:N and C:P ratios, higher K contents, and lower lignin, Ca and Mg contents (intraspecific shift), which increased litter decomposability. In addition, species typical for eutrophic conditions produced more easily degradable litter than did species typical for nutrient-poor conditions (interspecific shift). However, the effects of nutrient loading of the external environment (exogenous shift) were contradictory. Here, interactions between litter type and ambient nutrient level indicate that the (exogenous) effects of eutrophication on litter decomposition rates are strongly dependent of litter quality. Moreover, parameters of litter quality only correlated with decomposition rates for litter incubated in nutrient-poor environments, but not in eutrophic environments. This suggests that rates of litter decomposition can be uncoupled from litter stoichiometry under eutrophic conditions. In conclusion, our results show that eutrophication affects litter accumulation and -decomposition at multiple levels, in which stimulatory and inhibitory effects interact. The cumulative effect of these interactions ultimately determine whether peatlands remain sinks or become sources of carbon under eutrophic conditions. © 2016 by the Ecological Society of America.

  7. Search for memory effects in methane hydrate: structure of water before hydrate formation and after hydrate decomposition.

    PubMed

    Buchanan, Piers; Soper, Alan K; Thompson, Helen; Westacott, Robin E; Creek, Jefferson L; Hobson, Greg; Koh, Carolyn A

    2005-10-22

    Neutron diffraction with HD isotope substitution has been used to study the formation and decomposition of the methane clathrate hydrate. Using this atomistic technique coupled with simultaneous gas consumption measurements, we have successfully tracked the formation of the sI methane hydrate from a water/gas mixture and then the subsequent decomposition of the hydrate from initiation to completion. These studies demonstrate that the application of neutron diffraction with simultaneous gas consumption measurements provides a powerful method for studying the clathrate hydrate crystal growth and decomposition. We have also used neutron diffraction to examine the water structure before the hydrate growth and after the hydrate decomposition. From the neutron-scattering curves and the empirical potential structure refinement analysis of the data, we find that there is no significant difference between the structure of water before the hydrate formation and the structure of water after the hydrate decomposition. Nor is there any significant change to the methane hydration shell. These results are discussed in the context of widely held views on the existence of memory effects after the hydrate decomposition.

  8. Photoionization mass spectrometric measurements of initial reaction pathways in low-temperature oxidation of 2,5-dimethylhexane

    DOE PAGES

    Rotavera, Brandon; Zádor, Judit; Welz, Oliver; ...

    2014-09-19

    The product formation from R + O 2 reactions relevant to low-temperature autoignition chemistry was studied for 2,5-dimethylhexane, a symmetrically branched octane isomer, at 550 and 650 K using Cl-atom initiated oxidation and multiplexed photoionization mass spectrometry (MPIMS). The interpretation of time- and photon-energy-resolved mass spectra led to three specific results important to characterizing the initial oxidation steps: (1) quantified isomer-resolved branching ratios for HO 2 + alkene channels; (2) 2,2,5,5-tetramethyltetrahydrofuran is formed in substantial yield from addition of O 2 to tertiary 2,5-dimethylhex-2-yl followed by isomerization of the resulting ROO adduct to tertiary hydroperoxyalkyl (QOOH) and exhibits a positivemore » dependence on temperature over the range covered leading to a higher flux relative to aggregate cyclic ether yield. The higher relative flux is explained by a 1,5-hydrogen atom shift reaction that converts the initial primary alkyl radical (2,5-dimethylhex-1-yl) to the tertiary alkyl radical 2,5-dimethylhex-2-yl, providing an additional source of tertiary alkyl radicals. Furthermore, quantum-chemical and master-equation calculations of the unimolecular decomposition of the primary alkyl radical reveal that isomerization to the tertiary alkyl radical is the most favorable pathway, and is favored over O 2-addition at 650 K under the conditions herein. The isomerization pathway to tertiary alkyl radicals therefore contributes an additional mechanism to 2,2,5,5-tetramethyltetrahydrofuran formation; (3) carbonyl species (acetone, propanal, and methylpropanal) consistent with β-scission of QOOH radicals were formed in significant yield, indicating unimolecular QOOH decomposition into carbonyl + alkene + OH.« less

  9. Quantifying the Microbial Utilization of Methanogenesis and Methane Loss from Northern Wetlands

    NASA Astrophysics Data System (ADS)

    Corbett, J. E.; Tfaily, M.; Burdige, D.; Glaser, P. H.; Chanton, J.

    2014-12-01

    The importance of methanogenesis and percent of methane loss from the subsurface porewater in various northern wetland sites was quantified with isotope-mass balance equations. With equimolar amounts of CO2 and CH4 produced from methanogenesis, the amount of dissolved CO2 produced from methanogenesis as compared to other decomposition processes can be calculated and is equivalent to the amount of CH4 before loss due to ebullition, plant-mediated transport, and diffusion. This method was applied to porewater samples collected from various locations within permafrost collapse-scar bogs and northern peatlands. From the peatland sites, bogs produced less CO2-meth than fens (2.9 ± 1.3 mM and 3.7 ± 1.4 mM, respectively). Methanogenesis was a more utilized decomposition process in the bogs than the fens. However, greater amounts of CO2-meth found in fen sites was most likely due to the presence of more labile organic substrates resulting in greater overall production. More CH4 was lost in fens (89 ± 2.8%) than bogs (82 ± 5.3%) from plant-mediated transport as fens are dominated by vascular plants (Carex) while bogs are dominated by Sphagnum mosses. In permafrost sites, mid-bogs produced twice the amount of CO2-meth as bog moats (1.6 ± 0.63 mM and 0.82 ± 0.20 mM, respectively). Less methanogenesis was found in bog moats as recently thawed organic matter is exposed to initial decomposition processes and methane production grows over time. A similar amount of CH4 was lost from bog moats as mid bogs (63 ± 7.0% and 64 ± 9.3%, respectively) likely due to the greater density of vascular plants found within a bog moat.

  10. Detritus Quality Controls Macrophyte Decomposition under Different Nutrient Concentrations in a Eutrophic Shallow Lake, North China

    PubMed Central

    Li, Xia; Cui, Baoshan; Yang, Qichun; Tian, Hanqin; Lan, Yan; Wang, Tingting; Han, Zhen

    2012-01-01

    Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C∶N, C∶P, and N∶P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75∶25, 50∶50 and 25∶75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C∶N), and carbon to phosphorus (C∶P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO3-N and NH4-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes. PMID:22848699

  11. Aging-driven decomposition in zolpidem hemitartrate hemihydrate and the single-crystal structure of its decomposition products.

    PubMed

    Vega, Daniel R; Baggio, Ricardo; Roca, Mariana; Tombari, Dora

    2011-04-01

    The "aging-driven" decomposition of zolpidem hemitartrate hemihydrate (form A) has been followed by X-ray powder diffraction (XRPD), and the crystal and molecular structures of the decomposition products studied by single-crystal methods. The process is very similar to the "thermally driven" one, recently described in the literature for form E (Halasz and Dinnebier. 2010. J Pharm Sci 99(2): 871-874), resulting in a two-phase system: the neutral free base (common to both decomposition processes) and, in the present case, a novel zolpidem tartrate monohydrate, unique to the "aging-driven" decomposition. Our room-temperature single-crystal analysis gives for the free base comparable results as the high-temperature XRPD ones already reported by Halasz and Dinnebier: orthorhombic, Pcba, a = 9.6360(10) Å, b = 18.2690(5) Å, c = 18.4980(11) Å, and V = 3256.4(4) Å(3) . The unreported zolpidem tartrate monohydrate instead crystallizes in monoclinic P21 , which, for comparison purposes, we treated in the nonstandard setting P1121 with a = 20.7582(9) Å, b = 15.2331(5) Å, c = 7.2420(2) Å, γ = 90.826(2)°, and V = 2289.73(14) Å(3) . The structure presents two complete moieties in the asymmetric unit (z = 4, z' = 2). The different phases obtained in both decompositions are readily explained, considering the diverse genesis of both processes. Copyright © 2010 Wiley-Liss, Inc.

  12. Interactions between soil and tree roots accelerate long-term soil carbon decomposition.

    PubMed

    Dijkstra, Feike A; Cheng, Weixin

    2007-11-01

    Decomposition of soil organic carbon (SOC) is the main process governing the release of CO(2) into the atmosphere from terrestrial systems. Although the importance of soil-root interactions for SOC decomposition has increasingly been recognized, their long-term effect on SOC decomposition remains poorly understood. Here we provide experimental evidence for a rhizosphere priming effect, in which interactions between soil and tree roots substantially accelerate SOC decomposition. In a 395-day greenhouse study with Ponderosa pine and Fremont cottonwood trees grown in three different soils, SOC decomposition in the planted treatments was significantly greater (up to 225%) than in soil incubations alone. This rhizosphere priming effect persisted throughout the experiment, until well after initial soil disturbance, and increased with a greater amount of root-derived SOC formed during the experiment. Loss of old SOC was greater than the formation of new C, suggesting that increased C inputs from roots could result in net soil C loss.

  13. ENHANCED CHEMICAL CLEANING: EFFECTIVENESS OF THE UV LAMP TO DECOMPOSE OXALATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ketusky, E.; Huff, T.; Sudduth, C.

    2010-01-19

    Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozonemore » or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased by about 2.8. Results from very similartests with similar chemistry suggest that the impact should be about 10. Based on the limited reaction pathwayfor the creation of hydroxyl radicals with iron, ozone, and no UV, the discrepancy suggests that initially, at 'time zero' the UV light failed to perform up to expectations. It is therefore concluded that regardless of the fouling rate, either the increased solids concentration is impacting the initial penetrability (i.e. to many solids), or the light is not adequately sized/configured to have the appropriate flux.« less

  14. The global stoichiometry of litter nitrogen mineralization

    Treesearch

    Stefano Manzoni; Robert B. Jackson; John A. Trofymow; Amilcare Porporato

    2008-01-01

    Plant residue decomposition and the nutrient release to the soil play a major role in global carbon and nutrient cycling. Although decomposition rates vary strongly with climate, nitrogen immobilization into litter and its release in mineral forms are mainly controlled by the initial chemical composition of the residues. We used a data set of ~2800 observations to show...

  15. Using Singular Value Decomposition to Investigate Degraded Chinese Character Recognition: Evidence from Eye Movements during Reading

    ERIC Educational Resources Information Center

    Wang, Hsueh-Cheng; Schotter, Elizabeth R.; Angele, Bernhard; Yang, Jinmian; Simovici, Dan; Pomplun, Marc; Rayner, Keith

    2013-01-01

    Previous research indicates that removing initial strokes from Chinese characters makes them harder to read than removing final or internal ones. In the present study, we examined the contribution of important components to character configuration via singular value decomposition. The results indicated that when the least important segments, which…

  16. Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hongyan, E-mail: hongyan.sun1@gmail.com, E-mail: ghanshyam.vaghjiani@us.af.mil; Vaghjiani, Ghanshyam L., E-mail: hongyan.sun1@gmail.com, E-mail: ghanshyam.vaghjiani@us.af.mil

    2015-05-28

    Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was foundmore » that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH{sub 2} group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C{sub 2v} symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which reveal the formation of (NO{sub 2} + H{sub 2}O) to be the major decomposition path. Furthermore, we provide fundamental interpretations for the experimental results of Klapötke et al. [Combust. Flame 139, 358–366 (2004)] regarding the thermal stability of MNB and DNB, and their decomposition products. Notably, a fundamental understanding of fuel stability, decomposition mechanism, and key reactions leading to ignition is essential in the design and manipulation of molecular systems for the development of new energetic materials for advanced propulsion applications.« less

  17. Thermal decomposition kinetics of hydrazinium cerium 2,3-Pyrazinedicarboxylate hydrate: a new precursor for CeO2.

    PubMed

    Premkumar, Thathan; Govindarajan, Subbiah; Coles, Andrew E; Wight, Charles A

    2005-04-07

    The thermal decomposition kinetics of N(2)H(5)[Ce(pyrazine-2,3-dicarboxylate)(2)(H(2)O)] (Ce-P) have been studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), for the first time; TGA analysis reveals an oxidative decomposition process yielding CeO(2) as the final product with an activation energy of approximately 160 kJ mol(-1). This complex may be used as a precursor to fine particle cerium oxides due to its low temperature of decomposition.

  18. Investigation of the sensitivity of MIS-sensor to thermal decomposition products of cables insulation

    NASA Astrophysics Data System (ADS)

    Filipchuk, D. V.; Litvinov, A. V.; Etrekova, M. O.; Nozdrya, D. A.

    2017-12-01

    Sensitivity of the MIS-sensor to products of thermal decomposition of insulation and jacket of the most common types of cables is investigated. It is shown that hydrogen is evolved under heating the insulation to temperatures not exceeding 250 °C. Registration of the evolved hydrogen by the MIS-sensor can be used for detection of fires at an early stage.

  19. Mechanism of the Thermal Decomposition of Ethanethiol and Dimethylsulfide

    NASA Astrophysics Data System (ADS)

    Melhado, William Francis; Whitman, Jared Connor; Kong, Jessica; Anderson, Daniel Easton; Vasiliou, AnGayle (AJ)

    2016-06-01

    Combustion of organosulfur contaminants in petroleum-based fuels and biofuels produces sulfur oxides (SO_x). These pollutants are highly regulated by the EPA because they have been linked to poor respiratory health and negative environmental impacts. Therefore much effort has been made to remove sulfur compounds in petroleum-based fuels and biofuels. Currently desulfurization methods used in the fuel industry are costly and inefficient. Research of the thermal decomposition mechanisms of organosulfur species can be implemented via engineering simulations to modify existing refining technologies to design more efficient sulfur removal processes. We have used a resistively-heated SiC tubular reactor to study the thermal decomposition of ethanethiol (CH_3CH_2SH) and dimethylsulfide (CH_3SCH_3). The decomposition products are identified by two independent techniques: 118.2 nm VUV photoionization mass spectroscopy and infrared spectroscopy. The thermal cracking products for CH_3CH_2SH are CH_2CH_2, SH, and H_2S and the thermal cracking products from CH_3SCH_3 are CH_3S, CH_2S, and CH_3.

  20. Production of furfural from palm oil empty fruit bunches: kinetic model comparation

    NASA Astrophysics Data System (ADS)

    Panjaitan, J. R. H.; Monica, S.; Gozan, M.

    2017-05-01

    Furfural is a chemical compound that can be applied to pharmaceuticals, cosmetics, resins and cleaning compound which can be produced by acid hydrolysis of biomass. Indonesia’s demand for furfural in 2010 reached 790 tons that still imported mostly 72% from China. In this study, reaction kinetic models of furfural production from oil palm empty fruit bunches with submitting acid catalyst at the beginning of the experiment will be determine. Kinetic data will be obtained from hydrolysis of empty oil palm bunches using sulfuric acid catalyst 3% at temperature 170°C, 180°C and 190°C for 20 minutes. From this study, the kinetic model to describe the production of furfural is the kinetic model where generally hydrolysis reaction with an acid catalyst in hemicellulose and furfural will produce the same decomposition product which is formic acid with different reaction pathways. The activation energy obtained for the formation of furfural, the formation of decomposition products from furfural and the formation of decomposition products from hemicellulose is 8.240 kJ/mol, 19.912 kJ/mol and -39.267 kJ / mol.

  1. Products from the Oxidation of n-Butane from 298 to 735 K Using Either Cl Atom or Thermal Initiation: Formation of Acetone and Acetic Acid-Possible Roaming Reactions?

    PubMed

    Kaiser, E W; Wallington, T J

    2017-11-16

    The oxidation of 2-butyl radicals (and to a lesser extent 1-butyl radicals) has been studied over the temperature range of 298-735 K. The reaction of Cl atoms (formed by 360 nm irradiation of Cl 2 ) with n-butane generated the 2-butyl radicals in mixtures of n-C 4 H 10 , O 2 , and Cl 2 at temperatures below 600 K. Above 600 K, 2-butyl radicals were produced by thermal combustion reactions in the absence of chlorine. The yields of the products were measured by gas chromatography using a flame ionization detector. Major products quantified include acetone, acetic acid, acetaldehyde, butanone, 2-butanol, butanal, 1- and 2- chlorobutane, 1-butene, trans-2-butene, and cis-2-butene. At 298 K, the major oxygenated products are those expected from bimolecular reactions of 2-butylperoxy radicals (butanone, 2-butanol, and acetaldehyde). As the temperature rises to 390 K, the butanone decreases while acetaldehyde increases because of the increased rate of 2-butoxy radical decomposition. Acetone and acetic acid first appear in significant yield near 400 K, and these species rise slowly at first and then sharply, peaking near 525 K at yields of ∼25 and ∼20 mol %, respectively. In the same temperature range (400-525 K), butanone, acetaldehyde, and 2-butanol decrease rapidly. This suggests that acetone and acetic acid may be formed by previously unknown reaction channels of the 2-butylperoxy radical, which are in competition with those that lead to butanone, acetaldehyde, and 2-butanol. Above 570 K, the yields of acetone and acetic acid fall rapidly as the yields of the butenes rise. Experiments varying the Cl atom density, which in turn controls the entire radical pool density, were performed in the temperature range of 410-440 K. Decreasing the Cl atom density increased the yields of acetone and acetic acid while the yields of butanone, acetaldehyde, and 2-butanol decreased. This is consistent with the formation of acetone and acetic acid by unimolecular decomposition channels of the 2-butylperoxy radical, which are in competition with the bimolecular channels that form butanone, acetaldehyde, and 2-butanol. Such unimolecular decomposition channels would be unlikely to proceed through conventional transition states because those states would be very constrained. Therefore, the possibility that these decomposition channels proceed via roaming should be considered. In addition, we investigated and were unable to fit our data trends by a simplified ketohydroperoxide mechanism.

  2. Foliar litter decomposition in an alpine forest meta-ecosystem on the eastern Tibetan Plateau.

    PubMed

    Yue, Kai; Yang, Wanqin; Peng, Changhui; Peng, Yan; Zhang, Chuan; Huang, Chunping; Tan, Yu; Wu, Fuzhong

    2016-10-01

    Litter decomposition is a biological process fundamental to element cycling and a main nutrient source within forest meta-ecosystems, but few studies have looked into this process simultaneously in individual ecosystems, where environmental factors can vary substantially. A two-year field study conducted in an alpine forest meta-ecosystem with four litter species (i.e., willow: Salix paraplesia, azalea: Rhododendron lapponicum, cypress: Sabina saltuaria, and larch: Larix mastersiana) that varied widely in chemical traits showed that both litter species and ecosystem type (i.e., forest floor, stream and riparian zone) are important factors affecting litter decomposition, and their effects can be moderated by local-scale environmental factors such as temperature and nutrient availability. Litter decomposed fastest in the streams followed by the riparian zone and forest floor regardless of species. For a given litter species, both the k value and limit value varied significantly among ecosystems, indicating that the litter decomposition rate and extent (i.e., reaching a limit value) can be substantially affected by ecosystem type and the local-scale environmental factors. Apart from litter initial acid unhydrolyzable residue (AUR) concentration and its ratio to nitrogen concentration (i.e., AUR/N ratio), the initial nutrient concentrations of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were also important litter traits that affected decomposition depending on the ecosystem type. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging.

    PubMed

    Zhou, Rong; Basile, Franco

    2017-09-05

    A method based on plasmon surface resonance absorption and heating was developed to perform a rapid on-surface protein thermal decomposition and digestion suitable for imaging mass spectrometry (MS) and/or profiling. This photothermal process or plasmonic thermal decomposition/digestion (plasmonic-TDD) method incorporates a continuous wave (CW) laser excitation and gold nanoparticles (Au-NPs) to induce known thermal decomposition reactions that cleave peptides and proteins specifically at the C-terminus of aspartic acid and at the N-terminus of cysteine. These thermal decomposition reactions are induced by heating a solid protein sample to temperatures between 200 and 270 °C for a short period of time (10-50 s per 200 μm segment) and are reagentless and solventless, and thus are devoid of sample product delocalization. In the plasmonic-TDD setup the sample is coated with Au-NPs and irradiated with 532 nm laser radiation to induce thermoplasmonic heating and bring about site-specific thermal decomposition on solid peptide/protein samples. In this manner the Au-NPs act as nanoheaters that result in a highly localized thermal decomposition and digestion of the protein sample that is independent of the absorption properties of the protein, making the method universally applicable to all types of proteinaceous samples (e.g., tissues or protein arrays). Several experimental variables were optimized to maximize product yield, and they include heating time, laser intensity, size of Au-NPs, and surface coverage of Au-NPs. Using optimized parameters, proof-of-principle experiments confirmed the ability of the plasmonic-TDD method to induce both C-cleavage and D-cleavage on several peptide standards and the protein lysozyme by detecting their thermal decomposition products with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The high spatial specificity of the plasmonic-TDD method was demonstrated by using a mask to digest designated sections of the sample surface with the heating laser and MALDI-MS imaging to map the resulting products. The solventless nature of the plasmonic-TDD method enabled the nonenzymatic on-surface digestion of proteins to proceed with undetectable delocalization of the resulting products from their precursor protein location. The advantages of this novel plasmonic-TDD method include short reaction times (<30 s/200 μm), compatibility with MALDI, universal sample compatibility, high spatial specificity, and localization of the digestion products. These advantages point to potential applications of this method for on-tissue protein digestion and MS-imaging/profiling for the identification of proteins, high-fidelity MS imaging of high molecular weight (>30 kDa) proteins, and the rapid analysis of formalin-fixed paraffin-embedded (FFPE) tissue samples.

  4. Hydrazine Catalyst Production: Sustaining S-405 Technology

    NASA Technical Reports Server (NTRS)

    Wucherer, E. J.; Cook, Timothy; Stiefel, Mark; Humphries, Randy, Jr.; Parker, Janet

    2003-01-01

    The development of the iridium-based Shell 405 catalyst for spontaneous decomposition of hydrazine was one of the key enabling technologies for today's spacecraft and launch vehicles. To ensure that this crucial technology was not lost when Shell elected to exit the business, Aerojet, supported by NASA, has developed a dedicated catalyst production facility that will supply catalyst for future spacecraft and launch vehicle requirements. We have undertaken a program to transfer catalyst production from Shell Chemical USA (Houston, TX) to Aerojet's Redmond, WA location. This technology transition was aided by Aerojet's 30 years of catalyst manufacturing experience and NASA diligence and support in sustaining essential technologies. The facility has produced and tested S-405 catalyst to existing Shell 405 specifications and standards. Our presentation will describe the technology transition effort including development of the manufacturing facility, capture of the manufacturing process, test equipment validation, initial batch build and final testing.

  5. High-level expression and efficient purification of bioactive swollenin in Aspergillus oryzae.

    PubMed

    Wang, Meihua; Cai, Jin; Huang, Lei; Lv, Zhengbin; Zhang, Yaozhou; Xu, Zhinan

    2010-11-01

    The bioactivity of swollenin is beneficial to cellulose decomposition by cellulase despite the lack of hydrolytic activity itself. In order to improve the productivity of swollenin, the effects of culture conditions on the expression level in recombinant Aspergillus oryzae were investigated systematically. With regard to the bioactivity of swollenin, glycerin and peanut meal were the optimal carbon or nitrogen source, respectively. The highest level production of swollenin (50 mg L(-1)) was attained after 88 h cultivation with the initial pH of 5.6 in the culture medium. Then the soluble swollenin was effectively purified from the cultural supernatant by ammonium sulfate precipitation and cationic exchange chromatography with recovery yield of 53.2%. The purified swollenin was fully bioactive due to its strong synergistic activity with cellulose.

  6. The role of microbial communities in phosphorus cycling during litter decomposition in a tropical forest

    NASA Astrophysics Data System (ADS)

    Lloret Sevilla, E.; Brodie, E.; Bouskill, N.; Hao, Z.

    2016-12-01

    Phosphorus is an essential nutrient with a reduced availability in tropical forests. In these ecosystems, P is recycled highly efficiently through resorption and mineralization and P immobilization in the microbial biomass prevents its loss through occlusion in the soil mineral fraction. To improve models of ecosystem response to global change, further studies of the above and belowground plant and microbial traits related to P availability and uptake, are required. In tropical forests, high temperature and rainfall lead to some of the highest rates of litter decomposition on earth. Litter decomposition is a complex process mediated by a range of trophic groups: meso and microfauna initiate litter turnover through litter fragmentation facilitating colonization by fungi, and bacteria mediate the mineralization of organic matter and release of nutrients. To determine the important functional traits of these players in the efficient cycling of P in soils with low P availability, we are performing a leaf litter decomposition experiment in a humid tropical forest in Puerto Rico. Nylon litterbags with three mesh sizes (2mm, 20 μm and 0.45 μm) containing litter with different chemistry (tabonuco and palm) will be deployed on soil surface and sampled 6 times throughout 12 months. The use of different mesh sizes will allow us to identify the leading roles in litter turnover by physical allowance and/or exclusion of the decomposers. The 2 mm bags allow meso and microfauna, roots, fungi and bacteria. 20 μm bags will exclude fauna and roots and 0.45 μm only allow some bacteria. We hypothesize that fungi will dominate over bacteria in earlier stages of the decomposition with a higher production of extracellular hydrolytic enzymes. On the other hand, bacterial biomass is expected to increase with time. Qualitative changes in both fungal and bacterial communities along the decomposition process are also expected leading to changes in enzyme activity. We also postulate an enhanced microbial communities abundance and activity in litter with higher nutrient content. Regarding the microarthropods, we hypothesize that their diversity and abundance will be inversely related to mass loss.

  7. Could blackbird mortality from avicide DRC-1339 contribute to avian botulism outbreaks in North Dakota?

    USGS Publications Warehouse

    Goldberg, Diana R.; Samuel, M.D.; Rocke, T.E.; Johnson, K.M.; Linz, G.

    2004-01-01

    Blackbird (family lcteridae) depredation on sunflower (Helianthus annuus) crops in the prairie states of the United States has motivated the proposed use of an avicide, DRC-1339 (3-chloro-4-methylaniline), to decrease their numbers. The resulting mortality of blackbirds at wetland roosts could increase the potential of avian botulism occurring in affected marshes. To assess this possibility, we seeded (artificially placed) blackbird carcasses in selected wetlands in Stutsman County, North Dakota, during August-September 2000 and July-September 2001 to evaluate their rate of decomposition and role in initiating avian botulism outbreaks. We monitored carcasses to determine their persistence, the frequency and amount of maggots produced, and the presence of type C botulinum toxin. In 10 of our 12 study wetlands, blackbird carcasses were not rapidly removed by scavengers, thus providing substrate for maggot growth and potential production of Clostridium botulinum toxin. Decomposition of carcasses occurred rapidly, and maggot production averaged 4a??5 g per carcass within 9 days. We were unable to detect C. botulinum type C toxin in any of the 377 blackbird carcasses or the 112 samples of maggots we collected in 2000 or 2001. None of the 25 blackbird carcasses we tested contained botulinum spores, the most probable explanation for the absence of botulinum toxin production. Our results indicate that the likelihood of DRC-1339-poisoned blackbirds causing botulism outbreaks would be minimal in North Dakota wetlands during late summer and early autumn.

  8. Deamidation of Protonated Asparagine-Valine Investigated by a Combined Spectroscopic, Guided Ion Beam, and Theoretical Study.

    PubMed

    Kempkes, L J M; Boles, G C; Martens, J; Berden, G; Armentrout, P B; Oomens, J

    2018-03-08

    Peptide deamidation of asparaginyl residues is a spontaneous post-translational modification that is believed to play a role in aging and several diseases. It is also a well-known small-molecule loss channel in the MS/MS spectra of protonated peptides. Here we investigate the deamidation reaction, as well as other decomposition pathways, of the protonated dipeptide asparagine-valine ([AsnVal + H] + ) upon low-energy activation in a mass spectrometer. Using a combination of infrared ion spectroscopy, guided ion beam tandem mass spectrometry, and theoretical calculations, we have been able to identify product ion structures and determine the energetics and mechanisms for decomposition. Deamidation proceeds via ammonia loss from the asparagine side chain, initiated by a nucleophilic attack of the peptide bond oxygen on the γ-carbon of the Asn side chain. This leads to the formation of a furanone ring containing product ion characterized by a threshold energy of 129 ± 5 kJ/mol (15 kJ/mol higher in energy than dehydration of [AsnVal + H] + , the lowest energy dissociation channel available to the system). Competing formation of a succinimide ring containing product, as has been observed for protonated asparagine-glycine ([AsnGly + H] + ) and asparagine-alanine ([AsnAla + H] + ), was not observed here. Quantum-chemical modeling of the reaction pathways confirms these subtle differences in dissociation behavior. Measured reaction thresholds are in agreement with predicted theoretical reaction energies computed at several levels of theory.

  9. Improving radiation data quality of USDA UV-B monitoring and research program and evaluating UV decomposition in DayCent and its ecological impacts

    NASA Astrophysics Data System (ADS)

    Chen, Maosi

    Solar radiation impacts many aspects of the Earth's atmosphere and biosphere. The total solar radiation impacts the atmospheric temperature profile and the Earth's surface radiative energy budget. The solar visible (VIS) radiation is the energy source of photosynthesis. The solar ultraviolet (UV) radiation impacts plant's physiology, microbial activities, and human and animal health. Recent studies found that solar UV significantly shifts the mass loss and nitrogen patterns of plant litter decomposition in semi-arid and arid ecosystems. The potential mechanisms include the production of labile materials from direct and indirect photolysis of complex organic matters, the facilitation of microbial decomposition with more labile materials, and the UV inhibition of microbes' population. However, the mechanisms behind UV decomposition and its ecological impacts are still uncertain. Accurate and reliable ground solar radiation measurements help us better retrieve the atmosphere composition, validate satellite radiation products, and simulate ecosystem processes. Incorporating the UV decomposition into the DayCent biogeochemical model helps to better understand long-term ecological impacts. Improving the accuracy of UV irradiance data is the goal of the first part of this research and examining the importance of UV radiation in the biogeochemical model DayCent is the goal of the second part of the work. Thus, although the dissertation is separated into two parts, accurate UV irradiance measurement links them in what follows. In part one of this work the accuracy and reliability of the current operational calibration method for the (UV-) Multi-Filter Rotating Shadowband Radiometer (MFRSR), which is used by the U.S. Department of Agriculture UV-B Monitoring and Research Program (UVMRP), is improved. The UVMRP has monitored solar radiation in the 14 narrowband UV and VIS spectral channels at 37 sites across U.S. since 1992. The improvements in the quality of the data result from an improved cloud screening algorithm that utilizes an iterative rejection of cloudy points based on a decreasing tolerance of unstable optical depth behavior when calibration information is unknown. A MODTRAN radiative transfer model simulation showed the new cloud screening algorithm was capable of screening cloudy points while retaining clear-sky points. The comparison results showed that the cloud-free points determined by the new cloud screening algorithm generated significantly (56%) more and unbiased Langley offset voltages (VLOs) for both partly cloudy days and sunny days at two testing sites, Hawaii and Florida. The V¬LOs are proportional to the radiometric sensitivity. The stability of the calibration is also improved by the development of a two-stage reference channel calibration method for collocated UV-MFRSR and MFRSR instruments. Special channels where aerosol is the only contributor to total optical depth (TOD) variation (e.g. 368-nm channel) were selected and the radiative transfer model (MODTRAN) used to calculate direct normal and diffuse horizontal ratios which were used to evaluate the stability of TOD in cloud-free points. The spectral dependence of atmospheric constituents' optical properties and previously calibrated channels were used to find stable TOD points and perform Langley calibration at spectrally adjacent channels. The test of this method on the UV-B program site at Homestead, Florida (FL02) showed that the new method generated more clustered and abundant VLOs at all (UV-) MFRSR channels and potentially improved the accuracy by 2-4% at most channels and over 10% at 300-nm and 305-nm channels. In the second major part of this work, I calibrated the DayCent-UV model with ecosystem variables (e.g. soil water, live biomass), allowed maximum photodecay rate to vary with litter's initial lignin fraction in the model, and validated the optimized model with LIDET observation of remaining carbon and nitrogen at three semi-arid sites. I also explored the ecological impacts of UV decomposition with the optimized DayCent-UV model. The DayCent-UV model showed significant better performance compared to models without UV decomposition in simulating the observed linear carbon loss pattern and the persistent net nitrogen mineralization in the 10-year LIDET experiment at the three sites. The DayCent-UV equilibrium model runs showed that UV decomposition increased aboveground and belowground plant production, surface net nitrogen mineralization, and surface litter nitrogen pool, while decreased surface litter carbon, soil net nitrogen mineralization and mineral soil carbon and nitrogen. In addition, UV decomposition showed minimal impacts (i.e. less than 1% change) on trace gases emission and biotic decomposition rates. Overall, my dissertation provided a comprehensive solution to improve the calibration accuracy and reliability of MFRSR and therefore the quality of radiation products. My dissertation also improved the understanding of UV decomposition and its long-term ecological impacts.

  10. Biological decomposition efficiency in different woodland soils.

    PubMed

    Herlitzius, H

    1983-03-01

    The decomposition (meaning disappearance) of different leaf types and artificial leaves made from cellulose hydrate foil was studied in three forests - an alluvial forest (Ulmetum), a beech forest on limestone soil (Melico-Fagetum), and a spruce forest in soil overlying limestone bedrock.Fine, medium, and coarse mesh litter bags of special design were used to investigate the roles of abiotic factors, microorganisms, and meso- and macrofauna in effecting decomposition in the three habitats. Additionally, the experimental design was carefully arranged so as to provide information about the effects on decomposition processes of the duration of exposure and the date or moment of exposure. 1. Exposure of litter samples oor 12 months showed: a) Litter enclosed in fine mesh bags decomposed to some 40-44% of the initial amount placed in each of the three forests. Most of this decomposition can be attributed to abiotic factors and microoganisms. b) Litter placed in medium mesh litter bags reduced by ca. 60% in alluvial forest, ca. 50% in beech forest and ca. 44% in spruce forest. c) Litter enclosed in coarse mesh litter bags was reduced by 71% of the initial weights exposed in alluvial and beech forests; in the spruce forest decomposition was no greater than observed with fine and medium mesh litter bags. Clearly, in spruce forest the macrofauna has little or no part to play in effecting decomposition. 2. Sequential month by month exposure of hazel leaves and cellulose hydrate foil in coarse mesh litter bags in all three forests showed that one month of exposure led to only slight material losses, they did occur smallest between March and May, and largest between June and October/November. 3. Coarse mesh litter bags containing either hazel or artificial leaves of cellulose hydrate foil were exposed to natural decomposition processes in December 1977 and subsampled monthly over a period of one year, this series constituted the From-sequence of experiments. Each of the From-sequence samples removed was immediately replaced by a fresh litter bag which was left in place until December 1978, this series constituted the To-sequence of experiments. The results arising from the designated From- and To-sequences showed: a) During the course of one year hazel leaves decomposed completely in alluvial forest, almost completely in beech forest but to only 50% of the initial value in spruce forest. b) Duration of exposure and not the date of exposure is the major controlling influence on decomposition in alluvial forest, a characteristic reflected in the mirror-image courses of the From- and To-sequences curves with respect to the abscissa or time axis. Conversely the date of exposure and not the duration of exposure is the major controlling influence on decomposition in the spruce forest, a characteristic reflected in the mirror-image courses of the From-and To-sequences with respect to the ordinate or axis of percentage decomposition. c) Leaf powder amendment increased the decomposition rate of the hazel and cellulose hydrate leaves in the spruce forest but had no significant effect on their decomposition rate in alluvial and beech forests. It is concluded from this, and other evidence, that litter amendment by leaf fragments of phytophage frass in sites of low biological decomposition activity (eg. spruce) enhances decomposition processes. d) The time course of hazel leaf decomposition in both alluvial and beech forest is sigmoidal. Three s-phases are distinguished and correspond to the activity of microflora/microfauna, mesofauna/macrofauna, and then microflora/microfauna again. In general, the sigmoidal pattern of the curve can be considered valid for all decomposition processes occurring in terrestrial situations. It is contended that no decomposition (=disappearance) curve actually follows an e-type exponential function. A logarithmic linear regression can be constructed from the sigmoid curve data and although this facilitates inter-system comparisons it does not clearly express the dynamics of decomposition. 4. The course of the curve constructed from information about the standard deviations of means derived from the From- and To-sequence data does reflect the dynamics of litter decomposition. The three s-phases can be recognised and by comparing the actual From-sequence deviation curve with a mirror inversion representation of the To-sequence curve it is possible to determine whether decomposition is primarily controlled by the duration of exposure or the date of exposure. As is the case for hazel leaf decomposition in beech forest intermediate conditions can be readily recognised.

  11. Vapor Pressure Data and Analysis for Selected HD Decomposition Products: 1,4-Thioxane, Divinyl Sulfoxide, Chloroethyl Acetylsulfide, and 1,4-Dithiane

    DTIC Science & Technology

    2018-06-01

    decomposition products from bis-(2-chloroethyl) sulfide (HD). These data were measured using an ASTM International method that is based on differential...2.1 Materials and Method ........................................................................................2 2.2 Data Analysis...and Method The source and purity of the materials studied are listed in Table 1. Table 1. Sample Information for Title Compounds Compound

  12. Analysis of HEMCL Railgun Insulator Damage

    DTIC Science & Technology

    2006-06-01

    pyrolytic epoxy degradation and glass fiber softening and liquification in the insulator, it is determined that rail-to-rail plasmas are present behind...produces epoxy decomposition products in the form of gases, oils , waxes and chars solid (heavily cross-linked residues) [4]. The nature of the... pyrolytic decomposition product (wax) of the epoxy as in the fired specimens. Figures 6 and 7 are typical examples of glass fiber softening and

  13. Physicochemical assessment criteria for high-voltage pulse capacitors

    NASA Astrophysics Data System (ADS)

    Darian, L. A.; Lam, L. Kh.

    2016-12-01

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is a correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.

  14. Thermal Decomposition Mechanism of Butyraldehyde

    NASA Astrophysics Data System (ADS)

    Hatten, Courtney D.; Warner, Brian; Wright, Emily; Kaskey, Kevin; McCunn, Laura R.

    2013-06-01

    The thermal decomposition of butyraldehyde, CH_3CH_2CH_2C(O)H, has been studied in a resistively heated SiC tubular reactor. Products of pyrolysis were identified via matrix-isolation FTIR spectroscopy and photoionization mass spectrometry in separate experiments. Carbon monoxide, ethene, acetylene, water and ethylketene were among the products detected. To unravel the mechanism of decomposition, pyrolysis of a partially deuterated sample of butyraldehyde was studied. Also, the concentration of butyraldehyde in the carrier gas was varied in experiments to determine the presence of bimolecular reactions. The results of these experiments can be compared to the dissociation pathways observed in similar aldehydes and are relevant to the processing of biomass, foods, and tobacco.

  15. Does clear-cut harvesting accelerate initial wood decomposition? A five-year study with standard wood material

    Treesearch

    L. Finer; M. Jurgensen; M. Palviainen; S. Piirainen; Deborah Page-Dumroese

    2016-01-01

    Coarse woody debris (CWD) serves a variety of ecological functions in forests, and the understanding of its decomposition is needed for estimating changes in CWD-dependent forest biodiversity, and for the quantification of forest ecosystem carbon and nutrient pools and fluxes. Boreal forests are often intensively managed, so information is needed on the effects of...

  16. MASS LOSS AND NITROGEN DYNAMICS DURING THE DECOMPOSITION OF A N-LABELED N2-FIXING EPOPHYTIC LICHEN, LOBARIA OREGANA (TUCK.) MULL. ARG.

    EPA Science Inventory

    We studied mass loss and nitrogen dynamics during fall and spring initiated decomposition of an N2-fixing epiphytic lichen, Lobaria oregana (Tuck.) Mull. Arg. using 15N. We developed a method of labeling lichens with 15N that involved spraying lichen material with a nutrient sol...

  17. The influence of minerals on decomposition of the n-alkyl-α-amino acid norvaline under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.

    2013-03-01

    Laboratory experiments were conducted to observe the effect of iron oxide and sulfide minerals on decomposition reactions of norvaline, a representative of a group of alkyl-α-amino acids observed in meteorites and prebiotic synthesis experiments. The primary products observed during heating of aqueous solutions of norvaline at temperatures of 156-186 °C in the presence of minerals included CO2, NH3, butyric acid, and valeric acid. The products indicated that norvaline predominantly decomposed by a combination of pathways that included both decarboxylation followed rapidly by oxidative deamination (norvaline → butanamide + CO2 → butyric acid + NH3) and deamination directly to valeric acid (norvaline → valeric acid + NH3). An experiment performed with alanine under similar conditions showed it decomposed by analogous reactions that produced acetic and propionic acids along with CO2 and NH3. For both amino acids, the presence of minerals accelerated decomposition rates as well as altered the final products of reaction, when compared with decomposition in the absence of mineral substrates. In addition, decomposition of norvaline was found to proceed much faster in the presence of the mineral assemblage hematite-magnetite-pyrite (HMP) than with the assemblage pyrite-pyrrhotite-magnetite (PPM), a trend that has been observed for several other organic compounds. The influence of minerals on decomposition reactions of these amino acids appears to be attributable to a combination of surface catalysis and production of dissolved sulfur compounds. Overall, the results indicate that minerals may exert a substantial influence on amino acid stability in many geologic environments, and emphasize the need to consider the impact of minerals when evaluating the lifetimes and decomposition rates of amino acids in terrestrial and planetary systems. Estimated half-lives for alkyl-α-amino acids based on the experimental results indicate that moderately hot hydrothermal environments (<˜100 °C) would have been the most favorable for accumulation of these amino acids in the early solar system, and that the predominance of alkyl-α-amino acids in some meteorites may only be compatible with temperature remaining below about 60 °C following their formation.

  18. Differences in the sensitivity of fungi and bacteria to season and invertebrates affect leaf litter decomposition in a Mediterranean stream.

    PubMed

    Mora-Gómez, Juanita; Elosegi, Arturo; Duarte, Sofia; Cássio, Fernanda; Pascoal, Cláudia; Romaní, Anna M

    2016-08-01

    Microorganisms are key drivers of leaf litter decomposition; however, the mechanisms underlying the dynamics of different microbial groups are poorly understood. We investigated the effects of seasonal variation and invertebrates on fungal and bacterial dynamics, and on leaf litter decomposition. We followed the decomposition of Populus nigra litter in a Mediterranean stream through an annual cycle, using fine and coarse mesh bags. Irrespective of the season, microbial decomposition followed two stages. Initially, bacterial contribution to total microbial biomass was higher compared to later stages, and it was related to disaccharide and lignin degradation; in a later stage, bacteria were less important and were associated with hemicellulose and cellulose degradation, while fungi were related to lignin decomposition. The relevance of microbial groups in decomposition differed among seasons: fungi were more important in spring, whereas in summer, water quality changes seemed to favour bacteria and slowed down lignin and hemicellulose degradation. Invertebrates influenced litter-associated microbial assemblages (especially bacteria), stimulated enzyme efficiencies and reduced fungal biomass. We conclude that bacterial and fungal assemblages play distinctive roles in microbial decomposition and differ in their sensitivity to environmental changes, ultimately affecting litter decomposition, which might be particularly relevant in highly seasonal ecosystems, such as intermittent streams. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Analytical separations of mammalian decomposition products for forensic science: a review.

    PubMed

    Swann, L M; Forbes, S L; Lewis, S W

    2010-12-03

    The study of mammalian soft tissue decomposition is an emerging area in forensic science, with a major focus of the research being the use of various chemical and biological methods to study the fate of human remains in the environment. Decomposition of mammalian soft tissue is a postmortem process that, depending on environmental conditions and physiological factors, will proceed until complete disintegration of the tissue. The major stages of decomposition involve complex reactions which result in the chemical breakdown of the body's main constituents; lipids, proteins, and carbohydrates. The first step to understanding this chemistry is identifying the compounds present in decomposition fluids and determining when they are produced. This paper provides an overview of decomposition chemistry and reviews recent advances in this area utilising analytical separation science. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Measurement of the energy dependence of X-ray-induced decomposition of potassium chlorate.

    PubMed

    Pravica, Michael; Bai, Ligang; Sneed, Daniel; Park, Changyong

    2013-03-21

    We report the first measurements of the X-ray induced decomposition of KClO3 as a function of energy in two experiments. KClO3 was pressurized to 3.5 GPa and irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 35 keV in 5 keV increments. A systematic increase in the decomposition rate as the energy was decreased was observed, which agrees with the 1/E(3) trend for the photoelectric process, except at the lowest energy studied. A second experiment was performed to access lower energies (10 and 12 keV) using a beryllium gasket; suggesting an apparent resonance near 15 keV or 0.83 Ǻ maximizing the chemical decomposition rate. A third experiment was performed using KIO3 to ascertain the anionic dependence of the decomposition rate, which was observed to be far slower than in KClO3, suggesting that the O-O distance is the critical factor in chemical reactions. These results will be important for more efficiently initiating chemical decomposition in materials using selected X-ray wavelengths that maximize decomposition to aid useful hard X-ray-induced chemistry and contribute understanding of the mechanism of X-ray-induced decomposition of the chlorates.

  1. Artifact removal from EEG data with empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Efremova, Tatyana Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we propose the novel method for dealing with the physiological artifacts caused by intensive activity of facial and neck muscles and other movements in experimental human EEG recordings. The method is based on analysis of EEG signals with empirical mode decomposition (Hilbert-Huang transform). We introduce the mathematical algorithm of the method with following steps: empirical mode decomposition of EEG signal, choosing of empirical modes with artifacts, removing empirical modes with artifacts, reconstruction of the initial EEG signal. We test the method on filtration of experimental human EEG signals from movement artifacts and show high efficiency of the method.

  2. "Self-preservation" of CO(2) gas hydrates--surface microstructure and ice perfection.

    PubMed

    Falenty, Andrzej; Kuhs, Werner F

    2009-12-10

    Gas hydrates can exhibit an anomalously slow decomposition outside their thermodynamic stability field; the phenomenon is called "self-preservation" and is mostly studied at ambient pressure and at temperatures between approximately 240 K and the melting point of ice. Here, we present a combination of in situ neutron diffraction studies, pVT work, and ex situ scanning electron microscopy (SEM) on CO(2) clathrates covering a much broader p-T field, stretching from 200 to 270 K and pressures between the hydrate stability limit and 0.6 kPa (6 mbar), a pressure far outside stability. The self-preservation regime above 240 K is confirmed over a broad pressure range and appears to be caused by the annealing of an ice cover formed in the initial hydrate decomposition. Another, previously unknown regime of the self-preservation exists below this temperature, extending however only over a rather narrow pressure range. In this case, the initial ice microstructure is dominated by a fast two-dimensional growth covering rapidly the clathrate surface. All observations lend strong support to the idea that the phenomenon of self-preservation is linked to the permeability of the ice cover governed by (1) the initial microstructure of ice and/or (2) the subsequent annealing of this ice coating. The interplay of the microstructure of newly formed ice and its annealing with the ongoing decomposition reaction leads to various decomposition paths and under certain conditions to a very pronounced preservation anomaly.

  3. Dynamics in the Decompositions Approach to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Harding, John

    2017-12-01

    In Harding (Trans. Amer. Math. Soc. 348(5), 1839-1862 1996) it was shown that the direct product decompositions of any non-empty set, group, vector space, and topological space X form an orthomodular poset Fact X. This is the basis for a line of study in foundational quantum mechanics replacing Hilbert spaces with other types of structures. Here we develop dynamics and an abstract version of a time independent Schrödinger's equation in the setting of decompositions by considering representations of the group of real numbers in the automorphism group of the orthomodular poset Fact X of decompositions.

  4. Unimolecular Thermal Decomposition of Phenol and d5-Phenol: Direct Observation of Cyclopentadiene Formation via Cyclohexadienone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheer, A. M.; Mukarakate, C.; Robichaud, D. J.

    The pyrolyses of phenol and d{sub 5}-phenol (C{sub 6}H{sub 5}OH and C{sub 6}D{sub 5}OH) have been studied using a high temperature, microtubular ({mu}tubular) SiC reactor. Product detection is via both photon ionization (10.487 eV) time-of-flight mass spectrometry and matrix isolation infrared spectroscopy. Gas exiting the heated reactor (375 K-1575 K) is subject to a free expansion after a residence time in the {mu}tubular reactor of approximately 50-100 {micro}s. The expansion from the reactor into vacuum rapidly cools the gas mixture and allows the detection of radicals and other highly reactive intermediates. We find that the initial decomposition steps at themore » onset of phenol pyrolysis are enol/keto tautomerization to form cyclohexadienone followed by decarbonylation to produce cyclopentadiene; C{sub 6}H{sub 5}OH {yields} c-C{sub 6}H{sub 6} = O {yields} c-C{sub 5}H{sub 6} + CO. The cyclopentadiene loses a H atom to generate the cyclopentadienyl radical which further decomposes to acetylene and propargyl radical; c-C{sub 5}H{sub 6} {yields} c-C{sub 5}H{sub 5} + H {yields} HC {triple_bond} CH + HCCCH{sub 2}. At higher temperatures, hydrogen loss from the PhO-H group to form phenoxy radical followed by CO ejection to generate the cyclopentadienyl radical likely contributes to the product distribution; C{sub 6}H{sub 5}O-H {yields} C{sub 6}H{sub 5}O + H {yields} c-C{sub 5}H{sub 5} + CO. The direct decarbonylation reaction remains an important channel in the thermal decomposition mechanisms of the dihydroxybenzenes. Both catechol (o-HO-C{sub 6}H{sub 4}-OH) and hydroquinone (p-HO-C{sub 6}H{sub 4}-OH) are shown to undergo decarbonylation at the onset of pyrolysis to form hydroxycyclopentadiene. In the case of catechol, we observe that water loss is also an important decomposition channel at the onset of pyrolysis.« less

  5. The influence of litter quality and micro-habitat on litter decomposition and soil properties in a silvopasture system

    NASA Astrophysics Data System (ADS)

    Tripathi, G.; Deora, R.; Singh, G.

    2013-07-01

    Studies to understand litter processes and soil properties are useful for maintaining pastureland productivity as animal husbandry is the dominant occupation in the hot arid region. We aimed to quantify how micro-habitats and combinations of litters of the introduced leguminous tree Colophospermum mopane with the grasses Cenchrus ciliaris or Lasiurus sindicus influence decomposition rate and soil nutrient changes in a hot desert silvopasture system. Litter bags with tree litter alone (T), tree + C. ciliaris in 1:1 ratio (TCC) and tree + L. sindicus 1:1 ratio (TLS) litter were placed inside and outside of the C. mopane canopy and at the surface, 3-7 cm and 8-12 cm soil depths. We examined litter loss, soil fauna abundance, organic carbon (SOC), total (TN), ammonium (NH4-N) and nitrate (NO3-N) nitrogen, phosphorus (PO4-P), soil respiration (SR) and dehydrogenase activity (DHA) in soil adjacent to each litter bag. After 12 months exposure, the mean residual litter was 40.2% of the initial value and annual decomposition rate constant (k) was 0.98 (0.49-1.80). Highest (p < 0.01) litter loss was in the first four months, when faunal abundance, SR, DHA and humidity were highest but it decreased with time. These variables and k were highest under the tree canopies. The litter loss and k were highest (p < 0.01) in TLS under the tree canopy, but the reverse trend was found for litter outside the canopy. Faunal abundance, litter loss, k, nutrient release and biochemical activities were highest (p < 0.01) in the 3-7 cm soil layer. Positive correlations of litter loss and soil fauna abundance with soil nutrients, SR and DHA demonstrated the interactions of litter quality and micro-habitats together with soil fauna on increased soil fertility. These results suggest that a Colophospermum mopane and L. sindicus silvopasture system best promotes faunal abundance, litter decomposition and soil fertility. The properties of these species and the associated faunal resources may be utilised as an ecosystem-restoration strategy in designing a silvopasture system. This may help to control land degradation and increase productivity sustainably in this environment.

  6. Calvin Mukarakate | NREL

    Science.gov Websites

    for the Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products. He is also a ;Unimolecular Thermal Decomposition of Dimethoxybenzenes," Journal of Chemical Physics (2014) "Real ," Green Chemistry (2014) "Biomass Pyrolysis: Thermal Decomposition Mechanisms of Furfural and

  7. Long-term litter decomposition controlled by manganese redox cycling

    PubMed Central

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E.; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-01-01

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn2+ provided by fresh plant litter to produce oxidative Mn3+ species at sites of active decay, with Mn eventually accumulating as insoluble Mn3+/4+ oxides. Formation of reactive Mn3+ species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn3+-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn3+ species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant–soil system may have a profound impact on litter decomposition rates. PMID:26372954

  8. Long-term litter decomposition controlled by manganese redox cycling.

    PubMed

    Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus

    2015-09-22

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates.

  9. Computational Study on the Unimolecular Decomposition of JP-8 Jet Fuel Surrogates III: Butylbenzene Isomers ( n-, s-, and t-C14H10).

    PubMed

    Belisario-Lara, Daniel; Mebel, Alexander M; Kaiser, Ralf I

    2018-04-26

    Ab initio G3(CCSD,MP2)//B3LYP/6-311G(d,p) calculations of potential energy surfaces have been carried out to unravel the mechanism of the initial stages of pyrolysis of three C 10 H 14 isomers: n-, s-, and t-butylbenzenes. The computed energy and molecular parameters have been utilized in RRKM-master equation calculations to predict temperature- and pressure-dependent rate constants and product branching ratios for the primary unimolecular decomposition of these molecules and for the secondary decomposition of their radical fragments. The results showed that the primary dissociation of n-butylbenzene produces mostly benzyl (C 7 H 7 ) + propyl (C 3 H 7 ) and 1-phenyl-2-ethyl (C 6 H 5 C 2 H 4 ) + ethyl (C 2 H 5 ), with their relative yields strongly dependent on temperature and pressure, together with a minor amount of 1-phenyl-prop-3-yl (C 9 H 11 ) + methyl (CH 3 ). Secondary decomposition reactions that are anticipated to occur on a nanosecond scale under typical combustion conditions split propyl (C 3 H 7 ) into ethylene (C 2 H 4 ) + methyl (CH 3 ), ethyl (C 2 H 5 ) into ethylene (C 2 H 4 ) + hydrogen (H), 1-phenyl-2-ethyl (C 6 H 5 C 2 H 4 ) into mostly styrene (C 8 H 8 ) + hydrogen (H) and to a lesser extent phenyl (C 6 H 5 ) + ethylene (C 2 H 4 ), and 1-phenyl-prop-3-yl (C 9 H 11 ) into predominantly benzyl (C 7 H 7 ) + ethylene (C 2 H 4 ). The primary decomposition of s-butylbenzene is predicted to produce 1-phenyl-1-ethyl (C 6 H 5 CHCH 3 ) + ethyl (C 2 H 5 ) and a minor amount of 1-phenyl-prop-1-yl (C 9 H 11 ) + methyl (CH 3 ), and then 1-phenyl-1-ethyl (C 6 H 5 CHCH 3 ) and 1-phenyl-prop-1-yl (C 9 H 11 ) rapidly dissociate to styrene (C 8 H 8 ) + hydrogen (H) and styrene (C 8 H 8 ) + methyl (CH 3 ), respectively. t-Butylbenzene decomposes nearly exclusively to 2-phenyl-prop-2-yl (C 9 H 11 ) + methyl (CH 3 ), and further, 2-phenyl-prop-2-yl (C 9 H 11 ) rapidly eliminates a hydrogen atom to form 2-phenylpropene (C 9 H 10 ). If hydrogen atoms or other reactive radicals are available to make a direct hydrogen-atom abstraction from butylbenzenes possible, the C 10 H 13 radicals (1-phenyl-but-1-yl, 2-phenyl-but-2-yl, and t-phenyl-isobutyl) can be formed as the primary products from n-, s-, and t-butylbenzene, respectively. The secondary decomposition of 1-phenyl-but-1-yl leads to styrene (C 8 H 8 ) + ethyl (C 2 H 5 ), whereas 2-phenyl-but-2-yl and t-phenyl-isobutyl dissociate to 2-phenylpropene (C 9 H 10 ) + methyl (CH 3 ). Thus, the three butylbenzene isomers produce distinct but overlapping nascent pyrolysis fragments, which likely affect the successive oxidation mechanism and combustion kinetics of these JP-8 fuel components. Temperature- and pressure-dependent rate constants generated for the initial stages of pyrolysis of butylbenzenes are recommended for kinetic modeling.

  10. Pyrolysis of furan in a microreactor

    NASA Astrophysics Data System (ADS)

    Urness, Kimberly N.; Guan, Qi; Golan, Amir; Daily, John W.; Nimlos, Mark R.; Stanton, John F.; Ahmed, Musahid; Ellison, G. Barney

    2013-09-01

    A silicon carbide microtubular reactor has been used to measure branching ratios in the thermal decomposition of furan, C4H4O. The pyrolysis experiments are carried out by passing a dilute mixture of furan (approximately 0.01%) entrained in a stream of helium through the heated reactor. The SiC reactor (0.66 mm i.d., 2 mm o.d., 2.5 cm long) operates with continuous flow. Experiments were performed with a reactor inlet pressure of 100-300 Torr and a wall temperature between 1200 and 1600 K; characteristic residence times in the reactor are 60-150 μs. The unimolecular decomposition pathway of furan is confirmed to be: furan (+ M) rightleftharpoons α-carbene or β-carbene. The α-carbene fragments to CH2=C=O + HC≡CH while the β-carbene isomerizes to CH2=C=CHCHO. The formyl allene can isomerize to CO + CH3C≡CH or it can fragment to H + CO + HCCCH2. Tunable synchrotron radiation photoionization mass spectrometry is used to monitor the products and to measure the branching ratio of the two carbenes as well as the ratio of [HCCCH2]/[CH3C≡CH]. The results of these pyrolysis experiments demonstrate a preference for 80%-90% of furan decomposition to occur via the β-carbene. For reactor temperatures of 1200-1400 K, no propargyl radicals are formed. As the temperature rises to 1500-1600 K, at most 10% of the decomposition of CH2=C=CHCHO produces H + CO + HCCCH2 radicals. Thermodynamic conditions in the reactor have been modeled by computational fluid dynamics and the experimental results are compared to the predictions of three furan pyrolysis mechanisms. Uncertainty in the pressure-dependency of the initiation reaction rates is a possible a source of discrepancy between experimental results and theoretical predictions.

  11. Dissociation mechanisms of HFO-1336mzz(Z) on Cu(1 1 1), Cu(1 1 0) and Cu(1 0 0) surfaces: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Huo, Erguang; Liu, Chao; Xu, Xiaoxiao; Li, Qibin; Dang, Chaobin

    2018-06-01

    The catalytic effect of Cu(1 1 1), Cu(1 1 0) and Cu(1 0 0) surfaces on the decomposition of HFO-1336mzz(Z) have been investigated by using Density Functional Theory (DFT) calculations. On the basis of adsorption energy analysis, the most stable adsorption energies of HFO-1336mzz(Z) and relevant products on Cu(1 1 1), Cu(1 1 0) and Cu(1 0 0) surfaces were studied, respectively, and the co-adsorption structures of relevant species were obtained. Finally, four initiation decomposition reactions of HFO-1336mzz(Z) on Cu(1 1 1), Cu(1 1 0) and Cu(1 0 0) surfaces were proposed and investigated, respectively. At the same time, the four similar homolytic reactions of free HFO-1336mzz(Z) molecular were calculated to compare with the dissociation reactions occurred on Cu(1 1 1), Cu(1 1 0) and Cu(1 0 0) surfaces and illuminate the catalytic effect of Cu(1 1 1), Cu(1 1 0) and Cu(1 0 0) surfaces on the HFO-1336mzz(Z) decomposition. The results indicated that Cu(1 1 1), Cu(1 1 0) and Cu(1 0 0) surfaces had a good catalytic effect on the decomposition of HFO-1336mzz(Z). The fracture reactions of Cdbnd C bonds on Cu(1 1 1), Cu(1 1 0) and Cu(1 0 0) surfaces were easier to occur than that of other reactions. Cu(1 0 0) surface had the highest catalytic activity and the lowest for Cu(1 1 1) surface.

  12. Modeling the Response of Soil Organic Matter Decomposition to Warming: Effects of Dynamical Enzyme Productivity and Nuanced Representation of Respiration.

    NASA Astrophysics Data System (ADS)

    Sihi, D.; Gerber, S.; Inglett, K. S.; Inglett, P.

    2014-12-01

    Recent development in modeling soil organic carbon (SOC) decomposition includes the explicit incorporation of enzyme and microbial dynamics. A characteristic of these models is a feedback between substrate and consumers which is absent in traditional first order decay models. Second, microbial decomposition models incorporate carbon use efficiency (CUE) as a function of temperature which proved to be critical to prediction of SOC with warming. Our main goal is to explore microbial decomposition models with respect to responses of microbes to enzyme activity, costs to enzyme production, and to incorporation of growth vs. maintenance respiration. In order to simplify the modeling setup we assumed quick adjustment of enzyme activity and depolymerized carbon to microbial and SOC pools. Enzyme activity plays an important role to decomposition if its production is scaled to microbial biomass. In fact if microbes are allowed to optimize enzyme productivity the microbial enzyme model becomes unstable. Thus if the assumption of enzyme productivity is relaxed, other limiting factors must come into play. To stabilize the model, we account for two feedbacks that include cost of enzyme production and diminishing return of depolymerization with increasing enzyme concentration and activity. These feedback mechanisms caused the model to behave in a similar way to traditional, first order decay models. Most importantly, we found, that under warming, the changes in SOC carbon were more severe in enzyme synthesis is costly. In turn, carbon use efficiency (CUE) and its dynamical response to temperature is mainly determined by 1) the rate of turnover of microbes 2) the partitioning of dead microbial matter into different quality pools, and 3) and whether growth, maintenance respiration and microbial death rate have distinct responses to changes in temperature. Abbreviations: p: decay of enzyme, g: coefficient for growth respiration, : fraction of material from microbial turnover that enters the DOC pool, loss of C scaled to microbial mass, half saturation constant.

  13. Biotransformation of furanic and phenolic compounds with hydrogen gas production in a microbial electrolysis cell

    DOE PAGES

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    2015-10-27

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H 2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H 2 production, as well as the anode microbial community structure were investigated. The five compoundsmore » were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H 2 yield varied from 0.26 to 0.42 g H 2-COD/g COD removed in the anode, and the bioanode volume-normalized H 2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H 2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H 2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H 2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  14. Dinitrosyl iron complexes with glutathione as NO and NO⁺ donors.

    PubMed

    Borodulin, Rostislav R; Kubrina, Lyudmila N; Mikoyan, Vasak D; Poltorakov, Alexander P; Shvydkiy, Vyacheslav О; Burbaev, Dosymzhan Sh; Serezhenkov, Vladimir A; Yakhontova, Elena R; Vanin, Anatoly F

    2013-02-28

    It has been found that heating of solutions of the binuclear form of dinitrosyl iron complexes (B-DNIC) with glutathione in a degassed Thunberg apparatus (рН 1.0, 70°С, 6 h) results in their decomposition with a concomitant release of four gaseous NO molecules per one B-DNIC. Further injection of air into the Thunberg apparatus initiates fast oxidation of NO to NO₂ and formation of two GS-NO molecules per one B-DNIC. Under similar conditions, the decomposition of B-DNIC solutions in the Thunberg apparatus in the presence of air is complete within 30-40 min and is accompanied by formation of four GS-NO molecules per one B-DNIC. It is suggested that the latter events are determined by oxidation of B-DNIC iron and concominant release of four nitrosonium ions (NO⁺) from each complex. Binding of NO⁺ to thiol groups of glutathione provokes GS-NO synthesis. At neutral рН, decomposition of B-DNIC is initiated by strong iron chelators, viz., о-phenanthroline and N-methyl-d-glucamine dithiocarbamate (MGD). In the former case, the reaction occurs under anaerobic conditions (degassed Thunberg apparatus) and is accompanied by a release of four NO molecules from B-DNIC. Under identical conditions, MGD-induced decomposition of B-DNIC gives two EPR-active mononuclear mononitrosyl iron complexes with MGD (MNIC-MGD) able to incorporate two iron molecules and two NO molecules from each B-DNIC. The other two NO molecules released from B-DNIC (most probably, in the form of nitrosonium ions) bind to thiol groups of MGD to give corresponding S-nitrosothiols. Acidification of test solutions to рН 1.0 initiates hydrolysis of MGD and, as a consequence, decomposition of MNIC-MGD and the S-nitrosated form of MGD; the gaseous phase contains four NO molecules (as calculated per each B-DNIC). The data obtained testify to the ability of B-DNIC with glutathione (and, probably, of B-DNIC with other thiol-containing ligands) to release both NO molecules and nitrosonium ions upon their decomposition. As far as nitrosyl iron complexes with non-thiol-containing ligands predominantly represented by the mononuclear mononitrosyl iron form (MNIC) are concerned, their decomposition yields exclusively NO molecules. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Using atmospheric fallout to date organic horizon layers and quantify metal dynamics during decomposition

    NASA Astrophysics Data System (ADS)

    Kaste, James M.; Bostick, Benjamin C.; Heimsath, Arjun M.; Steinnes, Eiliv; Friedland, Andrew J.

    2011-03-01

    High concentrations of metals in organic matter can inhibit decomposition and limit nutrient availability in ecosystems, but the long-term fate of metals bound to forest litter is poorly understood. Controlled experiments indicate that during the first few years of litter decay, Al, Fe, Pb, and other metals that form stable complexes with organic matter are naturally enriched by several hundred percent as carbon is oxidized. The transformation of fresh litter to humus takes decades, however, such that current datasets describing the accumulation and release of metals in decomposing organic matter are timescale limited. Here we use atmospheric 210Pb to quantify the fate of metals in canopy-derived litter during burial and decay in coniferous forests in New England and Norway where decomposition rates are slow and physical soil mixing is minimal. We measure 210Pb inventories in the O horizon and mineral soil and calculate a 60-630 year timescale for the production of mobile organo-metallic colloids from the decomposition of fresh forest detritus. This production rate is slowest at our highest elevation (˜1000 m) and highest latitude sites (>63°N) where decomposition rates are expected to be low. We calculate soil layer ages by assuming a constant supply of atmospheric 210Pb and find that they are consistent with the distribution of geochemical tracers from weapons fallout, air pollution, and a direct 207Pb application at one site. By quantifying a gradient of organic matter ages with depth in the O horizon, we describe the accumulation and loss of metals in the soil profile as organic matter transforms from fresh litter to humus. While decomposition experiments predict that Al and Fe concentrations increase during the initial few years of decay, we show here that these metals continue to accumulate in humus for decades, and that enrichment occurs at a rate higher than can be explained by quantitative retention during decomposition alone. Acid extractable Al and Fe concentrations are higher in the humus layer of the O horizon than in the mineral soil immediately beneath this layer: it is therefore unlikely that physical soil mixing introduces significant Al and Fe to humus. This continuous enrichment of Al and Fe over time may best be explained by the recent suggestion that metals are mined from deeper horizons and brought into the O horizon via mycorrhizal plants. In sharp contrast to Al and Fe, we find that Mn concentrations in decomposing litter layers decrease exponentially with age, presumably because of leaching or rapid uptake, which may explain the low levels of acid extractable Mn in the mineral soil. This study quantifies how metals are enriched and lost in decomposing organic matter over a longer timescale than previous studies have been able to characterize. We also put new limits on the rate at which metals in litter become mobile organo-metallic complexes that can migrate to deeper soil horizons or surface waters.

  16. AFRRI Reports October - December 1990

    DTIC Science & Technology

    1991-01-01

    in the reaction between cytosine radicals and adria- mycin, it is possible that the yield of-DMPO--O,- and of its decomposition product, DMPO-OH, are...mixture due to the decomposition Time (min) of DMPO-O- by 0,7 ’. Fig. 2. Adriamycin radical yield as a function of time. y.lrradiated The electron...radical by decomposition of superoxide spin trapped toionization of thyminc. The thymnine cation and union radicals. adducts, Ato. Pharmn. 21: 262-265

  17. Analysis of cured carbon-phenolic decomposition products to investigate the thermal decomposition of nozzle materials

    NASA Technical Reports Server (NTRS)

    Thompson, James M.; Daniel, Janice D.

    1989-01-01

    The development of a mass spectrometer/thermal analyzer/computer (MS/TA/Computer) system capable of providing simultaneous thermogravimetry (TG), differential thermal analysis (DTA), derivative thermogravimetry (DTG) and evolved gas detection and analysis (EGD and EGA) under both atmospheric and high pressure conditions is described. The combined system was used to study the thermal decomposition of the nozzle material that constitutes the throat of the solid rocket boosters (SRB).

  18. Surface reaction modification: The effect of structured overlayers of sulfur on the kinetics and mechanism of the decomposition of formic acid on Pt(111)

    NASA Astrophysics Data System (ADS)

    Abbas, N.; Madix, R. J.

    The reaction of formic acid (DCOOH) on Pt(111), Pt(111)-(2×2)S and Pt(111)-(√3×√3)R30°S surfaces was examined by temperature programmed reaction spectroscopy. On the clean surface formic acid decomposed to yield primarily carbon dioxide and the hydrogenic species (H 2, HD and D 2) at low coverages. Although the formation of water and carbon monoxide via a dehydration reaction was observed at these coverages, the yield of these products was small when compared to the other products of reaction. The evolution of CO 2 at low temperature was ascribed to the decomposition of the formate intermediate. In the presence of sulfur the amount of molecularly adsorbed formic acid decreased up to a factor of three on the (√3×√3)R30°S surface, and a decline in the reactivity of over an order of magnitude was also observed. The only products formed were the hydrogenic species and carbon dioxide. The absence of carbon monoxide indicated that the dehydration pathway was blocked by sulfur. In addition to the low temperature CO 2 peak a high temperature CO 2-producing path was also evident. It was inferred from both the stoichiometry and the coincident evolution of D 2 and CO 2 in the high temperature states that these products also evolved due to the decomposition of the formate intermediate. On increasing the sulfur coverage to one-third monolayer this intermediate was further stabilized, and a predominance of the decomposition via the high temperature path was observed. Stability of the formate intermediate was attributed to inhibition of the decomposition reaction by sulfur atoms. The activation energy for formate decomposition increased from 15 kcal/gmole on the clean surface to 24.3 kcal/gmol on the (√3×√3)R30°S overlayer.

  19. Systems Engineering Metrics: Organizational Complexity and Product Quality Modeling

    NASA Technical Reports Server (NTRS)

    Mog, Robert A.

    1997-01-01

    Innovative organizational complexity and product quality models applicable to performance metrics for NASA-MSFC's Systems Analysis and Integration Laboratory (SAIL) missions and objectives are presented. An intensive research effort focuses on the synergistic combination of stochastic process modeling, nodal and spatial decomposition techniques, organizational and computational complexity, systems science and metrics, chaos, and proprietary statistical tools for accelerated risk assessment. This is followed by the development of a preliminary model, which is uniquely applicable and robust for quantitative purposes. Exercise of the preliminary model using a generic system hierarchy and the AXAF-I architectural hierarchy is provided. The Kendall test for positive dependence provides an initial verification and validation of the model. Finally, the research and development of the innovation is revisited, prior to peer review. This research and development effort results in near-term, measurable SAIL organizational and product quality methodologies, enhanced organizational risk assessment and evolutionary modeling results, and 91 improved statistical quantification of SAIL productivity interests.

  20. Development Of Polarimetric Decomposition Techniques For Indian Forest Resource Assessment Using Radar Imaging Satellite (Risat-1) Images

    NASA Astrophysics Data System (ADS)

    Sridhar, J.

    2015-12-01

    The focus of this work is to examine polarimetric decomposition techniques primarily focussed on Pauli decomposition and Sphere Di-Plane Helix (SDH) decomposition for forest resource assessment. The data processing methods adopted are Pre-processing (Geometric correction and Radiometric calibration), Speckle Reduction, Image Decomposition and Image Classification. Initially to classify forest regions, unsupervised classification was applied to determine different unknown classes. It was observed K-means clustering method gave better results in comparison with ISO Data method.Using the algorithm developed for Radar Tools, the code for decomposition and classification techniques were applied in Interactive Data Language (IDL) and was applied to RISAT-1 image of Mysore-Mandya region of Karnataka, India. This region is chosen for studying forest vegetation and consists of agricultural lands, water and hilly regions. Polarimetric SAR data possess a high potential for classification of earth surface.After applying the decomposition techniques, classification was done by selecting region of interests andpost-classification the over-all accuracy was observed to be higher in the SDH decomposed image, as it operates on individual pixels on a coherent basis and utilises the complete intrinsic coherent nature of polarimetric SAR data. Thereby, making SDH decomposition particularly suited for analysis of high-resolution SAR data. The Pauli Decomposition represents all the polarimetric information in a single SAR image however interpretation of the resulting image is difficult. The SDH decomposition technique seems to produce better results and interpretation as compared to Pauli Decomposition however more quantification and further analysis are being done in this area of research. The comparison of Polarimetric decomposition techniques and evolutionary classification techniques will be the scope of this work.

  1. Advanced water remediation from ofloxacin by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Esposito, Biagio R.; Capobianco, Massimo L.; Martelli, Alessandro; Navacchia, Maria Luisa; Pretali, Luca; Saracino, Michela; Zanelli, Alberto; Emmi, Salvatore S.

    2017-12-01

    The performances of remediation processes initiated by ionizing radiation on ofloxacin are investigated in ambient conditions. The effectiveness of the decomposition of ofloxacin has been assessed both by γ-rays and electron beam in various aqueous solutions differentiated by the dissolved gases (Air or oxygen saturated) and H2O2. By HPLC it is shown that ofloxacin is removed according to a first order process vs. dose in any system. O2 accelerates the decomposition rate, while H2O2 does not seem to enhance any oxidation effect. The simultaneous oxidative-reductive treatment (no additive) demonstrated to have better mineralizing performances than the fully oxidative one (H2O2 present). Mineralization by γ results to be more efficient than by EB. The Total Organic Carbon decrease was investigated in dependence of dose and of the •OH production rate. The latter parameter was changed over 7 orders of magnitude by controlling dose rate and/or by adding H2O2. A steep increase of acidity remarks the phases of fluorine-carbon bond break.

  2. Pressure-dependent competition among reaction pathways from first- and second-O 2 additions in the low-temperature oxidation of tetrahydrofuran

    DOE PAGES

    Antonov, Ivan O.; Zador, Judit; Rotavera, Brandon; ...

    2016-07-21

    Here, we report a combined experimental and quantum chemistry study of the initial reactions in low-temperature oxidation of tetrahydrofuran (THF). Using synchrotron-based time-resolved VUV photoionization mass spectrometry, we probe numerous transient intermediates and products at P = 10–2000 Torr and T = 400–700 K. A key reaction sequence, revealed by our experiments, is the conversion of THF-yl peroxy to hydroperoxy-THF-yl radicals (QOOH), followed by a second O 2 addition and subsequent decomposition to dihydrofuranyl hydroperoxide + HO 2 or to γ-butyrolactone hydroperoxide + OH. The competition between these two pathways affects the degree of radical chain-branching and is likely ofmore » central importance in modeling the autoignition of THF. We interpret our data with the aid of quantum chemical calculations of the THF-yl + O 2 and QOOH + O 2 potential energy surfaces. On the basis of our results, we propose a simplified THF oxidation mechanism below 700 K, which involves the competition among unimolecular decomposition and oxidation pathways of QOOH.« less

  3. Solution mining dawsonite from hydrocarbon containing formations with a chelating agent

    DOEpatents

    Vinegar, Harold J [Bellaire, TX

    2009-07-07

    A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.

  4. Techniques for Reaeration of Hydropower Releases.

    DTIC Science & Technology

    1983-02-01

    peak production from air induction through the baffle ring. The other aeration technique at Norris required modifications to the vacuum-breaker system...of Gas Tracers for Reaeration," Jour. Environ. Div., Proc. Amer. Soc. Civil Engr., 104, 215, April. Rathbun, R. E., 1979, "Estimating the Gas and Dye ...or dissolved in the water, and--last but not least--by the decomposition of bottom mud and by oxidation of the decomposition products stirred up out

  5. NMR study of methane + ethane structure I hydrate decomposition.

    PubMed

    Dec, Steven F; Bowler, Kristen E; Stadterman, Laura L; Koh, Carolyn A; Sloan, E Dendy

    2007-05-24

    The thermally activated decomposition of methane + ethane structure I hydrate was studied with use of 13C magic-angle spinning (MAS) NMR as a function of composition and temperature. The observed higher decomposition rate of large sI cages initially filled with ethane gas can be described in terms of a model where a distribution of sI unit cells exists such that a particular unit cell contains zero, one, or two methane molecules in the unit cell; this distribution of unit cells is combined to form the observed equilibrium composition. In this model, unit cells with zero methane molecules are the least stable and decompose more rapidly than those populated with one or two methane molecules leading to the observed overall faster decomposition rate of the large cages containing ethane molecules.

  6. Monopropellant combustion system

    NASA Technical Reports Server (NTRS)

    Berg, Gerald R. (Inventor); Mueller, Donn C. (Inventor); Parish, Mark W. (Inventor)

    2005-01-01

    An apparatus and method are provided for decomposition of a propellant. The propellant includes an ionic salt and an additional fuel. Means are provided for decomposing a major portion of the ionic salt. Means are provided for combusting the additional fuel and decomposition products of the ionic salt.

  7. Quantifying and characterizing dissolved carbon and nitrogen leaching from litter: a comparison of methods

    USDA-ARS?s Scientific Manuscript database

    Litter decomposition has a fundamental role in ecosystem functioning. It recycles energy, carbon and nutrients, supporting ecosystem productivity and soil organic matter formation. Litter decomposition occurs through leaching, fragmentation, and catabolism. Leaching is, arguably, the least studie...

  8. Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography.

    PubMed

    Shaw, Calvin B; Prakash, Jaya; Pramanik, Manojit; Yalavarthy, Phaneendra K

    2013-08-01

    A computationally efficient approach that computes the optimal regularization parameter for the Tikhonov-minimization scheme is developed for photoacoustic imaging. This approach is based on the least squares-QR decomposition which is a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution enabled via finding an optimal regularization parameter. The computational efficiency and performance of the proposed method are shown using a test case of numerical blood vessel phantom, where the initial pressure is exactly known for quantitative comparison.

  9. Silver-palladium catalysts for the direct synthesis of hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Khan, Zainab; Dummer, Nicholas F.; Edwards, Jennifer K.

    2017-11-01

    A series of bimetallic silver-palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver-palladium alloy. The optimal 1% Ag-4% Pd/TiO2 bimetallic catalyst was able to produce approximately 200 ppm of H2O2 in 30 min. The findings demonstrate that AgPd/TiO2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.

  10. Atomistic simulation of orientation dependence in shock-induced initiation of pentaerythritol tetranitrate.

    PubMed

    Shan, Tzu-Ray; Wixom, Ryan R; Mattsson, Ann E; Thompson, Aidan P

    2013-01-24

    The dependence of the reaction initiation mechanism of pentaerythritol tetranitrate (PETN) on shock orientation and shock strength is investigated with molecular dynamics simulations using a reactive force field and the multiscale shock technique. In the simulations, a single crystal of PETN is shocked along the [110], [001], and [100] orientations with shock velocities in the range 3-10 km/s. Reactions occur with shock velocities of 6 km/s or stronger, and reactions initiate through the dissociation of nitro and nitrate groups from the PETN molecules. The most sensitive orientation is [110], while [100] is the most insensitive. For the [001] orientation, PETN decomposition via nitro group dissociation is the dominant reaction initiation mechanism, while for the [110] and [100] orientations the decomposition is via mixed nitro and nitrate group dissociation. For shock along the [001] orientation, we find that CO-NO(2) bonds initially acquire more kinetic energy, facilitating nitro dissociation. For the other two orientations, C-ONO(2) bonds acquire more kinetic energy, facilitating nitrate group dissociation.

  11. Conversion Characteristics and Production Evaluation of Styrene/o-Xylene Mixtures Removed by DBD Pretreatment

    PubMed Central

    Jiang, Liying; Zhu, Runye; Mao, Yubo; Chen, Jianmeng; Zhang, Liang

    2015-01-01

    The combination of chemical oxidation methods with biotechnology to removal recalcitrant VOCs is a promising technology. In this paper, the aim was to identify the role of key process parameters and biodegradability of the degradation products using a dielectric barrier discharge (DBD) reactor, which provided the fundamental data to evaluate the possibilities of the combined system. Effects of various technologic parameters like initial concentration of mixtures, residence time and relative humidity on the decomposition and the degradation products were examined and discussed. It was found that the removal efficiency of mixed VOCs decreased with increasing initial concentration. The removal efficiency reached the maximum value as relative humidity was approximately 40%–60%. Increasing the residence time resulted in increasing the removal efficiency and the order of destruction efficiency of VOCs followed the order styrene > o-xylene. Compared with the single compounds, the removal efficiency of styrene and o-xylene in the mixtures of VOCs decreased significantly and o-xylene decreased more rapidly. The degradation products were analyzed by gas chromatography and gas chromatography-mass spectrometry, and the main compounds detected were O3, COx and benzene ring derivatives. The biodegradability of mixed VOCs was improved and the products had positive effect on biomass during plasma application, and furthermore typical results indicated that the biodegradability and biotoxicity of gaseous pollutant were quite depending on the specific input energy (SIE). PMID:25629961

  12. Jellyfish (Cyanea nozakii) decomposition and its potential influence on marine environments studied via simulation experiments.

    PubMed

    Qu, Chang-Feng; Song, Jin-Ming; Li, Ning; Li, Xue-Gang; Yuan, Hua-Mao; Duan, Li-Qin; Ma, Qing-Xia

    2015-08-15

    A growing body of evidence suggests that the jellyfish population in Chinese seas is increasing, and decomposition of jellyfish strongly influences the marine ecosystem. This study investigated the change in water quality during Cyanea nozakii decomposition using simulation experiments. The results demonstrated that the amount of dissolved nutrients released by jellyfish was greater than the amount of particulate nutrients. NH4(+) was predominant in the dissolved matter, whereas the particulate matter was dominated by organic nitrogen and inorganic phosphorus. The high N/P ratios demonstrated that jellyfish decomposition may result in high nitrogen loads. The inorganic nutrients released by C. nozakii decomposition were important for primary production. Jellyfish decomposition caused decreases in the pH and oxygen consumption associated with acidification and hypoxia or anoxia; however, sediments partially mitigated the changes in the pH and oxygen. These results imply that jellyfish decomposition can result in potentially detrimental effects on marine environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Interaction of initial litter quality and thinning intensity on litter decomposition rate, nitrogen accumulation and release in a pine plantation

    Treesearch

    Xiao Chen; Deborah Page-Dumroese; Ruiheng Lv; Weiwei Wang; Guolei Li; Yong Liu

    2014-01-01

    Thinning alters litter quality and microclimate under forests. Both of these two changes after thinning induce alterations of litter decomposition rates and nutrient cycling. However, a possible interaction between these two changes remains unclear. We placed two types of litter (LN, low N concentration litter; HN, high N concentration litter) in a Chinese pine (Pinus...

  14. Electron induced surface reactions of (η5-C5H5)Fe(CO)2Mn(CO)5, a potential heterobimetallic precursor for focused electron beam induced deposition (FEBID).

    PubMed

    Unlu, Ilyas; Spencer, Julie A; Johnson, Kelsea R; Thorman, Rachel M; Ingólfsson, Oddur; McElwee-White, Lisa; Fairbrother, D Howard

    2018-03-14

    Electron-induced surface reactions of (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 were explored in situ under ultra-high vacuum conditions using X-ray photoelectron spectroscopy and mass spectrometry. The initial step involves electron-stimulated decomposition of adsorbed (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 molecules, accompanied by the desorption of an average of five CO ligands. A comparison with recent gas phase studies suggests that this precursor decomposition step occurs by a dissociative ionization (DI) process. Further electron irradiation decomposes the residual CO groups and (η 5 -C 5 H 5 , Cp) ligand, in the absence of any ligand desorption. The decomposition of CO ligands leads to Mn oxidation, while electron stimulated Cp decomposition causes all of the associated carbon atoms to be retained in the deposit. The lack of any Fe oxidation is ascribed to either the presence of a protective carbonaceous matrix around the Fe atoms created by the decomposition of the Cp ligand, or to desorption of both CO ligands bound to Fe in the initial decomposition step. The selective oxidation of Mn in the absence of any Fe oxidation suggests that the fate of metal atoms in mixed-metal precursors for focused electron beam induced deposition (FEBID) will be sensitive to the nature and number of ligands in the immediate coordination sphere. In related studies, the composition of deposits created from (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 under steady state deposition conditions, representative of those used to create nanostructures in electron microscopes, were measured and found to be qualitatively consistent with predictions from the UHV surface science studies.

  15. Early-stage changes in natural (13)C and (15)N abundance and nutrient dynamics during different litter decomposition.

    PubMed

    Gautam, Mukesh Kumar; Lee, Kwang-Sik; Song, Byeong-Yeol; Lee, Dongho; Bong, Yeon-Sik

    2016-05-01

    Decomposition, nutrient, and isotopic (δ(13)C and δ(15)N) dynamics during 1 year were studied for leaf and twig litters of Pinus densiflora, Castanea crenata, Erigeron annuus, and Miscanthus sinensis growing on a highly weathered soil with constrained nutrient supply using litterbags in a cool temperate region of South Korea. Decay constant (k/year) ranged from 0.58 to 1.29/year, and mass loss ranged from 22.36 to 58.43 % among litter types. The results demonstrate that mass loss and nutrient dynamics of decomposing litter were influenced by the seasonality of mineralization and immobilization processes. In general, most nutrients exhibited alternate phases of rapid mineralization followed by gradual immobilization, except K, which was released throughout the field incubation. At the end of study, among all the nutrients only N and P showed net immobilization. Mobility of different nutrients from decomposing litter as the percentage of initial litter nutrient concentration was in the order of K > Mg > Ca > N ≈ P. The δ(13)C (0.32-6.70 ‰) and δ(15)N (0.74-3.90 ‰) values of residual litters showed nonlinear increase and decrease, respectively compared to initial isotopic values during decomposition. Litter of different functional types and chemical quality converged toward a conservative nutrient use strategy through mechanisms of slow decomposition and slow nutrient mobilization. Our results indicate that litter quality and season, are the most important regulators of litter decomposition in these forests. The results revealed significant relationships between litter decomposition rates and N, C:N ratio and P, and seasonality (temperature). These results and the convergence of different litters towards conservative nutrient use in these nutrient constrained ecosystems imply optimization of litter management because litter removal can have cascading effects on litter decomposition and nutrient availability in these systems.

  16. Influence of Cooking (Microwaving and Broiling) on Cylindrospermopsin Concentration in Muscle of Nile Tilapia (Oreochromis niloticus) and Characterization of Decomposition Products

    PubMed Central

    Prieto, Ana I.; Guzmán-Guillén, Remedios; Valderrama-Fernández, Rocío; Jos, Ángeles; Cameán, Ana M.

    2017-01-01

    Cylindrospermopsin (CYN) has become increasingly important as a freshwater algal toxin, showing cytotoxic effects. This toxin is able to bioaccumulate in freshwater food webs, representing a serious human health problem. Normally, fish is cooked before consumption, and CYN concentration can be altered. For the first time, the effects of microwaving and broiling for 1 and 2 min on CYN concentration and its decomposition products in fish muscle (Oreochromis niloticus) contaminated in the laboratory were investigated, using UPLC-MS/MS and Orbitrap. The results show that cooking the fish reduced unconjugated CYN levels by 11, 10 and 15% after microwaving for 1 and 2 min, and broiling for 2 min, respectively, compared to control fish. Different CYN decomposition products with m/z 416.1234 (7-epi-CYN) and m/z 336.16663 (diasteroisomers C-3A, C-3C, C-3D, C-3E, C-3F) are generated in fish samples submitted to cooking. Based on the relative abundance of the decomposition products, the possible degradation pathways taking place by microwaving may be through the formation of 7-epi-CYN and m/z 336.16663 compounds, whereas in the case of broiling the last route is the only one observed in this study. The influence of cooking and the toxicity characterization of the degradation products generated in CYN-contaminated fish are of importance for more realistic risk evaluation related to their consumption. PMID:28587145

  17. Influence of Cooking (Microwaving and Broiling) on Cylindrospermopsin Concentration in Muscle of Nile Tilapia (Oreochromis niloticus) and Characterization of Decomposition Products.

    PubMed

    Prieto, Ana I; Guzmán-Guillén, Remedios; Valderrama-Fernández, Rocío; Jos, Ángeles; Cameán, Ana M

    2017-05-26

    Cylindrospermopsin (CYN) has become increasingly important as a freshwater algal toxin, showing cytotoxic effects. This toxin is able to bioaccumulate in freshwater food webs, representing a serious human health problem. Normally, fish is cooked before consumption, and CYN concentration can be altered. For the first time, the effects of microwaving and broiling for 1 and 2 min on CYN concentration and its decomposition products in fish muscle ( Oreochromis niloticus ) contaminated in the laboratory were investigated, using UPLC-MS/MS and Orbitrap. The results show that cooking the fish reduced unconjugated CYN levels by 11, 10 and 15% after microwaving for 1 and 2 min, and broiling for 2 min, respectively, compared to control fish. Different CYN decomposition products with m / z 416.1234 (7-epi-CYN) and m / z 336.16663 (diasteroisomers C-3A, C-3C, C-3D, C-3E, C-3F) are generated in fish samples submitted to cooking. Based on the relative abundance of the decomposition products, the possible degradation pathways taking place by microwaving may be through the formation of 7-epi-CYN and m / z 336.16663 compounds, whereas in the case of broiling the last route is the only one observed in this study. The influence of cooking and the toxicity characterization of the degradation products generated in CYN-contaminated fish are of importance for more realistic risk evaluation related to their consumption.

  18. Decomposition of Fuzzy Soft Sets with Finite Value Spaces

    PubMed Central

    Jun, Young Bae

    2014-01-01

    The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter. PMID:24558342

  19. Decomposition of fuzzy soft sets with finite value spaces.

    PubMed

    Feng, Feng; Fujita, Hamido; Jun, Young Bae; Khan, Madad

    2014-01-01

    The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed as a fuzzy soft set with a single parameter.

  20. In depth study of acrylamide formation in coffee during roasting: role of sucrose decomposition and lipid oxidation.

    PubMed

    Kocadağlı, Tolgahan; Göncüoğlu, Neslihan; Hamzalıoğlu, Aytül; Gökmen, Vural

    2012-09-01

    Coffee, as a source of acrylamide, needs to be investigated in depth to understand the contribution of different precursors. This study aimed to investigate the contributions of sucrose decomposition and lipid oxidation on acrylamide formation in coffee during roasting. Coffee beans and model systems were used to monitor the accumulation of neo-formed carbonyls during heating through sucrose decomposition and lipid oxidation. High resolution mass spectrometry analyses confirmed the formation of 5-hydroxymethylfurfural (HMF) and 3,4-dideoxyosone, which were identified as the major sugar decomposition products in both roasted coffee and model systems. Among others, 2-octenal, 2,4-decadienal, 2,4-heptadienal, 4-hydroxynonenal, and 4,5-epoxy-2-decenal were identified in relatively high quantities in roasted coffee. Formation and elimination of HMF in coffee during roasting had a kinetic pattern similar to those of acrylamide. Its concentration rapidly increased within 10 min followed by an exponential decrease afterward. The amount of lipid oxidation products tended to increase linearly during roasting. It was concluded from the results that roasting formed a pool of neo-formed carbonyls from sucrose decomposition and lipid oxidation, and they play certain role on acrylamide formation in coffee.

  1. The initial value problem as it relates to numerical relativity.

    PubMed

    Tichy, Wolfgang

    2017-02-01

    Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.

  2. The initial value problem as it relates to numerical relativity

    NASA Astrophysics Data System (ADS)

    Tichy, Wolfgang

    2017-02-01

    Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.

  3. Proceedings of International Pyrotechnics Seminar (4th), Held at Steamboat Village, Colorado, 22-26 July 1974

    DTIC Science & Technology

    1974-06-17

    10-1 I1. Burning Rate Modifiers, D.R. Dillehay ............................. 11-1 12. Spectroscopic Analysis of Azide Decomposition Products for use...solid, and Pit that they ignite a short distance from the surface. Further- more, decomposition of sodium nitrate, which produces the gas to blow the...decreasing U the thermal conductivity of the basic binary. Class 2 compounds, con- sisting of nanganese oxides, catalyze the normal decomposition of

  4. Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study.

    PubMed

    Leggesse, Ermias Girma; Lin, Rao Tung; Teng, Tsung-Fan; Chen, Chi-Liang; Jiang, Jyh-Chiang

    2013-08-22

    This paper reports an in-depth mechanistic study on the oxidative decomposition of propylene carbonate in the presence of lithium salts (LiClO4, LiBF4, LiPF6, and LiAsF6) with the aid of density functional theory calculations at the B3LYP/6-311++G(d,p) level of theory. The solvent effect is accounted for by using the implicit solvation model with density method. Moreover, the rate constants for the decompositions of propylene carbonate have been investigated by using transition-state theory. The shortening of the original carbonyl C-O bond and a lengthening of the adjacent ethereal C-O bonds of propylene carbonate, which occurs as a result of oxidation, leads to the formation of acetone radical and CO2 as a primary oxidative decomposition product. The termination of the primary radical generates polycarbonate, acetone, diketone, 2-(ethan-1-ylium-1-yl)-4-methyl-1,3-dioxolan-4-ylium, and CO2. The thermodynamic and kinetic data show that the major oxidative decomposition products of propylene carbonate are independent of the type of lithium salt. However, the decomposition rate constants of propylene carbonate are highly affected by the lithium salt type. On the basis of the rate constant calculations using transition-state theory, the order of gas volume generation is: [PC-ClO4](-) > [PC-BF4](-) > [PC-AsF6](-) > [PC-PF6](-).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karwacki, C.J.; Buchanan, J.H.; Mahle, J.J.

    Experimental data are reported for the desorption of bis-2-chloroethyl sulfide, (a sulfur mustard or HD) and its decomposition products from activated coconut shell carbon (CSC). The results show that under equilibrium conditions changes in the HD partial pressure are affected primarily by its loading and temperature of the adsorbent. The partial pressure of adsorbed HD is found to increase by about a decade for each 25 C increase in temperature for CSC containing 0.01--0.1 g/g HD. Adsorption equilibria of HD appear to be little affected by coadsorbed water. Although complicated by its decomposition, the distribution of adsorbed HD (of knownmore » amount) appears to occupy pores of similar energy whether dry or in the presence of adsorbed water. On dry CSC adsorbed HD appears stable, while in the presence of water its decomposition is marked by hydrolysis at low temperature and thermal decomposition at elevated temperatures. The principal volatile products desorbed are 1,4-thioxane, 2-chloroethyl vinyl sulfide and 1,4-dithiane, with the latter favoring elevated temperatures.« less

  6. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, B. J.; Zhang, Y.; Zuo, X.; Martinez, R. E.; Walker, M. J.; Kreisberg, N. M.; Goldstein, A. H.; Docherty, K. S.; Jimenez, J. L.

    2015-12-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality, and often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a GC column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer (MS). Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, re-desorptions of the CTD cell following ambient sample analysis shows some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.

  7. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    NASA Astrophysics Data System (ADS)

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; Martinez, Raul E.; Walker, Michael J.; Kreisberg, Nathan M.; Goldstein, Allen H.; Docherty, Kenneth S.; Jimenez, Jose L.

    2016-04-01

    Atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completion of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO+ (m/z 30), NO2+ (m/z 46), SO+ (m/z 48), and SO2+ (m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO2+ (m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, redesorptions of the CTD cell following ambient sample analysis show some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.

  8. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles

    DOE PAGES

    Williams, Brent J.; Zhang, Yaping; Zuo, Xiaochen; ...

    2016-04-11

    Here, atmospheric aerosol composition is often analyzed using thermal desorption techniques to evaporate samples and deliver organic or inorganic molecules to various designs of detectors for identification and quantification. The organic aerosol (OA) fraction is composed of thousands of individual compounds, some with nitrogen- and sulfur-containing functionality and, often contains oligomeric material, much of which may be susceptible to decomposition upon heating. Here we analyze thermal decomposition products as measured by a thermal desorption aerosol gas chromatograph (TAG) capable of separating thermal decomposition products from thermally stable molecules. The TAG impacts particles onto a collection and thermal desorption (CTD) cell, and upon completionmore » of sample collection, heats and transfers the sample in a helium flow up to 310 °C. Desorbed molecules are refocused at the head of a gas chromatography column that is held at 45 °C and any volatile decomposition products pass directly through the column and into an electron impact quadrupole mass spectrometer. Analysis of the sample introduction (thermal decomposition) period reveals contributions of NO + ( m/z 30), NO 2 + ( m/z 46), SO + ( m/z 48), and SO 2 + ( m/z 64), derived from either inorganic or organic particle-phase nitrate and sulfate. CO 2 + ( m/z 44) makes up a major component of the decomposition signal, along with smaller contributions from other organic components that vary with the type of aerosol contributing to the signal (e.g., m/z 53, 82 observed here for isoprene-derived secondary OA). All of these ions are important for ambient aerosol analyzed with the aerosol mass spectrometer (AMS), suggesting similarity of the thermal desorption processes in both instruments. Ambient observations of these decomposition products compared to organic, nitrate, and sulfate mass concentrations measured by an AMS reveal good correlation, with improved correlations for OA when compared to the AMS oxygenated OA (OOA) component. TAG signal found in the traditional compound elution time period reveals higher correlations with AMS hydrocarbon-like OA (HOA) combined with the fraction of OOA that is less oxygenated. Potential to quantify nitrate and sulfate aerosol mass concentrations using the TAG system is explored through analysis of ammonium sulfate and ammonium nitrate standards. While chemical standards display a linear response in the TAG system, redesorptions of the CTD cell following ambient sample analysis show some signal carryover on sulfate and organics, and new desorption methods should be developed to improve throughput. Future standards should be composed of complex organic/inorganic mixtures, similar to what is found in the atmosphere, and perhaps will more accurately account for any aerosol mixture effects on compositional quantification.« less

  9. Spinodal Decomposition in Multilayered Fe-Cr System: Kinetic Stasis and Wave Instability

    NASA Astrophysics Data System (ADS)

    Maugis, Philippe; Colignon, Yann; Mangelinck, Dominique; Hoummada, Khalid

    2015-08-01

    Used as fuel cladding in the Gen IV fission reactors, ODS steels would be held at temperatures in the range of 350°C to 600°C for several months. Under these conditions, spinodal decomposition is likely to occur in the matrix, resulting in an increase of material brittleness. In this study, thin films consisting of a modulated composition in Fe and in Cr in a given direction have been elaborated. The time evolution of the composition profiles during aging at 500°C has been characterized by atom probe tomography, indicating an apparent kinetic stasis of the initial microstructure. A computer model has been developed on the basis of the Cahn-Hilliard theory of spinodal decomposition, associated with the mobility form proposed by Martin (1990). We make the assumption that the initial profile is very close to the amplitude-dependent critical wavelength. Our calculations show that the thin film is unstable relative to wavelength modulations, resulting in the observed kinetic stasis.

  10. Explosive decomposition of ethylene oxide at elevated condition: effect of ignition energy, nitrogen dilution, and turbulence.

    PubMed

    Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J

    2005-02-14

    Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.

  11. Equations of State and High-Pressure Phases of Explosives

    NASA Astrophysics Data System (ADS)

    Peiris, Suhithi M.; Gump, Jared C.

    Energetic materials, being the collective name for explosives, propellants, pyrotechnics, and other flash-bang materials, span a wide range of composite chemical formulations. Most militarily used energetics are solids composed of particles of the pure energetic material held together by a binder. Commonly used binders include various oils, waxes, and polymers or plasticizers, and the composite is melt cast, cured, or pressed to achieve the necessary mechanical properties (gels, putties, sheets, solid blocks, etc.) of the final energetic material. Mining, demolition, and other industries use liquid energetics that are similarly composed of an actual energetic material or oxidizer together with a fuel, that is to be mixed and poured for detonation. Pure energetic materials that are commonly used are nitroglycerine, ammonium nitrate, ammonium or sodium perchlorate, trinitrotoluene (TNT), HMX, RDX, and TATB. All of them are molecular materials or molecular ions that when initiated or insulted undergoes rapid decomposition with excessive liberation of heat resulting in the formation of stable final products. When the final products are gases, and they are rapidly produced, the sudden pressure increase creates a shock wave. When decomposition is so rapid that the reaction moves through the explosive faster than the speed of sound in the unreacted explosive, the material is said to detonate. Typically, energetic materials that undergo detonation are known as high explosives (HEs) and energetic materials that burn rapidly or deflagrate are known as low explosives and/or propellants.

  12. A benders decomposition approach to multiarea stochastic distributed utility planning

    NASA Astrophysics Data System (ADS)

    McCusker, Susan Ann

    Until recently, small, modular generation and storage options---distributed resources (DRs)---have been installed principally in areas too remote for economic power grid connection and sensitive applications requiring backup capacity. Recent regulatory changes and DR advances, however, have lead utilities to reconsider the role of DRs. To a utility facing distribution capacity bottlenecks or uncertain load growth, DRs can be particularly valuable since they can be dispersed throughout the system and constructed relatively quickly. DR value is determined by comparing its costs to avoided central generation expenses (i.e., marginal costs) and distribution investments. This requires a comprehensive central and local planning and production model, since central system marginal costs result from system interactions over space and time. This dissertation develops and applies an iterative generalized Benders decomposition approach to coordinate models for optimal DR evaluation. Three coordinated models exchange investment, net power demand, and avoided cost information to minimize overall expansion costs. Local investment and production decisions are made by a local mixed integer linear program. Central system investment decisions are made by a LP, and production costs are estimated by a stochastic multi-area production costing model with Kirchhoff's Voltage and Current Law constraints. The nested decomposition is a new and unique method for distributed utility planning that partitions the variables twice to separate local and central investment and production variables, and provides upper and lower bounds on expected expansion costs. Kirchhoff's Voltage Law imposes nonlinear, nonconvex constraints that preclude use of LP if transmission capacity is available in a looped transmission system. This dissertation develops KVL constraint approximations that permit the nested decomposition to consider new transmission resources, while maintaining linearity in the three individual models. These constraints are presented as a heuristic for the given examples; future research will investigate conditions for convergence. A ten-year multi-area example demonstrates the decomposition approach and suggests the ability of DRs and new transmission to modify capacity additions and production costs by changing demand and power flows. Results demonstrate that DR and new transmission options may lead to greater capacity additions, but resulting production cost savings more than offset extra capacity costs.

  13. Physicochemical assessment criteria for high-voltage pulse capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darian, L. A., E-mail: LDarian@rambler.ru; Lam, L. Kh.

    In the paper, the applicability of decomposition products of internal insulation of high-voltage pulse capacitors is considered (aging is the reason for decomposition products of internal insulation). Decomposition products of internal insulation of high-voltage pulse capacitors can be used to evaluate their quality when in operation and in service. There have been three generations of markers of aging of insulation as in the case with power transformers. The area of applicability of markers of aging of insulation for power transformers has been studied and the area can be extended to high-voltage pulse capacitors. The research reveals that there is amore » correlation between the components and quantities of markers of aging of the first generation (gaseous decomposition products of insulation) dissolved in insulating liquid and the remaining life of high-voltage pulse capacitors. The application of markers of aging to evaluate the remaining service life of high-voltage pulse capacitor is a promising direction of research, because the design of high-voltage pulse capacitors keeps stability of markers of aging of insulation in high-voltage pulse capacitors. It is necessary to continue gathering statistical data concerning development of markers of aging of the first generation. One should also carry out research aimed at estimation of the remaining life of capacitors using markers of the second and the third generation.« less

  14. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses

    NASA Astrophysics Data System (ADS)

    Benner, Ronald; Hatcher, Patrick G.; Hedges, John I.

    1990-07-01

    Changes in the chemical composition of mangrove ( Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed.

  15. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state 13C NMR and elemental analyses

    USGS Publications Warehouse

    Benner, R.; Hatcher, P.G.; Hedges, J.I.

    1990-01-01

    Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.

  16. Factors influencing leaf litter decomposition: An intersite decomposition experiment across China

    USGS Publications Warehouse

    Zhou, G.; Guan, L.; Wei, X.; Tang, X.; Liu, S.; Liu, J.; Zhang, Dongxiao; Yan, J.

    2008-01-01

    The Long-Term Intersite Decomposition Experiment in China (hereafter referred to as LTIDE-China) was established in 2002 to study how substrate quality and macroclimate factors affect leaf litter decomposition. The LTIDE-China includes a wide variety of natural and managed ecosystems, consisting of 12 forest types (eight regional broadleaf forests, three needle-leaf plantations and one broadleaf plantation) at eight locations across China. Samples of mixed leaf litter from the south subtropical evergreen broadleaf forest in Dinghushan (referred to as the DHS sample) were translocated to all 12 forest types. The leaf litter from each of other 11 forest types was placed in its original forest to enable comparison of decomposition rates of DHS and local litters. The experiment lasted for 30 months, involving collection of litterbags from each site every 3 months. Our results show that annual decomposition rate-constants, as represented by regression fitted k-values, ranged from 0.169 to 1.454/year. Climatic factors control the decomposition rate, in which mean annual temperature and annual actual evapotranspiration are dominant and mean annual precipitation is subordinate. Initial C/N and N/P ratios were demonstrated to be important factors of regulating litter decomposition rate. Decomposition process may apparently be divided into two phases controlled by different factors. In our study, 0.75 years is believed to be the dividing line of the two phases. The fact that decomposition rates of DHS litters were slower than those of local litters may have been resulted from the acclimation of local decomposer communities to extraneous substrate. ?? 2008 Springer Science+Business Media B.V.

  17. Functional and Structural Succession of Soil Microbial Communities below Decomposing Human Cadavers

    PubMed Central

    Cobaugh, Kelly L.; Schaeffer, Sean M.; DeBruyn, Jennifer M.

    2015-01-01

    The ecological succession of microbes during cadaver decomposition has garnered interest in both basic and applied research contexts (e.g. community assembly and dynamics; forensic indicator of time since death). Yet current understanding of microbial ecology during decomposition is almost entirely based on plant litter. We know very little about microbes recycling carcass-derived organic matter despite the unique decomposition processes. Our objective was to quantify the taxonomic and functional succession of microbial populations in soils below decomposing cadavers, testing the hypotheses that a) periods of increased activity during decomposition are associated with particular taxa; and b) human-associated taxa are introduced to soils, but do not persist outside their host. We collected soils from beneath four cadavers throughout decomposition, and analyzed soil chemistry, microbial activity and bacterial community structure. As expected, decomposition resulted in pulses of soil C and nutrients (particularly ammonia) and stimulated microbial activity. There was no change in total bacterial abundances, however we observed distinct changes in both function and community composition. During active decay (7 - 12 days postmortem), respiration and biomass production rates were high: the community was dominated by Proteobacteria (increased from 15.0 to 26.1% relative abundance) and Firmicutes (increased from 1.0 to 29.0%), with reduced Acidobacteria abundances (decreased from 30.4 to 9.8%). Once decay rates slowed (10 - 23 d postmortem), respiration was elevated, but biomass production rates dropped dramatically; this community with low growth efficiency was dominated by Firmicutes (increased to 50.9%) and other anaerobic taxa. Human-associated bacteria, including the obligately anaerobic Bacteroides, were detected at high concentrations in soil throughout decomposition, up to 198 d postmortem. Our results revealed the pattern of functional and compositional succession in soil microbial communities during decomposition of human-derived organic matter, provided insight into decomposition processes, and identified putative predictor populations for time since death estimation. PMID:26067226

  18. Hybrid diversity method utilizing adaptive diversity function for recovering unknown aberrations in an optical system

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H. (Inventor)

    2009-01-01

    A method of recovering unknown aberrations in an optical system includes collecting intensity data produced by the optical system, generating an initial estimate of a phase of the optical system, iteratively performing a phase retrieval on the intensity data to generate a phase estimate using an initial diversity function corresponding to the intensity data, generating a phase map from the phase retrieval phase estimate, decomposing the phase map to generate a decomposition vector, generating an updated diversity function by combining the initial diversity function with the decomposition vector, generating an updated estimate of the phase of the optical system by removing the initial diversity function from the phase map. The method may further include repeating the process beginning with iteratively performing a phase retrieval on the intensity data using the updated estimate of the phase of the optical system in place of the initial estimate of the phase of the optical system, and using the updated diversity function in place of the initial diversity function, until a predetermined convergence is achieved.

  19. From a Decomposition Product to an Efficient and Versatile Catalyst: The [Ru(η5-indenyl)(PPh3)2Cl] Story

    PubMed Central

    2014-01-01

    Conspectus One of the most important challenges in catalyst design is the synthesis of stable promoters without compromising their activity. For this reason, it is important to understand the factors leading to decomposition of such catalysts, especially if side-products negatively affect the activity and selectivity of the starting complex. In this context, the understanding of termination and decomposition processes in olefin metathesis is receiving significant attention from the scientific community. For example, the decomposition of ruthenium olefin metathesis precatalysts in alcohol solutions can occur during either the catalyst synthesis or the metathesis process, and such decomposition has been found to be common for Grubbs-type precatalysts. These decomposition products are usually hydridocarbonyl complexes, which are well-known to be active in several transformations such as hydrogenation, terminal alkene isomerization, and C–H activation chemistry. The reactivity of these side products can be unwanted, and it is therefore important to understand how to avoid them and maybe also important to keep an open mind and think of ways to use these in other catalytic reactions. A showcase of these decomposition studies is reported in this Account. These reports analyze the stability of ruthenium phenylindenylidene complexes, highly active olefin metathesis precatalysts, in basic alcohol solutions. Several different decomposition processes can occur under these conditions depending on the starting complex and the alcohol used. These indenylidene-bearing metathesis complexes display a completely different behavior compared with that of other metathesis precatalysts and show an alternative competitive alcoholysis pathway, where rather than forming the expected hydrido carbonyl complexes, the indenylidene fragment is transformed into a η1-indenyl, which then rearranges to its η5-indenyl form. In particular, [RuCl(η5-(3-phenylindenylidene)(PPh3)2] has been found to be extremely active in numerous transformations (at least 20) as well as compatible with a broad range of reaction conditions, rendering it a versatile catalytic tool. It should be stated that the η5-phenyl indenyl ligand shows enhanced catalytic activity over related half-sandwich ruthenium complexes. The analogous half-sandwich (cyclopentadienyl and indenyl) ruthenium complexes show lower activity in transfer hydrogenation and allylic alcohol isomerization reactions. In addition, this catalyst allows access to new phenylindenyl ruthenium complexes, which can be achieved in a very straightforward manner and have been successfully used in catalysis. This Account provides an overview of how mechanistic insights into decomposition and stability of a well-known family of ruthenium metathesis precatalysts has resulted in a series of novel and versatile ruthenium complexes with unexpected reactivity. PMID:25264626

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xiaofei; Borole, Abhijeet P.; Pavlostathis, Spyros G.

    In this study, furanic and phenolic compounds are problematic byproducts resulting from the decomposition of lignocellulosic biomass during biofuel production. This study assessed the capacity of a microbial electrolysis cell (MEC) to produce hydrogen gas (H 2) using a mixture of two furanic (furfural, FF; 5-hydroxymethyl furfural, HMF) and three phenolic (syringic acid, SA; vanillic acid, VA; and 4-hydroxybenzoic acid, HBA) compounds as the sole carbon and energy source in the bioanode. The rate and extent of biotransformation of the five compounds, efficiency of H 2 production, as well as the anode microbial community structure were investigated. The five compoundsmore » were completely transformed within 7-day batch runs and their biotransformation rate increased with increasing initial concentration. At an initial concentration of 1,200 mg/L (8.7 mM) of the mixture of the five compounds, their biotransformation rate ranged from 0.85 to 2.34 mM/d. The anode coulombic efficiency was 44-69%, which is comparable to wastewater-fed MECs. The H 2 yield varied from 0.26 to 0.42 g H 2-COD/g COD removed in the anode, and the bioanode volume-normalized H 2 production rate was 0.07-0.1 L/L-d. The major identified fermentation products that did not transform further were catechol and phenol. Acetate was the direct substrate for exoelectrogenesis. Current and H 2 production were inhibited at an initial substrate concentration of 1,200 mg/L, resulting in acetate accumulation at a much higher level than that measured in other batch runs conducted with a lower initial concentration of the five compounds. The anode microbial community consisted of exoelectrogens, putative degraders of the five compounds, and syntrophic partners of exoelectrogens. The H 2 production route demonstrated in this study has proven to be an alternative to the currently used process of reforming natural gas to supply H 2 needed to upgrade bio-oils to stable hydrocarbon fuels.« less

  1. Thermal decomposition of pyrazole to vinylcarbene + N 2: A first principles/RRKM study

    NASA Astrophysics Data System (ADS)

    da Silva, Gabriel

    2009-05-01

    Thermal decomposition of pyrazole, a five-membered nitrogen-containing heterocycle, has been studied using ab initio G3X theory and RRKM rate theory. The decomposition mechanism involves an intramolecular hydrogen shift to 3 H-pyrazole, followed by ring opening to 3-diazo-1-propene and dissociation to vinylcarbene (CH 2CHCH) + N 2. At 1 atm the calculated rate equation k [s -1] = 1.26 × 10 50T-10.699e -41200/T is obtained, which agrees with the results of flash vacuum pyrolysis experiments. The pyrazole decomposition product vinylcarbene is expected to rearrange to propyne, making pyrazole decomposition essentially thermoneutral. It is hypothesized that at high concentrations vinylcarbene could undergo a self-reaction to 1,3- and 1,4-cyclohexadiene.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolda, Tamara Gibson

    We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties ofmore » the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.« less

  3. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    USGS Publications Warehouse

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional uncertainty concerning carbon mineralization in this system.

  4. Long-term litter decomposition controlled by manganese redox cycling

    DOE PAGES

    Keiluweit, Marco; Nico, Peter S.; Harmon, Mark; ...

    2015-09-08

    Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of littermore » was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn 2+ provided by fresh plant litter to produce oxidative Mn 3+ species at sites of active decay, with Mn eventually accumulating as insoluble Mn 3+/4+ oxides. Formation of reactive Mn 3+ species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn 3+-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn 3+ species in the litter layer. As a result, this observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant–soil system may have a profound impact on litter decomposition rates.« less

  5. Study on the Effect of cellulolytic strain MYB3 for Corn Stover Fermentation

    NASA Astrophysics Data System (ADS)

    Yan, Han; Bai, Bing; Cheng, Xiao-Xiao; Li, Guang-Chun; Huang, Shi-Chen; Piao, Chun-Xiang

    2018-03-01

    The effects of corn stover fermentation with the Bacillus megaterium MYB3 was studied in this paper. The results showed that the decomposition rates of cellulose and hemicellulose were 49.6%, 43.46% after 20 days respectively, after fermentation, pH was changed to 5.68, and adjusted to corn stover initial pH 3 to achieve the purpose of sterilization. The decomposition rate was significantly increased by adding corn flour. After adjusting fermentation composes with the ratio of the corn stove to corn flour was 15 : 1, the decomposition rate of cellulose would be 52.37% for 10 days.

  6. Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.

    PubMed

    Rotskoff, Grant M

    2017-03-01

    We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.

  7. A vacuum ultraviolet photoionization study on the thermal decomposition of ammonium perchlorate

    DOE PAGES

    Gobi, Sandor; Zhao, Long; Xu, Bo; ...

    2017-11-14

    Pyrolysis products of ammonium perchlorate (NH 4ClO 4) at 483 K were monitored on line and in situ via single photon photoionization reflectron time-of-flight spectrometry (PI-ReTOF-MS) in the photon energy range of 9.00–17.50 eV. The photoionization efficiency curves (PIE) of the subliming product molecules were collected and allowed for detection of three class of products containing chlorine, nitrogen, and oxygen including atoms and free radicals. The results found suggest a new insight into possible low-temperature decomposition pathways of NH 4ClO 4.

  8. Critical Analysis of Nitramine Decomposition Data: Product Distributions from HMX and RDX Decomposition

    DTIC Science & Technology

    1985-06-01

    12. It was stated that analysis of the gaseous products showed that they consisted of N2O, NO, N2, CO, CO2, F^CO and traces of N,* The products of...IR, UV and mass spectrometry. These were (yields summarized in Table 1) as follows: No 1 N2O, NO, CO2, CO, HCN, CH2O, and I^O. NO2 and a trace ...Ramirez, "Reaction of Gem-Nitronitroso Compounds with Triethyl Phosphite ," Tetrahedron, Vol. 29, p. 4195, 1973. J. Jappy and P.N. Preston

  9. A vacuum ultraviolet photoionization study on the thermal decomposition of ammonium perchlorate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gobi, Sandor; Zhao, Long; Xu, Bo

    Pyrolysis products of ammonium perchlorate (NH 4ClO 4) at 483 K were monitored on line and in situ via single photon photoionization reflectron time-of-flight spectrometry (PI-ReTOF-MS) in the photon energy range of 9.00–17.50 eV. The photoionization efficiency curves (PIE) of the subliming product molecules were collected and allowed for detection of three class of products containing chlorine, nitrogen, and oxygen including atoms and free radicals. The results found suggest a new insight into possible low-temperature decomposition pathways of NH 4ClO 4.

  10. A vacuum ultraviolet photoionization study on the thermal decomposition of ammonium perchlorate

    NASA Astrophysics Data System (ADS)

    Góbi, Sándor; Zhao, Long; Xu, Bo; Ablikim, Utuq; Ahmed, Musahid; Kaiser, Ralf I.

    2018-01-01

    Pyrolysis products of ammonium perchlorate (NH4ClO4) at 483 K were monitored on line and in situ via single photon photoionization reflectron time-of-flight spectrometry (PI-ReTOF-MS) in the photon energy range of 9.00-17.50 eV. The photoionization efficiency curves (PIE) of the subliming product molecules were collected and allowed for detection of three class of products containing chlorine, nitrogen, and oxygen including atoms and free radicals. These results suggest a new insight into possible low-temperature decomposition pathways of NH4ClO4.

  11. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tapas; Satpati, Biswarup, E-mail: biswarup.satpati@saha.ac.in; Kabiraj, D.

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  12. Chronic nitrogen deposition influences the chemical dynamics ...

    EPA Pesticide Factsheets

    Atmospheric nitrogen deposition induces a forest carbon sink across broad parts of the Northern Hemisphere; this carbon sink may partly result from slower litter decomposition. Although microbial responses to experimental nitrogen deposition have been well-studied, evidence linking these microbial responses to changes in the degradation of specific compounds in decaying litter is sparse. We used wet chemistry and Fourier transform infrared spectroscopy (FTIR) methodologies to study the effects of chronic simulated nitrogen deposition on leaf litter and fine root chemistry during a three-year decomposition experiment at four northern hardwood forests in the north-central USA. Leaf litter and fine roots were highly different in initial chemistry such as concentrations of acid-insoluble fraction (AIF, or Klason lignin) and condensed tannins (CTs). These initial differences persisted over the course of decomposition. Results from gravimetrically-defined AIF and lignin/carbohydrate reference IR peak ratios both provide evidence that lignin in fine roots was selectively preserved under simulated nitrogen deposition. Lignin/carbohydrate peak ratios were strongly correlated with AIF, suggesting that AIF is a good predictor of lignin. Because AIF is abundant in fine roots, slower AIF degradation was the major driver of the slower fine root decomposition under nitrogen enrichment, explaining 73.9 % of the additional root mass retention. Nitrogen enrichment also slowed the

  13. Thermal decomposition of 1,3,3-trinitroazetidine (TNAZ): A density functional theory and ab initio study

    NASA Astrophysics Data System (ADS)

    Veals, Jeffrey D.; Thompson, Donald L.

    2014-04-01

    Density functional theory and ab initio methods are employed to investigate decomposition pathways of 1,3,3-trinitroazetidine initiated by unimolecular loss of NO2 or HONO. Geometry optimizations are performed using M06/cc-pVTZ and coupled-cluster (CC) theory with single, double, and perturbative triple excitations, CCSD(T), is used to calculate accurate single-point energies for those geometries. The CCSD(T)/cc-pVTZ energies for NO2 elimination by N-N and C-N bond fission are, including zero-point energy (ZPE) corrections, 43.21 kcal/mol and 50.46 kcal/mol, respectively. The decomposition initiated by trans-HONO elimination can occur by a concerted H-atom and nitramine NO2 group elimination or by a concerted H-atom and nitroalkyl NO2 group elimination via barriers (at the CCSD(T)/cc-pVTZ level with ZPE corrections) of 47.00 kcal/mol and 48.27 kcal/mol, respectively. Thus, at the CCSD(T)/cc-pVTZ level, the ordering of these four decomposition steps from energetically most favored to least favored is: NO2 elimination by N-N bond fission, HONO elimination involving the nitramine NO2 group, HONO elimination involving a nitroalkyl NO2 group, and finally NO2 elimination by C-N bond fission.

  14. Development of a suitcase time-of-flight mass spectrometer for in situ fault diagnosis of SF6 -insulated switchgear by detection of decomposition products.

    PubMed

    Hou, Keyong; Li, Jinxu; Qu, Tuanshuai; Tang, Bin; Zhu, Liping; Huang, Yunguang; Li, Haiyang

    2016-08-01

    Sulfur hexafluoride (SF6 ) gas-insulated switchgear (GIS) is an essential piece of electrical equipment in a substation, and the concentration of the SF6 decomposition products are directly relevant to the security and reliability of the substation. The detection of SF6 decomposition products can be used to diagnosis the condition of the GIS. The decomposition products of SO2 , SO2 F2 , and SOF2 were selected as indicators for the diagnosis. A suitcase time-of-flight mass spectrometer (TOFMS) was designed to perform online GIS failure analysis. An RF VUV lamp was used as the photoelectron ion source; the sampling inlet, ion einzel lens, and vacuum system were well designed to improve the performance. The limit of detection (LOD) of SO2 and SO2 F2 within 200 s was 1 ppm, and the sensitivity was estimated to be at least 10-fold more sensitive than the previous design. The high linearity of SO2 , SO2 F2 in the range of 5-100 ppm has excellent linear correlation coefficient R(2) at 0.9951 and 0.9889, respectively. The suitcase TOFMS using orthogonal acceleration and reflecting mass analyzer was developed. It has the size of 663 × 496 × 338 mm and a weight of 34 kg including the battery and consumes only 70 W. The suitcase TOFMS was applied to analyze real decomposition products of SF6 inside a GIS and succeeded in finding out the hidden dangers. The suitcase TOFMS has wide application prospects for establishing an early-warning for the failure of the GIS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Micro-kinetic simulations of the catalytic decomposition of hydrazine on the Cu(111) surface.

    PubMed

    Tafreshi, Saeedeh S; Roldan, Alberto; de Leeuw, Nora H

    2017-04-28

    Hydrazine (N 2 H 4 ) is produced at industrial scale from the partial oxidation of ammonia or urea. The hydrogen content (12.5 wt%) and price of hydrazine make it a good source of hydrogen fuel, which is also easily transportable in the hydrate form, thus enabling the production of H 2 in situ. N 2 H 4 is currently used as a monopropellant thruster to control and adjust the orbits and altitudes of spacecrafts and satellites; with similar procedures applicable in new carbon-free technologies for power generators, e.g. proton-exchange membrane fuel cells. The N 2 H 4 decomposition is usually catalysed by the expensive Ir/Al 2 O 3 material, but a more affordable catalyst is needed to scale-up the process whilst retaining reaction control. Using a complementary range of computational tools, including newly developed micro-kinetic simulations, we have derived and analysed the N 2 H 4 decomposition mechanism on the Cu(111) surface, where the energetic terms of all states have been corrected by entropic terms. The simulated temperature-programmed reactions have shown how the pre-adsorbed N 2 H 4 coverage and heating rate affect the evolution of products, including NH 3 , N 2 and H 2 . The batch reactor simulations have revealed that for the scenario of an ideal Cu terrace, a slow but constant production of H 2 occurs, 5.4% at a temperature of 350 K, while the discharged NH 3 can be recycled into N 2 H 4 . These results show that Cu(111) is not suitable for hydrogen production from hydrazine. However, real catalysts are multi-faceted and present defects, where previous work has shown a more favourable N 2 H 4 decomposition mechanism, and, perhaps, the decomposition of NH 3 improves the production of hydrogen. As such, further investigation is needed to develop a general picture.

  16. Characterization of solution-phase and gas-phase reactions in on-line electrochemistry-thermospray tandem mass spectrometry.

    PubMed

    Volk, K J; Yost, R A; Brajter-Toth, A

    1989-07-14

    Electrochemistry was used on-line with high-performance liquid chromatography-thermospray tandem mass spectrometry to provide insight into the solution-phase decomposition reactions of electrochemically generated oxidation products. Products formed during electrooxidation were monitored as the electrode potential was varied. The solution reactions which follow the initial electron transfer at the electrode are affected by the vaporizer tip temperature of the thermospray probe and the composition of the thermospray buffer. Either hydrolysis or ammonolysis reactions of the initial electrochemical oxidation products can occur with pH 7 ammonium acetate buffer. Both the electrochemically generated and the synthesized disulfide of 6-thiopurine decompose under thermospray conditions to produce 6-thiopurine and purine-6-sulfinate. Solution-phase studies indicate that nucleophilic and electrophilic substitution reactions with purine-6-sulfinate result in the formation of purine, adenine, and hypoxanthine. Products were identified and characterized by tandem mass spectrometry. This work shows the first example of high-performance liquid chromatography used on-line with electrochemistry to separate stable oxidation products prior to analysis by thermospray tandem mass spectrometry. In addition, solution-phase and gas-phase studies with methylamine show that the site of the nucleophilic and electrophilic reactions is probably inside the thermospray probe. Most importantly, these results also show that the on-line combination of electrochemistry with thermospray tandem mass spectrometry provides valuable information about redox and associated chemical reactions of biological molecules such as the structures of intermediates or products as well as providing insight into reaction pathways.

  17. Impact of OH Radical-Initiated H2CO3 Degradation in the Earth's Atmosphere via Proton-Coupled Electron Transfer Mechanism.

    PubMed

    Ghoshal, Sourav; Hazra, Montu K

    2016-02-04

    The decomposition of isolated carbonic acid (H2CO3) molecule into CO2 and H2O (H2CO3 → CO2 + H2O) is prevented by a large activation barrier (>35 kcal/mol). Nevertheless, it is surprising that the detection of the H2CO3 molecule has not been possible yet, and the hunt for the free H2CO3 molecule has become challenging not only in the Earth's atmosphere but also on Mars. In view of this fact, we report here the high levels of quantum chemistry calculations investigating both the energetics and kinetics of the OH radical-initiated H2CO3 degradation reaction to interpret the loss of the H2CO3 molecule in the Earth's atmosphere. It is seen from our study that proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) are the two mechanisms by which the OH radical initiates the degradation of the H2CO3 molecule. Moreover, the PCET mechanism is potentially the important one, as the effective barrier, defined as the difference between the zero point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, for the PCET mechanism at the CCSD(T)/6-311++G(3df,3pd) level of theory is ∼3 to 4 kcal/mol lower than the effective barrier height associated with the HAT mechanism. The CCSD(T)/6-311++G(3df,3pd) level predicted effective barrier heights for the degradations of the two most stable conformers of H2CO3 molecule via the PCET mechanism are only ∼2.7 and 4.3 kcal/mol. A comparative reaction rate analysis at the CCSD(T)/6-311++G(3df,3pd) level of theory has also been carried out to explore the potential impact of the OH radical-initiated H2CO3 degradation relative to that from water (H2O), formic acid (FA), acetic acid (AA) and sulfuric acid (SA) assisted H2CO3 → CO2 + H2O decomposition reactions in both the Earth's troposphere and stratosphere. The comparison of the reaction rates reveals that, although the atmospheric concentration of the OH radical is substantially lower than the concentrations of the H2O, FA, AA in the Earth's atmosphere, nevertheless, the OH radical-initiated H2CO3 degradation reaction has significant impact, especially toward the loss of the H2CO3 molecule in the Earth's atmosphere. In clean environments, which exist in greater numbers in comparison to the polluted environments of the Earth's atmosphere, the impact of the OH radical-initiated H2CO3 degradation reaction is seen to be comparable to that from a competing pathway which utilizes hydrogen bonded molecules such as H2O, FA or AA to catalyze the H2CO3 decomposition. Similarly, in the polluted environments, and especially in the Earth's troposphere, although the reactions rates for the OH radical-initiated H2CO3 degradation and FA-assisted H2CO3 decomposition are comparable within a factor of ∼15, nevertheless, the AA-assisted H2CO3 decomposition reaction is appeared to be the dominant channel. This follows only because of slightly greater catalytic efficiency of the AA over FA upon the H2CO3 → CO2 + H2O decomposition reaction. In contrary, although the catalytic efficiencies of SA, FA, and AA upon the H2CO3 decomposition reaction are similar to each other and the concentrations of both the SA and OH radical in the Earth's atmosphere are more-or-less equal to each other, but nevertheless, the SA-assisted H2CO3 decomposition reaction cannot compete with the OH radical-initiated H2CO3 degradation reaction.

  18. Changes in litter quality induced by nutrient addition alter litter decomposition in an alpine meadow on the Qinghai-Tibet Plateau

    PubMed Central

    Zhu, Wenyan; Wang, Jinzhou; Zhang, Zhenhua; Ren, Fei; Chen, Litong; He, Jin-Sheng

    2016-01-01

    The effects of nitrogen (N) and phosphorus (P) addition on litter decomposition are poorly understood in Tibetan alpine meadows. Leaf litter was collected from plots within a factorial N × P addition experiment and allowed to decompose over 708 days in an unfertilized plot to determine the effects of N and/or P addition on litter decomposition. Results showed that nutrient addition significantly affected initial P and P-related biochemical properties of litter from all four species. However, the responses of litter N and N-related biochemical properties to nutrient addition were quite species-specific. Litter C decomposition and N release were species-specific. However, N and P addition significantly affected litter P release. Ratios of Hemicellulose + Cellulose to N and P were significantly related to litter C decomposition; C:N ratio was a determinant of litter N release; and C:P and (Hemicellulose + Cellulose):P controlled litter P release. Overall, litter C decomposition was controlled by litter quality of different plant species, and strongly affected by P addition. Increasing N availability is likely to affect litter C decomposition more indirectly by shifting plant species composition than directly by improving litter quality, and may accelerate N and P cycles, but shift the ecosystem to P limitation. PMID:27694948

  19. Dynamics of multiple elements in fast decomposing vegetable residues.

    PubMed

    Cao, Chun; Liu, Si-Qi; Ma, Zhen-Bang; Lin, Yun; Su, Qiong; Chen, Huan; Wang, Jun-Jian

    2018-03-01

    Litter decomposition regulates the cycling of nutrients and toxicants but is poorly studied in farmlands. To understand the unavoidable in-situ decomposition process, we quantified the dynamics of C, H, N, As, Ca, Cd, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, Pb, and Zn during a 180-d decomposition study in leafy lettuce (Lactuca sativa var. longifoliaf) and rape (Brassica chinensis) residues in a wastewater-irrigated farmland in northwestern China. Different from most studied natural ecosystems, the managed vegetable farmland had a much faster litter decomposition rate (half-life of 18-60d), and interestingly, faster decomposition of roots relative to leaves for both the vegetables. Faster root decomposition can be explained by the initial biochemical composition (more O-alkyl C and less alkyl and aromatic C) but not the C/N stoichiometry. Multi-element dynamics varied greatly, with C, H, N, K, and Na being highly released (remaining proportion<20%), Ca, Cd, Cr, Mg, Ni, and Zn released, and As, Cu, Fe, Hg, Mn, and Pb possibly accumulated. Although vegetable residues serve as temporary sinks of some metal(loid)s, their fast decomposition, particularly for the O-alkyl-C-rich leafy-lettuce roots, suggest that toxic metal(loid)s can be released from residues, which therefore become secondary pollution sources. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Aminoxyl (nitroxyl) radicals in the early decomposition of the nitramine RDX.

    PubMed

    Irikura, Karl K

    2013-03-14

    The explosive nitramine RDX (1,3,5-trinitrohexahydro-s-triazine) is thought to decompose largely by homolytic N-N bond cleavage, among other possible initiation reactions. Density-functional theory (DFT) calculations indicate that the resulting secondary aminyl (R2N·) radical can abstract an oxygen atom from NO2 or from a neighboring nitramine molecule, producing an aminoxyl (R2NO·) radical. Persistent aminoxyl radicals have been detected in electron-spin resonance (ESR) experiments and are consistent with autocatalytic "red oils" reported in the experimental literature. When the O-atom donor is a nitramine, a nitrosamine is formed along with the aminoxyl radical. Reactions of aminoxyl radicals can lead readily to the "oxy-s-triazine" product (as the s-triazine N-oxide) observed mass-spectrometrically by Behrens and co-workers. In addition to forming aminoxyl radicals, the initial aminyl radical can catalyze loss of HONO from RDX.

  1. Hydrothermal Oxidation of Fecal Sludge: Experimental Investigations and Kinetic Modeling.

    PubMed

    Hübner, Tobias; Roth, Markus; Vogel, Frédéric

    2016-11-23

    Hydrothermal oxidation (HTO) provides an efficient technique to completely destroy wet organic wastes. In this study, HTO was applied to treat fecal sludge at well-defined experimental conditions. Four different kinetic models were adjusted to the obtained data. Among others, a distributed activation energy model (DAEM) was applied. A total of 33 experiments were carried out in an unstirred batch reactor with pressurized air as the oxidant at temperatures of <470 °C, oxygen-to-fuel equivalence ratios between 0 and 1.9, feed concentrations between 3.9 and 9.8 mol TOC L -1 (TOC = total organic carbon), and reaction times between 86 and 1572 s. Decomposition of the fecal sludge was monitored by means of the conversion of TOC to CO 2 and CO. In the presence of oxygen, ignition of the reaction was observed around 300 °C, followed by further rapid decomposition of the organic material. The TOC was completely decomposed to CO 2 within 25 min at 470 °C and an oxygen-to-fuel equivalence ratio of 1.2. CO was formed as an intermediate product, and no other combustible products were found in the gas. At certain reaction conditions, the formation of unwanted coke and tarlike products occurred. The reaction temperature and oxygen-to-fuel equivalence ratio showed a significant influence on TOC conversion, while the initial TOC concentration did not. Conversion of TOC to CO 2 could be well described with a first-order rate law and an activation energy of 39 kJ mol -1 .

  2. Sulfate Fining Chemistry in Oxidized and Reduced Soda-Lime-Silica Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Hrma, Pavel R.

    2005-05-13

    Various reducing agents were used and their additions were varied to (1) increase glass quality through eliminating defects from silica scum, (2) decrease SOx emissions through changing the kind and quantity of reducing agents, and (3) improve production efficiency through increased flexibility of glass redox control during continuous processing. The work included measuring silica sand dissolution and sulfate decomposition in melts from glass batches. Glass batches were heated at a temperature-increase rate deemed similar to that experienced in the melting furnace. The sulfate decomposition kinetics was investigated with thermogravimetric analysis-differential thermal analysis and evolved gas analysis. Sulfur concentrations in glassesmore » quenched at different temperatures were determined using X-ray fluorescence spectroscopy. The distribution of residual sand (that which was not dissolved during the initial batch reactions) in the glass was obtained as a function of temperature with optical microscopy in thin-sections of melts. The fraction of undissolved sand was measured with X-ray diffraction. The results of the present study helped Visteon Inc. reduce the energy consumption and establish the batch containing 0.118 mass% of graphite as the best candidate for Visteon glass production. The improved glass batch has a lower potential for silica scum formation and for brown fault occurrence in the final glass product. It was established that bubbles trapped in the melt even at 1450 C have a high probability to be refined when reaching the hot zone in the glass furnace. Furthermore, silica sand does not accumulate at the glass surface and dissolves faster in the batch with graphite than in the batch with carbocite.« less

  3. Hydrothermal Oxidation of Fecal Sludge: Experimental Investigations and Kinetic Modeling

    PubMed Central

    2016-01-01

    Hydrothermal oxidation (HTO) provides an efficient technique to completely destroy wet organic wastes. In this study, HTO was applied to treat fecal sludge at well-defined experimental conditions. Four different kinetic models were adjusted to the obtained data. Among others, a distributed activation energy model (DAEM) was applied. A total of 33 experiments were carried out in an unstirred batch reactor with pressurized air as the oxidant at temperatures of <470 °C, oxygen-to-fuel equivalence ratios between 0 and 1.9, feed concentrations between 3.9 and 9.8 molTOC L–1 (TOC = total organic carbon), and reaction times between 86 and 1572 s. Decomposition of the fecal sludge was monitored by means of the conversion of TOC to CO2 and CO. In the presence of oxygen, ignition of the reaction was observed around 300 °C, followed by further rapid decomposition of the organic material. The TOC was completely decomposed to CO2 within 25 min at 470 °C and an oxygen-to-fuel equivalence ratio of 1.2. CO was formed as an intermediate product, and no other combustible products were found in the gas. At certain reaction conditions, the formation of unwanted coke and tarlike products occurred. The reaction temperature and oxygen-to-fuel equivalence ratio showed a significant influence on TOC conversion, while the initial TOC concentration did not. Conversion of TOC to CO2 could be well described with a first-order rate law and an activation energy of 39 kJ mol–1. PMID:28539700

  4. On the physical significance of the Effective Independence method for sensor placement

    NASA Astrophysics Data System (ADS)

    Jiang, Yaoguang; Li, Dongsheng; Song, Gangbing

    2017-05-01

    Optimally deploy sparse sensors for better damage identification and structural health monitoring is always a challenging task. The Effective Independence(EI) is one of the most influential sensor placement method and to be discussed in the paper. Specifically, the effect of the different weighting coefficients on the maximization of the Fisher information matrix(FIM) and the physical significance of the re-orthogonalization of modal shapes through QR decomposition in the EI method are addressed. By analyzing the widely used EI method, we found that the absolute identification space put forward along with the EI method is preferable to ensuring the maximization of the FIM, instead of the original EI coefficient which was post-multiolied by a weighting matrix. That is, deleting the row with the minimum EI coefficient can’t achieve the objective of maximizing the trace of FIM as initially conceived. Furthermore, we observed that in the computation of EI method, the sum of each retained row in the absolute identification space is a constant in each iteration. This potential property can be revealed distinctively by the product of target mode and its transpose, and its form is similar to an alternative formula of the EI method through orthogonal-triangular(QR) decomposition previously proposed by the authors. With it, the physical significance of re-orthogonalization of modal shapes through QR decomposition in the computation of EI method can be obviously manifested from a new perspective. Finally, two simple examples are provided to demonstrate the above two observations.

  5. Prolonged respiratory symptoms caused by thermal degradation products of freons.

    PubMed

    Piirilä, Päivi; Espo, Timo; Pfäffli, Pirkko; Riihimäki, Vesa; Wolff, Henrik; Nordman, Henrik

    2003-02-01

    The chlorofluorocarbons (CFC) used in refrigeration systems decompose on heating and produce substances that are highly irritating to the airways (eg, chlorine, carbonyl fluoride, and hydrogen fluoride). This study examined persistent respiratory symptoms among several workers exposed to thermal decomposition products of CFC. Seven patients with respiratory symptoms caused by inadvertent exposure to thermal decomposition products of CFC in a restaurant kitchen or during refrigerator repair were studied with the use of spirometry, peak flow follow-up, and histamine challenge tests. Three patients also underwent bronchoscopy and bronchoalveolar lavage. In five of the cases, cough or dyspnea lasted longer than 1 month; for three of the five, the symptoms lasted more than 4 years. Three cases showed increased bronchial hyperreactivity, and two of the three had increased diurnal peak flow variation. Three patients fulfilled the criteria for acute irritant-induced asthma or reactive airway dysfunction syndrome. One case exhibited bronchiolitis while, for the other six, the clinical picture was consistent with bronchitis. The studied cases indicate that the thermal decomposition products of CFC used in refrigerators may cause irritant-induced airway diseases of long duration.

  6. Toluene decomposition performance and NOx by-product formation during a DBD-catalyst process.

    PubMed

    Guo, Yufang; Liao, Xiaobin; Fu, Mingli; Huang, Haibao; Ye, Daiqi

    2015-02-01

    Characteristics of toluene decomposition and formation of nitrogen oxide (NOx) by-products were investigated in a dielectric barrier discharge (DBD) reactor with/without catalyst at room temperature and atmospheric pressure. Four kinds of metal oxides, i.e., manganese oxide (MnOx), iron oxide (FeOx), cobalt oxide (CoOx) and copper oxide (CuO), supported on Al2O3/nickel foam, were used as catalysts. It was found that introducing catalysts could improve toluene removal efficiency, promote decomposition of by-product ozone and enhance CO2 selectivity. In addition, NOx was suppressed with the decrease of specific energy density (SED) and the increase of humidity, gas flow rate and toluene concentration, or catalyst introduction. Among the four kinds of catalysts, the CuO catalyst showed the best performance in NOx suppression. The MnOx catalyst exhibited the lowest concentration of O3 and highest CO2 selectivity but the highest concentration of NOx. A possible pathway for NOx production in DBD was discussed. The contributions of oxygen active species and hydroxyl radicals are dominant in NOx suppression. Copyright © 2014. Published by Elsevier B.V.

  7. Development of methodologies to assess the relative hazards from thermal decomposition products of polymeric materials.

    PubMed

    Barrow, C S; Lucia, H; Stock, M F; Alarie, Y

    1979-05-01

    The physiological stress imposed upon mice due to the irritating properties of thermal decomposition products of polymeric materials was evaluated. Acute lethality and histopathological evaluation were included in the study. The rankings of the polymeric materials studied from most to least hazardous was concluded to be polytetrafluoroethylene greater than polyvinyl chloride greater than Douglas Fir and flexible polyurethane foam greater than fiber glass reinforced polyester greater than copper coated wire with mineral insulation.

  8. Antifoam degradation testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lambert, D. P.; Zamecnik, J. R.; Newell, D. D.

    2015-08-20

    This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.

  9. Stability of polymyxin B sulfate diluted in 0.9% sodium chloride injection and stored at 4 or 25 degrees C.

    PubMed

    He, Jie; Figueroa, Deborah A; Lim, Tze-Peng; Chow, Diana S; Tam, Vincent H

    2010-07-15

    The stability of polymyxin B sulfate in infusion bags containing 0.9% sodium chloride injection stored at 4 and 25 degrees C was studied. Seven manufacturing batches of polymyxin B from different sources were tested. The products were reconstituted in sterile water for injection, diluted in infusion bags containing 0.9% sodium chloride injection, and stored at room temperature (25 degrees C) or under refrigeration (4 degrees C). Samples were withdrawn at the same time on days 0, 1, 2, 3, 5, and 7. A modified microbiological assay was used to determine the concentrations, as indicated by zones of inhibition, of polymyxin B. Bordetella bronchiseptica served as the reference organism. Stability was defined as retention of >90% of the initial concentration. The decomposition kinetics of polymyxin B in 0.9% sodium chloride injection were evaluated by plotting the polymyxin B concentration remaining versus time. On average, the samples retained over 90% of their initial concentration for up to two days at both storage temperatures. All samples retained over 90% of their initial concentration at 24 hours. The decomposition kinetics of polymyxin B in infusion bags containing 0.9% sodium chloride injection exhibited pseudo-first-order kinetics, with rate constants of 0.024-0.075 day(-1) at 25 degrees C and 0.022-0.043 day(-1) at 4 degrees C (p > 0.05). Polymyxin B was stable for at least one day when stored at 4 or 25 degrees C in infusion bags containing 0.9% sodium chloride injection. Stability did not differ significantly between the two storage temperatures.

  10. More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species.

    PubMed

    Jo, Insu; Fridley, Jason D; Frank, Douglas A

    2016-01-01

    Invaders often have greater rates of production and produce more labile litter than natives. The increased litter quantity and quality of invaders should increase nutrient cycling through faster litter decomposition. However, the limited number of invasive species that have been included in decomposition studies has hindered the ability to generalize their impacts on decomposition rates. Further, previous decomposition studies have neglected roots. We measured litter traits and decomposition rates of leaves for 42 native and 36 nonnative woody species, and those of fine roots for 23 native and 25 nonnative species that occur in temperate deciduous forests throughout the Eastern USA. Among the leaf and root traits that differed between native and invasive species, only leaf nitrogen was significantly associated with decomposition rate. However, native and nonnative species did not differ systematically in leaf and root decomposition rates. We found that among the parameters measured, litter decomposer activity was driven by litter chemical quality rather than tissue density and structure. Our results indicate that litter decomposition rate per se is not a pathway by which forest woody invasive species affect North American temperate forest soil carbon and nutrient processes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  11. A test of the hierarchical model of litter decomposition.

    PubMed

    Bradford, Mark A; Veen, G F Ciska; Bonis, Anne; Bradford, Ella M; Classen, Aimee T; Cornelissen, J Hans C; Crowther, Thomas W; De Long, Jonathan R; Freschet, Gregoire T; Kardol, Paul; Manrubia-Freixa, Marta; Maynard, Daniel S; Newman, Gregory S; Logtestijn, Richard S P; Viketoft, Maria; Wardle, David A; Wieder, William R; Wood, Stephen A; van der Putten, Wim H

    2017-12-01

    Our basic understanding of plant litter decomposition informs the assumptions underlying widely applied soil biogeochemical models, including those embedded in Earth system models. Confidence in projected carbon cycle-climate feedbacks therefore depends on accurate knowledge about the controls regulating the rate at which plant biomass is decomposed into products such as CO 2 . Here we test underlying assumptions of the dominant conceptual model of litter decomposition. The model posits that a primary control on the rate of decomposition at regional to global scales is climate (temperature and moisture), with the controlling effects of decomposers negligible at such broad spatial scales. Using a regional-scale litter decomposition experiment at six sites spanning from northern Sweden to southern France-and capturing both within and among site variation in putative controls-we find that contrary to predictions from the hierarchical model, decomposer (microbial) biomass strongly regulates decomposition at regional scales. Furthermore, the size of the microbial biomass dictates the absolute change in decomposition rates with changing climate variables. Our findings suggest the need for revision of the hierarchical model, with decomposers acting as both local- and broad-scale controls on litter decomposition rates, necessitating their explicit consideration in global biogeochemical models.

  12. Soil Properties, Nutrient Dynamics, and Soil Enzyme Activities Associated with Garlic Stalk Decomposition under Various Conditions

    PubMed Central

    Han, Xu; Cheng, Zhihui; Meng, Huanwen

    2012-01-01

    The garlic stalk is a byproduct of garlic production and normally abandoned or burned, both of which cause environmental pollution. It is therefore appropriate to determine the conditions of efficient decomposition, and equally appropriate to determine the impact of this decomposition on soil properties. In this study, the soil properties, enzyme activities and nutrient dynamics associated with the decomposition of garlic stalk at different temperatures, concentrations and durations were investigated. Stalk decomposition significantly increased the values of soil pH and electrical conductivity. In addition, total nitrogen and organic carbon concentration were significantly increased by decomposing stalks at 40°C, with a 5∶100 ratio and for 10 or 60 days. The highest activities of sucrase, urease and alkaline phosphatase in soil were detected when stalk decomposition was performed at the lowest temperature (10°C), highest concentration (5∶100), and shortest duration (10 or 20 days). The evidence presented here suggests that garlic stalk decomposition improves the quality of soil by altering the value of soil pH and electrical conductivity and by changing nutrient dynamics and soil enzyme activity, compared to the soil decomposition without garlic stalks. PMID:23226411

  13. Thermal decomposition behavior of nano/micro bimodal feedstock with different solids loading

    NASA Astrophysics Data System (ADS)

    Oh, Joo Won; Lee, Won Sik; Park, Seong Jin

    2018-01-01

    Debinding is one of the most critical processes for powder injection molding. The parts in debinding process are vulnerable to defect formation, and long processing time of debinding decreases production rate of whole process. In order to determine the optimal condition for debinding process, decomposition behavior of feedstock should be understood. Since nano powder affects the decomposition behavior of feedstock, nano powder effect needs to be investigated for nano/micro bimodal feedstock. In this research, nano powder effect on decomposition behavior of nano/micro bimodal feedstock has been studied. Bimodal powders were fabricated with different ratios of nano powder, and the critical solids loading of each powder was measured by torque rheometer. Three different feedstocks were fabricated for each powder depending on solids loading condition. Thermogravimetric analysis (TGA) experiment was carried out to analyze the thermal decomposition behavior of the feedstocks, and decomposition activation energy was calculated. The result indicated nano powder showed limited effect on feedstocks in lower solids loading condition than optimal range. Whereas, it highly influenced the decomposition behavior in optimal solids loading condition by causing polymer chain scission with high viscosity.

  14. The decomposition of vegetation and soil in marginal peat-forming landscapes: climate simulations to quantify gaseous and dissolved carbon fluxes and the effects on peat accumulation and drinking water treatment

    NASA Astrophysics Data System (ADS)

    Ritson, J.; Bell, M.; Clark, J. M.; Graham, N.; Templeton, M.; Brazier, R.; Verhoef, A.; Freeman, C.

    2013-12-01

    Peatlands in the UK represent a large proportion of the soil carbon store, however there is concern that some systems may be switching from sinks to sources of carbon. The accumulation of organic material in peatlands results from the slow rates of decomposition typically occurring in these regions. Climate change may lead to faster decomposition which, if not matched by an equivalent increase in net primary productivity and litter fall, may tip the balance between source and sink. Recent trends have seen a greater flux of dissolved organic matter (DOM) from peatlands to surface waters and a change in DOM character, presenting challenges to water treatment, for example in terms of increased production of disinfectant by-products (DBPs). Peat systems border a large proportion of reservoirs in the UK so uncertainty regarding DOM quantity and quality is a concern for water utilities. This study considered five peatland vegetation types (Sphagnum spp., Calluna vulgaris, Molinea caerulea, peat soil and mixed litter) collected from the Exmoor National Park, UK where it is hypothesised that peat formation may be strongly affected by future changes to climate. A factorial experiment design to simulate climate was used, considering vegetation type, temperature and rainfall amount using a current baseline and predictions from the UKCP09 model. Gaseous fluxes of carbon were monitored over a two month period to quantify the effect on carbon mineralisation rates while 13C NMR analysis was employed to track which classes of compounds decayed preferentially. The DOM collected was characterised using UV and fluorescence techniques before being subject to standard drinking water treatment processes (coagulation/flocculation followed by chlorination). The effect of the experimental factors on DOM amenability to removal and propensity to form DBPs was then considered, with both trihalomethane (THM) and haloacetonitrile (HAN) DBP classes monitored. Initial results have shown a statistically significant (Mann-Whitney U) difference in THM formation (p<0.05) as well as the amount of DOM produced and specific UV absorption at 254nm (p<0.01) between vegetation classes.

  15. [Litter decomposition and nutrient release in Acacia mangium plantations established on degraded soils of Colombia].

    PubMed

    Castellanos-Barliza, Jeiner; León Peláez, Juan Diego

    2011-03-01

    Several factors control the decomposition in terrestrial ecosystems such as humidity, temperature, quality of litter and microbial activity. We investigated the effects of rainfall and soil plowing prior to the establishment of Acacia mangium plantations, using the litterbag technique, during a six month period, in forests plantations in Bajo Cauca region, Colombia. The annual decomposition constants (k) of simple exponential model, oscillated between 1.24 and 1.80, meanwhile k1 y k2 decomposition constants of double exponential model were 0.88-1.81 and 0.58-7.01. At the end of the study, the mean residual dry matter (RDM) was 47% of the initial value for the three sites. We found a slow N, Ca and Mg release pattern from the A. mangium leaf litter, meanwhile, phosphorus (P) showed a dominant immobilization phase, suggesting its low availability in soils. Chemical leaf litter quality parameters (e.g. N and P concentrations, C/N, N/P ratios and phenols content) showed an important influence on decomposition rates. The results of this study indicated that rainfall plays an important role on the decomposition process, but not soil plowing.

  16. Decomposition of carbon dioxide by recombining hydrogen plasma with ultralow electron temperature

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahiro; Nishiyama, Shusuke; Sasaki, Koichi

    2018-06-01

    We examined the rate coefficient for the decomposition of CO2 in low-pressure recombining hydrogen plasmas with electron temperatures between 0.15 and 0.45 eV, where the electron-impact dissociation was negligible. By using this ultralow-temperature plasma, we clearly observed decomposition processes via vibrational excited states. The rate coefficient of the overall reaction, CO2 + e → products, was 1.5 × 10‑17 m3/s in the ultralow-temperature plasma, which was 10 times larger than the decomposition rate coefficient of 2 × 10‑18 m3/s in an ionizing plasma with an electron temperature of 4 eV.

  17. Heterogeneous decomposition of silane in a fixed bed reactor

    NASA Technical Reports Server (NTRS)

    Iya, S. K.; Flagella, R. N.; Dipaolo, F. S.

    1982-01-01

    Heterogeneous decomposition of silane in a fluidized bed offers an attractive route for the low-cost production of silicon for photovoltaic application. To obtain design data for a fluid bed silane pyrolysis reactor, deposition experiments were conducted in a small-scale fixed bed apparatus. Data on the decomposition mode, plating rate, and deposition morphology were obtained in the temperature range 600-900 C. Conditions favorable for heterogeneous decomposition with good deposition morphology were identified. The kinetic rate data showed the reaction to be first order with an activation energy of 38.8 kcal/mol, which agrees well with work done by others. The results are promising for the development of an economically attractive fluid bed process.

  18. Simulation of toluene decomposition in a pulse-periodic discharge operating in a mixture of molecular nitrogen and oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trushkin, A. N.; Kochetov, I. V.

    The kinetic model of toluene decomposition in nonequilibrium low-temperature plasma generated by a pulse-periodic discharge operating in a mixture of nitrogen and oxygen is developed. The results of numerical simulation of plasma-chemical conversion of toluene are presented; the main processes responsible for C{sub 6}H{sub 5}CH{sub 3} decomposition are identified; the contribution of each process to total removal of toluene is determined; and the intermediate and final products of C{sub 6}H{sub 5}CH{sub 3} decomposition are identified. It was shown that toluene in pure nitrogen is mostly decomposed in its reactions with metastable N{sub 2}(A{sub 3}{Sigma}{sub u}{sup +}) and N{sub 2}(a Primemore » {sup 1}{Sigma}{sub u}{sup -}) molecules. In the presence of oxygen, in the N{sub 2} : O{sub 2} gas mixture, the largest contribution to C{sub 6}H{sub 5}CH{sub 3} removal is made by the hydroxyl radical OH which is generated in this mixture exclusively due to plasma-chemical reactions between toluene and oxygen decomposition products. Numerical simulation showed the existence of an optimum oxygen concentration in the mixture, at which toluene removal is maximum at a fixed energy deposition.« less

  19. Thermal decomposition and isomerization of cis-permethrin and beta-cypermethrin in the solid phase.

    PubMed

    González Audino, Paola; Licastro, Susana A; Zerba, Eduardo

    2002-02-01

    The stability to heart of cis-permethrin and beta-cypermethrin in the solid phase was studied and the decomposition products identified. Samples heated at 210 degrees C in an oven in the dark showed that, in the absence of potassium chlorate (the salt present in smoke-generating formulations of these pyrethroids), cis-permethrin was not isomerized, although in the presence of that salt, decomposition was greater and thermal isomerization occurred. Other salts of the type KXO3 or NaXO3, with X being halogen or nitrogen, also led to a considerable thermal isomerization. Heating the insecticides in solution in the presence of potassium chlorate did not produce isomerization in any of the solvents assayed. Salt-catalysed thermal cis-trans isomerization was also found for other pyrethroids derived from permethrinic or deltamethrinic acid but not for those derived from chrysanthemic acid. The main thermal degradation processes of cis-permethrin and beta-cypermethrin decomposition when potassium chlorate was present were cyclopropane isomerization, ester cleavage and subsequent oxidation of the resulting products. Permethrinic acid, 3-phenoxybenzyle chloride, alcohol, aldehyde and acid were identified in both cases, as well as 3-phenoxybenzyl cyanide from beta-cypermethrin. A similar decomposition pattern occurred after combustion of pyrethroid fumigant formulations.

  20. Wash Bottle Laboratory Exercises: Iodide-Catalyzed H[subscript 2]O[subscript 2] Decomposition Reaction Kinetics Using the Initial Rate Approach

    ERIC Educational Resources Information Center

    Barlag, Rebecca; Nyasulu, Frazier

    2010-01-01

    A wash bottle water displacement scheme is used to determine the kinetics of the iodide-catalyzed H[subscript 2]O[subscript 2] decomposition reaction. The reagents (total volume 5.00 mL) are added to a test tube that is placed in a wash bottle containing water. The mass of the water displaced in [approximately]60 s is measured. The reaction is…

  1. Transport and thermodynamics constrain belowground carbon turnover in a northern peatland

    NASA Astrophysics Data System (ADS)

    Beer, Julia; Blodau, Christian

    2007-06-01

    Rates of anaerobic respiration are of central importance for the long-term burial of carbon (C) in peatlands, which are a relevant sink in the global C cycle. To identify constraints on anaerobic peat decomposition, we determined detailed concentration depth profiles of decomposition end-products, i.e. methane (CH 4) and dissolved inorganic carbon (DIC), along with concentrations of relevant decomposition intermediates at an ombrotrophic Canadian peat bog. The magnitude of in situ net production rates of DIC and CH 4 was estimated by inverse pore-water modeling. Vertical transport in the peat was slow and dominated by diffusion leading to the buildup of DIC and CH 4 with depth (5500 μmol L -1 DIC, 500 μmol L -1 CH 4). Highest DIC and CH 4 production rates occurred close to the water table (decomposition constant kd ˜ 10 -3-10 -4 a -1) or in some distinct zones at depth ( kd ˜ 10 -4 a -1). Deeper into the peat, decomposition proceeded very slowly at about kd = 10 -7 a -1. This pattern could be related to thermodynamic and transport constraints. The accumulation of metabolic end-products diminished in situ energy yields of acetoclastic methanogenesis to the threshold for microbially mediated processes (-20 to -25 kJ mol -1 CH 4). The methanogenic precursor acetate also accumulated (150 μmol L -1). In line with these findings, CH 4 was formed by hydrogenotrophic methanogenesis at Gibbs free energies of -35 to -40 kJ mol -1 CH 4. This was indicated by an isotopic fractionation α-CH of 1.069-1.079. Fermentative degradation of acetate, propionate and butyrate attained Gibbs free energies close to 0 kJ mol -1 substrate. Although methanogenesis was apparently limited by some other factor in some peat layers, transport and thermodynamic constraints likely impeded respiratory processes in the deeper peat. Constraints on the removal of DIC and CH 4 may thus slow decomposition and contribute to the sustained burial of C in northern peatlands.

  2. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.

    PubMed

    Boyero, Luz; Pearson, Richard G; Gessner, Mark O; Barmuta, Leon A; Ferreira, Verónica; Graça, Manuel A S; Dudgeon, David; Boulton, Andrew J; Callisto, Marcos; Chauvet, Eric; Helson, Julie E; Bruder, Andreas; Albariño, Ricardo J; Yule, Catherine M; Arunachalam, Muthukumarasamy; Davies, Judy N; Figueroa, Ricardo; Flecker, Alexander S; Ramírez, Alonso; Death, Russell G; Iwata, Tomoya; Mathooko, Jude M; Mathuriau, Catherine; Gonçalves, José F; Moretti, Marcelo S; Jinggut, Tajang; Lamothe, Sylvain; M'Erimba, Charles; Ratnarajah, Lavenia; Schindler, Markus H; Castela, José; Buria, Leonardo M; Cornejo, Aydeé; Villanueva, Verónica D; West, Derek C

    2011-03-01

    The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback. © 2011 Blackwell Publishing Ltd/CNRS.

  3. Acrylamide formation in food: a mechanistic perspective.

    PubMed

    Yaylayan, Varoujan A; Stadler, Richard H

    2005-01-01

    Earliest reports on the origin of acrylamide in food have confirmed asparagine as the main amino acid responsible for its formation. Available evidence suggests that sugars and other carbonyl compounds play a specific role in the decarboxylation process of asparagine, a necessary step in the generation of acrylamide. It has been proposed that Schiff base intermediate formed between asparagine and the sugar provides a low energy alternative to the decarboxylation from the intact Amadori product through generation and decomposition of oxazolidin-5-one intermediate, leading to the formation of a relatively stable azomethine ylide. Literature data indicate the propensity of such protonated ylides to undergo irreversible 1,2-prototropic shift and produce, in this case, decarboxylated Schiff bases which can easily rearrange into corresponding Amadori products. Decarboxylated Amadori products can either undergo the well known beta-elimination process initiated by the sugar moiety to produce 3-aminopropanamide and 1-deoxyglucosone or undergo 1,2-elimination initiated by the amino acid moiety to directly generate acrylamide. On the other hand, the Schiff intermediate can either hydrolyze and release 3-aminopropanamide or similarly undergo amino acid initiated 1,2-elimination to directly form acrylamide. Other thermolytic pathways to acrylamide--considered marginal at this stage--via the Strecker aldehyde, acrolein, and acrylic acid, are also addressed. Despite significant progress in the understanding of the mechanistic aspects of acrylamide formation, concrete evidence for the role of the different proposed intermediates in foods is still lacking.

  4. Seasonal Variability May Affect Microbial Decomposers and Leaf Decomposition More Than Warming in Streams.

    PubMed

    Duarte, Sofia; Cássio, Fernanda; Ferreira, Verónica; Canhoto, Cristina; Pascoal, Cláudia

    2016-08-01

    Ongoing climate change is expected to affect the diversity and activity of aquatic microbes, which play a key role in plant litter decomposition in forest streams. We used a before-after control-impact (BACI) design to study the effects of warming on a forest stream reach. The stream reach was divided by a longitudinal barrier, and during 1 year (ambient year) both stream halves were at ambient temperature, while in the second year (warmed year) the temperature in one stream half was increased by ca. 3 °C above ambient temperature (experimental half). Fine-mesh bags containing oak (Quercus robur L.) leaves were immersed in both stream halves for up to 60 days in spring and autumn of the ambient and warmed years. We assessed leaf-associated microbial diversity by denaturing gradient gel electrophoresis and identification of fungal conidial morphotypes and microbial activity by quantifying leaf mass loss and productivity of fungi and bacteria. In the ambient year, no differences were found in leaf decomposition rates and microbial productivities either between seasons or stream halves. In the warmed year, phosphorus concentration in the stream water, leaf decomposition rates, and productivity of bacteria were higher in spring than in autumn. They did not differ between stream halves, except for leaf decomposition, which was higher in the experimental half in spring. Fungal and bacterial communities differed between seasons in both years. Seasonal changes in stream water variables had a greater impact on the activity and diversity of microbial decomposers than a warming regime simulating a predicted global warming scenario.

  5. Pursuing reliable thermal analysis techniques for energetic materials: decomposition kinetics and thermal stability of dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50).

    PubMed

    Muravyev, Nikita V; Monogarov, Konstantin A; Asachenko, Andrey F; Nechaev, Mikhail S; Ananyev, Ivan V; Fomenkov, Igor V; Kiselev, Vitaly G; Pivkina, Alla N

    2016-12-21

    Thermal decomposition of a novel promising high-performance explosive dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) was studied using a number of thermal analysis techniques (thermogravimetry, differential scanning calorimetry, and accelerating rate calorimetry, ARC). To obtain more comprehensive insight into the kinetics and mechanism of TKX-50 decomposition, a variety of complementary thermoanalytical experiments were performed under various conditions. Non-isothermal and isothermal kinetics were obtained at both atmospheric and low (up to 0.3 Torr) pressures. The gas products of thermolysis were detected in situ using IR spectroscopy, and the structure of solid-state decomposition products was determined by X-ray diffraction and scanning electron microscopy. Diammonium 5,5'-bistetrazole-1,1'-diolate (ABTOX) was directly identified to be the most important intermediate of the decomposition process. The important role of bistetrazole diol (BTO) in the mechanism of TKX-50 decomposition was also rationalized by thermolysis experiments with mixtures of TKX-50 and BTO. Several widely used thermoanalytical data processing techniques (Kissinger, isoconversional, formal kinetic approaches, etc.) were independently benchmarked against the ARC data, which are more germane to the real storage and application conditions of energetic materials. Our study revealed that none of the Arrhenius parameters reported before can properly describe the complex two-stage decomposition process of TKX-50. In contrast, we showed the superior performance of the isoconversional methods combined with isothermal measurements, which yielded the most reliable kinetic parameters of TKX-50 thermolysis. In contrast with the existing reports, the thermal stability of TKX-50 was determined in the ARC experiments to be lower than that of hexogen, but close to that of hexanitrohexaazaisowurtzitane (CL-20).

  6. Interacting Microbe and Litter Quality Controls on Litter Decomposition: A Modeling Analysis

    PubMed Central

    Moorhead, Daryl; Lashermes, Gwenaëlle; Recous, Sylvie; Bertrand, Isabelle

    2014-01-01

    The decomposition of plant litter in soil is a dynamic process during which substrate chemistry and microbial controls interact. We more clearly quantify these controls with a revised version of the Guild-based Decomposition Model (GDM) in which we used a reverse Michaelis-Menten approach to simulate short-term (112 days) decomposition of roots from four genotypes of Zea mays that differed primarily in lignin chemistry. A co-metabolic relationship between the degradation of lignin and holocellulose (cellulose+hemicellulose) fractions of litter showed that the reduction in decay rate with increasing lignin concentration (LCI) was related to the level of arabinan substitutions in arabinoxylan chains (i.e., arabinan to xylan or A∶X ratio) and the extent to which hemicellulose chains are cross-linked with lignin in plant cell walls. This pattern was consistent between genotypes and during progressive decomposition within each genotype. Moreover, decay rates were controlled by these cross-linkages from the start of decomposition. We also discovered it necessary to divide the Van Soest soluble (labile) fraction of litter C into two pools: one that rapidly decomposed and a second that was more persistent. Simulated microbial production was consistent with recent studies suggesting that more rapidly decomposing materials can generate greater amounts of potentially recalcitrant microbial products despite the rapid loss of litter mass. Sensitivity analyses failed to identify any model parameter that consistently explained a large proportion of model variation, suggesting that feedback controls between litter quality and microbial activity in the reverse Michaelis-Menten approach resulted in stable model behavior. Model extrapolations to an independent set of data, derived from the decomposition of 12 different genotypes of maize roots, averaged within <3% of observed respiration rates and total CO2 efflux over 112 days. PMID:25264895

  7. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    NASA Astrophysics Data System (ADS)

    Orr, R. M.; Sims, H. E.; Taylor, R. J.

    2015-10-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.

  8. Decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H2O2 and UV/TiO2 oxidation processes.

    PubMed

    Yan, Yingjie; Liao, Qi-Nan; Ji, Feng; Wang, Wei; Yuan, Shoujun; Hu, Zhen-Hu

    2017-02-01

    3,5-Dinitrobenzamide has been widely used as a feed additive to control coccidiosis in poultry, and part of the added 3,5-dinitrobenzamide is excreted into wastewater and surface water. The removal of 3,5-dinitrobenzamide from wastewater and surface water has not been reported in previous studies. Highly reactive hydroxyl radicals from UV/hydrogen peroxide (H 2 O 2 ) and UV/titanium dioxide (TiO 2 ) advanced oxidation processes (AOPs) can decompose organic contaminants efficiently. In this study, the decomposition of 3,5-dinitrobenzamide in aqueous solution during UV/H 2 O 2 and UV/TiO 2 oxidation processes was investigated. The decomposition of 3,5-dinitrobenzamide fits well with a fluence-based pseudo-first-order kinetics model. The decomposition in both two oxidation processes was affected by solution pH, and was inhibited under alkaline conditions. Inorganic anions such as NO 3 - , Cl - , SO 4 2- , HCO 3 - , and CO 3 2- inhibited the degradation of 3,5-dinitrobenzamide during the UV/H 2 O 2 and UV/TiO 2 oxidation processes. After complete decomposition in both oxidation processes, approximately 50% of 3,5-dinitrobenzamide was decomposed into organic intermediates, and the rest was mineralized to CO 2 , H 2 O, and other inorganic anions. Ions such as NH 4 + , NO 3 - , and NO 2 - were released into aqueous solution during the degradation. The primary decomposition products of 3,5-dinitrobenzamide were identified using time-of-flight mass spectrometry (LCMS-IT-TOF). Based on these products and ions release, a possible decomposition pathway of 3,5-dinitrobenzamide in both UV/H 2 O 2 and UV/TiO 2 processes was proposed.

  9. A comparative study on pyrolysis characteristic Indonesia biomassa and low grade coal

    NASA Astrophysics Data System (ADS)

    Adhityatama, G. I.; Hanif, F.; Cahyono, R. B.; Hidayat, M.; Akiyama, T.

    2017-05-01

    A comparative study on pyrolysis of biomass and low grade coal was conducted using a thermogravimetric analyzer. Each kind of biomass and coal has a characteristic pyrolysis behavior which is explained based on its individual component characteristics. All fuels experienced a small weight loss as temperatures approached 450K because of moisture evaporation. The coal had smallest total weight loss compared to biomass due to its high content of fixed carbon, suggesting that coal would produce high amounts of char and small amounts of volatile matter (e.g., tar and gas). The biomass exhibits similar tendency regarding the decomposition process which is the hemicelluloses break down first at temperatures of 470 to 530K, cellulose follows in the temperature range 510 to 620K, and lignin is the last component to pyrolyzer at temperatures of 550 to 770K. The thermal decomposition of biomass consisted of two predominant peaks corresponding first to the decomposition of cellulose and, second, to the decomposition of lignin. Meanwhile, the coal exhibited only single peak because these fuels were predominantly composed of carbon. Based on the kinetic analysis, coal have the smaller activation energy (55.32kJ/mol) compared to biomass (range from 89.80-172.86 kJ/mol). Pyrolysis process also created more pore material in the solid product. These results were important for the optimization of energy conversion from those solid fuels. Biomass resulted lower solid product and higher tar product, thus would be suitable for liquid and gas energy production.

  10. DREAMS and IMAGE: A Model and Computer Implementation for Concurrent, Life-Cycle Design of Complex Systems

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.

    1995-01-01

    Computing architectures are being assembled that extend concurrent engineering practices by providing more efficient execution and collaboration on distributed, heterogeneous computing networks. Built on the successes of initial architectures, requirements for a next-generation design computing infrastructure can be developed. These requirements concentrate on those needed by a designer in decision-making processes from product conception to recycling and can be categorized in two areas: design process and design information management. A designer both designs and executes design processes throughout design time to achieve better product and process capabilities while expanding fewer resources. In order to accomplish this, information, or more appropriately design knowledge, needs to be adequately managed during product and process decomposition as well as recomposition. A foundation has been laid that captures these requirements in a design architecture called DREAMS (Developing Robust Engineering Analysis Models and Specifications). In addition, a computing infrastructure, called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment), is being developed that satisfies design requirements defined in DREAMS and incorporates enabling computational technologies.

  11. Face recognition using tridiagonal matrix enhanced multivariance products representation

    NASA Astrophysics Data System (ADS)

    Ã-zay, Evrim Korkmaz

    2017-01-01

    This study aims to retrieve face images from a database according to a target face image. For this purpose, Tridiagonal Matrix Enhanced Multivariance Products Representation (TMEMPR) is taken into consideration. TMEMPR is a recursive algorithm based on Enhanced Multivariance Products Representation (EMPR). TMEMPR decomposes a matrix into three components which are a matrix of left support terms, a tridiagonal matrix of weight parameters for each recursion, and a matrix of right support terms, respectively. In this sense, there is an analogy between Singular Value Decomposition (SVD) and TMEMPR. However TMEMPR is a more flexible algorithm since its initial support terms (or vectors) can be chosen as desired. Low computational complexity is another advantage of TMEMPR because the algorithm has been constructed with recursions of certain arithmetic operations without requiring any iteration. The algorithm has been trained and tested with ORL face image database with 400 different grayscale images of 40 different people. TMEMPR's performance has been compared with SVD's performance as a result.

  12. Modeling of the HiPco process for carbon nanotube production. I. Chemical kinetics

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Gokcen, Tahir; Meyyappan, M.

    2002-01-01

    A chemical kinetic model is developed to help understand and optimize the production of single-walled carbon nanotubes via the high-pressure carbon monoxide (HiPco) process, which employs iron pentacarbonyl as the catalyst precursor and carbon monoxide as the carbon feedstock. The model separates the HiPco process into three steps, precursor decomposition, catalyst growth and evaporation, and carbon nanotube production resulting from the catalyst-enhanced disproportionation of carbon monoxide, known as the Boudouard reaction: 2 CO(g)-->C(s) + CO2(g). The resulting detailed model contains 971 species and 1948 chemical reactions. A second model with a reduced reaction set containing 14 species and 22 chemical reactions is developed on the basis of the detailed model and reproduces the chemistry of the major species. Results showing the parametric dependence of temperature, total pressure, and initial precursor partial pressures are presented, with comparison between the two models. The reduced model is more amenable to coupled reacting flow-field simulations, presented in the following article.

  13. Reaction of perfluoroalkylpolyethers (PFPE) with 440C steel in vacuum under sliding conditions at room temperature

    NASA Technical Reports Server (NTRS)

    Mori, Shigeyuki; Morales, Wilfredo

    1989-01-01

    Reactions of perfluoroalkylpolyethers (PFPE: Fomblin, Demnum and Krytox) were studied during the sliding contact of stainless steel specimens under ultrahigh vacuum conditions. All three fluids reacted with the steel specimens during sliding. Fomblin, which has acetal linkages, decomposed under the sliding conditions generating gaseous products, (COF2 and fluorinated carbons) which were detected by a quadrupole mass spectrometer. Gaseous products were not detected for the Demnum and Krytox fluids. The amount of gaseous products from Fomblin increased with increasing sliding speed. At the end of the sliding experiments, the wear scar and deposits on the specimens were examined by small spot size XPS. The oxide layer on the specimen surface was removed during sliding, and metal fluorides were formed on the worn surface. The surface of the wear scar and deposits were covered with adsorbed PFPE. Based on these results, it was concluded that the decomposition reaction on Fomblin was initiated by contacting the fluid with a fresh metal surface which was formed during sliding.

  14. Competitive photodissociation channels in jet-cooled HNCO: Thermochemistry and near-threshold predissociation

    NASA Astrophysics Data System (ADS)

    Zyrianov, M.; Droz-Georget, Th.; Sanov, A.; Reisler, H.

    1996-11-01

    The photoinitiated unimolecular decomposition of jet-cooled HNCO has been studied following S1(1A″)←S0(1A') excitation near the thresholds of the spin-allowed dissociation channels: (1) H(2S)+NCO(X2Π) and (2) NH(a1Δ)+CO(X1Σ+), which are separated by 4470 cm-1. Photofragment yield spectra of NCO(X2Π) and NH (a1Δ) were obtained in selected regions in the 260-220 nm photolysis range. The NCO(X2Π)yield rises abruptly at 38 380 cm-1 and the spectrum exhibits structures as narrow as 0.8 cm-1 near the threshold. The linewidths increase only slowly with photolysis energy. The jet-cooled absorption spectrum near the channel (1) threshold [D0(H+NCO)] was obtained using two-photon excitation via the S1 state, terminating in a fluorescent product. The absorption spectrum is similar to the NCO yield spectrum, and its intensity does not diminish noticeably above D0(H+NCO), indicating that dissociation near threshold is slow. The NCO product near threshold is cold, as is typical of a barrierless reaction. NH (a1Δ) products appear first at 42 840 cm-1, but their yield is initially very small, as evidenced also by the insignificant decrease in the NCO yield in the threshold region of channel (2). The NH (a1Δ) yield increases faster at higher photolysis energies and the linewidths increase as well. At the channel (2) threshold, the NH (a1Δ) product is generated only in the lowest rotational level, J=2, and rotational excitation increases with photolysis energy. We propose that in the range 260-230 nm, HNCO (S1) undergoes radiationless decay terminating in S0/T1 followed by unimolecular reaction. Decompositions via channels (1) and (2) proceed without significant exit channel barriers. At wavelengths shorter than 230 nm, the participation of an additional, direct pathway cannot be ruled out. The jet-cooled photofragment yield spectra allow the determination, with good accuracy, of thermochemical values relevant to HNCO decomposition. The following heats of formation are recommended: ΔH0f(HNCO)=-27.8±0.4 kcal/mol, and ΔH0f(NCO)=30.3±0.4 kcal/mol. These results are in excellent agreement with recent determinations using different experimental techniques.

  15. Thermal Decomposition of IMX-104: Ingredient Interactions Govern Thermal Insensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maharrey, Sean; Wiese-Smith, Deneille; Highley, Aaron M.

    2015-04-01

    This report summarizes initial studies into the chemical basis of the thermal insensitivity of INMX-104. The work follows upon similar efforts investigating this behavior for another DNAN-based insensitive explosive, IMX-101. The experiments described demonstrate a clear similarity between the ingredient interactions that were shown to lead to the thermal insensitivity observed in IMX-101 and those that are active in IMX-104 at elevated temperatures. Specifically, the onset of decomposition of RDX is shifted to a lower temperature based on the interaction of the RDX with liquid DNAN. This early onset of decomposition dissipates some stored energy that is then unavailable formore » a delayed, more violent release.« less

  16. Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.

    NASA Astrophysics Data System (ADS)

    Rotskoff, Grant

    We show that current fluctuations in stochastic pumps can be robustly mapped to fluctuations in a corresponding time-independent non-equilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also the optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps, similar to the ``housekeeping'' heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps satisfy a universal bound determined by the steady state entropy production. National Science Foundation Graduate Research Fellowship.

  17. Effect of hydrogen radical on decomposition of chlorosilane source gases

    NASA Astrophysics Data System (ADS)

    Sumiya, Masatomo; Akizuki, Tomohiro; Itaka, Kenji; Kubota, Makoto; Tsubouchi, Kenta; Ishigaki, Takamasa; Koinuma, Hideomi

    2013-06-01

    The effect of hydrogen radical on production of Si from chlorosilane sources has been studied. We used hydrogen radical generated from pulsed thermal plasma to decompose SiHCl3 and SiCl4. Hydrogen radical was effective for lowering the temperature to produce Si from SiHCl3. SiCl4 source, which was chemically stable and by-product in Siemens process, was decomposed effectively by hydrogen radical. The decomposition of SiCl4 was consistent with the thermo-dynamical calculation predicting that the use of hydrogen radical could drastically enhance the yield of Si production rather than case of H2 gas.

  18. Monitoring the extent of vertical and lateral movement of human decomposition products through sediment using cholesterol as a biomarker.

    PubMed

    Luong, Susan; Forbes, Shari L; Wallman, James F; Roberts, Richard G

    2018-04-01

    Due to the lack of human decomposition research facilities available in different geographical regions, the extent of movement of human decomposition products from a cadaver into various sedimentary environments, in different climates, has not been able to be studied in detail. In our study, a human cadaver was placed on the surface of a designated plot at the Australian Facility for Taphonomic Experimental Research (AFTER), the only human decomposition facility in Australia, where the natural process of decomposition was allowed to progress over 14days in the Australian summer. Sediment columns (approximately 1m deep) were collected at lateral distances of 0.25m, 0.5m, 1.0m and 2.5m in each of four directions from the centre of the torso. Plot elevation and weather data were also collected. Each sediment column was subdivided, dried and homogenised. A sample was isolated from each sediment subdivision, extracted with hexane, and the hexane extract cleaned with citrate buffer (pH 3), filtered and spiked with cholesterol-D 7 internal standard. After derivatisation with BSTFA+1% TMCS, cholesterol was monitored in the samples using targeted gas chromatography tandem mass spectrometry analysis. A positive result for decomposition products was given if the cholesterol abundance in the test sample was higher than that detected in the 'control' samples of a similar substrate type collected prior to cadaver placement. Within the confines of the experimental design and the measured parameters, lateral leaching was observed over distances of up to 2.5m from the centre of the torso, which was the maximum distance tested in the study. Vertical leaching was detected to depths of up to 49cm below the ground surface. Such data can aid the development of policies related to plot sizing and sediment renewal and regeneration at other human decomposition facilities and at cemeteries. The density and distribution of cholesterol surrounding the cadaver in this study can also help forensic investigators interpret cases involving remains that have been moved or scavenged. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Experimental Shock Decomposition of Siderite and the Origin of Magnetite in Martian Meteorite ALH84001

    NASA Technical Reports Server (NTRS)

    Bell, Mary Sue

    2007-01-01

    Shock recovery experiments to determine whether magnetite could be produced by the decomposition of iron-carbonate were initiated. Naturally occurring siderite was first characterized by electron microprobe (EMP), transmission electron microscopy (TEM), Mossbauer spectroscopy, and magnetic susceptibility measurements to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten-alloy holders (W=90%, Ni=6%, Cu=4%) to further insure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Previously reported results of TEM analyses on 49 GPa experiments indicated the presence of nano-phase spinel-structured iron oxide. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are greater than 50% Fe sup(+2) in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of single-domain, superparamagnetic sizes (approx. 50 100 nm), compositions (100% magnetite to 80% magnetite-20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) or magnetites grown naturally by MV1 magnetotactic bacteria, and as the magnetites in Martian meteorite ALH84001. Fritz et al. (2005) previously concluded that ALH84001 experienced approx. 32 GPa pressure and a resultant thermal pulse of approx. 100 - 110 C. However, ALH84001 contains evidence of local temperature excursions high enough to 1 melt feldspar, pyroxene, and a silica-rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to greater than 470 C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH84001 could be a product of shock devolatilization of siderite as well.

  20. Method of manufacturing aerogel composites

    DOEpatents

    Cao, W.; Hunt, A.J.

    1999-03-09

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.

  1. Method of manufacturing aerogel composites

    DOEpatents

    Cao, Wanqing; Hunt, Arlon Jason

    1999-01-01

    Disclosed herewith is a process of forming an aerogel composite which comprises introducing a gaseous material into a formed aerogel monolith or powder, and causing decomposition of said gaseous material in said aerogel in amounts sufficient to cause deposition of the decomposition products of the gas on the surfaces of the pores of the said aerogel.

  2. Modelling the management of forest ecosystems: Importance of wood decomposition

    Treesearch

    Juan A. Blanco; Deborah S. Page-Dumroese; Martin F. Jurgensen; Michael P. Curran; Joanne M. Tirocke; Joanna Walitalo

    2018-01-01

    Scarce and uncertain data on woody debris decomposition rates are available for calibrating forest ecosystem models, owing to the difficulty of their empirical estimations. Using field data from three experimental sites which are part of the North American Long-Term Soil Productivity (LTSP) Study in south-eastern British Columbia (Canada), we developed probability...

  3. Aerobic Decomposition and Organic Amendments Effects on Grain Yield of Triple-Cropped Rice in the Mekong Delta, Vietnam

    USDA-ARS?s Scientific Manuscript database

    Soil aeration during decomposition of incorporated crop residues and application of organic amendments might help improve soil quality and rice yield for sustainable intensive rice production. A field experiment was conducted on triple-cropped rice during three consecutive crops with five treatments...

  4. Decomposition of fluctuating initial conditions and flow harmonics

    NASA Astrophysics Data System (ADS)

    Qian, Wei-Liang; Mota, Philipe; Andrade, Rone; Gardim, Fernando; Grassi, Frédérique; Hama, Yogiro; Kodama, Takeshi

    2014-01-01

    Collective flow observed in heavy-ion collisions is largely attributed to initial geometrical fluctuations, and it is the hydrodynamic evolution of the system that transforms those initial spatial irregularities into final state momentum anisotropies. Cumulant analysis provides a mathematical tool to decompose those initial fluctuations in terms of radial and azimuthal components. It is usually thought that a specified order of azimuthal cumulant, for the most part, linearly produces flow harmonics of the same order. In this work, by considering the most central collisions (0%-5%), we carry out a systematic study on the connection between cumulants and flow harmonics using a hydrodynamic code called NeXSPheRIO. We conduct three types of calculation, by explicitly decomposing the initial conditions into components corresponding to a given eccentricity and studying the out-coming flow through hydrodynamic evolution. It is found that for initial conditions deviating significantly from Gaussian, such as those from NeXuS, the linearity between eccentricities and flow harmonics partially breaks down. Combined with the effect of coupling between cumulants of different orders, it causes the production of extra flow harmonics of higher orders. We argue that these results can be seen as a natural consequence of the non-linear nature of hydrodynamics, and they can be understood intuitively in terms of the peripheral-tube model.

  5. The development of a new technical platform to measure soil organic nitrogen cycling processes by microbes

    NASA Astrophysics Data System (ADS)

    Hu, Yuntao; Richter, Andreas; Wanek, Wolfgang

    2016-04-01

    Soil organic matter (SOM) decomposition is one of the most important processes of the global nitrogen cycle, having strong implications on soil N availability, terrestrial carbon cycling and soil carbon sequestration. During SOM decomposition low-molecular weight organic nitrogen (LMWON) is released which can be taken up by microbes (and plants). The breakdown of high-molecular weight organic nitrogen (HMWON, e.g. proteins, peptidoglycan, chitin, nucleic acids) represents the bottleneck of soil HMWON decomposition and is performed by extracellular enzymes released mainly by soil microorganisms. Despite that, the current understanding of the controls of these processes is incomplete. The only way to measure gross decomposition rates of these polymers is to use isotope pool dilution (IPD) techniques. In IPD approaches the product pool is isotopically enriched (by e.g. 15N) and the isotope dilution of this pool is measured over time. We have pioneered an IPD for protein and cellulose depolymerization, but IPD approaches for other polymers, specifically for important microbial necromass components such as chitin (fungi) and peptidoglycan (bacteria), or nucleic acids have not yet been developed. Here we present a workflow based on a universally applicable technical platform that allows to estimate the gross depolymerization rate of SOM (HMWON) at the molecular level, using ultra high performance liquid chromatography/high resolution Orbitrap mass spectrometry (UPLC/HRMS) combined with IPD techniques. The necessary isotopically labeled organic polymers (chitin, peptidoglycan and others) are extracted from laboratory bacterial and fungal cultures grown in fully isotopically labeled nutrient media (15N, 13C or both). A purification scheme for the different polymers is currently established. Labeled potential decomposition products (e.g. amino sugars and muropeptides from peptidoglycan, amino sugars and chitooligosaccharides from chitin, nucleotides and nucleosides from nucleic acids) are prepared by enzymatic and/or acid digestion of the polymers. Different UPLC separation columns (Hypercarb, HiliC and C18) make it possible to separate more than 100 related monomers and oligomers produced during polymer decomposition, a prerequisite for analyzing the concentrations and isotope kinetics of decomposition products in complex soil samples. The benchtop Orbitrap mass analyzer has a nominal mass resolving power of 100,000 (FWHM at m/z 200), which enables us to separate compounds that are 13C- and 15N-labelled (mass difference: 0.00632) in the same compound, allowing tracing carbon and nitrogen isotopes in the same compound in IPD experiments. With the accurate masses, retention times and the isotopic pattern we can quantify and qualify the target decomposition products and their isotope kinetics during soil incubation experiments. This will enable us to estimate in situ decomposition rates of the major organic nitrogen polymers in soils, allowing new insights into the major controls of the most important step in soil organic nitrogen recycling.

  6. Lipid oxidation. Part. 1. Effect of free carboxyl group on the decomposition of lipid hydroperoxide.

    PubMed

    Pokorný, J; Rzepa, J; Janícek, G

    1976-01-01

    Hydroperoxido butyl oleate was decomposed by heating in excess palmitic acid at 60-120 degrees C. The decomposition followed the kinetics of a first order reaction with formation of both monomeric and oligomeric secondary products. The proportions of oligomers slightly increased with increasing reaction temperature and decreased with increasing concentration of hydroperoxide. The activation energy was 70.4 kJ/mol +/- 4.7 kJ/mol. The decomposition of hydroperoxides proceeded partially by monomolecular cleavage, partially by formation of esters with palmitic acid.

  7. Decomposition of toxicity emission changes on the demand and supply sides: empirical study of the US industrial sector

    NASA Astrophysics Data System (ADS)

    Fujii, Hidemichi; Okamoto, Shunsuke; Kagawa, Shigemi; Managi, Shunsuke

    2017-12-01

    This study investigated the changes in the toxicity of chemical emissions from the US industrial sector over the 1998-2009 period. Specifically, we employed a multiregional input-output analysis framework and integrated a supply-side index decomposition analysis (IDA) with a demand-side structural decomposition analysis (SDA) to clarify the main drivers of changes in the toxicity of production- and consumption-based chemical emissions. The results showed that toxic emissions from the US industrial sector decreased by 83% over the studied period because of pollution abatement efforts adopted by US industries. A variety of pollution abatement efforts were used by different industries, and cleaner production in the mining sector and the use of alternative materials in the manufacture of transportation equipment represented the most important efforts.

  8. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst.

    PubMed

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-04-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O 2 at room temperature to an acidic RuO 2 /γ-Al 2 O 3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO 2 and acidic sites on the γ-Al 2 O 3 and with physisorption of multiple ammonia molecules.

  9. Carbon-free H2 production from ammonia triggered at room temperature with an acidic RuO2/γ-Al2O3 catalyst

    PubMed Central

    Nagaoka, Katsutoshi; Eboshi, Takaaki; Takeishi, Yuma; Tasaki, Ryo; Honda, Kyoko; Imamura, Kazuya; Sato, Katsutoshi

    2017-01-01

    Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O2 at room temperature to an acidic RuO2/γ-Al2O3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO2 and acidic sites on the γ-Al2O3 and with physisorption of multiple ammonia molecules. PMID:28508046

  10. Chemical manipulation of soil biota in a fescue meadow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malone, C. R.; Reichle, D. E.

    Formalin, phorate, and sodium chlorate were used in field enclosures to create artificial habitats in a fescue meadow containing (1) reduced number of earthworms, (2) reduced numbers of earthworms and soil arthropods, and (3) reduction of total soil fauna and rate of microbial decomposition. Under these conditions, confined fescue litter initially decomposed more rapidly where arthropods or earthworms were suppressed than in controls with full complements of soil animals. After one year, reduction in numbers of soil animals had no net effect on litter decomposition, with faunal activity apparently having been compensated for by increased microbial activity. Where animals andmore » microbial activity were reduced, rate of litter loss was depressed initially but recovered after 10 months as the effects of chemical suppression of microbial populations subsided. Contrary to the effects on annual loss of litter, elimination of all or portions of the soil fauna depressed rates of loss of confined and buried roots, reflecting the role of animals in fragmenting roots before their decomposition by microorganisms. Habitat manipulations had pronounced effects on the mobility of 134Cs, and loss of the radionuclide from labelled litter was retarded despite an accelerated rate of decomposition. This effect apparently was associated with proliferation of microorganisms on litter and microbial immobilization of the radionuclide. Immobilization of 134Cs occurred following chemical perturbations, but only after an initial period of rapid loss resulting from increased microbial activity. Distribution of 134Cs in soil beneath tagged litter bags reflected the role of animals in element redistribution within soil. Finally, restricted vertical mobility of the nuclide occurred except where chemical application killed vegetation within the experimental enclosures.« less

  11. Characteristic of retained austenite decomposition during tempering and its effect on impact toughness in SA508 Gr.3 steel

    NASA Astrophysics Data System (ADS)

    Yan, Guanghua; Han, Lizhan; Li, Chuanwei; Luo, Xiaomeng; Gu, Jianfeng

    2017-01-01

    Retained austenite(RA) usually presents in the quenched Nuclear Pressure-Vessel SA508 Gr.3 steel. In the present work, the characteristic of RA decomposition and its effect on the impact toughness were investigated by microstructure observation, dilatometric experiments and Charpy impact tests. The results show that the RA transformed into martensite and bainite during tempering at 230 °C and 400 °C respectively, while mixture of long rod carbides and ferrite formed at 650 °C. The long rod carbides formed from RA decomposition decrease the critical cleavage stress for initiation of micro-cracks, and deteriorate the impact toughness of the steel. Pre-tempering at a low temperature such as 230 °C or 400 °C leading to the decomposition of RA into martensite or baintie can eliminate the deterioration of the toughness caused by direct decomposition into long rod carbides. The absorbed energy indicate that pre-tempering at 400 °C can drive dramatically improvement in the toughness of the steel.

  12. An Efficient Local Correlation Matrix Decomposition Approach for the Localization Implementation of Ensemble-Based Assimilation Methods

    NASA Astrophysics Data System (ADS)

    Zhang, Hongqin; Tian, Xiangjun

    2018-04-01

    Ensemble-based data assimilation methods often use the so-called localization scheme to improve the representation of the ensemble background error covariance (Be). Extensive research has been undertaken to reduce the computational cost of these methods by using the localized ensemble samples to localize Be by means of a direct decomposition of the local correlation matrix C. However, the computational costs of the direct decomposition of the local correlation matrix C are still extremely high due to its high dimension. In this paper, we propose an efficient local correlation matrix decomposition approach based on the concept of alternating directions. This approach is intended to avoid direct decomposition of the correlation matrix. Instead, we first decompose the correlation matrix into 1-D correlation matrices in the three coordinate directions, then construct their empirical orthogonal function decomposition at low resolution. This procedure is followed by the 1-D spline interpolation process to transform the above decompositions to the high-resolution grid. Finally, an efficient correlation matrix decomposition is achieved by computing the very similar Kronecker product. We conducted a series of comparison experiments to illustrate the validity and accuracy of the proposed local correlation matrix decomposition approach. The effectiveness of the proposed correlation matrix decomposition approach and its efficient localization implementation of the nonlinear least-squares four-dimensional variational assimilation are further demonstrated by several groups of numerical experiments based on the Advanced Research Weather Research and Forecasting model.

  13. Gas evolution from cathode materials: A pathway to solvent decomposition concomitant to SEI formation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browning, Katie L; Baggetto, Loic; Unocic, Raymond R

    This work reports a method to explore the catalytic reactivity of electrode surfaces towards the decomposition of carbonate solvents [ethylene carbonate (EC), dimethyl carbonate (DMC), and EC/DMC]. We show that the decomposition of a 1:1 wt% EC/DMC mixture is accelerated over certain commercially available LiCoO2 materials resulting in the formation of CO2 while over pure EC or DMC the reaction is much slower or negligible. The solubility of the produced CO2 in carbonate solvents is high (0.025 grams/mL) which masks the effect of electrolyte decomposition during storage or use. The origin of this decomposition is not clear but it ismore » expected to be present on other cathode materials and may affect the analysis of SEI products as well as the safety of Li-ion batteries.« less

  14. Critical oxide cluster size on Si(111)

    NASA Astrophysics Data System (ADS)

    Shklyaev, A. A.; Aono, M.; Suzuki, T.

    1999-03-01

    The initial stage of oxide growth and subsequent oxide decomposition on Si(111)-7×7 at temperatures between 350 and 720°C are studied with the optical second harmonic generation for O 2 pressures ( Pox) between 5×10 -9 and 4×10 -6 Torr. The obtained pressure dependencies of the initial oxide growth rate ( Rgr) and the subsequent oxide decomposition rate are associated with the cluster-forming nature of the oxidation process. For the model of oxide cluster nucleation and growth, a scaling relationship is derived among the critical oxide cluster size, i, and the experimentally measurable values of Rgr and Pox. The critical oxide cluster size, i, thus obtained from the kinetic data increases with temperature. This correlates with an increase of desorption channels and their rates in that the competition between growth and decomposition requires more stable oxide clusters, i.e. clusters with a larger critical size, for oxide to grow at higher temperatures. The increase of i with decreasing Pox is related with a decrease of Rgr: a decreased Rgr requires critical clusters with a longer lifetime, i.e. clusters with a larger size.

  15. Long-term amelioration of acidity accelerates decomposition in headwater streams.

    PubMed

    Jenkins, Gareth B; Woodward, Guy; Hildrew, Alan G

    2013-04-01

    The secondary production of culturally acidified streams is low, with a few species of generalist detritivores dominating invertebrate assemblages, while decomposition processes are impaired. In a series of lowland headwater streams in southern England, we measured the rate of cellulolytic decomposition and compared it with values measured three decades ago, when anthropogenic acidification was at its peak. We hypothesized that, if acidity has indeed ameliorated, the rate of decomposition will have accelerated, thus potentially supporting greater secondary production and the longer food chains that have been observed in some well-studied recovering freshwater systems. We used cellulose Shirley test cloth as a standardized bioassay to measure the rate of cellulolytic decomposition, via loss in tensile strength, for 31 streams in the Ashdown Forest over 7 days in summer 2011 and 49 days in winter 2012. We compared this with data from an otherwise identical study conducted in 1978 and 1979. In a secondary study, we determined whether decomposition followed a linear or logarithmic decay and, as Shirley cloth is no longer available, we tested an alternative in the form of readily available calico. Overall mean pH had increased markedly over the 32 years between the studies (from 6.0 to 6.7). In both the previous and contemporary studies, the relationship between decomposition and pH was strongest in winter, when pH reaches a seasonal minimum. As in the late 1970s, there was no relationship in 2011/2012 between pH and decay rate in summer. As postulated, decomposition in winter was significantly faster in 2011/2012 than in 1978/1979, with an average increase in decay rate of 18.1%. Recovery from acidification, due to decreased acidifying emissions and deposition, has led to an increase in the rate of cellulolytic decomposition. This response in a critical ecosystem process offers a potential explanation of one aspect of the limited biological recovery that has been observed so far, an increase in larger bodied predators including fish, which in turn leads to an increase in the length of food chains. © 2012 Blackwell Publishing Ltd.

  16. Decadal changes in peat carbon accrual rates in bogs in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Fissore, C.; Nater, E. A.; McFarlane, K. J.

    2017-12-01

    Throughout the Holocene, peatland ecosystems have accumulated substantial amounts of carbon (C) and currently store about one third of all soil organic carbon (SOC) worldwide. Large uncertainty still persists on whether peatland ecosystems located in northern latitudes will continue to act as C sinks, or if the effects of global warming will have greater effects on decomposition processes than on net ecosystem production. We investigated decadal C accrual rates of the top 25 cm of peats in three Sphagnum-rich peatlands located in Northern Minnesota (two ombrotrophic bogs and one fen). We used radiocarbon analysis of Sphagnum cellulose and model fitting to determine peat ages, and peat FTIR spectroscopy to determine humification indices and relative decomposition of peat samples with depth. We had the scope to detect whether recent warming has had an effect on peat decomposition and C accumulation rates. Modeled C accumulation rates in the three peatlands during the past five decades ranged between 78 and 107 g C m-2 yr-1 in the top 25 cm analyzed in this study, values that are higher than the 22 to 29 g C m-2 yr-1 obtained for long-term (millennial) accumulations for the entire bog profiles. Peat IR spectra and C:N ratios confirm low levels of decomposition across the bog sites, especially in the uppermost parts of the peat. The fen site showed very limited decomposition across the entire sampled profile. Higher rates of C accumulation, combined with low decomposition rates close to the surface provide a good estimate of net primary productivity. As substrate decomposition progresses over time, net rates of accumulation decrease. Peat decomposition was more pronounced in the lower depths of the sampled cores in the two ombrotrophic bogs than in the fen, likely an effect of larger temporal variation in water table depth in the bogs than in the fen. Some of the variation in C accumulation and decomposition observed in our bogs and fen suggests that future C accumulation rates will also largely depend on the effect of warming on hydrology, rather than temperature alone.

  17. Adiabatic Compression Sensitivity of AF-M315E

    DTIC Science & Technology

    2015-07-01

    the current work is to expand the knowledge base from previous experiments completed at AFRL for AF-M315E in stainless steel U-tubes at room...addressed, to some degree, with the use of clamps and a large stainless steel plate to dissipate any major vibrations. A large preheated bath of 50:50 v/v...autocatalytic chain decomposition in the propellant. This exothermic decomposition decreases the fume -off initiation temperature of the propellant and its

  18. Shock simulations of a single-site coarse-grain RDX model using the dissipative particle dynamics method with reactivity

    NASA Astrophysics Data System (ADS)

    Sellers, Michael S.; Lísal, Martin; Schweigert, Igor; Larentzos, James P.; Brennan, John K.

    2017-01-01

    In discrete particle simulations, when an atomistic model is coarse-grained, a tradeoff is made: a boost in computational speed for a reduction in accuracy. The Dissipative Particle Dynamics (DPD) methods help to recover lost accuracy of the viscous and thermal properties, while giving back a relatively small amount of computational speed. Since its initial development for polymers, one of the most notable extensions of DPD has been the introduction of chemical reactivity, called DPD-RX. In 2007, Maillet, Soulard, and Stoltz introduced implicit chemical reactivity in DPD through the concept of particle reactors and simulated the decomposition of liquid nitromethane. We present an extended and generalized version of the DPD-RX method, and have applied it to solid hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Demonstration simulations of reacting RDX are performed under shock conditions using a recently developed single-site coarse-grain model and a reduced RDX decomposition mechanism. A description of the methods used to simulate RDX and its transition to hot product gases within DPD-RX is presented. Additionally, we discuss several examples of the effect of shock speed and microstructure on the corresponding material chemistry.

  19. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.

    PubMed

    Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.

  20. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    PubMed Central

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  1. Thermal decomposition of ethanol. 4. Ab initio chemical kinetics for reactions of H atoms with CH3CH2O and CH3CHOH radicals.

    PubMed

    Xu, Z F; Xu, Kun; Lin, M C

    2011-04-21

    The potential energy surfaces of H-atom reactions with CH(3)CH(2)O and CH(3)CHOH, two major radicals in the decomposition and oxidation of ethanol, have been studied at the CCSD(T)/6-311+G(3df,2p) level of theory with geometric optimization carried out at the BH&HLYP/6-311+G(3df,2p) level. The direct hydrogen abstraction channels and the indirect association/decomposition channels from the chemically activated ethanol molecule have been considered for both reactions. The rate constants for both reactions have been calculated at 100-3000 K and 10(-4) Torr to 10(3) atm Ar pressure by microcanonical VTST/RRKM theory with master equation solution for all accessible product channels. The results show that the major product channel of the CH(3)CH(2)O + H reaction is CH(3) + CH(2)OH under atmospheric pressure conditions. Only at high pressure and low temperature, the rate constant for CH(3)CH(2)OH formation by collisonal deactivation becomes dominant. For CH(3)CHOH + H, there are three major product channels; at high temperatures, CH(3)+CH(2)OH production predominates at low pressures (P < 100 Torr), while the formation of CH(3)CH(2)OH by collisional deactivation becomes competitive at high pressures and low temperatures (T < 500 K). At high temperatures, the direct hydrogen abstraction reaction producing CH(2)CHOH + H(2) becomes dominant. Rate constants for all accessible product channels in both systems have been predicted and tabulated for modeling applications. The predicted value for CH(3)CHOH + H at 295 K and 1 Torr pressure agrees closely with available experimental data. For practical modeling applications, the rate constants for the thermal unimolecular decomposition of ethanol giving key accessible products have been predicted; those for the two major product channels taking place by dehydration and C-C breaking agree closely with available literature data.

  2. Farmers behavior on using fertilizer in West Java

    NASA Astrophysics Data System (ADS)

    Perdana, Tomy; Renaldy, Eddy; Utami, Hesty Nurul; Sadeli, Agriani Hermita; Mahra Arari, H.; Ginanjar, Tetep; Ajeng Sesy N., P.; Fernianda Rahayu, H.; Sanjaya, Sonny

    2018-02-01

    Fertilizer is one of the important materials in farming system to improve quality and quantity of harvest. Most of farmers in Indonesia using fertilizer, one of substantial fertilizer is NPK that contain of complex nutrient, there are nitrogen, phosphorus and potassium. There are tendency for farmers using NPK based on quality products and speed of decomposition. Nowadays, market size for NPK fertilizer has been dramatically increase and it will impact on intensify of fertilizer use. The potential requirement in marketing does not balanced with consumer behavior analysis. Meanwhile, agricultural sector (include horticulture, floriculture, bio-pharmacy and plantation) have been wieldly increase of the farming system annualy. This research is study case which is analyzed local NPK fertilizer competitive advantage compared to imported NPK fertilizer through consumer point of view towards product quality in four districts in West Java province, i.e., West Bandung, Garut, Bogor and Cianjur District with target respondents are farmers who use NPK fertilizer. NPK fertilizer qualities are based on product attributes, which are; availability, nutrient content, price, basic ingredients, form of fertilizer, speed of decomposition, label, color, type, design and size of packaging. It was analyzed using sematic differential attitude models and multi attribute attitude snake diagram model. The evaluation ranking of consumers interests towards fertilizer attribute characteristics showed that consumer intention before deciding to buy or use a NPK fertilizer will consider nutrient content, speed of decomposition, form of fertilizer and availability of products. Consumer's attitude towards all NPK fertilizer attribute quality illustrated that imported fertilizer is considered to be more positive than local fertilizer. Fertilizer companies or industries should be able to maintain their fertilizer production especially concerning nutrient content and availability of products through a better production which appropriate with consumer's needs. Nutrient contents, form and speed of decomposition of fertilizer should be adapted with current state of farming activities

  3. Consumer trophic diversity as a fundamental mechanism linking predation and ecosystem functioning.

    PubMed

    Hines, Jes; Gessner, Mark O

    2012-11-01

    1. Primary production and decomposition, two fundamental processes determining the functioning of ecosystems, may be sensitive to changes in biodiversity and food web interactions. 2. The impacts of food web interactions on ecosystem functioning are generally quantified by experimentally decoupling these linked processes and examining either primary production-based (green) or decomposition-based (brown) food webs in isolation. This decoupling may strongly limit our ability to assess the importance of food web interactions on ecosystem processes. 3. To evaluate how consumer trophic diversity mediates predator effects on ecosystem functioning, we conducted a mesocosm experiment and a field study using an assemblage of invertebrates that naturally co-occur on North Atlantic coastal saltmarshes. We measured the indirect impact of predation on primary production and leaf decomposition as a result of prey communities composed of herbivores alone, detritivores alone or both prey in combination. 4. We find that primary consumers can influence ecosystem process rates not only within, but also across green and brown sub-webs. Moreover, by feeding on a functionally diverse consumer assemblage comprised of both herbivores and detritivores, generalist predators can diffuse consumer effects on decomposition, primary production and feedbacks between the two processes. 5. These results indicate that maintaining functional diversity among primary consumers can alter the consequences of traditional trophic cascades, and they emphasize the role of the detritus-based sub-web when seeking key biotic drivers of plant production. Clearly, traditional compartmentalization of empirical food webs can limit our ability to predict the influence of food web interactions on ecosystem functioning. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  4. Reaction mechanisms for the limited reversibility of Li-O 2 chemistry in organic carbonate electrolytes

    NASA Astrophysics Data System (ADS)

    Xu, Wu; Xu, Kang; Viswanathan, Vilayanur V.; Towne, Silas A.; Hardy, John S.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Wang, Deyu; Zhang, Ji-Guang

    The Li-O 2 chemistry in nonaqueous liquid carbonate electrolytes and the underlying reason for its limited reversibility was systematically investigated. X-ray diffraction data showed that regardless of discharge depth lithium alkylcarbonates (lithium propylenedicarbonate (LPDC), or lithium ethylenedicarbonate (LEDC), with other related derivatives) and lithium carbonate (Li 2CO 3) are constantly the main discharge products, while lithium peroxide (Li 2O 2) or lithium oxide (Li 2O) is hardly detected. These lithium alkylcarbonates are generated from the reductive decomposition of the corresponding carbonate solvents initiated by the attack of superoxide radical anions. More significantly, in situ gas chromatography/mass spectroscopy analysis revealed that Li 2CO 3 and Li 2O cannot be oxidized even when charged to 4.6 V vs. Li/Li +, while LPDC, LEDC and Li 2O 2 are readily oxidized, with CO 2 and CO released from LPDC and LEDC and O 2 evolved from Li 2O 2. Therefore, the apparent reversibility of Li-O 2 chemistry in an organic carbonate-based electrolyte is actually an unsustainable process that consists of (1) the formation of lithium alkylcarbonates through the reductive decomposition of carbonate solvents during discharging and (2) the subsequent oxidation of these same alkylcarbonates during charging. Therefore, a stable electrolyte that does not lead to an irreversible by-product formation during discharging and charging is necessary for truly rechargeable Li-O 2 batteries.

  5. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Dateo, Christopher E.; Meyyappan, M.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process, developed at Rice University, has been reported to produce single-walled carbon nanotubes from gas-phase reactions of iron carbonyl in carbon monoxide at high pressures (10-100 atm). Computational modeling is used here to develop an understanding of the HiPco process. A detailed kinetic model of the HiPco process that includes of the precursor, decomposition metal cluster formation and growth, and carbon nanotube growth was developed in the previous article (Part I). Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. The diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by the Boudouard reaction with metal catalysts. Based on the detailed model simulations, a reduced kinetic model was also developed in Part I for use in reactor-scale flowfield calculations. Here this reduced kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance. Carbon nanotube growth is examined with respect to several process variables (peripheral jet temperature, reactor pressure, and Fe(CO)5 concentration) with the use of the axisymmetric model, and the computed results are compared with existing experimental data. The model yields most of the qualitative trends observed in the experiments and helps to understanding the fundamental processes in HiPco carbon nanotube production.

  6. Intrapopulation Genotypic Variation of Foliar Secondary Chemistry during Leaf Senescence and Litter Decomposition in Silver Birch (Betula pendula)

    PubMed Central

    Paaso, Ulla; Keski-Saari, Sarita; Keinänen, Markku; Karvinen, Heini; Silfver, Tarja; Rousi, Matti; Mikola, Juha

    2017-01-01

    Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula. Broad-sense heritability (H2) and coefficient of genotypic variation (CVG) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H2 and CVG for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process. PMID:28694813

  7. Intrapopulation Genotypic Variation of Foliar Secondary Chemistry during Leaf Senescence and Litter Decomposition in Silver Birch (Betula pendula).

    PubMed

    Paaso, Ulla; Keski-Saari, Sarita; Keinänen, Markku; Karvinen, Heini; Silfver, Tarja; Rousi, Matti; Mikola, Juha

    2017-01-01

    Abundant secondary metabolites, such as condensed tannins, and their interpopulation genotypic variation can remain through plant leaf senescence and affect litter decomposition. Whether the intrapopulation genotypic variation of a more diverse assortment of secondary metabolites equally persists through leaf senescence and litter decomposition is not well understood. We analyzed concentrations of intracellular phenolics, epicuticular flavonoid aglycones, epicuticular triterpenoids, condensed tannins, and lignin in green leaves, senescent leaves and partly decomposed litter of silver birch, Betula pendula . Broad-sense heritability ( H 2 ) and coefficient of genotypic variation ( CV G ) were estimated for metabolites in senescent leaves and litter using 19 genotypes selected from a B. pendula population in southern Finland. We found that most of the secondary metabolites remained through senescence and decomposition and that their persistence was related to their chemical properties. Intrapopulation H 2 and CV G for intracellular phenolics, epicuticular flavonoid aglycones and condensed tannins were high and remarkably, increased from senescent leaves to decomposed litter. The rank of genotypes in metabolite concentrations was persistent through litter decomposition. Lignin was an exception, however, with a diminishing genotypic variation during decomposition, and the concentrations of lignin and condensed tannins had a negative genotypic correlation in the senescent leaves. Our results show that secondary metabolites and their intrapopulation genotypic variation can for the most part remain through leaf senescence and early decomposition, which is a prerequisite for initial litter quality to predict variation in litter decomposition rates. Persistent genotypic variation also opens an avenue for selection to impact litter decomposition in B. pendula populations through acting on their green foliage secondary chemistry. The negative genotypic correlations and diminishing heritability of lignin concentrations may, however, counteract this process.

  8. Effects of organic matter removal, soil compaction, and vegetation control on Collembolan populations

    Treesearch

    Robert J. Eaton; Mary Barbercheck; William D. Smith

    2004-01-01

    Collembola can be among the most numerous meso-invertebrates in the forest floor and, through their interaction with primary decomposers in the decomposition food web, may affect litter decomposition and consequently site productivity. This study was conducted to determine whether Collembolan abundance could be impacted by organic matter removal, compaction, and...

  9. The Feasibility of Using Hydrogen Peroxide Decomposition Studies for High School Chemistry.

    ERIC Educational Resources Information Center

    Carter, Gillian E.

    1986-01-01

    Highlights difficulties that occur when teachers attempt to devise new experiments (use of hydrogen peroxide decomposition) and how seemingly useless results can be turned into productive student projects. Considers effects of ions present in tap water, pH, dust, and nature of vessel's surface. Reaction order and safety precautions are noted. (JN)

  10. Understanding the Reaction Chemistry of 2,2':5',2''-Terthiophene Films with Vapor-Deposited Ag, Al, and Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Lingzi; Matz, Dallas L.; Pemberton, Jeanne E.

    The reaction chemistry of vapor-deposited 2,2':5',2''-terthiophene (α-3T) solid-state thin films with postdeposited Ag, Al, and Ca is investigated in ultrahigh vacuum using Raman spectroscopy. Vapor-deposited Ag forms nanoparticles on these films and induces considerable surface enhanced Raman scattering (SERS) along with a change in molecular symmetry of adjacent α-3T and formation of Ag–S bonds; no other reaction chemistry is observed. Vapor-deposited Al and Ca undergo chemical reaction with α-3T initiated by metal-to-α-3T electron transfer. For Al, the resulting product is predominantly amorphous carbon through initial radical formation and subsequent decomposition reactions. For Ca, the spectral evidence suggests two pathways: onemore » leading to α-3T polymerization and the other resulting in thiophene ring opening, both initiated by radical formation through Ca-to-α-3T electron transfer. These interfacial reactions reflect the complex chemistry that can occur between low work function metals and thiophene-based oligomers. This reactivity is strongly correlated with metal work function.« less

  11. Understanding the Reaction Chemistry of 2,2':5',2"-Terthiophene Films with Vapor-Deposited Ag, Al, and Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Lingzi; Matz, Dallas L.; Pemberton, Jeanne E.

    The reaction chemistry of vapor-deposited 2,2':5',2''-terthiophene (α-3T) solid-state thin films with postdeposited Ag, Al, and Ca is investigated in ultrahigh vacuum using Raman spectroscopy. Vapor-deposited Ag forms nanoparticles on these films and induces considerable surface enhanced Raman scattering (SERS) along with a change in molecular symmetry of adjacent α-3T and formation of Ag–S bonds; no other reaction chemistry is observed. Vapor-deposited Al and Ca undergo chemical reaction with α-3T initiated by metal-to-α-3T electron transfer. For Al, the resulting product is predominantly amorphous carbon through initial radical formation and subsequent decomposition reactions. For Ca, the spectral evidence suggests two pathways: onemore » leading to α-3T polymerization and the other resulting in thiophene ring opening, both initiated by radical formation through Ca-to-α-3T electron transfer. These interfacial reactions reflect the complex chemistry that can occur between low work function metals and thiophene-based oligomers. This reactivity is strongly correlated with metal work function.« less

  12. Critical moisture content for microbial growth in dried food-processing residues.

    PubMed

    Rezaei, Farzaneh; Vandergheynst, Jean S

    2010-09-01

    Food-processing residues are good feedstocks for biofuel and biochemical production because they have high energy content and are abundant. Year-round biofuel and biochemical production requires proper storage to prevent microbial decomposition and thermal runaway. In this study, microbial activity of tomato pomace (TP), grape pomace (GP), fermented grape pomace (FGP) and sugar beet pulp (SBP) was monitored at nine different moisture contents. Maximum and cumulative respirations for each feedstock with respect to moisture content followed a sigmoidal relationship. The critical moisture content below which no microbial activity was detected for SBP, TP, FGP and GP was 24-31, 16-21, 23-33 and 43-46% (dry basis) respectively. A logarithmic relationship was observed (R(2) = 0.94) between critical moisture content and initial water-soluble carbohydrate (WSC) content of the processing residues. The critical moisture content below which no microbial activity was detected and the relationship between critical moisture content and initial WSC content were determined in this study for four food-processing residues. Both parameters permit evaluation of the potential for deterioration of food-processing residues during storage based on moisture content and WSC content. Copyright 2010 Society of Chemical Industry.

  13. Singlet oxygen production in Chlamydomonas reinhardtii under heat stress.

    PubMed

    Prasad, Ankush; Ferretti, Ursula; Sedlářová, Michaela; Pospíšil, Pavel

    2016-02-01

    In the current study, singlet oxygen formation by lipid peroxidation induced by heat stress (40 °C) was studied in vivo in unicellular green alga Chlamydomonas reinhardtii. Primary and secondary oxidation products of lipid peroxidation, hydroperoxide and malondialdehyde, were generated under heat stress as detected using swallow-tailed perylene derivative fluorescence monitored by confocal laser scanning microscopy and high performance liquid chromatography, respectively. Lipid peroxidation was initiated by enzymatic reaction as inhibition of lipoxygenase by catechol and caffeic acid prevented hydroperoxide formation. Ultra-weak photon emission showed formation of electronically excited species such as triplet excited carbonyl, which, upon transfer of excitation energy, leads to the formation of either singlet excited chlorophyll or singlet oxygen. Alternatively, singlet oxygen is formed by direct decomposition of hydroperoxide via Russell mechanisms. Formation of singlet oxygen was evidenced by the nitroxyl radical 2,2,6,6-tetramethylpiperidine-1-oxyl detected by electron paramagnetic resonance spin-trapping spectroscopy and the imaging of green fluorescence of singlet oxygen sensor green detected by confocal laser scanning microscopy. Suppression of singlet oxygen formation by lipoxygenase inhibitors indicates that singlet oxygen may be formed via enzymatic lipid peroxidation initiated by lipoxygenase.

  14. Rapid characterization of lithium ion battery electrolytes and thermal aging products by low-temperature plasma ambient ionization high-resolution mass spectrometry.

    PubMed

    Vortmann, Britta; Nowak, Sascha; Engelhard, Carsten

    2013-03-19

    Lithium ion batteries (LIBs) are key components for portable electronic devices that are used around the world. However, thermal decomposition products in the battery reduce its lifetime, and decomposition processes are still not understood. In this study, a rapid method for in situ analysis and reaction monitoring in LIB electrolytes is presented based on high-resolution mass spectrometry (HR-MS) with low-temperature plasma probe (LTP) ambient desorption/ionization for the first time. This proof-of-principle study demonstrates the capabilities of ambient mass spectrometry in battery research. LTP-HR-MS is ideally suited for qualitative analysis in the ambient environment because it allows direct sample analysis independent of the sample size, geometry, and structure. Further, it is environmental friendly because it eliminates the need of organic solvents that are typically used in separation techniques coupled to mass spectrometry. Accurate mass measurements were used to identify the time-/condition-dependent formation of electrolyte decomposition compounds. A LIB model electrolyte containing ethylene carbonate and dimethyl carbonate was analyzed before and after controlled thermal stress and over the course of several weeks. Major decomposition products identified include difluorophosphoric acid, monofluorophosphoric acid methyl ester, monofluorophosphoric acid dimethyl ester, and hexafluorophosphate. Solvents (i.e., dimethyl carbonate) were partly consumed via an esterification pathway. LTP-HR-MS is considered to be an attractive method for fundamental LIB studies.

  15. Crop residue decomposition in Minnesota biochar amended plots

    NASA Astrophysics Data System (ADS)

    Weyers, S. L.; Spokas, K. A.

    2014-02-01

    Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.

  16. The effect of resource history on the functioning of soil microbial communities is maintained across time

    NASA Astrophysics Data System (ADS)

    Keiser, A. D.; Strickland, M. S.; Fierer, N.; Bradford, M. A.

    2011-02-01

    Historical resource conditions appear to influence microbial community function. With time, historical influences might diminish as populations respond to the contemporary environment. Alternatively, they may persist given factors such as contrasting genetic potentials for adaptation to a new environment. Using experimental microcosms, we test competing hypotheses that function of distinct soil microbial communities in common environments (H1a) converge or (H1b) remain dissimilar over time. Using a 6 × 2 (soil community inoculum × litter environment) full-factorial design, we compare decomposition rates in experimental microcosms containing grass or hardwood litter environments. After 100 days, communities that develop are inoculated into fresh litters and decomposition followed for another 100 days. We repeat this for a third, 100-day period. In each successive, 100-day period, we find higher decomposition rates (i.e. functioning) suggesting communities function better when they have an experimental history of the contemporary environment. Despite these functional gains, differences in decomposition rates among initially distinct communities persist, supporting the hypothesis that dissimilarity is maintained across time. In contrast to function, community composition is more similar following a common, experimental history. We also find that "specialization" on one experimental environment incurs a cost, with loss of function in the alternate environment. For example, experimental history of a grass-litter environment reduced decomposition when communities were inoculated into a hardwood-litter environment. Our work demonstrates experimentally that despite expectations of fast growth rates, physiological flexibility and rapid evolution, initial functional differences between microbial communities are maintained across time. These findings question whether microbial dynamics can be omitted from models of ecosystem processes if we are to predict reliably global change effects on biogeochemical cycles.

  17. The effect of resource history on the functioning of soil microbial communities is maintained across time

    NASA Astrophysics Data System (ADS)

    Keiser, A. D.; Strickland, M. S.; Fierer, N.; Bradford, M. A.

    2011-06-01

    Historical resource conditions appear to influence microbial community function. With time, historical influences might diminish as populations respond to the contemporary environment. Alternatively, they may persist given factors such as contrasting genetic potentials for adaptation to a new environment. Using experimental microcosms, we test competing hypotheses that function of distinct soil microbial communities in common environments (H1a) converge or (H1b) remain dissimilar over time. Using a 6 × 2 (soil community inoculum × litter environment) full-factorial design, we compare decomposition rates in experimental microcosms containing grass or hardwood litter environments. After 100 days, communities that develop are inoculated into fresh litters and decomposition followed for another 100 days. We repeat this for a third, 100-day period. In each successive, 100-day period, we find higher decomposition rates (i.e. functioning) suggesting communities function better when they have an experimental history of the contemporary environment. Despite these functional gains, differences in decomposition rates among initially distinct communities persist, supporting the hypothesis that dissimilarity is maintained across time. In contrast to function, community composition is more similar following a common, experimental history. We also find that "specialization" on one experimental environment incurs a cost, with loss of function in the alternate environment. For example, experimental history of a grass-litter environment reduced decomposition when communities were inoculated into a hardwood-litter environment. Our work demonstrates experimentally that despite expectations of fast growth rates, physiological flexibility and rapid evolution, initial functional differences between microbial communities are maintained across time. These findings question whether microbial dynamics can be omitted from models of ecosystem processes if we are to predict reliably global change effects on biogeochemical cycles.

  18. Soil respiration and aboveground litter dynamics of a tropical transitional forest in northwest Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Valentini, Carla Maria Abido; Sanches, Luciana; de Paula, Sérgio Roberto; Vourlitis, George Louis; de Souza Nogueira, José; Pinto, Osvaldo Borges; de Almeida Lobo, Francisco

    2008-12-01

    Measurements of soil CO2 efflux, litter production, and the surface litter pool biomass were made over a 1 year period in a tropical transitional forest near Sinop, Mato Grosso, Brazil with the aim of quantifying the seasonal variation in soil respiration and litter decomposition and the annual contribution of litter decomposition to soil CO2 efflux. Average annual soil CO2 efflux (+/-95% confidence interval (CI)) was 7.91 +/- 1.16 g C m-2 d-1. Soil CO2 efflux was highest during the November-February wet season (9.15 +/- 0.90 g C m-2 d-1) and lowest during the May-September dry season (6.19 +/- 1.40 g C m-2 d-1), and over 60% of the variation in seasonal soil CO2 efflux was explained by seasonal variations in soil temperature and moisture. Mass balance estimates of mean (+/-95% CI) decomposition rates were statistically different between the wet and dry seasons (0.66 +/- 0.08 and 1.65 +/- 0.10 g C m-2 d-1, respectively), and overall, decomposition of leaf litter comprised 16% of the average annual soil respiration. Leaf litter production was higher during the dry season, and mean (+/-95% CI) leaf litter fall (5.6 +/- 1.7 Mg ha-1) comprised 73% of the total litter fall (7.8 +/- 2.3 Mg ha-1). Average (+/-95% CI) annual litter pool biomass was estimated to be 5.5 +/- 0.3 Mg ha-1, which was similar to the measured pool size (5.7 +/- 2.2 Mg ha-1). Overall, seasonal variations in environmental variables, specifically water availability (soil moisture and rainfall), had a profound influence on litter production, soil respiration, and surface litter decomposition.

  19. Acid or N? Disentangling Nutrient- and pH Effects of Nitrogen and Sulfur Deposition to Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Goodale, C. L.

    2016-12-01

    Nitrogen deposition can act as both a nutrient and acidifying agent with sometimes synergistic and sometimes contradictory effects on ecosystem processes. However, these two roles are rarely separated. Similarly, deposition patterns of N and S often covary, making it difficult to correctly attribute their respective roles on the biogeochemistry of downwind ecosystems. In 2011, we initiated a N x pH (S) experiment in six mixed hardwood stands (3 primary, 3 secondary) in Central New York designed to separate nutrient and acidifying impacts of N and S deposition. Three treatments included two 50 N ha-1 yr-1 additions in forms intended to raise (NaNO3) or lower ((NH4)2SO4) soil pH as well as elemental S treatment to acidify without N. Five years of treatment shifted surface soil pH in the expected directions. Treatment effects on soil extract DOC correlated with pH, with lower DOC concentration and aromaticity in the acidifying treatments. Foliar litterfall did not vary by stand age or treatment, but N and S treatments enriched litterfall N and S concentrations, respectively. Wood production did not vary significantly by stand age or treatment but trended toward an increase in response to the N additions in both stand ages. The treatments did not affect early stages of litter decomposition, but both N additions and acidification suppressed decomposition in later stages, with largest effects from acidification alone. Soil respiration responses followed those of litter decomposition, except that the response of respiration to the NaNO3 addition depended on the stand's mycorrhizal composition, with greater suppression in stands with a higher fraction of ectomycorrhizal tree species. Together, these results show that both N addition and acidification can suppress decomposition rates, but likely for different reasons that may be linked to plant carbon allocation (for N) and microbial function (pH). Distinguishing these mechanisms will be important for projecting recovery of ecosystem processes to changing N and S inputs.

  20. Exploring Galaxy Formation and Evolution via Structural Decomposition

    NASA Astrophysics Data System (ADS)

    Kelvin, Lee; Driver, Simon; Robotham, Aaron; Hill, David; Cameron, Ewan

    2010-06-01

    The Galaxy And Mass Assembly (GAMA) structural decomposition pipeline (GAMA-SIGMA Structural Investigation of Galaxies via Model Analysis) will provide multi-component information for a sample of ~12,000 galaxies across 9 bands ranging from near-UV to near-IR. This will allow the relationship between structural properties and broadband, optical-to-near-IR, spectral energy distributions of bulge, bar, and disk components to be explored, revealing clues as to the history of baryonic mass assembly within a hierarchical clustering framework. Data is initially taken from the SDSS & UKIDSS-LAS surveys to test the robustness of our automated decomposition pipeline. This will eventually be replaced with the forthcoming higher-resolution VST & VISTA surveys data, expanding the sample to ~30,000 galaxies.

  1. Decomposition of standing litter in arid grasslands: Interactions between sunlight, non-rainfall moisture, microbes, and plant traits

    NASA Astrophysics Data System (ADS)

    Logan, J. R. V.; Jacobson, P. J.; Jacobson, K. M.; Evans, S.

    2017-12-01

    Although arid lands make up 40% of the Earth's land surface, we still lack a strong understanding of carbon cycling and plant decomposition in these systems. One reason for this is that field studies typically only focus on decomposition at or below the ground surface even though standing dead litter (material that has not yet fallen to the ground) accounts for more than 50% of total necromass in many of these systems. While recent work has begun to recognize the important and unique aspects of standing litter decomposition, few studies have investigated specific mechanisms controlling rates of mass loss. We hypothesized that initial photodegradation of the outer plant cuticle of standing litter is an important determinant of litter decomposition because this process increases moisture absorption and subsequent opportunities for biological decomposition. Our preliminary results offer support for this hypothesis. We found that standing grass stems with their cuticles artificially removed had greater water absorbance and more than 400% greater mass loss over a 6-month period relative to controls with intact cuticles. Additionally, spectroscopic measurements of cuticle integrity showed damage to the litter surface after a period of extended photodegradation, allowing increased moisture uptake during simulated fog/dew events. These findings are especially important in the context of recent work by us and others showing that non-rainfall moisture (fog, dew, and water vapor) plays a much larger role in arid land decomposition than previously thought. Improving our understanding of the mechanisms driving decomposition of standing litter will enable us to develop a more predictive understanding of carbon storage in arid lands.

  2. Terrestrial N Cycling And C Storage: Some Insights From A Process-based Land Surface Model

    NASA Astrophysics Data System (ADS)

    Zaehle, S.; Friend, A. D.; Friedlingstein, P.

    2008-12-01

    We present results of a new land surface model, O-CN, which includes a process-based coupling between the terrestrial cycling of energy, water, carbon, and nitrogen. The model represents the controls of the terrestrial nitrogen (N) cycling on carbon (C) pools and fluxes through photosynthesis, respiration, changes in allocation, and soil organic matter decomposition, and explicitly accounts for N leaching and gaseous losses. O-CN has been shown to give realistic results in comparison to observations at a wide range of scales, including in situ flux measurements, productivity databases, and atmospheric CO2 concentration data. O-CN is run for three free air carbon dioxide enrichment (FACE) sites (Duke, Oak Ridge, Aspen), and reproduces observed magnitudes of changes in net primary productivity, foliage area and foliage N content. Several alternative hypotheses concerning the control of N on vegetation growth and decomposition, including effects of diluting foliage N concentrations, down-regulation of photosynthesis and respiration, acclimation of C allocation patterns and biological N fixation, are tested with respect to their effect on long- term C sequestration estimate. Differences in initial N availability, small transient changes in N inputs and the assumed plasticity of C:N stoichiometry can lead to substantial differences in the simulated long-term changes in productivity and C sequestration. We discuss the capacity of observations obtained at FACE sites to evaluate these alternative hypotheses, and investigate implications of a transient versus instantaneous increase in atmospheric carbon dioxide for the magnitude of the simulated limiting effect of N on C cycling. Finally, we re-examine earlier model-based assessments of the terrestrial C sequestration potential using a global transient O-CN simulation driven by increases in atmospheric CO2, N deposition and climatic changes over the 21st century.

  3. Designer synthetic media for studying microbial-catalyzed biofuel production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Xiaoyu; da Costa Sousa, Leonardo; Jin, Mingjie

    Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). Themore » SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. Conclusions: The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.« less

  4. Designer synthetic media for studying microbial-catalyzed biofuel production

    DOE PAGES

    Tang, Xiaoyu; da Costa Sousa, Leonardo; Jin, Mingjie; ...

    2015-01-01

    Background: The fermentation inhibition of yeast or bacteria by lignocellulose-derived degradation products, during hexose/pentose co-fermentation, is a major bottleneck for cost-effective lignocellulosic biorefineries. To engineer microbial strains for improved performance, it is critical to understand the mechanisms of inhibition that affect fermentative organisms in the presence of major components of a lignocellulosic hydrolysate. The development of a synthetic lignocellulosic hydrolysate (SH) media with a composition similar to the actual biomass hydrolysate will be an important advancement to facilitate these studies. In this work, we characterized the nutrients and plant-derived decomposition products present in AFEX™ pretreated corn stover hydrolysate (ACH). Themore » SH was formulated based on the ACH composition and was further used to evaluate the inhibitory effects of various families of decomposition products during Saccharomyces cerevisiae 424A (LNH-ST) fermentation. Results: The ACH contained high levels of nitrogenous compounds, notably amides, pyrazines, and imidazoles. In contrast, a relatively low content of furans and aromatic and aliphatic acids were found in the ACH. Though most of the families of decomposition products were inhibitory to xylose fermentation, due to their abundance, the nitrogenous compounds showed the most inhibition. From these compounds, amides (products of the ammonolysis reaction) contributed the most to the reduction of the fermentation performance. However, this result is associated to a concentration effect, as the corresponding carboxylic acids (products of hydrolysis) promoted greater inhibition when present at the same molar concentration as the amides. Due to its complexity, the formulated SH did not perfectly match the fermentation profile of the actual hydrolysate, especially the growth curve. However, the SH formulation was effective for studying the inhibitory effect of various compounds on yeast fermentation. Conclusions: The formulation of SHs is an important advancement for future multi-omics studies and for better understanding the mechanisms of fermentation inhibition in lignocellulosic hydrolysates. The SH formulated in this work was instrumental for defining the most important inhibitors in the ACH. Major AFEX decomposition products are less inhibitory to yeast fermentation than the products of dilute acid or steam explosion pretreatments; thus, ACH is readily fermentable by yeast without any detoxification.« less

  5. Adomian decomposition

    NASA Astrophysics Data System (ADS)

    Daftardar-Gejji, Varsha; Jafari, Hossein

    2005-01-01

    Adomian decomposition method has been employed to obtain solutions of a system of fractional differential equations. Convergence of the method has been discussed with some illustrative examples. In particular, for the initial value problem: where A=[aij] is a real square matrix, the solution turns out to be , where E([alpha]1,...,[alpha]n),1 denotes multivariate Mittag-Leffler function defined for matrix arguments and Ai is the matrix having ith row as [ai1...ain], and all other entries are zero. Fractional oscillation and Bagley-Torvik equations are solved as illustrative examples.

  6. Energetic Materials Effects on Essential Soil Processes: Decomposition of Orchard Grass (Dactylis glomerata) Litter in Soil Contaminated with Energetic Materials

    DTIC Science & Technology

    2014-02-01

    moisture level of 14% dry soil mass was maintained for the duration of the study by weekly additions of ASTM Type I water. Soil samples were collected...maintain the initial soil moisture level. One cluster of Orchard grass straw was harvested from a set of randomly selected replicate containers...decomposition is among the most integrating processes within the soil ecosystem because it involves complex interactions of soil microbial, plant , and

  7. Theoretical Study of Decomposition Pathways for HArF and HKrF

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Donchan (Technical Monitor)

    2002-01-01

    To provide theoretical insights into the stability and dynamics of the new rare gas compounds HArF and HKrF, reaction paths for decomposition processes HRgF to Rg + HF and HRgF to H + Rg + F (Rg = Ar, Kr) are calculated using ab initio electronic structure methods. The bending channels, HRgF to Rg + HF, are described by single-configurational MP2 and CCSD(T) electronic structure methods, while the linear decomposition paths, HRgF to H + Rg + F, require the use of multi-configurational wave functions that include dynamic correlation and are size extensive. HArF and HKrF molecules are found to be energetically stable with respect to atomic dissociation products (H + Rg + F) and separated by substantial energy barriers from Rg + HF products, which ensure their kinetic stability. The results are compatible with experimental data on these systems.

  8. Mitigation of Manhole Events Caused by Secondary Cable Failure

    NASA Astrophysics Data System (ADS)

    Zhang, Lili

    "Manhole event" refers to a range of phenomena, such as smokers, fires and explosions which occur on underground electrical infrastructure, primarily in major cities. The most common cause of manhole events is decomposition of secondary cable initiated by an electric fault. The work presented in this thesis addresses various aspects related to the evolution and mitigation of the manhole events caused by secondary cable insulation failure. Manhole events develop as a result of thermal decomposition of organic materials present in the cable duct and manholes. Polymer characterization techniques are applied to intensively study the materials properties as related to manhole events, mainly the thermal decomposition behaviors of the polymers present in the cable duct. Though evolved gas analysis, the combustible gases have been quantitatively identified. Based on analysis and knowledge of field conditions, manhole events is divided into at least two classes, those in which exothermic chemical reactions dominate and those in which electrical energy dominates. The more common form of manhole event is driven by air flow down the duct. Numerical modeling of smolder propagation in the cable duct demonstrated that limiting air flow is effective in reducing the generation rate of combustible gas, in other words, limiting manhole events to relatively minor "smokers". Besides manhole events, another by-product of secondary cable insulation breakdown is stray voltage. The danger to personnel due to stray voltage is mostly caused by the 'step potential'. The amplitude of step potential as a result of various types of insulation defects is calculated using Finite Element Analysis (FEA) program.

  9. Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method

    NASA Technical Reports Server (NTRS)

    Waelbroek, C.; Louis, J.-F.

    1995-01-01

    A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO2 flux to perturbation in initial conditions, climatic inputs, and model's main parameters describing current seasonal CO2 exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO2 flux is most sensitive to parameters characterizing litter chemical composition and more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO2 exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO2-induced warming is a significant increase in CO2 emission, creating a positive feedback to atmosphreic CO2 accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO2, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO2 flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results.

  10. Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution

    NASA Astrophysics Data System (ADS)

    Zhao, Qing; Liu, Cheng-jun; Li, Bao-kuan; Jiang, Mao-fa

    2017-12-01

    The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg-Al, Mg-Fe, and Mg-Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg-Al spinel and Mg-Fe spinel because Mg2+, Al3+, and Fe3+ in spinels cannot be oxidized by Cr6+. However, in the case of the Mg-Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid-dichromic acid solution was illustrated on the basis of the findings of this study.

  11. Decomposition of multilayer benzene and n-hexane films on vanadium.

    PubMed

    Souda, Ryutaro

    2015-09-21

    Reactions of multilayer hydrocarbon films with a polycrystalline V substrate have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Most of the benzene molecules were dissociated on V, as evidenced by the strong depression in the thermal desorption yields of physisorbed species at 150 K. The reaction products dehydrogenated gradually after the multilayer film disappeared from the surface. Large amount of oxygen was needed to passivate the benzene decomposition on V. These behaviors indicate that the subsurface sites of V play a role in multilayer benzene decomposition. Decomposition of the n-hexane multilayer films is manifested by the desorption of methane at 105 K and gradual hydrogen desorption starting at this temperature, indicating that C-C bond scission precedes C-H bond cleavage. The n-hexane dissociation temperature is considerably lower than the thermal desorption temperature of the physisorbed species (140 K). The n-hexane multilayer morphology changes at the decomposition temperature, suggesting that a liquid-like phase formed after crystallization plays a role in the low-temperature decomposition of n-hexane.

  12. Regional income inequality model based on theil index decomposition and weighted variance coeficient

    NASA Astrophysics Data System (ADS)

    Sitepu, H. R.; Darnius, O.; Tambunan, W. N.

    2018-03-01

    Regional income inequality is an important issue in the study on economic development of a certain region. Rapid economic development may not in accordance with people’s per capita income. The method of measuring the regional income inequality has been suggested by many experts. This research used Theil index and weighted variance coefficient in order to measure the regional income inequality. Regional income decomposition which becomes the productivity of work force and their participation in regional income inequality, based on Theil index, can be presented in linear relation. When the economic assumption in j sector, sectoral income value, and the rate of work force are used, the work force productivity imbalance can be decomposed to become the component in sectors and in intra-sectors. Next, weighted variation coefficient is defined in the revenue and productivity of the work force. From the quadrate of the weighted variation coefficient result, it was found that decomposition of regional revenue imbalance could be analyzed by finding out how far each component contribute to regional imbalance which, in this research, was analyzed in nine sectors of economic business.

  13. Solventless synthesis, morphology, structure and magnetic properties of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Das, Bratati; Kusz, Joachim; Reddy, V. Raghavendra; Zubko, Maciej; Bhattacharjee, Ashis

    2017-12-01

    In this study we report the solventless synthesis of iron oxide through thermal decomposition of acetyl ferrocene as well as its mixtures with maliec anhydride and characterization of the synthesized product by various comprehensive physical techniques. Morphology, size and structure of the reaction products were investigated by scanning electron microscopy, transmission electron microscopy and X-ray powder diffraction technique, respectively. Physical characterization techniques like FT-IR spectroscopy, dc magnetization study as well as 57Fe Mössbauer spectroscopy were employed to characterize the magnetic property of the product. The results observed from these studies unequivocally established that the synthesized materials are hematite. Thermal decomposition has been studied with the help of thermogravimetry. Reaction pathway for synthesis of hematite has been proposed. It is noted that maliec anhydride in the solid reaction environment as well as the gaseous reaction atmosphere strongly affect the reaction yield as well as the particle size. In general, a method of preparing hematite nanoparticles through solventless thermal decomposition technique using organometallic compounds and the possible use of reaction promoter have been discussed in detail.

  14. Decomposition Characteristics of Acetone in a DC Corona Discharge at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Sakamoto, Takahiro; Satoh, Kohki; Itoh, Hidenori

    Decomposition characteristics of acetone in a DC corona discharge generated between a multi-needle and a plane electrodes in nitrogen-oxygen mixtures at atmospheric pressure are investigated mainly by infrared absorption spectroscopy in this work. It is found that CO2, CO, CH4, HCHO, HCOOH and HCN are the by-products of acetone in the corona discharge, and that CO, CH4, HCHO, HCOOH and HCN are intermediate products, which tend to be decomposed in the corona discharge. CO2 is found to be the major and end-product. It is also found that acetone is chiefly inverted to CO2 via CO at high oxygen concentration (20%) and via CO and CH4 at relatively low oxygen concentration (0.2%), in addition to the direct conversion from acetone to CO2. As the oxygen concentration increases, the percentages of carbon atoms contained in deposit on the plane electrode and the wall of the discharge chamber increases. Further, the decomposition process of acetone is deduced from the examination of rate constants for the reactions in the gaseous phase.

  15. Decomposition rates and termite assemblage composition in semiarid Africa

    USGS Publications Warehouse

    Schuurman, G.

    2005-01-01

    Outside of the humid tropics, abiotic factors are generally considered the dominant regulators of decomposition, and biotic influences are frequently not considered in predicting decomposition rates. In this study, I examined the effect of termite assemblage composition and abundance on decomposition of wood litter of an indigenous species (Croton megalobotrys) in five terrestrial habitats of the highly seasonal semiarid Okavango Delta region of northern Botswana, to determine whether natural variation in decomposer community composition and abundance influences decomposition rates. 1 conducted the study in two areas, Xudum and Santawani, with the Xudum study preceding the Santawani study. I assessed termite assemblage composition and abundance using a grid of survey baits (rolls of toilet paper) placed on the soil surface and checked 2-4 times/month. I placed a billet (a section of wood litter) next to each survey bait and measured decomposition in a plot by averaging the mass loss of its billets. Decomposition rates varied up to sixfold among plots within the same habitat and locality, despite the fact that these plots experienced the same climate. In addition, billets decomposed significantly faster during the cooler and drier Santawani study, contradicting climate-based predictions. Because termite incidence was generally higher in Santawani plots, termite abundance initially seemed a likely determinant of decomposition in this system. However, no significant effect of termite incidence on billet mass loss rates was observed among the Xudum plots, where decomposition rates remained low even though termite incidence varied considerably. Considering the incidences of fungus-growing termites and non-fungus-growing termites separately resolves this apparent contradiction: in both Santawani and Xudum, only fungus-growing termites play a significant role in decomposition. This result is mirrored in an analysis of the full data set of combined Xudum and Santawani data. The determination that natural variation in the abundance of a single taxonomic group of soil fauna, a termite subfamily, determines almost all observed variation in decomposition rates supports the emerging view that biotic influences may be important in many biomes and that consideration of decomposer community composition and abundance may be critical for accurate prediction of decomposition rates. ?? 2005 by the Ecological Society of America.

  16. Understanding Litter Input Controls on Soil Organic Matter Turnover and Formation are Essential for Improving Carbon-Climate Feedback Predictions for Arctic, Tundra Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallenstein, Matthew

    The Arctic region stored vast amounts of carbon (C) in soils over thousands of years because decomposition has been limited by cold, wet conditions. Arctic soils now contain roughly as much C that is contained in all other soils across the globe combined. However, climate warming could unlock this oil C as decomposition accelerates and permafrost thaws. In addition to temperature-driven acceleration of decomposition, several additional processes could either counteract or augment warming-induced SOM losses. For example, increased plant growth under a warmer climate will increase organic matter inputs to soils, which could fuel further soil decomposition by microbes, butmore » will also increase the production of new SOM. Whether Arctic ecosystems store or release carbon in the future depends in part on the balance between these two counteracting processes. By differentiating SOM decomposition and formation and understanding the drivers of these processes, we will better understand how these systems function. We did not find evidence of priming under current conditions, defined as an increase in the decomposition of native SOM stocks. This suggests that decomposition is unlikely to be further accelerated through this mechanism. We did find that decomposition of native SOM did occur when nitrogen was added to these soils, suggesting that nitrogen limits decomposition in these systems. Our results highlight the resilience and extraordinary C storage capacity of these soils, and suggest shrub expansion may partially mitigate C losses from decomposition of old SOM as Arctic soils warm.« less

  17. Infrared spectroscopy of radiation-chemical transformation of n-hexane on a beryllium surface

    NASA Astrophysics Data System (ADS)

    Gadzhieva, N. N.

    2017-07-01

    The radiation-chemical decomposition of n-hexane in a Be- n-hexane system under the effect of γ-irradiation at room temperature is studied by infrared reflection-absorption spectroscopy. In the absorbed dose range 5 kGy ≤ Vγ ≤ 50 kGy, intermediate surface products of radiation-heterogeneous decomposition of n-hexane (beryllium alkyls, π-olefin complexes, and beryllium hydrides) are detected. It is shown that complete radiolysis occurs at Vγ = 30 kGy; below this dose, decomposition of n-hexane occurs only partially, while higher doses lead to steady-state saturation. The radiation-chemical yield of the final decomposition product—molecular hydrogen—is determined to be G ads(H2) = 24.8 molecules/100 eV. A possible mechanism of this process is discussed.

  18. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Li

    Despite the great passion and endless efforts on development of renewable energy from biomass, the commercialization and scale up of biofuel production is still under pressure and facing challenges. New ideas and facilities are being tested around the world targeting at reducing cost and improving product value. Cutting edge technologies involving analytical chemistry, statistics analysis, industrial engineering, computer simulation, and mathematics modeling, etc. keep integrating modern elements into this classic research. One of those challenges of commercializing biofuel production is the complexity from chemical composition of biomass feedstock and the products. Because of this, feedstock selection and process optimization cannot be conducted efficiently. This dissertation attempts to further evaluate biomass thermal decomposition process using both traditional methods and advanced technique (Pyrolysis Molecular Beam Mass Spectrometry). Focus has been made on data base generation of thermal decomposition products from biomass at different temperatures, finding out the relationship between traditional methods and advanced techniques, evaluating process efficiency and optimizing reaction conditions, comparison of typically utilized biomass feedstock and new search on innovative species for economical viable feedstock preparation concepts, etc. Lab scale quartz tube reactors and 80il stainless steel sample cups coupled with auto-sampling system were utilized to simulate the complicated reactions happened in real fluidized or entrained flow reactors. Two main high throughput analytical techniques used are Near Infrared Spectroscopy (NIR) and Pyrolysis Molecular Beam Mass Spectrometry (Py-MBMS). Mass balance, carbon balance, and product distribution are presented in detail. Variations of thermal decomposition temperature range from 200°C to 950°C. Feedstocks used in the study involve typical hardwood and softwood (red oak, white oak, yellow poplar, loblolly pine), fast growing energy crops (switchgrass), and popular forage crop (alfalfa), as well as biochar derived from those materials and their mixtures. It demonstrated that Py-MBMS coupled with MVA could be used as fast analytical tools for the study of not only biomass composition but also its thermal decomposition behaviors. It found that the impact of biomass composition heavily depends on the thermal decomposition temperature because at different temperature, the composition of biomass decomposed and the impact of minerals on the decomposition reaction varies. At low temperature (200-500°C), organic compounds attribute to the majority of variation in thermal decomposition products. At higher temperature, inorganics dramatically changed the pyrolysis pathway of carbohydrates and possibly lignin. In gasification, gasification tar formation is also observed to be impacted by ash content in vapor and char. In real reactor, biochar structure also has interactions with other fractions to make the final pyrolysis and gasification product. Based on the evaluation of process efficiencies during torrefaction, temperature ranging from 275°C to 300°C with short residence time (<10min) are proposed to be optimal torrefaction conditions. 500°C is preferred to 700°C as primary pyrolysis temperature in two stage gasification because higher primary pyrolysis temperature resulted in more tar and less gasification char. Also, in terms of carbon yield, more carbon is lost in tar while less carbon is retained in gas product using 700°C as primary pyrolysis temperature. In addition, pyrolysis char is found to produce less tar and more gas during steam gasification compared with gasification of pyrolysis vapor. Thus it is suggested that torrefaction might be an efficient pretreatment for biomass gasification because it can largely improve the yield of pyrolysis char during the primary pyrolysis step of gasification thus reduce the total tar of the overall gasification products. Future work is suggested in the end.

  19. Heterogeneous Decomposition of Volatile Organic Compounds by Visible-Light Activated N, C, S-Embedded Titania.

    PubMed

    Chun, Ho-Hwan; Jo, Wan-Kuen

    2016-05-01

    In this study, a N-, C-, and S-doped titania (NCS-TiO2) composite was prepared by combining the titanium precursor with a single dopant source, and the photocatalytic activity of this system for the decomposition of volatile organic compounds (VOCs) at indoor-concentration levels, under exposure to visible light, was examined. The NCS-TiO2 composite and the pure TiO2 photocatalyst, used as a reference, were characterized via X-ray diffraction, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The average efficiencies of benzene, toluene, ethyl benzene, and o-xylene decomposition using NCS-TiO2 for were 70, 87, -100, and -100%, respectively, whereas the values obtained using the pure TiO2 powder were -0, 18, 49, and 51%, respectively. These results suggested that, for the photocatalytic decomposition of toxic VOCs under visible-light exposure conditions, NCS-TiO2 was superior to the reference photocatalyst. The decomposition efficiencies of the target VOCs were inversely related to the initial concentration and relative humidity as well as to the air-flow rate. The decomposition efficiencies of the target chemicals achieved with a conventional lamp/NCS-TiO2 system were higher than those achieved with a light emitting diode/NCS-TiO2 system. Overall, NCS-TiO2 can be used for the efficient decomposition of VOCs under visible-light exposure, if the operational conditions are optimized.

  20. Silicon production in a fluidized bed reactor

    NASA Technical Reports Server (NTRS)

    Rohatgi, N. K.

    1986-01-01

    Part of the development effort of the JPL in-house technology involved in the Flat-Plate Solar Array (FSA) Project was the investigation of a low-cost process to produce semiconductor-grade silicon for terrestrial photovoltaic cell applications. The process selected was based on pyrolysis of silane in a fluidized-bed reactor (FBR). Following initial investigations involving 1- and 2-in. diameter reactors, a 6-in. diameter, engineering-scale FBR was constructed to establish reactor performance, mechanism of silicon deposition, product morphology, and product purity. The overall mass balance for all experiments indicates that more than 90% of the total silicon fed into the reactor is deposited on silicon seed particles and the remaining 10% becomes elutriated fines. Silicon production rates were demonstrated of 1.5 kg/h at 30% silane concentration and 3.5 kg/h at 80% silane concentration. The mechanism of silicon deposition is described by a six-path process: heterogeneous deposition, homogeneous decomposition, coalescence, coagulation, scavenging, and heterogeneous growth on fines. The bulk of the growth silicon layer appears to be made up of small diameter particles. This product morphology lends support to the concept of the scavenging of homogeneously nucleated silicon.

Top