Relations between heat exchange and Rényi divergences
NASA Astrophysics Data System (ADS)
Wei, Bo-Bo
2018-04-01
In this work, we establish an exact relation which connects the heat exchange between two systems initialized in their thermodynamic equilibrium states at different temperatures and the Rényi divergences between the initial thermodynamic equilibrium state and the final nonequilibrium state of the total system. The relation tells us that the various moments of the heat statistics are determined by the Renyi divergences between the initial equilibrium state and the final nonequilibrium state of the global system. In particular the average heat exchange is quantified by the relative entropy between the initial equilibrium state and the final nonequilibrium state of the global system. The relation is applicable to both finite classical systems and finite quantum systems.
Relations between heat exchange and Rényi divergences.
Wei, Bo-Bo
2018-04-01
In this work, we establish an exact relation which connects the heat exchange between two systems initialized in their thermodynamic equilibrium states at different temperatures and the Rényi divergences between the initial thermodynamic equilibrium state and the final nonequilibrium state of the total system. The relation tells us that the various moments of the heat statistics are determined by the Renyi divergences between the initial equilibrium state and the final nonequilibrium state of the global system. In particular the average heat exchange is quantified by the relative entropy between the initial equilibrium state and the final nonequilibrium state of the global system. The relation is applicable to both finite classical systems and finite quantum systems.
Analysis of gene network robustness based on saturated fixed point attractors
2014-01-01
The analysis of gene network robustness to noise and mutation is important for fundamental and practical reasons. Robustness refers to the stability of the equilibrium expression state of a gene network to variations of the initial expression state and network topology. Numerical simulation of these variations is commonly used for the assessment of robustness. Since there exists a great number of possible gene network topologies and initial states, even millions of simulations may be still too small to give reliable results. When the initial and equilibrium expression states are restricted to being saturated (i.e., their elements can only take values 1 or −1 corresponding to maximum activation and maximum repression of genes), an analytical gene network robustness assessment is possible. We present this analytical treatment based on determination of the saturated fixed point attractors for sigmoidal function models. The analysis can determine (a) for a given network, which and how many saturated equilibrium states exist and which and how many saturated initial states converge to each of these saturated equilibrium states and (b) for a given saturated equilibrium state or a given pair of saturated equilibrium and initial states, which and how many gene networks, referred to as viable, share this saturated equilibrium state or the pair of saturated equilibrium and initial states. We also show that the viable networks sharing a given saturated equilibrium state must follow certain patterns. These capabilities of the analytical treatment make it possible to properly define and accurately determine robustness to noise and mutation for gene networks. Previous network research conclusions drawn from performing millions of simulations follow directly from the results of our analytical treatment. Furthermore, the analytical results provide criteria for the identification of model validity and suggest modified models of gene network dynamics. The yeast cell-cycle network is used as an illustration of the practical application of this analytical treatment. PMID:24650364
Quantum Kinetics and the Zeno Ansatz: Sterile Neutrino Dark Matter in the Early Universe
NASA Astrophysics Data System (ADS)
Dvornikov, Olexiy V.
We solved the quantum kinetic equations for the evolution of neutrino states in the early universe. Starting at high temperatures, we evolve neutrino states to observe the resonant conversion of active-to-sterile neutrinos in a lepton asymmetric (more neutrinos than anti-neutrinos) universe. We find that at high temperatures, the high neutrino scattering and oscillation rates enforce a local equilibrium that balances the growth of coherence at the oscillation rate and the damping of coherence through scattering. This equilibrium, which we call a "quantum kinetic equilibrium," appears to approximately hold throughout the neutrino evolution, from the initial conditions through resonances that may be non adiabatic. Using this quantum kinetic equilibrium informs a proper choice of the initial conditions of the neutrino state and the relaxation process that occurs to this equilibrium when the initial conditions (as are typically chosen in the literature) are not coincident with the equilibrium values. We also discuss how to use this equilibrium to reduce the computational expense of solving the full quantum kinetic equations for neutrino states evolving in the early universe.
Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation
NASA Technical Reports Server (NTRS)
Yoshikawa, K. K.; Itikawa, Y.
1976-01-01
The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.
Quantum dynamics of thermalizing systems
NASA Astrophysics Data System (ADS)
White, Christopher David; Zaletel, Michael; Mong, Roger S. K.; Refael, Gil
2018-01-01
We introduce a method "DMT" for approximating density operators of 1D systems that, when combined with a standard framework for time evolution (TEBD), makes possible simulation of the dynamics of strongly thermalizing systems to arbitrary times. We demonstrate that the method performs well for both near-equilibrium initial states (Gibbs states with spatially varying temperatures) and far-from-equilibrium initial states, including quenches across phase transitions and pure states.
On the time needed to reach an equilibrium structure of the radiation belts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ripoll, J. -F.; Loran, V.; Cunningham, Gregory Scott
In this paper, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as themore » radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τ Diffusion/τ loss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.« less
On the time needed to reach an equilibrium structure of the radiation belts
Ripoll, J. -F.; Loran, V.; Cunningham, Gregory Scott; ...
2016-08-01
In this paper, we complement the notion of equilibrium states of the radiation belts with a discussion on the dynamics and time needed to reach equilibrium. We solve for the equilibrium states obtained using 1D radial diffusion with recently developed hiss and chorus lifetimes at constant values of Kp = 1, 3 and 6. We find that the equilibrium states at moderately low Kp, when plotted vs L-shell (L) and energy (E), display the same interesting S-shape for the inner edge of the outer belt as recently observed by the Van Allen Probes. The S-shape is also produced as themore » radiation belts dynamically evolve toward the equilibrium state when initialized to simulate the buildup after a massive dropout or to simulate loss due to outward diffusion from a saturated state. Physically, this shape, intimately linked with the slot structure, is due to the dependence of electron loss rate (originating from wave-particle interactions) on both energy and L-shell. Equilibrium electron flux profiles are governed by the Biot number (τ Diffusion/τ loss), with large Biot number corresponding to low fluxes and low Biot number to large fluxes. The time it takes for the flux at a specific (L, E) to reach the value associated with the equilibrium state, starting from these different initial states, is governed by the initial state of the belts, the property of the dynamics (diffusion coefficients), and the size of the domain of computation. Its structure shows a rather complex scissor form in the (L, E) plane. The equilibrium value (phase space density or flux) is practically reachable only for selected regions in (L, E) and geomagnetic activity. Convergence to equilibrium requires hundreds of days in the inner belt for E > 300 keV and moderate Kp (≤3). It takes less time to reach equilibrium during disturbed geomagnetic conditions (Kp ≥ 3), when the system evolves faster. Restricting our interest to the slot region, below L = 4, we find that only small regions in (L, E) space can reach the equilibrium value: E ~ [200, 300] keV for L = [3.7, 4] at Kp = 1, E ~ [0.6, 1] MeV for L = [3, 4] at Kp = 3, and E ~ 300 keV for L = [3.5, 4] at Kp = 6 assuming no new incoming electrons.« less
Initial correlations in open-systems dynamics: The Jaynes-Cummings model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirne, Andrea; Vacchini, Bassano; INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano
2010-12-15
Employing the trace distance as a measure for the distinguishability of quantum states, we study the influence of initial correlations on the dynamics of open systems. We concentrate on the Jaynes-Cummings model for which the knowledge of the exact joint dynamics of system and reservoir allows the treatment of initial states with arbitrary correlations. As a measure for the correlations in the initial state we consider the trace distance between the system-environment state and the product of its marginal states. In particular, we examine the correlations contained in the thermal equilibrium state for the total system, analyze their dependence onmore » the temperature and on the coupling strength, and demonstrate their connection to the entanglement properties of the eigenstates of the Hamiltonian. A detailed study of the time dependence of the distinguishability of the open system states evolving from the thermal equilibrium state and its corresponding uncorrelated product state shows that the open system dynamically uncovers typical features of the initial correlations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daleu, C. L.; Plant, R. S.; Woolnough, S. J.
Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less
Non-equilibrium dynamics from RPMD and CMD.
Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F
2016-11-28
We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.
Nonequilibrium quantum dynamics and transport: from integrability to many-body localization
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Moore, Joel E.
2016-06-01
We review the non-equilibrium dynamics of many-body quantum systems after a quantum quench with spatial inhomogeneities, either in the Hamiltonian or in the initial state. We focus on integrable and many-body localized systems that fail to self-thermalize in isolation and for which the standard hydrodynamical picture breaks down. The emphasis is on universal dynamics, non-equilibrium steady states and new dynamical phases of matter, and on phase transitions far from thermal equilibrium. We describe how the infinite number of conservation laws of integrable and many-body localized systems lead to complex non-equilibrium states beyond the traditional dogma of statistical mechanics.
Grinding kinetics and equilibrium states
NASA Technical Reports Server (NTRS)
Opoczky, L.; Farnady, F.
1984-01-01
The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.
Numerical time evolution of ETH spin chains by means of matrix product density operators
NASA Astrophysics Data System (ADS)
White, Christopher; Zaletel, Michael; Mong, Roger; Refael, Gil
We introduce a method for approximating density operators of 1D systems that, when combined with a standard framework for time evolution (TEBD), makes possible simulation of the dynamics of strongly thermalizing systems to arbitrary times. We demonstrate that the method works on both near-equilibrium initial states (Gibbs states with spatially varying temperatures) and far-from-equilibrium initial states, including quenches across phase transitions and pure states. This work was supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE \\x901144469 and by the Caltech IQIM, an NSF Physics Frontiers Center with support of the Gordon and Betty Moore.
Daleu, C. L.; Plant, R. S.; Woolnough, S. J.; ...
2015-10-24
Here, as part of an international intercomparison project, a set of single-column models (SCMs) and cloud-resolving models (CRMs) are run under the weak-temperature gradient (WTG) method and the damped gravity wave (DGW) method. For each model, the implementation of the WTG or DGW method involves a simulated column which is coupled to a reference state defined with profiles obtained from the same model in radiative-convective equilibrium. The simulated column has the same surface conditions as the reference state and is initialized with profiles from the reference state. We performed systematic comparison of the behavior of different models under a consistentmore » implementation of the WTG method and the DGW method and systematic comparison of the WTG and DGW methods in models with different physics and numerics. CRMs and SCMs produce a variety of behaviors under both WTG and DGW methods. Some of the models reproduce the reference state while others sustain a large-scale circulation which results in either substantially lower or higher precipitation compared to the value of the reference state. CRMs show a fairly linear relationship between precipitation and circulation strength. SCMs display a wider range of behaviors than CRMs. Some SCMs under the WTG method produce zero precipitation. Within an individual SCM, a DGW simulation and a corresponding WTG simulation can produce different signed circulation. When initialized with a dry troposphere, DGW simulations always result in a precipitating equilibrium state. The greatest sensitivities to the initial moisture conditions occur for multiple stable equilibria in some WTG simulations, corresponding to either a dry equilibrium state when initialized as dry or a precipitating equilibrium state when initialized as moist. Multiple equilibria are seen in more WTG simulations for higher SST. In some models, the existence of multiple equilibria is sensitive to some parameters in the WTG calculations.« less
Noisy relativistic quantum games in noninertial frames
NASA Astrophysics Data System (ADS)
Khan, Salman; Khan, M. Khalid
2013-02-01
The influence of noise and of Unruh effect on quantum Prisoners' dilemma is investigated both for entangled and unentangled initial states. The noise is incorporated through amplitude damping channel. For unentangled initial state, the decoherence compensates for the adverse effect of acceleration of the frame and the effect of acceleration becomes irrelevant provided the game is fully decohered. It is shown that the inertial player always out scores the noninertial player by choosing defection. For maximally entangled initially state, we show that for fully decohered case every strategy profile results in either of the two possible equilibrium outcomes. Two of the four possible strategy profiles become Pareto optimal and Nash equilibrium and no dilemma is leftover. It is shown that other equilibrium points emerge for different region of values of decoherence parameter that are either Pareto optimal or Pareto inefficient in the quantum strategic spaces. It is shown that the Eisert et al. (Phys Rev Lett 83:3077, 1999) miracle move is a special move that leads always to distinguishable results compare to other moves. We show that the dilemma like situation is resolved in favor of one player or the other.
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Auslender, Aaron H.
1999-01-01
The decay of anomalous effects on shock waves in weakly ionized gases following plasma generator extinction has been measured in the anticipation that the decay time must correlate well with the relaxation time of the mechanism responsible for the anomalous effects. When the relaxation times cannot be measured directly, they are inferred theoretically, usually assuming that the initial state is nearly in thermal equilibrium. In this paper, it is demonstrated that relaxation from any steady state far from equilibrium, including the state of a weakly ionized gas, can proceed much more slowly than arguments based on relaxation from near equilibrium states might suggest. This result justifies a more careful analysis of the relaxation times in weakly ionized gases and suggests that although the experimental measurements of relaxation times did not lead to an unambiguous conclusion, this approach to understanding the anomalous effects may warrant further investigation.
Dynamics of Entropy in Quantum-like Model of Decision Making
NASA Astrophysics Data System (ADS)
Basieva, Irina; Khrennikov, Andrei; Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu
2011-03-01
We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices. By using this equilibrium point Alice determines her mixed (i.e., probabilistic) strategy with respect to Bob. Thus our model is a model of thinking through decoherence of initially pure mental state. Decoherence is induced by interaction with memory and external environment. In this paper we study (numerically) dynamics of quantum entropy of Alice's state in the process of decision making. Our analysis demonstrates that this dynamics depends nontrivially on the initial state of Alice's mind on her own actions and her prediction state (for possible actions of Bob.)
Nonequilibrium evolution of scalar fields in FRW cosmologies
NASA Astrophysics Data System (ADS)
Boyanovsky, D.; de Vega, H. J.; Holman, R.
1994-03-01
We derive the effective equations for the out of equilibrium time evolution of the order parameter and the fluctuations of a scalar field theory in spatially flat FRW cosmologies. The calculation is performed both to one loop and in a nonperturbative, self-consistent Hartree approximation. The method consists of evolving an initial functional thermal density matrix in time and is suitable for studying phase transitions out of equilibrium. The renormalization aspects are studied in detail and we find that the counterterms depend on the initial state. We investigate the high temperature expansion and show that it breaks down at long times. We also obtain the time evolution of the initial Boltzmann distribution functions, and argue that to one-loop order or in the Hartree approximation the time evolved state is a ``squeezed'' state. We illustrate the departure from thermal equilibrium by numerically studying the case of a free massive scalar field in de Sitter and radiation-dominated cosmologies. It is found that a suitably defined nonequilibrium entropy per mode increases linearly with comoving time in a de Sitter cosmology, whereas it is not a monotonically increasing function in the radiation-dominated case.
Bellomo, A; Inbar, G
1997-01-01
One of the theories of human motor control is the gamma Equilibrium Point Hypothesis. It is an attractive theory since it offers an easy control scheme where the planned trajectory shifts monotionically from an initial to a final equilibrium state. The feasibility of this model was tested by reconstructing the virtual trajectory and the stiffness profiles for movements performed with different inertial loads and examining them. Three types of movements were tested: passive movements, targeted movements, and repetitive movements. Each of the movements was performed with five different inertial loads. Plausible virtual trajectories and stiffness profiles were reconstructed based on the gamma Equilibrium Point Hypothesis for the three different types of movements performed with different inertial loads. However, the simple control strategy supported by the model, where the planned trajectory shifts monotonically from an initial to a final equilibrium state, could not be supported for targeted movements performed with added inertial load. To test the feasibility of the model further we must examine the probability that the human motor control system would choose a trajectory more complicated than the actual trajectory to control.
Non-equilibrium reactive flux: A unified framework for slow and fast reaction kinetics.
Bose, Amartya; Makri, Nancy
2017-10-21
The flux formulation of reaction rate theory is recast in terms of the expectation value of the reactive flux with an initial condition that corresponds to a non-equilibrium, factorized reactant density. In the common case of slow reactive processes, the non-equilibrium expression reaches the plateau regime only slightly slower than the equilibrium flux form. When the reactants are described by a single quantum state, as in the case of electron transfer reactions, the factorized reactant density describes the true initial condition of the reactive process. In such cases, the time integral of the non-equilibrium flux expression yields the reactant population as a function of time, allowing characterization of the dynamics in cases where there is no clear separation of time scales and thus a plateau regime cannot be identified. The non-equilibrium flux offers a unified approach to the kinetics of slow and fast chemical reactions and is ideally suited to mixed quantum-classical methods.
Thermal equilibrium control by frequent bang-bang modulation.
Yang, Cheng-Xi; Wang, Xiang-Bin
2010-05-01
In this paper, we investigate the non-Markovian heat transfer between a weakly damped harmonic oscillator (system) and a thermal bath. When the system is initially in a thermal state and not correlated with the environment, the mean energy of the system always first increases, then oscillates, and finally reaches equilibrium with the bath, no matter what the initial temperature of the system is. Moreover, the heat transfer between the system and the bath can be controlled by fast bang-bang modulation. This modulation does work on the system, and temporarily inverts the direction of heat flow. In this case, the common sense that heat always transfers from hot to cold does not hold any more. At the long time scale, a new dynamic equilibrium is established between the system and the bath. At this equilibrium, the energy of the system can be either higher or lower than its normal equilibrium value. A comprehensive analysis of the relationship between the dynamic equilibrium and the parameters of the modulation as well as the environment is presented.
Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, F., E-mail: fw237@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Harrison, M. G.
Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and themore » results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.« less
Creation and protection of entanglement in systems out of thermal equilibrium
NASA Astrophysics Data System (ADS)
Bellomo, Bruno; Antezza, Mauro
2013-11-01
We investigate the creation of entanglement between two quantum emitters interacting with a realistic common stationary electromagnetic field out of thermal equilibrium. In the case of two qubits we show that the absence of equilibrium allows the generation of steady entangled states, which is inaccessible at thermal equilibrium and is realized without any further external action on the two qubits. We first give a simple physical interpretation of the phenomenon in a specific case and then we report a detailed investigation on the dependence of the entanglement dynamics on the various physical parameters involved. Sub- and super-radiant effects are discussed, and qualitative differences in the dynamics concerning both creation and protection of entanglement according to the initial two-qubit state are pointed out.
Transverse kinetics of a charged drop in an external electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondarenko, S.; Komoshvili, K.
2016-01-22
We investigate a non-equilibrium behavior of a small, dense and charged drop in the transverse plane. A collective motion of the drop’s particles with constant entropy is described. Namely, we solve Vlasov’s equation with non-isotropic initial conditions. Thereby a non-equilibrium distribution function of the process of the droplet evolution in the transverse plane is calculated. An external electric field is included in the initial conditions of the equation that affects on the form of the obtained solution. Applicability of the results to the description of initial states of quark-gluon plasma is also discussed.
Thermodynamical Interactions: Subtleties of Heat and Work Concepts
ERIC Educational Resources Information Center
Anacleto, Joaquim; Anacleto, Joaquim Alberto C.
2008-01-01
This paper focuses on the determination of the final equilibrium state when two ideal gases, isolated from the exterior and starting from preset initial conditions, interact with each other through a piston. Depending on the piston properties, different processes take place and also different sets of equilibrium conditions must be satisfied. Three…
NASA Astrophysics Data System (ADS)
Chaturvedi, Harshwardhan; Assi, Hiba; Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe
We investigate the relaxation dynamics of magnetic vortex lines in disordered type-II superconductors following rapid changes in the external driving current by means of Langevin molecular dynamics simulations for an elastic line model. A system of driven interacting flux lines in a sample with randomly distributed point pinning centers is initially relaxed to a moving non-equilibrium steady state. The current is then instantaneously decreased, such that the final stationary state resides either still in the moving regime, or in the pinned Bragg glass phase. The ensuing non-equilibrium relaxation kinetics of the vortices is studied in detail by measuring the mean flux line gyration radius and the two-time transverse height autocorrelation function. The latter allows us to investigate the physical aging properties for quenches from the moving into the glassy phase, and to compare with non-equilibrium relaxation features obtained with different initial configurations. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.
NASA Astrophysics Data System (ADS)
Sefcik, Jan
1998-05-01
Reaction equilibrium can be mathematically described by the equilibrium equation and the reaction equilibrium composition can be calculated by solving this equation. It can be proved by non-elementary thermodynamic arguments that for a generic system with given initial composition, temperature and pressure there is a unique stable equilibrium state corresponding to the global minimum of the Gibbs free energy function. However, when the concept of equilibrium is introduced in undergraduate chemistry and chemical engineering courses, such arguments are generally not accessible. When there is a single reaction equilibrium among mixture components and the components form an ideal mixture, it has been demonstrated by a simple, elegant mathematical argument that there is a unique composition satisfying the equilibrium equation. It has been also suggested that this particular argument extends to non-ideal mixtures by simply incorporating activity coefficients. We show that the argument extension to non-ideal systems is not generally valid. Increasing non-ideality can result in non-monotonicity of the function crucial for the simple uniqueness argument, and only later it leads to non-uniqueness and hence phase separation. The main feature responsible for this is a composition dependence of activity coefficients in non-ideal mixtures.
Thermalization of entanglement.
Zhang, Liangsheng; Kim, Hyungwon; Huse, David A
2015-06-01
We explore the dynamics of the entanglement entropy near equilibrium in highly entangled pure states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the relaxation to equilibrium from initial states with either less or more entanglement entropy than the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration. Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system.
Non-equilibrium oxidation states of zirconium during early stages of metal oxidation
Ma, Wen; Senanayake, Sanjaya D.; Herbert, F. William; ...
2015-03-11
The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr 1+, Zr 2+, and Zr 3+ as non-equilibrium oxidation states, in addition to Zr 4+ in the stoichiometric ZrO 2. This finding resolves the long-debated question of whether it is possible to form any valence states between Zr 0 and Zr 4+ at the metal-oxide interface. As a result, themore » presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr.« less
NASA Astrophysics Data System (ADS)
Morales, Roberto; Barriga-Carrasco, Manuel D.; Casas, David
2017-04-01
The instantaneous charge state of uranium ions traveling through a fully ionized hydrogen plasma has been theoretically studied and compared with one of the first energy loss experiments in plasmas, carried out at GSI-Darmstadt by Hoffmann et al. in the 1990s. For this purpose, two different methods to estimate the instantaneous charge state of the projectile have been employed: (1) rate equations using ionization and recombination cross sections and (2) equilibrium charge state formulas for plasmas. Also, the equilibrium charge state has been obtained using these ionization and recombination cross sections and compared with the former equilibrium formulas. The equilibrium charge state of projectiles in plasmas is not always reached, and it depends mainly on the projectile velocity and the plasma density. Therefore, a non-equilibrium or an instantaneous description of the projectile charge is necessary. The charge state of projectile ions cannot be measured, except after exiting the target, and experimental data remain very scarce. Thus, the validity of our charge state model is checked by comparing the theoretical predictions with an energy loss experiment, as the energy loss has a generally quadratic dependence on the projectile charge state. The dielectric formalism has been used to calculate the plasma stopping power including the Brandt-Kitagawa (BK) model to describe the charge distribution of the projectile. In this charge distribution, the instantaneous number of bound electrons instead of the equilibrium number has been taken into account. Comparing our theoretical predictions with experiments, it is shown the necessity of including the instantaneous charge state and the BK charge distribution for a correct energy loss estimation. The results also show that the initial charge state has a strong influence in order to estimate the energy loss of the uranium ions.
Influence of initial seed distribution on the pattern formation of the phase field crystals
NASA Astrophysics Data System (ADS)
Starodumov, Ilya; Galenko, Peter; Kropotin, Nikolai; Alexandrov, Dmitri V.
2017-11-01
The process of crystal growth can be expressed as a transition of atomic structure to a finally stable state or to a metastable state. In the Phase Field Crystal Model (PFC-model) these states are described by regular distributions of the atomic density. Getting the system into any metastable condition may be caused by the peculiarities of the computational domain, initial and boundary conditions. However, an important factor in the formation of the crystal structure can be the initial disturbance. In the report we show how different types of initial disturbance can change the finally stable state of crystal structure in equilibrium.
NASA Astrophysics Data System (ADS)
Távora, Marco; Torres-Herrera, E. J.; Santos, Lea F.
2016-10-01
Despite being ubiquitous, out-of-equilibrium quantum systems are much less understood than systems at equilibrium. Progress in the field has benefited from a symbiotic relationship between theoretical studies and new experiments on coherent dynamics. The present work strengthens this connection by providing a general picture of the relaxation process of isolated lattice many-body quantum systems that are routinely studied in experiments with cold atoms, ions traps, and nuclear magnetic resonance. We show numerically and analytically that the long-time decay of the probability for finding the system in its initial state necessarily shows a power-law behavior ∝t-γ . This happens independently of the details of the system, such as integrability, level repulsion, and the presence or absence of disorder. Information about the spectrum, the structure of the initial state, and the number of particles that interact simultaneously is contained in the value of γ . From it, we can anticipate whether the initial state will or will not thermalize.
Nonequilibrium Tricritical Point in a System with Long-Range Interactions
NASA Astrophysics Data System (ADS)
Antoniazzi, Andrea; Fanelli, Duccio; Ruffo, Stefano; Yamaguchi, Yoshiyuki Y.
2007-07-01
Systems with long-range interactions display a short-time relaxation towards quasistationary states whose lifetime increases with system size. With reference to the Hamiltonian mean field model, we here show that a maximum entropy principle, based on Lynden-Bell’s pioneering idea of “violent relaxation,” predicts the presence of out-of-equilibrium phase transitions separating the relaxation towards homogeneous (zero magnetization) or inhomogeneous (nonzero magnetization) quasistationary states. When varying the initial condition within a family of “water bags” with different initial magnetization and energy, first- and second-order phase transition lines are found that merge at an out-of-equilibrium tricritical point. Metastability is theoretically predicted and numerically checked around the first-order phase transition line.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, M.; Ganesh, R.
The dynamics of cylindrically trapped electron plasma has been investigated using a newly developed 2D Electrostatic PIC code that uses unapproximated, mass-included equations of motion for simulation. Exhaustive simulations, covering the entire range of Brillouin ratio, were performed for uniformly filled circular profiles in rigid rotor equilibrium. The same profiles were then loaded away from equilibrium with an initial value of rigid rotation frequency different from that required for radial force balance. Both these sets of simulations were performed for an initial zero-temperature or cold load of the plasma with no spread in either angular velocity or radial velocity. Themore » evolution of the off-equilibrium initial conditions to a steady state involve radial breathing of the profile that scales in amplitude and algebraic growth with Brillouin fraction. For higher Brillouin fractions, the growth of the breathing mode is followed by complex dynamics of spontaneous hollow density structures, excitation of poloidal modes, leading to a monotonically falling density profile.« less
A new equilibrium torus solution and GRMHD initial conditions
NASA Astrophysics Data System (ADS)
Penna, Robert F.; Kulkarni, Akshay; Narayan, Ramesh
2013-11-01
Context. General relativistic magnetohydrodynamic (GRMHD) simulations are providing influential models for black hole spin measurements, gamma ray bursts, and supermassive black hole feedback. Many of these simulations use the same initial condition: a rotating torus of fluid in hydrostatic equilibrium. A persistent concern is that simulation results sometimes depend on arbitrary features of the initial torus. For example, the Bernoulli parameter (which is related to outflows), appears to be controlled by the Bernoulli parameter of the initial torus. Aims: In this paper, we give a new equilibrium torus solution and describe two applications for the future. First, it can be used as a more physical initial condition for GRMHD simulations than earlier torus solutions. Second, it can be used in conjunction with earlier torus solutions to isolate the simulation results that depend on initial conditions. Methods: We assume axisymmetry, an ideal gas equation of state, constant entropy, and ignore self-gravity. We fix an angular momentum distribution and solve the relativistic Euler equations in the Kerr metric. Results: The Bernoulli parameter, rotation rate, and geometrical thickness of the torus can be adjusted independently. Our torus tends to be more bound and have a larger radial extent than earlier torus solutions. Conclusions: While this paper was in preparation, several GRMHD simulations appeared based on our equilibrium torus. We believe it will continue to provide a more realistic starting point for future simulations.
Time-dependence of the holographic spectral function: diverse routes to thermalisation
Banerjee, Souvik; Ishii, Takaaki; Joshi, Lata Kh; ...
2016-08-08
Here, we develop a new method for computing the holographic retarded propagator in generic (non-) equilibrium states using the state/geometry map. We check that our method reproduces the thermal spectral function given by the Son-Starinets prescription. The time-dependence of the spectral function of a relevant scalar operator is studied in a class of non-equilibrium states. The latter are represented by AdS-Vaidya geometries with an arbitrary parameter characterising the timescale for the dual state to transit from an initial thermal equilibrium to another due to a homogeneous quench. For long quench duration, the spectral function indeed follows the thermal form atmore » the instantaneous effective temperature adiabatically, although with a slight initial time delay and a bit premature thermalisation. At shorter quench durations, several new non-adiabatic features appear: (i) time-dependence of the spectral function is seen much before than that in the effective temperature (advanced time-dependence), (ii) a big transfer of spectral weight to frequencies greater than the initial temperature occurs at an intermediate time (kink formation) and (iii) new peaks with decreasing amplitudes but in greater numbers appear even after the effective temperature has stabilised (persistent oscillations). We find four broad routes to thermalisation for lower values of spatial momenta. At higher values of spatial momenta, kink formations and persistent oscillations are suppressed, and thermalisation time decreases. The general thermalisation pattern is globally top-down, but a closer look reveals complexities.« less
Squeezed states and graviton-entropy production in the early universe
NASA Technical Reports Server (NTRS)
Giovannini, Massimo
1994-01-01
Squeezed states are a very useful framework for the quantum treatment of tensor perturbations (i.e. gravitons production) in the early universe. In particular, the non equilibrium entropy growth in a cosmological process of pair production is completely determined by the associated squeezing parameter and is insensitive to the number of particles in the initial state. The total produced entropy may represent a significant fraction of the entropy stored today in the cosmic blackbody radiation, provided pair production originates from a change in the background metric at a curvature scale of the Planck order. Within the formalism of squeezed thermal states it is also possible to discuss the stimulated emission of gravitons from an initial thermal bath, under the action of the cosmic gravitational background field. We find that at low energy the graviton production is enhanced, if compared with spontaneous creation from the vacuum; as a consequence, the inflation scale must be lowered, in order not to exceed the observed CMB quadrupole anisotropy. This effect is important, in particular, for models based on a symmetry-breaking transition which require, as initial condition, a state of thermal equilibrium at temperatures higher than the inflation scale and in which inflation has a minimal duration.
Hydrodynamics of a freely movable flexible fin near the ground
NASA Astrophysics Data System (ADS)
Jeong, Young Dal; Lee, Jae Hwa
2017-11-01
In the present study, a freely movable flexible fin is numerically modelled to investigate the flapping dynamics of the fin near the ground in a Poiseuille flow. A leading edge of the fin is fixed in the streamwise direction, whereas the lateral motion is spontaneously determined by hydrodynamic interaction between the fin and surrounding fluid. When the fin is initially positioned at yo, the fin passively migrates toward another wall-normal position for an equilibrium state by the interaction between passively flapping flexible body and ground. At the equilibrium position, the drag coefficient of the fin (CD) significantly decreases due to decaying of the flapping and low flow velocity and the fin can swim consistently without the time-averaged lateral force. Two distinctive behavior at the transient state (flapping and non-flapping migration modes) and three distinctive behaviors at the equilibrium state (deflected-straight, large- and small-amplitude flapping modes) are observed depending on the bending rigidity (γ) and mass ratio (μ) of the fin. The equilibrium position of the fin is investigated as a function of initial position (yo) , bending rigidity (γ) , mass ratio (μ) and the Reynolds number (Re). This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A09000537) and the Ministry of Science, ICT & Future Planning (NRF-2017R1A5A1015311).
Nonlinear Thermal Instability in Compressible Viscous Flows Without Heat Conductivity
NASA Astrophysics Data System (ADS)
Jiang, Fei
2018-04-01
We investigate the thermal instability of a smooth equilibrium state, in which the density function satisfies Schwarzschild's (instability) condition, to a compressible heat-conducting viscous flow without heat conductivity in the presence of a uniform gravitational field in a three-dimensional bounded domain. We show that the equilibrium state is linearly unstable by a modified variational method. Then, based on the constructed linearly unstable solutions and a local well-posedness result of classical solutions to the original nonlinear problem, we further construct the initial data of linearly unstable solutions to be the one of the original nonlinear problem, and establish an appropriate energy estimate of Gronwall-type. With the help of the established energy estimate, we finally show that the equilibrium state is nonlinearly unstable in the sense of Hadamard by a careful bootstrap instability argument.
NASA Astrophysics Data System (ADS)
Heidrich-Meisner, Fabian; Vidmar, L.; Ronzheimer, J. P.; Hodgman, S.; Schreiber, M.; Braun, S.; Langer, S.; Bloch, I.; Schneider, U.
2016-05-01
Long-range order in quantum many-body systems is usually associated with equilibrium situations. Here, we experimentally investigate the quasicondensation of strongly interacting bosons at finite momenta in a far-from-equilibrium case. We prepare an inhomogeneous initial state consisting of one-dimensional Mott insulators in the center of otherwise empty one-dimensional chains in an optical lattice with a lattice constant d. After suddenly quenching the trapping potential to zero, we observe the onset of coherence in spontaneously forming quasicondensates in the lattice. Remarkably, the emerging phase order differs from the ground-state order and is characterized by peaks at finite momenta +/-(π / 2)(ℏ / d) in the momentum distribution function. Supported by the DFG via FOR 801.
Predicted torque equilibrium attitude utilization for Space Station attitude control
NASA Technical Reports Server (NTRS)
Kumar, Renjith R.; Heck, Michael L.; Robertson, Brent P.
1990-01-01
An approximate knowledge of the torque equilibrium attitude (TEA) is shown to improve the performance of a control moment gyroscope (CMG) momentum management/attitude control law for Space Station Freedom. The linearized equations of motion are used in conjunction with a state transformation to obtain a control law which uses full state feedback and the predicted TEA to minimize both attitude excursions and CMG peak and secular momentum. The TEA can be computationally determined either by observing the steady state attitude of a 'controlled' spacecraft using arbitrary initial attitude, or by simulating a fixed attitude spacecraft flying in desired orbit subject to realistic environmental disturbance models.
Comparison of the Rheology of Bauxite Residue Suspensions
NASA Astrophysics Data System (ADS)
Pashias, N.; Boger, D. V.; Summers, J.; Glenister, D. J.
The paper presents an overview on the rheology of bauxite residue suspensions. Comparative viscosity and yield stress data are presented for bauxite residues generated in Australia, Jamaica, Surinam, and the USA. A yield stress for optimum dry disposal is specified as is the concentration for minimum energy consumption for the pumping of the four different materials. The data show that bauxite residues can be characterised at two structural states: the initial and the equilibrium or time-independent state. Data can be collected and reproduced for different muds providing there is an understanding of the time dependent nature of the material. The four red mud samples obtained from around the world have been characterised in both the initial and final equilibrium state. A comparison shows that after the course particle fraction has been removed the US, Surinam, and three samples from Western Australia all show similar rheological characteristics in the reduced structural state. A fundamental understanding of the basic rheology of bauxite residue is necessary for establishing an optimal waste disposal strategy.
Bounded energy states in homogeneous turbulent shear flow: An alternative view
NASA Technical Reports Server (NTRS)
Bernard, Peter S.; Speziale, Charles G.
1990-01-01
The equilibrium structure of homogeneous turbulent shear flow is investigated from a theoretical standpoint. Existing turbulence models, in apparent agreement with physical and numerical experiments, predict an unbounded exponential time growth of the turbulent kinetic energy and dissipation rate; only the anisotropy tensor and turbulent time scale reach a structural equilibrium. It is shown that if vortex stretching is accounted for in the dissipation rate transport equation, then there can exist equilibrium solutions, with bounded energy states, where the turbulence production is balanced by its dissipation. Illustrative calculations are present for a k-epsilon model modified to account for vortex stretching. The calculations indicate an initial exponential time growth of the turbulent kinetic energy and dissipation rate for elapsed times that are as large as those considered in any of the previously conducted physical or numerical experiments on homogeneous shear flow. However, vortex stretching eventually takes over and forces a production-equals-dissipation equilibrium with bounded energy states. The validity of this result is further supported by an independent theoretical argument. It is concluded that the generally accepted structural equilibrium for homogeneous shear flow with unbounded component energies is in need of re-examination.
Shock and Laser Induced Non-Equilibrium Chemistry in Molecular Energetics
NASA Astrophysics Data System (ADS)
Wood, Mitchell; Cherukara, Mathew; Kober, Edward; Strachan, Alejandro
2015-06-01
In this study, we have used large scale reactive molecular dynamics (MD) simulations to study how contrasting initiation mechanisms from either shock or electromagnetic insults compare to traditional thermal initiation. We will show how insults of equal strength but different character can yield vastly different reaction profiles and thus the evolution of hot-spots. For shocked RDX (Up = 2km/s), we find that the collapse of a cylindrical 40 nm diameter pore leads to a significant amount of non-equilibrium reactions followed by the formation of a sustained deflagration wave. In contrast, a hot spot that is seeded into a statically compressed crystal with matching size and temperature will quench over the same timescale, highlighting the importance of insult type. Furthermore, MD simulations of electromagnetic insults coupled to intramolecular vibrations have shown, in some cases, mode specific initial chemistry and altered kinetics of the subsequent decomposition. By leveraging spectroscopic and chemical information gathered in our MD simulations, we have been able to identify and track non-equilibrium vibrational states of these materials and correlate them to these observed changes. Implications of insult dependent reactivity and non-equilibrium chemistry will be discussed.
Magnetic property zonation in a thick lava flow
NASA Astrophysics Data System (ADS)
Audunsson, Haraldur; Levi, Shaul; Hodges, Floyd
1992-04-01
Intraflow structures and magmatic evolution in an extensive and thick (30-60 m) basaltic lava flow are examined on the basis of grain size and composition-dependent magnetic properties of titanomagnetite materials. Microprobe data indicate that the intraflow oxidation state Fe(3+)/Fe(2+) of the initially precipitated primary titanomagnetites increases with falling equilibrium temperature from the flow margins to a maximum near the center, the position of lowest equilibrium temperature. In contrast, Curie temperature measurements indicate that titanomagnetite oxidation increases with height in the flow. Modification of the initially symmetric equilibrium titanomagnetite compositions was caused by subsolidus high-temperature oxidation possibly due to hydrogen loss produced by dissociation of magmatic water, as well as unknown contributions of circulating air and percolating water from above. The titanomagnetites of the basal layer of the flow remain essentially unaltered.
Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state
NASA Astrophysics Data System (ADS)
Culver, Adrian; Andrei, Natan
We calculate the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t =0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. The solution describes the non-equilibrium steady state of the system. We use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, yielding the I-V characteristic. The calculation is non-perturbative and exact. Research supported by NSF Grant DMR 1410583.
Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state
NASA Astrophysics Data System (ADS)
Culver, Adrian; Andrei, Natan
We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.
Reaction paths and equilibrium end-points in solid-solution aqueous-solution systems
Glynn, P.D.; Reardon, E.J.; Plummer, Niel; Busenberg, E.
1990-01-01
Equations are presented describing equilibrium in binary solid-solution aqueous-solution (SSAS) systems after a dissolution, precipitation, or recrystallization process, as a function of the composition and relative proportion of the initial phases. Equilibrium phase diagrams incorporating the concept of stoichiometric saturation are used to interpret possible reaction paths and to demonstrate relations between stoichiometric saturation, primary saturation, and thermodynamic equilibrium states. The concept of stoichiometric saturation is found useful in interpreting and putting limits on dissolution pathways, but there currently is no basis for possible application of this concept to the prediction and/ or understanding of precipitation processes. Previously published dissolution experiments for (Ba, Sr)SO4 and (Sr, Ca)C??O3orth. solids are interpreted using equilibrium phase diagrams. These studies show that stoichiometric saturation can control, or at least influence, initial congruent dissolution pathways. The results for (Sr, Ca)CO3orth. solids reveal that stoichiometric saturation can also control the initial stages of incongruent dissolution, despite the intrinsic instability of some of the initial solids. In contrast, recrystallisation experiments in the highly soluble KCl-KBr-H2O system demonstrate equilibrium. The excess free energy of mixing calculated for K(Cl, Br) solids is closely modeled by the relation GE = ??KBr??KClRT[a0 + a1(2??KBr-1)], where a0 is 1.40 ?? 0.02, a1, is -0.08 ?? 0.03 at 25??C, and ??KBr and ??KCl are the mole fractions of KBr and KCl in the solids. The phase diagram constructed using this fit reveals an alyotropic maximum located at ??KBr = 0.676 and at a total solubility product, ???? = [K+]([Cl-] + [Br-]) = 15.35. ?? 1990.
Frozen into stripes: fate of the critical Ising model after a quench.
Blanchard, T; Picco, M
2013-09-01
In this article we study numerically the final state of the two-dimensional ferromagnetic critical Ising model after a quench to zero temperature. Beginning from equilibrium at T_{c}, the system can be blocked in a variety of infinitely long lived stripe states in addition to the ground state. Similar results have already been obtained for an infinite temperature initial condition and an interesting connection to exact percolation crossing probabilities has emerged. Here we complete this picture by providing an example of stripe states precisely related to initial crossing probabilities for various boundary conditions. We thus show that this is not specific to percolation but rather that it depends on the properties of spanning clusters in the initial state.
Importance of initial and final state effects for azimuthal correlations in p + Pb collisions
Greif, Moritz; Greiner, Carsten; Schenke, Bjorn; ...
2017-11-27
In this work, we investigate the relative importance of initial and final state effects on azimuthal correlations of gluons in low and high multiplicity p+Pb collisions. To achieve this, we couple Yang-Mills dynamics of pre-equilibrium gluon fields (IP-GLASMA) to a perturbative QCD based parton cascade for the final state evolution (BAMPS) on an event-by-event basis. We find that signatures of both the initial state correlations and final state interactions are seen in azimuthal correlation observables, such as v 2 {2PC} (p T), their strength depending on the event multiplicity and transverse momentum. Initial state correlations dominate v 2 {2PC} (pmore » T) in low multiplicity events for transverse momenta p T > 2 GeV. Lastly, while final state interactions are dominant in high multiplicity events, initial state correlations affect v 2 {2PC} (p T) for p T > 2 GeV as well as the pT integrated v 2 {2PC}.« less
Importance of initial and final state effects for azimuthal correlations in p + Pb collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greif, Moritz; Greiner, Carsten; Schenke, Bjorn
In this work, we investigate the relative importance of initial and final state effects on azimuthal correlations of gluons in low and high multiplicity p+Pb collisions. To achieve this, we couple Yang-Mills dynamics of pre-equilibrium gluon fields (IP-GLASMA) to a perturbative QCD based parton cascade for the final state evolution (BAMPS) on an event-by-event basis. We find that signatures of both the initial state correlations and final state interactions are seen in azimuthal correlation observables, such as v 2 {2PC} (p T), their strength depending on the event multiplicity and transverse momentum. Initial state correlations dominate v 2 {2PC} (pmore » T) in low multiplicity events for transverse momenta p T > 2 GeV. Lastly, while final state interactions are dominant in high multiplicity events, initial state correlations affect v 2 {2PC} (p T) for p T > 2 GeV as well as the pT integrated v 2 {2PC}.« less
Ribosome flow model with positive feedback
Margaliot, Michael; Tuller, Tamir
2013-01-01
Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that terminatae translation at the 3′ end can diffuse with increased probability to the 5′ end of the transcript, initiating another cycle of translation. This phenomenon describes ribosomal flow with positive feedback—an increase in the flow of ribosomes terminating translating the open reading frame increases the ribosomal initiation rate. The aim of this paper is to model and rigorously analyse translation with feedback. We suggest a modified version of the ribosome flow model, called the ribosome flow model with input and output. In this model, the input is the initiation rate and the output is the translation rate. We analyse this model after closing the loop with a positive linear feedback. We show that the closed-loop system admits a unique globally asymptotically stable equilibrium point. From a biophysical point of view, this means that there exists a unique steady state of ribosome distributions along the mRNA, and thus a unique steady-state translation rate. The solution from any initial distribution will converge to this steady state. The steady-state distribution demonstrates a decrease in ribosome density along the coding sequence. For the case of constant elongation rates, we obtain expressions relating the model parameters to the equilibrium point. These results may perhaps be used to re-engineer the biological system in order to obtain a desired translation rate. PMID:23720534
Work fluctuations for Bose particles in grand canonical initial states.
Yi, Juyeon; Kim, Yong Woon; Talkner, Peter
2012-05-01
We consider bosons in a harmonic trap and investigate the fluctuations of the work performed by an adiabatic change of the trap curvature. Depending on the reservoir conditions such as temperature and chemical potential that provide the initial equilibrium state, the exponentiated work average (EWA) defined in the context of the Crooks relation and the Jarzynski equality may diverge if the trap becomes wider. We investigate how the probability distribution function (PDF) of the work signals this divergence. It is shown that at low temperatures the PDF is highly asymmetric with a steep fall-off at one side and an exponential tail at the other side. For high temperatures it is closer to a symmetric distribution approaching a Gaussian form. These properties of the work PDF are discussed in relation to the convergence of the EWA and to the existence of the hypothetical equilibrium state to which those thermodynamic potential changes refer that enter both the Crooks relation and the Jarzynski equality.
Quench dynamics in superconducting nanojunctions: Metastability and dynamical Yang-Lee zeros
NASA Astrophysics Data System (ADS)
Souto, R. Seoane; Martín-Rodero, A.; Yeyati, A. Levy
2017-10-01
We study the charge transfer dynamics following the formation of a phase or voltage biased superconducting nanojunction using a full counting statistics analysis. We demonstrate that the evolution of the zeros of the generating function allows one to identify the population of different many body states much in the same way as the accumulation of Yang-Lee zeros of the partition function in equilibrium statistical mechanics is connected to phase transitions. We give an exact expression connecting the dynamical zeros to the charge transfer cumulants and discuss when an approximation based on "dominant" zeros is valid. We show that, for generic values of the parameters, the system gets trapped into a metastable state characterized by a nonequilibrium population of the many body states which is dependent on the initial conditions. We study in particular the effect of the switching rates in the dynamics showing that, in contrast to intuition, the deviation from thermal equilibrium increases for the slower rates. In the voltage biased case the steady state is reached independent of the initial conditions. Our method allows us to obtain accurate results for the steady state current and noise in quantitative agreement with steady state methods developed to describe the multiple Andreev reflections regime. Finally, we discuss the system dynamics after a sudden voltage drop showing the possibility of tuning the many body states population by an appropriate choice of the initial voltage, providing a feasible experimental way to access the quench dynamics and control the state of the system.
Mechanism of α-ketol-type rearrangement of benzoin derivatives under basic conditions.
Karino, Masahiro; Kubouchi, Daiki; Hamaoka, Kazuki; Umeyama, Shintaro; Yamataka, Hiroshi
2013-07-19
The mechanism of base-catalyzed rearrangement of ring-substituted benzoins in aqueous methanol was examined by kinetic and product analyses. Substituent effects on the rate and equilibrium constants revealed that the kinetic process has a different electron demand compared to the equilibrium process. Reactions in deuterated solvents showed that the rate of H/D exchange of the α-hydrogen is similar to the overall rate toward the equilibrium state. A proton-inventory experiment using partially deuterated solvents showed a linear dependence of the rate on the deuterium fraction of the solvent, indicating that only one deuterium isotope effect contributes to the overall rate process. All these results point to a mechanism in which the rearrangement is initiated by the rate-determining α-hydrogen abstraction rather than a mechanism with initial hydroxyl hydrogen abstraction as in the general α-ketol rearrangement.
Convective thinning of the lithosphere - A mechanism for the initiation of continental rifting
NASA Technical Reports Server (NTRS)
Spohn, T.; Schubert, G.
1982-01-01
A model of lithospheric thinning, in which heat is convected to the base and conducted within the lithosphere, is presented. An analytical equation for determinining the amount of thinning attainable on increasing the heat flux from the asthenosphere is derived, and a formula for lithosphere thickness approximations as a function of time is given. Initial and final equilibrium thicknesses, thermal diffusivity, transition temperature profile, and plume temperature profile are all factors considered for performing rate of thinning determinations. In addition, between initial and final equilibrium states, lithospheric thinning occurs at a rate which is inversely proportional to the square root of the time. Finally, uplift resulting from thermal expansion upon lithospheric thinning is on the order of 10 to the 2nd to 10 to the 3rd m.
Role of non-equilibrium conformations on driven polymer translocation
NASA Astrophysics Data System (ADS)
Katkar, H. H.; Muthukumar, M.
2018-01-01
One of the major theoretical methods in understanding polymer translocation through a nanopore is the Fokker-Planck formalism based on the assumption of quasi-equilibrium of polymer conformations. The criterion for applicability of the quasi-equilibrium approximation for polymer translocation is that the average translocation time per Kuhn segment, ⟨τ⟩/NK, is longer than the relaxation time τ0 of the polymer. Toward an understanding of conditions that would satisfy this criterion, we have performed coarse-grained three dimensional Langevin dynamics and multi-particle collision dynamics simulations. We have studied the role of initial conformations of a polyelectrolyte chain (which were artificially generated with a flow field) on the kinetics of its translocation across a nanopore under the action of an externally applied transmembrane voltage V (in the absence of the initial flow field). Stretched (out-of-equilibrium) polyelectrolyte chain conformations are deliberately and systematically generated and used as initial conformations in translocation simulations. Independent simulations are performed to study the relaxation behavior of these stretched chains, and a comparison is made between the relaxation time scale and the mean translocation time (⟨τ⟩). For such artificially stretched initial states, ⟨τ⟩/NK < τ0, demonstrating the inapplicability of the quasi-equilibrium approximation. Nevertheless, we observe a scaling of ⟨τ⟩ ˜ 1/V over the entire range of chain stretching studied, in agreement with the predictions of the Fokker-Planck model. On the other hand, for realistic situations where the initial artificially imposed flow field is absent, a comparison of experimental data reported in the literature with the theory of polyelectrolyte dynamics reveals that the Zimm relaxation time (τZimm) is shorter than the mean translocation time for several polymers including single stranded DNA (ssDNA), double stranded DNA (dsDNA), and synthetic polymers. Even when these data are rescaled assuming a constant effective velocity of translocation, it is found that for flexible (ssDNA and synthetic) polymers with NK Kuhn segments, the condition ⟨τ⟩/NK < τZimm is satisfied. We predict that for flexible polymers such as ssDNA, a crossover from quasi-equilibrium to non-equilibrium behavior would occur at NK ˜ O(1000).
NASA Astrophysics Data System (ADS)
Lei, Hanlun; Xu, Bo; Circi, Christian
2018-05-01
In this work, the single-mode motions around the collinear and triangular libration points in the circular restricted three-body problem are studied. To describe these motions, we adopt an invariant manifold approach, which states that a suitable pair of independent variables are taken as modal coordinates and the remaining state variables are expressed as polynomial series of them. Based on the invariant manifold approach, the general procedure on constructing polynomial expansions up to a certain order is outlined. Taking the Earth-Moon system as the example dynamical model, we construct the polynomial expansions up to the tenth order for the single-mode motions around collinear libration points, and up to order eight and six for the planar and vertical-periodic motions around triangular libration point, respectively. The application of the polynomial expansions constructed lies in that they can be used to determine the initial states for the single-mode motions around equilibrium points. To check the validity, the accuracy of initial states determined by the polynomial expansions is evaluated.
Study of nonequilibrium work distributions from a fluctuating lattice Boltzmann model.
Nasarayya Chari, S Siva; Murthy, K P N; Inguva, Ramarao
2012-04-01
A system of ideal gas is switched from an initial equilibrium state to a final state not necessarily in equilibrium, by varying a macroscopic control variable according to a well-defined protocol. The distribution of work performed during the switching process is obtained. The equilibrium free energy difference, ΔF, is determined from the work fluctuation relation. Some of the work values in the ensemble shall be less than ΔF. We term these as ones that "violate" the second law of thermodynamics. A fluctuating lattice Boltzmann model has been employed to carry out the simulation of the switching experiment. Our results show that the probability of violation of the second law increases with the increase of switching time (τ) and tends to one-half in the reversible limit of τ→∞.
Universal Features of Metastable State Energies in Cellular Matter
NASA Astrophysics Data System (ADS)
Kim, Sangwoo; Wang, Yiliang; Hilgenfeldt, Sascha
2018-06-01
Mechanical equilibrium states of cellular matter are overwhelmingly metastable and separated from each other by topology changes. Using theory and simulations, it is shown that for a wide class of energy functionals in 2D, including those describing tissue cell layers, local energy differences between neighboring metastable states as well as global energy differences between initial states and ground states are governed by simple, universal relations. Knowledge of instantaneous length of an edge undergoing a T 1 transition is sufficient to predict local energy changes, while the initial edge length distribution yields a successful prediction for the global energy difference. An analytical understanding of the model parameters is provided.
Effect of initial densities in the lattice Boltzmann model for non-ideal fluid with curved interface
NASA Astrophysics Data System (ADS)
Gong, Jiaming; Oshima, Nobuyuki
2017-06-01
The effect of initial densities in a free energy based two-phase-flow lattice Boltzmann method for non-ideal fluids with a curved interface was investigated in the present work. To investigate this effect, the initial densities in the liquid and gas phases coming from the saturation points and the equilibrium state were adopted in the simulation of a static droplet in an open and a closed system. For the purpose of simplicity and easier comparison, the closed system is fabricated by the implementation of the periodic boundary condition at the inlet and outlet of a gas channel, and the open system is fabricated by the implementation of a constant flux boundary condition at the inlet and a free-out boundary condition at the outlet of the same gas channel. By comparing the simulation results from the two types of initial densities in the open and closed systems, it is proven that the commonly used saturation initial densities setting is the reason for droplet mass and volume variation which occurred in the simulation, particularly in the open system with a constant flux boundary condition. Such problems are believed to come from the curvature effect of the surface tension and can be greatly reduced by adopting the initial densities in the two phases from equilibrium state.
Fluctuation-dissipation theorem in an isolated system of quantum dipolar bosons after a quench.
Khatami, Ehsan; Pupillo, Guido; Srednicki, Mark; Rigol, Marcos
2013-08-02
We examine the validity of fluctuation-dissipation relations in isolated quantum systems taken out of equilibrium by a sudden quench. We focus on the dynamics of trapped hard-core bosons in one-dimensional lattices with dipolar interactions whose strength is changed during the quench. We find indications that fluctuation-dissipation relations hold if the system is nonintegrable after the quench, as well as if it is integrable after the quench if the initial state is an equilibrium state of a nonintegrable Hamiltonian. On the other hand, we find indications that they fail if the system is integrable both before and after quenching.
Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction
NASA Astrophysics Data System (ADS)
Pigneur, Marine; Berrada, Tarik; Bonneau, Marie; Schumm, Thorsten; Demler, Eugene; Schmiedmayer, Jörg
2018-04-01
We present an experimental study on the nonequilibrium tunnel dynamics of two coupled one-dimensional Bose-Einstein quasicondensates deep in the Josephson regime. Josephson oscillations are initiated by splitting a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance shows a relaxation to a phase-locked steady state. The latter is characterized by a high phase coherence and reduced fluctuations with respect to the initial state. We propose an empirical model based on the analogy with the anharmonic oscillator to describe the effect of various experimental parameters. A microscopic theory compatible with our observations is still missing.
The two-stage dynamics in the Fermi-Pasta-Ulam problem: From regular to diffusive behavior
NASA Astrophysics Data System (ADS)
Ponno, A.; Christodoulidi, H.; Skokos, Ch.; Flach, S.
2011-12-01
A numerical and analytical study of the relaxation to equilibrium of both the Fermi-Pasta-Ulam (FPU) α-model and the integrable Toda model, when the fundamental mode is initially excited, is reported. We show that the dynamics of both systems is almost identical on the short term, when the energies of the initially unexcited modes grow in geometric progression with time, through a secular avalanche process. At the end of this first stage of the dynamics, the time-averaged modal energy spectrum of the Toda system stabilizes to its final profile, well described, at low energy, by the spectrum of a q-breather. The Toda equilibrium state is clearly shown to describe well the long-living quasi-state of the FPU system. On the long term, the modal energy spectrum of the FPU system slowly detaches from the Toda one by a diffusive-like rising of the tail modes, and eventually reaches the equilibrium flat shape. We find a simple law describing the growth of tail modes, which enables us to estimate the time-scale to equipartition of the FPU system, even when, at small energies, it becomes unobservable.
Quench dynamics of the spin-imbalanced Fermi-Hubbard model in one dimension
NASA Astrophysics Data System (ADS)
Yin, Xiao; Radzihovsky, Leo
2016-12-01
We study a nonequilibrium dynamics of a one-dimensional spin-imbalanced Fermi-Hubbard model following a quantum quench of on-site interaction, realizable, for example, in Feshbach-resonant atomic Fermi gases. We focus on the post-quench evolution starting from the initial BCS and Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) ground states and analyze the corresponding spin-singlet, spin-triplet, density-density, and magnetization-magnetization correlation functions. We find that beyond a light-cone crossover time, rich post-quench dynamics leads to thermalized and pre-thermalized stationary states that display strong dependence on the initial ground state. For initially gapped BCS state, the long-time stationary state resembles thermalization with the effective temperature set by the initial value of the Hubbard interaction. In contrast, while the initial gapless FFLO state reaches a stationary pre-thermalized form, it remains far from equilibrium. We suggest that such post-quench dynamics can be used as a fingerprint for identification and study of the FFLO phase.
Holographic thermalization with initial long range correlation
Lin, Shu
2016-01-19
Here, we studied the evolution of the Wightman correlator in a thermalizing state modeled by AdS 3-Vaidya background. A prescription was given for calculating the Wightman correlator in coordinate space without using any approximation. For equal-time correlator , we obtained an enhancement factor v 2 due to long range correlation present in the initial state. This was missed by previous studies based on geodesic approximation. Moreover, we found that the long range correlation in initial state does not lead to significant modification to thermalization time as compared to known results with generic initial state. We also studied the spatially integratedmore » Wightman correlator and showed evidence on the distinction between long distance and small momentum physics for an out-of-equilibrium state. We also calculated the radiation spectrum of particles weakly coupled to O and found that lower frequency mode approaches thermal spectrum faster than high frequency mode.« less
School Finance Reform: Assessing General Equilibrium Effects. NBER Working Paper No. 13524
ERIC Educational Resources Information Center
Epple, Dennis N.; Ferreyra, Maria Marta
2007-01-01
In 1994 the state of Michigan implemented one of the most comprehensive school finance reforms undertaken to date in any of the states. Understanding the effects of the reform is thus of value in informing other potential reform initiatives. In addition, the reform and associated changes in the economic environment provide an opportunity to assess…
Nonlinear Dynamic Models in Advanced Life Support
NASA Technical Reports Server (NTRS)
Jones, Harry
2002-01-01
To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.
Dynamics of isolated quantum systems: many-body localization and thermalization
NASA Astrophysics Data System (ADS)
Torres-Herrera, E. Jonathan; Tavora, Marco; Santos, Lea F.
2016-05-01
We show that the transition to a many-body localized phase and the onset of thermalization can be inferred from the analysis of the dynamics of isolated quantum systems taken out of equilibrium abruptly. The systems considered are described by one-dimensional spin-1/2 models with static random magnetic fields and by power-law band random matrices. We find that the short-time decay of the survival probability of the initial state is faster than exponential for sufficiently strong perturbations. This initial evolution does not depend on whether the system is integrable or chaotic, disordered or clean. At long-times, the dynamics necessarily slows down and shows a power-law behavior. The value of the power-law exponent indicates whether the system will reach thermal equilibrium or not. We present how the properties of the spectrum, structure of the initial state, and number of particles that interact simultaneously affect the value of the power-law exponent. We also compare the results for the survival probability with those for few-body observables. EJTH aknowledges financial support from PRODEP-SEP and VIEP-BUAP, Mexico.
Long-term aging behaviors in a model soft colloidal system.
Li, Qi; Peng, Xiaoguang; McKenna, Gregory B
2017-02-15
Colloidal and molecular systems share similar behaviors near to the glass transition volume fraction or temperature. Here, aging behaviors after volume fraction up-jump (induced by performing temperature down-jumps) conditions for a PS-PNIPAM/AA soft colloidal system were investigated using light scattering (diffusing wave spectroscopy, DWS). Both aging responses and equilibrium dynamics were investigated. For the aging responses, long-term experiments (100 000 s) were performed, and both equilibrium and non-equilibrium behaviors of the system were obtained. In the equilibrium state, as effective volume fraction increases (or temperature decreases), the colloidal dispersion displays a transition from the liquid to a glassy state. The equilibrium α-relaxation dynamics strongly depend on both the effective volume fraction and the initial mass concentration for the studied colloidal systems. Compared with prior results from our lab [X. Di, X. Peng and G. B. McKenna, J. Chem. Phys., 2014, 140, 054903], the effective volume fractions investigated spanned a wider range, to deeper into the glassy domain. The results show that the α-relaxation time τ α of the samples aged into equilibrium deviate from the classical Vogel-Fulcher-Tammann (VFT)-type expectations and the super-Arrhenius signature disappears above the glass transition volume fraction. The non-equilibrium aging response shows that the time for the structural evolution into equilibrium and the α-relaxation time are decoupled. The DWS investigation of the aging behavior after different volume fraction jumps reveals a different non-equilibrium or aging behavior for the considered colloidal systems compared with either molecular glasses or the macroscopic rheology of a similar colloidal dispersions.
Enthalpy versus entropy: What drives hard-particle ordering in condensed phases?
Anthamatten, Mitchell; Ou, Jane J.; Weinfeld, Jeffrey A.; ...
2016-07-27
In support of mesoscopic-scale materials processing, spontaneous hard-particle ordering has been actively pursued for over a half-century. The generally accepted view that entropy alone can drive hard particle ordering is evaluated. Furthermore, a thermodynamic analysis of hard particle ordering was conducted and shown to agree with existing computations and experiments. Conclusions are that (i) hard particle ordering transitions between states in equilibrium are forbidden at constant volume but are allowed at constant pressure; (ii) spontaneous ordering transitions at constant pressure are driven by enthalpy, and (iii) ordering under constant volume necessarily involves a non-equilibrium initial state which has yet tomore » be rigorously defined.« less
Secure steganographic communication algorithm based on self-organizing patterns.
Saunoriene, Loreta; Ragulskis, Minvydas
2011-11-01
A secure steganographic communication algorithm based on patterns evolving in a Beddington-de Angelis-type predator-prey model with self- and cross-diffusion is proposed in this paper. Small perturbations of initial states of the system around the state of equilibrium result in the evolution of self-organizing patterns. Small differences between initial perturbations result in slight differences also in the evolving patterns. It is shown that the generation of interpretable target patterns cannot be considered as a secure mean of communication because contours of the secret image can be retrieved from the cover image using statistical techniques if only it represents small perturbations of the initial states of the system. An alternative approach when the cover image represents the self-organizing pattern that has evolved from initial states perturbed using the dot-skeleton representation of the secret image can be considered as a safe visual communication technique protecting both the secret image and communicating parties.
Classical evolution of fractal measures on the lattice
NASA Astrophysics Data System (ADS)
Antoniou, N. G.; Diakonos, F. K.; Saridakis, E. N.; Tsolias, G. A.
2007-04-01
We consider the classical evolution of a lattice of nonlinear coupled oscillators for a special case of initial conditions resembling the equilibrium state of a macroscopic thermal system at the critical point. The displacements of the oscillators define initially a fractal measure on the lattice associated with the scaling properties of the order parameter fluctuations in the corresponding critical system. Assuming a sudden symmetry breaking (quench), leading to a change in the equilibrium position of each oscillator, we investigate in some detail the deformation of the initial fractal geometry as time evolves. In particular, we show that traces of the critical fractal measure can be sustained for large times, and we extract the properties of the chain that determine the associated time scales. Our analysis applies generally to critical systems for which, after a slow developing phase where equilibrium conditions are justified, a rapid evolution, induced by a sudden symmetry breaking, emerges on time scales much shorter than the corresponding relaxation or observation time. In particular, it can be used in the fireball evolution in a heavy-ion collision experiment, where the QCD critical point emerges, or in the study of evolving fractals of astrophysical and cosmological scales, and may lead to determination of the initial critical properties of the Universe through observations in the symmetry-broken phase.
Role of non-equilibrium conformations on driven polymer translocation.
Katkar, H H; Muthukumar, M
2018-01-14
One of the major theoretical methods in understanding polymer translocation through a nanopore is the Fokker-Planck formalism based on the assumption of quasi-equilibrium of polymer conformations. The criterion for applicability of the quasi-equilibrium approximation for polymer translocation is that the average translocation time per Kuhn segment, ⟨τ⟩/N K , is longer than the relaxation time τ 0 of the polymer. Toward an understanding of conditions that would satisfy this criterion, we have performed coarse-grained three dimensional Langevin dynamics and multi-particle collision dynamics simulations. We have studied the role of initial conformations of a polyelectrolyte chain (which were artificially generated with a flow field) on the kinetics of its translocation across a nanopore under the action of an externally applied transmembrane voltage V (in the absence of the initial flow field). Stretched (out-of-equilibrium) polyelectrolyte chain conformations are deliberately and systematically generated and used as initial conformations in translocation simulations. Independent simulations are performed to study the relaxation behavior of these stretched chains, and a comparison is made between the relaxation time scale and the mean translocation time (⟨τ⟩). For such artificially stretched initial states, ⟨τ⟩/N K < τ 0 , demonstrating the inapplicability of the quasi-equilibrium approximation. Nevertheless, we observe a scaling of ⟨τ⟩ ∼ 1/V over the entire range of chain stretching studied, in agreement with the predictions of the Fokker-Planck model. On the other hand, for realistic situations where the initial artificially imposed flow field is absent, a comparison of experimental data reported in the literature with the theory of polyelectrolyte dynamics reveals that the Zimm relaxation time (τ Zimm ) is shorter than the mean translocation time for several polymers including single stranded DNA (ssDNA), double stranded DNA (dsDNA), and synthetic polymers. Even when these data are rescaled assuming a constant effective velocity of translocation, it is found that for flexible (ssDNA and synthetic) polymers with N K Kuhn segments, the condition ⟨τ⟩/N K < τ Zimm is satisfied. We predict that for flexible polymers such as ssDNA, a crossover from quasi-equilibrium to non-equilibrium behavior would occur at N K ∼ O(1000).
Rapid equilibrium sampling initiated from nonequilibrium data.
Huang, Xuhui; Bowman, Gregory R; Bacallado, Sergio; Pande, Vijay S
2009-11-24
Simulating the conformational dynamics of biomolecules is extremely difficult due to the rugged nature of their free energy landscapes and multiple long-lived, or metastable, states. Generalized ensemble (GE) algorithms, which have become popular in recent years, attempt to facilitate crossing between states at low temperatures by inducing a random walk in temperature space. Enthalpic barriers may be crossed more easily at high temperatures; however, entropic barriers will become more significant. This poses a problem because the dominant barriers to conformational change are entropic for many biological systems, such as the short RNA hairpin studied here. We present a new efficient algorithm for conformational sampling, called the adaptive seeding method (ASM), which uses nonequilibrium GE simulations to identify the metastable states, and seeds short simulations at constant temperature from each of them to quantitatively determine their equilibrium populations. Thus, the ASM takes advantage of the broad sampling possible with GE algorithms but generally crosses entropic barriers more efficiently during the seeding simulations at low temperature. We show that only local equilibrium is necessary for ASM, so very short seeding simulations may be used. Moreover, the ASM may be used to recover equilibrium properties from existing datasets that failed to converge, and is well suited to running on modern computer clusters.
Is Equilibrium Floc Size a Function of Concentration?
NASA Astrophysics Data System (ADS)
Tran, D. A.; Strom, K.
2014-12-01
Flocculation is the process in which cohesive sediments amalgamate to form larger aggregates or flocs. The two factors that strongly influence the flocculation of mud are the turbulent shear rate and the suspended sediment concentration. Increases in turbulent shear rate are known to decrease the time to equilibrium and limit floc size. Increases in concentration are typically thought to decrease the time to equilibrium and increase the final equilibrium floc size. In this laboratory study, the effect of concentration on the growth rate and equilibrium size of flocs is systematically investigated. A camera system and image processing program were used to observe and analyze the evolution of flocs created by of a mixture of 80% kaolinite and 20% montmorillonite clay at six different concentrations (25, 50, 100, 200, 300 and 400 mg/L). Each mixture was first sonicated for 15 minutes before being introduced to a tank of tap water being mixed at an turbulent shear rate of G = 58 s-1. Flocs were then allowed to grow for two hours. During the following hour, a much higher shear rate of G = 1200 s-1 was applied to break the flocs. The shear rate was then reduced back to and maintained at G = 58 s-1 for another six hours. Running the experiments in this way allowed for the observation of floc growth from two different initial particle states at each concentration, resulting in a total of 12 floc growth experiments. The primary conclusions from this set of experiments are: (1) higher suspended sediment concentration is correlated with a higher rate of floc growth, and (2) at equilibrium, the average floc size stabilizes at ≈ 100 µm independent of the initial particle state or the suspended sediment concentration. Therefor, for the sediment mixture tested, the results imply that the effect of concentration on flocculation was restricted to the floc growth rate. This is contrary to what would be predicted using typical mud settling velocity equations.
NASA Astrophysics Data System (ADS)
Hoheisel, C.; Vogelsang, R.; Schoen, M.
1987-12-01
Accurate data for the bulk viscosity ηv have been obtained by molecular dynamics calculations. Many thermodynamic states of the Lennard-Jones fluid were considered. The Green-Kubo integrand of ηv is analyzed in terms of partial correlation functions constituting the total one. These partial functions behave rather differently from those found for the shear viscosity or the thermal conductivity. Generally the total autocorrelation function of ηv shows a steeper initial decay and a more pronounced long time form than those of the shear viscosity or the thermal conductivity. For states near transition to solid phases, like the pseudotriple point of argon, the Green-Kubo integrand of ηv has a significantly longer ranged time behavior than that of the shear viscosity. Hence, for the latter states, a systematic error is expected for ηv using equilibrium molecular dynamics for its computation.
The concept of temperature in space plasmas
NASA Astrophysics Data System (ADS)
Livadiotis, G.
2017-12-01
Independently of the initial distribution function, once the system is thermalized, its particles are stabilized into a specific distribution function parametrized by a temperature. Classical particle systems in thermal equilibrium have their phase-space distribution stabilized into a Maxwell-Boltzmann function. In contrast, space plasmas are particle systems frequently described by stationary states out of thermal equilibrium, namely, their distribution is stabilized into a function that is typically described by kappa distributions. The temperature is well-defined for systems at thermal equilibrium or stationary states described by kappa distributions. This is based on the equivalence of the two fundamental definitions of temperature, that is (i) the kinetic definition of Maxwell (1866) and (ii) the thermodynamic definition of Clausius (1862). This equivalence holds either for Maxwellians or kappa distributions, leading also to the equipartition theorem. The temperature and kappa index (together with density) are globally independent parameters characterizing the kappa distribution. While there is no equation of state or any universal relation connecting these parameters, various local relations may exist along the streamlines of space plasmas. Observations revealed several types of such local relations among plasma thermal parameters.
NASA Astrophysics Data System (ADS)
Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.
2010-08-01
We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated dynamic calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of streams in this new 3-D marine ice sheet model.
Study of voltage decrease in organic light emitting diodes during the initial stage of lifetime
NASA Astrophysics Data System (ADS)
Cusumano, P.
2016-02-01
We report the results of lifetime DC testing at constant current of not-encapsulated organic light emitting diodes (OLEDs) based on Tris (8 idroxyquinoline) aluminum (Alq3) as emitting material. In particular, a voltage decrease during the initial stage of the lifetime test is observed. The cause of this behavior is also discussed, mainly linked to initial Joule self-heating of the device, rising its temperature above room temperature until thermal equilibrium is reached at steady state.
Quantum Prisoners' Dilemma in Fluctuating Massless Scalar Field
NASA Astrophysics Data System (ADS)
Huang, Zhiming
2017-12-01
Quantum systems are easily affected by external environment. In this paper, we investigate the influences of external massless scalar field to quantum Prisoners' Dilemma (QPD) game. We firstly derive the master equation that describes the system evolution with initial maximally entangled state. Then, we discuss the effects of a fluctuating massless scalar field on the game's properties such as payoff, Nash equilibrium, and symmetry. We find that for different game strategies, vacuum fluctuation has different effects on payoff. Nash equilibrium is broken but the symmetry of the game is not violated.
The evolution of cooling flows. I - Self-similar cluster flows. [of gas in intergalactic medium
NASA Technical Reports Server (NTRS)
Chevalier, Roger A.
1987-01-01
The evolution of a cooling flow from an initial state of hydrostatic equilibrium in a cluster of galaxies is investigated. After gas mass and energy are injected into the cluster at an early phase, the gas approaches hydrostatic equilibrium over most of the cluster and cooling becomes important in the dense central regions. As time passes, cooling strongly affects an increasing amount of gas. The effects of mass removal from the flow, the inclusion of magnetic or cosmic-ray pressure, and heat conduction are considered individually.
Anero, Jesús G; Español, Pep; Tarazona, Pedro
2013-07-21
We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.
Non-equilibrium calculations of atmospheric processes initiated by electron impact.
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2007-05-01
Electron impact in the atmosphere produces ionisation, dissociation, electronic excitation and vibrational excitation of atoms and molecules. The products can then take part in chemical reactions, recombination with electrons, or radiative or collisional deactivation. While most such processes are fast, some longer--lived species do not reach equilibrium. The electron source (photoelectrons or auroral electrons) also varies over time and longer-lived species can move substantially in altitude by molecular, ambipolar or eddy diffusion. Hence non-equilibrium calculations are required in some circumstances. Such time-step calculations need to have sufficiently short steps so that the fastest processes are still calculated correctly, but this can lead to computation times that are too large. Hence techniques to allow for longer time steps by incorporating equilibrium calculations are described. Examples are given for results of atmospheric non-equilibrium calculations, including the populations of the vibrational levels of ground state N2, the electron density and its dependence on vibrationally excited N2, predictions of nitric oxide density, and detailed processes during short duration auroral events.
A New Multiphase Equation of State for Composition B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Joshua Damon; Margevicius, Madeline Alma
2016-07-25
We describe the construction of a complete equation of state for the high explosive Composition B in its unreacted (inert) form, as well as chemical equilibrium calculations of its detonation products. The multiphase reactant EOS is of SESAME type, and was calibrated to ambient thermal and mechanical data, the shock initiation experiments of Dattelbaum, et al., and the melt line of trinitrotoluene (TNT).
The Fermi-Pasta-Ulam Problem and Its Underlying Integrable Dynamics
NASA Astrophysics Data System (ADS)
Benettin, G.; Christodoulidi, H.; Ponno, A.
2013-07-01
This paper is devoted to a numerical study of the familiar α+ β FPU model. Precisely, we here discuss, revisit and combine together two main ideas on the subject: (i) In the system, at small specific energy ɛ= E/ N, two well separated time-scales are present: in the former one a kind of metastable state is produced, while in the second much larger one, such an intermediate state evolves and reaches statistical equilibrium. (ii) FPU should be interpreted as a perturbed Toda model, rather than (as is typical) as a linear model perturbed by nonlinear terms. In the view we here present and support, the former time scale is the one in which FPU is essentially integrable, its dynamics being almost indistinguishable from the Toda dynamics: the Toda actions stay constant for FPU too (while the usual linear normal modes do not), the angles fill their almost invariant torus, and nothing else happens. The second time scale is instead the one in which the Toda actions significantly evolve, and statistical equilibrium is possible. We study both FPU-like initial states, in which only a few degrees of freedom are excited, and generic initial states extracted randomly from an (approximated) microcanonical distribution. The study is based on a close comparison between the behavior of FPU and Toda in various situations. The main technical novelty is the study of the correlation functions of the Toda constants of motion in the FPU dynamics; such a study allows us to provide a good definition of the equilibrium time τ, i.e. of the second time scale, for generic initial data. Our investigation shows that τ is stable in the thermodynamic limit, i.e. the limit of large N at fixed ɛ, and that by reducing ɛ (ideally, the temperature), τ approximately grows following a power law τ˜ ɛ - a , with a=5/2.
Relations between dissipated work and Rényi divergences in the generalized Gibbs ensemble
NASA Astrophysics Data System (ADS)
Wei, Bo-Bo
2018-04-01
In this work, we show that the dissipation in a many-body system under an arbitrary nonequilibrium process is related to the Rényi divergences between two states along the forward and reversed dynamics under a very general family of initial conditions. This relation generalizes the links between dissipated work and Rényi divergences to quantum systems with conserved quantities whose equilibrium state is described by the generalized Gibbs ensemble. The relation is applicable for quantum systems with conserved quantities and can be applied to protocols driving the system between integrable and chaotic regimes. We demonstrate our ideas by considering the one-dimensional transverse quantum Ising model and the Jaynes-Cummings model which are driven out of equilibrium.
NASA Astrophysics Data System (ADS)
Song, Yang; Liu, Zhigang; Wang, Hongrui; Lu, Xiaobing; Zhang, Jing
2015-10-01
Due to the intrinsic nonlinear characteristics and complex structure of the high-speed catenary system, a modelling method is proposed based on the analytical expressions of nonlinear cable and truss elements. The calculation procedure for solving the initial equilibrium state is proposed based on the Newton-Raphson iteration method. The deformed configuration of the catenary system as well as the initial length of each wire can be calculated. Its accuracy and validity of computing the initial equilibrium state are verified by comparison with the separate model method, absolute nodal coordinate formulation and other methods in the previous literatures. Then, the proposed model is combined with a lumped pantograph model and a dynamic simulation procedure is proposed. The accuracy is guaranteed by the multiple iterative calculations in each time step. The dynamic performance of the proposed model is validated by comparison with EN 50318, the results of the finite element method software and SIEMENS simulation report, respectively. At last, the influence of the catenary design parameters (such as the reserved sag and pre-tension) on the dynamic performance is preliminarily analysed by using the proposed model.
Exact mapping between different dynamics of isotropically trapped quantum gases
NASA Astrophysics Data System (ADS)
Wamba, Etienne; Pelster, Axel; Anglin, James R.
2016-05-01
Experiments on trapped quantum gases can probe challenging regimes of quantum many-body dynamics, where strong interactions or non-equilibrium states prevent exact theoretical treatment. In this talk, we present a class of exact mappings between all the observables of different experiments, under the experimentally attainable conditions that the gas particles interact via a homogeneously scaling two-body potential which is in general time-dependent, and are confined in an isotropic harmonic trap. We express our result through an identity relating second-quantized field operators in the Heisenberg picture of quantum mechanics which makes it general. It applies to arbitrary measurements on possibly multi-component Bose or Fermi gases in arbitrary initial quantum states, no matter how highly excited or far from equilibrium. We use an example to show how the results of two different and currently feasible experiments can be mapped onto each other by our spacetime transformation. DAMOP sorting category: 6.11 Nonlinear dynamics and out-of-equilibrium trapped gases EW acknowledge the financial support from the Alexander von Humboldt foundation.
Radiation calculation in non-equilibrium shock layer
NASA Astrophysics Data System (ADS)
Dubois, Joanne
2005-05-01
The purpose of the work was to investigate confidence in radiation predictions on an entry probe body in high temperature conditions taking the Huygens probe as an example. Existing engineering flowfield codes for shock tube and blunt body simulations were used and updated when necessary to compute species molar fractions and flow field parameters. An interface to the PARADE radiation code allowed radiative emission estimates to the body surface to be made. A validation of the radiative models in equilibrium conditions was first made with published data and by comparison with shock tube test case data from the IUSTI TCM2 facility with Titan like atmosphere test gas. Further verifications were made in non-equilibrium with published computations. These comparisons were initially made using a Boltzmann assumption for the electronic states of CN. An attempt was also made to use pseudo species for the individual electronic states of CN. Assumptions made in this analysis are described and a further comparison with shock tube data undertaken. Several CN radiation datasets have been used, and while improvements to the modelling tools have been made, it seems that considerable uncertainty remains in the modelling of the non-equilibrium emission using simple engineering methods.
Stochastic game theory: for playing games, not just for doing theory.
Goeree, J K; Holt, C A
1999-09-14
Recent theoretical advances have dramatically increased the relevance of game theory for predicting human behavior in interactive situations. By relaxing the classical assumptions of perfect rationality and perfect foresight, we obtain much improved explanations of initial decisions, dynamic patterns of learning and adjustment, and equilibrium steady-state distributions.
Scaling laws for homogeneous turbulent shear flows in a rotating frame
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Mhuiris, Nessan Macgiolla
1988-01-01
The scaling properties of plane homogeneous turbulent shear flows in a rotating frame are examined mathematically by a direct analysis of the Navier-Stokes equations. It is proved that two such shear flows are dynamically similar if and only if their initial dimensionless energy spectrum E star (k star, 0), initial dimensionless shear rate SK sub 0/epsilon sub 0, initial Reynolds number K squared sub 0/nu epsilon sub 0, and the ration of the rotation rate to the shear rate omega/S are identical. Consequently, if universal equilibrium states exist, at high Reynolds numbers, they will only depend on the single parameter omega/S. The commonly assumed dependence of such equilibrium states on omega/S through the Richardson number Ri=-2(omega/S)(1-2 omega/S) is proven to be inconsistent with the full Navier-Stokes equations and to constitute no more than a weak approximation. To be more specific, Richardson number similarity is shown to only rigorously apply to certain low-order truncations of the Navier-Stokes equations (i.e., to certain second-order closure models) wherein closure is achieved at the second-moment level by assuming that the higher-order moments are a small perturbation of their isotropic states. The physical dependence of rotating turbulent shear flows on omega/S is discussed in detail along with the implications for turbulence modeling.
Deterministic nonclassicality for quantum-mechanical oscillators in thermal states
NASA Astrophysics Data System (ADS)
Marek, Petr; Lachman, Lukáš; Slodička, Lukáš; Filip, Radim
2016-07-01
Quantum nonclassicality is the basic building stone for the vast majority of quantum information applications and methods of its generation are at the forefront of research. One of the obstacles any method needs to clear is the looming presence of decoherence and noise which act against the nonclassicality and often erase it completely. In this paper we show that nonclassical states of a quantum harmonic oscillator initially in thermal equilibrium states can be deterministically created by coupling it to a single two-level system. This can be achieved even in the absorption regime in which the two-level system is initially in the ground state. The method is resilient to noise and it may actually benefit from it, as witnessed by the systems with higher thermal energy producing more nonclassical states.
Iriel, Analia; Bruneel, Stijn P; Schenone, Nahuel; Cirelli, Alicia Fernández
2018-03-01
The use of natural sorbents to remove fluoride from drinking water is a promising alternative because of its low-cost and easy implementation. In this article, fluoride adsorption on a latosol soil from Misiones province (Argentina) was studied regarding kinetic and equilibrium aspects. Experiments were conducted in batch at room temperature under controlled conditions of pH 4-8) and ionic strength (1-10mM KNO 3 ). Experimental data indicated that adsorption processes followed a PSO kinetic where initial rates have showed to be influenced by pH solution. The necessary time to reach an equilibrium state had resulted approximately 30min. Equilibrium adsorption studies were performed at pH 8 which is similar to the natural groundwater. For that, fluoride adsorption data were successfully adjusted to Dubinin-Ataskhov model determining that the fluoride adsorption onto soil particles mainly followed a physical mechanism with a removal capacity of 0.48mgg -1 . Finally, a natural groundwater was tested with laterite obtaining a reduction close to 30% from initial concentration and without changing significantly the physicochemical properties of the natural water. Therefore, it was concluded that the use of lateritic soils for fluoride removal is very promising on a domestic scale. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Haixia; Li, Ting; Xiao, Changming
2016-05-01
When a simple system is in its nonequilibrium state, it will shift to its equilibrium state. Obviously, in this process, there are a series of nonequilibrium states. With the assistance of Bayesian statistics and hyperensemble, a probable probability distribution of these nonequilibrium states can be determined by maximizing the hyperensemble entropy. It is known that the largest probability is the equilibrium state, and the far a nonequilibrium state is away from the equilibrium one, the smaller the probability will be, and the same conclusion can also be obtained in the multi-state space. Furthermore, if the probability stands for the relative time the corresponding nonequilibrium state can stay, then the velocity of a nonequilibrium state returning back to its equilibrium can also be determined through the reciprocal of the derivative of this probability. It tells us that the far away the state from the equilibrium is, the faster the returning velocity will be; if the system is near to its equilibrium state, the velocity will tend to be smaller and smaller, and finally tends to 0 when it gets the equilibrium state.
Voltage Quench Dynamics of a Kondo System.
Antipov, Andrey E; Dong, Qiaoyuan; Gull, Emanuel
2016-01-22
We examine the dynamics of a correlated quantum dot in the mixed valence regime. We perform numerically exact calculations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibration times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. The time-dependent current saturation temperature connects the equilibrium Kondo temperature to a substantially increased value at voltages outside of the linear response. These signatures are directly observable by experiments in the time domain.
NASA Astrophysics Data System (ADS)
Lang, Johannes; Frank, Bernhard; Halimeh, Jad C.
2018-05-01
We construct the finite-temperature dynamical phase diagram of the fully connected transverse-field Ising model from the vantage point of two disparate concepts of dynamical criticality. An analytical derivation of the classical dynamics and exact diagonalization simulations are used to study the dynamics after a quantum quench in the system prepared in a thermal equilibrium state. The different dynamical phases characterized by the type of nonanalyticities that emerge in an appropriately defined Loschmidt-echo return rate directly correspond to the dynamical phases determined by the spontaneous breaking of Z2 symmetry in the long-time steady state. The dynamical phase diagram is qualitatively different depending on whether the initial thermal state is ferromagnetic or paramagnetic. Whereas the former leads to a dynamical phase diagram that can be directly related to its equilibrium counterpart, the latter gives rise to a divergent dynamical critical temperature at vanishing final transverse-field strength.
LSENS, The NASA Lewis Kinetics and Sensitivity Analysis Code
NASA Technical Reports Server (NTRS)
Radhakrishnan, K.
2000-01-01
A general chemical kinetics and sensitivity analysis code for complex, homogeneous, gas-phase reactions is described. The main features of the code, LSENS (the NASA Lewis kinetics and sensitivity analysis code), are its flexibility, efficiency and convenience in treating many different chemical reaction models. The models include: static system; steady, one-dimensional, inviscid flow; incident-shock initiated reaction in a shock tube; and a perfectly stirred reactor. In addition, equilibrium computations can be performed for several assigned states. An implicit numerical integration method (LSODE, the Livermore Solver for Ordinary Differential Equations), which works efficiently for the extremes of very fast and very slow reactions, is used to solve the "stiff" ordinary differential equation systems that arise in chemical kinetics. For static reactions, the code uses the decoupled direct method to calculate sensitivity coefficients of the dependent variables and their temporal derivatives with respect to the initial values of dependent variables and/or the rate coefficient parameters. Solution methods for the equilibrium and post-shock conditions and for perfectly stirred reactor problems are either adapted from or based on the procedures built into the NASA code CEA (Chemical Equilibrium and Applications).
The dynamics of the de Sitter resonance
NASA Astrophysics Data System (ADS)
Celletti, Alessandra; Paita, Fabrizio; Pucacco, Giuseppe
2018-02-01
We study the dynamics of the de Sitter resonance, namely the stable equilibrium configuration of the first three Galilean satellites. We clarify the relation between this family of configurations and the more general Laplace resonant states. In order to describe the dynamics around the de Sitter stable equilibrium, a one-degree-of-freedom Hamiltonian normal form is constructed and exploited to identify initial conditions leading to the two families. The normal form Hamiltonian is used to check the accuracy in the location of the equilibrium positions. Besides, it gives a measure of how sensitive it is with respect to the different perturbations acting on the system. By looking at the phase plane of the normal form, we can identify a Laplace-like configuration, which highlights many substantial aspects of the observed one.
NASA Astrophysics Data System (ADS)
Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.
2011-09-01
We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.
Relaxation of vacuum energy in q-theory
NASA Astrophysics Data System (ADS)
Klinkhamer, F. R.; Savelainen, M.; Volovik, G. E.
2017-08-01
The q-theory formalism aims to describe the thermodynamics and dynamics of the deep quantum vacuum. The thermodynamics leads to an exact cancellation of the quantum-field zero-point-energies in equilibrium, which partly solves the main cosmological constant problem. But, with reversible dynamics, the spatially flat Friedmann-Robertson-Walker universe asymptotically approaches the Minkowski vacuum only if the Big Bang already started out in an initial equilibrium state. Here, we extend q-theory by introducing dissipation from irreversible processes. Neglecting the possible instability of a de-Sitter vacuum, we obtain different scenarios with either a de-Sitter asymptote or collapse to a final singularity. The Minkowski asymptote still requires fine-tuning of the initial conditions. This suggests that, within the q-theory approach, the decay of the de-Sitter vacuum is a necessary condition for the dynamical solution of the cosmological constant problem.
Some comments on thermodynamic consistency for equilibrium mixture equations of state
Grove, John W.
2018-03-28
We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.
Equilibrium sampling by reweighting nonequilibrium simulation trajectories
NASA Astrophysics Data System (ADS)
Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin
2016-03-01
Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.
Equilibrium sampling by reweighting nonequilibrium simulation trajectories.
Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin
2016-03-01
Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.
Energy landscape-driven non-equilibrium evolution of inherent structure in disordered material
Fan, Yue; Iwashita, Takuya; Egami, Takeshi
2017-05-19
Complex states in glasses can be neatly expressed by the potential energy landscape (PEL). But, because PEL is highly multi-dimensional it is difficult to describe how the system moves around in PEL. We demonstrate that it is possible to predict the evolution of macroscopic state in a metallic glass, such as ageing and rejuvenation, through a set of simple equations describing excitations in the PEL. The key to this simplification is the realization that the step of activation from the initial state to the saddle point in PEL and the following step of relaxation to the final state are essentiallymore » decoupled. Furthermore, the model shows that the interplay between activation and relaxation in PEL is the key driving force that simultaneously explains both the equilibrium of supercooled liquid and the thermal hysteresis observed in experiments. It further predicts anomalous peaks in truncated thermal scanning, validated by independent molecular dynamics simulation.« less
A Bayesian perspective on Markovian dynamics and the fluctuation theorem
NASA Astrophysics Data System (ADS)
Virgo, Nathaniel
2013-08-01
One of E. T. Jaynes' most important achievements was to derive statistical mechanics from the maximum entropy (MaxEnt) method. I re-examine a relatively new result in statistical mechanics, the Evans-Searles fluctuation theorem, from a MaxEnt perspective. This is done in the belief that interpreting such results in Bayesian terms will lead to new advances in statistical physics. The version of the fluctuation theorem that I will discuss applies to discrete, stochastic systems that begin in a non-equilibrium state and relax toward equilibrium. I will show that for such systems the fluctuation theorem can be seen as a consequence of the fact that the equilibrium distribution must obey the property of detailed balance. Although the principle of detailed balance applies only to equilibrium ensembles, it puts constraints on the form of non-equilibrium trajectories. This will be made clear by taking a novel kind of Bayesian perspective, in which the equilibrium distribution is seen as a prior over the system's set of possible trajectories. Non-equilibrium ensembles are calculated from this prior using Bayes' theorem, with the initial conditions playing the role of the data. I will also comment on the implications of this perspective for the question of how to derive the second law.
Loschmidt echo in many-spin systems: a quest for intrinsic decoherence and emergent irreversibility
NASA Astrophysics Data System (ADS)
Zangara, Pablo R.; Pastawski, Horacio M.
2017-03-01
If a magnetic polarization excess is locally injected in a crystal of interacting spins in thermal equilibrium, this ‘excitation’ would spread as consequence of spin-spin interactions. Such an apparently irreversible process is known as spin diffusion and it can lead the system back to ‘equilibrium’. Even so, a unitary quantum dynamics would ensure a precise memory of the non-equilibrium initial condition. Then, if at a certain time, say t/2, an experimental protocol reverses the many-body dynamics by changing the sign of the effective Hamiltonian, it would drive the system back to the initial non-equilibrium state at time t. As a matter of fact, the reversal is always perturbed by small experimental imperfections and/or uncontrolled internal or environmental degrees of freedom. This limits the amount of signal M(t) recovered locally at time t. The degradation of M(t) accounts for these perturbations, which can also be seen as the sources of decoherence. This general idea defines the Loschmidt echo (LE), which embodies the various time-reversal procedures implemented in nuclear magnetic resonance. Here, we present an invitation to the study of the LE following the pathway induced by the experiments. With such a purpose, we provide a historical and conceptual overview that briefly revisits selected phenomena that underlie the LE dynamics including chaos, decoherence, localization and equilibration. This guiding thread ultimately leads us to the discussion of decoherence and irreversibility as an emergent phenomenon. In addition, we introduce the LE formalism by means of spin-spin correlation functions in a manner suitable for presentation in a broad scope physics journal. Last, but not least, we present new results that could trigger new experiments and theoretical ideas. In particular, we propose to transform an initially localized excitation into a more complex initial state, enabling a dynamically prepared LE. This induces a global definition of the LE in terms of the raw overlap between many-body wave functions. Our results show that as the complexity of the prepared state increases, it becomes more fragile towards small perturbations.
Mesoscale Modeling of LX-17 Under Isentropic Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Springer, H K; Willey, T M; Friedman, G
Mesoscale simulations of LX-17 incorporating different equilibrium mixture models were used to investigate the unreacted equation-of-state (UEOS) of TATB. Candidate TATB UEOS were calculated using the equilibrium mixture models and benchmarked with mesoscale simulations of isentropic compression experiments (ICE). X-ray computed tomography (XRCT) data provided the basis for initializing the simulations with realistic microstructural details. Three equilibrium mixture models were used in this study. The single constituent with conservation equations (SCCE) model was based on a mass-fraction weighted specific volume and the conservation of mass, momentum, and energy. The single constituent equation-of-state (SCEOS) model was based on a mass-fraction weightedmore » specific volume and the equation-of-state of the constituents. The kinetic energy averaging (KEA) model was based on a mass-fraction weighted particle velocity mixture rule and the conservation equations. The SCEOS model yielded the stiffest TATB EOS (0.121{micro} + 0.4958{micro}{sup 2} + 2.0473{micro}{sup 3}) and, when incorporated in mesoscale simulations of the ICE, demonstrated the best agreement with VISAR velocity data for both specimen thicknesses. The SCCE model yielded a relatively more compliant EOS (0.1999{micro}-0.6967{micro}{sup 2} + 4.9546{micro}{sup 3}) and the KEA model yielded the most compliant EOS (0.1999{micro}-0.6967{micro}{sup 2}+4.9546{micro}{sup 3}) of all the equilibrium mixture models. Mesoscale simulations with the lower density TATB adiabatic EOS data demonstrated the least agreement with VISAR velocity data.« less
Non-equilibrium effects in high temperature chemical reactions
NASA Technical Reports Server (NTRS)
Johnson, Richard E.
1987-01-01
Reaction rate data were collected for chemical reactions occurring at high temperatures during reentry of space vehicles. The principle of detailed balancing is used in modeling kinetics of chemical reactions at high temperatures. Although this principle does not hold for certain transient or incubation times in the initial phase of the reaction, it does seem to be valid for the rates of internal energy transitions that occur within molecules and atoms. That is, for every rate of transition within the internal energy states of atoms or molecules, there is an inverse rate that is related through an equilibrium expression involving the energy difference of the transition.
Optical Properties in Non-equilibrium Phase Transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ao, T; Ping, Y; Widmann, K
An open question about the dynamical behavior of materials is how phase transition occurs in highly non-equilibrium systems. One important class of study is the excitation of a solid by an ultrafast, intense laser. The preferential heating of electrons by the laser field gives rise to initial states dominated by hot electrons in a cold lattice. Using a femtosecond laser pump-probe approach, we have followed the temporal evolution of the optical properties of such a system. The results show interesting correlation to non-thermal melting and lattice disordering processes. They also reveal a liquid-plasma transition when the lattice energy density reachesmore » a critical value.« less
Assessing the inherent uncertainty of one-dimensional diffusions
NASA Astrophysics Data System (ADS)
Eliazar, Iddo; Cohen, Morrel H.
2013-01-01
In this paper we assess the inherent uncertainty of one-dimensional diffusion processes via a stochasticity classification which provides an à la Mandelbrot categorization into five states of uncertainty: infra-mild, mild, borderline, wild, and ultra-wild. Two settings are considered. (i) Stopped diffusions: the diffusion initiates from a high level and is stopped once it first reaches a low level; in this setting we analyze the inherent uncertainty of the diffusion's maximal exceedance above its initial high level. (ii) Stationary diffusions: the diffusion is in dynamical statistical equilibrium; in this setting we analyze the inherent uncertainty of the diffusion's equilibrium level. In both settings general closed-form analytic results are established, and their application is exemplified by stock prices in the stopped-diffusions setting, and by interest rates in the stationary-diffusions setting. These results provide a highly implementable decision-making tool for the classification of uncertainty in the context of one-dimensional diffusions.
NASA Astrophysics Data System (ADS)
Lapsa, Andrew P.; Dahm, Werner J. A.
2011-01-01
Measurements using stereo particle image velocimetry are presented for a developing turbulent boundary layer in a wind tunnel with a Mach 2.75 free stream. As the boundary layer exits from the tunnel nozzle and moves through the wave-free test section, small initial departures from equilibrium turbulence relax, and the boundary layer develops toward the equilibrium zero-pressure-gradient form. This relaxation process is quantified by comparison of first and second order mean, fluctuation, and gradient statistics to classical inner and outer layer scalings. Simultaneous measurement of all three instantaneous velocity components enables direct assessment of the complete turbulence anisotropy tensor. Profiles of the turbulence Mach number show that, despite the M = 2.75 free stream, the incompressibility relation among spatial gradients in the velocity fluctuations applies. This result is used in constructing various estimates of the measured-dissipation rate, comparisons among which show only remarkably small differences over most of the boundary layer. The resulting measured-dissipation profiles, together with measured profiles of the turbulence kinetic energy and mean-flow gradients, enable an assessment of how the turbulence anisotropy relaxes toward its equilibrium zero-pressure-gradient state. The results suggest that the relaxation of the initially disturbed turbulence anisotropy profile toward its equilibrium zero-pressure-gradient form begins near the upper edge of the boundary layer and propagates downward through the defect layer.
Relaxation processes in a low-order three-dimensional magnetohydrodynamics model
NASA Technical Reports Server (NTRS)
Stribling, Troy; Matthaeus, William H.
1991-01-01
The time asymptotic behavior of a Galerkin model of 3D magnetohydrodynamics (MHD) has been interpreted using the selective decay and dynamic alignment relaxation theories. A large number of simulations has been performed that scan a parameter space defined by the rugged ideal invariants, including energy, cross helicity, and magnetic helicity. It is concluded that time asymptotic state can be interpreted as a relaxation to minimum energy. A simple decay model, based on absolute equilibrium theory, is found to predict a mapping of initial onto time asymptotic states, and to accurately describe the long time behavior of the runs when magnetic helicity is present. Attention is also given to two processes, operating on time scales shorter than selective decay and dynamic alignment, in which the ratio of kinetic to magnetic energy relaxes to values 0(1). The faster of the two processes takes states initially dominant in magnetic energy to a state of near-equipartition between kinetic and magnetic energy through power law growth of kinetic energy. The other process takes states initially dominant in kinetic energy to the near-equipartitioned state through exponential growth of magnetic energy.
A comparative analysis of numerical approaches to the mechanics of elastic sheets
NASA Astrophysics Data System (ADS)
Taylor, Michael; Davidovitch, Benny; Qiu, Zhanlong; Bertoldi, Katia
2015-06-01
Numerically simulating deformations in thin elastic sheets is a challenging problem in computational mechanics due to destabilizing compressive stresses that result in wrinkling. Determining the location, structure, and evolution of wrinkles in these problems has important implications in design and is an area of increasing interest in the fields of physics and engineering. In this work, several numerical approaches previously proposed to model equilibrium deformations in thin elastic sheets are compared. These include standard finite element-based static post-buckling approaches as well as a recently proposed method based on dynamic relaxation, which are applied to the problem of an annular sheet with opposed tractions where wrinkling is a key feature. Numerical solutions are compared to analytic predictions of the ground state, enabling a quantitative evaluation of the predictive power of the various methods. Results indicate that static finite element approaches produce local minima that are highly sensitive to initial imperfections, relying on a priori knowledge of the equilibrium wrinkling pattern to generate optimal results. In contrast, dynamic relaxation is much less sensitive to initial imperfections and can generate low-energy solutions for a wide variety of loading conditions without requiring knowledge of the equilibrium solution beforehand.
NASA Astrophysics Data System (ADS)
Jomaa, S.; Barry, D. A.; Brovelli, A.; Heng, B. C. P.; Sander, G. C.; Parlange, J.-Y.
2012-04-01
It is well known that the presence of rock fragments on the soil surface and the soil's initial characteristics (moisture content, surface roughness, bulk density, etc.) are key factors influencing soil erosion dynamics and sediment delivery. In addition, the interaction of these factors increases the complexity of soil erosion patterns and makes predictions more difficult. The aim of this study was (i) to investigate the effect of soil initial conditions and rock fragment coverage on soil erosion yields and effluent particle size distribution and (ii) to evaluate to what extent the rock fragment coverage controls this relationship. Three laboratory flume experiments with constant precipitation rate of 74 mm/h on a loamy soil parcel with a 2% slope were performed. Experiments with duration of 2 h were conducted using the 6-m × 2-m EPFL erosion flume. During each experiment two conditions were considered, a bare soil and a rock fragment-protected (with 40% coverage) soil. The initial soil surface state was varied between the three experiments, from a freshly re-ploughed and almost dry condition to a compacted soil with a well-developed shield layer and high moisture content. Experiments were designed so that rain splash was the primary driver of soil erosion. Results showed that the amount of eroded mass was highly controlled by the initial soil conditions and whether the steady-state equilibrium was un-, partially- or fully- developed during the previous event. Additionally, results revealed that sediment yields and particle size composition in the initial part of an erosion event are more sensitive to the erosion history than the long-time behaviour. This latter appears to be mainly controlled by rainfall intensity. If steady-state was achieved for a previous event, then the next event consistently produced concentrations for each size class that peaked rapidly, and then declined gradually to steady-state equilibrium. If steady state was not obtained, then different and more complex behaviour was observed in the next event, with large differences found between fine, medium and coarse size classes. The presence of rock fragments on the topsoil reduced the time needed to reach steady state compared with the bare soil. This was attributed to the reduction of rain splash erosion caused by the rapid development of the overland flow, as a result of rock fragments reducing the flow cross-sectional area.
Soil Moisture and the Persistence of North American Drought.
NASA Astrophysics Data System (ADS)
Oglesby, Robert J.; Erickson, David J., III
1989-11-01
We describe numerical sensitivity experiments exploring the effects of soil moisture on North American summertime climate using the NCAR CCMI, a 12-layer global atmospheric general circulation model. In particular. the hypothesis that reduced soil moisture may help induce and amplify warm, dry summers over midlatitude continental interiors is examined. Equilibrium climate statistics are computed for the perpetual July model response to imposed soil moisture anomalies over North America between 36° and 49°N. In addition, the persistence of imposed soil moisture anomalies is examined through use of the seasonal cycle mode of operation with use of various initial atmospheric states both equilibrated and nonequilibrated to the initial soil moisture anomaly.The climate statistics generated by thew model simulations resemble in a general way those of the summer of 1988, when extensive heat and drought occurred over much of North America. A reduction in soil moisture in the model leads to an increase in surface temperature, lower surface pressure, increased ridging aloft, and a northward shift of the jet stream. Low-level moisture advection from the Gulf of Mexico is important in determining where persistent soil moisture deficits can be maintained. In seasonal cycle simulations, it lock longer for an initially unequilibrated atmosphere to respond to the imposed soil moisture anomaly, via moisture transport from the Gulf of Mexico, than when initially the atmosphere was in equilibrium with the imposed anomaly., i.e., the initial state was obtained from the appropriate perpetual July simulation. The results demonstrate the important role of soil moisture in prolonging and/or amplifying North American summertime drought.
NASA Astrophysics Data System (ADS)
Kremer, Gilberto M.; Kunova, Olga V.; Kustova, Elena V.; Oblapenko, George P.
2018-01-01
A detailed kinetic-theory model for the vibrationally state-resolved transport coefficients is developed taking into account the dependence of the collision cross section on the size of vibrationally excited molecule. Algorithms for the calculation of shear and bulk viscosity, thermal conductivity, thermal diffusion and diffusion coefficients for vibrational states are proposed. The transport coefficients are evaluated for single-component diatomic gases N2, O2, NO, H2, Cl2 in the wide range of temperature, and the effects of molecular diameters and the number of accounted states are discussed. The developed model is applied to study wave propagation in diatomic gases. For the case of initial Boltzmann distribution, the influence of vibrational excitation on the phase velocity and attenuation coefficient is found to be weak. We expect more significant effect in the case of initial thermal non-equilibrium, for instance in gases with optically pumped selected vibrational states.
Ngwa, Gideon A; Teboh-Ewungkem, Miranda I
2016-01-01
A deterministic ordinary differential equation model for the dynamics and spread of Ebola Virus Disease is derived and studied. The model contains quarantine and nonquarantine states and can be used to evaluate transmission both in treatment centres and in the community. Possible sources of exposure to infection, including cadavers of Ebola Virus victims, are included in the model derivation and analysis. Our model's results show that there exists a threshold parameter, R 0, with the property that when its value is above unity, an endemic equilibrium exists whose value and size are determined by the size of this threshold parameter, and when its value is less than unity, the infection does not spread into the community. The equilibrium state, when it exists, is locally and asymptotically stable with oscillatory returns to the equilibrium point. The basic reproduction number, R 0, is shown to be strongly dependent on the initial response of the emergency services to suspected cases of Ebola infection. When intervention measures such as quarantining are instituted fully at the beginning, the value of the reproduction number reduces and any further infections can only occur at the treatment centres. Effective control measures, to reduce R 0 to values below unity, are discussed.
Ngwa, Gideon A.
2016-01-01
A deterministic ordinary differential equation model for the dynamics and spread of Ebola Virus Disease is derived and studied. The model contains quarantine and nonquarantine states and can be used to evaluate transmission both in treatment centres and in the community. Possible sources of exposure to infection, including cadavers of Ebola Virus victims, are included in the model derivation and analysis. Our model's results show that there exists a threshold parameter, R 0, with the property that when its value is above unity, an endemic equilibrium exists whose value and size are determined by the size of this threshold parameter, and when its value is less than unity, the infection does not spread into the community. The equilibrium state, when it exists, is locally and asymptotically stable with oscillatory returns to the equilibrium point. The basic reproduction number, R 0, is shown to be strongly dependent on the initial response of the emergency services to suspected cases of Ebola infection. When intervention measures such as quarantining are instituted fully at the beginning, the value of the reproduction number reduces and any further infections can only occur at the treatment centres. Effective control measures, to reduce R 0 to values below unity, are discussed. PMID:27579053
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, John W.
We investigate sufficient conditions for thermodynamic consistency for equilibrium mixtures. Such models assume that the mass fraction average of the material component equations of state, when closed by a suitable equilibrium condition, provide a composite equation of state for the mixture. Here, we show that the two common equilibrium models of component pressure/temperature equilibrium and volume/temperature equilibrium (Dalton, 1808) define thermodynamically consistent mixture equations of state and that other equilibrium conditions can be thermodynamically consistent provided appropriate values are used for the mixture specific entropy and pressure.
Global Magnetospheric Evolution Effected by Sudden Ring Current Injection
NASA Astrophysics Data System (ADS)
Park, Geunseok; No, Jincheol; Kim, Kap-Sung; Choe, Gwangson; Lee, Junggi
2016-04-01
The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a quasi-steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.
Global Evolution of the Earth's Magnetosphere in Response to a Sudden Ring Current Injection
NASA Astrophysics Data System (ADS)
No, Jincheol; Choe, Gwangson; Park, Geunseok
2014-05-01
The dynamical evolution of the Earth's magnetosphere loaded with a transiently enhanced ring current is investigated by global magnetohydrodynamic simulations. Two cases with different values of the primitive ring current are considered. In one case, the initial ring current is strong enough to create a magnetic island in the magnetosphere. The magnetic island readily reconnects with the earth-connected ambient field and is destroyed as the system approaches a steady equilibrium. In the other case, the initial ring current is not so strong, and the initial magnetic field configuration bears no magnetic island, but features a wake of bent field lines, which is smoothed out through the relaxing evolution of the magnetosphere. The relaxation time of the magnetosphere is found to be about five to six minutes, over which the ring current is reduced to about a quarter of its initial value. Before reaching a steady state, the magnetosphere is found to undergo an overshooting expansion and a subsequent contraction. Fast and slow magnetosonic waves are identified to play an important role in the relaxation toward equilibrium. Our study suggests that a sudden injection of the ring current can generate an appreciable global pulsation of the magnetosphere.
An integrated multidisciplinary model describing initiation of cancer and the Warburg hypothesis
2013-01-01
Background In this paper we propose a chemical physics mechanism for the initiation of the glycolytic switch commonly known as the Warburg hypothesis, whereby glycolytic activity terminating in lactate continues even in well-oxygenated cells. We show that this may result in cancer via mitotic failure, recasting the current conception of the Warburg effect as a metabolic dysregulation consequent to cancer, to a biophysical defect that may contribute to cancer initiation. Model Our model is based on analogs of thermodynamic concepts that tie non-equilibrium fluid dynamics ultimately to metabolic imbalance, disrupted microtubule dynamics, and finally, genomic instability, from which cancers can arise. Specifically, we discuss how an analog of non-equilibrium Rayleigh-Benard convection can result in glycolytic oscillations and cause a cell to become locked into a higher-entropy state characteristic of cancer. Conclusions A quantitative model is presented that attributes the well-known Warburg effect to a biophysical mechanism driven by a convective disturbance in the cell. Contrary to current understanding, this effect may precipitate cancer development, rather than follow from it, providing new insights into carcinogenesis, cancer treatment, and prevention. PMID:23758735
Time-dependent Cooling in Photoionized Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnat, Orly, E-mail: orlyg@phys.huji.ac.il
I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts ( z = 0 − 3), for a range of temperatures (10{sup 8}–10{sup 4} K), densities (10{sup −7}–10{sup 3} cm{sup −3}), and metallicities (10{sup −3}–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibriummore » (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).« less
Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.
Hu, Yujing; Gao, Yang; An, Bo
2015-07-01
An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.
EnKF with closed-eye period - bridging intermittent model structural errors in soil hydrology
NASA Astrophysics Data System (ADS)
Bauser, Hannes H.; Jaumann, Stefan; Berg, Daniel; Roth, Kurt
2017-04-01
The representation of soil water movement exposes uncertainties in all model components, namely dynamics, forcing, subscale physics and the state itself. Especially model structural errors in the description of the dynamics are difficult to represent and can lead to an inconsistent estimation of the other components. We address the challenge of a consistent aggregation of information for a manageable specific hydraulic situation: a 1D soil profile with TDR-measured water contents during a time period of less than 2 months. We assess the uncertainties for this situation and detect initial condition, soil hydraulic parameters, small-scale heterogeneity, upper boundary condition, and (during rain events) the local equilibrium assumption by the Richards equation as the most important ones. We employ an iterative Ensemble Kalman Filter (EnKF) with an augmented state. Based on a single rain event, we are able to reduce all uncertainties directly, except for the intermittent violation of the local equilibrium assumption. We detect these times by analyzing the temporal evolution of estimated parameters. By introducing a closed-eye period - during which we do not estimate parameters, but only guide the state based on measurements - we can bridge these times. The introduced closed-eye period ensured constant parameters, suggesting that they resemble the believed true material properties. The closed-eye period improves predictions during periods when the local equilibrium assumption is met, but consequently worsens predictions when the assumption is violated. Such a prediction requires a description of the dynamics during local non-equilibrium phases, which remains an open challenge.
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters (or closwre models) for an initial thermai non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two CFD codes currently being used at Glenn Research Center (GRC) for Stirling engine modeling are Fluent and CFD-ACE. The porous-media models available in each of these codes are equilibrium models, which assmne that the solid matrix and the fluid are in thermal equilibrium at each spatial location within the porous medium. This is believed to be a poor assumption for the oscillating-flow environment within Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, we non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location end time during the cycle. A NASA regenerator research grant has been providing experimental and computational results to support definition of various empirical coefficients needed in defining a noa-equilibrium, macroscopic, porous-media model (i.e., to define "closure" relations). The grant effort is being led by Cleveland State University, with subcontractor assistance from the University of Minnesota, Gedeon Associates, and Sunpower, Inc. Friction-factor and heat-transfer correlations based on data taken with the NASAlSunpower oscillating-flow test rig also provide experimentally based correlations that are useful in defining parameters for the porous-media model; these correlations are documented in Gedeon Associates' Sage Stirling-Code Manuals. These sources of experimentally based information were used to define the following terms and parameters needed in the non-equilibrium porous-media model: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity (including themal dispersion and estimate of tortuosity effects}, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity (including the effect of tortuosity) was also estimated. Determination of the porous-media model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Convertor (TDC), which uses a random-fiber regenerator matrix. The non-equilibrium porous-media model presented is considered to be an initial, or "draft," model for possible incorporation in commercial CFD codes, with the expectation that the empirical parameters will likely need to be updated once resulting Stirling CFD model regenerator and engine results have been analyzed. The emphasis of the paper is on use of available data to define empirical parameters (and closure models) needed in a thermal non-equilibrium porous-media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates. However, it is anticipated that a thermal non-equilibrium model such as that presented here, when iacorporated in the CFD codes, will improve our ability to accurately model Stirling regenerators with CFD relative to current thermal-equilibrium porous-media models.
Signatures of a Nonthermal Metastable State in Copropagating Quantum Hall Edge Channels
NASA Astrophysics Data System (ADS)
Itoh, Kosuke; Nakazawa, Ryo; Ota, Tomoaki; Hashisaka, Masayuki; Muraki, Koji; Fujisawa, Toshimasa
2018-05-01
A Tomonaga-Luttinger (TL) liquid is known as an integrable system, in which a nonequilibrium many-body state survives without relaxing to a thermalized state. This intriguing characteristic is tested experimentally in copropagating quantum Hall edge channels at bulk filling factor ν =2 . The unidirectional transport allows us to investigate the time evolution by measuring the spatial evolution of the electronic states. The initial state is prepared with a biased quantum point contact, and its spatial evolution is measured with a quantum-dot energy spectrometer. We find strong evidence for a nonthermal metastable state in agreement with the TL theory before the system relaxes to thermal equilibrium with coupling to the environment.
Multiscale System for Environmentally-Driven Infectious Disease with Threshold Control Strategy
NASA Astrophysics Data System (ADS)
Sun, Xiaodan; Xiao, Yanni
A multiscale system for environmentally-driven infectious disease is proposed, in which control measures at three different scales are implemented when the number of infected hosts exceeds a certain threshold. Our coupled model successfully describes the feedback mechanisms of between-host dynamics on within-host dynamics by employing one-scale variable guided enhancement of interventions on other scales. The modeling approach provides a novel idea of how to link the large-scale dynamics to small-scale dynamics. The dynamic behaviors of the multiscale system on two time-scales, i.e. fast system and slow system, are investigated. The slow system is further simplified to a two-dimensional Filippov system. For the Filippov system, we study the dynamics of its two subsystems (i.e. free-system and control-system), the sliding mode dynamics, the boundary equilibrium bifurcations, as well as the global behaviors. We prove that both subsystems may undergo backward bifurcations and the sliding domain exists. Meanwhile, it is possible that the pseudo-equilibrium exists and is globally stable, or the pseudo-equilibrium, the disease-free equilibrium and the real equilibrium are tri-stable, or the pseudo-equilibrium and the real equilibrium are bi-stable, or the pseudo-equilibrium and disease-free equilibrium are bi-stable, which depends on the threshold value and other parameter values. The global stability of the pseudo-equilibrium reveals that we may maintain the number of infected hosts at a previously given value. Moreover, the bi-stability and tri-stability indicate that whether the number of infected individuals tends to zero or a previously given value or other positive values depends on the parameter values and the initial states of the system. These results highlight the challenges in the control of environmentally-driven infectious disease.
Spreading of a pendant liquid drop underneath a textured substrate
NASA Astrophysics Data System (ADS)
Mistry, Aashutosh; Muralidhar, K.
2018-04-01
A pendant drop spreading underneath a partially wetting surface from an initial shape to its final equilibrium configuration and contact angle is studied. A mathematical formulation that quantifies spreading behavior of liquid drops over textured surfaces is discussed. The drop volume and the equilibrium contact angle are treated as parameters in the study. The unbalanced force at the three-phase contact line is modeled as being proportional to the degree of departure from the equilibrium state. Model predictions are verified against the available experimental data in the literature. Results show that the flow dynamics is strongly influenced by the fluid properties, drop volume, and contact angle of the liquid with the partially wetting surface. The drop exhibits rich dynamical behavior including inertial oscillations and gravitational instability, given that gravity tries to detach the drop against wetting contributions. Flow characteristics of drop motion, namely, the radius of the footprint, slip length, and dynamic contact angle in the pendant configuration are presented. Given the interplay among the competing time-dependent forces, a spreading drop can momentarily be destabilized and not achieve a stable equilibrium shape. Instability is then controlled by the initial drop shape as well. The spreading model is used to delineate stable and unstable regimes in the parameter space. Predictions of the drop volume based on the Young-Laplace equation are seen to be conservative relative to the estimates of the dynamical model discussed in the present study.
Non-equilibrium supramolecular polymerization.
Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M
2017-09-18
Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.
Non-equilibrium supramolecular polymerization
Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J.
2017-01-01
Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term “non-equilibrium self-assembly” by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization. PMID:28349143
Requirements for Initiation and Sustained Propagation of Fuel-Air Explosives
1983-06-01
of single-head spin gives the limiting composition for stable propagation of a detonation wave. I. INTRODUCTION which the effects of blockage ratio...Ihu. Dateanle;otd) equivalent chemical times derived from it) provide a much more useful parameter as input to the required theories and empirical...dimensional steady state equilibrium theory (hence static). Experience shows that the dynamic parameters reflect more intimately the detonation properties
Lam, Yun Fung; Lee, Lai Yee; Chua, Song Jun; Lim, Siew Shee; Gan, Suyin
2016-05-01
Lansium domesticum peel (LDP), a waste material generated from the fruit consumption, was evaluated as a biosorbent for nickel removal from aqueous media. The effects of dosage, contact time, initial pH, initial concentration and temperature on the biosorption process were investigated in batch experiments. Equilibrium data were fitted by the Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models using nonlinear regression method with the best-fit model evaluated based on coefficient of determination (R(2)) and Chi-square (χ(2)). The best-fit isotherm was found to be the Langmuir model exhibiting R(2) very close to unity (0.997-0.999), smallest χ(2) (0.0138-0.0562) and largest biosorption capacity (10.1mg/g) at 30°C. Kinetic studies showed that the initial nickel removal was rapid with the equilibrium state established within 30min. Pseudo-second-order model was the best-fit kinetic model indicating the chemisorption nature of the biosorption process. Further data analysis by the intraparticle diffusion model revealed the involvement of several rate-controlling steps such as boundary layer and intraparticle diffusion. Thermodynamically, the process was exothermic, spontaneous and feasible. Regeneration studies indicated that LDP biosorbent could be regenerated using hydrochloric acid solution with up to 85% efficiency. The present investigation proved that LDP having no economic value can be used as an alternative eco-friendly biosorbent for remediation of nickel contaminated water. Copyright © 2016 Elsevier Inc. All rights reserved.
Quantum-like model of brain's functioning: decision making from decoherence.
Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei
2011-07-21
We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gong, Zhihao; Tang, Zhoufei; Wang, Haobin; Wu, Jianlan
2017-12-28
Within the framework of the hierarchy equation of motion (HEOM), the quantum kinetic expansion (QKE) method of the spin-boson model is reformulated in the matrix representation. The equivalence between the two formulations (HEOM matrices and quantum operators) is numerically verified from the calculation of the time-integrated QKE rates. The matrix formulation of the QKE is extended to the system-bath factorized initial state. Following a one-to-one mapping between HEOM matrices and quantum operators, a quantum kinetic equation is rederived. The rate kernel is modified by an extra term following a systematic expansion over the site-site coupling. This modified QKE is numerically tested for its reliability by calculating the time-integrated rate and non-Markovian population kinetics. For an intermediate-to-strong dissipation strength and a large site-site coupling, the population transfer is found to be significantly different when the initial condition is changed from the local equilibrium to system-bath factorized state.
Non-equilibrium steady states in the Klein-Gordon theory
NASA Astrophysics Data System (ADS)
Doyon, Benjamin; Lucas, Andrew; Schalm, Koenraad; Bhaseen, M. J.
2015-03-01
We construct non-equilibrium steady states in the Klein-Gordon theory in arbitrary space dimension d following a local quench. We consider the approach where two independently thermalized semi-infinite systems, with temperatures {{T}L} and {{T}R}, are connected along a d-1-dimensional hypersurface. A current-carrying steady state, described by thermally distributed modes with temperatures {{T}L} and {{T}R} for left and right-moving modes, respectively, emerges at late times. The non-equilibrium density matrix is the exponential of a non-local conserved charge. We obtain exact results for the average energy current and the complete distribution of energy current fluctuations. The latter shows that the long-time energy transfer can be described by a continuum of independent Poisson processes, for which we provide the exact weights. We further describe the full time evolution of local observables following the quench. Averages of generic local observables, including the stress-energy tensor, approach the steady state with a power-law in time, where the exponent depends on the initial conditions at the connection hypersurface. We describe boundary conditions and special operators for which the steady state is reached instantaneously on the connection hypersurface. A semiclassical analysis of freely propagating modes yields the average energy current at large distances and late times. We conclude by comparing and contrasting our findings with results for interacting theories and provide an estimate for the timescale governing the crossover to hydrodynamics. As a modification of our Klein-Gordon analysis we also include exact results for free Dirac fermions.
Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state.
Gieseler, Jan; Quidant, Romain; Dellago, Christoph; Novotny, Lukas
2014-05-01
Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.
NASA Astrophysics Data System (ADS)
Hadi, Fatemeh; Janbozorgi, Mohammad; Sheikhi, M. Reza H.; Metghalchi, Hameed
2016-10-01
The rate-controlled constrained-equilibrium (RCCE) method is employed to study the interactions between mixing and chemical reaction. Considering that mixing can influence the RCCE state, the key objective is to assess the accuracy and numerical performance of the method in simulations involving both reaction and mixing. The RCCE formulation includes rate equations for constraint potentials, density and temperature, which allows taking account of mixing alongside chemical reaction without splitting. The RCCE is a dimension reduction method for chemical kinetics based on thermodynamics laws. It describes the time evolution of reacting systems using a series of constrained-equilibrium states determined by RCCE constraints. The full chemical composition at each state is obtained by maximizing the entropy subject to the instantaneous values of the constraints. The RCCE is applied to a spatially homogeneous constant pressure partially stirred reactor (PaSR) involving methane combustion in oxygen. Simulations are carried out over a wide range of initial temperatures and equivalence ratios. The chemical kinetics, comprised of 29 species and 133 reaction steps, is represented by 12 RCCE constraints. The RCCE predictions are compared with those obtained by direct integration of the same kinetics, termed detailed kinetics model (DKM). The RCCE shows accurate prediction of combustion in PaSR with different mixing intensities. The method also demonstrates reduced numerical stiffness and overall computational cost compared to DKM.
Colloidal Particle Adsorption at Water-Water Interfaces with Ultralow Interfacial Tension
NASA Astrophysics Data System (ADS)
Keal, Louis; Colosqui, Carlos E.; Tromp, R. Hans; Monteux, Cécile
2018-05-01
Using fluorescence confocal microscopy we study the adsorption of single latex microparticles at a water-water interface between demixing aqueous solutions of polymers, generally known as a water-in-water emulsion. Similar microparticles at the interface between molecular liquids have exhibited an extremely slow relaxation preventing the observation of expected equilibrium states. This phenomenon has been attributed to "long-lived" metastable states caused by significant energy barriers Δ F ˜γ Ad≫kBT induced by high interfacial tension (γ ˜10-2 N /m ) and nanoscale surface defects with characteristic areas Ad≃10 - 30 nm2 . For the studied water-water interface with ultralow surface tension (γ ˜10-4 N /m ) we are able to characterize the entire adsorption process and observe equilibrium states prescribed by a single equilibrium contact angle independent of the particle size. Notably, we observe crossovers from fast initial dynamics to slower kinetic regimes analytically predicted for large surface defects (Ad≃500 nm2). Moreover, particle trajectories reveal a position-independent damping coefficient that is unexpected given the large viscosity contrast between phases. These observations are attributed to the remarkably diffuse nature of the water-water interface and the adsorption and entanglement of polymer chains in the semidilute solutions. This work offers some first insights on the adsorption dynamics or kinetics of microparticles at water-water interfaces in biocolloidal systems.
Equilibrium states of homogeneous sheared compressible turbulence
NASA Astrophysics Data System (ADS)
Riahi, M.; Lili, T.
2011-06-01
Equilibrium states of homogeneous compressible turbulence subjected to rapid shear is studied using rapid distortion theory (RDT). The purpose of this study is to determine the numerical solutions of unsteady linearized equations governing double correlations spectra evolution. In this work, RDT code developed by authors solves these equations for compressible homogeneous shear flows. Numerical integration of these equations is carried out using a second-order simple and accurate scheme. The two Mach numbers relevant to homogeneous shear flow are the turbulent Mach number Mt, given by the root mean square turbulent velocity fluctuations divided by the speed of sound, and the gradient Mach number Mg which is the mean shear rate times the transverse integral scale of the turbulence divided by the speed of sound. Validation of this code is performed by comparing RDT results with direct numerical simulation (DNS) of [A. Simone, G.N. Coleman, and C. Cambon, Fluid Mech. 330, 307 (1997)] and [S. Sarkar, J. Fluid Mech. 282, 163 (1995)] for various values of initial gradient Mach number Mg0. It was found that RDT is valid for small values of the non-dimensional times St (St < 3.5). It is important to note that RDT is also valid for large values of St (St > 10) in particular for large values of Mg0. This essential feature justifies the resort to RDT in order to determine equilibrium states in the compressible regime.
Method for producing rapid pH changes
Clark, John H.; Campillo, Anthony J.; Shapiro, Stanley L.; Winn, Kenneth R.
1981-01-01
A method of initiating a rapid pH change in a solution by irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.
Method for producing rapid pH changes
Clark, J.H.; Campillo, A.J.; Shapiro, S.L.; Winn, K.R.
A method of initiating a rapid pH change in a solution comprises irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.
Dynamical behaviors of inter-out-of-equilibrium state intervals in Korean futures exchange markets
NASA Astrophysics Data System (ADS)
Lim, Gyuchang; Kim, SooYong; Kim, Kyungsik; Lee, Dong-In; Scalas, Enrico
2008-05-01
A recently discovered feature of financial markets, the two-phase phenomenon, is utilized to categorize a financial time series into two phases, namely equilibrium and out-of-equilibrium states. For out-of-equilibrium states, we analyze the time intervals at which the state is revisited. The power-law distribution of inter-out-of-equilibrium state intervals is shown and we present an analogy with discrete-time heat bath dynamics, similar to random Ising systems. In the mean-field approximation, this model reduces to a one-dimensional multiplicative process. By varying global and local model parameters, the relevance between volatilities in financial markets and the interaction strengths between agents in the Ising model are investigated and discussed.
Solving nonlinear equilibrium equations of deformable systems by method of embedded polygons
NASA Astrophysics Data System (ADS)
Razdolsky, A. G.
2017-09-01
Solving of nonlinear algebraic equations is an obligatory stage of studying the equilibrium paths of nonlinear deformable systems. The iterative method for solving a system of nonlinear algebraic equations stated in an explicit or implicit form is developed in the present work. The method consists of constructing a sequence of polygons in Euclidean space that converge into a single point that displays the solution of the system. Polygon vertices are determined on the assumption that individual equations of the system are independent from each other and each of them is a function of only one variable. Initial positions of vertices for each subsequent polygon are specified at the midpoints of certain straight segments determined at the previous iteration. The present algorithm is applied for analytical investigation of the behavior of biaxially compressed nonlinear-elastic beam-column with an open thin-walled cross-section. Numerical examples are made for the I-beam-column on the assumption that its material follows a bilinear stress-strain diagram. A computer program based on the shooting method is developed for solving the problem. The method is reduced to numerical integration of a system of differential equations and to the solution of a system of nonlinear algebraic equations between the boundary values of displacements at the ends of the beam-column. A stress distribution at the beam-column cross-sections is determined by subdividing the cross-section area into many small cells. The equilibrium path for the twisting angle and the lateral displacements tend to the stationary point when the load is increased. Configuration of the path curves reveals that the ultimate load is reached shortly once the maximal normal stresses at the beam-column fall outside the limit of the elastic region. The beam-column has a unique equilibrium state for each value of the load, that is, there are no equilibrium states once the maximum load is reached.
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kudinov, V. A.
2014-09-01
The differential equation of damped string vibrations was obtained with the finite speed of extension and strain propagation in the Hooke's law formula taken into account. In contrast to the well-known equations, the obtained equation contains the first and third time derivatives of the displacement and the mixed derivative with respect to the space and time variables. Separation of variables was used to obtain its exact closed-form solution, whose analysis showed that, for large values of the relaxation coefficient, the string return to the initial state after its escape from equilibrium is accompanied by high-frequency low-amplitude damped vibrations, which occur on the initial time interval only in the region of positive displacements. And in the limit, for some large values of the relaxation coefficient, the string return to the initial state occurs practically without any oscillatory process.
Boiling water jet outflow from a thin nozzle: spatial modeling
NASA Astrophysics Data System (ADS)
Bolotnova, R. Kh.; Korobchinskaya, V. A.
2017-09-01
This study presents dual-temperature two-phase model for liquid-vapor mixture with account for evaporation and inter-phase heat transfer (taken in single-velocity single-pressure approximation). Simulation was performed using the shock-capturing method and moving Lagrangian grids. Analysis was performed for simulated and experimental values of nucleation frequency (for refining the initial number and radius of microbubbles) which affect the evaporation rate. Validity of 2D and 1D simulation was examined through comparison with experimental data. The peculiarities of the water-steam formation at the initial stage of outflow through a thin nozzle were studied for different initial equilibrium states of water for the conditions close to chosen experimental conditions.
NASA Astrophysics Data System (ADS)
Taraf, R.; Behbahani, R.; Moshfeghian, Mahmood
2008-12-01
A numerical algorithm is presented for direct calculation of the cricondenbar and cricondentherm coordinates of natural gas mixtures of known composition based on the Michelsen method. In the course of determination of these coordinates, the equilibrium mole fractions at these points are also calculated. In this algorithm, the property of the distance from the free energy surfaces to a tangent plane in equilibrium condition is added to saturation calculation as an additional criterion. An equation of state (EoS) was needed to calculate all required properties. Therefore, the algorithm was tested with Soave-Redlich-Kwong (SRK), Peng-Robinson (PR), and modified Nasrifar-Moshfeghian (MNM) equations of state. For different EoSs, the impact of the binary interaction coefficient ( k ij) was studied. The impact of initial guesses for temperature and pressure was also studied. The convergence speed and the accuracy of the results of this new algorithm were compared with experimental data and the results obtained from other methods and simulation softwares such as Hysys, Aspen Plus, and EzThermo.
Effect of synthesis parameters on polymethacrylic acid xerogel structures and equilibrium swelling
NASA Astrophysics Data System (ADS)
Panić, V.; Jovanović, J.; Adnadjević, B.; Velicković, S.
2009-09-01
Hydrogels based on crosslinked polymethacrylic acid were synthesized via free-radical polymerization in aqueous solution, using N,N'-methylene bisacrylamide as a crosslinking agent and 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride as an initiator. The influence of the reaction parameters (the neutralization degree of methacrylic acid and the initial monomer concentration) on the equilibrium swelling degree, the swelling kinetic parameters and the basic structural properties of xerogels was investigated. The change of synthesis parameters leads to the change of the basic structural parameters of xerogel, as well as the equilibrium swelling degree and the initial swelling rate of the hydrogels. It is found that there are power form relationships between the equilibrium swelling degree, the initial swelling rate and the structural xerogel’s properties and the change of the neutralization degree of monomer, i.e. the monomer concentration. The examined correlations proved that the crosslinking density is the crucial parameter which determines all the other investigated structural and swelling parameters.
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas
Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.
2015-01-01
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640
Near-equilibrium desorption of helium films
NASA Astrophysics Data System (ADS)
Weimer, M.; Housley, R. M.; Goodstein, D. L.
1987-10-01
The thermal desorption of helium films in the presence of their equilibrium vapor is studied experimentally for small but rapid departures from ambient temperature. The results are analyzed within the framework of a quasithermodynamic phenomenological model based on detailed balance. Under the usual experimental conditions, isothermal desorption at the temperature of the substrate is a general prediction of the model which seems to be substantiated. For realistic adsorption isotherms the time evolution of the net desorption flux nevertheless appears to be governed by a highly nonlinear equation. In such circumstances, a number of characteristic relaxation times may be identified. These time scales are distinct from, and in general unrelated to, the coverage-dependent mean lifetime of an atom on the surface. To characterize the overall nonlinear evolution towards steady state, a global time scale, defined in terms of both initial- and steady-state properties, is introduced to summarize the experimental data. Internal evidence suggests a criterion for judging when collisions among desorbed atoms are unimportant. When this condition is satisfied, data for near-equilibrium desorption agree well with the predictions of the model. Combining our results with earlier data at higher substrate temperatures and different ambient conditions, the overall picture is consistent with scaling properties implied by the theory. We show that the values of the parameters deduced from a Frenkel-Arrhenius parametrization of the global relaxation times, as well as a variety of other aspects of desorption kinetics, are actually consequences of the shape of the equilibrium adsorption isotherm.
Comparison of Vibrational Relaxation Modeling for Strongly Non-Equilibrium Flows
2014-01-01
prediction of radiative emission spectra. I. Introduction Excitation and quenching of vibrational energy modes through collision relaxation is an...restrict the VEDF to the first two excited states. For the combined excitation/ quenching cases (v i = 4), there is a greater probability of a... quenching process than a vibrationally excited collision. This is expected because the initial vibrational energy exceeds 60% of the total collisional energy
Thermodynamics of Polaronic States in Artificial Spin Ice
NASA Astrophysics Data System (ADS)
Farhan, Alan
Artificial spin ices represent a class of systems consisting of lithographically patterned nanomagnets arranged in two-dimensional geometries. They were initially introduced as a two-dimensional analogue to geometrically frustrated pyrochlore spin ice, and the most recent introduction of artificial spin ice systems with thermally activated moment fluctuations not only delivered the possibility to directly investigate geometrical frustration and emergent phenomena with real space imaging, but also paved the way to design and investigate new two-dimensional magnetic metamaterials, where material properties can be directly manipulated giving rise to properties that do not exist in nature. Here, taking advantage of cryogenic photoemission electron microscopy, and using the concept of emergent magnetic charges, we are able to directly visualize the creation and annihilation of screened emergent magnetic monopole defects in artificial spin ice. We observe that these polaronic states arise as intermediate states, separating an energetically excited out-of-equilibrium state and low-energy equilibrium configurations. They appear as a result of a local screening effect between emergent magnetic charge defects and their neighboring magnetic charges, thus forming a transient minimum, before the system approaches a global minimum with the least amount of emergent magnetic charge defects. This project is funded by the Swiss National Science Foundation.
Irreversible Markov chains in spin models: Topological excitations
NASA Astrophysics Data System (ADS)
Lei, Ze; Krauth, Werner
2018-01-01
We analyze the convergence of the irreversible event-chain Monte Carlo algorithm for continuous spin models in the presence of topological excitations. In the two-dimensional XY model, we show that the local nature of the Markov-chain dynamics leads to slow decay of vortex-antivortex correlations while spin waves decorrelate very quickly. Using a Fréchet description of the maximum vortex-antivortex distance, we quantify the contributions of topological excitations to the equilibrium correlations, and show that they vary from a dynamical critical exponent z∼ 2 at the critical temperature to z∼ 0 in the limit of zero temperature. We confirm the event-chain algorithm's fast relaxation (corresponding to z = 0) of spin waves in the harmonic approximation to the XY model. Mixing times (describing the approach towards equilibrium from the least favorable initial state) however remain much larger than equilibrium correlation times at low temperatures. We also describe the respective influence of topological monopole-antimonopole excitations and of spin waves on the event-chain dynamics in the three-dimensional Heisenberg model.
Fuel-Mediated Transient Clustering of Colloidal Building Blocks.
van Ravensteijn, Bas G P; Hendriksen, Wouter E; Eelkema, Rienk; van Esch, Jan H; Kegel, Willem K
2017-07-26
Fuel-driven assembly operates under the continuous influx of energy and results in superstructures that exist out of equilibrium. Such dissipative processes provide a route toward structures and transient behavior unreachable by conventional equilibrium self-assembly. Although perfected in biological systems like microtubules, this class of assembly is only sparsely used in synthetic or colloidal analogues. Here, we present a novel colloidal system that shows transient clustering driven by a chemical fuel. Addition of fuel causes an increase in hydrophobicity of the building blocks by actively removing surface charges, thereby driving their aggregation. Depletion of fuel causes reappearance of the charged moieties and leads to disassembly of the formed clusters. This reassures that the system returns to its initial, equilibrium state. By taking advantage of the cyclic nature of our system, we show that clustering can be induced several times by simple injection of new fuel. The fuel-mediated assembly of colloidal building blocks presented here opens new avenues to the complex landscape of nonequilibrium colloidal structures, guided by biological design principles.
Ordering kinetics in the long-period superlattice alloy Cu0.79 Pd0.21
NASA Astrophysics Data System (ADS)
Wang, X.; Mainville, J.; Ludwig, K.; Flament, X.; Finel, A.; Caudron, R.
2005-07-01
The kinetics of long-period superlattice (LPS) formation from the disordered state has been examined in a Cu0.79Pd0.21 alloy that exhibits a one-dimensional LPS ordered state. Time-resolved x-ray scattering shows that, following a rapid temperature quench from the disordered state into the LPS region of the phase diagram, the satellite peaks initially grow more quickly than do the central integer-order superlattice peaks. During this process, the satellite peak position, which is inversely related to the average modulation wavelength 2M , initially decreases rapidly, then reaches a minimum and relaxes slowly back toward its new equilibrium position. In the later stages of the LPS formation process, the satellite and central integer-order superlattice peaks narrow in a manner consistent with t1/2 domain coarsening. A simple stochastic model of the partially ordered structure was developed to better understand the relationships between peak widths.
Pumping approximately integrable systems
Lange, Florian; Lenarčič, Zala; Rosch, Achim
2017-01-01
Weak perturbations can drive an interacting many-particle system far from its initial equilibrium state if one is able to pump into degrees of freedom approximately protected by conservation laws. This concept has for example been used to realize Bose–Einstein condensates of photons, magnons and excitons. Integrable quantum systems, like the one-dimensional Heisenberg model, are characterized by an infinite set of conservation laws. Here, we develop a theory of weakly driven integrable systems and show that pumping can induce large spin or heat currents even in the presence of integrability breaking perturbations, since it activates local and quasi-local approximate conserved quantities. The resulting steady state is qualitatively captured by a truncated generalized Gibbs ensemble with Lagrange parameters that depend on the structure but not on the overall amplitude of perturbations nor the initial state. We suggest to use spin-chain materials driven by terahertz radiation to realize integrability-based spin and heat pumps. PMID:28598444
NASA Astrophysics Data System (ADS)
Edmonds, Christopher M.; Hesketh, Peter J.; Nair, Sankar
2013-11-01
We present a Brownian dynamics investigation of 3-D Rouse and Zimm polymer translocation through solid-state nanopores. We obtain different scaling exponents α for both polymers using two initial configurations: minimum energy, and 'steady-state'. For forced translocation, Rouse polymers (no hydrodynamic interactions), shows a large dependence of α on initial configuration and voltage. Higher voltages result in crowding at the nanopore exit and reduced α. When the radius of gyration is in equilibrium at the beginning and end of translocation, α = 1 + υ where υ is the Flory exponent. For Zimm polymers (including hydrodynamic interactions), crowding is reduced and α = 2υ. Increased pore diameter does not affect α at moderate voltages that reduce diffusion effects. For unforced translocation using narrow pores, both polymers give α = 1 + 2υ. Due to increased polymer-pore interactions in the narrow pore, hydrodynamic drag effects are reduced, resulting in identical scaling.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander F.; Myerson, Allan S.
1993-01-01
A new mathematical ansatz is developed for solution of the time-dependent Ginzburg-Landau nonlinear partial differential equation describing metastable state relaxation in binary (solute+solvent) non-critical solutions with non-conserved scalar order parameter in presence of a gravitational field. It has been demonstrated analytically that in such systems metastability initiates heterogeneous solute redistribution which results in the formation of a non-equilibrium singly-periodic spatial solute structure in the new solute-rich phase. The critical radius of nucleation and the induction time in these systems are gravity-dependent. It has also been proved that metastable state relaxation in vertical columns of supersaturated non-critical binary solutions leads to formation of the solute concentration gradient. Analytical expression for this concentration gradient is found and analysed. It is concluded that gravity can initiate phase separation (nucleation or spinodal decomposition).
NASA Astrophysics Data System (ADS)
Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi
2005-03-01
In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.
Morrow, C.A.; Byerlee, J.D.
1989-01-01
Transient strength changes are observed in fault gouge materials when the velocity of shearing is varied. A transient stress peak is produced when the strain rate in the gouge is suddenly increased, whereas a transient stress drop results from a sudden change to a slower strain rate. We have studied the mechanism responsible for these observations by performing frictional sliding experiments on sawcut granite samples filled with a layer of several different fault gouge types. Changes in pore volume and strength were monitored as the sliding velocity alternated between fast and slow rates. Pore volume increased at the faster strain rate, indicating a dilation of the gouge layer, whereas volume decreased at the slower rate indicating compaction. These results verify that gouge dilation is a function of strain rate. Pore volume changed until an equilibrium void ratio of the granular material was reached for a particular rate of strain. Using arguments from soil mechanics, we find that the dense gouge was initially overconsolidated relative to the equilibrium level, whereas the loose gouge was initially underconsolidated relative to this level. Therefore, the transient stress behavior must be due to the overconsolidated state of the gouge at the new rate when the velocity is increased and to the underconsolidated state when the velocity is lowered. Time-dependent compaction was also shown to cause a transient stress response similar to the velocity-dependent behavior. This may be important in natural fault gouges as they become consolidated and stronger with time. In addition, the strain hardening of the gouge during shearing was found to be a function of velocity, rendering it difficult to quantify the change in equilibrium shear stress when velocity is varied under certain conditions. ?? 1989.
ERIC Educational Resources Information Center
Ferreira, Joao Paulo M.
2007-01-01
The problem of the equilibrium state of an isolated composite system with a movable internal adiabatic wall is a recurrent one in the literature. Classical equilibrium thermodynamics is unable to predict the equilibrium state, unless supplemented with information about the process taking place. This conclusion is clearly demonstrated in this…
NASA Astrophysics Data System (ADS)
Nemtseva, Elena V.; Lashchuk, Olesya O.; Gerasimova, Marina A.; Melnik, Tatiana N.; Nagibina, Galina S.; Melnik, Bogdan S.
2018-01-01
In most cases, intermediate states of multistage folding proteins are not ‘visible’ under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.
Nemtseva, Elena V; Lashchuk, Olesya O; Gerasimova, Marina A; Melnik, Tatiana N; Nagibina, Galina S; Melnik, Bogdan S
2017-12-21
In most cases, intermediate states of multistage folding proteins are not 'visible' under equilibrium conditions but are revealed in kinetic experiments. Time-resolved fluorescence spectroscopy was used in equilibrium denaturation studies. The technique allows for detecting changes in the conformation and environment of tryptophan residues in different structural elements of carbonic anhydrase II which in its turn has made it possible to study the intermediate states of carbonic anhydrase II under equilibrium conditions. The results of equilibrium and kinetic experiments using wild-type bovine carbonic anhydrase II and its mutant form with the substitution of leucine for alanine at position 139 (L139A) were compared. The obtained lifetime components of intrinsic tryptophan fluorescence allowed for revealing that, the same as in kinetic experiments, under equilibrium conditions the unfolding of carbonic anhydrase II ensues through formation of intermediate states.
Experimental study on the formation of subaqueous barchan dunes in closed conduits
NASA Astrophysics Data System (ADS)
Alvarez, Carlos A.; Franklin, Erick
2018-06-01
The present paper reports the formation of subaqueous barchan dunes by analyzing the temporal evolution of their main geometrical characteristics (width W, length L and horn lengths Lh). After certain time, the dunes reach an equilibrium state and it is possible to study the relation between W versus L, and the dependence of the dune velocity on L. The barchan dunes were formed from spherical glass and zirconium beads. An initial conical heap of beads was placed on the bottom wall of a rectangular channel and it was entrained by a water turbulent flow. The evolution of the dunes was filmed with a CCD camera placed above the channel and mounted on a traveling system. Our results show that after a characteristic time the dune shape does not change and it travels with a roughly constant velocity. Once the equilibrium state is reach, W and L are measured, showing linear dependence. Furthermore, we show that the dune velocity Vd scales with the inverse of the dune length.
NASA Astrophysics Data System (ADS)
Puthucode, A.; Devaraj, A.; Nag, S.; Bose, S.; Ayyub, P.; Kaufman, M. J.; Banerjee, R.
2014-05-01
Copper and niobium are mutually immiscible in the solid state and exhibit a large positive enthalpy of mixing in the liquid state. Using vapour quenching via magnetron co-sputter deposition, far-from equilibrium amorphous Cu-Nb films have been deposited which exhibit a nanoscale phase separation. Annealing these amorphous films at low temperatures (~200 °C) initiates crystallization via the nucleation and growth of primary nanocrystals of a face-centred cubic Cu-rich phase separated by the amorphous matrix. Interestingly, subsequent annealing at a higher temperature (>300 °C) leads to the polymorphic nucleation and growth of large spherulitic grains of a body-centred cubic Nb-rich phase within the retained amorphous matrix of the partially crystallized film. This sequential two-stage crystallization process has been investigated in detail by combining transmission electron microscopy [TEM] (including high-resolution TEM) and atom probe tomography studies. These results provide new insights into the crystallization behaviour of such unusual far-from equilibrium phase-separated metallic glasses in immiscible systems.
From Wang-Chen System with Only One Stable Equilibrium to a New Chaotic System Without Equilibrium
NASA Astrophysics Data System (ADS)
Pham, Viet-Thanh; Wang, Xiong; Jafari, Sajad; Volos, Christos; Kapitaniak, Tomasz
2017-06-01
Wang-Chen system with only one stable equilibrium as well as the coexistence of hidden attractors has attracted increasing interest due to its striking features. In this work, the effect of state feedback on Wang-Chen system is investigated by introducing a further state variable. It is worth noting that a new chaotic system without equilibrium is obtained. We believe that the system is an interesting example to illustrate the conversion of hidden attractors with one stable equilibrium to hidden attractors without equilibrium.
Zargarzadeh, Leila; Elliott, Janet A W
2013-10-22
The behavior of pure fluid confined in a cone is investigated using thermodynamic stability analysis. Four situations are explained on the basis of the initial confined phase (liquid/vapor) and its pressure (above/below the saturation pressure). Thermodynamic stability analysis (a plot of the free energy of the system versus the size of the new potential phase) reveals whether the phase transition is possible and, if so, the number and type (unstable/metastable/stable) of equilibrium states in each of these situations. Moreover we investigated the effect of the equilibrium contact angle and the cone angle (equivalent to the confinement's surface separation distance) on the free energy (potential equilibrium states). The results are then compared to our previous study of pure fluid confined in the gap between a sphere and a flat plate and the gap between two flat plates.1 Confined fluid behavior of the four possible situations (for these three geometries) can be explained in a unified framework under two categories based on only the meniscus shape (concave/convex). For systems with bulk-phase pressure imposed by a reservoir, the stable coexistence of pure liquid and vapor is possible only when the meniscus is concave.
Equilibrium fluctuation relations for voltage coupling in membrane proteins.
Kim, Ilsoo; Warshel, Arieh
2015-11-01
A general theoretical framework is developed to account for the effects of an external potential on the energetics of membrane proteins. The framework is based on the free energy relation between two (forward/backward) probability densities, which was recently generalized to non-equilibrium processes, culminating in the work-fluctuation theorem. Starting from the probability densities of the conformational states along the "voltage coupling" reaction coordinate, we investigate several interconnected free energy relations between these two conformational states, considering voltage activation of ion channels. The free energy difference between the two conformational states at zero (depolarization) membrane potential (i.e., known as the chemical component of free energy change in ion channels) is shown to be equivalent to the free energy difference between the two "equilibrium" (resting and activated) conformational states along the one-dimensional voltage couplin reaction coordinate. Furthermore, the requirement that the application of linear response approximation to the free energy functionals of voltage coupling should satisfy the general free energy relations, yields a novel closed-form expression for the gating charge in terms of other basic properties of ion channels. This connection is familiar in statistical mechanics, known as the equilibrium fluctuation-response relation. The theory is illustrated by considering the coupling of a unit charge to the external voltage in the two sites near the surface of membrane, representing the activated and resting states. This is done using a coarse-graining (CG) model of membrane proteins, which includes the membrane, the electrolytes and the electrodes. The CG model yields Marcus-type voltage dependent free energy parabolas for the response of the electrostatic environment (electrolytes etc.) to the transition from the initial to the final configuratinal states, leading to equilibrium free energy difference and free energy barrier that follow the trend of the equilibrium fluctuation relation and the Marcus theory of electron transfer. These energetics also allow for a direct estimation of the voltage dependence of channel activation (Q-V curve), offering a quantitative rationale for a correlation between the voltage dependence parabolas and the Q-V curve, upon site-directed mutagenesis or drug binding. Taken together, by introducing the voltage coupling as the energy gap reaction coordinate, our framework brings new perspectives to the thermodynamic models of voltage activation in voltage-sensitive membrane proteins, offering an a framework for a better understating of the structure-function correlations of voltage gating in ion channels as well as electrogenic phenomena in ion pumps and transporters. Significantly, this formulation also provides a powerful bridge between the CG model of voltage coupling and the conventional macroscopic treatments. Copyright © 2015 Elsevier B.V. All rights reserved.
Schoellhamer, D.H.; Ganju, N.K.; Mineart, P.R.; Lionberger, M.A.; Kusuda, T.; Yamanishi, H.; Spearman, J.; Gailani, J. Z.
2008-01-01
Bathymetric change in tidal environments is modulated by watershed sediment yield, hydrodynamic processes, benthic composition, and anthropogenic activities. These multiple forcings combine to complicate simple prediction of bathymetric change; therefore, numerical models are necessary to simulate sediment transport. Errors arise from these simulations, due to inaccurate initial conditions and model parameters. We investigated the response of bathymetric change to initial conditions and model parameters with a simplified zero-dimensional cohesive sediment transport model, a two-dimensional hydrodynamic/sediment transport model, and a tidally averaged box model. The zero-dimensional model consists of a well-mixed control volume subjected to a semidiurnal tide, with a cohesive sediment bed. Typical cohesive sediment parameters were utilized for both the bed and suspended sediment. The model was run until equilibrium in terms of bathymetric change was reached, where equilibrium is defined as less than the rate of sea level rise in San Francisco Bay (2.17 mm/year). Using this state as the initial condition, model parameters were perturbed 10% to favor deposition, and the model was resumed. Perturbed parameters included, but were not limited to, maximum tidal current, erosion rate constant, and critical shear stress for erosion. Bathymetric change was most sensitive to maximum tidal current, with a 10% perturbation resulting in an additional 1.4 m of deposition over 10 years. Re-establishing equilibrium in this model required 14 years. The next most sensitive parameter was the critical shear stress for erosion; when increased 10%, an additional 0.56 m of sediment was deposited and 13 years were required to re-establish equilibrium. The two-dimensional hydrodynamic/sediment transport model was calibrated to suspended-sediment concentration, and despite robust solution of hydrodynamic conditions it was unable to accurately hindcast bathymetric change. The tidally averaged box model was calibrated to bathymetric change data and shows rapidly evolving bathymetry in the first 10-20 years, though sediment supply and hydrodynamic forcing did not vary greatly. This initial burst of bathymetric change is believed to be model adjustment to initial conditions, and suggests a spin-up time of greater than 10 years. These three diverse modeling approaches reinforce the sensitivity of cohesive sediment transport models to initial conditions and model parameters, and highlight the importance of appropriate calibration data. Adequate spin-up time of the order of years is required to initialize models, otherwise the solution will contain bathymetric change that is not due to environmental forcings, but rather improper specification of initial conditions and model parameters. Temporally intensive bathymetric change data can assist in determining initial conditions and parameters, provided they are available. Computational effort may be reduced by selectively updating hydrodynamics and bathymetry, thereby allowing time for spin-up periods. reserved.
Vrzheshch, P V
2015-01-01
Quantitative evaluation of the accuracy of the rapid equilibrium assumption in the steady-state enzyme kinetics was obtained for an arbitrary mechanism of an enzyme-catalyzed reaction. This evaluation depends only on the structure and properties of the equilibrium segment, but doesn't depend on the structure and properties of the rest (stationary part) of the kinetic scheme. The smaller the values of the edges leaving equilibrium segment in relation to values of the edges within the equilibrium segment, the higher the accuracy of determination of intermediate concentrations and reaction velocity in a case of the rapid equilibrium assumption.
Astumian, R D
2018-01-11
In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.
Larsen, Delmar S; van Stokkum, Ivo H M; Vengris, Mikas; van Der Horst, Michael A; de Weerd, Frank L; Hellingwerf, Klaas J; van Grondelle, Rienk
2004-09-01
Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.
Larsen, Delmar S.; van Stokkum, Ivo H. M.; Vengris, Mikas; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk
2004-01-01
Photoactive yellow protein is the protein responsible for initiating the “blue-light vision” of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This “incoherent” manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I0 and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates. PMID:15345564
Local Nash equilibrium in social networks.
Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong
2014-08-29
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.
Local Nash Equilibrium in Social Networks
Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong
2014-01-01
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures. PMID:25169150
Local Nash Equilibrium in Social Networks
NASA Astrophysics Data System (ADS)
Zhang, Yichao; Aziz-Alaoui, M. A.; Bertelle, Cyrille; Guan, Jihong
2014-08-01
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.
The Nature and Contemporary Implications of Soviet Military Strategy in the Second World War
1990-03-01
however, dismiss the precipitous fall of France in so cavalier a fashion. Soviet theorists were shocked to realize that Germany had successfully...forging an international alliance against Nazi Germany , while mobilizing the full power of the state to repel the German military onslaught. Military...strategic reserves, restore equilibrium to the Eastern Front and, if possible, restore the strategic initiative to Germany . For the first time in the
NASA Astrophysics Data System (ADS)
Marcus, P. M.; Jona, F.
2005-05-01
A simple effective procedure (MNP) for finding equilibrium tetragonal and hexagonal states under pressure is described and applied. The MNP procedure finds a path to minima of the Gibbs free energy G at T=0 K (G=E+pV, E=energy per atom, p=pressure, V=volume per atom) for tetragonal and hexagonal structures by using the approximate expansion of G in linear and quadratic strains at an arbitrary initial structure to find a change in the strains which moves toward a minimum of G. Iteration automatically proceeds to a minimum within preset convergence criteria on the calculation of the minimum. Comparison is made with experimental results for the ground states of seven metallic elements in hexagonal close-packed (hcp), face- and body-centered cubic structures, and with a previous procedure for finding minima based on tracing G along the epitaxial Bain path (EBP) to a minimum; the MNP is more easily generalized than the EBP procedure to lower symmetry and more atoms in the unit cell. Comparison is also made with a molecular-dynamics program for crystal equilibrium structures under pressure and with CRYSTAL, a program for crystal equilibrium structures at zero pressure. Application of MNP to the elements Y and Cd, which have hcp ground states at zero pressure, finds minima of E at face-centered cubic (fcc) structure for both Y and Cd. Evaluation of all the elastic constants shows that fcc Y is stable, hence a metastable phase, but fcc Cd is unstable.
Mukhtasimova, Nuriya; daCosta, Corrie J.B.
2016-01-01
The acetylcholine receptor (AChR) from vertebrate skeletal muscle initiates voluntary movement, and its kinetics of activation are crucial for maintaining the safety margin for neuromuscular transmission. Furthermore, the kinetic mechanism of the muscle AChR serves as an archetype for understanding activation mechanisms of related receptors from the Cys-loop superfamily. Here we record currents through single muscle AChR channels with improved temporal resolution approaching half an order of magnitude over our previous best. A range of concentrations of full and partial agonists are used to elicit currents from human wild-type and gain-of-function mutant AChRs. For each agonist–receptor combination, rate constants are estimated from maximum likelihood analysis using a kinetic scheme comprised of agonist binding, priming, and channel gating steps. The kinetic scheme and rate constants are tested by stochastic simulation, followed by incorporation of the experimental step response, sampling rate, background noise, and filter bandwidth. Analyses of the simulated data confirm all rate constants except those for channel gating, which are overestimated because of the established effect of noise on the briefest dwell times. Estimates of the gating rate constants were obtained through iterative simulation followed by kinetic fitting. The results reveal that the agonist association rate constants are independent of agonist occupancy but depend on receptor state, whereas those for agonist dissociation depend on occupancy but not on state. The priming rate and equilibrium constants increase with successive agonist occupancy, and for a full agonist, the forward rate constant increases more than the equilibrium constant; for a partial agonist, the forward rate and equilibrium constants increase equally. The gating rate and equilibrium constants also increase with successive agonist occupancy, but unlike priming, the equilibrium constants increase more than the forward rate constants. As observed for a full and a partial agonist, the gain-of-function mutation affects the relationship between rate and equilibrium constants for priming but not for channel gating. Thus, resolving brief single channel currents distinguishes priming from gating steps and reveals how the corresponding rate and equilibrium constants depend on agonist occupancy. PMID:27353445
Driven neutron star collapse: Type I critical phenomena and the initial black hole mass distribution
NASA Astrophysics Data System (ADS)
Noble, Scott C.; Choptuik, Matthew W.
2016-01-01
We study the general relativistic collapse of neutron star (NS) models in spherical symmetry. Our initially stable models are driven to collapse by the addition of one of two things: an initially ingoing velocity profile, or a shell of minimally coupled, massless scalar field that falls onto the star. Tolman-Oppenheimer-Volkoff (TOV) solutions with an initially isentropic, gamma-law equation of state serve as our NS models. The initial values of the velocity profile's amplitude and the star's central density span a parameter space which we have surveyed extensively and which we find provides a rich picture of the possible end states of NS collapse. This parameter space survey elucidates the boundary between Type I and Type II critical behavior in perfect fluids which coincides, on the subcritical side, with the boundary between dispersed and bound end states. For our particular model, initial velocity amplitudes greater than 0.3 c are needed to probe the regime where arbitrarily small black holes can form. In addition, we investigate Type I behavior in our system by varying the initial amplitude of the initially imploding scalar field. In this case we find that the Type I critical solutions resemble TOV solutions on the 1-mode unstable branch of equilibrium solutions, and that the critical solutions' frequencies agree well with the fundamental mode frequencies of the unstable equilibria. Additionally, the critical solution's scaling exponent is shown to be well approximated by a linear function of the initial star's central density.
NASA Astrophysics Data System (ADS)
Tang, Tie-Qiao; Wang, Tao; Chen, Liang; Shang, Hua-Yan
2017-08-01
In this paper, we apply a car-following model, fuel consumption model, emission model and electricity consumption model to explore the influences of energy consumption and emissions on each commuter's trip costs without late arrival at the equilibrium state. The numerical results show that the energy consumption and emissions have significant impacts on each commuter's trip cost without late arrival at the equilibrium state. The fuel cost and emission cost prominently enhance each commuter's trip cost and the trip cost increases with the number of vehicles, which shows that considering the fuel cost and emission cost in the trip cost will destroy the equilibrium state. However, the electricity cost slightly enhances each commuter's trip cost, but the trip cost is still approximately a constant, which indicates that considering the electricity cost in the trip cost does not destroy the equilibrium state.
NASA Technical Reports Server (NTRS)
Elishakoff, Isaac; Marcus, S.; Starnes, J. H., JR.
1998-01-01
In this paper we present a closed-form solution for vibrational imperfection sensitivity the effect of small imperfections on the vibrational frequencies of perturbed motion around the static equilibrium state of Augusti's model Structure (a rigid link, pinned at one end to a rigid foundation and supported at the other by a linear extensional spring that retains its horizontality, as the system deflects). We also treat a modified version of that model with attendant slightly different dynamics. It is demonstrated that the vibrational frequencies decreases as the initial imperfections increase.
Non-equilibrium condensation process in holographic superconductor with nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Liu, Yunqi; Gong, Yungui; Wang, Bin
2016-02-01
We study the non-equilibrium condensation process in a holographic superconductor with nonlinear corrections to the U (1) gauge field. We start with an asymptotic Anti-de-Sitter (AdS) black hole against a complex scalar perturbation at the initial time, and solve the dynamics of the gravitational systems in the bulk. When the black hole temperature T is smaller than a critical value T c , the scalar perturbation grows exponentially till saturation, the final state of spacetime approaches to a hairy black hole. In the bulk theory, we find the clue of the influence of nonlinear corrections in the gauge filed on the process of the scalar field condensation. We show that the bulk dynamics in the non-equilibrium process is completely consistent with the observations on the boundary order parameter. Furthermore we examine the time evolution of horizons in the bulk non-equilibrium transformation process from the bald AdS black hole to the AdS hairy hole. Both the evolution of apparent and event horizons show that the original AdS black hole configuration requires more time to finish the transformation to become a hairy black hole if there is nonlinear correction to the electromagnetic field. We generalize our non-equilibrium discussions to the holographic entanglement entropy and find that the holographic entanglement entropy can give us further understanding of the influence of the nonlinearity in the gauge field on the scalar condensation.
Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.
Kleidon, Axel
2010-01-13
The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society
Kim, Peter W; Rockwell, Nathan C; Freer, Lucy H; Chang, Che-Wei; Martin, Shelley S; Lagarias, J Clark; Larsen, Delmar S
2013-07-20
The ultrafast mechanisms underlying the initial photoisomerization (P r → Lumi-R) in the forward reaction of the cyanobacterial photoreceptor Cph1 were explored with multipulse pump-dump-probe transient spectroscopy. A recently postulated multi-population model was used to fit the transient pump-dump-probe and dump-induced depletion signals. We observed dump-induced depletion of the Lumi-R photoproduct, demonstrating that photoisomerization occurs via evolution on both the excited- and ground-state electronic surfaces. Excited-state equilibrium was not observed, as shown via the absence of a dump-induced excited-state "Le Châtelier redistribution" of excited-state populations. The importance of incorporating the inhomogeneous dynamics of Cph1 in interpreting measured transient data is discussed.
Kim, Peter W.; Rockwell, Nathan C.; Freer, Lucy H.; Chang, Che-Wei; Martin, Shelley S.; Lagarias, J. Clark; Larsen, Delmar S.
2013-01-01
The ultrafast mechanisms underlying the initial photoisomerization (Pr → Lumi-R) in the forward reaction of the cyanobacterial photoreceptor Cph1 were explored with multipulse pump-dump-probe transient spectroscopy. A recently postulated multi-population model was used to fit the transient pump-dump-probe and dump-induced depletion signals. We observed dump-induced depletion of the Lumi-R photoproduct, demonstrating that photoisomerization occurs via evolution on both the excited- and ground-state electronic surfaces. Excited-state equilibrium was not observed, as shown via the absence of a dump-induced excited-state “Le Châtelier redistribution” of excited-state populations. The importance of incorporating the inhomogeneous dynamics of Cph1 in interpreting measured transient data is discussed. PMID:24143267
Synaptic Bistability Due to Nucleation and Evaporation of Receptor Clusters
NASA Astrophysics Data System (ADS)
Burlakov, V. M.; Emptage, N.; Goriely, A.; Bressloff, P. C.
2012-01-01
We introduce a bistability mechanism for long-term synaptic plasticity based on switching between two metastable states that contain significantly different numbers of synaptic receptors. One state is characterized by a two-dimensional gas of mobile interacting receptors and is stabilized against clustering by a high nucleation barrier. The other state contains a receptor gas in equilibrium with a large cluster of immobile receptors, which is stabilized by the turnover rate of receptors into and out of the synapse. Transitions between the two states can be initiated by either an increase (potentiation) or a decrease (depotentiation) of the net receptor flux into the synapse. This changes the saturation level of the receptor gas and triggers nucleation or evaporation of receptor clusters.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Simpson, J.
2000-01-01
In general, there are two broad scientific objectives when using cloud resolving models (CRMs or cloud ensemble models-CEMs) to study tropical convection. The first one is to use them as a physics resolving models to understand the dynamic and microphysical processes associated with the tropical water and energy cycles and their role in the climate system. The second approach is to use the CRMs to improve the representation of moist processes and their interaction with radiation in large-scale models. In order to improve the credibility of the CRMs and achieve the above goals, CRMs using identical initial conditions and large-scale influences need to produce very similar results. Two CRMs produced different statistical equilibrium (SE) states even though both used the same initial thermodynamic and wind conditions. Sensitivity tests to identify the major physical processes that determine the SE states for the different CRM simulations were performed. Their results indicated that atmospheric horizontal wind is treated quite differently in these two CRMs. The model that had stronger surface winds and consequently larger latent and sensible heat fluxes from the ocean produced a warmer and more humid modeled thermodynamic SE state. In addition, the domain mean thermodynamic state is more unstable for those experiments that produced a warmer and more humid SE state. Their simulated wet (warm and humid) SE states are thermally more stable in the lower troposphere (from the surface to 4-5 km in altitude). The large-scale horizontal advective effects on temperature and water vapor mixing ratio are needed when using CRMs to perform long-term integrations to study convective feedback under specified large-scale environments. In addition, it is suggested that the dry and cold SE state simulated was caused by enhanced precipitation but not enough surface evaporation. We find some problems with the interpretation of these three phenomena.
NASA Astrophysics Data System (ADS)
Bartelt, P.; Feistl, T.; Bühler, Y.; Buser, O.
2012-08-01
When a full-depth tensile crack opens in the mountain snowcover, internal forces are transferred from the fracture crown to the stauchwall. The stauchwall is located at the lower limit of a gliding zone and must carry the weight of the snowcover. The stauchwall can fail, leading to full-depth snow avalanches, or, it can withstand the stress redistribution. The snowcover often finds a new static equilibrium, despite the initial crack. We present a model describing how the snowcover reacts to the sudden transfer of the forces from the crown to the stauchwall. Our goal is to find the conditions for failure and the start of full-depth avalanches. The model balances the inertial forces of the gliding snowcover with the viscoelastic response of the stauchwall. We compute stresses, strain-rates and deformations during the stress redistribution and show that a new equilibrium state is not found directly, but depends on the viscoelastic properties of the snow, which are density and temperature dependent. During the stress redistribution the stauchwall encounters stresses and strain-rates that can be much higher than at the final equilibrium state. Because of the excess strain-rates, the stauchwall can fail in brittle compression before reaching the new equilibrium. Snow viscosity and the length of the gliding snow region are the two critical parameters governing the transition from stable snowpack gliding to avalanche flow. The model reveals why the formation of gliding snow avalanches is height invariant and how technical measures to prevent snowpack glide can be optimized to improve avalanche mitigation.
NASA Astrophysics Data System (ADS)
Takiyama, Ken
2017-12-01
How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.
Stability boundaries for command augmentation systems
NASA Technical Reports Server (NTRS)
Shrivastava, P. C.
1987-01-01
The Stability Augmentation System (SAS) is a special case of the Command Augmentation System (CAS). Control saturation imposes bounds on achievable commands. The state equilibrium depends only on the open loop dynamics and control deflection. The control magnitude to achieve a desired command equilibrium is independent of the feedback gain. A feedback controller provides the desired response, maintains the system equilibrium under disturbances, but it does not affect the equilibrium values of states and control. The saturation boundaries change with commands, but the location of the equilibrium points in the saturated region remains unchanged. Nonzero command vectors yield saturation boundaries that are asymmetric with respect to the state equilibrium. Except for the saddle point case with MCE control law, the stability boundaries change with commands. For the cases of saddle point and unstable nodes, the region of stability decreases with increasing command magnitudes.
Two-actor conflict with time delay: A dynamical model
NASA Astrophysics Data System (ADS)
Qubbaj, Murad R.; Muneepeerakul, Rachata
2012-11-01
Recent mathematical dynamical models of the conflict between two different actors, be they nations, groups, or individuals, have been developed that are capable of predicting various outcomes depending on the chosen feedback strategies, initial conditions, and the previous states of the actors. In addition to these factors, this paper examines the effect of time delayed feedback on the conflict dynamics. Our analysis shows that under certain initial and feedback conditions, a stable neutral equilibrium of conflict may destabilize for some critical values of time delay, and the two actors may evolve to new emotional states. We investigate the results by constructing critical delay surfaces for different sets of parameters and analyzing results from numerical simulations. These results provide new insights regarding conflict and conflict resolution and may help planners in adjusting and assessing their strategic decisions.
NASA Astrophysics Data System (ADS)
Korshak, V. F.; Chushkina, R. A.; Shapovalov, Yu. A.; Mateichenko, P. V.
2011-07-01
Samples of a Bi-43 wt % Sn superplastic alloy have been studied by X-ray diffraction in the ascast state, after compression of as-cast samples to ˜70% on a hydraulic press, after aging in the as-cast and preliminarily compressed state, and using samples deformed under superplastic conditions. The X-ray diffraction studies have been carried out using a DRON-2.0 diffractometer in Cu Kα radiation. The samples aged and deformed under superplasticity conditions have been studied using electron-microprobe analysis in a JSM-820 scanning electron microscope equipped with a LINK AN/85S EDX system. It has been found that the initial structural-phase state of the alloy was amorphous-crystalline. Causes that lead to a change in this state upon deformation and aging are discussed. A conclusion is made that the superplasticity effect manifests itself against the background of processes that are stipulated by the tendency of the initially metastable alloy to phase equilibrium similarly to what is observed in the Sn-38 wt % Pb eutectic alloy studied earlier.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the option in paragraph (a)(1)(iii) in § 63.1564 (Ni lb/hr), and you use continuous parameter monitoring systems, you must establish an operating limit for the equilibrium catalyst Ni concentration based on the laboratory analysis of the equilibrium catalyst Ni concentration from the initial performance...
Evaluation of Magnetic Diagnostics for MHD Equilibrium Reconstruction of LHD Discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sontag, Aaron C; Hanson, James D.; Lazerson, Sam
2011-01-01
Equilibrium reconstruction is the process of determining the set of parameters of an MHD equilibrium that minimize the difference between expected and experimentally observed signals. This is routinely performed in axisymmetric devices, such as tokamaks, and the reconstructed equilibrium solution is then the basis for analysis of stability and transport properties. The V3FIT code [1] has been developed to perform equilibrium reconstruction in cases where axisymmetry cannot be assumed, such as in stellarators. The present work is focused on using V3FIT to analyze plasmas in the Large Helical Device (LHD) [2], a superconducting, heliotron type device with over 25 MWmore » of heating power that is capable of achieving both high-beta ({approx}5%) and high density (>1 x 10{sup 21}/m{sup 3}). This high performance as well as the ability to drive tens of kiloamperes of toroidal plasma current leads to deviations in the equilibrium state from the vacuum flux surfaces. This initial study examines the effectiveness of using magnetic diagnostics as the observed signals in reconstructing experimental plasma parameters for LHD discharges. V3FIT uses the VMEC [3] 3D equilibrium solver to calculate an initial equilibrium solution with closed, nested flux surfaces based on user specified plasma parameters. This equilibrium solution is then used to calculate the expected signals for specified diagnostics. The differences between these expected signal values and the observed values provides a starting {chi}{sup 2} value. V3FIT then varies all of the fit parameters independently, calculating a new equilibrium and corresponding {chi}{sup 2} for each variation. A quasi-Newton algorithm [1] is used to find the path in parameter space that leads to a minimum in {chi}{sup 2}. Effective diagnostic signals must vary in a predictable manner with the variations of the plasma parameters and this signal variation must be of sufficient amplitude to be resolved from the signal noise. Signal effectiveness can be defined for a specific signal and specific reconstruction parameter as the dimensionless fractional reduction in the posterior parameter variance with respect to the signal variance. Here, {sigma}{sub i}{sup sig} is the variance of the ith signal and {sigma}{sub j}{sup param} param is the posterior variance of the jth fit parameter. The sum of all signal effectiveness values for a given reconstruction parameter is normalized to one. This quantity will be used to determine signal effectiveness for various reconstruction cases. The next section will examine the variation of the expected signals with changes in plasma pressure and the following section will show results for reconstructing model plasmas using these signals.« less
Global solutions to the equation of thermoelasticity with fading memory
NASA Astrophysics Data System (ADS)
Okada, Mari; Kawashima, Shuichi
2017-07-01
We consider the initial-history value problem for the one-dimensional equation of thermoelasticity with fading memory. It is proved that if the data are smooth and small, then a unique smooth solution exists globally in time and converges to the constant equilibrium state as time goes to infinity. Our proof is based on a technical energy method which makes use of the strict convexity of the entropy function and the properties of strongly positive definite kernels.
Measurement of electron-ion relaxation in warm dense copper
Cho, B. I.; Ogitsu, T.; Engelhorn, K.; ...
2016-01-06
Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.
NASA Astrophysics Data System (ADS)
Sheheitli, H.; Touma, J. R.
2018-06-01
We investigate the dynamics of a spinning top driven by a turntable that rotates with a given angular speed Ω. The pivot point of the top is at a fixed distance from the center of the turntable. We show that such a setup leads to resonance where the spinning top is locked in a state of relative equilibrium: precessing with an angular speed equal to that of the turntable while maintaining a constant nutation angle. Bifurcation diagrams are presented to depict how the stability of these relative equilibria, along with the corresponding value of the nutation angle, depends on the two parameters: the initial spin angular momentum and Ω. We discuss the classical spinning top, that is, the Ω = 0 case, and address the relation of the "sleeping top" state to the aforementioned relative equilibria. We also relate the dynamics to that of a spherical pendulum on a rotary arm and show that the latter can be viewed as a special case of the system at hand. Finally, we illustrate how the relative equilibria can be exploited for the attitude control of the top through resonance capture while slowly varying the turnable angular speed, Ω.
With the aid of three atmospheric aerosol equilibrium models, we quantify the effect of metastable equilibrium states (efflorescence branch) in comparison to stable (deliquescence branch) on the partitioning of total nitrate between the gas and aerosol phases. On average, efflore...
Imaging the equilibrium state and magnetization dynamics of partially built hard disk write heads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valkass, R. A. J., E-mail: rajv202@ex.ac.uk; Yu, W.; Shelford, L. R.
Four different designs of partially built hard disk write heads with a yoke comprising four repeats of NiFe (1 nm)/CoFe (50 nm) were studied by both x-ray photoemission electron microscopy (XPEEM) and time-resolved scanning Kerr microscopy (TRSKM). These techniques were used to investigate the static equilibrium domain configuration and the magnetodynamic response across the entire structure, respectively. Simulations and previous TRSKM studies have made proposals for the equilibrium domain configuration of similar structures, but no direct observation of the equilibrium state of the writers has yet been made. In this study, static XPEEM images of the equilibrium state of writer structures weremore » acquired using x-ray magnetic circular dichroism as the contrast mechanism. These images suggest that the crystalline anisotropy dominates the equilibrium state domain configuration, but competition with shape anisotropy ultimately determines the stability of the equilibrium state. Dynamic TRSKM images were acquired from nominally identical devices. These images suggest that a longer confluence region may hinder flux conduction from the yoke into the pole tip: the shorter confluence region exhibits clear flux beaming along the symmetry axis, whereas the longer confluence region causes flux to conduct along one edge of the writer. The observed variations in dynamic response agree well with the differences in the equilibrium magnetization configuration visible in the XPEEM images, confirming that minor variations in the geometric design of the writer structure can have significant effects on the process of flux beaming.« less
NASA Astrophysics Data System (ADS)
Barsuk, Alexandr A.; Paladi, Florentin
2018-04-01
The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.
Damos, Petros
2015-08-01
In this study, we use entropy related mixing rate modules to measure the effects of temperature on insect population stability and demographic breakdown. The uncertainty in the age of the mother of a randomly chosen newborn, and how it is moved after a finite act of time steps, is modeled using a stochastic transformation of the Leslie matrix. Age classes are represented as a cycle graph and its transitions towards the stable age distribution are brought forth as an exact Markov chain. The dynamics of divergence, from a non equilibrium state towards equilibrium, are evaluated using the Kolmogorov-Sinai entropy. Moreover, Kullback-Leibler distance is applied as information-theoretic measure to estimate exact mixing times of age transitions probabilities towards equilibrium. Using empirically data, we show that on the initial conditions and simulated projection's trough time, that population entropy can effectively be applied to detect demographic variability towards equilibrium under different temperature conditions. Changes in entropy are correlated with the fluctuations of the insect population decay rates (i.e. demographic stability towards equilibrium). Moreover, shorter mixing times are directly linked to lower entropy rates and vice versa. This may be linked to the properties of the insect model system, which in contrast to warm blooded animals has the ability to greatly change its metabolic and demographic rates. Moreover, population entropy and the related distance measures that are applied, provide a means to measure these rates. The current results and model projections provide clear biological evidence why dynamic population entropy may be useful to measure population stability. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Björnbom, Pehr
2016-03-01
In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.
Amorphous ices explained in terms of nonequilibrium phase transitions in supercooled water
NASA Astrophysics Data System (ADS)
Limmer, David; Chandler, David
2013-03-01
We analyze the phase diagram of supercooled water out-of-equilibrium using concepts from space-time thermodynamics and the dynamic facilitation theory of the glass transition, together with molecular dynamics simulations. We find that when water is driven out-of-equilibrium, it can exist in multiple amorphous states. In contrast, we find that when water is at equilibrium, it can exist in only one liquid state. The amorphous non-equilibrium states are solids, distinguished from the liquid by their lack of mobility, and distinguished from each other by their different densities and local structure. This finding explains the experimentally observed polyamorphism of water as a class of nonequilibrium phenomena involving glasses of different densities. While the amorphous solids can be long lived, they are thermodynamically unstable. When allowed to relax to equilibrium, they crystallize with pathways that pass first through liquid state configurations and then to ordered ice.
Effects of Equilibrium Toroidal Flow on Locked Mode and Plasma Response in a Tokamak
NASA Astrophysics Data System (ADS)
Zhu, Ping; Huang, Wenlong; Yan, Xingting
2016-10-01
It is widely believed that plasma flow plays significant roles in regulating the processes of mode locking and plasma response in a tokamak in presence of external resonant magnetic perturbations (RMPs). Recently a common analytic relation for both locked mode and plasma response has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance. The analytic relation predicts the size of the magnetic island of a locked mode or a static nonlinear plasma response for a given RMP amplitude, and rigorously proves a screening effect of the equilibrium toroidal flow. To test the theory, we solve for the locked mode and the nonlinear plasma response in presence of RMP for a circular-shaped limiter tokamak equilibrium with constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. The comparison between the simulation results and the theory prediction, in terms of the quantitative screening effects of equilibrium toroidal flow, will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.
Titan's Interior Chemical Composition: A Thermochemical Assessment*
NASA Astrophysics Data System (ADS)
Howard, Michael; Zaug, J. M.; Khare, B. N.; McKay, C. P.
2007-10-01
We study the interior composition of Titan using thermal chemical equilibrium calculations that are valid to high pressures and temperatures. The equations of state are based on exponential-6 fluid theory and have been validated against experimental data up to a few Mbars in pressure and approximately 20000K in temperature. In addition to CHNO molecules, we account for multi-phases of carbon, water and a variety of metals such as Al and Fe, and their oxides. With these fluid equations of state, chemical equilibrium is calculated for a set of product species. As the temperature and pressure evolves for increasing depth in the interior, the chemical equilibrium shifts. We assume that Titan is initially composed of comet material, which we assume to be solar, except for hydrogen, which we take to be depleted by a factor 1/690. We find that a significant amount of nitrogen is in the form of n2, rather than nh3. Moreover, above 12 kbars, as is the interior pressure of Titan, a significant amount of the carbon is in the form of graphite, rather than co2 and ch4. We discuss the implications of these results for understanding the atmospheric and surface composition of Titan. • This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
The critical roles of information and nonequilibrium thermodynamics in evolution of living systems.
Gatenby, Robert A; Frieden, B Roy
2013-04-01
Living cells are spatially bounded, low entropy systems that, although far from thermodynamic equilibrium, have persisted for billions of years. Schrödinger, Prigogine, and others explored the physical principles of living systems primarily in terms of the thermodynamics of order, energy, and entropy. This provided valuable insights, but not a comprehensive model. We propose the first principles of living systems must include: (1) Information dynamics, which permits conversion of energy to order through synthesis of specific and reproducible, structurally-ordered components; and (2) Nonequilibrium thermodynamics, which generate Darwinian forces that optimize the system.Living systems are fundamentally unstable because they exist far from thermodynamic equilibrium, but this apparently precarious state allows critical response that includes: (1) Feedback so that loss of order due to environmental perturbations generate information that initiates a corresponding response to restore baseline state. (2) Death due to a return to thermodynamic equilibrium to rapidly eliminate systems that cannot maintain order in local conditions. (3) Mitosis that rewards very successful systems, even when they attain order that is too high to be sustainable by environmental energy, by dividing so that each daughter cell has a much smaller energy requirement. Thus, nonequilibrium thermodynamics are ultimately responsible for Darwinian forces that optimize system dynamics, conferring robustness sufficient to allow continuous existence of living systems over billions of years.
Titan's Interior Chemical Composition: Possible Important Phase Transitions
NASA Astrophysics Data System (ADS)
Howard, Michael; Fried, L. E.; Khare, B. N.; McKay, C. P.
2008-09-01
We study the interior composition of Titan using thermal chemical equilibrium calculations that are valid to high pressures and temperatures. The equations of state are based on exponential-6 fluid theory and have been validated against experimental data up to a few Mbars in pressure and approximately 20000K in temperature. In addition to CHNO molecules, we account for multi-phases of carbon, water and a variety of metals such as Al and Fe, and their oxides. With these fluid equations of state, chemical equilibrium is calculated for a set of product species. As the temperature and pressure evolves for increasing depth in the interior, the chemical equilibrium shifts. We assume that Titan is initially composed of comet material, which we assume to be solar, except for hydrogen, which we take to be depleted by a factor 1/1000. We find that a significant amount of nitrogen is in the form of N2, rather than NH3. Moreover, above 12 kbars pressure, as is the interior pressure of Titan, a significant amount of the carbon is in the form of graphite, rather than CO2 and CH4. We discuss the implications of these results for understanding the atmospheric and surface composition of Titan. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Pasta nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium
NASA Astrophysics Data System (ADS)
Caplan, M. E.; Schneider, A. S.; Horowitz, C. J.; Berry, D. K.
2015-06-01
Background: Exotic nonspherical nuclear pasta shapes are expected in nuclear matter at just below saturation density because of competition between short-range nuclear attraction and long-range Coulomb repulsion. Purpose: We explore the impact nuclear pasta may have on nucleosynthesis during neutron star mergers when cold dense nuclear matter is ejected and decompressed. Methods: We use a hybrid CPU/GPU molecular dynamics (MD) code to perform decompression simulations of cold dense matter with 51 200 and 409 600 nucleons from 0.080 fm-3 down to 0.00125 fm-3 . Simulations are run for proton fractions YP= 0.05, 0.10, 0.20, 0.30, and 0.40 at temperatures T = 0.5, 0.75, and 1.0 MeV. The final composition of each simulation is obtained using a cluster algorithm and compared to a constant density run. Results: Size of nuclei in the final state of decompression runs are in good agreement with nuclear statistical equilibrium (NSE) models for temperatures of 1 MeV while constant density runs produce nuclei smaller than the ones obtained with NSE. Our MD simulations produces unphysical results with large rod-like nuclei in the final state of T =0.5 MeV runs. Conclusions: Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.
Nonlinear Plasma Response to Resonant Magnetic Perturbation in Rutherford Regime
NASA Astrophysics Data System (ADS)
Zhu, Ping; Yan, Xingting; Huang, Wenlong
2017-10-01
Recently a common analytic relation for both the locked mode and the nonlinear plasma response in the Rutherford regime has been developed based on the steady-state solution to the coupled dynamic system of magnetic island evolution and torque balance equations. The analytic relation predicts the threshold and the island size for the full penetration of resonant magnetic perturbation (RMP). It also rigorously proves a screening effect of the equilibrium toroidal flow. In this work, we test the theory by solving for the nonlinear plasma response to a single-helicity RMP of a circular-shaped limiter tokamak equilibrium with a constant toroidal flow, using the initial-value, full MHD simulation code NIMROD. Time evolution of the parallel flow or ``slip frequency'' profile and its asymptotic approach to steady state obtained from the NIMROD simulations qualitatively agree with the theory predictions. Further comparisons are carried out for the saturated island size, the threshold for full mode penetration, as well as the screening effects of equilibrium toroidal flow in order to understand the physics of nonlinear plasma response in the Rutherford regime. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.
The charge imbalance in ultracold plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li
2016-09-15
Ultracold plasmas are regarded as quasineutral but not strictly neutral. The results of charge imbalance in the expansion of ultracold plasmas are reported. The calculations are performed by a full molecular-dynamics simulation. The details of the electron velocity distributions are calculated without the assumption of electron global thermal equilibrium and Boltzmann distribution. Spontaneous evolutions of the charge imbalance from the initial states with perfect neutrality are given in the simulations. The expansion of outer plasma slows down with the charge imbalance. The influences of plasma size and parameters on the charge imbalance are discussed. The radial profiles of electron temperaturemore » are given for the first time, and the self-similar expansion can still occur even if there is no global thermal equilibrium. The electron disorder induced heating is also found in the simulation.« less
Fusion reactions initiated by laser-accelerated particle beams in a laser-produced plasma.
Labaune, C; Baccou, C; Depierreux, S; Goyon, C; Loisel, G; Yahia, V; Rafelski, J
2013-01-01
The advent of high-intensity-pulsed laser technology enables the generation of extreme states of matter under conditions that are far from thermal equilibrium. This in turn could enable different approaches to generating energy from nuclear fusion. Relaxing the equilibrium requirement could widen the range of isotopes used in fusion fuels permitting cleaner and less hazardous reactions that do not produce high-energy neutrons. Here we propose and implement a means to drive fusion reactions between protons and boron-11 nuclei by colliding a laser-accelerated proton beam with a laser-generated boron plasma. We report proton-boron reaction rates that are orders of magnitude higher than those reported previously. Beyond fusion, our approach demonstrates a new means for exploring low-energy nuclear reactions such as those that occur in astrophysical plasmas and related environments.
NASA Astrophysics Data System (ADS)
Li, Y.-F.; Ma, W.-L.; Yang, M.
2015-02-01
Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport, and their routes of entering the human body. All previous studies on this issue are hypothetically based on equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G/P partitioning behavior of polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) of PBDEs (log KPS = log KPE + logα) was developed in which an equilibrium term (log KPE = log KOA + logfOM -11.91 where fOM is organic matter content of the particles) and a non-equilibrium term (log α, caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included. It was found that the equilibrium is a special case of steady state when the non-equilibrium term equals zero. A criterion to classify the equilibrium and non-equilibrium status of PBDEs was also established using two threshold values of log KOA, log KOA1, and log KOA2, which divide the range of log KOA into three domains: equilibrium, non-equilibrium, and maximum partition domain. Accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same three domains for each PBDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G/P partition coefficients of PBDEs for our Chinese persistent organic pollutants (POPs) Soil and Air Monitoring Program, Phase 2 (China-SAMP-II) program and other monitoring programs worldwide, including in Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that the newly developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G/P partitioning behavior over decades. We suggest that the investigation on G/P partitioning behavior for PBDEs should be based onsteady-state, not equilibrium state, and equilibrium is just a special case of steady-state when non-equilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G/P partitioning of PBDEs and can be extended to predict G/P partitioning behavior for other SVOCs as well.
NASA Technical Reports Server (NTRS)
Yeh, Leehwa
1993-01-01
The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite-mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena.
With the aid of three atmospheric aerosol equilibrium models, we quantify the effect of metastable equilibrium states (efflorescence branch) in comparison to stable (deliquescence branch) on the partitioning of total nitrate between the gas and aerosol phases. On average, effl...
Activated recombinative desorption: A potential component in mechanisms of spacecraft glow
NASA Technical Reports Server (NTRS)
Cross, J. B.
1985-01-01
The concept of activated recombination of atomic species on surfaces can explain the production of vibrationally and translationally excited desorbed molecular species. Equilibrium statistical mechanics predicts that the molecular quantum state distributions of desorbing molecules is a function of surface temperature only when the adsorption probability is unity and independent of initial collision conditions. In most cases, the adsorption probability is dependent upon initial conditions such as collision energy or internal quantum state distribution of impinging molecules. From detailed balance, such dynamical behavior is reflected in the internal quantum state distribution of the desorbing molecule. This concept, activated recombinative desorption, may offer a common thread in proposed mechanisms of spacecraft glow. Using molecular beam techniques and equipment available at Los Alamos, which includes a high translational energy 0-atom beam source, mass spectrometric detection of desorbed species, chemiluminescence/laser induced fluorescence detection of electronic and vibrationally excited reaction products, and Auger detection of surface adsorbed reaction products, a fundamental study of the gas surface chemistry underlying the glow process is proposed.
A Simple Method for Automated Equilibration Detection in Molecular Simulations.
Chodera, John D
2016-04-12
Molecular simulations intended to compute equilibrium properties are often initiated from configurations that are highly atypical of equilibrium samples, a practice which can generate a distinct initial transient in mechanical observables computed from the simulation trajectory. Traditional practice in simulation data analysis recommends this initial portion be discarded to equilibration, but no simple, general, and automated procedure for this process exists. Here, we suggest a conceptually simple automated procedure that does not make strict assumptions about the distribution of the observable of interest in which the equilibration time is chosen to maximize the number of effectively uncorrelated samples in the production timespan used to compute equilibrium averages. We present a simple Python reference implementation of this procedure and demonstrate its utility on typical molecular simulation data.
A simple method for automated equilibration detection in molecular simulations
Chodera, John D.
2016-01-01
Molecular simulations intended to compute equilibrium properties are often initiated from configurations that are highly atypical of equilibrium samples, a practice which can generate a distinct initial transient in mechanical observables computed from the simulation trajectory. Traditional practice in simulation data analysis recommends this initial portion be discarded to equilibration, but no simple, general, and automated procedure for this process exists. Here, we suggest a conceptually simple automated procedure that does not make strict assumptions about the distribution of the observable of interest, in which the equilibration time is chosen to maximize the number of effectively uncorrelated samples in the production timespan used to compute equilibrium averages. We present a simple Python reference implementation of this procedure, and demonstrate its utility on typical molecular simulation data. PMID:26771390
Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows
NASA Technical Reports Server (NTRS)
Zhao, C. Y.; So, R. M. C.; Gatski, T. B.
2001-01-01
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.
Unique equilibrium states for Bonatti–Viana diffeomorphisms
NASA Astrophysics Data System (ADS)
Climenhaga, Vaughn; Fisher, Todd; Thompson, Daniel J.
2018-06-01
We show that the robustly transitive diffeomorphisms constructed by Bonatti and Viana have unique equilibrium states for natural classes of potentials. In particular, we characterize the SRB measure as the unique equilibrium state for a suitable geometric potential. The techniques developed are applicable to a wide class of DA diffeomorphisms, and persist under C 1 perturbations of the map. These results are an application of general machinery developed by the first and last named authors.
Quantum quench in a p+ip superfluid: Winding numbers and topological states far from equilibrium
NASA Astrophysics Data System (ADS)
Foster, Matthew S.; Dzero, Maxim; Gurarie, Victor; Yuzbashyan, Emil A.
2013-09-01
We study the nonadiabatic dynamics of a two-dimensional p+ip superfluid following an instantaneous quantum quench of the BCS coupling constant. The model describes a topological superconductor with a nontrivial BCS (trivial BEC) phase appearing at weak- (strong-) coupling strengths. We extract the exact long-time asymptotics of the order parameter Δ(t) by exploiting the integrability of the classical p-wave Hamiltonian, which we establish via a Lax construction. Three different types of asymptotic behavior can occur depending upon the strength and direction of the interaction quench. We refer to these as the nonequilibrium phases {I, II, III}, characterized as follows. In phase I, the order parameter asymptotes to zero due to dephasing. In phase II, Δ→Δ∞, a nonzero constant. Phase III is characterized by persistent oscillations of Δ(t). For quenches within phases I and II, we determine the topological character of the asymptotic states. We show that two different formulations of the bulk topological winding number, although equivalent in the BCS or BEC ground states, must be regarded as independent out of equilibrium. The first winding number Q characterizes the Anderson pseudospin texture of the initial state; we show that Q is generically conserved. For Q≠0, this leads to the prediction of a “gapless topological” state when Δ asymptotes to zero. The presence or absence of Majorana edge modes in a sample with a boundary is encoded in the second winding number W, which is formulated in terms of the retarded Green's function. We establish that W can change following a quench across the quantum critical point. When the order parameter asymptotes to a nonzero constant, the final value of W is well defined and quantized. We discuss the implications for the (dis)appearance of Majorana edge modes. Finally, we show that the parity of zeros in the bulk out-of-equilibrium Cooper-pair distribution function constitutes a Z2-valued quantum number, which is nonzero whenever W≠Q. The pair distribution can in principle be measured using rf spectroscopy in an ultracold-atom realization, allowing direct experimental detection of the Z2 number. This has the following interesting implication: topological information that is experimentally inaccessible in the bulk ground state can be transferred to an observable distribution function when the system is driven far from equilibrium.
NASA Astrophysics Data System (ADS)
He, Yexi; Li, Xiaoyan; Gao, Zhe
2005-02-01
Strong inductive coupling between the heating field and equilibrium field is confirmed to be responsible for the poor plasma equilibrium in initial discharges on the SUNIST spherical tokamak. A modification project for the power supply system of equilibrium field coils is successfully performed to increase the duration time of plasma current flattop from much less than 1ms to about 2 ms.
NASA Astrophysics Data System (ADS)
Dzifčáková, E.; Dudík, J.; Mackovjak, Š.
2016-05-01
Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org
Enhancement of superexchange pairing in the periodically driven Hubbard model
NASA Astrophysics Data System (ADS)
Coulthard, J. R.; Clark, S. R.; Al-Assam, S.; Cavalleri, A.; Jaksch, D.
2017-08-01
Recent experiments performed on cuprates and alkali-doped fullerides have demonstrated that key signatures of superconductivity can be induced above the equilibrium critical temperature by optical modulation. These observations in disparate physical systems may indicate a general underlying mechanism. Multiple theories have been proposed, but these either consider specific features, such as competing instabilities, or focus on conventional BCS-type superconductivity. Here we show that periodic driving can enhance electron pairing in strongly correlated systems. Focusing on the strongly repulsive limit of the doped Hubbard model, we investigate in-gap, spatially inhomogeneous, on-site modulations. We demonstrate that such modulations substantially reduce electronic hopping, while simultaneously sustaining superexchange interactions and pair hopping via driving-induced virtual charge excitations. We calculate real-time dynamics for the one-dimensional case, starting from zero- and finite-temperature initial states, and we show that enhanced singlet-pair correlations emerge quickly and robustly in the out-of-equilibrium many-body state. Our results reveal a fundamental pairing mechanism that might underpin optically induced superconductivity in some strongly correlated quantum materials.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving
2016-08-29
nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in
A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions
NASA Astrophysics Data System (ADS)
Uddin, Md. Tamez; Rahman, Md. Arifur; Rukanuzzaman, Md.; Islam, Md. Akhtarul
2017-10-01
This study was aimed at using mango leaf powder (MLP) as a potential adsorbent for the removal of methylene blue (MB) from aqueous solutions. Characterization of the adsorbent was carried out with scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption analysis. The pH at the point of zero charge of the adsorbent was determined by titration method and was found a value to be 5.6 ± 0.2. Batch studies were performed to evaluate the influence of various experimental parameters like initial solution pH, contact time, initial concentration of dye and adsorbent dosage on the removal of MB. An adsorption-desorption study was carried out resulting the mechanism of adsorption was carried out by electrostatic force of attraction. The adsorption equilibrium time required for the adsorption of MB on MLP was almost 2 h and 85 ± 5% of the total amount of dye uptake was found to occur in the first rapid phase (30 min). The Langmuir and Freundlich isotherm models were used for modeling the adsorption equilibrium. The experimental equilibrium data could be well interpreted by Langmuir isotherm with maximum adsorption capacity of 156 mg/g. To state the sorption kinetics, the fits of pseudo-first-order and pseudo-second-order kinetic models were investigated. It was obtained that the adsorption process followed the pseudo-second-order rate kinetics. The above findings suggest that MLP can be effectively used for decontamination of dye containing wastewater.
NASA Astrophysics Data System (ADS)
Pengfei, ZHANG; Ling, ZHANG; Zhenwei, WU; Zong, XU; Wei, GAO; Liang, WANG; Qingquan, YANG; Jichan, XU; Jianbin, LIU; Hao, QU; Yong, LIU; Juan, HUANG; Chengrui, WU; Yumei, HOU; Zhao, JIN; J, D. ELDER; Houyang, GUO
2018-04-01
Modeling with OEDGE was carried out to assess the initial and long-term plasma contamination efficiency of Ar puffing from different divertor locations, i.e. the inner divertor, the outer divertor and the dome, in the EAST superconducting tokamak for typical ohmic plasma conditions. It was found that the initial Ar contamination efficiency is dependent on the local plasma conditions at the different gas puff locations. However, it quickly approaches a similar steady state value for Ar recycling efficiency >0.9. OEDGE modeling shows that the final equilibrium Ar contamination efficiency is significantly lower for the more closed lower divertor than that for the upper divertor.
Bifurcation analysis of a heterogeneous traffic flow model
NASA Astrophysics Data System (ADS)
Wang, Yu-Qing; Yan, Bo-Wen; Zhou, Chao-Fan; Li, Wei-Kang; Jia, Bin
2018-03-01
In this work, a heterogeneous traffic flow model coupled with the periodic boundary condition is proposed. Based on the previous models, a heterogeneous system composed of more than one kind of vehicles is considered. By bifurcation analysis, bifurcation patterns of the heterogeneous system are discussed in three situations in detail and illustrated by diagrams of bifurcation patterns. Besides, the stability analysis of the heterogeneous system is performed to test its anti-interference ability. The relationship between the number of vehicles and the stability is obtained. Furthermore, the attractor analysis is applied to investigate the nature of the heterogeneous system near its steady-state neighborhood. Phase diagrams of the process of the heterogeneous system from initial state to equilibrium state are intuitively presented.
The initial value problem as it relates to numerical relativity.
Tichy, Wolfgang
2017-02-01
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
The initial value problem as it relates to numerical relativity
NASA Astrophysics Data System (ADS)
Tichy, Wolfgang
2017-02-01
Spacetime is foliated by spatial hypersurfaces in the 3+1 split of general relativity. The initial value problem then consists of specifying initial data for all fields on one such a spatial hypersurface, such that the subsequent evolution forward in time is fully determined. On each hypersurface the 3-metric and extrinsic curvature describe the geometry. Together with matter fields such as fluid velocity, energy density and rest mass density, the 3-metric and extrinsic curvature then constitute the initial data. There is a lot of freedom in choosing such initial data. This freedom corresponds to the physical state of the system at the initial time. At the same time the initial data have to satisfy the Hamiltonian and momentum constraint equations of general relativity and can thus not be chosen completely freely. We discuss the conformal transverse traceless and conformal thin sandwich decompositions that are commonly used in the construction of constraint satisfying initial data. These decompositions allow us to specify certain free data that describe the physical nature of the system. The remaining metric fields are then determined by solving elliptic equations derived from the constraint equations. We describe initial data for single black holes and single neutron stars, and how we can use conformal decompositions to construct initial data for binaries made up of black holes or neutron stars. Orbiting binaries will emit gravitational radiation and thus lose energy. Since the emitted radiation tends to circularize the orbits over time, one can thus expect that the objects in a typical binary move on almost circular orbits with slowly shrinking radii. This leads us to the concept of quasi-equilibrium, which essentially assumes that time derivatives are negligible in corotating coordinates for binaries on almost circular orbits. We review how quasi-equilibrium assumptions can be used to make physically well motivated approximations that simplify the elliptic equations we have to solve.
Kim, Yong-Hyun; Kim, Ki-Hyun
2013-05-21
In the analysis of volatile organic compounds in air, the preparation of their gaseous standards at low (sub-ppb) concentration levels with high reliability is quite difficult. In this study, a simple dynamic headspace-based approach was evaluated as a means of generating vapor-phase volatile organic compounds from a liquid standard in an impinger at ambient temperature (25 °C). For a given sampling time, volatile organic compound vapor formed in the headspace was swept by bypassing the sweep gas through the impinger and collected four times in quick succession in separate sorbent tubes. In each experiment, a fresh liquid sample was used for each of the four sampling times (5, 10, 20, and 30 min) at a steady flow rate of 50 mL min(-1). The air-water partitioning at the most dynamic (earliest) sweeping stage was established initially in accord with ideal Henry's law, which was then followed by considerably reduced partitioning in a steady-state equilibrium (non-ideal Henry's law). The concentrations of gaseous volatile organic compounds, collected after the steady-state equilibrium, reached fairly constant values: for instance, the mole fraction of toluene measured at a sweeping interval of 10 and 30 min averaged 1.10 and 0.99 nmol mol(-1), respectively (after the initial 10 min sampling). In the second stage of our experiment, the effect of increasing the concentrations of liquid spiking standard was also examined by collecting sweep gas samples from two consecutive 10 min runs. The volatile organic compounds, collected in the first and second 10 min sweep gas samples, exhibited ideal and nonideal Henry's law behavior, respectively. From this observation, we established numerical relationships to predict the mole fraction (or mixing ratio) of each volatile organic compound in steady-state equilibrium in relation to the concentration of standard spiked into the system. This experimental approach can thus be used to produce sub-ppb levels of gaseous volatile organic compounds in a constant and predictable manner.
Hasan, Z; Enoka, R M
1985-01-01
Since the moment arms for the elbow-flexor muscles are longest at intermediate positions of the elbow and shorter at the extremes of the range of motion, it was expected that the elbow torque would also show a peak at an intermediate angle provided the activity of the flexor muscles remained constant. We measured the isometric elbow torque at different elbow angles while the subject attempted to keep constant the electromyographic activity (EMG) of the brachioradialis muscle. The torque-angle relationship thus obtained exhibited a peak, as expected, but the shape of the relationship varied widely among subjects. This was due in part to differences in the variation of the biceps brachii EMG with elbow angle among the different subjects. The implications of these observations for the equilibrium-point hypothesis of movement were investigated as follows. The subject performed elbow movements in the presence of an external torque (which tended to extend the elbow joint) provided by a weight-and-pulley arrangement. We found in the case of flexion movements that invariably there was a transient increase in flexor EMG, as would seem necessary for initiating the movement. However, the steady-state EMG after the movement could be greater or less than the pre-movement EMG. Specifically, the least flexor EMG was required for equilibrium in the intermediate range of elbow angles, compared to the extremes of the range of motion. The EMG-angle relationship, however, varied with the muscle and the subject. The observation that the directions of change in the transient and the steady-state EMG are independent of each other militates against the generality of the equilibrium-point hypothesis. However, a form of the hypothesis which includes the effects of the stretch reflex is not contradicted by this observation.
Section 2: Phase transformation studies in mechanically alloyed Fe-Nz and Fe-Zn-Si intermetallics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, A.; Uwakweh, O.N.C.; Maziasz, P.J.
1997-04-01
The initial stage of this study, which was completed in FY 1995, entailed an extensive analysis characterizing the structural evolution of the Fe-Zn intermetallic system. The primary interest in these Fe-Zn phases stems from the fact that they form an excellent coating for the corrosion protection of steel (i.e., automobile body panels). The Fe-Zn coating generally forms up to four intermetallic phases depending on the particular industrial application used, (i.e., galvanization, galvannealing, etc.). Since the different coating applications are non-equilibrium in nature, it becomes necessary to employ a non-equilibrium method for producing homogeneous alloys in the solid-state to reflect themore » structural changes occurring in a true coating. This was accomplished through the use of a high energy/non-equilibrium technique known as ball-milling which allowed the authors to monitor the evolution process of the alloys as they transformed from a metastable to stable equilibrium state. In FY 1996, this study was expanded to evaluate the presence of Si in the Fe-Zn system and its influence in the overall coating. The addition of silicon in steel gives rise to an increased coating. However, the mechanisms leading to the coating anomaly are still not fully understood. For this reason, mechanical alloying through ball-milling of pure elemental powders was used to study the structural changes occurring in the sandelin region (i.e., 0.12 wt % Si). Through the identification of invariant reactions (i.e., eutectic, etc.) the authors were able to explore the sandelin phenomenon and also determine the various fields or boundaries associated with the Fe-Zn-Si ternary system.« less
Li, Guanchen; von Spakovsky, Michael R
2016-09-01
This paper presents a nonequilibrium thermodynamic model for the relaxation of a local, isolated system in nonequilibrium using the principle of steepest entropy ascent (SEA), which can be expressed as a variational principle in thermodynamic state space. The model is able to arrive at the Onsager relations for such a system. Since no assumption of local equilibrium is made, the conjugate fluxes and forces are intrinsic to the subspaces of the system's state space and are defined using the concepts of hypoequilibrium state and nonequilibrium intensive properties, which describe the nonmutual equilibrium status between subspaces of the thermodynamic state space. The Onsager relations are shown to be a thermodynamic kinematic feature of the system independent of the specific details of the micromechanical dynamics. Two kinds of relaxation processes are studied with different constraints (i.e., conservation laws) corresponding to heat and mass diffusion. Linear behavior in the near-equilibrium region as well as nonlinear behavior in the far-from-equilibrium region are discussed. Thermodynamic relations in the equilibrium and near-equilibrium realm, including the Gibbs relation, the Clausius inequality, and the Onsager relations, are generalized to the far-from-equilibrium realm. The variational principle in the space spanned by the intrinsic conjugate fluxes and forces is expressed via the quadratic dissipation potential. As an application, the model is applied to the heat and mass diffusion of a system represented by a single-particle ensemble, which can also be applied to a simple system of many particles. Phenomenological transport coefficients are also derived in the near-equilibrium realm.
Cancer -- Pathological Breakdown of Coherent Energy States
NASA Astrophysics Data System (ADS)
Pokorný, Jiří Pokorný, Jan; Kobilková, Jitka; Jandová, Anna; Vrba, Jan; Vrba, Jan
The fundamental property of biological systems is a coherent state far from thermodynamic equilibrium excited and sustained by energy supply. Mitochondria in eukaryotic cells produce energy and form conditions for excitation of oscillations in microtubules. Microtubule polar oscillations generate a coherent state far from thermodynamic equilibrium which makes possible cooperation of cells in the tissue. Mitochondrial dysfunction (the Warburg effect) in cancer development breaks down energy of the coherent state far from thermodynamic equilibrium and excludes the afflicted cell from the ordered multicellular tissue system. Cancer lowering of energy and coherence of the state far from thermodynamic equilibrium is the biggest difference from the healthy cells. Cancer treatment should target mitochondrial dysfunction to restore the coherent state far from thermodynamic equilibrium, apoptotic pathway, and subordination of the cell in the tissue. A vast variety of genetic changes and other disturbances in different cancers can result in several triggers of mitochondrial dysfunction. In cancers with the Warburg effect, mitochondrial dysfunction can be treated by inhibition of four isoforms of pyruvate dehydrogenase kinases. Treatment of the reverse Warburg effect cancers would be more complicated. Disturbances of cellular electromagnetic activity by conducting and asbestos fibers present a special problem of treatment.
Mimicking Nonequilibrium Steady States with Time-Periodic Driving (Open Source)
2016-05-18
nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in
Instability of quantum equilibrium in Bohm's dynamics
Colin, Samuel; Valentini, Antony
2014-01-01
We consider Bohm's second-order dynamics for arbitrary initial conditions in phase space. In principle, Bohm's dynamics allows for ‘extended’ non-equilibrium, with initial momenta not equal to the gradient of phase of the wave function (as well as initial positions whose distribution departs from the Born rule). We show that extended non-equilibrium does not relax in general and is in fact unstable. This is in sharp contrast with de Broglie's first-order dynamics, for which non-standard momenta are not allowed and which shows an efficient relaxation to the Born rule for positions. On this basis, we argue that, while de Broglie's dynamics is a tenable physical theory, Bohm's dynamics is not. In a world governed by Bohm's dynamics, there would be no reason to expect to see an effective quantum theory today (even approximately), in contradiction with observation. PMID:25383020
Nonlinear evolution of the coronal magnetic field under reconnective relaxation
NASA Technical Reports Server (NTRS)
Wolfson, R.; Vekstein, G. E.; Priest, E. R.
1994-01-01
Recently, Vekstein et al. (Vekstein, Priest, & Steele 1993) have developed a model for coronal heating in which the corona responds to photospheric footpoint motions by small-scale reconnection events that bring about a relaxed state while conserving magnetic helicity but not field-line connectivity. Vekstein et al. consider a partially open field configuration in which magnetic helicity is ejected to infinity on open field lines but retained in the closed-field region. Under this scheme, they describe the evolution of an initially potential field, in response to helicity injection, in the linear regime. The present work uses numerical calculations to extend the model of Vekstein et al. into the fully nonlinear regime. The results show a rise and bulging of the field lines of the closed-field region with increasing magnetic helicity, to a point where further solutions are impossible. We interpret these solution-sequence endpoints as indicating a possible loss of equilibrium, in the sense that a relaxed equilibrium state may no longer be available to the corona when sufficient helicity has been injected. The rise and bulging behavior is reminiscent of what is observed in a helmet streamer just before the start of a coronal mass ejection (CME), and so our model suggests that a catastrophic loss of magnetic equilibrium might be the initiation mechanism for CMEs. We also find that some choices of boundary conditions can result in qualitative changes in the magnetic topology, with the appearance of magnetic islands. Whether or not this behavior occurs depends on the relative strengths of the fields in the closed- and open-field regions; in particular, island formation is most likely when the open field (which is potential) is strong and thus acts to confine the force-free closed field. Finally, we show that the energy released through reconnective relaxation can be a substantial fraction of the magnetic energy injected into the corona through footpoint motions and may be sufficient for heating the corona above active regions.
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity
O'Meara, Brian C.; Smith, Stacey D.; Armbruster, W. Scott; Harder, Lawrence D.; Hardy, Christopher R.; Hileman, Lena C.; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A.; Stevens, Peter F.; Fenster, Charles B.; Diggle, Pamela K.
2016-01-01
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. PMID:27147092
Non-equilibrium dynamics and floral trait interactions shape extant angiosperm diversity.
O'Meara, Brian C; Smith, Stacey D; Armbruster, W Scott; Harder, Lawrence D; Hardy, Christopher R; Hileman, Lena C; Hufford, Larry; Litt, Amy; Magallón, Susana; Smith, Stephen A; Stevens, Peter F; Fenster, Charles B; Diggle, Pamela K
2016-05-11
Why are some traits and trait combinations exceptionally common across the tree of life, whereas others are vanishingly rare? The distribution of trait diversity across a clade at any time depends on the ancestral state of the clade, the rate at which new phenotypes evolve, the differences in speciation and extinction rates across lineages, and whether an equilibrium has been reached. Here we examine the role of transition rates, differential diversification (speciation minus extinction) and non-equilibrium dynamics on the evolutionary history of angiosperms, a clade well known for the abundance of some trait combinations and the rarity of others. Our analysis reveals that three character states (corolla present, bilateral symmetry, reduced stamen number) act synergistically as a key innovation, doubling diversification rates for lineages in which this combination occurs. However, this combination is currently less common than predicted at equilibrium because the individual characters evolve infrequently. Simulations suggest that angiosperms will remain far from the equilibrium frequencies of character states well into the future. Such non-equilibrium dynamics may be common when major innovations evolve rarely, allowing lineages with ancestral forms to persist, and even outnumber those with diversification-enhancing states, for tens of millions of years. © 2016 The Author(s).
Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.
Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng
2013-12-01
Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH(0), ΔS(0) and ΔG(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C.P.C. Wong; B. Merrill
2014-10-01
ITER is under construction and will begin operation in 2020. This is the first 500 MWfusion class DT device, and since it is not going to breed tritium, it will consume most of the limited supply of tritium resources in the world. Yet, in parallel, DT fusion nuclear component testing machines will be needed to provide technical data for the design of DEMO. It becomes necessary to estimate the tritium burn-up fraction and corresponding initial tritium inventory and the doubling time of these machines for the planning of future supply and utilization of tritium. With the use of a systemmore » code, tritium burn-up fraction and initial tritium inventory for steady state DT machines can be estimated. Estimated tritium burn-up fractions of FNSF-AT, CFETR-R and ARIES-AT are in the range of 1–2.8%. Corresponding total equilibrium tritium inventories of the plasma flow and tritium processing system, and with the DCLL blanket option are 7.6 kg, 6.1 kg, and 5.2 kg for ARIES-AT, CFETR-R and FNSF-AT, respectively.« less
Shear-transformation-zone theory of linear glassy dynamics.
Bouchbinder, Eran; Langer, J S
2011-06-01
We present a linearized shear-transformation-zone (STZ) theory of glassy dynamics in which the internal STZ transition rates are characterized by a broad distribution of activation barriers. For slowly aging or fully aged systems, the main features of the barrier-height distribution are determined by the effective temperature and other near-equilibrium properties of the configurational degrees of freedom. Our theory accounts for the wide range of relaxation rates observed in both metallic glasses and soft glassy materials such as colloidal suspensions. We find that the frequency-dependent loss modulus is not just a superposition of Maxwell modes. Rather, it exhibits an α peak that rises near the viscous relaxation rate and, for nearly jammed, glassy systems, extends to much higher frequencies in accord with experimental observations. We also use this theory to compute strain recovery following a period of large, persistent deformation and then abrupt unloading. We find that strain recovery is determined in part by the initial barrier-height distribution, but that true structural aging also occurs during this process and determines the system's response to subsequent perturbations. In particular, we find by comparison with experimental data that the initial deformation produces a highly disordered state with a large population of low activation barriers, and that this state relaxes quickly toward one in which the distribution is dominated by the high barriers predicted by the near-equilibrium analysis. The nonequilibrium dynamics of the barrier-height distribution is the most important of the issues raised and left unresolved in this paper.
Topologically protected modes in non-equilibrium stochastic systems.
Murugan, Arvind; Vaikuntanathan, Suriyanarayanan
2017-01-10
Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.
Mathematical modeling of impact of two metal plates using two-fluid approach
NASA Astrophysics Data System (ADS)
Utkin, P. S.; Fortova, S. V.
2018-01-01
The paper is devoted to the development of the two-fluid mathematical model and the computational algorithm for the modeling of two metal plates impact. In one-dimensional case the governing system of equations comprises seven equations: three conservation laws for each fluid and transfer equation for the volume fraction of one of the fluids. Both fluids are considered to be compressible and equilibrium on velocities. Pressures equilibrium is used as fluids interface condition. The system has hyperbolic type but could not be written in the conservative form because of nozzling terms in the right-hand side of the equations. The algorithm is based on the Harten-Lax-van Leer numerical flux function. The robust computation in the presence of the interface boundary is carried out due to the special pressure relaxation procedure. The problem is solved using stiffened gas equations of state for each fluid. The parameters in the equations of state are calibrated using the results of computations using wide-range equations of state for the metals. In simulations of metal plates impact we get two shocks after the initial impact that propagate to the free surfaces of the samples. The characteristics of shock waves are close (maximum relative error in characteristics of shocks is not greater than 7%) to the data from the wide-range equations of states computations.
Nonequilibrium steady state of a weakly-driven Kardar–Parisi–Zhang equation
NASA Astrophysics Data System (ADS)
Meerson, Baruch; Sasorov, Pavel V.; Vilenkin, Arkady
2018-05-01
We consider an infinite interface of d > 2 dimensions, governed by the Kardar–Parisi–Zhang (KPZ) equation with a weak Gaussian noise which is delta-correlated in time and has short-range spatial correlations. We study the probability distribution of the interface height H at a point of the substrate, when the interface is initially flat. We show that, in stark contrast with the KPZ equation in d < 2, this distribution approaches a non-equilibrium steady state. The time of relaxation toward this state scales as the diffusion time over the correlation length of the noise. We study the steady-state distribution using the optimal-fluctuation method. The typical, small fluctuations of height are Gaussian. For these fluctuations the activation path of the system coincides with the time-reversed relaxation path, and the variance of can be found from a minimization of the (nonlocal) equilibrium free energy of the interface. In contrast, the tails of are nonequilibrium, non-Gaussian and strongly asymmetric. To determine them we calculate, analytically and numerically, the activation paths of the system, which are different from the time-reversed relaxation paths. We show that the slower-decaying tail of scales as , while the faster-decaying tail scales as . The slower-decaying tail has important implications for the statistics of directed polymers in random potential.
A model of lipid-free Apolipoprotein A-I revealed by iterative molecular dynamics simulation
Zhang, Xing; Lei, Dongsheng; Zhang, Lei; ...
2015-03-20
Apolipoprotein A-I (apo A-I), the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS). Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore,more » by integrating various experimental results, we proposed a new structural model for lipidfree apo A-I, which contains a bundled four-helix N-terminal domain (1–192) that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193–243). This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.« less
Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke
2015-01-01
In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0-2.2 M) than the formation of the native state (0-1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7-2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin.
NASA Astrophysics Data System (ADS)
Bie, Qunyi; Cui, Haibo; Wang, Qiru; Yao, Zheng-An
2017-10-01
The Cauchy problem for the compressible flow of nematic liquid crystals in the framework of critical spaces is considered. We first establish the existence and uniqueness of global solutions provided that the initial data are close to some equilibrium states. This result improves the work by Hu and Wu (SIAM J Math Anal 45(5):2678-2699, 2013) through relaxing the regularity requirement of the initial data in terms of the director field. Based on the global existence, we then consider the incompressible limit problem for ill prepared initial data. We prove that as the Mach number tends to zero, the global solution to the compressible flow of liquid crystals converges to the solution to the corresponding incompressible model in some function spaces. Moreover, the accurate converge rates are obtained.
Assessment of Stable Isotope Distribution in Complex Systems
NASA Astrophysics Data System (ADS)
He, Y.; Cao, X.; Wang, J.; Bao, H.
2017-12-01
Biomolecules in living organisms have the potential to approach chemical steady state and even apparent isotope equilibrium because enzymatic reactions are intrinsically reversible. If an apparent local equilibrium can be identified, enzymatic reversibility and its controlling factors may be quantified, which helps to understand complex biochemical processes. Earlier research on isotope fractionation tends to focus on specific process and compare mostly two different chemical species. Using linear regression, "Thermodynamic order", which refers to correlated δ13C and 13β values, has been proposed to be present among many biomolecules by Galimov et al. However, the concept "thermodynamic order" they proposed and the approach they used has been questioned. Here, we propose that the deviation of a complex system from its equilibrium state can be rigorously described as a graph problem as is applied in discrete mathematics. The deviation of isotope distribution from equilibrium state and apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference matrix (|Δα|). Applying the |Δα| matrix analysis to earlier published data of amino acids, we show the existence of apparent local equilibrium among different amino acids in potato and a kind of green alga. The existence of apparent local equilibrium is in turn consistent with the notion that enzymatic reactions can be reversible even in living systems. The result also implies that previous emphasis on external carbon source intake may be misplaced when studying isotope distribution in physiology. In addition to the identification of local equilibrium among biomolecules, the difference matrix approach has the potential to explore chemical or isotope equilibrium state in extraterrestrial bodies, to distinguish living from non-living systems, and to classify living species. This approach will benefit from large numbers of systematic data and advanced pattern recognition techniques.
Friction and wear of plasma-deposited diamond films
NASA Technical Reports Server (NTRS)
Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.
1993-01-01
Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.
Gadd34 Requirement for Normal Hemoglobin Synthesis
Patterson, Andrew D.; Hollander, M. Christine; Miller, Georgina F.; Fornace, Albert J.
2006-01-01
The protein encoded by growth arrest and DNA damage-inducible transcript 34 (Gadd34) is associated with translation initiation regulation following certain stress responses. Through interaction with the protein phosphatase 1 catalytic subunit (PP1c), Gadd34 recruits PP1c for the removal of an inhibitory phosphate group on the α subunit of elongation initiation factor 2, thereby reversing the shutoff of protein synthesis initiated by stress-inducible kinases. In the absence of stress, the physiologic consequences of Gadd34 function are not known. Initial analysis of Gadd34-null mice revealed several significant findings, including hypersplenism, decreased erythrocyte volume, increased numbers of circulating erythrocytes, and decreased hemoglobin content, resembling some thalassemia syndromes. Biochemical analysis of the hemoglobin-producing reticulocyte (an erythrocyte precursor) revealed that the decreased hemoglobin content in the Gadd34-null erythrocyte is due to the reduced initiation of the globin translation machinery. We propose that an equilibrium state exists between Gadd34/PP1c and the opposing heme-regulated inhibitor kinase during hemoglobin synthesis in the reticulocyte. PMID:16478986
NASA Astrophysics Data System (ADS)
Materia, Stefano; Borrelli, Andrea; Bellucci, Alessio; Alessandri, Andrea; Di Pietro, Pierluigi; Athanasiadis, Panagiotis; Navarra, Antonio; Gualdi, Silvio
2014-05-01
The impact of land surface and atmosphere initialization on the forecast skill of a seasonal prediction system is investigated, and an effort to disentangle the role played by the individual components to the global predictability is done, via a hierarchy of seasonal forecast experiments performed under different initialization strategies. A realistic atmospheric initial state allows an improved equilibrium between the ocean and overlying atmosphere, mitigating the coupling shock and possibly increasing the model predictive skill in the ocean. In fact, in a few regions characterized by strong air-sea coupling, the atmosphere initial condition affects the forecast skill for several months. In particular, the ENSO region, the eastern tropical Atlantic and the North Pacific benefit significantly from the atmosphere initialization. On mainland, the impact of atmospheric initial conditions is detected in the early phase of the forecast, while the quality of land surface initialization affects the forecast skill in the following lead seasons. The winter forecast in the high latitude plains of Siberia and Canada benefit from the snow initialization, while the impact of soil moisture initial state is particularly effective in the Mediterranean region, in central Asia and Australia. However, initialization through land surface reanalysis does not systematically guarantee an enhancement of the predictive skill: the quality of the forecast is sometimes higher for the non-constrained model. Overall, the introduction of a realistic initialization of land surface and atmosphere substantially increases skill and accuracy. However, further developments in the operating procedure for land surface initialization are required for more accurate seasonal forecasts.
Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states)
NASA Astrophysics Data System (ADS)
Dubin, Daniel H.; O'neil, T. M.
1999-01-01
Plasmas consisting exclusively of particles with a single sign of charge (e.g., pure electron plasmas and pure ion plasmas) can be confined by static electric and magnetic fields (in a Penning trap) and also be in a state of global thermal equilibrium. This important property distinguishes these totally unneutralized plasmas from neutral and quasineutral plasmas. This paper reviews the conditions for, and the structure of, the thermal equilibrium states. Both theory and experiment are discussed, but the emphasis is decidedly on theory. It is a huge advantage to be able to use thermal equilibrium statistical mechanics to describe the plasma state. Such a description is easily obtained and complete, including for example the details of the plasma shape and microscopic order. Pure electron and pure ion plasmas are routinely confined for hours and even days, and thermal equilibrium states are observed. These plasmas can be cooled to the cryogenic temperature range, where liquid and crystal-like states are realized. The authors discuss the structure of the correlated states separately for three plasma sizes: large plasmas, in which the free energy is dominated by the bulk plasma; mesoscale plasmas, in which the free energy is strongly influenced by the surface; and Coulomb clusters, in which the number of particles is so small that the canonical ensemble is not a good approximation for the microcanonical ensemble. All three cases have been studied through numerical simulations, analytic theory, and experiment. In addition to describing the structure of the thermal equilibrium states, the authors develop a thermodynamic theory of the trapped plasma system. Thermodynamic inequalities and Maxwell relations provide useful bounds on and general relationships between partial derivatives of the various thermodynamic variables.
An alternative extragradient projection method for quasi-equilibrium problems.
Chen, Haibin; Wang, Yiju; Xu, Yi
2018-01-01
For the quasi-equilibrium problem where the players' costs and their strategies both depend on the rival's decisions, an alternative extragradient projection method for solving it is designed. Different from the classical extragradient projection method whose generated sequence has the contraction property with respect to the solution set, the newly designed method possesses an expansion property with respect to a given initial point. The global convergence of the method is established under the assumptions of pseudomonotonicity of the equilibrium function and of continuity of the underlying multi-valued mapping. Furthermore, we show that the generated sequence converges to the nearest point in the solution set to the initial point. Numerical experiments show the efficiency of the method.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Chandrodoy; Bhalerao, Rajeev S.; Ollitrault, Jean-Yves; Pal, Subrata
2018-03-01
We evaluate the effects of preequilibrium dynamics on observables in ultrarelativistic heavy-ion collisions. We simulate the initial nonequilibrium phase within a multiphase transport (AMPT) model, while the subsequent near-equilibrium evolution is modeled using (2+1)-dimensional relativistic viscous hydrodynamics. We match the two stages of evolution carefully by calculating the full energy-momentum tensor from AMPT and using it as input for the hydrodynamic evolution. We find that when the preequilibrium evolution is taken into account, final-state observables are insensitive to the switching time from AMPT to hydrodynamics. Unlike some earlier treatments of preequilibrium dynamics, we do not find the initial shear viscous tensor to be large. With a shear viscosity to entropy density ratio of 0.12, our model describes quantitatively a large set of experimental data on Pb+Pb collisions at the Large Hadron Collider over a wide range of centrality: differential anisotropic flow vn(pT) (n =2 -6 ) , event-plane correlations, correlation between v2 and v3, and cumulant ratio v2{4 } /v2{2 } .
Nonlinear ballooning modes in tokamaks: stability and saturation
NASA Astrophysics Data System (ADS)
Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.
2018-07-01
The nonlinear dynamics of magneto-hydrodynamic ballooning mode perturbations is conjectured to be characterised by the motion of isolated elliptical flux tubes. The theory of stability, dynamics and saturation of such tubes in tokamaks is developed using a generalised Archimedes’ principle. The equation of motion for a tube moving against a drag force in a general axisymmetric equilibrium is derived and then applied to a simplified ‘s–α’ equilibrium. The perturbed nonlinear tube equilibrium (saturated) states are investigated in an ‘s–α’ equilibrium with specific pressure and magnetic shear profiles. The energy of these nonlinear (ballooning) saturated states is calculated. In some cases, particularly at low magnetic shear, these finitely displaced states can have a lower energy than the equilibrium state even if the profile is linearly stable to ballooning modes (infinitesimal tube displacements) at all radii. Thus nonlinear ballooning modes can be metastable. The amplitude of the saturated tube displacement in such cases can be as large as the pressure gradient scale length. We conjecture that triggering a transition into these filamentary states can lead to hard instability limits. A short survey of different pressure profiles is presented to illustrate the variety of behaviour of perturbed elliptical flux tubes.
NASA Technical Reports Server (NTRS)
Izmailov, Alexander; Myerson, Allan S.
1993-01-01
A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.
Numerical simulation of small-scale thermal convection in the atmosphere
NASA Technical Reports Server (NTRS)
Somerville, R. C. J.
1973-01-01
A Boussinesq system is integrated numerically in three dimensions and time in a study of nonhydrostatic convection in the atmosphere. Simulation of cloud convection is achieved by the inclusion of parametrized effects of latent heat and small-scale turbulence. The results are compared with the cell structure observed in Rayleigh-Benard laboratory conversion experiments in air. At a Rayleigh number of 4000, the numerical model adequately simulates the experimentally observed evolution, including some prominent transients of a flow from a randomly perturbed initial conductive state into the final state of steady large-amplitude two-dimensional rolls. At Rayleigh number 9000, the model reproduces the experimentally observed unsteady equilibrium of vertically coherent oscillatory waves superimposed on rolls.
NASA Astrophysics Data System (ADS)
Hildebrandt, Peter
1991-05-01
The effect of electrostatic fields on the structure of cytochrome c bound to charged interfaces was studied by resonance Raman and surface enhanced resonance Raman spectroscopy. Binding of this heme protein to the Ag electrode or heteropolytungstates which may be regarded as simple model systems for biological interfaces establishes an equilibrium between two conformational states (I II). In state I the structure and the redox potential are the same as for the uncomplexed cytochrome c. In state II however the heme pocket assumes an open structure and the axial iron Met80 bond is weakened leading to thennal coordination equilibrium between the fivecoordinated high spin and the sixcoordinated low spin configuration. These structural changes are accompanied by a decrease of the redox potential by 420 mV. The structural rearrangement of the heme pocket in state II is presumably initiated by the dissociation of the internal salt bridge of Lys13 due to electrostatic interactions with the negatively charged surfaces of the model systems. From detailed Raman spectroscopic studies characteristic spectral properties of the states I and II were identified. Based on these findings the interactions of cytochrome c with phospholipid vesicles as well as with its physiological reaction partner cytocbrome c oxidase were analysed. A systematic study of the cytochmme c/phospholipid system by varying the lipid composition and the temperature revealed mutual structural changes in both the lipid and the protein structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less
NASA Astrophysics Data System (ADS)
Glowacki, David R.; Orr-Ewing, Andrew J.; Harvey, Jeremy N.
2015-07-01
We describe a parallelized linear-scaling computational framework developed to implement arbitrarily large multi-state empirical valence bond (MS-EVB) calculations within CHARMM and TINKER. Forces are obtained using the Hellmann-Feynman relationship, giving continuous gradients, and good energy conservation. Utilizing multi-dimensional Gaussian coupling elements fit to explicitly correlated coupled cluster theory, we built a 64-state MS-EVB model designed to study the F + CD3CN → DF + CD2CN reaction in CD3CN solvent (recently reported in Dunning et al. [Science 347(6221), 530 (2015)]). This approach allows us to build a reactive potential energy surface whose balanced accuracy and efficiency considerably surpass what we could achieve otherwise. We ran molecular dynamics simulations to examine a range of observables which follow in the wake of the reactive event: energy deposition in the nascent reaction products, vibrational relaxation rates of excited DF in CD3CN solvent, equilibrium power spectra of DF in CD3CN, and time dependent spectral shifts associated with relaxation of the nascent DF. Many of our results are in good agreement with time-resolved experimental observations, providing evidence for the accuracy of our MS-EVB framework in treating both the solute and solute/solvent interactions. The simulations provide additional insight into the dynamics at sub-picosecond time scales that are difficult to resolve experimentally. In particular, the simulations show that (immediately following deuterium abstraction) the nascent DF finds itself in a non-equilibrium regime in two different respects: (1) it is highly vibrationally excited, with ˜23 kcal mol-1 localized in the stretch and (2) its post-reaction solvation environment, in which it is not yet hydrogen-bonded to CD3CN solvent molecules, is intermediate between the non-interacting gas-phase limit and the solution-phase equilibrium limit. Vibrational relaxation of the nascent DF results in a spectral blue shift, while relaxation of the post-reaction solvation environment results in a red shift. These two competing effects mean that the post-reaction relaxation profile is distinct from what is observed when Franck-Condon vibrational excitation of DF occurs within a microsolvation environment initially at equilibrium. Our conclusions, along with the theoretical and parallel software framework presented in this paper, should be more broadly applicable to a range of complex reactive systems.
Shock chemistry in SX358 foams
NASA Astrophysics Data System (ADS)
Maerzke, Katie; Coe, Joshua; Fredenburg, Anthony; Lang, John; Dattelbaum, Dana
2017-06-01
We have developed new equation of state models for SX358, a cross-linked PDMS polymer. Recent experiments on SX358 over a range of initial densities (0-65% porous) have yielded new data that allow for a more thorough calibration of the equations of state. SX358 chemically decomposes under shock compression, as evidenced by a cusp in the shock locus. We therefore treat this material using two equations of state, specifically a SESAME model for the unreacted material and a free energy minimization assuming full chemical and thermodynamic equilibrium for the decomposition products. The shock locus of porous SX358 is found to be ``anomalous'' in that the decomposition reaction causes a volume expansion, rather than a volume collapse. Similar behavior has been observed in other polymer foams, notably polyurethane.
Stepwise kinetic equilibrium models of quantitative polymerase chain reaction.
Cobbs, Gary
2012-08-16
Numerous models for use in interpreting quantitative PCR (qPCR) data are present in recent literature. The most commonly used models assume the amplification in qPCR is exponential and fit an exponential model with a constant rate of increase to a select part of the curve. Kinetic theory may be used to model the annealing phase and does not assume constant efficiency of amplification. Mechanistic models describing the annealing phase with kinetic theory offer the most potential for accurate interpretation of qPCR data. Even so, they have not been thoroughly investigated and are rarely used for interpretation of qPCR data. New results for kinetic modeling of qPCR are presented. Two models are presented in which the efficiency of amplification is based on equilibrium solutions for the annealing phase of the qPCR process. Model 1 assumes annealing of complementary targets strands and annealing of target and primers are both reversible reactions and reach a dynamic equilibrium. Model 2 assumes all annealing reactions are nonreversible and equilibrium is static. Both models include the effect of primer concentration during the annealing phase. Analytic formulae are given for the equilibrium values of all single and double stranded molecules at the end of the annealing step. The equilibrium values are then used in a stepwise method to describe the whole qPCR process. Rate constants of kinetic models are the same for solutions that are identical except for possibly having different initial target concentrations. Analysis of qPCR curves from such solutions are thus analyzed by simultaneous non-linear curve fitting with the same rate constant values applying to all curves and each curve having a unique value for initial target concentration. The models were fit to two data sets for which the true initial target concentrations are known. Both models give better fit to observed qPCR data than other kinetic models present in the literature. They also give better estimates of initial target concentration. Model 1 was found to be slightly more robust than model 2 giving better estimates of initial target concentration when estimation of parameters was done for qPCR curves with very different initial target concentration. Both models may be used to estimate the initial absolute concentration of target sequence when a standard curve is not available. It is argued that the kinetic approach to modeling and interpreting quantitative PCR data has the potential to give more precise estimates of the true initial target concentrations than other methods currently used for analysis of qPCR data. The two models presented here give a unified model of the qPCR process in that they explain the shape of the qPCR curve for a wide variety of initial target concentrations.
A study of roll attractor and wing rock of delta wings at high angles of attack
NASA Technical Reports Server (NTRS)
Niranjana, T.; Rao, D. M.; Pamadi, Bandu N.
1993-01-01
Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data.
A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas
2016-02-29
development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State... thermodynamic variable. This choice allows one to hide the non-linearity of the gas (total) thermal conductivity κ and can partially alle- 2 viate numerical
Finite temperature grand canonical ensemble study of the minimum electrophilicity principle.
Miranda-Quintana, Ramón Alain; Chattaraj, Pratim K; Ayers, Paul W
2017-09-28
We analyze the minimum electrophilicity principle of conceptual density functional theory using the framework of the finite temperature grand canonical ensemble. We provide support for this principle, both for the cases of systems evolving from a non-equilibrium to an equilibrium state and for the change from one equilibrium state to another. In doing so, we clearly delineate the cases where this principle can, or cannot, be used.
Non-Equilibrium Dynamics with Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Dong, Qiaoyuan
This work is motivated by the fact that the investigation of non-equilibrium phenomena in strongly correlated electron systems has developed into one of the most active and exciting branches of condensed matter physics as it provides rich new insights that could not be obtained from the study of equilibrium situations. However, a theoretical description of those phenomena is missing. Therefore, in this thesis, we develop a numerical method that can be used to study two minimal models--the Hubbard model and the Anderson impurity model with general parameter range and time dependence. We begin by introducing the theoretical framework and the general features of the Hubbard model. We then describe the dynamical mean field theory (DMFT), which was first invented by Georges in 1992. It provides a feasible way to approach strongly correlated electron systems and reduces the complexity of the calculations via a mapping of lattice models onto quantum impurity models subject to a self-consistency condition. We employ the non-equilibrium extension of DMFT and map the Hubbard model to the single impurity Anderson model (SIAM). Since the fundamental component of the DMFT method is a solver of the single impurity Anderson model, we continue with a description of the formalism to study the real-time dynamics of the impurity model staring at its thermal equilibrium state. We utilize the non-equilibrium strong-coupling perturbation theory and derive semi-analytical approximation methods such as the non-crossing approximation (NCA) and the one-crossing approximation (OCA). We then use the Quantum Monte-Carlo method (QMC) as a numerically exact method and present proper measurements of local observables, current and Green's functions. We perform simulations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibrium times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. However, this bare QMC solver suffers from a dynamical sign problem for long time propagations. To overcome the limitations of this bare treatment, we introduce the "Inchworm algorithm'', based on iteratively reusing the information obtained in previous steps to extend the propagation to longer times and stabilize the calculations. We show that this algorithm greatly reduces the required order for each simulation and re-scales the exponential challenge to quadratic in time. We introduce a method to compute Green's functions, spectral functions, and currents for inchworm Monte Carlo and show how systematic error assessments in real time can be obtained. We illustrate the capabilities of the algorithm with a study of the behavior of quantum impurities after an instantaneous voltage quench from a thermal equilibrium state. We conclude with the applications of the unbiased inchworm impurity solver to DMFT calculations. We employ the methods for a study of the one-band paramagnetic Hubbard model on the Bethe lattice in equilibrium, where the DMFT approximation becomes exact. We begin with a brief introduction of the Mott metal insulator phase diagram. We present the results of both real time Green's functions and spectral functions from our nonequilibrium calculations. We observe the metal-insulator crossover as the on-site interaction is increased and the formation of a quasi-particle peak as the temperature is lowered. We also illustrate the convergence of our algorithms in different aspects.
Efficient steady-state solver for hierarchical quantum master equations
NASA Astrophysics Data System (ADS)
Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing
2017-07-01
Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.
Editorial: Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Cazalilla, M. A.; Rigol, M.
2010-05-01
The dynamics and thermalization of classical systems have been extensively studied in the past. However, the corresponding quantum phenomena remain, to a large extent, uncharted territory. Recent experiments with ultracold quantum gases have at last allowed exploration of the coherent dynamics of isolated quantum systems, as well as observation of non-equilibrium phenomena that challenge our current understanding of the dynamics of quantum many-body systems. These experiments have also posed many new questions. How can we control the dynamics to engineer new states of matter? Given that quantum dynamics is unitary, under which conditions can we expect observables of the system to reach equilibrium values that can be predicted by conventional statistical mechanics? And, how do the observables dynamically approach their statistical equilibrium values? Could the approach to equilibrium be hampered if the system is trapped in long-lived metastable states characterized, for example, by a certain distribution of topological defects? How does the dynamics depend on the way the system is perturbed, such as changing, as a function of time and at a given rate, a parameter across a quantum critical point? What if, conversely, after relaxing to a steady state, the observables cannot be described by the standard equilibrium ensembles of statistical mechanics? How would they depend on the initial conditions in addition to the other properties of the system, such as the existence of conserved quantities? The search for answers to questions like these is fundamental to a new research field that is only beginning to be explored, and to which researchers with different backgrounds, such as nuclear, atomic, and condensed-matter physics, as well as quantum optics, can make, and are making, important contributions. This body of knowledge has an immediate application to experiments in the field of ultracold atomic gases, but can also fundamentally change the way we approach and understand many-body quantum systems. This focus issue of New Journal Physics brings together both experimentalists and theoreticians working on these problems to provide a comprehensive picture of the state of the field. Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems Contents Spin squeezing of high-spin, spatially extended quantum fields Jay D Sau, Sabrina R Leslie, Marvin L Cohen and Dan M Stamper-Kurn Thermodynamic entropy of a many-body energy eigenstate J M Deutsch Ground states and dynamics of population-imbalanced Fermi condensates in one dimension Masaki Tezuka and Masahito Ueda Relaxation dynamics in the gapped XXZ spin-1/2 chain Jorn Mossel and Jean-Sébastien Caux Canonical thermalization Peter Reimann Minimally entangled typical thermal state algorithms E M Stoudenmire and Steven R White Manipulation of the dynamics of many-body systems via quantum control methods Julie Dinerman and Lea F Santos Multimode analysis of non-classical correlations in double-well Bose-Einstein condensates Andrew J Ferris and Matthew J Davis Thermalization in a quasi-one-dimensional ultracold bosonic gas I E Mazets and J Schmiedmayer Two simple systems with cold atoms: quantum chaos tests and non-equilibrium dynamics Cavan Stone, Yassine Ait El Aoud, Vladimir A Yurovsky and Maxim Olshanii On the speed of fluctuations around thermodynamic equilibrium Noah Linden, Sandu Popescu, Anthony J Short and Andreas Winter A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states M Cramer and J Eisert Quantum quench dynamics of the sine-Gordon model in some solvable limits A Iucci and M A Cazalilla Nonequilibrium quantum dynamics of atomic dark solitons A D Martin and J Ruostekoski Quantum quenches in the anisotropic spin-1⁄2 Heisenberg chain: different approaches to many-body dynamics far from equilibrium Peter Barmettler, Matthias Punk, Vladimir Gritsev, Eugene Demler and Ehud Altman Crossover from adiabatic to sudden interaction quenches in the Hubbard model: prethermalization and non-equilibrium dynamics Michael Moeckel and Stefan Kehrein Quantum quenches in integrable field theories Davide Fioretto and Giuseppe Mussardo Dynamical delocalization of Majorana edge states by sweeping across a quantum critical point A Bermudez, L Amico and M A Martin-Delgado Thermometry with spin-dependent lattices D McKay and B DeMarco Near-adiabatic parameter changes in correlated systems: influence of the ramp protocol on the excitation energy Martin Eckstein and Marcus Kollar Sudden change of the thermal contact between two quantum systems J Restrepo and S Camalet Reflection of a Lieb-Liniger wave packet from the hard-wall potential D Jukić and H Buljan Probing interaction-induced ferromagnetism in optical superlattices J von Stecher, E Demler, M D Lukin and A M Rey Sudden interaction quench in the quantum sine-Gordon model Javier Sabio and Stefan Kehrein Dynamics of an inhomogeneous quantum phase transition Jacek Dziarmaga and Marek M Rams
Binary Colloidal Alloy Test-5: Phase Separation
NASA Technical Reports Server (NTRS)
Lynch, Matthew; Weitz, David A.; Lu, Peter J.
2008-01-01
The Binary Colloidal Alloy Test - 5: Phase Separation (BCAT-5-PhaseSep) experiment will photograph initially randomized colloidal samples onboard the ISS to determine their resulting structure over time. This allows the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-PhaseSep studies collapse (phase separation rates that impact product shelf-life); in microgravity the physics of collapse is not masked by being reduced to a simple top and bottom phase as it is on Earth.
Dynamic aeroelastic stability of vertical-axis wind turbines under constant wind velocity
NASA Astrophysics Data System (ADS)
Nitzsche, Fred
1994-05-01
The flutter problem associated with the blades of a class of vertical-axis wind turbines called Darrieus is studied in detail. The spinning blade is supposed to be initially curved in a particular shape characterized by a state of pure tension at the blade cross section. From this equilibrium position a three-dimensional linear perturbation pattern is superimposed to determine the dynamic aeroelastic stability of the blade in the presence of free wind speed by means of the Floquet-Lyapunov theory for periodic systems.
Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator
Omar, Mohamed A.
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.
Suzuki, Yuichi; Nagaoka, Masataka
2017-05-28
Atomistic information of a whole chemical reaction system, e.g., instantaneous microscopic molecular structures and orientations, offers important and deeper insight into clearly understanding unknown chemical phenomena. In accordance with the progress of a number of simultaneous chemical reactions, the Red Moon method (a hybrid Monte Carlo/molecular dynamics reaction method) is capable of simulating atomistically the chemical reaction process from an initial state to the final one of complex chemical reaction systems. In the present study, we have proposed a transformation theory to interpret the chemical reaction process of the Red Moon methodology as the time evolution process in harmony with the chemical kinetics. For the demonstration of the theory, we have chosen the gas reaction system in which the reversible second-order reaction H 2 + I 2 ⇌ 2HI occurs. First, the chemical reaction process was simulated from the initial configurational arrangement containing a number of H 2 and I 2 molecules, each at 300 K, 500 K, and 700 K. To reproduce the chemical equilibrium for the system, the collision frequencies for the reactions were taken into consideration in the theoretical treatment. As a result, the calculated equilibrium concentrations [H 2 ] eq and equilibrium constants K eq at all the temperatures were in good agreement with their corresponding experimental values. Further, we applied the theoretical treatment for the time transformation to the system and have shown that the calculated half-life τ's of [H 2 ] reproduce very well the analytical ones at all the temperatures. It is, therefore, concluded that the application of the present theoretical treatment with the Red Moon method makes it possible to analyze reasonably the time evolution of complex chemical reaction systems to chemical equilibrium at the atomistic level.
Srivastava, Samanvaya; Agarwal, Praveen; Mangal, Rahul; ...
2015-09-24
Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and non-equilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in a model, equilibrium soft material comprised of single-component polymer-tethered-nanoparticles. In these materials, polymer mediated interactions lead to strong nanoparticle correlations, hyperdiffusive relaxations, and unusual variations of properties with temperature. Our experimental observations complement the current hypothesis that hyperdiffusive relaxations in soft materials require the material to exist in out–of–equilibrium states capable of driving structural rearrangements. Lastly, we propose alternatively that hyperdiffusive relaxations in our materials can arise naturally frommore » volume fluctuations brought about by equilibrium thermal forces.« less
Equilibrium and thermodynamic studies on biosorption of Pb(II) onto Candida albicans biomass.
Baysal, Zübeyde; Cinar, Ercan; Bulut, Yasemin; Alkan, Hüseyin; Dogru, Mehmet
2009-01-15
Biosorption of Pb(II) ions from aqueous solutions was studied in a batch system by using Candida albicans. The optimum conditions of biosorption were determined by investigating the initial metal ion concentration, contact time, temperature, biosorbent dose and pH. The extent of metal ion removed increased with increasing contact time, initial metal ion concentration and temperature. Biosorption equilibrium time was observed in 30min. The Freundlich and Langmuir adsorption models were used for the mathematical description of biosorption equilibrium and isotherm constants were also evaluated. The maximum biosorption capacity of Pb(II) on C. albicans was determined as 828.50+/-1.05, 831.26+/-1.30 and 833.33+/-1.12mgg(-1), respectively, at different temperatures (25, 35 and 45 degrees C). Biosorption showed pseudo second-order rate kinetics at different initial concentration of Pb(II) and different temperatures. The activation energy of the biosorption (Ea) was estimated as 59.04kJmol(-1) from Arrhenius equation. Using the equilibrium constant value obtained at different temperatures, the thermodynamic properties of the biosorption (DeltaG degrees , DeltaH degrees and DeltaS degrees ) were also determined. The results showed that biosorption of Pb(II) ions on C. albicans were endothermic and spontaneous. The optimum initial pH for Pb(II) was determined as pH 5.0. FTIR spectral analysis of Pb(II) adsorbed and unadsorbed C. albicans biomass was also discussed.
Regenerative combustion device
West, Phillip B.
2004-03-16
A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.
Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
NASA Astrophysics Data System (ADS)
Moawad, S. M.; Moawad
2013-10-01
The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.
Charge state distribution of 86Kr in hydrogen and helium gas charge strippers at 2.7 MeV /nucleon
NASA Astrophysics Data System (ADS)
Kuboki, H.; Okuno, H.; Hasebe, H.; Fukunishi, N.; Ikezawa, E.; Imao, H.; Kamigaito, O.; Kase, M.
2014-12-01
The charge state distributions of krypton (86Kr) with an energy of 2.7 MeV /nucleon were measured using hydrogen (H2 ) and helium (He) gas charge strippers. A differential pumping system was constructed to confine H2 and He gases to a thickness sufficient for the charge state distributions to attain equilibrium. The mean charge states of 86Kr in H2 and He gases attained equilibrium at 25.1 and 23.2, respectively, whereas the mean charge state in N2 gas at equilibrium was estimated to be less than 20. The charge distributions are successfully reproduced by the cross sections of ionization and electron capture processes optimized by a fitting procedure.
Stochastic thermodynamics of quantum maps with and without equilibrium.
Barra, Felipe; Lledó, Cristóbal
2017-11-01
We study stochastic thermodynamics for a quantum system of interest whose dynamics is described by a completely positive trace-preserving (CPTP) map as a result of its interaction with a thermal bath. We define CPTP maps with equilibrium as CPTP maps with an invariant state such that the entropy production due to the action of the map on the invariant state vanishes. Thermal maps are a subgroup of CPTP maps with equilibrium. In general, for CPTP maps, the thermodynamic quantities, such as the entropy production or work performed on the system, depend on the combined state of the system plus its environment. We show that these quantities can be written in terms of system properties for maps with equilibrium. The relations that we obtain are valid for arbitrary coupling strengths between the system and the thermal bath. The fluctuations of thermodynamic quantities are considered in the framework of a two-point measurement scheme. We derive the entropy production fluctuation theorem for general maps and a fluctuation relation for the stochastic work on a system that starts in the Gibbs state. Some simplifications for the probability distributions in the case of maps with equilibrium are presented. We illustrate our results by considering spin 1/2 systems under thermal maps, nonthermal maps with equilibrium, maps with nonequilibrium steady states, and concatenations of them. Finally, and as an important application, we consider a particular limit in which the concatenation of maps generates a continuous time evolution in Lindblad form for the system of interest, and we show that the concept of maps with and without equilibrium translates into Lindblad equations with and without quantum detailed balance, respectively. The consequences for the thermodynamic quantities in this limit are discussed.
Stochastic thermodynamics of quantum maps with and without equilibrium
NASA Astrophysics Data System (ADS)
Barra, Felipe; Lledó, Cristóbal
2017-11-01
We study stochastic thermodynamics for a quantum system of interest whose dynamics is described by a completely positive trace-preserving (CPTP) map as a result of its interaction with a thermal bath. We define CPTP maps with equilibrium as CPTP maps with an invariant state such that the entropy production due to the action of the map on the invariant state vanishes. Thermal maps are a subgroup of CPTP maps with equilibrium. In general, for CPTP maps, the thermodynamic quantities, such as the entropy production or work performed on the system, depend on the combined state of the system plus its environment. We show that these quantities can be written in terms of system properties for maps with equilibrium. The relations that we obtain are valid for arbitrary coupling strengths between the system and the thermal bath. The fluctuations of thermodynamic quantities are considered in the framework of a two-point measurement scheme. We derive the entropy production fluctuation theorem for general maps and a fluctuation relation for the stochastic work on a system that starts in the Gibbs state. Some simplifications for the probability distributions in the case of maps with equilibrium are presented. We illustrate our results by considering spin 1/2 systems under thermal maps, nonthermal maps with equilibrium, maps with nonequilibrium steady states, and concatenations of them. Finally, and as an important application, we consider a particular limit in which the concatenation of maps generates a continuous time evolution in Lindblad form for the system of interest, and we show that the concept of maps with and without equilibrium translates into Lindblad equations with and without quantum detailed balance, respectively. The consequences for the thermodynamic quantities in this limit are discussed.
Development and Assessment of a Computer-Based Equation of State for Equilibrium Air
2013-09-01
for very low energies. However, the ideal gas EOS is appropriate for atmospheric flight at subsonic, transonic, and low supersonic flight speeds...Flow Properties About Blunt Bodies Moving at Supersonic Speeds in an Equilibrium Gas ,” NASA TR R-204, July 1964. 21. Tannehill, John C., and Mugge...changes are made. 15. Subject Terms Air, thermodynamic properties, equation of state, chemical equilibrium, real- gas 16. SECURITY CLASSIFICATION
Kinetics of autocatalysis in small systems
NASA Astrophysics Data System (ADS)
Arslan, Erdem; Laurenzi, Ian J.
2008-01-01
Autocatalysis is a ubiquitous chemical process that drives a plethora of biological phenomena, including the self-propagation of prions etiological to the Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. To explain the dynamics of these systems, we have solved the chemical master equation for the irreversible autocatalytic reaction A +B→2A. This solution comprises the first closed form expression describing the probabilistic time evolution of the populations of autocatalytic and noncatalytic molecules from an arbitrary initial state. Grand probability distributions are likewise presented for autocatalysis in the equilibrium limit (A+B⇌2A), allowing for the first mechanistic comparison of this process with chemical isomerization (B⇌A) in small systems. Although the average population of autocatalytic (i.e., prion) molecules largely conforms to the predictions of the classical "rate law" approach in time and the law of mass action at equilibrium, thermodynamic differences between the entropies of isomerization and autocatalysis are revealed, suggesting a "mechanism dependence" of state variables for chemical reaction processes. These results demonstrate the importance of chemical mechanism and molecularity in the development of stochastic processes for chemical systems and the relationship between the stochastic approach to chemical kinetics and nonequilibrium thermodynamics.
Formation of magnetic discontinuities through viscous relaxation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Sanjay; Bhattacharyya, R.; Smolarkiewicz, P. K.
2014-05-15
According to Parker's magnetostatic theorem, tangential discontinuities in magnetic field, or current sheets (CSs), are generally unavoidable in an equilibrium magnetofluid with infinite electrical conductivity and complex magnetic topology. These CSs are due to a failure of a magnetic field in achieving force-balance everywhere and preserving its topology while remaining in a spatially continuous state. A recent work [Kumar, Bhattacharyya, and Smolarkiewicz, Phys. Plasmas 20, 112903 (2013)] demonstrated this CS formation utilizing numerical simulations in terms of the vector magnetic field. The magnetohydrodynamic simulations presented here complement the above work by demonstrating CS formation by employing a novel approach ofmore » describing the magnetofluid evolution in terms of magnetic flux surfaces instead of the vector magnetic field. The magnetic flux surfaces being the possible sites on which CSs develop, this approach provides a direct visualization of the CS formation, helpful in understanding the governing dynamics. The simulations confirm development of tangential discontinuities through a favorable contortion of magnetic flux surfaces, as the magnetofluid undergoes a topology-preserving viscous relaxation from an initial non-equilibrium state with twisted magnetic field. A crucial finding of this work is in its demonstration of CS formation at spatial locations away from the magnetic nulls.« less
An Initial Non-Equilibrium Porous-Media Model for CFD Simulation of Stirling Regenerators
NASA Technical Reports Server (NTRS)
Tew, Roy C.; Simon, Terry; Gedeon, David; Ibrahim, Mounir; Rong, Wei
2006-01-01
The objective of this paper is to define empirical parameters for an initial thermal non-equilibrium porous-media model for use in Computational Fluid Dynamics (CFD) codes for simulation of Stirling regenerators. The two codes currently used at Glenn Research Center for Stirling modeling are Fluent and CFD-ACE. The codes porous-media models are equilibrium models, which assume solid matrix and fluid are in thermal equilibrium. This is believed to be a poor assumption for Stirling regenerators; Stirling 1-D regenerator models, used in Stirling design, use non-equilibrium regenerator models and suggest regenerator matrix and gas average temperatures can differ by several degrees at a given axial location and time during the cycle. Experimentally based information was used to define: hydrodynamic dispersion, permeability, inertial coefficient, fluid effective thermal conductivity, and fluid-solid heat transfer coefficient. Solid effective thermal conductivity was also estimated. Determination of model parameters was based on planned use in a CFD model of Infinia's Stirling Technology Demonstration Converter (TDC), which uses a random-fiber regenerator matrix. Emphasis is on use of available data to define empirical parameters needed in a thermal non-equilibrium porous media model for Stirling regenerator simulation. Such a model has not yet been implemented by the authors or their associates.
Analysis of rainfall-induced slope instability using a field of local factor of safety
Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.
2012-01-01
Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.
Information-theoretic equilibrium and observable thermalization
NASA Astrophysics Data System (ADS)
Anzà, F.; Vedral, V.
2017-03-01
A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.
Information-theoretic equilibrium and observable thermalization
Anzà, F.; Vedral, V.
2017-01-01
A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light. PMID:28266646
Information-theoretic equilibrium and observable thermalization.
Anzà, F; Vedral, V
2017-03-07
A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.
Mapping Isobaric Aging onto the Equilibrium Phase Diagram.
Niss, Kristine
2017-09-15
The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.
Luo, Xiaosheng; Xu, Liufang; Han, Bo; Wang, Jin
2017-09-01
Using fission yeast cell cycle as an example, we uncovered that the non-equilibrium network dynamics and global properties are determined by two essential features: the potential landscape and the flux landscape. These two landscapes can be quantified through the decomposition of the dynamics into the detailed balance preserving part and detailed balance breaking non-equilibrium part. While the funneled potential landscape is often crucial for the stability of the single attractor networks, we have uncovered that the funneled flux landscape is crucial for the emergence and maintenance of the stable limit cycle oscillation flow. This provides a new interpretation of the origin for the limit cycle oscillations: There are many cycles and loops existed flowing through the state space and forming the flux landscapes, each cycle with a probability flux going through the loop. The limit cycle emerges when a loop stands out and carries significantly more probability flux than other loops. We explore how robustness ratio (RR) as the gap or steepness versus averaged variations or roughness of the landscape, quantifying the degrees of the funneling of the underlying potential and flux landscapes. We state that these two landscapes complement each other with one crucial for stabilities of states on the cycle and the other crucial for the stability of the flow along the cycle. The flux is directly related to the speed of the cell cycle. This allows us to identify the key factors and structure elements of the networks in determining the stability, speed and robustness of the fission yeast cell cycle oscillations. We see that the non-equilibriumness characterized by the degree of detailed balance breaking from the energy pump quantified by the flux is the cause of the energy dissipation for initiating and sustaining the replications essential for the origin and evolution of life. Regulating the cell cycle speed is crucial for designing the prevention and curing strategy of cancer.
2017-01-01
Using fission yeast cell cycle as an example, we uncovered that the non-equilibrium network dynamics and global properties are determined by two essential features: the potential landscape and the flux landscape. These two landscapes can be quantified through the decomposition of the dynamics into the detailed balance preserving part and detailed balance breaking non-equilibrium part. While the funneled potential landscape is often crucial for the stability of the single attractor networks, we have uncovered that the funneled flux landscape is crucial for the emergence and maintenance of the stable limit cycle oscillation flow. This provides a new interpretation of the origin for the limit cycle oscillations: There are many cycles and loops existed flowing through the state space and forming the flux landscapes, each cycle with a probability flux going through the loop. The limit cycle emerges when a loop stands out and carries significantly more probability flux than other loops. We explore how robustness ratio (RR) as the gap or steepness versus averaged variations or roughness of the landscape, quantifying the degrees of the funneling of the underlying potential and flux landscapes. We state that these two landscapes complement each other with one crucial for stabilities of states on the cycle and the other crucial for the stability of the flow along the cycle. The flux is directly related to the speed of the cell cycle. This allows us to identify the key factors and structure elements of the networks in determining the stability, speed and robustness of the fission yeast cell cycle oscillations. We see that the non-equilibriumness characterized by the degree of detailed balance breaking from the energy pump quantified by the flux is the cause of the energy dissipation for initiating and sustaining the replications essential for the origin and evolution of life. Regulating the cell cycle speed is crucial for designing the prevention and curing strategy of cancer. PMID:28892489
Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems
NASA Astrophysics Data System (ADS)
Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; Del Giudice, Paolo
2015-10-01
Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.
Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems.
Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; del Giudice, Paolo
2015-10-14
Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a 'basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.
Compressive behavior of fine sand.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Bradley E.; Kabir, Md. E.; Song, Bo
2010-04-01
The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trendsmore » were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deffner, Sebastian; Zurek, Wojciech H.
Envariance—entanglement assisted invariance—is a recently discovered symmetry of composite quantum systems. Here, we show that thermodynamic equilibrium states are fully characterized by their envariance. In particular, the microcanonical equilibrium of a systemmore » $${ \\mathcal S }$$ with Hamiltonian $${H}_{{ \\mathcal S }}$$ is a fully energetically degenerate quantum state envariant under every unitary transformation. A representation of the canonical equilibrium then follows from simply counting degenerate energy states. Finally, our conceptually novel approach is free of mathematically ambiguous notions such as ensemble, randomness, etc., and, while it does not even rely on probability, it helps to understand its role in the quantum world.« less
Chemical equilibrium of ablation materials including condensed species
NASA Technical Reports Server (NTRS)
Stroud, C. W.; Brinkley, K. L.
1975-01-01
Equilibrium is determined by finding chemical composition with minimum free energy. Method of steepest descent is applied to quadratic representation of free-energy surface. Solution is initiated by selecting arbitrary set of mole fractions, from which point on free-energy surface is computed.
Exploring sensitivity of a multistate occupancy model to inform management decisions
Green, A.W.; Bailey, L.L.; Nichols, J.D.
2011-01-01
Dynamic occupancy models are often used to investigate questions regarding the processes that influence patch occupancy and are prominent in the fields of population and community ecology and conservation biology. Recently, multistate occupancy models have been developed to investigate dynamic systems involving more than one occupied state, including reproductive states, relative abundance states and joint habitat-occupancy states. Here we investigate the sensitivities of the equilibrium-state distribution of multistate occupancy models to changes in transition rates. We develop equilibrium occupancy expressions and their associated sensitivity metrics for dynamic multistate occupancy models. To illustrate our approach, we use two examples that represent common multistate occupancy systems. The first example involves a three-state dynamic model involving occupied states with and without successful reproduction (California spotted owl Strix occidentalis occidentalis), and the second involves a novel way of using a multistate occupancy approach to accommodate second-order Markov processes (wood frog Lithobates sylvatica breeding and metamorphosis). In many ways, multistate sensitivity metrics behave in similar ways as standard occupancy sensitivities. When equilibrium occupancy rates are low, sensitivity to parameters related to colonisation is high, while sensitivity to persistence parameters is greater when equilibrium occupancy rates are high. Sensitivities can also provide guidance for managers when estimates of transition probabilities are not available. Synthesis and applications. Multistate models provide practitioners a flexible framework to define multiple, distinct occupied states and the ability to choose which state, or combination of states, is most relevant to questions and decisions about their own systems. In addition to standard multistate occupancy models, we provide an example of how a second-order Markov process can be modified to fit a multistate framework. Assuming the system is near equilibrium, our sensitivity analyses illustrate how to investigate the sensitivity of the system-specific equilibrium state(s) to changes in transition rates. Because management will typically act on these transition rates, sensitivity analyses can provide valuable information about the potential influence of different actions and when it may be prudent to shift the focus of management among the various transition rates. ?? 2011 The Authors. Journal of Applied Ecology ?? 2011 British Ecological Society.
Numerical Simulation of Particle Motion in a Curved Channel
NASA Astrophysics Data System (ADS)
Liu, Yi; Nie, Deming
2018-01-01
In this work the lattice Boltzmann method (LBM) is used to numerically study the motion of a circular particle in a curved channel at intermediate Reynolds numbers (Re). The effects of the Reynolds number and the initial particle position are taken into account. Numerical results include the streamlines, particle trajectories and final equilibrium positions. It has been found that the particle is likely to migrate to a similar equilibrium position irrespective of its initial position when Re is large.
Mizukami, Takuya; Abe, Yukiko; Maki, Kosuke
2015-01-01
In this study, the equivalence of the kinetic mechanisms of the formation of urea-induced kinetic folding intermediates and non-native equilibrium states was investigated in apomyoglobin. Despite having similar structural properties, equilibrium and kinetic intermediates accumulate under different conditions and via different mechanisms, and it remains unknown whether their formation involves shared or distinct kinetic mechanisms. To investigate the potential mechanisms of formation, the refolding and unfolding kinetics of horse apomyoglobin were measured by continuous- and stopped-flow fluorescence over a time range from approximately 100 μs to 10 s, along with equilibrium unfolding transitions, as a function of urea concentration at pH 6.0 and 8°C. The formation of a kinetic intermediate was observed over a wider range of urea concentrations (0–2.2 M) than the formation of the native state (0–1.6 M). Additionally, the kinetic intermediate remained populated as the predominant equilibrium state under conditions where the native and unfolded states were unstable (at ~0.7–2 M urea). A continuous shift from the kinetic to the equilibrium intermediate was observed as urea concentrations increased from 0 M to ~2 M, which indicates that these states share a common kinetic folding mechanism. This finding supports the conclusion that these intermediates are equivalent. Our results in turn suggest that the regions of the protein that resist denaturant perturbations form during the earlier stages of folding, which further supports the structural equivalence of transient and equilibrium intermediates. An additional folding intermediate accumulated within ~140 μs of refolding and an unfolding intermediate accumulated in <1 ms of unfolding. Finally, by using quantitative modeling, we showed that a five-state sequential scheme appropriately describes the folding mechanism of horse apomyoglobin. PMID:26244984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Yue; Iwashita, Takuya; Egami, Takeshi
Complex states in glasses can be neatly expressed by the potential energy landscape (PEL). But, because PEL is highly multi-dimensional it is difficult to describe how the system moves around in PEL. We demonstrate that it is possible to predict the evolution of macroscopic state in a metallic glass, such as ageing and rejuvenation, through a set of simple equations describing excitations in the PEL. The key to this simplification is the realization that the step of activation from the initial state to the saddle point in PEL and the following step of relaxation to the final state are essentiallymore » decoupled. Furthermore, the model shows that the interplay between activation and relaxation in PEL is the key driving force that simultaneously explains both the equilibrium of supercooled liquid and the thermal hysteresis observed in experiments. It further predicts anomalous peaks in truncated thermal scanning, validated by independent molecular dynamics simulation.« less
Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system.
Heyl, Markus; Vojta, Matthias
2014-10-31
One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in cases where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium, one particular symmetry-broken state is chosen as a result of an infinitesimal symmetry-breaking perturbation. From a dynamical point of view the question is: Can such an infinitesimal perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.
Kang, K; Dhont, J K G
2009-11-01
Experiments on suspensions of charged colloidal rods (fd-virus particles) in external electric fields are performed, which show that a non-equilibrium critical point can be identified. Several transition lines of field-induced phases and states meet at this point and it is shown that there is a length- and time-scale which diverge at the non-equilibrium critical point. The off-critical and critical behavior is characterized, with both power law and logarithmic divergencies. These experiments show that analogous features of the classical, critical divergence of correlation lengths and relaxation times in equilibrium systems are also exhibited by driven systems that are far out of equilibrium, related to phases/states that do not exist in the absence of the external field.
ERIC Educational Resources Information Center
Perez-Benito, Joaquin F.
2017-01-01
The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…
Structural dynamics of ribosome subunit association studied by mixing-spraying time-resolved cryo-EM
Chen, Bo; Kaledhonkar, Sandip; Sun, Ming; Shen, Bingxin; Lu, Zonghuan; Barnard, David; Lu, Toh-Ming; Gonzalez, Ruben L.; Frank, Joachim
2015-01-01
Ribosomal subunit association is a key checkpoint in translation initiation, but its structural dynamics are poorly understood. Here, we used a recently developed mixing-spraying, time-resolved, cryogenic electron microscopy (cryo-EM) method to study ribosomal subunit association in the sub-second time range. We have improved this method and increased the cryo-EM data yield by tenfold. Pre-equilibrium states of the association reaction were captured by reacting the mixture of ribosomal subunits for 60 ms and 140 ms. We also identified three distinct ribosome conformations in the associated ribosomes. The observed proportions of these conformations are the same in these two time points, suggesting that ribosomes equilibrate among the three conformations within less than 60 ms upon formation. Our results demonstrate that the mixing-spraying method can capture multiple states of macromolecules during a sub-second reaction. Other fast processes, such as translation initiation, decoding and ribosome recycling, are amenable to study with this method. PMID:26004440
Power-law decay exponents: A dynamical criterion for predicting thermalization
NASA Astrophysics Data System (ADS)
Távora, Marco; Torres-Herrera, E. J.; Santos, Lea F.
2017-01-01
From the analysis of the relaxation process of isolated lattice many-body quantum systems quenched far from equilibrium, we deduce a criterion for predicting when they are certain to thermalize. It is based on the algebraic behavior ∝t-γ of the survival probability at long times. We show that the value of the power-law exponent γ depends on the shape and filling of the weighted energy distribution of the initial state. Two scenarios are explored in detail: γ ≥2 and γ <1 . Exponents γ ≥2 imply that the energy distribution of the initial state is ergodically filled and the eigenstates are uncorrelated, so thermalization is guaranteed to happen. In this case, the power-law behavior is caused by bounds in the energy spectrum. Decays with γ <1 emerge when the energy eigenstates are correlated and signal lack of ergodicity. They are typical of systems undergoing localization due to strong onsite disorder and are found also in clean integrable systems.
A Kinetic Approach to Propagation and Stability of Detonation Waves
NASA Astrophysics Data System (ADS)
Monaco, R.; Bianchi, M. Pandolfi; Soares, A. J.
2008-12-01
The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine-Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different overdrive degrees. The one-dimensional stability of such detonation wave is then studied in terms of an initial value problem coupled with an acoustic radiation condition at the equilibrium final state. The stability equations and their initial data are deduced from the linearized reactive Euler equations and related Rankine-Hugoniot conditions through a normal mode analysis referred to the complex disturbances of the steady state variables. Some numerical simulations for an elementary reaction of the hydrogen-oxygen chain are proposed in order to describe the time and space evolution of the instabilities induced by the shock front perturbation.
AGN self-regulation in cooling flow clusters
NASA Astrophysics Data System (ADS)
Cattaneo, A.; Teyssier, R.
2007-04-01
We use three-dimensional high-resolution adaptive-mesh-refinement simulations to investigate if mechanical feedback from active galactic nucleus jets can halt a massive cooling flow in a galaxy cluster and give rise to a self-regulated accretion cycle. We start with a 3 × 109 Msolar black hole at the centre of a spherical halo with the mass of the Virgo cluster. Initially, all the baryons are in a hot intracluster medium in hydrostatic equilibrium within the dark matter's gravitational potential. The black hole accretes the surrounding gas at the Bondi rate, and a fraction of the accretion power is returned into the intracluster medium mechanically through the production of jets. The accretion, initially slow (~2 × 10-4 Msolaryr-1), becomes catastrophic, as the gas cools and condenses in the dark matter's potential. Therefore, it cannot prevent the cooling catastrophe at the centre of the cluster. However, after this rapid phase, where the accretion rate reaches a peak of ~0.2Msolaryr-1, the cavities inflated by the jets become highly turbulent. The turbulent mixing of the shock-heated gas with the rest of the intracluster medium puts a quick end to this short-lived rapid-growth phase. After dropping by almost two orders of magnitudes, the black hole accretion rate stabilizes at ~0.006 Msolaryr-1, without significant variations for several billions of years, indicating that a self-regulated steady state has been reached. This accretion rate corresponds to a negligible increase of the black hole mass over the age of the Universe, but is sufficient to create a quasi-equilibrium state in the cluster core.
State-to-state modeling of non-equilibrium air nozzle flows
NASA Astrophysics Data System (ADS)
Nagnibeda, E.; Papina, K.; Kunova, O.
2018-05-01
One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.
Time-dependent density functional theory beyond Kohn-Sham Slater determinants.
Fuks, Johanna I; Nielsen, Søren E B; Ruggenthaler, Michael; Maitra, Neepa T
2016-08-03
When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50 : 50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle" contribution that we denote v, and a remainder. The single-particle contribution can be readily computed as an explicit orbital-functional, reduces to exchange in the Slater determinant case, and offers an alternative to the adiabatic approximation as a starting point for TDDFT approximations.
Equilibrium and Kinetic Studies of Cd2+ Biosorption by the Brown Algae Sargassum fusiforme
Zou, Hui-Xi; Li, Nan; Wang, Li-Hua; Yu, Ping; Yan, Xiu-Feng
2014-01-01
A fundamental investigation of the biosorption of Cd2+ from aqueous solution by the edible seaweed Sargassum fusiforme was performed under batch conditions. The influences of experimental parameters, such as the initial pH, sorption time, temperature, and initial Cd2+ concentration, on Cd2+ uptake by S. fusiforme were evaluated. The results indicated that the biosorption of Cd2+ depended on the initial Cd2+ concentration, as well as the pH. The uptake of Cd2+ could be described by the Langmuir isotherm model, and both the Langmuir biosorption equilibrium constant and the maximum biosorption capacity of the monolayer decreased with increasing temperature, thereby confirming the exothermic character of the sorption process. The biosorption kinetics follows the pseudo-second-order kinetic model, and intraparticle diffusion is the sole rate-limiting step for the entire biosorption period. These fundamental equilibrium and kinetic results can support further studies to the removal of cadmium from S. fusiforme harvested from cadmium-polluted waters. PMID:24736449
Continuous Time Finite State Mean Field Games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomes, Diogo A., E-mail: dgomes@math.ist.utl.pt; Mohr, Joana, E-mail: joana.mohr@ufrgs.br; Souza, Rafael Rigao, E-mail: rafars@mat.ufrgs.br
In this paper we consider symmetric games where a large number of players can be in any one of d states. We derive a limiting mean field model and characterize its main properties. This mean field limit is a system of coupled ordinary differential equations with initial-terminal data. For this mean field problem we prove a trend to equilibrium theorem, that is convergence, in an appropriate limit, to stationary solutions. Then we study an N+1-player problem, which the mean field model attempts to approximate. Our main result is the convergence as N{yields}{infinity} of the mean field model and an estimatemore » of the rate of convergence. We end the paper with some further examples for potential mean field games.« less
Electron-impact vibrational relaxation in high-temperature nitrogen
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1992-01-01
Vibrational relaxation process of N2 molecules by electron-impact is examined for the future planetary entry environments. Multiple-quantum transitions from excited states to higher/lower states are considered for the electronic ground state of the nitrogen molecule N2 (X 1Sigma-g(+)). Vibrational excitation and deexcitation rate coefficients obtained by computational quantum chemistry are incorporated into the 'diffusion model' to evaluate the time variations of vibrational number densities of each energy state and total vibrational energy. Results show a non-Boltzmann distribution of number densities at the earlier stage of relaxation, which in turn suppresses the equilibrium process but affects little the time variation of total vibrational energy. An approximate rate equation and a corresponding relaxation time from the excited states, compatible with the system of flow conservation equations, are derived. The relaxation time from the excited states indicates the weak dependency of the initial vibrational temperature. The empirical curve-fit formula for the improved e-V relaxation time is obtained.
Lead sorption by waste biomass of hazelnut and almond shell.
Pehlivan, Erol; Altun, Türkan; Cetin, Serpil; Iqbal Bhanger, M
2009-08-15
The potential to remove Pb(2+) ion from aqueous solutions using the shells of hazelnut (HNS) (Corylus avellana) and almond (AS) (Prunus dulcis) through biosorption was investigated in batch experiments. The main parameters influencing Pb(2+) ion sorption on HNS and AS were: initial metal ion concentration, amount of adsorbent, contact time and pH value of solution. The influences of initial Pb(2+) ion concentration (0.1-1.0mM), pH (2-9), contact time (10-240 min) and adsorbent amount (0.1-1.0 g) have been investigated. Equilibrium isotherms have been measured and modelled. Adsorption of Pb(2+) ions was in all cases pH-dependent showing a maximum at equilibrium pH values between 6.0 and 7.0, depending on the biomaterial, that corresponded to equilibrium pH values of 6.0 for HNS and 7.0 for AS. The equilibrium sorption capacities of HNS and AS were 28.18 and 8.08 mg/g for lead, respectively after equilibrium time of 2h. The adsorption data fit well with the Langmuir isotherm model and the experimental result inferred that adsorption, chelation and ion exchange are major adsorption mechanisms for binding Pb(2+) ion to the sorbents.
Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Shin-itiro, E-mail: sgoto@ims.ac.jp
It has been proposed that equilibrium thermodynamics is described on Legendre submanifolds in contact geometry. It is shown in this paper that Legendre submanifolds embedded in a contact manifold can be expressed as attractors in phase space for a certain class of contact Hamiltonian vector fields. By giving a physical interpretation that points outside the Legendre submanifold can represent nonequilibrium states of thermodynamic variables, in addition to that points of a given Legendre submanifold can represent equilibrium states of the variables, this class of contact Hamiltonian vector fields is physically interpreted as a class of relaxation processes, in which thermodynamicmore » variables achieve an equilibrium state from a nonequilibrium state through a time evolution, a typical nonequilibrium phenomenon. Geometric properties of such vector fields on contact manifolds are characterized after introducing a metric tensor field on a contact manifold. It is also shown that a contact manifold and a strictly convex function induce a lower dimensional dually flat space used in information geometry where a geometrization of equilibrium statistical mechanics is constructed. Legendre duality on contact manifolds is explicitly stated throughout.« less
Quantum thermalization through entanglement in an isolated many-body system.
Kaufman, Adam M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Preiss, Philipp M; Greiner, Markus
2016-08-19
Statistical mechanics relies on the maximization of entropy in a system at thermal equilibrium. However, an isolated quantum many-body system initialized in a pure state remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We experimentally studied the emergence of statistical mechanics in a quantum state and observed the fundamental role of quantum entanglement in facilitating this emergence. Microscopy of an evolving quantum system indicates that the full quantum state remains pure, whereas thermalization occurs on a local scale. We directly measured entanglement entropy, which assumes the role of the thermal entropy in thermalization. The entanglement creates local entropy that validates the use of statistical physics for local observables. Our measurements are consistent with the eigenstate thermalization hypothesis. Copyright © 2016, American Association for the Advancement of Science.
On the Origin of Time and the Universe
NASA Astrophysics Data System (ADS)
Jejjala, Vishnu; Kavic, Michael; Minic, Djordje; Tze, Chia-Hsiung
We present a novel solution to the low entropy and arrow of time puzzles of the initial state of the universe. Our approach derives from the physics of a specific generalization of Matrix theory put forth in earlier work as the basis for a quantum theory of gravity. The particular dynamical state space of this theory, the infinite-dimensional analogue of the Fubini-Study metric over a complex nonlinear Grassmannian, has recently been studied by Michor and Mumford. The geodesic distance between any two points on this space is zero. Here we show that this mathematical result translates to a description of a hot, zero entropy state and an arrow of time after the Big Bang. This is modeled as a far from equilibrium, large fluctuation driven, "freezing by heating" metastable ordered phase transition of a nonlinear dissipative dynamical system.
Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state
Niven, Robert K.
2010-01-01
This study examines a new formulation of non-equilibrium thermodynamics, which gives a conditional derivation of the ‘maximum entropy production’ (MEP) principle for flow and/or chemical reaction systems at steady state. The analysis uses a dimensionless potential function ϕst for non-equilibrium systems, analogous to the free energy concept of equilibrium thermodynamics. Spontaneous reductions in ϕst arise from increases in the ‘flux entropy’ of the system—a measure of the variability of the fluxes—or in the local entropy production; conditionally, depending on the behaviour of the flux entropy, the formulation reduces to the MEP principle. The inferred steady state is also shown to exhibit high variability in its instantaneous fluxes and rates, consistent with the observed behaviour of turbulent fluid flow, heat convection and biological systems; one consequence is the coexistence of energy producers and consumers in ecological systems. The different paths for attaining steady state are also classified. PMID:20368250
Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS2 Films.
Precner, M; Polaković, T; Qiao, Qiao; Trainer, D J; Putilov, A V; Di Giorgio, C; Cone, I; Zhu, Y; Xi, X X; Iavarone, M; Karapetrov, G
2018-04-30
We report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the work function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2 . Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2 -based integrated electronics and indicate the importance of defect control and layer passivation.
Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS 2 Films
Precner, Marian; Polakovic, T.; Qiao, Qiao; ...
2018-04-30
Here, we report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the workmore » function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2. Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2-based integrated electronics and indicate the importance of defect control and layer passivation.« less
Evolution of Metastable Defects and Its Effect on the Electronic Properties of MoS 2 Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Precner, Marian; Polakovic, T.; Qiao, Qiao
Here, we report on structural and electronic properties of defects in chemical vapor-deposited monolayer and few-layer MoS 2 films. Scanning tunneling microscopy, Kelvin probe force microscopy, and transmission electron microscopy were used to obtain high resolution images and quantitative measurements of the local density of states, work function and nature of defects in MoS 2 films. We track the evolution of defects that are formed under heating and electron beam irradiation. We observe formation of metastable domains with different work function values after annealing the material in ultra-high vacuum to moderate temperatures. We attribute these metastable values of the workmore » function to evolution of crystal defects forming during the annealing. The experiments show that sulfur vacancies formed after exposure to elevated temperatures diffuse, coalesce, and migrate bringing the system from a metastable to equilibrium ground state. The process could be thermally or e-beam activated with estimated energy barrier for sulfur vacancy migration of 0.6 eV in single unit cell MoS 2. Even at equilibrium conditions, the work function and local density of states values are strongly affected near grain boundaries and edges. The results provide initial estimates of the thermal budgets available for reliable fabrication of MoS 2-based integrated electronics and indicate the importance of defect control and layer passivation.« less
Dynamically stable magnetic suspension/bearing system
Post, R.F.
1996-02-27
A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw`s Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements. 32 figs.
Dynamically stable magnetic suspension/bearing system
Post, Richard F.
1996-01-01
A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium. However, owing to the limitations imposed by Earnshaw's Theorem, the magnetic bearing systems to be described do not possess a stable equilibrium at zero rotational speed. Therefore, mechanical stabilizers are provided, in each case, to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. The magnetic forces exerted by these elements, when taken together, levitate the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations. At the same time, this equilibrium is made stable against displacements of the rotating object from its equilibrium position by using combinations of elements that possess force derivatives of such magnitudes and signs that they can satisfy the conditions required for a rotating body to be stably supported by a magnetic bearing system over a finite range of those displacements.
NASA Astrophysics Data System (ADS)
Gastis, P.; Perdikakis, G.; Robertson, D.; Almus, R.; Anderson, T.; Bauder, W.; Collon, P.; Lu, W.; Ostdiek, K.; Skulski, M.
2016-04-01
Equilibrium charge state distributions of stable 60Ni, 59Co, and 63Cu beams passing through a 1 μm thick Mo foil were measured at beam energies of 1.84 MeV/u, 2.09 MeV/u, and 2.11 MeV/u respectively. A 1-D position sensitive Parallel Grid Avalanche Counter detector (PGAC) was used at the exit of a spectrograph magnet, enabling us to measure the intensity of several charge states simultaneously. The number of charge states measured for each beam constituted more than 99% of the total equilibrium charge state distribution for that element. Currently, little experimental data exists for equilibrium charge state distributions for heavy ions with 19 ≲Zp,Zt ≲ 54 (Zp and Zt, are the projectile's and target's atomic numbers respectively). Hence the success of the semi-empirical models in predicting typical characteristics of equilibrium CSDs (mean charge states and distribution widths), has not been thoroughly tested at the energy region of interest. A number of semi-empirical models from the literature were evaluated in this study, regarding their ability to reproduce the characteristics of the measured charge state distributions. The evaluated models were selected from the literature based on whether they are suitable for the given range of atomic numbers and on their frequent use by the nuclear physics community. Finally, an attempt was made to combine model predictions for the mean charge state, the distribution width and the distribution shape, to come up with a more reliable model. We discuss this new ;combinatorial; prescription and compare its results with our experimental data and with calculations using the other semi-empirical models studied in this work.
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-01-01
By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.
NASA Astrophysics Data System (ADS)
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-01-01
By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Loritz, Ralf; Ehret, Uwe; Westhoff, Martijn; Kleidon, Axel; Savenije, Hubert
2017-04-01
It is flabbergasting to note that catchment systems often behave almost linearly, despite of the strong non-linearity of point scale soil water characteristics. In the present study we provide evidence that a thermodynamic treatment of environmental system dynamics is the key to understand how particularly a stronger spatial organization of catchments leads to a more linear rainfall runoff behavior. Our starting point is that water fluxes in a catchment are associated with fluxes of kinetic and potential energy while changes in subsurface water stocks go along with changes in potential energy and chemical energy of subsurface water. Steady state/local equilibrium of the entire system can be defined as a state of minimum free energy, reflecting an equilibrium subsurface water storage, which is determined catchment topography, soil water characteristics and water levels in the stream. Dynamics of the entire system, i.e. deviations from equilibrium storage, are 'pseudo' oscillations in a thermodynamic state space. Either to an excess potential energy in case of wetting while subsequent relaxation back to equilibrium requires drainage/water export. Or to an excess in capillary binding energy in case of driving, while relaxation back to equilibrium requires recharge of the subsurface water stock. While system dynamics is highly non-linear on the 'too dry branch' it is essentially linear on the 'too wet branch' in case of potential energy excess. A steepened topography, which reflects a stronger spatial organization, reduces the equilibrium storage of the catchment system to smaller values, thereby it increases the range of states where the systems behaves linearly due to an excess in potential energy. Contrarily to this a shift to finer textured soils increases the equilibrium storage, which implies that the range of states where the systems behaves linearly is reduced. In this context it is important to note that an increased internal organization of the system due to an elevated density of the preferential flow paths, imply a less non-linear system behavior. This is because they avoid persistence of very dry states system states by facilitating recharge of the soil moisture stock. Based on the proposed approach we compare dynamics of four distinctly different catchments in their respective state space and demonstrate the feasibility of the approach to explain differences and similarities in their rainfall runoff regimes.
Energy consumption and entropy production in a stochastic formulation of BCM learning
NASA Astrophysics Data System (ADS)
de Oliveira, L. R.; Castellani, G.; Turchetti, G.
2013-12-01
Biochemical processes in living cells are open systems, therefore they exchange materials with their environment and they consume chemical energy. These processes are molecular-based and for that reason the role of fluctuations can not be ignored and the stochastic description is the most appropriate one. The chemical master equation describes in exact way the probabilistic dynamics of a given discrete set of states and helps us to understand and clarify the differences between closed and open systems. A closed system is related to a condition of detailed balance (DB), i.e. an equilibrium state. After a sufficiently long period, an open system will reach a non-equilibrium steady state (NESS) that is sustained by a flux of external energy. We demonstrate that two implementations of the BCM learning rule (BCM82) and (BCM92) are, respectively, always in DB, and never in DB. We define a one parameter parametrization of the BCM learning rule that interpolates between these two extremes. We compute thermodynamical quantities such as internal energy, free energy (both Helmholtz and Gibbs) and entropy. The entropy variation in the case of open systems (i.e. when DB does not hold) can be divided into internal entropy production and entropy exchanged with surroundings. We show how the entropy variation can be used to find the optimal value (corresponding to increased robustness and stability) for the parameter used in the BCM parametrization. Finally, we use the calculation of the work to drive the system from an initial state to the steady state as the parameter of the plasticity of the system.
Integral Equation for the Equilibrium State of Colliding Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warnock, Robert L.
2002-11-11
We study a nonlinear integral equation for the equilibrium phase distribution of stored colliding electron beams. It is analogous to the Haissinski equation, being derived from Vlasov-Fokker-Planck theory, but is quite different in form. We prove existence of a unique solution, thus the existence of a unique equilibrium state, for sufficiently small current. This is done for the Chao-Ruth model of the beam-beam interaction in one degree of freedom. We expect no difficulty in generalizing the argument to more realistic models.
Double Scaling in the Relaxation Time in the β -Fermi-Pasta-Ulam-Tsingou Model
NASA Astrophysics Data System (ADS)
Lvov, Yuri V.; Onorato, Miguel
2018-04-01
We consider the original β -Fermi-Pasta-Ulam-Tsingou system; numerical simulations and theoretical arguments suggest that, for a finite number of masses, a statistical equilibrium state is reached independently of the initial energy of the system. Using ensemble averages over initial conditions characterized by different Fourier random phases, we numerically estimate the time scale of equipartition and we find that for very small nonlinearity it matches the prediction based on exact wave-wave resonant interaction theory. We derive a simple formula for the nonlinear frequency broadening and show that when the phenomenon of overlap of frequencies takes place, a different scaling for the thermalization time scale is observed. Our result supports the idea that the Chirikov overlap criterion identifies a transition region between two different relaxation time scalings.
Combined passive magnetic bearing element and vibration damper
Post, Richard F.
2001-01-01
A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium and dampen transversely directed vibrations. Mechanical stabilizers are provided to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. In a improvement over U.S. Pat. No. 5,495,221, a magnetic bearing element is combined with a vibration damping element to provide a single upper stationary dual-function element. The magnetic forces exerted by such an element, enhances levitation of the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations, and suppresses the effects of unbalance or inhibits the onset of whirl-type rotor-dynamic instabilities. Concurrently, this equilibrium is made stable against displacement-dependent drag forces of the rotating object from its equilibrium position.
Phase-space dynamics of opposition control in wall-bounded turbulent flows
NASA Astrophysics Data System (ADS)
Hwang, Yongyun; Ibrahim, Joseph; Yang, Qiang; Doohan, Patrick
2017-11-01
The phase-space dynamics of wall-bounded shear flow in the presence of opposition control is explored by examining the behaviours of a pair of nonlinear equilibrium solutions (exact coherent structures), edge state and life time of turbulence at low Reynolds numbers. While the control modifies statistics and phase-space location of the edge state and the lower-branch equilibrium solution very little, it is also found to regularise the periodic orbit on the edge state by reverting a period-doubling bifurcation. Only the upper-branch equilibrium solution and mean turbulent state are significantly modified by the control, and, in phase space, they gradually approach the edge state on increasing the control gain. It is found that this behaviour results in a significant reduction of the life time of turbulence, indicating that the opposition control significantly increases the probability that the turbulent solution trajectory passes through the edge state. Finally, it is shown that the opposition control increases the critical Reynolds number of the onset of the equilibrium solutions, indicating its capability of transition delay. This work is sponsored by the Engineering and Physical Sciences Research Council (EPSRC) in the UK (EP/N019342/1).
Foundations of statistical mechanics from symmetries of entanglement
Deffner, Sebastian; Zurek, Wojciech H.
2016-06-09
Envariance—entanglement assisted invariance—is a recently discovered symmetry of composite quantum systems. Here, we show that thermodynamic equilibrium states are fully characterized by their envariance. In particular, the microcanonical equilibrium of a systemmore » $${ \\mathcal S }$$ with Hamiltonian $${H}_{{ \\mathcal S }}$$ is a fully energetically degenerate quantum state envariant under every unitary transformation. A representation of the canonical equilibrium then follows from simply counting degenerate energy states. Finally, our conceptually novel approach is free of mathematically ambiguous notions such as ensemble, randomness, etc., and, while it does not even rely on probability, it helps to understand its role in the quantum world.« less
Evidence for out-of-equilibrium states in warm dense matter probed by x-ray Thomson scattering.
Clérouin, Jean; Robert, Grégory; Arnault, Philippe; Ticknor, Christopher; Kress, Joel D; Collins, Lee A
2015-01-01
A recent and unexpected discrepancy between ab initio simulations and the interpretation of a laser shock experiment on aluminum, probed by x-ray Thomson scattering (XRTS), is addressed. The ion-ion structure factor deduced from the XRTS elastic peak (ion feature) is only compatible with a strongly coupled out-of-equilibrium state. Orbital free molecular dynamics simulations with ions colder than the electrons are employed to interpret the experiment. The relevance of decoupled temperatures for ions and electrons is discussed. The possibility that it mimics a transient, or metastable, out-of-equilibrium state after melting is also suggested.
Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure.
Campi, Gaetano; Di Gioacchino, Michael; Poccia, Nicola; Ricci, Alessandro; Burghammer, Manfred; Ciasca, Gabriele; Bianconi, Antonio
2018-01-23
Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.
Influence of Initial Correlations on Evolution of a Subsystem in a Heat Bath and Polaron Mobility
NASA Astrophysics Data System (ADS)
Los, Victor F.
2017-08-01
A regular approach to accounting for initial correlations, which allows to go beyond the unrealistic random phase (initial product state) approximation in deriving the evolution equations, is suggested. An exact homogeneous (time-convolution and time-convolutionless) equations for a relevant part of the two-time equilibrium correlation function for the dynamic variables of a subsystem interacting with a boson field (heat bath) are obtained. No conventional approximation like RPA or Bogoliubov's principle of weakening of initial correlations is used. The obtained equations take into account the initial correlations in the kernel governing their evolution. The solution to these equations is found in the second order of the kernel expansion in the electron-phonon interaction, which demonstrates that generally the initial correlations influence the correlation function's evolution in time. It is explicitly shown that this influence vanishes on a large timescale (actually at t→ ∞) and the evolution process enters an irreversible kinetic regime. The developed approach is applied to the Fröhlich polaron and the low-temperature polaron mobility (which was under a long-time debate) is found with a correction due to initial correlations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanai, R.; Littlewood, P. B.; Ohashi, Y.
2016-03-01
We theoretically investigate a Bose-condensed exciton gas out of equilibrium. Within the framework of the combined BCS-Leggett strong-coupling theory with the non-equilibrium Keldysh formalism, we show how the Bose-Einstein condensation (BEC) of excitons is suppressed to eventually disappear, when the system is in the non-equilibrium steady state. The supply of electrons and holes from the bath is shown to induce quasi-particle excitations, leading to the partial occupation of the upper branch of Bogoliubov single-particle excitation spectrum. We also discuss how this quasi-particle induction is related to the suppression of exciton BEC, as well as the stability of the steady state.
Universality in volume-law entanglement of scrambled pure quantum states.
Nakagawa, Yuya O; Watanabe, Masataka; Fujita, Hiroyuki; Sugiura, Sho
2018-04-24
A pure quantum state can fully describe thermal equilibrium as long as one focuses on local observables. The thermodynamic entropy can also be recovered as the entanglement entropy of small subsystems. When the size of the subsystem increases, however, quantum correlations break the correspondence and mandate a correction to this simple volume law. The elucidation of the size dependence of the entanglement entropy is thus essentially important in linking quantum physics with thermodynamics. Here we derive an analytic formula of the entanglement entropy for a class of pure states called cTPQ states representing equilibrium. We numerically find that our formula applies universally to any sufficiently scrambled pure state representing thermal equilibrium, i.e., energy eigenstates of non-integrable models and states after quantum quenches. Our formula is exploited as diagnostics for chaotic systems; it can distinguish integrable models from non-integrable models and many-body localization phases from chaotic phases.
NASA Astrophysics Data System (ADS)
Mass, A.
2016-12-01
Cryoconites are small melt pools on the ablation surface of glaciers created by the accumulation of aeolian sediment with a lower albedo than the surrounding ice. While many cryoconites remain open to the surrounding atmosphere, environmental conditions in the McMurdo Dry Valleys of Antarctica often lead to the formation of dense ice lids due to advection from cold winds. These lidded cryoconites are isolated from atmospheric exchange while maintaining subsurface melt in a solid-state greenhouse. The varying conditions for the formation and freeze-thaw cycle of cryoconites lead to a range of biogeochemical processes occurring within the pools. This study analyzed the biochemistry of both open and lidded cryoconite water from six glaciers in the Dry Valleys throughout the initial pulse melt, equilibrium, and refreezing periods in 2013- 2015. Many of the spatial gradients in carbon cycling, solute concentrations, and pH identified for lidded cryoconites exhibited opposite trends for pools in equilibrium with the atmosphere, while temporal gradients were less diverse for open pools.
Kinetic Equation for an Unstable Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balescu, R.
1963-01-01
A kinetic equation is derived for the description of the evolution in time of the distribution of velocities in a spatially homogeneous ionized gas that, at the initial time, is able to sustain exponentially growing oscillations. This equation is expressed in terms of a functional of the distribution finction that obeys the same integral equation as in the stable case. Although the method of solution used in the stable case breaks down, the equation can still be solved in closed form under unstable conditions, and hence an explicit form of the kinetic equation is obtained. The latter contains the normalmore » collision term and a new additional term describing the stabilization of the plasma. The latter acts through friction and diffusion and brings the plasma into a state of neutral stability. From there on the system evolves toward thermal equilibrium under the action of the normal collision term as well as of an additional Fokker-Planck- like term with timedependent coefficients, which however becomes less and less efficient as the plasma approaches equilibrium.« less
Nonlinear dynamics of attractive magnetic bearings
NASA Technical Reports Server (NTRS)
Hebbale, K. V.; Taylor, D. L.
1987-01-01
The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.
Chen, Zhong-Xiu; Wu, Wen; Zhang, Wei-Bin; Deng, Shao-Ping
2011-09-01
The thermodynamics of the mimetic interaction of lactisole and sweeteners with fullerenols as a synthetic sweet receptor model was elucidated by Isothermal Titration Calorimetry (ITC) technique. The presence of lactisole resulted in great differences in thermodynamics of the sweeteners binding with fullerenols in which lactisole led to much more entropy contribution to the free energy compared with the interaction of sweeteners with fullerenols. Two interaction equilibrium states were found in ITC titration profiles and competitive binding of lactisole and sweeteners with fullerenols was disclosed. Our results indicated that the larger value of the ratio of two equilibrium constant K1/K2, the more effectively lactisole inhibited the sweetness of the sweetener. The combined results of sensory evaluation and ITC thermodynamics revealed that introducing a synthetic receptor model to interact with the sweeteners and inhibitors helps to understand the inhibition mechanism and the thermodynamic basis for the initiation of sweetness inhibition. Copyright © 2011 Elsevier Ltd. All rights reserved.
Chen, Tan; Zhou, Zeyu; Xu, Sai; Wang, Hongtao; Lu, Wenjing
2015-08-01
In this work, static equilibrium experiments were conducted to distinguish the adsorption performance between the two valence states of chromium on biochar derived from municipal sludge. The removal capacity of Cr(VI) is lower than 7mg/g at the initial chromium concentration range of 50-200mg/L, whereas that of Cr(III) higher than 20mg/g. It indicates that Cr(III) is much easier to be stabilized than Cr(VI). No significant changes in the biochar surface functional groups are observed before and after the adsorption equilibrium, demonstrating the poor contribution of organic matter in chromium adsorption. The main mechanism of heavy metal adsorption by biochar involves (1) surface precipitation through pH increase caused by biochar buffer ability, and (2) exchange between cations in solution (Cd(2+)) and in biochar matrix (e.g. Ca(2+) and Mg(2+)). The reduction of Cr(VI) to Cr(III) is necessary to improve removal efficiency of chromium. Copyright © 2015 Elsevier Ltd. All rights reserved.
Global asymptotic stability of plant-seed bank models.
Eager, Eric Alan; Rebarber, Richard; Tenhumberg, Brigitte
2014-07-01
Many plant populations have persistent seed banks, which consist of viable seeds that remain dormant in the soil for many years. Seed banks are important for plant population dynamics because they buffer against environmental perturbations and reduce the probability of extinction. Viability of the seeds in the seed bank can depend on the seed's age, hence it is important to keep track of the age distribution of seeds in the seed bank. In this paper we construct a general density-dependent plant-seed bank model where the seed bank is age-structured. We consider density dependence in both seedling establishment and seed production, since previous work has highlighted that overcrowding can suppress both of these processes. Under certain assumptions on the density dependence, we prove that there is a globally stable equilibrium population vector which is independent of the initial state. We derive an analytical formula for the equilibrium population using methods from feedback control theory. We apply these results to a model for the plant species Cirsium palustre and its seed bank.
Carvallho, Marilda N; da Silva, Karolyne S; Sales, Deivson C S; Freire, Eleonora M P L; Sobrinho, Maurício A M; Ghislandi, Marcos G
2016-01-01
The concept of physical adsorption was applied for the removal of direct and reactive blue textile dyes from industrial effluents. Commercial graphite nanoplatelets were used as substrate, and the quality of the material was characterized by atomic force and transmission electron microscopies. Dye/graphite nanoplatelets water solutions were prepared varying their pH and initial dye concentration. Exceptionally high values (beyond 100 mg/L) for adsorptive capacity of graphite nanoplatelets could be achieved without complicated chemical modifications, and equilibrium and kinetic experiments were performed. Our findings were compared with the state of the art, and compared with theoretical models. Agreement between them was satisfactory, and allowed us to propose novel considerations describing the interactions of the dyes and the graphene planar structure. The work highlights the important role of these interactions, which can govern the mobility of the dye molecules and the amount of layers that can be stacked on the graphite nanoplatelets surface.
Non-equilibrium phase transitions in a driven-dissipative system of interacting bosons
NASA Astrophysics Data System (ADS)
Young, Jeremy T.; Foss-Feig, Michael; Gorshkov, Alexey V.; Maghrebi, Mohammad F.
2017-04-01
Atomic, molecular, and optical systems provide unique opportunities to study simple models of driven-dissipative many-body quantum systems. Typically, one is interested in the resultant steady state, but the non-equilibrium nature of the physics involved presents several problems in understanding its behavior theoretically. Recently, it has been shown that in many of these models, it is possible to map the steady-state phase transitions onto classical equilibrium phase transitions. In the language of Keldysh field theory, this relation typically only becomes apparent after integrating out massive fields near the critical point, leaving behind a single massless field undergoing near-equilibrium dynamics. In this talk, we study a driven-dissipative XXZ bosonic model and discover critical points at which two fields become gapless. Each critical point separates three different possible phases: a uniform phase, an anti-ferromagnetic phase, and a limit cycle phase. Furthermore, a description in terms of an equilibrium phase transition does not seem possible, so the associated phase transitions appear to be inherently non-equilibrium.
Adiabatic out-of-equilibrium solutions to the Boltzmann equation in warm inflation
NASA Astrophysics Data System (ADS)
Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.
2018-02-01
We show that, in warm inflation, the nearly constant Hubble rate and temperature lead to an adiabatic evolution of the number density of particles interacting with the thermal bath, even if thermal equilibrium cannot be maintained. In this case, the number density is suppressed compared to the equilibrium value but the associated phase-space distribution retains approximately an equilibrium form, with a smaller amplitude and a slightly smaller effective temperature. As an application, we explicitly construct a baryogenesis mechanism during warm inflation based on the out-of-equilibrium decay of particles in such an adiabatically evolving state. We show that this generically leads to small baryon isocurvature perturbations, within the bounds set by the Planck satellite. These are correlated with the main adiabatic curvature perturbations but exhibit a distinct spectral index, which may constitute a smoking gun for baryogenesis during warm inflation. Finally, we discuss the prospects for other applications of adiabatically evolving out-of-equilibrium states.
A model on CME/Flare initiation: Loss of Equilibrium caused by mass loss of quiescent prominences
NASA Astrophysics Data System (ADS)
Miley, George; Chon Nam, Sok; Kim, Mun Song; Kim, Jik Su
2015-08-01
Coronal Mass Ejections (CMEs) model should give an answer to enough energy storage for giant bulk plasma into interplanetary space to escape against the sun’s gravitation and its explosive eruption. Advocates of ‘Mass Loading’ model (e.g. Low, B. 1996, SP, 167, 217) suggested a simple mechanism of CME initiation, the loss of mass from a prominence anchoring magnetic flux rope, but they did not associate the mass loss with the loss of equilibrium. The catastrophic loss of equilibrium model is considered as to be a prospective CME/Flare model to explain sudden eruption of magnetic flux systems. Isenberg, P. A., et al (1993, ApJ, 417, 368)developed ideal magnetohydrodynamic theory of the magnetic flux rope to show occurrence of catastrophic loss of equilibrium according to increasing magnetic flux transported into corona.We begin with extending their study including gravity on prominence’s material to obtain equilibrium curves in case of given mass parameters, which are the strengths of the gravitational force compared with the characteristic magnetic force. Furthermore, we study quasi-static evolution of the system including massive prominence flux rope and current sheet below it to obtain equilibrium curves of prominence’s height according to decreasing mass parameter in a properly fixed magnetic environment. The curves show equilibrium loss behaviors to imply that mass loss result in equilibrium loss. Released fractions of magnetic energy are greater than corresponding zero-mass case. This eruption mechanism is expected to be able to apply to the eruptions of quiescent prominences, which is located in relatively weak magnetic environment with 105 km of scale length and 10G of photospheric magnetic field.
DNA hybridization kinetics: zippering, internal displacement and sequence dependence.
Ouldridge, Thomas E; Sulc, Petr; Romano, Flavio; Doye, Jonathan P K; Louis, Ard A
2013-10-01
Although the thermodynamics of DNA hybridization is generally well established, the kinetics of this classic transition is less well understood. Providing such understanding has new urgency because DNA nanotechnology often depends critically on binding rates. Here, we explore DNA oligomer hybridization kinetics using a coarse-grained model. Strand association proceeds through a complex set of intermediate states, with successful binding events initiated by a few metastable base-pairing interactions, followed by zippering of the remaining bonds. But despite reasonably strong interstrand interactions, initial contacts frequently dissociate because typical configurations in which they form differ from typical states of similar enthalpy in the double-stranded equilibrium ensemble. Initial contacts must be stabilized by two or three base pairs before full zippering is likely, resulting in negative effective activation enthalpies. Non-Arrhenius behavior arises because the number of base pairs required for nucleation increases with temperature. In addition, we observe two alternative pathways-pseudoknot and inchworm internal displacement-through which misaligned duplexes can rearrange to form duplexes. These pathways accelerate hybridization. Our results explain why experimentally observed association rates of GC-rich oligomers are higher than rates of AT- rich equivalents, and more generally demonstrate how association rates can be modulated by sequence choice.
Accuracy of genetic code translation and its orthogonal corruption by aminoglycosides and Mg2+ ions.
Zhang, Jingji; Pavlov, Michael Y; Ehrenberg, Måns
2018-02-16
We studied the effects of aminoglycosides and changing Mg2+ ion concentration on the accuracy of initial codon selection by aminoacyl-tRNA in ternary complex with elongation factor Tu and GTP (T3) on mRNA programmed ribosomes. Aminoglycosides decrease the accuracy by changing the equilibrium constants of 'monitoring bases' A1492, A1493 and G530 in 16S rRNA in favor of their 'activated' state by large, aminoglycoside-specific factors, which are the same for cognate and near-cognate codons. Increasing Mg2+ concentration decreases the accuracy by slowing dissociation of T3 from its initial codon- and aminoglycoside-independent binding state on the ribosome. The distinct accuracy-corrupting mechanisms for aminoglycosides and Mg2+ ions prompted us to re-interpret previous biochemical experiments and functional implications of existing high resolution ribosome structures. We estimate the upper thermodynamic limit to the accuracy, the 'intrinsic selectivity' of the ribosome. We conclude that aminoglycosides do not alter the intrinsic selectivity but reduce the fraction of it that is expressed as the accuracy of initial selection. We suggest that induced fit increases the accuracy and speed of codon reading at unaltered intrinsic selectivity of the ribosome.
Evolution of conducting states and the maximum dissipated power
NASA Astrophysics Data System (ADS)
Bezryadin, A.; Tinkham, M.
1998-03-01
Evolution of conducting states in adaptable systems below the percolation threshold is studied experimentally. The sample consists of a pair of metal electrodes immersed into a colloidal suspension of conducting graphite nanoparticles in an electrically insulating liquid (toluene, mineral oil). When this initially homogeneous system is driven far from equilibrium by biasing the electrodes with a high DC voltage, a breaking of translational symmetry occurs and the conductivity increases by many orders of magnitude. Two qualitatively different conducting states are observed. The first is a self-organized critical state characterized by a sequence of avalanches with a 1/f^α power spectrum. In the process of evolution this state may transform into the second, ordered stable state with higher conductivity. The transition into the stable state occurs only if the system reaches the point when the power dissipated in the suspension is the maximum allowed by the bias voltage and series resistor. The critical states decay within a few hours while the stable states, which are characterized by visible strings of particles connecting the electrodes, exist much longer.
NASA Astrophysics Data System (ADS)
Li, Y.-F.; Ma, W.-L.; Yang, M.
2014-09-01
Gas/particle (G / P) partitioning for most semivolatile organic compounds (SVOCs) is an important process that primarily governs their atmospheric fate, long-range atmospheric transport potential, and their routs to enter human body. All previous studies on this issue have been hypothetically derived from equilibrium conditions, the results of which do not predict results from monitoring studies well in most cases. In this study, a steady-state model instead of an equilibrium-state model for the investigation of the G / P partitioning behavior for polybrominated diphenyl ethers (PBDEs) was established, and an equation for calculating the partition coefficients under steady state (KPS) for PBDE congeners (log KPS = log KPE + logα) was developed, in which an equilibrium term (log KPE = log KOA + logfOM -11.91, where fOM is organic matter content of the particles) and a nonequilibrium term (logα, mainly caused by dry and wet depositions of particles), both being functions of log KOA (octanol-air partition coefficient), are included, and the equilibrium is a special case of steady state when the nonequilibrium term equals to zero. A criterion to classify the equilibrium and nonequilibrium status for PBDEs was also established using two threshold values of log KOA, log KOA1 and log KOA2, which divide the range of log KOA into 3 domains: equilibrium, nonequilibrium, and maximum partition domains; and accordingly, two threshold values of temperature t, tTH1 when log KOA = log KOA1 and tTH2 when log KOA = log KOA2, were identified, which divide the range of temperature also into the same 3 domains for each BDE congener. We predicted the existence of the maximum partition domain (the values of log KPS reach a maximum constant of -1.53) that every PBDE congener can reach when log KOA ≥ log KOA2, or t ≤ tTH2. The novel equation developed in this study was applied to predict the G / P partition coefficients of PBDEs for the published monitoring data worldwide, including Asia, Europe, North America, and the Arctic, and the results matched well with all the monitoring data, except those obtained at e-waste sites due to the unpredictable PBDE emissions at these sites. This study provided evidence that, the new developed steady-state-based equation is superior to the equilibrium-state-based equation that has been used in describing the G / P partitioning behavior in decades. We suggest that, the investigation on G / P partitioning behavior for PBDEs should be based on steady state, not equilibrium state, and equilibrium is just a special case of steady state when nonequilibrium factors can be ignored. We also believe that our new equation provides a useful tool for environmental scientists in both monitoring and modeling research on G / P partitioning for PBDEs and can be extended to predict G / P partitioning behavior for other SVOCs as well.
Crystallisation regimes and kinetics in experimentally decompressed dacitic magma
NASA Astrophysics Data System (ADS)
Blum-Oeste, N.; Schmidt, B. C.; Webb, S. L.
2011-12-01
Kinetic processes during magma ascent may have a strong influence on the eruption style. In water bearing dacitic magmas decompression induced exsolution of water and accompanying crystallisation of plagioclase are the main processes which drive the system towards a new equilibrium state. We present new data on the evolution of residual glass composition and crystal size distributions of plagioclase from decompression experiments. Experiments have been conducted in cold seal pressure vessels at 850°C on a natural dacite composition from Taapaca volcano (N. Chile). After an initial equilibration at 2kbar decompression rates between 6.3 and 450bar/h were applied to final pressures between 50 and 1550bar where samples were rapidly quenched. Complementary equilibrium experiments were done at corresponding pressures. The glass composition evolves from the initial state towards the equilibrium at the final pressure. The completeness of this re-equilibration depends on run duration and reaction rates. We introduce the "re-equilibration index" (REI), a fraction between 0 (initial state) and 1 (final state) which allows comparison of chemical components in terms of re-equilibration at different decompression rates. REI divided by the decompression duration gives the "re-equilibration rate" (RER). The REI varies among oxides and it decreases with increasing decompression rate. The highest REIs of ~0.9 have been found for MgO, K2O and Al2O3 at 6.3bar/h whereas Na2O shows the lowest number with 0.25 at this decompression rate. Towards faster decompression all REIs tend to decrease which shows a decreasing completeness of re-equilibration. At 450bar/h the highest REIs are ~0.25. RERs increase from below ~0.005/h at 6.3bar/h up to almost 0.08/h for Al2O3 at 450bar/h. The variability of RERs of different oxides also increases with decompression rates. At 450bar/h the RERs reach from <0.005/h up to 0.08/h. Although RERs strongly increase from low to high decompression rates, this does not compensate for the decreasing duration available for re-equilibration as REIs clearly show. The volume fraction of plagioclase decreases from ~21% at 6.3bar/h to ~16% at 450bar/h which fits the decrease in REIs. The population density of small crystals decreases whereas the population density of larger crystals increases from slow to fast decompression. This reflects a transition from nucleation controlled crystallisation at slow decompression to a growth dominated regime at fast decompression. As RERs show re-equilibration is faster in the growth dominated regime. Although this transition in nucleation processes might be counter-intuitive it can be explained by the observation of slightly higher water concentrations at fast decompression rates resulting in higher liquidus temperatures and thus lower undercooling.
NASA Astrophysics Data System (ADS)
Hu, Yuan; Wang, Joseph
2017-03-01
This paper presents a fully kinetic particle particle-in-cell simulation study on the emission of a collisionless plasma plume consisting of cold beam ions and thermal electrons. Results are presented for both the two-dimensional macroscopic plume structure and the microscopic electron kinetic characteristics. We find that the macroscopic plume structure exhibits several distinctive regions, including an undisturbed core region, an electron cooling expansion region, and an electron isothermal expansion region. The properties of each region are determined by microscopic electron kinetic characteristics. The division between the undisturbed region and the cooling expansion region approximately matches the Mach line generated at the edge of the emission surface, and that between the cooling expansion region and the isothermal expansion region approximately matches the potential well established in the beam. The interactions between electrons and the potential well lead to a new, near-equilibrium state different from the initial distribution for the electrons in the isothermal expansion region. The electron kinetic characteristics in the plume are also very anisotropic. As the electron expansion process is mostly non-equilibrium and anisotropic, the commonly used assumption that the electrons in a collisionless, mesothermal plasma plume may be treated as a single equilibrium fluid in general is not valid.
Gauge turbulence, topological defect dynamics, and condensation in Higgs models
Gasenzer, Thomas; McLerran, Larry; Pawlowski, Jan M.; ...
2014-07-28
The real-time dynamics of topological defects and turbulent configurations of gauge fields for electric and magnetic confinement are studied numerically within a 2+1D Abelian Higgs model. It is shown that confinement is appearing in such systems equilibrating after a strong initial quench such as the overpopulation of the infrared modes. While the final equilibrium state does not support confinement, metastable vortex defect configurations appearing in the gauge field are found to be closely related to the appearance of physically observable confined electric and magnetic charges. These phenomena are seen to be intimately related to the approach of a non-thermal fixedmore » point of the far-from-equilibrium dynamical evolution, signaled by universal scaling in the gauge-invariant correlation function of the Higgs field. Even when the parameters of the Higgs action do not support condensate formation in the vacuum, during this approach, transient Higgs condensation is observed. We discuss implications of these results for the far-from-equilibrium dynamics of Yang–Mills fields and potential mechanisms of how confinement and condensation in non-Abelian gauge fields can be understood in terms of the dynamics of Higgs models. These suggest that there is an interesting new class of dynamics of strong coherent turbulent gauge fields with condensates.« less
Li, Xiaona; Li, Airong; Long, Mingzhong; Tian, Xingjun
2015-01-01
Ceriporia lacerata, a strain of white-rot fungus isolated from the litter of an invasive plant (Solidago canadensis) in China, was little known about its properties and utilization. In this work, the copper(II) biosorption characteristics of formaldehyde inactivated C. lacerata biomass were examined as a function of initial pH, initial copper(II) concentration and contact time, and the adsorptive equilibrium and kinetics were simulated, too. The optimum pH was found to be 6.0 at experimental conditions of initial copper(II) concentration 100 mg/L, biomass dose 2 g/L, contact time 12 h, shaking rate 150 r/min and temperature 25°C. Biosorption equilibrium cost about 1 hour at experimental conditions of pH 6.0, initial copper(II) concentration 100 mg/L, C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C. At optimum pH 6.0, highest copper(II) biosorption amounts were 6.79 and 7.76 mg/g for initial copper(II) concentration of 100 and 200 mg/L, respectively (with other experimental parameters of C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C). The pseudo second-order adsorptive model gave the best adjustment for copper(II) biosorption kinetics. The equilibrium data fitted very well to both Langmuir and Freundlich adsorptive isotherm models. Without further acid or alkali treatment for improving adsorption properties, formaldehyde inactivated C. lacerata biomass possesses good biosorption characteristics on copper(II) removal from aqueous solutions.
Zhao, Pihong; Begg, James D.; Zavarin, Mavrik; ...
2016-06-06
Here, Pu(IV) and Pu(V) sorption to goethite was investigated over a concentration range of 10 –15–10 –5 M at pH 8. Experiments with initial Pu concentrations of 10 –15 – 10 –8 M produced linear Pu sorption isotherms, demonstrating that Pu sorption to goethite is not concentration-dependent across this concentration range. Equivalent Pu(IV) and Pu(V) sorption Kd values obtained at 1 and 2-week sampling time points indicated that Pu(V) is rapidly reduced to Pu(IV) on the goethite surface. Further, it suggested that Pu surface redox transformations are sufficiently rapid to achieve an equilibrium state within 1 week, regardless of themore » initial Pu oxidation state. At initial concentrations >10 –8 M, both Pu oxidation states exhibited deviations from linear sorption behavior and less Pu was adsorbed than at lower concentrations. NanoSIMS and HRTEM analysis of samples with initial Pu concentrations of 10 –8 – 10 –6 M indicated that Pu surface and/or bulk precipitation was likely responsible for this deviation. In 10 –6 M Pu(IV) and Pu(V) samples, HRTEM analysis showed the formation of a body centered cubic (bcc) Pu 4O 7 structure on the goethite surface, confirming that reduction of Pu(V) had occurred on the mineral surface and that epitaxial distortion previously observed for Pu(IV) sorption occurs with Pu(V) as well.« less
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.; Starr, David OC. (Technical Monitor)
2001-01-01
A series of long-term integrations using the two-dimensional Goddard Cumulus Ensemble (GCE) model were performed by altering imposed environmental components to produce various quasi-equilibrium thermodynamic states. Model results show that the genesis of a warm/wet quasi-equilibrium state is mainly due to either strong vertical wind shear (from nudging) or large surface fluxes (from strong surface winds), while a cold/dry quasi-equilibrium state is attributed to a remarkably weakened mixed-wind shear (from vertical mixing due to deep convection) along with weak surface winds. In general, latent heat flux and net large-scale temperature forcing, the two dominant physical processes, dominate in the beginning stage of the simulated convective systems, then considerably weaken in the final stage, which leads to quasi-equilibrium states. A higher thermodynamic regime is found to produce a larger rainfall amount, as convective clouds are the leading source of rainfall over stratiform clouds even though the former occupy much less area. Moreover, convective clouds are more likely to occur in the presence of strong surface winds (latent heat flux), while stratiform clouds (especially the well-organized type) are favored in conditions with strong wind shear (large-scale forcing). The convective systems, which consist of distinct cloud types due to the variation in horizontal winds, are also found to propagate differently. Accordingly, convective systems with mixed-wind shear generally propagate in the direction of shear, while the system with strong (multidirectional) wind shear propagates in a more complex way. Based on the results from the temperature (Q1) and moisture (Q2) budgets, cloud-scale eddies are found to act as a hydrodynamic 'vehicle' that cascades the heat and moisture vertically. Several other specific features such as atmospheric stability, CAPE, and mass fluxes are also investigated and found to be significantly different between diverse quasi-equilibrium states. Detailed comparisons between the various states are presented.
Gafurov, M M; Aliev, A R; Ataev, M B; Rabadanov, K Sh
2013-10-01
The effects of high-voltage pulsed discharge (HVPD activation) on vibrational spectra of ion salt systems have been studied. The peculiarities of spectral display of HVPD in ion melts and aqueous solutions of electrolytes, in ion-conducting phases of crystalline and glassy salt systems have been investigated. After HVPD a salt system is in non-equilibrium activated state. In the activated state of a salt system, the relaxation time of the vibrational excited states of molecular ions is shorter than in the equilibrium state if the vibrational relaxation rate increases with temperature in the system. For those systems for which the relaxation rate decreases at elevated temperatures, the relaxation time of the vibrational excited states of molecular ions is longer than in the equilibrium state. HVPD activation of a salt system can change the configuration of the electron shell of molecular ions. Therefore, the lifetime values of activated state of salt systems are abnormally large. Copyright © 2013 Elsevier B.V. All rights reserved.
Nakedly singular non-vacuum gravitating equilibrium states
NASA Astrophysics Data System (ADS)
Woszczyna, Andrzej; Kutschera, Marek; Kubis, Sebastian; Czaja, Wojciech; Plaszczyk, Piotr; Golda, Zdzisław A.
2016-01-01
Non-vacuum static spherically symmetric spacetimes with central point-like repulsive gravity sources are investigated. Both the symmetries of spacetime and the degree of irregularity of curvature invariants, are the same as for the Schwarzschild case. The equilibrium configurations are modelled using the neutron star polytrope equation of state.
NASA Astrophysics Data System (ADS)
Tuczek, F.; Spiering, H.; Gütlich, P.
1990-06-01
Magnetic-field Mössbauer emission spectra of 57Co in MgO single crystals covering a broad velocity range and measured up to high signal-to-noise ratios are presented. In accordance with a previous study, three charge states of 57Fe are found after 57Co(EC)57Fe (EC stands for electron capture). The evaluation of the Fe(III) fraction indicates nonthermalized populations of the 6A1 ground-state Zeeman levels. The field, temperature, and angular dependences of these populations are evaluated and display qualitative differences to the findings in 57Co/LiNbO3. The implications of the cubic symmetry on the spin-selective ground-state population are considered. In addition, a completely analogous phenomenon is evidenced for the first time within an Fe(II) electronic manifold, namely, the Γ5g ground state of Fe(II) in MgO, after the nuclear decay. In contrast to the Fe(III) case, these populations are not static within the Mössbauer time window. It turns out that the attainment of thermal equilibrium can be conveniently observed by changing the field value, evidencing a direct relaxation process at 4.2 K within Γ5g. The relaxation rates are compatible with static strain data; an initial alignment is observed. Finally, there is strong evidence that the Fe(I) fraction is also populated out of thermal equilibrium. In addition to these ground-state spectra, two features are present that may be attributed to metastable excited states of Fe(II) and Fe(III). It is described in detail how these various contributions can be disentangled.
Initial Stage of Aerosol Formation from Oversaturated Vapors
NASA Astrophysics Data System (ADS)
Lushnikov, A. A.; Zagainov, V. A.; Lyubovtseva, Yu. S.
2018-03-01
The formation of aerosol particles from oversaturated vapor was considered assuming that the stable nuclei of the new phase contain two (dimers) or three (trimers) condensing vapor molecules. Exact expressions were derived and analyzed for the partition functions of the dimer and trimer suspended in a carrier gas for the rectangular well and repulsive core intermolecular potentials. The equilibrium properties of these clusters and the nucleation rate of aerosol particles were discussed. The bound states of clusters were introduced using a limitation on their total energy: molecular clusters with a negative total energy were considered to exclude configurations with noninteracting fragments.
Quench dynamics and nonequilibrium phase diagram of the bose-hubbard model.
Kollath, Corinna; Läuchli, Andreas M; Altman, Ehud
2007-05-04
We investigate the time evolution of correlations in the Bose-Hubbard model following a quench from the superfluid to the Mott insulator. For large values of the final interaction strength the system approaches a distinctly nonequilibrium steady state that bears strong memory of the initial conditions. In contrast, when the final interaction strength is comparable to the hopping, the correlations are rather well approximated by those at thermal equilibrium. The existence of two distinct nonequilibrium regimes is surprising given the nonintegrability of the Bose-Hubbard model. We relate this phenomenon to the role of quasiparticle interactions in the Mott insulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendl, Christian B.; Spohn, Herbert
The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. Here, we analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1/3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
A Locust Phase Change Model with Multiple Switching States and Random Perturbation
NASA Astrophysics Data System (ADS)
Xiang, Changcheng; Tang, Sanyi; Cheke, Robert A.; Qin, Wenjie
2016-12-01
Insects such as locusts and some moths can transform from a solitarious phase when they remain in loose populations and a gregarious phase, when they may swarm. Therefore, the key to effective management of outbreaks of species such as the desert locust Schistocercagregaria is early detection of when they are in the threshold state between the two phases, followed by timely control of their hopper stages before they fledge because the control of flying adult swarms is costly and often ineffective. Definitions of gregarization thresholds should assist preventive control measures and avoid treatment of areas that might not lead to gregarization. In order to better understand the effects of the threshold density which represents the gregarization threshold on the outbreak of a locust population, we developed a model of a discrete switching system. The proposed model allows us to address: (1) How frequently switching occurs from solitarious to gregarious phases and vice versa; (2) When do stable switching transients occur, the existence of which indicate that solutions with larger amplitudes can switch to a stable attractor with a value less than the switching threshold density?; and (3) How does random perturbation influence the switching pattern? Our results show that both subsystems have refuge equilibrium points, outbreak equilibrium points and bistable equilibria. Further, the outbreak equilibrium points and bistable equilibria can coexist for a wide range of parameters and can switch from one to another. This type of switching is sensitive to the intrinsic growth rate and the initial values of the locust population, and may result in locust population outbreaks and phase switching once a small perturbation occurs. Moreover, the simulation results indicate that the switching transient patterns become identical after some generations, suggesting that the evolving process of the perturbation system is not related to the initial value after some fixed number of generations for the same stochastic processes. However, the switching frequency and outbreak patterns can be significantly affected by the intensity of noise and the intrinsic growth rate of the locust population.
Dynamic Interaction between Cap & Trade and Electricity Markets
NASA Astrophysics Data System (ADS)
Jeev, Kumar
Greenhouse Gases (GHG), such as Carbon-Dioxide (CO2), which is released in the atmosphere due to anthropogenic activities like power production, are now accepted as the main culprits for global warming. The Regional Greenhouse Gas Initiative (RGGI), an initiative of the North East and Mid-Atlantic States of the United States (US) for limiting the emission of GHG, has developed a regional cap-and-trade program for CO2 emissions for power plants. Existing cap-and-trade programs in US and Europe for Greenhouse Gases have recently been plagued by over-allocation. Carbon prices recently collapsed in all these markets during the global recession. Since then, there have been significant policy changes, which have resulted in the adoption of aggressive emission cap targets by most major carbon emission markets. This is expected to make carbon emissions availability more restrictive, raising the prices of these credits. These emissions markets are expected to have a major impact on the wholesale electricity markets. Two models to study the interaction of these two markets are presented. These models assess the impact of the emissions market on wholesale electricity prices. The first model characterizes the competition between two types of power plants (coal and gas) in both the electricity and emissions markets as a dynamic game using the Cournot approximation. Under this approximation, we find that in the Nash equilibrium the plants increase their permit allocation to high-demand periods and the marginal value of each credit for a plant is identical in all periods under their optimal equilibrium strategy. The second numerical model allows us to explicitly evaluate the closed loop equilibrium of the dynamic interaction of two competitors in these markets. We find that plants often try to corner the market and push prices all the way to the price cap. Power plants derive most of their profits from these extreme price regimes. In the experiments where trading is allowed, plants can collude to keep prices at the price cap. These problems can be averted by careful allocation of credits and strong regulation to deter market manipulation.
NASA Astrophysics Data System (ADS)
Maher Abourabia, Aly; Hassan, Kawsar Mohammad; Abo-Elghar, Eman Mohammad
2015-02-01
We investigate a bio-system composed of a shape memory alloy (SMA) immersed and subjected to heat convection in a blood vessel, affected by heart beats that create a wave motion of long wavelength. The tackled model in (2+1)-D is based on the continuity and momentum equations for the fluid phase, besides; the state of the SMA are described via previous works in the form of statistical distributions of energy for both Martensite and Austenite phases. The solution based on the reductive perturbation technique gives a thermal diffusion-like equation as a key for expressing the temperature and velocity components of the blood. In terms of two cases concerning the difference between the wave numbers in the perpendicular directions, it is found that the system's temperature increases nonlinearly from a minimum initial temperature 293 K (20 °C) up to a maximum value about 316.68 K (43.68 °C), then tends to decrease along the blood flow (anisotropy of K and L) direction. In both cases it is observed that the SMA acquires most of this temperature raising not the blood because of its conventional biological limits (37-40 °C). The range of the heart beats wave numbers characteristic for each person plays an important role in realizing phase changes in the anisotropic case leading to the formation of the hysteresis loops Martensite-Austenite-Martensite or vice versa, according to the energy variation. The entropy generation σ is investigated for the system (Blood + SMA), it predicts that along the flow direction the system gains energy convectively up to a maximum value, then reverses his tendency to gradually loosing energy passing by the equilibrium state, then the system looses energy to the surroundings by the same amount which was gained beforehand. The loss diminishes but stops before arriving to equilibrium again. For certain differences in wave numbers the system starts to store energy again after it passes by the state of equilibrium for the second time. In the curves of σ the common points of intersections can be looked for as the positions where the phase changes take place. It is observed that the effect of heat transfer is dominated over the viscous dissipation substantially; this is illustrated by the irreversibility distribution ratio ϕ and the Bejan number. On the other hand this is assured by the smallness of the ratio between the initial effect of shear viscosity to the initial thermal effect in the alloy (Γ ≈ 10-8). Furthermore, this allows the SMA to reveal the properties of phase change in order, for instance, to prevent the passage of large clots from reaching the lungs.
NASA Astrophysics Data System (ADS)
de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.
2014-08-01
We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their capabilities to switch from one state to another as is observed during synaptic plasticity, cell fate determination, and differentiation.
de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C
2014-08-14
We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their capabilities to switch from one state to another as is observed during synaptic plasticity, cell fate determination, and differentiation.
Equilibrium moisture content of wood in outdoor locations in the United States and worldwide
W. T. Simpson
1998-01-01
With relative humidity and temperature data from the National Oceanic and Atmospheric Administration, the average equilibrium moisture content for each month of the year was calculated for 262 locations in the United States and 122 locations outside the United States. As an aid for storage of kiln-dried lumber, a graph is presented for determining the reduction in...
Optimally moderated nuclear fission reactor and fuel source therefor
Ougouag, Abderrafi M [Idaho Falls, ID; Terry, William K [Shelley, ID; Gougar, Hans D [Idaho Falls, ID
2008-07-22
An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.
Rapid-Equilibrium Enzyme Kinetics
ERIC Educational Resources Information Center
Alberty, Robert A.
2008-01-01
Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…
Equilibrium gas-oil ratio measurements using a microfluidic technique.
Fisher, Robert; Shah, Mohammad Khalid; Eskin, Dmitry; Schmidt, Kurt; Singh, Anil; Molla, Shahnawaz; Mostowfi, Farshid
2013-07-07
A method for measuring the equilibrium GOR (gas-oil ratio) of reservoir fluids using microfluidic technology is developed. Live crude oils (crude oil with dissolved gas) are injected into a long serpentine microchannel at reservoir pressure. The fluid forms a segmented flow as it travels through the channel. Gas and liquid phases are produced from the exit port of the channel that is maintained at atmospheric conditions. The process is analogous to the production of crude oil from a formation. By using compositional analysis and thermodynamic principles of hydrocarbon fluids, we show excellent equilibrium between the produced gas and liquid phases is achieved. The GOR of a reservoir fluid is a key parameter in determining the equation of state of a crude oil. Equations of state that are commonly used in petroleum engineering and reservoir simulations describe the phase behaviour of a fluid at equilibrium state. Therefore, to accurately determine the coefficients of an equation of state, the produced gas and liquid phases have to be as close to the thermodynamic equilibrium as possible. In the examples presented here, the GORs measured with the microfluidic technique agreed with GOR values obtained from conventional methods. Furthermore, when compared to conventional methods, the microfluidic technique was simpler to perform, required less equipment, and yielded better repeatability.
Numerical Experiments Based on the Catastrophe Model of Solar Eruptions
NASA Astrophysics Data System (ADS)
Xie, X. Y.; Ziegler, U.; Mei, Z. X.; Wu, N.; Lin, J.
2017-11-01
On the basis of the catastrophe model developed by Isenberg et al., we use the NIRVANA code to perform the magnetohydrodynamics (MHD) numerical experiments to look into various behaviors of the coronal magnetic configuration that includes a current-carrying flux rope used to model the prominence levitating in the corona. These behaviors include the evolution in equilibrium heights of the flux rope versus the change in the background magnetic field, the corresponding internal equilibrium of the flux rope, dynamic properties of the flux rope after the system loses equilibrium, as well as the impact of the referential radius on the equilibrium heights of the flux rope. In our calculations, an empirical model of the coronal density distribution given by Sittler & Guhathakurta is used, and the physical diffusion is included. Our experiments show that the deviation of simulations in the equilibrium heights from the theoretical results exists, but is not apparent, and the evolutionary features of the two results are similar. If the flux rope is initially locate at the stable branch of the theoretical equilibrium curve, the flux rope will quickly reach the equilibrium position in the simulation after several rounds of oscillations as a result of the self-adjustment of the system; and the flux rope lose the equilibrium if the initial location of the flux rope is set at the critical point on the theoretical equilibrium curve. Correspondingly, the internal equilibrium of the flux rope can be reached as well, and the deviation from the theoretical results is somewhat apparent since the approximation of the small radius of the flux rope is lifted in our experiments, but such deviation does not affect the global equilibrium in the system. The impact of the referential radius on the equilibrium heights of the flux rope is consistent with the prediction of the theory. Our calculations indicate that the motion of the flux rope after the loss of equilibrium is consistent with which is predicted by the Lin-Forbes model and observations. Formation of the fast mode shock ahead of the flux rope is observed in our experiments. Outward motions of the flux rope are smooth, and magnetic energy is continuously converted into the other types of energy because both the diffusions are considered in calculations, and magnetic reconnection is allowed to occur successively in the current sheet behind the flux rope.
Steady-state entanglement and thermalization of coupled qubits in two common heat baths
NASA Astrophysics Data System (ADS)
Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie
2018-03-01
In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.
NASA Astrophysics Data System (ADS)
McCaffery, Anthony J.
2018-03-01
This study of near-resonant, vibration-vibration (V-V) gas-phase energy transfer in diatomic molecules uses the theoretical/computational method, of Marsh & McCaffery (Marsh & McCaffery 2002 J. Chem. Phys. 117, 503 (doi:10.1063/1.1489998)) The method uses the angular momentum (AM) theoretical formalism to compute quantum-state populations within the component molecules of large, non-equilibrium, gas mixtures as the component species proceed to equilibration. Computed quantum-state populations are displayed in a number of formats that reveal the detailed mechanism of the near-resonant V-V process. Further, the evolution of quantum-state populations, for each species present, may be followed as the number of collision cycles increases, displaying the kinetics of evolution for each quantum state of the ensemble's molecules. These features are illustrated for ensembles containing vibrationally excited N2 in H2, O2 and N2 initially in their ground states. This article is part of the theme issue `Modern theoretical chemistry'.
The impact of human-environment interactions on the stability of forest-grassland mosaic ecosystems
Innes, Clinton; Anand, Madhur; Bauch, Chris T.
2013-01-01
Forest-grassland mosaic ecosystems can exhibit alternative stables states, whereby under the same environmental conditions, the ecosystem could equally well reside either in one state or another, depending on the initial conditions. We develop a mathematical model that couples a simplified forest-grassland mosaic model to a dynamic model of opinions about conservation priorities in a population, based on perceptions of ecosystem rarity. Weak human influence increases the region of parameter space where alternative stable states are possible. However, strong human influence precludes bistability, such that forest and grassland either co-exist at a single, stable equilibrium, or their relative abundance oscillates. Moreover, a perturbation can shift the system from a stable state to an oscillatory state. We conclude that human-environment interactions can qualitatively alter the composition of forest-grassland mosaic ecosystems. The human role in such systems should be viewed as dynamic, responsive element rather than as a fixed, unchanging entity. PMID:24048359
Doppler-resolved kinetics of saturation recovery
Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; ...
2015-04-08
Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore » recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less
Relativistic equipartition via a massive damped sliding partition
NASA Astrophysics Data System (ADS)
Crawford, Frank S.
1993-04-01
A cylinder partitioned by a massive sliding slab undergoing nonrelativistic damped one-dimensional (1D) motion under bombardment from the left (i=1) and right (i=2) by particles having rest mass mi, speed vi, relativistic momentum (magnitude) pi, and (let c≡1) total energy Ei=(pi2+mi2)1/2 is considered herein. The damped slab of mass M transforms the system from its initial pi distributions (i=1,2) to a state, first, of pressure (P) equilibrium with P1=P2, but temperature T1≠T2, then, to P-T equilibrium with P1=P2 and T1=T2, given by the (1D) ``first moment'' equipartition relation (κ is Boltzmann's constant),
Pre-equilibrium Longitudinal Flow in the IP-Glasma Framework for Pb+Pb Collisions at the LHC
NASA Astrophysics Data System (ADS)
McDonald, Scott; Shen, Chun; Fillion-Gourdeau, François; Jeon, Sangyong; Gale, Charles
2017-08-01
In this work, we debut a new implementation of IP-Glasma and quantify the pre-equilibrium longitudinal flow in the IP-Glasma framework. The saturation physics based IP-Glasma model naturally provides a non-zero initial longitudinal flow through its pre-equilibrium Yang-Mills evolution. A hybrid IP-Glasma+MUSIC+UrQMD frame-work is employed to test this new implementation against experimental data and to make further predictions about hadronic flow observables in Pb+Pb collisions at 5.02 TeV. Finally, the non-zero pre-equilibrium longitudinal flow of the IP-Glasma model is quantified, and its origin is briefly discussed.
Phase Transitions and Scaling in Systems Far from Equilibrium
NASA Astrophysics Data System (ADS)
Täuber, Uwe C.
2017-03-01
Scaling ideas and renormalization group approaches proved crucial for a deep understanding and classification of critical phenomena in thermal equilibrium. Over the past decades, these powerful conceptual and mathematical tools were extended to continuous phase transitions separating distinct nonequilibrium stationary states in driven classical and quantum systems. In concordance with detailed numerical simulations and laboratory experiments, several prominent dynamical universality classes have emerged that govern large-scale, long-time scaling properties both near and far from thermal equilibrium. These pertain to genuine specific critical points as well as entire parameter space regions for steady states that display generic scale invariance. The exploration of nonstationary relaxation properties and associated physical aging scaling constitutes a complementary potent means to characterize cooperative dynamics in complex out-of-equilibrium systems. This review describes dynamic scaling features through paradigmatic examples that include near-equilibrium critical dynamics, driven lattice gases and growing interfaces, correlation-dominated reaction-diffusion systems, and basic epidemic models.
A New Equilibrium State for Singly Synchronous Binary Asteroids
NASA Astrophysics Data System (ADS)
Golubov, Oleksiy; Unukovych, Vladyslav; Scheeres, Daniel J.
2018-04-01
The evolution of rotation states of small asteroids is governed by the Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect, nonetheless some asteroids can stop their YORP evolution by attaining a stable equilibrium. The same is true for binary asteroids subjected to the binary YORP (BYORP) effect. Here we discuss a new type of equilibrium that combines these two, which is possible in a singly synchronous binary system. This equilibrium occurs when the normal YORP, the tangential YORP, and the BYORP compensate each other, and tidal torques distribute the angular momentum between the components of the system and dissipate energy. If unperturbed, such a system would remain singly synchronous in perpetuity with constant spin and orbit rates, as the tidal torques dissipate the incoming energy from impinging sunlight at the same rate. The probability of the existence of this kind of equilibrium in a binary system is found to be on the order of a few percent.
A Holistic Equilibrium Theory of Organization Development
ERIC Educational Resources Information Center
Yang, Baiyin; Zheng, Wei
2005-01-01
This paper proposes a holistic equilibrium theory of organizational development (OD). The theory states that there are three driving forces in organizational change and development--rationality, reality, and liberty. OD can be viewed as a planned process of change in an organization so as to establish equilibrium among these three interacting…
The Lewis Chemical Equilibrium Program with parametric study capability
NASA Technical Reports Server (NTRS)
Sevigny, R.
1981-01-01
The program was developed to determine chemical equilibrium in complex systems. Using a free energy minimization technique, the program permits calculations such as: chemical equilibrium for assigned thermodynamic states; theoretical rocket performance for both equilibrium and frozen compositions during expansion; incident and reflected shock properties; and Chapman-Jouget detonation properties. It is shown that the same program can handle solid coal in an entrained flow coal gasification problem.
Physical analysis of the process of cavitation in xylem sap.
Shen, Fanyi; Gao, Rongfu; Liu, Wenji; Zhang, Wenjie
2002-06-01
Recent studies have confirmed that cavitation in xylem is caused by air bubbles. We analyzed expansion of a preexistent bubble adhering to a crack in a conduit wall and a bubble formed by the passage of air through a pore of a pit membrane, a process known as air seeding. We consider that there are two equilibrium states for a very small air bubble in the xylem: one is temporarily stable with a bubble radius r1 at point s1 on the curve P(r) relating pressure within the bubble (P) with bubble radius (r); the other is unstable with a bubble radius r2 at point s2 on Pr (where r1 < r2). In each equilibrium state, the bubble collapse pressure (2sigma/r, where sigma is surface tension of water) is balanced by the pressure difference across its surface. In the case of a bubble from a crack in a conduit wall, which is initially at point s1, expansion will occur steadily as water potential decreases. The bubble will burst only if the xylem pressure drops below a threshold value. A formula giving the threshold pressure for bubble bursting is proposed. In the case of an air seed entering a xylem conduit through a pore in a pit membrane, its initial radius may be r2 (i.e., the radius of the pore by which the air seed entered the vessel) at point s2 on Pr. Because the bubble is in an unstable equilibrium when entering the conduit, it can either expand or contract to point s1. As water vaporizes into the air bubble at s2, P rises until it exceeds the gas pressure that keeps the bubble in equilibrium, at which point the bubble will burst and induce a cavitation event in accordance with the air-seeding hypothesis. However, other possible perturbations could make the air-seeded bubble contract to s1, in which case the bubble will burst at a threshold pressure proposed for a bubble expanding from a crack in a conduit wall. For this reason some cavitation events may take place at a xylem threshold pressure (Pl'*) other than that determined by the formula, Plp'* = -2sigma/rp, proposed by Sperry and Tyree (1988), which is applicable only to air-seeded bubbles at s2. The more general formula we propose for calculating the threshold pressure for bubble breaking is consistent with the results of published experiments.
Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.
Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza
2015-01-01
A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.
Derivation of the chemical-equilibrium rate coefficient using scattering theory
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1977-01-01
Scattering theory is applied to derive the equilibrium rate coefficient for a general homogeneous chemical reaction involving ideal gases. The reaction rate is expressed in terms of the product of a number of normalized momentum distribution functions, the product of the number of molecules with a given internal energy state, and the spin-averaged T-matrix elements. An expression for momentum distribution at equilibrium for an arbitrary molecule is presented, and the number of molecules with a given internal-energy state is represented by an expression which includes the partition function.
Quantum Games under Decoherence
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Qiu, Daowen
2016-02-01
Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv: 1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners' Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game's properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which the payoffs become zero.
The Stability of Tidal Equilibrium for Hierarchical Star-Planet-Moon Systems
NASA Astrophysics Data System (ADS)
Adams, Fred C.
2018-04-01
Motivated by the current search for exomoons, this talk considers the stability of tidal equilibrium for hierarchical three-body systems containing a star, a planet, and a moon. In this treatment, the energy and angular momentum budgets include contributions from the planetary orbit, lunar orbit, stellar spin, planetary spin, and lunar spin. The goal is to determine the optimized energy state of the system subject to the constraint of constant angular momentum. Due to the lack of a closed form solution for the full three-body problem, however, we must use use an approximate description of the orbits. We first consider the Keplerian limit and find that the critical energy states are saddle points, rather than minima, so that these hierarchical systems have no stable tidal equilibrium states. We then generalize the calculation so that the lunar orbit is described by a time-averaged version of the circular restricted three-body problem. In this latter case, the critical energy state is a shallow minimum, so that a tidal equilibrium state exists. In both cases, however, the lunar orbit for the critical point lies outside the boundary (roughly half the Hill radius) where (previous) numerical simulations indicate dynamical instability.
NASA Astrophysics Data System (ADS)
Cohen, E. G. D.
Lecture notes are organized around the key word dissipation, while focusing on a presentation of modern theoretical developments in the study of irreversible phenomena. A broad cross-disciplinary perspective towards non-equilibrium statistical mechanics is backed by the general theory of nonlinear and complex dynamical systems. The classical-quantum intertwine and semiclassical dissipative borderline issue (decoherence, "classical out of quantum") are here included . Special emphasis is put on links between the theory of classical and quantum dynamical systems (temporal disorder, dynamical chaos and transport processes) with central problems of non-equilibrium statistical mechanics like e.g. the connection between dynamics and thermodynamics, relaxation towards equilibrium states and mechanisms capable to drive and next maintain the physical system far from equilibrium, in a non-equilibrium steady (stationary) state. The notion of an equilibrium state - towards which a system naturally evolves if left undisturbed - is a fundamental concept of equilibrium statistical mechanics. Taken as a primitive point of reference that allows to give an unambiguous status to near equilibrium and far from equilibrium systems, together with the dynamical notion of a relaxation (decay) towards a prescribed asymptotic invariant measure or probability distribution (properties of ergodicity and mixing are implicit). A related issue is to keep under control the process of driving a physical system away from an initial state of equilibrium and either keeping it in another (non-equilibrium) steady state or allowing to restore the initial data (return back, relax). To this end various models of environment (heat bath, reservoir, thermostat, measuring instrument etc.), and the environment - system coupling are analyzed. The central theme of the book is the dynamics of dissipation and various mechanisms responsible for the irreversible behaviour (transport properties) of open systems on classical and quantum levels of description. A distinguishing feature of these lecture notes is that microscopic foundations of irreversibility are investigated basically in terms of "small" systems, when the "system" and/or "environment" may have a finite (and small) number of degrees of freedom and may be bounded. This is to be contrasted with the casual understanding of statistical mechanics which is regarded to refer to systems with a very large number of degrees of freedom. In fact, it is commonly accepted that the accumulation of effects due to many (range of the Avogadro number) particles is required for statistical mechanics reasoning. Albeit those large numbers are not at all sufficient for transport properties. A helpful hint towards this conceptual turnover comes from the observation that for chaotic dynamical systems the random time evolution proves to be compatible with the underlying purely deterministic laws of motion. Chaotic features of the classical dynamics already appear in systems with two degrees of freedom and such systems need to be described in statistical terms, if we wish to quantify the dynamics of relaxation towards an invariant ergodic measure. The relaxation towards equilibrium finds a statistical description through an analysis of statistical ensembles. This entails an extension of the range of validity of statistical mechanics to small classical systems. On the other hand, the dynamics of fluctuations in macroscopic dissipative systems (due to their molecular composition and thermal mobility) may render a characterization of such systems as being chaotic. That motivates attempts of understanding the role of microscopic chaos and various "chaotic hypotheses" - dynamical systems approach is being pushed down to the level of atoms, molecules and complex matter constituents, whose natural substitute are low-dimensional model subsystems (encompassing as well the mesoscopic "quantum chaos") - in non-equilibrium transport phenomena. On the way a number of questions is addressed like e.g.: is there, or what is the nature of a connection between chaos (modern theory of dynamical systems) and irreversible thermodynamics; can really quantum chaos explain some peculiar features of quantum transport? The answer in both cases is positive, modulo a careful discrimination between viewing the dynamical chaos as a necessary or sufficient basis for irreversibility. In those dynamical contexts, another key term dynamical semigroups refers to major technical tools appropriate for the "dissipative mathematics", modelling irreversible behaviour on the classical and quantum levels of description. Dynamical systems theory and "quantum chaos" research involve both a high level of mathematical sophistication and heavy computer "experimentation". One of the present volume specific flavors is a tutorial access to quite advanced mathematical tools. They gradually penetrate the classical and quantum dynamical semigroup description, while culminating in the noncommutative Brillouin zone construction as a prerequisite to understand transport in aperiodic solids. Lecture notes are structured into chapters to give a better insight into major conceptual streamlines. Chapter I is devoted to a discussion of non-equilibrium steady states and, through so-called chaotic hypothesis combined with suitable fluctuation theorems, elucidates the role of Sinai-Ruelle-Bowen distribution in both equilibrium and non-equilibrium statistical physics frameworks (E. G. D. Cohen). Links between dynamics and statistics (Boltzmann versus Tsallis) are also discussed. Fluctuation relations and a survey of deterministic thermostats are given in the context of non-equilibrium steady states of fluids (L. Rondoni). Response of systems driven far from equilibrium is analyzed on the basis of a central assertion about the existence of the statistical representation in terms of an ensemble of dynamical realizations of the driving process. Non-equilibrium work relation is deduced for irreversible processes (C. Jarzynski). The survey of non-equilibrium steady states in statistical mechanics of classical and quantum systems employs heat bath models and the random matrix theory input. The quantum heat bath analysis and derivation of fluctuation-dissipation theorems is performed by means of the influence functional technique adopted to solve quantum master equations (D. Kusnezov). Chapter II deals with an issue of relaxation and its dynamical theory in both classical and quantum contexts. Pollicott-Ruelle resonance background for the exponential decay scenario is discussed for irreversible processes of diffusion in the Lorentz gas and multibaker models (P. Gaspard). The Pollicott-Ruelle theory reappears as a major inspiration in the survey of the behaviour of ensembles of chaotic systems, with a focus on model systems for which no rigorous results concerning the exponential decay of correlations in time is available (S. Fishman). The observation, that non-equilibrium transport processes in simple classical chaotic systems can be described in terms of fractal structures developing in the system phase space, links their formation and properties with the entropy production in the course of diffusion processes displaying a low dimensional deterministic (chaotic) origin (J. R. Dorfman). Chapter III offers an introduction to the theory of dynamical semigroups. Asymptotic properties of Markov operators and Markov semigroups acting in the set of probability densities (statistical ensemble notion is implicit) are analyzed. Ergodicity, mixing, strong (complete) mixing and sweeping are discussed in the familiar setting of "noise, chaos and fractals" (R. Rudnicki). The next step comprises a passage to quantum dynamical semigroups and completely positive dynamical maps, with an ultimate goal to introduce a consistent framework for the analysis of irreversible phenomena in open quantum systems, where dissipation and decoherence are crucial concepts (R. Alicki). Friction and damping in classical and quantum mechanics of finite dissipative systems is analyzed by means of Markovian quantum semigroups with special emphasis on the issue of complete positivity (M. Fannes). Specific two-level model systems of elementary particle physics (kaons) and rudiments of neutron interferometry are employed to elucidate a distinction between positivity and complete positivity (F. Benatti). Quantization of dynamics of stochastic models related to equilibrium Gibbs states results in dynamical maps which form quantum stochastic dynamical semigroups (W. A. Majewski). Chapter IV addresses diverse but deeply interrelated features of driven chaotic (mesoscopic) classical and quantum systems, their dissipative properties, notions of quantum irreversibility, entanglement, dephasing and decoherence. A survey of non-perturbative quantum effects for open quantum systems is concluded by outlining the discrepancies between random matrix theory and non-perturbative semiclassical predictions (D. Cohen). As a useful supplement to the subject of bounded open systems, methods of quantum state control in a cavity (coherent versus incoherent dynamics and dissipation) are described for low dimensional quantum systems (A. Buchleitner). The dynamics of open quantum systems can be alternatively described by means of non-Markovian stochastic Schrödinger equation, jointly for an open system and its environment, which moves us beyond the Linblad evolution scenario of Markovian dynamical semigroups. The quantum Brownian motion is considered (W. Strunz) . Chapter V enforces a conceptual transition 'from "small" to "large" systems with emphasis on irreversible thermodynamics of quantum transport. Typical features of the statistical mechanics of infinitely extended systems and the dynamical (small) systems approach are described by means of representative examples of relaxation towards asymptotic steady states: quantum one-dimensional lattice conductor and an open multibaker map (S. Tasaki). Dissipative transport in aperiodic solids is reviewed by invoking methods on noncommutative geometry. The anomalous Drude formula is derived. The occurence of quantum chaos is discussed together with its main consequences (J. Bellissard). The chapter is concluded by a survey of scaling limits of the N-body Schrödinger quantum dynamics, where classical evolution equations of irreversible statistical mechanics (linear Boltzmann, Hartree, Vlasov) emerge "out of quantum". In particular, a scaling limit of one body quantum dynamics with impurities (static random potential) and that of quantum dynamics with weakly coupled phonons are shown to yield the linear Boltzmann equation (L. Erdös). Various interrelations between chapters and individual lectures, plus a detailed fine-tuned information about the subject matter coverage of the volume, can be recovered by examining an extensive index.
Wu, Xiongwu; Brooks, Bernard R.
2015-01-01
Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66’s pKa. PMID:26506245
Wu, Xiongwu; Brooks, Bernard R
2015-10-01
Chemical and thermodynamic equilibrium of multiple states is a fundamental phenomenon in biology systems and has been the focus of many experimental and computational studies. This work presents a simulation method to directly study the equilibrium of multiple states. This method constructs a virtual mixture of multiple states (VMMS) to sample the conformational space of all chemical states simultaneously. The VMMS system consists of multiple subsystems, one for each state. The subsystem contains a solute and a solvent environment. The solute molecules in all subsystems share the same conformation but have their own solvent environments. Transition between states is implicated by the change of their molar fractions. Simulation of a VMMS system allows efficient calculation of relative free energies of all states, which in turn determine their equilibrium molar fractions. For systems with a large number of state transition sites, an implicit site approximation is introduced to minimize the cost of simulation. A direct application of the VMMS method is for constant pH simulation to study protonation equilibrium. Applying the VMMS method to a heptapeptide of 3 ionizable residues, we calculated the pKas of those residues both with all explicit states and with implicit sites and obtained consistent results. For mouse epidermal growth factor of 9 ionizable groups, our VMMS simulations with implicit sites produced pKas of all 9 ionizable groups and the results agree qualitatively with NMR measurement. This example demonstrates the VMMS method can be applied to systems of a large number of ionizable groups and the computational cost scales linearly with the number of ionizable groups. For one of the most challenging systems in constant pH calculation, SNase Δ+PHS/V66K, our VMMS simulation shows that it is the state-dependent water penetration that causes the large deviation in lysine66's pKa.
NASA Astrophysics Data System (ADS)
Fan, Tai-Fang
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Magneto - Optical Imaging of Superconducting MgB2 Thin Films
NASA Astrophysics Data System (ADS)
Hummert, Stephanie Maria
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Open Markov Processes and Reaction Networks
NASA Astrophysics Data System (ADS)
Swistock Pollard, Blake Stephen
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Boron Carbide Filled Neutron Shielding Textile Polymers
NASA Astrophysics Data System (ADS)
Manzlak, Derrick Anthony
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Parallel Unstructured Grid Generation for Complex Real-World Aerodynamic Simulations
NASA Astrophysics Data System (ADS)
Zagaris, George
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Schiavone, Clinton Cleveland
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Processing and Conversion of Algae to Bioethanol
NASA Astrophysics Data System (ADS)
Kampfe, Sara Katherine
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
The Development of the CALIPSO LiDAR Simulator
NASA Astrophysics Data System (ADS)
Powell, Kathleen A.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Exploring a Novel Approach to Technical Nuclear Forensics Utilizing Atomic Force Microscopy
NASA Astrophysics Data System (ADS)
Peeke, Richard Scot
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Scully, Malcolm E.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Production of Cyclohexylene-Containing Diamines in Pursuit of Novel Radiation Shielding Materials
NASA Astrophysics Data System (ADS)
Bate, Norah G.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Development of Boron-Containing Polyimide Materials and Poly(arylene Ether)s for Radiation Shielding
NASA Astrophysics Data System (ADS)
Collins, Brittani May
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
Magnetization Dynamics and Anisotropy in Ferromagnetic/Antiferromagnetic Ni/NiO Bilayers
NASA Astrophysics Data System (ADS)
Petersen, Andreas
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
The Approach to Equilibrium: Detailed Balance and the Master Equation
ERIC Educational Resources Information Center
Alexander, Millard H.; Hall, Gregory E.; Dagdigian, Paul J.
2011-01-01
The approach to the equilibrium (Boltzmann) distribution of populations of internal states of a molecule is governed by inelastic collisions in the gas phase and with surfaces. The set of differential equations governing the time evolution of the internal state populations is commonly called the master equation. An analytic solution to the master…
Drop-tower experiments for capillary surfaces in an exotic container
NASA Technical Reports Server (NTRS)
Concus, Paul; Finn, Robert; Weislogel, Mark
1991-01-01
Low-gravity drop-tower experiments are carried out for an 'exotic' rotationally-symmetric container, which admits an entire continuum of distinct equilibrium symmetric capillary free surfaces. It is found that an initial equilibrium planer interface, a member of the continuum, will reorient toward a non-symmetric interface, as predicted by recent mathematical theory.
Local and global dynamics of Ramsey model: From continuous to discrete time.
Guzowska, Malgorzata; Michetti, Elisabetta
2018-05-01
The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.
Local and global dynamics of Ramsey model: From continuous to discrete time
NASA Astrophysics Data System (ADS)
Guzowska, Malgorzata; Michetti, Elisabetta
2018-05-01
The choice of time as a discrete or continuous variable may radically affect equilibrium stability in an endogenous growth model with durable consumption. In the continuous-time Ramsey model [F. P. Ramsey, Econ. J. 38(152), 543-559 (1928)], the steady state is locally saddle-path stable with monotonic convergence. However, in the discrete-time version, the steady state may be unstable or saddle-path stable with monotonic or oscillatory convergence or periodic solutions [see R.-A. Dana et al., Handbook on Optimal Growth 1 (Springer, 2006) and G. Sorger, Working Paper No. 1505 (2015)]. When this occurs, the discrete-time counterpart of the continuous-time model is not consistent with the initial framework. In order to obtain a discrete-time Ramsey model preserving the main properties of the continuous-time counterpart, we use a general backward and forward discretisation as initially proposed by Bosi and Ragot [Theor. Econ. Lett. 2(1), 10-15 (2012)]. The main result of the study here presented is that, with this hybrid discretisation method, fixed points and local dynamics do not change. For what it concerns global dynamics, i.e., long-run behavior for initial conditions taken on the state space, we mainly perform numerical analysis with the main scope of comparing both qualitative and quantitative evolution of the two systems, also varying some parameters of interest.
Fermi edge singularity in a tunnel junction
NASA Astrophysics Data System (ADS)
Zhang, Jin; Sherkunov, Yury; D'Ambrumenil, Nicholas; Muzykantskii, Boris
2010-03-01
We present results on the non-equilibrium Fermi edge singularity (FES) problem in tunnel junctions. The FES, which is present in a Fermi gas subject to any sudden change of potential, manifests itself in the final state many body interaction between the electrons in the leads [1]. We establish a connection between the FES problem in a tunnel junction and the Full Counting Statistics (FCS) for the device [2]. We find that the exact profile of the changing potential (or the profile for the barrier opening and closing in the tunnel junction case) strongly affects the overlap between the initial and final state of the Fermi gas. We factorize the contribution to the FES into two approximately independent terms: one is connected with the short time opening process while the other is concerned with the long time asymptotic effect, namely the Anderson orthogonality catastrophe. We consider applications to a localized level coupled through a tunnel barrier to a 1D lead driven out of equilibrium [3]. References: [1] G. Mahan, Phys. Rev. 163, 1612 (1967); P. Nozieres and C. T. De Dominicis, Phys. Rev. 178, 1079 (1969); P. Anderson, Phys. Rev. Lett. 18, 1049 (1967) [2] J. Zhang, Y. Sherkunov, N. d'Ambrumenil, and B. Muzykantskii, ArXiv:0909.3427 [3] D. Abanin and L. Levitov, Phys. Rev. Lett. 94, 186803 (2005)
Morgan, W James; Matthews, Devin A; Ringholm, Magnus; Agarwal, Jay; Gong, Justin Z; Ruud, Kenneth; Allen, Wesley D; Stanton, John F; Schaefer, Henry F
2018-03-13
Geometric energy derivatives which rely on core-corrected focal-point energies extrapolated to the complete basis set (CBS) limit of coupled cluster theory with iterative and noniterative quadruple excitations, CCSDTQ and CCSDT(Q), are used as elements of molecular gradients and, in the case of CCSDT(Q), expansion coefficients of an anharmonic force field. These gradients are used to determine the CCSDTQ/CBS and CCSDT(Q)/CBS equilibrium structure of the S 0 ground state of H 2 CO where excellent agreement is observed with previous work and experimentally derived results. A fourth-order expansion about this CCSDT(Q)/CBS reference geometry using the same level of theory produces an exceptional level of agreement to spectroscopically observed vibrational band origins with a MAE of 0.57 cm -1 . Second-order vibrational perturbation theory (VPT2) and variational discrete variable representation (DVR) results are contrasted and discussed. Vibration-rotation, anharmonicity, and centrifugal distortion constants from the VPT2 analysis are reported and compared to previous work. Additionally, an initial application of a sum-over-states fourth-order vibrational perturbation theory (VPT4) formalism is employed herein, utilizing quintic and sextic derivatives obtained with a recursive algorithmic approach for response theory.
Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems
Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; del Giudice, Paolo
2015-01-01
Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases. PMID:26463272
Radiation Pressure Cooling as a Quantum Dynamical Process
NASA Astrophysics Data System (ADS)
He, Bing; Yang, Liu; Lin, Qing; Xiao, Min
2017-06-01
One of the most fundamental problems in optomechanical cooling is how small the thermal phonon number of a mechanical oscillator can be achieved under the radiation pressure of a proper cavity field. Different from previous theoretical predictions, which were based on an optomechanical system's time-independent steady states, we treat such cooling as a dynamical process of driving the mechanical oscillator from its initial thermal state, due to its thermal equilibrium with the environment, to a stabilized quantum state of higher purity. We find that the stabilized thermal phonon number left in the end actually depends on how fast the cooling process could be. The cooling speed is decided by an effective optomechanical coupling intensity, which constitutes an essential parameter for cooling, in addition to the sideband resolution parameter that has been considered in other theoretical studies. The limiting thermal phonon number that any cooling process cannot surpass exhibits a discontinuous jump across a certain value of the parameter.
Breakdown of Bose-Einstein distribution in photonic crystals.
Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min
2015-03-30
In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.
Breakdown of Bose-Einstein Distribution in Photonic Crystals
Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min
2015-01-01
In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed. PMID:25822135
Entropy production in a fluid-solid system far from thermodynamic equilibrium.
Chung, Bong Jae; Ortega, Blas; Vaidya, Ashwin
2017-11-24
The terminal orientation of a rigid body in a moving fluid is an example of a dissipative system, out of thermodynamic equilibrium and therefore a perfect testing ground for the validity of the maximum entropy production principle (MaxEP). Thus far, dynamical equations alone have been employed in studying the equilibrium states in fluid-solid interactions, but these are far too complex and become analytically intractable when inertial effects come into play. At that stage, our only recourse is to rely on numerical techniques which can be computationally expensive. In our past work, we have shown that the MaxEP is a reliable tool to help predict orientational equilibrium states of highly symmetric bodies such as cylinders, spheroids and toroidal bodies. The MaxEP correctly helps choose the stable equilibrium in these cases when the system is slightly out of thermodynamic equilibrium. In the current paper, we expand our analysis to examine i) bodies with fewer symmetries than previously reported, for instance, a half-ellipse and ii) when the system is far from thermodynamic equilibrium. Using two-dimensional numerical studies at Reynolds numbers ranging between 0 and 14, we examine the validity of the MaxEP. Our analysis of flow past a half-ellipse shows that overall the MaxEP is a good predictor of the equilibrium states but, in the special case of the half-ellipse with aspect ratio much greater than unity, the MaxEP is replaced by the Min-MaxEP, at higher Reynolds numbers when inertial effects come into play. Experiments in sedimentation tanks and with hinged bodies in a flow tank confirm these calculations.
NASA Astrophysics Data System (ADS)
Jia, Chen; Chen, Yong
2015-05-01
In the work of Amann, Schmiedl and Seifert (2010 J. Chem. Phys. 132 041102), the authors derived a sufficient criterion to identify a non-equilibrium steady state (NESS) in a three-state Markov system based on the coarse-grained information of two-state trajectories. In this paper, we present a mathematical derivation and provide a probabilistic interpretation of the Amann-Schmiedl-Seifert (ASS) criterion. Moreover, the ASS criterion is compared with some other criterions for a NESS.
Quantum beating patterns observed in the energetics of Pb film nanostructures.
Czoschke, P; Hong, Hawoong; Basile, L; Chiang, T-C
2004-07-16
We have studied the nanoscale structural evolution of Pb films grown at 110 K on a Si(111) substrate as they are annealed to increasingly higher temperatures. Surface x-ray diffraction from a synchrotron source is used to observe the morphology evolve from an initial smooth film through various metastable states before reaching a state of local equilibrium, at which point the coverage of different height Pb structures is analyzed and related to the thickness-dependent surface energy. Rich patterns are seen in the resulting energy landscape similar to the beating patterns heard from the interference of two musical notes of similar pitch. The explanation is, however, very simple, as demonstrated by a model calculation based on the confinement of free electrons to a quantum well.
Quantum Beating Patterns Observed in the Energetics of Pb Film Nanostructures
NASA Astrophysics Data System (ADS)
Czoschke, P.; Hong, Hawoong; Basile, L.; Chiang, T.-C.
2004-07-01
We have studied the nanoscale structural evolution of Pb films grown at 110K on a Si(111) substrate as they are annealed to increasingly higher temperatures. Surface x-ray diffraction from a synchrotron source is used to observe the morphology evolve from an initial smooth film through various metastable states before reaching a state of local equilibrium, at which point the coverage of different height Pb structures is analyzed and related to the thickness-dependent surface energy. Rich patterns are seen in the resulting energy landscape similar to the beating patterns heard from the interference of two musical notes of similar pitch. The explanation is, however, very simple, as demonstrated by a model calculation based on the confinement of free electrons to a quantum well.
Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser.
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto; Aquila, Andrew; Bajt, Saša; Barty, Anton; Bean, Richard; Koglin, Jason E; Messerschmidt, Marc; Ragazzon, Davide; Sokaras, Dimosthenis; Williams, Garth J; Hau-Riege, Stefan; Boutet, Sébastien; Chapman, Henry N; Tîmneanu, Nicuşor; Caleman, Carl
2018-05-29
The bright ultrafast pulses of X-ray Free-Electron Lasers allow investigation into the structure of matter under extreme conditions. We have used single pulses to ionize and probe water as it undergoes a phase transition from liquid to plasma. We report changes in the structure of liquid water on a femtosecond time scale when irradiated by single 6.86 keV X-ray pulses of more than 10 6 J/cm 2 These observations are supported by simulations based on molecular dynamics and plasma dynamics of a water system that is rapidly ionized and driven out of equilibrium. This exotic ionic and disordered state with the density of a liquid is suggested to be structurally different from a neutral thermally disordered state.
NASA Astrophysics Data System (ADS)
Yoshida, N.; Oki, T.
2016-12-01
Appropriate initial condition of soil moisture and water table depth are important factors to reduce uncertainty in hydrological simulations. Approaches to determine the initial water table depth have been developed because of difficulty to get information on global water table depth and soil moisture distributions. However, how is equilibrium soil moisture determined by climate conditions? We try to discuss this issue by using land surface model with representation of water table dynamics (MAT-GW). First, the global pattern of water table depth at equilibrium soil moisture in MAT-GW was verified. The water table depth in MAT-GW was deeper than the previous one at fundamentally arid region because the negative recharge and continuous baseflow made water table depth deeper. It indicated that the hydraulic conductivity used for estimating recharge and baseflow need to be reassessed in MAT-GW. In soil physics field, it is revealed that proper hydraulic property models for water retention and unsaturated hydraulic conductivity should be selected for each soil type. So, the effect of selecting hydraulic property models on terrestrial soil moisture and water table depth were examined.Clapp and Hornburger equation(CH eq.) and Van Genuchten equation(VG eq.) were used as representative hydraulic property models. Those models were integrated on MAT-GW and equilibrium soil moisture and water table depth with using each model were compared. The water table depth and soil moisture at grids which reached equilibrium in both simulations were analyzed. The equilibrium water table depth were deeper in VG eq. than CH eq. in most grids due to shape of hydraulic property models. Then, total soil moisture were smaller in VG eq. than CH eq. at almost all grids which water table depth reached equilibrium. It is interesting that spatial patterns which water table depth reached equilibrium or not were basically similar in both simulations but reverse patterns were shown in east and west part of America. Selection of each hydraulic property model based on soil types may compensate characteristic of models in initialization.
Redeckas, Kipras; Voiciuk, Vladislava; Zigmantas, Donatas; Hiller, Roger G; Vengris, Mikas
2017-04-01
Time-resolved multi-pulse methods were applied to investigate the excited state dynamics, the interstate couplings, and the excited state energy transfer pathways between the light-harvesting pigments in peridinin-chlorophyll a-protein (PCP). The utilized pump-dump-probe techniques are based on perturbation of the regular PCP energy transfer pathway. The PCP complexes were initially excited with an ultrashort pulse, resonant to the S 0 →S 2 transition of the carotenoid peridinin. A portion of the peridinin-based emissive intramolecular charge transfer (ICT) state was then depopulated by applying an ultrashort NIR pulse that perturbed the interaction between S 1 and ICT states and the energy flow from the carotenoids to the chlorophylls. The presented data indicate that the peridinin S 1 and ICT states are spectrally distinct and coexist in an excited state equilibrium in the PCP complex. Moreover, numeric analysis of the experimental data asserts ICT→Chl-a as the main energy transfer pathway in the photoexcited PCP systems. Copyright © 2017 Elsevier B.V. All rights reserved.
IONIZATION EQUILIBRIUM TIMESCALES IN COLLISIONAL PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Randall K.; Hughes, John P., E-mail: rsmith@cfa.harvard.ed, E-mail: jph@physics.rutgers.ed
2010-07-20
Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai and Hughes and Helfand. In general, the ionization evolution of an element Z inmore » a constant electron temperature plasma is given by a coupled set of Z + 1 first-order differential equations. However, they can be recast as Z uncoupled first-order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of the slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily long time.« less
Plummer, Niel; Busenberg, E.; Riggs, A.C.
2000-01-01
Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7??C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34??C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of P(CO)(2), decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.
Plummer, Niel; Busenberg, Eurybiades; Riggs, Alan C.
2000-01-01
Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7 °C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34 °C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of PCO2, decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.
Instability of enclosed horizons
NASA Astrophysics Data System (ADS)
Kay, Bernard S.
2015-03-01
We point out that there are solutions to the scalar wave equation on dimensional Minkowski space with finite energy tails which, if they reflect off a uniformly accelerated mirror due to (say) Dirichlet boundary conditions on it, develop an infinite stress-energy tensor on the mirror's Rindler horizon. We also show that, in the presence of an image mirror in the opposite Rindler wedge, suitable compactly supported arbitrarily small initial data on a suitable initial surface will develop an arbitrarily large stress-energy scalar near where the two horizons cross. Also, while there is a regular Hartle-Hawking-Israel-like state for the quantum theory between these two mirrors, there are coherent states built on it for which there are similar singularities in the expectation value of the renormalized stress-energy tensor. We conjecture that in other situations with analogous enclosed horizons such as a (maximally extended) Schwarzschild black hole in equilibrium in a (stationary spherical) box or the (maximally extended) Schwarzschild-AdS spacetime, there will be similar stress-energy singularities and almost-singularities—leading to instability of the horizons when gravity is switched on and matter and gravity perturbations are allowed for. All this suggests it is incorrect to picture a black hole in equilibrium in a box or a Schwarzschild-AdS black hole as extending beyond the past and future horizons of a single Schwarzschild (/Schwarzschild-AdS) wedge. It would thus provide new evidence for 't Hooft's brick wall model while seeming to invalidate the picture in Maldacena's ` Eternal black holes in AdS'. It would thereby also support the validity of the author's matter-gravity entanglement hypothesis and of the paper ` Brick walls and AdS/CFT' by the author and Ortíz.
Dynamics of Charged Particles in an Adiabatic Thermal Beam Equilibrium
NASA Astrophysics Data System (ADS)
Chen, Chiping; Wei, Haofei
2010-11-01
Charged-particle motion is studied in the self-electric and self-magnetic fields of a well-matched, intense charged-particle beam and an applied periodic solenoidal magnetic focusing field. The beam is assumed to be in a state of adiabatic thermal equilibrium. The phase space is analyzed and compared with that of the well-known Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It is found that the widths of nonlinear resonances in the adiabatic thermal beam equilibrium are narrower than those in the KV-type beam equilibrium. Numerical evidence is presented, indicating almost complete elimination of chaotic particle motion in the adiabatic thermal beam equilibrium.
Ab Initio Infrared and Raman Spectra.
1982-08-01
equilibrium and non -equilibrium systems. It b pointed out that a similar ab !ni- te QFC molecular dynamic approach could be used to compute other types of...applied to -2- equilibrium and non -equilibrium system. It is pointed out that a similar oh im- ib QFCT molecular dynamic approach could be used to...desire to be able to experimentally identify and understand transient species or states (such as those existing during the course of chemical
Equilibrium time correlation functions and the dynamics of fluctuations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luban, Marshall; Luscombe, James H.
1999-12-01
Equilibrium time correlation functions are of great importance because they probe the equilibrium dynamical response to external perturbations. We discuss the properties of time correlation functions for several systems that are simple enough to illustrate the calculational steps involved. The discussion underscores the need for avoiding language which misleadingly suggests that thermal equilibrium is associated with a quiescent or moribund state of the system. (c) 1999 American Association of Physics Teachers.
A ray tracing model for leaf bidirectional scattering studies
NASA Technical Reports Server (NTRS)
Brakke, T. W.; Smith, J. A.
1987-01-01
A leaf is modeled as a deterministic two-dimensional structure consisting of a network of circular arcs designed to represent the internal morphology of major species. The path of an individual ray through the leaf is computed using geometric optics. At each intersection of the ray with an arc, the specular reflected and transmitted rays are calculated according to the Snell and Fresnel equations. Diffuse scattering is treated according to Lambert's law. Absorption is also permitted but requires a detailed knowledge of the spectral attenuation coefficients. An ensemble of initial rays are chosen for each incident direction with the initial intersection points on the leaf surface selected randomly. The final equilibrium state after all interactions then yields the leaf bidirectional reflectance and transmittance distributions. The model also yields the internal two dimensional light gradient profile of the leaf.
A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics
NASA Astrophysics Data System (ADS)
Kretchmer, Joshua S.; Chan, Garnet Kin-Lic
2018-02-01
We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.
A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics.
Kretchmer, Joshua S; Chan, Garnet Kin-Lic
2018-02-07
We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.
NASA Astrophysics Data System (ADS)
Fernandez, N. M.; Druhan, J. L.; Potrel, A.; Jacobson, A. D.
2016-12-01
The concept of dynamic equilibrium carries the implicit assumption of continued isotopic exchange between a mineral and the surrounding fluid. While this effect has received much attention in the marine paleoproxy literature, it has been relatively overlooked in application to the terrestrial environment. In weathering systems, a potential consequence is that rapid reequilibration may alter or erase isotopic signatures generated during secondary mineral formation. The extent and timescale over which isotopic signatures are reset in these hydrologic systems is unknown. Using reactive transport modeling, we show isotopic reequilibration under conditions reflecting terrestrial hydrologic settings to be significant and dependent on the reactive surface area of the solid. In particular, we suggest that the non-traditional stable isotopes commonly used in application to carbonates (e.g., Ca, Mg, Sr) are sensitive to these effects due to their rapid reaction rates. We aim to characterize the dependence of Ca isotopic reequilibration on surface area during calcite precipitation via batch experiments conducted at ambient temperature over 48-hour time periods. Calcite precipitation was performed in a closed batch reactor utilizing a controlled free-drift method. The batch reactors contained mixed supersaturated solutions of CaCl2 and NaHCO3 at an initial pH of 8.54. Precipitation was initiated by seed inoculation of calcite crystals with two distinct, pre-constrained surface areas. All experiments achieved the same final state of chemical equilibrium, but as expected, the fastest approach to equilibrium occurred for experiments employing calcite seeds with the highest surface area. This implies that differences in equilibrated Ca isotope ratios (δ44/40Ca) should reflect differences in surface area. This prediction is upheld by models of the experiments, indicating a measureable difference in δ44Ca during calcite precipitation where the higher surface area corresponds to lower δ44Ca values and a faster approach to isotopic equilibrium. The dependence of δ44Ca resetting on calcite surface areas has broad ramifications for tracing carbonate weathering in the Critical Zone.
Liszewski, M.J.; Rosentreter, J.J.; Miller, Karl E.; Bartholomay, R.C.
2000-01-01
The U.S. Geological Survey and Idaho State University, in cooperation with the U.S. Department of Energy, conducted a study to determine strontium distribution coefficients (K(d)s) of surficial sediments at the Idaho National Engineering and Environmental Laboratory (INEEL). Batch experiments using synthesized aqueous solutions were used to determine K(d)s, which describe the distribution of a solute between the solution and solid phase, of 20 surficial-sediment samples from the INEEL. The K(d)s for the 20 surficial-sediment samples ranged from 36 to 275 ml/g. Many properties of both the synthesized aqueous solutions and sediments used in the experiments also were determined. Solution properties determined were initial and equilibrium concentrations of calcium, magnesium, and strontium, pH and specific conductance, and initial concentrations of potassium and sodium. Sediment properties determined were grain-size distribution, bulk mineralogy, whole-rock major-oxide and strontium and barium concentrations, and Brunauer-Emmett-Teller (BET) surface area. Solution and sediment properties were correlated with strontium K(d)s of the 20 surficial sediments using Pearson correlation coefficients. Solution properties with the strongest correlations with strontium K(d)s were equilibrium pH and equilibrium calcium concentration correlation coefficients, 0.6598 and -0.6518, respectively. Sediment properties with the strongest correlations with strontium K(d)s were manganese oxide (MnO), BET surface area, and the >4.75-mm-grain-size fraction correlation coefficients, 0.7054, 0.7022, and -0.6660, respectively. Effects of solution properties on strontium K(d)s were interpreted as being due to competition among similarly charged and sized cations in solution for strontium-sorption sites; effects of sediment properties on strontium K(d)s were interpreted as being surface-area related. Multivariate analyses of these solution and sediment properties resulted in r2 values of 0.8071 when all five properties were used and 0.8043 when three properties, equilibrium pH, MnO, and BET surface area, were used.
NASA Astrophysics Data System (ADS)
Zhou, Wenting; Yu, Hongwei
2014-09-01
We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982), 10.1051/jphys:0198200430110161700; J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular, we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete region where this behavior holds.
Prethermalized states of quenched spinor condensates
NASA Astrophysics Data System (ADS)
Chakram, Srivatsan; Patil, Yogesh Sharad; Vengalattore, Mukund
2015-05-01
Due to the interplay between spin and charge degrees of freedom, spinor Bose condensates exhibit a rich tapestry of magnetically ordered phases and topological defects. The non-equilibrium properties of these fluids have been the topic of recent interest. We have previously shown that quenched spinor condensates exhibit robust prethermalized states characterized by asymptotic correlations that differ from thermodynamic predictions. These non-equilibrium states arise due to the disparate energy scales between the phonon and magnon excitations. The identification of a microscopic origin of prethermalization makes this system a promising platform for studies of prethermalization and possible universal scaling relations that characterize these nonequilibrium many-body states. We elaborate on our studies of prethermalized spinor condensates and the prospects of observing a dynamical Kosterlitz-Thouless transition in this system. This work is supported by the ARO MURI on non-equilibrium dynamics.
Yunger Halpern, Nicole; Faist, Philippe; Oppenheim, Jonathan; Winter, Andreas
2016-01-01
The grand canonical ensemble lies at the core of quantum and classical statistical mechanics. A small system thermalizes to this ensemble while exchanging heat and particles with a bath. A quantum system may exchange quantities represented by operators that fail to commute. Whether such a system thermalizes and what form the thermal state has are questions about truly quantum thermodynamics. Here we investigate this thermal state from three perspectives. First, we introduce an approximate microcanonical ensemble. If this ensemble characterizes the system-and-bath composite, tracing out the bath yields the system's thermal state. This state is expected to be the equilibrium point, we argue, of typical dynamics. Finally, we define a resource-theory model for thermodynamic exchanges of noncommuting observables. Complete passivity—the inability to extract work from equilibrium states—implies the thermal state's form, too. Our work opens new avenues into equilibrium in the presence of quantum noncommutation. PMID:27384494
Kim, Eunhye; Lee, Sung Jong; Kim, Bongsoo
2007-02-01
We present an extensive Monte Carlo simulation study on the nonequilibrium kinetics of triangular antiferromagnetic Ising model within the ground state ensemble which consists of sectors, each of which is characterized by a unique value of the string density p through a dimer covering method. Building upon our recent work [Phys. Rev. E 68, 066127 (2003)] where we considered the nonequilibrium relaxation observed within the dominant sector with p=2/3, we here focus on the nonequilibrium kinetics within the minor sectors with p<2/3. The initial configurations are chosen as those in which the strings are straight and evenly distributed. In the minor sectors, we observe a characteristic spatial anisotropy in both equilibrium and nonequilibrium spatial correlations. We observe emergence of a critical relaxation region (in the spatial and temporal domain) which grows as p deviates from p=2/3. Spatial anisotropy appears in the equilibrium spatial correlation with the characteristic length scale xi(e,V)(p) diverging with vanishing string density as xi(e,V)(p) approximately p(-2) along the vertical direction, while along the horizontal direction the spatial length scale diverges as xi(e,H) approximately p(-1). Analytic forms for the anisotropic equilibrium correlation functions are given. We also find that the spin autocorrelation function A(t) shows a simple scaling behavior A(t)=A(t/tau(A)(p)), where the time scale tau(A)(p) shows a power-law divergence with vanishing p as tau(A)(p) approximately p(-phi) with phi approximately or equal to 4. These features can be understood in terms of random walk nature of the fluctuations of the strings within the typical separation between neighboring strings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lei; Yu, Cong, E-mail: muduri@shao.ac.cn, E-mail: cyu@ynao.ac.cn
2014-04-01
We propose a catastrophic eruption model for the enormous energy release of magnetars during giant flares, in which a toroidal and helically twisted flux rope is embedded within a force-free magnetosphere. The flux rope stays in stable equilibrium states initially and evolves quasi-statically. Upon the loss of equilibrium, the flux rope cannot sustain the stable equilibrium states and erupts catastrophically. During the process, the magnetic energy stored in the magnetosphere is rapidly released as the result of destabilization of global magnetic topology. The magnetospheric energy that could be accumulated is of vital importance for the outbursts of magnetars. We carefullymore » establish the fully open fields and partially open fields for various boundary conditions at the magnetar surface and study the relevant energy thresholds. By investigating the magnetic energy accumulated at the critical catastrophic point, we find that it is possible to drive fully open eruptions for dipole-dominated background fields. Nevertheless, it is hard to generate fully open magnetic eruptions for multipolar background fields. Given the observational importance of the multipolar magnetic fields in the vicinity of the magnetar surface, it would be worthwhile to explore the possibility of the alternative eruption approach in multipolar background fields. Fortunately, we find that flux ropes may give rise to partially open eruptions in the multipolar fields, which involve only partial opening of background fields. The energy release fractions are greater for cases with central-arcaded multipoles than those with central-caved multipoles that emerged in background fields. Eruptions would fail only when the centrally caved multipoles become extremely strong.« less
A Simplified Algorithm for Statistical Investigation of Damage Spreading
NASA Astrophysics Data System (ADS)
Gecow, Andrzej
2009-04-01
On the way to simulating adaptive evolution of complex system describing a living object or human developed project, a fitness should be defined on node states or network external outputs. Feedbacks lead to circular attractors of these states or outputs which make it difficult to define a fitness. The main statistical effects of adaptive condition are the result of small change tendency and to appear, they only need a statistically correct size of damage initiated by evolutionary change of system. This observation allows to cut loops of feedbacks and in effect to obtain a particular statistically correct state instead of a long circular attractor which in the quenched model is expected for chaotic network with feedback. Defining fitness on such states is simple. We calculate only damaged nodes and only once. Such an algorithm is optimal for investigation of damage spreading i.e. statistical connections of structural parameters of initial change with the size of effected damage. It is a reversed-annealed method—function and states (signals) may be randomly substituted but connections are important and are preserved. The small damages important for adaptive evolution are correctly depicted in comparison to Derrida annealed approximation which expects equilibrium levels for large networks. The algorithm indicates these levels correctly. The relevant program in Pascal, which executes the algorithm for a wide range of parameters, can be obtained from the author.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gecow, Andrzej
On the way to simulating adaptive evolution of complex system describing a living object or human developed project, a fitness should be defined on node states or network external outputs. Feedbacks lead to circular attractors of these states or outputs which make it difficult to define a fitness. The main statistical effects of adaptive condition are the result of small change tendency and to appear, they only need a statistically correct size of damage initiated by evolutionary change of system. This observation allows to cut loops of feedbacks and in effect to obtain a particular statistically correct state instead ofmore » a long circular attractor which in the quenched model is expected for chaotic network with feedback. Defining fitness on such states is simple. We calculate only damaged nodes and only once. Such an algorithm is optimal for investigation of damage spreading i.e. statistical connections of structural parameters of initial change with the size of effected damage. It is a reversed-annealed method--function and states (signals) may be randomly substituted but connections are important and are preserved. The small damages important for adaptive evolution are correctly depicted in comparison to Derrida annealed approximation which expects equilibrium levels for large networks. The algorithm indicates these levels correctly. The relevant program in Pascal, which executes the algorithm for a wide range of parameters, can be obtained from the author.« less
Thermal non-equilibrium effect of small-scale structures in compressible turbulence
NASA Astrophysics Data System (ADS)
Li, Shi-Yi; Li, Qi-Bing
2018-05-01
The thermal non-equilibrium effect of the small-scale structures in the canonical two-dimensional turbulence is studied. Comparative studies of Unified Gas Kinetic Scheme (UGKS) and GKS-Navier-Stokes (NS) for Taylor-Green flow with initial Ma = 1, Kn = 0.01 and decaying isotropic turbulence with initial Mat = 1, Reλ = 20 show that the discrepancy exists both in small and large scales, even beyond the dissipation range to 10η with accuracy to 8% in the SGS energy transfer of the decaying isotropic turbulence, illustrating the necessity for resolving the kinetic scales even at moderated Reλ = 20.
Bifurcated helical core equilibrium states in tokamaks
NASA Astrophysics Data System (ADS)
Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.
2013-07-01
Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.
Subjective Well-Being of School Teachers after Yoga--An Experimental Study
ERIC Educational Resources Information Center
Tamilselvi, B.; Thangarajathi, S.
2016-01-01
The state of psychological equilibrium in school teachers is of great concern. As a truth, equilibrium is the most delicate, unstable state and gets disturbed even by a slight disturbance in its components. The causal factors of imbalance or disequilibria, in the psychological configuration of school teachers are plenty in number; the environment…
Equilibration and non-equilibrium steady states in PT-symmetric Toda lattice
NASA Astrophysics Data System (ADS)
Harter, Andrew; Joglekar, Yogesh; Saxena, Avadh
The Toda lattice is a classical discrete integrable model, describing a chain of particles that interact through an exponentially decaying, pairwise potential. It also supports soliton solutions. We consider the fate of this lattice in the presence of localized, spatially separated, balanced drag (loss) and drive (gain). Such systems with balanced gain and loss undergo a transition, the so called parity-time (PT) symmetry breaking transition, from a quasi-equilibrium state to a state that is far removed from equilibrium. We determine the threshold for such a transition in the presence of stochastic and deterministic driving, and study the robustness of our results in the presence of different boundary conditions. This work is supported by DMR-1054020.
Lithium-ion Open Circuit Voltage (OCV) curve modelling and its ageing adjustment
NASA Astrophysics Data System (ADS)
Lavigne, L.; Sabatier, J.; Francisco, J. Mbala; Guillemard, F.; Noury, A.
2016-08-01
This paper is a contribution to lithium-ion batteries modelling taking into account aging effects. It first analyses the impact of aging on electrode stoichiometry and then on lithium-ion cell Open Circuit Voltage (OCV) curve. Through some hypotheses and an appropriate definition of the cell state of charge, it shows that each electrode equilibrium potential, but also the whole cell equilibrium potential can be modelled by a polynomial that requires only one adjustment parameter during aging. An adjustment algorithm, based on the idea that for two fixed OCVs, the state of charge between these two equilibrium states is unique for a given aging level, is then proposed. Its efficiency is evaluated on a battery pack constituted of four cells.
Surface-hopping dynamics and decoherence with quantum equilibrium structure.
Grunwald, Robbie; Kim, Hyojoon; Kapral, Raymond
2008-04-28
In open quantum systems, decoherence occurs through interaction of a quantum subsystem with its environment. The computation of expectation values requires a knowledge of the quantum dynamics of operators and sampling from initial states of the density matrix describing the subsystem and bath. We consider situations where the quantum evolution can be approximated by quantum-classical Liouville dynamics and examine the circumstances under which the evolution can be reduced to surface-hopping dynamics, where the evolution consists of trajectory segments exclusively evolving on single adiabatic surfaces, with probabilistic hops between these surfaces. The justification for the reduction depends on the validity of a Markovian approximation on a bath averaged memory kernel that accounts for quantum coherence in the system. We show that such a reduction is often possible when initial sampling is from either the quantum or classical bath initial distributions. If the average is taken only over the quantum dispersion that broadens the classical distribution, then such a reduction is not always possible.
Invariant structures of magnetic flux tubes
NASA Astrophysics Data System (ADS)
Solovev, A. A.
1982-04-01
The basic properties of a screened magnetic flux tube possessing a finite radius of curvature are discussed in order to complement the findings of Parker (1974, 1976) and improve their accuracy. Conditions of equilibrium, twisting equilibrium, and twisting oscillations are discussed, showing that a twisted magnetic loop or arch is capable of executing elastic oscillations about an equilibrium state. This property can in particular be used in the theory of solar flares. Invariant structures of a force-free magnetic tube are analyzed, showing that invariant structures of the field preserve their form when the geometrical parameters of the flux tube are changed. In a quasi-equilibrium transition of the tube from one state to another the length and pitch of the tube spiral change in proportion to the radius of its cross section.
Equivalence of equations describing trace element distribution during equilibrium partial melting
NASA Technical Reports Server (NTRS)
Consolmagno, G. J.; Drake, M. J.
1976-01-01
It is shown that four equations used for calculating the evolution of trace-element abundances during equilibrium partial melting are mathematically equivalent. The equations include those of Hertogen and Gijbels (1976), Shaw (1970), Schilling (1971), and O'Nions and Clarke (1972). The general form to which all these equations reduce is presented, and an analysis is performed to demonstrate their mathematical equivalence. It is noted that the utility of the general equation flows from the nature of equilibrium (i.e., the final state is independent of the path by which that state is attained).
User's manual for the FLORA equilibrium and stability code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freis, R.P.; Cohen, B.I.
1985-04-01
This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability.
NASA Astrophysics Data System (ADS)
Wessels, Philipp; Ewald, Johannes; Wieland, Marek; Nisius, Thomas; Vogel, Andreas; Viefhaus, Jens; Meier, Guido; Wilhein, Thomas; Drescher, Markus
2014-11-01
The destruction and formation of equilibrium multidomain patterns in permalloy (Ni80Fe20 ) microsquares has been captured using pump-probe x-ray magnetic circular dichroism (XMCD) spectromicroscopy at a new full-field magnetic transmission soft x-ray microscopy endstation with subnanosecond time resolution. The movie sequences show the dynamic magnetization response to intense Oersted field pulses of approximately 200-ps root mean square (rms) duration and the magnetization reorganization to the ground-state domain configuration. The measurements display how a vortex flux-closure magnetization distribution emerges out of a nonequilibrium uniform single-domain state. During the destruction of the initial vortex pattern, we have traced the motion of the central vortex core that is ejected out of the microsquare at high velocities exceeding 1 km/s. A reproducible recovery into a defined final vortex state with stable chirality and polarity could be achieved. Using an additional external bias field, the transient reversal of the square magnetization direction could be monitored and consistently reproduced by micromagnetic simulations.
Entanglement evolution across a conformal interface
NASA Astrophysics Data System (ADS)
Wen, Xueda; Wang, Yuxuan; Ryu, Shinsei
2018-05-01
For two-dimensional conformal field theories (CFTs) in the ground state, it is known that a conformal interface along the entanglement cut can suppress the entanglement entropy from to , where L is the length of the subsystem A, and is the effective central charge which depends on the transmission property of the conformal interface. In this work, by making use of conformal mappings, we show that a conformal interface has the same effect on entanglement evolution in non-equilibrium cases, including global, local and certain inhomogeneous quantum quenches. I.e. a conformal interface suppresses the time evolution of entanglement entropy by effectively replacing the central charge c with , where is exactly the same as that in the ground state case. We confirm this conclusion by a numerical study on a critical fermion chain. Furthermore, based on the quasi-particle picture, we conjecture that this conclusion holds for an arbitrary quantum quench in CFTs, as long as the initial state can be described by a regularized conformal boundary state.
Dynamics and Tolerance of Superionics in Extreme Environment
NASA Astrophysics Data System (ADS)
Annamareddy, Venkata Ajay Krishna Choudary
Superionic conductors are multi-component solid-state systems in which one sub-lattice exhibits exceptional ionic conductivity, which is comparable to molten state; among other things, the high ionic conductivity facilitates their use as solid-state electrolytes. Uranium di-oxide (UO 2)--the material of choice for fuel in most nuclear reactors--also shows superionic behavior, although very little is understood currently on the fast ion transport in UO2, and its implication. This dissertation aims to provide a better understanding of the dynamical characteristics of superionic conductors under both equilibrium and non-equilibrium thermodynamic conditions. In the first part, the emphasis is on equilibrium fluctuations and associated properties of Type II superionic conductors. Using atomistic simulations as well as available neutron and x-ray scattering data, the order-disorder transition or onset of superionic state for Type II conductors at a certain characteristic temperature (Talpha) is first revealed. Talpha marks a structural and kinetic crossover from a crystalline state to a semi-ordered state and is clearly different from the well-known thermodynamic superionic transition (T lambda). Though not favored by entropic forces, collective and cooperative dynamical effects, reminiscent of glassy states, are manifested in the temperature range spanned by Talpha and T lambda. Using atomistic simulations, dynamical heterogeneity (DH)--presence of clustered mobile and immobile regions in a static-homogeneous system--a ubiquitous feature of supercooled liquids and glassy states, is shown to germinate at Talpha. Using reliable metrics, the DH is shown to strengthen with increasing temperature, peak at an intermediate temperature between Talpha and Tlambda , and then recede. This manifestation of DH in superionics markedly differs from that in supercooled liquids through its initial growth against the destabilizing entropic barriers. Atomistic simulations further show that DH in superionics arises from facilitated dynamics, or the phenomenon of dynamic facilitation (DF). Using mobility transfer function, which gives the probability of a neighbor of a mobile ion becoming mobile relative to that of a random ion becoming mobile, it is shown that mobility propagates continuously to the neighboring ions with the strength of the DF increasing at the order-disorder temperature ( Talpha), exhibiting a maximum at an intermediate temperature, and then decreasing as the temperature approaches T lambda. This waxing and waning behavior with temperature is nearly identical to the variation of DH. Thus the close correspondence between DH and DF strongly indicates that DF underpins the heterogeneous dynamics in Type II superionic conductors. In a dynamically facilitated system, a jammed region can become unjammed only if it is physically adjacent to a mobile region. Remarkably, a string-like displacement of ions, the quintessential mode of particle mobility in jammed systems, is shown to operate in Type II superionics as well. The probability distribution of the length of the string is shown to vary exponentially, which is identical to that observed in supercooled and jammed states. Thus the demonstration of DH, DF and string-like cooperative ionic displacements in superionics that closely parallel the dynamic characteristics of supercooled liquids and glassy states, significantly augments the already existing but scant list of phenomenological similarities between these two distinct types of materials. The second part of this dissertation deals with non-equilibrium displacement-cascade simulations of UO2 that is used as a nuclear fuel. UO2 is known to resist amorphization even when subjected to intense nuclear radiations; analysis based on structure and energy does explain this behavior from a thermodynamic perspective. Radiation is inherently dynamic (non-equilibrium), and thus it is pertinent to understand the dynamics of the displaced ions during the annealing process. In this dissertation, the mechanism of dynamic recovery following a radiation knock at the atomistic level is investigated. It is shown that oxygen ions following a radiation perturbation exhibit correlated motion, which is similar to that in high temperature superionic state. Quite remarkably, the displaced oxygen ions also undergo fast recovery to their native lattice sites through collective string-like displacements that show an exponential distribution. Thus the superionic characteristics of UO2 under equilibrium conditions are also instrumental in fast defect recovery following a radiation perturbation.
Single-molecule studies of the Im7 folding landscape.
Pugh, Sara D; Gell, Christopher; Smith, D Alastair; Radford, Sheena E; Brockwell, David J
2010-04-23
Under appropriate conditions, the four-helical Im7 (immunity protein 7) folds from an ensemble of unfolded conformers to a highly compact native state via an on-pathway intermediate. Here, we investigate the unfolded, intermediate, and native states populated during folding using diffusion single-pair fluorescence resonance energy transfer by measuring the efficiency of energy transfer (or proximity or P ratio) between pairs of fluorophores introduced into the side chains of cysteine residues placed in the center of helices 1 and 4, 1 and 3, or 2 and 4. We show that while the native states of each variant give rise to a single narrow distribution with high P values, the distributions of the intermediates trapped at equilibrium (denoted I(eqm)) are fitted by two Gaussian distributions. Modulation of the folding conditions from those that stabilize the intermediate to those that destabilize the intermediate enabled the distribution of lower P value to be assigned to the population of the unfolded ensemble in equilibrium with the intermediate state. The reduced stability of the I(eqm) variants allowed analysis of the effect of denaturant concentration on the compaction and breadth of the unfolded state ensemble to be quantified from 0 to 6 M urea. Significant compaction is observed as the concentration of urea is decreased in both the presence and absence of sodium sulfate, as previously reported for a variety of proteins. In the presence of Na(2)SO(4) in 0 M urea, the P value of the unfolded state ensemble approaches that of the native state. Concurrent with compaction, the ensemble displays increased peak width of P values, possibly reflecting a reduction in the rate of conformational exchange among iso-energetic unfolded, but compact conformations. The results provide new insights into the initial stages of folding of Im7 and suggest that the unfolded state is highly conformationally constrained at the outset of folding. (c) 2010 Elsevier Ltd. All rights reserved.
Single-Molecule Studies of the Im7 Folding Landscape
Pugh, Sara D.; Gell, Christopher; Smith, D. Alastair; Radford, Sheena E.; Brockwell, David J.
2010-01-01
Under appropriate conditions, the four-helical Im7 (immunity protein 7) folds from an ensemble of unfolded conformers to a highly compact native state via an on-pathway intermediate. Here, we investigate the unfolded, intermediate, and native states populated during folding using diffusion single-pair fluorescence resonance energy transfer by measuring the efficiency of energy transfer (or proximity or P ratio) between pairs of fluorophores introduced into the side chains of cysteine residues placed in the center of helices 1 and 4, 1 and 3, or 2 and 4. We show that while the native states of each variant give rise to a single narrow distribution with high P values, the distributions of the intermediates trapped at equilibrium (denoted Ieqm) are fitted by two Gaussian distributions. Modulation of the folding conditions from those that stabilize the intermediate to those that destabilize the intermediate enabled the distribution of lower P value to be assigned to the population of the unfolded ensemble in equilibrium with the intermediate state. The reduced stability of the Ieqm variants allowed analysis of the effect of denaturant concentration on the compaction and breadth of the unfolded state ensemble to be quantified from 0 to 6 M urea. Significant compaction is observed as the concentration of urea is decreased in both the presence and absence of sodium sulfate, as previously reported for a variety of proteins. In the presence of Na2SO4 in 0 M urea, the P value of the unfolded state ensemble approaches that of the native state. Concurrent with compaction, the ensemble displays increased peak width of P values, possibly reflecting a reduction in the rate of conformational exchange among iso-energetic unfolded, but compact conformations. The results provide new insights into the initial stages of folding of Im7 and suggest that the unfolded state is highly conformationally constrained at the outset of folding. PMID:20211187
Pathways through equilibrated states with coexisting phases for gas hydrate formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malolepsza, Edyta; Keyes, Tom
Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less
Pathways through equilibrated states with coexisting phases for gas hydrate formation
Malolepsza, Edyta; Keyes, Tom
2015-12-01
Under ambient conditions, water freezes to either hexagonal ice or a hexagonal/cubic composite ice. The presence of hydrophobic guest molecules introduces a competing pathway: gas hydrate formation, with the guests in clathrate cages. Here, the pathways of the phase transitions are sought as sequences of states with coexisting phases, using a generalized replica exchange algorithm designed to sample them in equilibrium, avoiding nonequilibrium processes. For a dilute solution of methane in water under 200 atm, initializing the simulation with the full set of replicas leads to methane trapped in hexagonal/cubic ice, while gradually adding replicas with decreasing enthalpy produces themore » initial steps of hydrate growth. Once a small amount of hydrate is formed, water rearranges to form empty cages, eventually transforming the remainder of the system to metastable β ice, a scaffolding for hydrates. It is suggested that configurations with empty cages are reaction intermediates in hydrate formation when more guest molecules are available. Furthermore, free energy profiles show that methane acts as a catalyst reducing the barrier for β ice versus hexagonal/cubic ice formation.« less
Metadynamics Enhanced Markov Modeling of Protein Dynamics.
Biswas, Mithun; Lickert, Benjamin; Stock, Gerhard
2018-05-31
Enhanced sampling techniques represent a versatile approach to account for rare conformational transitions in biomolecules. A particularly promising strategy is to combine massive parallel computing of short molecular dynamics (MD) trajectories (to sample the free energy landscape of the system) with Markov state modeling (to rebuild the kinetics from the sampled data). To obtain well-distributed initial structures for the short trajectories, it is proposed to employ metadynamics MD, which quickly sweeps through the entire free energy landscape of interest. Being only used to generate initial conformations, the implementation of metadynamics can be simple and fast. The conformational dynamics of helical peptide Aib 9 is adopted to discuss various technical issues of the approach, including metadynamics settings, minimal number and length of short MD trajectories, and the validation of the resulting Markov models. Using metadynamics to launch some thousands of nanosecond trajectories, several Markov state models are constructed that reveal that previous unbiased MD simulations of in total 16 μs length cannot provide correct equilibrium populations or qualitative features of the pathway distribution of the short peptide.
Emergence of currents as a transient quantum effect in nonequilibrium systems
NASA Astrophysics Data System (ADS)
Granot, Er'El; Marchewka, Avi
2011-09-01
Most current calculations are based on equilibrium or semi-equilibrium models. However, except for very special scenarios (like ring configuration), the current cannot exist in equilibrium. Moreover, unlike with equilibrium scenarios, there is no generic approach to confront out-of-equilibrium currents. In this paper we used recent studies on transient quantum mechanics to solve the current, which appears in the presence of very high density gradients and fast transients. It shows that the emerging current appears instantaneously, and although the density beyond the discontinuity is initially negligible the currents there have a finite value, and remain constant for a finite period. It is shown that this nonequilibrium effect can be measured in real experiments (such as cooled rubidium atoms), where the discontinuity is replaced with a finite width (hundreds of nanometers) gradient.
Xi, Jia-Fu; Tang, Lei; Zhang, Jian-Hua; Zhang, Hong-Jian; Chen, Xu-Sheng; Mao, Zhong-Gui
2014-11-01
Circular dichroism (CD) is a special absorption spectrum. The secondary structure of protein such as α-helix, β-sheet and β-turn in the far ultraviolet region (190-250 nm) has a characteristic CD spectrum. In order to understand the activity and structural changes of ascorbate peroxidase from Chinese kale (BaAPX) during denaturation, specific activity and percentage of secondary structure of BaAPX under different time, temperature and concentration were analyzed by CD dynamically. In addition, the percentage of four secondary structures in BaAPX was calculated by CD analysis software Dichroweb. The results show that BaAPX is a full α-type enzyme whose specific activity is positively related to the percentage of α-helix. During denaturation of BaAPX, three kinds of structural changes were proposed: the one-step structural change from initial state (N state) to minimum state of α-helix (R state) under low concentration and low temperature; the one-step structural change from N state to equilibrium state (T state) under high concentration and low temperature; the two-step structural changes from N state through R state to final T state under heat treatment and low temperature renaturation.
A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu
2015-10-07
The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled systemmore » of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.« less
Fluorescent temperature sensor
Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM
2009-03-03
The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.
Kalgin, Igor V; Chekmarev, Sergei F; Karplus, Martin
2014-04-24
Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed "streamlines", the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations.
2015-01-01
Simulations of first-passage folding of the antiparallel β-sheet miniprotein beta3s, which has been intensively studied under equilibrium conditions by A. Caflisch and co-workers, show that the kinetics and dynamics are significantly different from those for equilibrium folding. Because the folding of a protein in a living system generally corresponds to the former (i.e., the folded protein is stable and unfolding is a rare event), the difference is of interest. In contrast to equilibrium folding, the Ch-curl conformations become very rare because they contain unfavorable parallel β-strand arrangements, which are difficult to form dynamically due to the distant N- and C-terminal strands. At the same time, the formation of helical conformations becomes much easier (particularly in the early stage of folding) due to short-range contacts. The hydrodynamic descriptions of the folding reaction have also revealed that while the equilibrium flow field presented a collection of local vortices with closed ”streamlines”, the first-passage folding is characterized by a pronounced overall flow from the unfolded states to the native state. The flows through the locally stable structures Cs-or and Ns-or, which are conformationally close to the native state, are negligible due to detailed balance established between these structures and the native state. Although there are significant differences in the general picture of the folding process from the equilibrium and first-passage folding simulations, some aspects of the two are in agreement. The rate of transitions between the clusters of characteristic protein conformations in both cases decreases approximately exponentially with the distance between the clusters in the hydrogen bond distance space of collective variables, and the folding time distribution in the first-passage segments of the equilibrium trajectory is in good agreement with that for the first-passage folding simulations. PMID:24669953
The Markov process admits a consistent steady-state thermodynamic formalism
NASA Astrophysics Data System (ADS)
Peng, Liangrong; Zhu, Yi; Hong, Liu
2018-01-01
The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.
Wu, Wei; Wang, Jin
2013-09-28
We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is found to be a Lyapunov functional of the deterministic spatially dependent system. Therefore, the intrinsic potential landscape can characterize the global stability of the deterministic system. The relative entropy functional of the stochastic spatially dependent non-equilibrium system is found to be the Lyapunov functional of the stochastic dynamics of the system. Therefore, the relative entropy functional quantifies the global stability of the stochastic system with finite fluctuations. Our theory offers an alternative general approach to other field-theoretic techniques, to study the global stability and dynamics of spatially dependent non-equilibrium field systems. It can be applied to many physical, chemical, and biological spatially dependent non-equilibrium systems.
Non-equilibrium Phase Transitions: Activated Random Walks at Criticality
NASA Astrophysics Data System (ADS)
Cabezas, M.; Rolla, L. T.; Sidoravicius, V.
2014-06-01
In this paper we present rigorous results on the critical behavior of the Activated Random Walk model. We conjecture that on a general class of graphs, including , and under general initial conditions, the system at the critical point does not reach an absorbing state. We prove this for the case where the sleep rate is infinite. Moreover, for the one-dimensional asymmetric system, we identify the scaling limit of the flow through the origin at criticality. The case remains largely open, with the exception of the one-dimensional totally-asymmetric case, for which it is known that there is no fixation at criticality.
The Advanced Part of a Treatise on the Dynamics of a System of Rigid Bodies
NASA Astrophysics Data System (ADS)
Routh, Edward John
2013-03-01
Preface; 1. Moving axes and relative motion; 2. Oscillations about equilibrium; 3. Oscillations about a state of motion; 4. Motion of a body under no forces; 5. Motion of a body under any forces; 6. Nature of the motion given by linear equations and the conditions of stability; 7. Free and forced oscillations; 8. Determination of the constants of integration in terms of the initial conditions; 9. Calculus of finite differences; 10. Calculus of variations; 11. Precession and nutation; 12. Motion of the moon about its centre; 13. Motion of a string or chain; 14. Motion of a membrane; Notes.
Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains
Mendl, Christian B.; Spohn, Herbert
2016-10-04
The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. Here, we analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1/3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
Application of the Hilbert space average method on heat conduction models.
Michel, Mathias; Gemmer, Jochen; Mahler, Günter
2006-01-01
We analyze closed one-dimensional chains of weakly coupled many level systems, by means of the so-called Hilbert space average method (HAM). Subject to some concrete conditions on the Hamiltonian of the system, our theory predicts energy diffusion with respect to a coarse-grained description for almost all initial states. Close to the respective equilibrium, we investigate this behavior in terms of heat transport and derive the heat conduction coefficient. Thus, we are able to show that both heat (energy) diffusive behavior as well as Fourier's law follows from and is compatible with a reversible Schrödinger dynamics on the complete level of description.
3D Printing — The Basins of Tristability in the Lorenz System
NASA Astrophysics Data System (ADS)
Xiong, Anda; Sprott, Julien C.; Lyu, Jingxuan; Wang, Xilu
The famous Lorenz system is studied and analyzed for a particular set of parameters originally proposed by Lorenz. With those parameters, the system has a single globally attracting strange attractor, meaning that almost all initial conditions in its 3D state space approach the attractor as time advances. However, with a slight change in one of the parameters, the chaotic attractor coexists with a symmetric pair of stable equilibrium points, and the resulting tri-stable system has three intertwined basins of attraction. The advent of 3D printers now makes it possible to visualize the topology of such basins of attraction as the results presented here illustrate.
Aging and rejuvenation of active matter under topological constraints.
Janssen, Liesbeth M C; Kaiser, Andreas; Löwen, Hartmut
2017-07-18
The coupling of active, self-motile particles to topological constraints can give rise to novel non-equilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior of self-propelled rods confined to a compact spherical manifold by means of Brownian dynamics simulations. We establish the state diagram and find that short active rods at sufficiently high density exhibit a glass transition toward a disordered state characterized by persistent self-spinning motion. By periodically melting and revitrifying the spherical spinning glass, we observe clear signatures of time-dependent aging and rejuvenation physics. We quantify the crucial role of activity in these non-equilibrium processes, and rationalize the aging dynamics in terms of an absorbing-state transition toward a more stable active glassy state. Our results demonstrate both how concepts of passive glass phenomenology can carry over into the realm of active matter, and how topology can enrich the collective spatiotemporal dynamics in inherently non-equilibrium systems.
Particle Sorting and Motility Out of Equilibrium
NASA Astrophysics Data System (ADS)
Sandford, Cato
The theory of equilibrium statistical physics, formulated over a century ago, provides an excellent description of physical systems which have reached a static, relaxed state. Such systems can be loosely thought of as maximally disordered, in keeping with the Second Law of Thermodynamics which states that a thermal system in equilibrium has reached a state of highest entropy. However, many entities in the world around us maintain themselves in an remarkably ordered and dynamic state, and must pay for this by producing entropy in their surroundings. Organisms, for example, convert chemical energy (food) into heat, which is then dumped into the environment, raising its entropy. Systems which produce entropy through any mechanism must be described by theories of non-equilibrium statistical physics, for which there currently exists no unified framework or ontology. Here we examine two specific cases of non-equilibrium phenomena from a theoretical perspective. First, we explore the behaviour of microscopic particles which continually dissipate energy to propel themselves through their environment. Second, we consider how devices which distinguish between different types of particles can exploit non-equilibrium processes to enhance their performance. For the case of self-propelled particles, we consider a theoretical model where the particle's propulsion force has "memory"--it is a random process whose instantaneous value depends on its past evolution. This introduces a persistence in the particle's motion, and requires the dissipation of energy into its surroundings. These particles are found to exhibit a variety of behaviours forbidden in equilibrium systems: for instance they may cluster around barriers, exert unbalanced forces, and sustain steady flows through space. We develop the understanding of these particles' dynamics through a combination of explicit calculations, approximations and numerical simulation which characterise and quantify their non-equilibrium behaviour. The second situation investigated concerns the physics of particle-sorting, which is fundamental to biological systems. We introduce a number of model devices designed to distinguish between and segregate two species of particles, and analyse how the quality and speed of their operation may be influenced by providing them with an energy source which pushes them out of equilibrium. We identify different physical regimes, where our devices may consume energy to deliver better results or deliver them faster or both; and we furthermore connect the broader theory of particle sorting to the fundamental theoretical framework of statistical physics.
NASA Astrophysics Data System (ADS)
Nüske, Feliks; Wu, Hao; Prinz, Jan-Hendrik; Wehmeyer, Christoph; Clementi, Cecilia; Noé, Frank
2017-03-01
Many state-of-the-art methods for the thermodynamic and kinetic characterization of large and complex biomolecular systems by simulation rely on ensemble approaches, where data from large numbers of relatively short trajectories are integrated. In this context, Markov state models (MSMs) are extremely popular because they can be used to compute stationary quantities and long-time kinetics from ensembles of short simulations, provided that these short simulations are in "local equilibrium" within the MSM states. However, over the last 15 years since the inception of MSMs, it has been controversially discussed and not yet been answered how deviations from local equilibrium can be detected, whether these deviations induce a practical bias in MSM estimation, and how to correct for them. In this paper, we address these issues: We systematically analyze the estimation of MSMs from short non-equilibrium simulations, and we provide an expression for the error between unbiased transition probabilities and the expected estimate from many short simulations. We show that the unbiased MSM estimate can be obtained even from relatively short non-equilibrium simulations in the limit of long lag times and good discretization. Further, we exploit observable operator model (OOM) theory to derive an unbiased estimator for the MSM transition matrix that corrects for the effect of starting out of equilibrium, even when short lag times are used. Finally, we show how the OOM framework can be used to estimate the exact eigenvalues or relaxation time scales of the system without estimating an MSM transition matrix, which allows us to practically assess the discretization quality of the MSM. Applications to model systems and molecular dynamics simulation data of alanine dipeptide are included for illustration. The improved MSM estimator is implemented in PyEMMA of version 2.3.
Shu, Yang; Ando, Teiichi; Yin, Qiyue; Zhou, Guangwen; Gu, Zhiyong
2017-08-31
A binary system of tin/indium (Sn/In) in the form of nanoparticles was investigated for phase transitions and structural evolution at different temperatures and compositions. The Sn/In nanosolder particles in the composition range of 24-72 wt% In were synthesized by a surfactant-assisted chemical reduction method under ambient conditions. The morphology and microstructure of the as-synthesized nanoparticles were analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) and X-ray diffraction (XRD). HRTEM and SAED identified InSn 4 and In, with some Sn being detected by XRD, but no In 3 Sn was observed. The differential scanning calorimetry (DSC) thermographs of the as-synthesized nanoparticles exhibited an endothermic peak at around 116 °C, which is indicative of the metastable eutectic melting of InSn 4 and In. When the nanosolders were subjected to heat treatment at 50-225 °C, the equilibrium phase In 3 Sn appeared while Sn disappeared. The equilibrium state was effectively attained at 225 °C. A Tammann plot of the DSC data of the as-synthesized nanoparticles indicated that the metastable eutectic composition is about 62% In, while that of the DSC data of the 225 °C heat-treated nanoparticles yielded a eutectic composition of 54% In, which confirmed the attainment of the equilibrium state at 225 °C. The phase boundaries estimated from the DSC data of heat-treated Sn/In nanosolder particles matched well with those in the established Sn-In equilibrium phase diagram. The phase transition behavior of Sn/In nanosolders leads to a new understanding of binary alloy particles at the nanoscale, and provides important information for their low temperature soldering processing and applications.
Entrainment in nerve by a ferroelectric model (II): Quasi-periodic oscillation and the phase locking
NASA Astrophysics Data System (ADS)
Shirane, Kotaro; Tokimoto, Takayuki; Kushibe, Hiroyuki
1997-09-01
A nonlinear state equation for membrane excitation can be simplified by Leuchtag's ferroelectric model which is applied to a chemical network theory. A dissipative structure of such a membrane is described by an equilibrium space, η 3 + aη + b = 0, giving a cusp catastrophe, and the membrane is self-organized in the resting state under the condition, a < 0( T < Tc), where η corresponds to the membrane potential, and a and b imply dipole-dipole and dipole-ion interactions of channel proteins embedded in the membrane, respectively. As well known, a specific characteristic of nonlinear electrical phenomena in the membrane is a limit cycle arising through the entrainment by periodical stimuli or chaos. A phase transition between the equilibrium and the non-equilibrium states (a dissipative structure without the resting state) is described by a parameter giving the difference from thermal equilibrium. In this dynamic system, quasi-periodic oscillations which arise in periodic external fields and the phase locking, that is, entrainment, caused by changing I0 at ω ≠ ω n (ω n - the natural frequency of the membrane) are studied with parameters introduced into Zeeman's formulas of ȧ and ḃ.
Rapp, L.; Haberl, B.; Pickard, C. J.; ...
2015-06-29
Ordinary materials can transform into novel phases with new crystal structures at extraordinary high pressure and temperature applied under both equilibrium and non-equilibrium conditions 1-6. The recently developed method of ultra-short laser-induced confined microexplosions 7-9 extends the range of possible new phases by initiating a highly non-equilibrium plasma state deep inside a bulk material 7-12. Ultra-high quenching rates can help to overcome kinetic barriers to the formation of new metastable phases, while the surrounding pristine crystal confines the affected material and preserves it for further study 10-12. Here we demonstrate that ultra-rapid pressure release from a completely disordered plasma statemore » in silicon produces several new metastable end phases quenched to ambient conditions. Their structure is determined from comparison to an ab initio random structure search which revealed six new energetically competitive potential phases, four tetragonal and two monoclinic ones. We show the presence of bt8 and st12, which have been predicted theoretically previously 13-15, but have not been observed in nature or in laboratory experiments. Additionally, the presence of the as yet unidentified silicon phase, Si-VIII and two of our other predicted tetragonal phases are highly likely within laser-affected zones. These findings pave the way for new materials with novel and exotic properties.« less
Out-of-equilibrium relaxation of the thermal Casimir effect in a model polarizable material
NASA Astrophysics Data System (ADS)
Dean, David S.; Démery, Vincent; Parsegian, V. Adrian; Podgornik, Rudolf
2012-03-01
Relaxation of the thermal Casimir or van der Waals force (the high temperature limit of the Casimir force) for a model dielectric medium is investigated. We start with a model of interacting polarization fields with a dynamics that leads to a frequency dependent dielectric constant of the Debye form. In the static limit, the usual zero frequency Matsubara mode component of the Casimir force is recovered. We then consider the out-of-equilibrium relaxation of the van der Waals force to its equilibrium value when two initially uncorrelated dielectric bodies are brought into sudden proximity. For the interaction between dielectric slabs, it is found that the spatial dependence of the out-of-equilibrium force is the same as the equilibrium one, but it has a time dependent amplitude, or Hamaker coefficient, which increases in time to its equilibrium value. The final relaxation of the force to its equilibrium value is exponential in systems with a single or finite number of polarization field relaxation times. However, in systems, such as those described by the Havriliak-Negami dielectric constant with a broad distribution of relaxation times, we observe a much slower power law decay to the equilibrium value.
Accuracy of genetic code translation and its orthogonal corruption by aminoglycosides and Mg2+ ions
Zhang, Jingji
2018-01-01
Abstract We studied the effects of aminoglycosides and changing Mg2+ ion concentration on the accuracy of initial codon selection by aminoacyl-tRNA in ternary complex with elongation factor Tu and GTP (T3) on mRNA programmed ribosomes. Aminoglycosides decrease the accuracy by changing the equilibrium constants of ‘monitoring bases’ A1492, A1493 and G530 in 16S rRNA in favor of their ‘activated’ state by large, aminoglycoside-specific factors, which are the same for cognate and near-cognate codons. Increasing Mg2+ concentration decreases the accuracy by slowing dissociation of T3 from its initial codon- and aminoglycoside-independent binding state on the ribosome. The distinct accuracy-corrupting mechanisms for aminoglycosides and Mg2+ ions prompted us to re-interpret previous biochemical experiments and functional implications of existing high resolution ribosome structures. We estimate the upper thermodynamic limit to the accuracy, the ‘intrinsic selectivity’ of the ribosome. We conclude that aminoglycosides do not alter the intrinsic selectivity but reduce the fraction of it that is expressed as the accuracy of initial selection. We suggest that induced fit increases the accuracy and speed of codon reading at unaltered intrinsic selectivity of the ribosome. PMID:29267976
Instabilities of Current Carrying Torus
NASA Astrophysics Data System (ADS)
Liu, Wenjuan; Qiu, J.
2010-05-01
We investigate the initial equilibrium and stability conditions for an uniform current-carrying plasma ring with a non-trivial toroidal magnetic field Bt. Realistic parameters comparable to observations are used to describe the magnetic field inside and outside the torus. The external poloidal magnetic field is assumed to fall off as a power function with decay index n (n = - d log (Bex) /d log(h)). The parameter space is explored to find all initial equilibrium solutions, at which perturbation is introduced. It is shown that with non-trivial toroidal field, the current ring attains equilibrium with a weaker external field. It is also shown that the torus attains equilibrium at higher altitude when the external field decays more rapidly (greater n) or the ratio of the toroidal flux in the torus to the external field increases. We further study stabilities of the torus at equilibrium by defining a critical decay index ncr (Kliem and Török 2006). A sufficiently strong toroidal field can completely suppress the torus instability due to the current hoop force. With a weak toroidal field, similar to the case of Bt=0, the instability occurs when the external magnetic field declines rapidly with height when the field decay index n>ncr. For realistic sets of parameters, the equilibrium height is within 10 solar radii, and the effective ncr is in the range of 1.0-1.6. The critical decay index increases when the ratio of the toroidal flux to the external field decreases. This work is supported by NSF CAREER grant ATM-0748428.
MAGNETAR GIANT FLARES-FLUX ROPE ERUPTIONS IN MULTIPOLAR MAGNETOSPHERIC MAGNETIC FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu Cong, E-mail: cyu@ynao.ac.cn
2012-09-20
We address a primary question regarding the physical mechanism that triggers the energy release and initiates the onset of eruptions in the magnetar magnetosphere. Self-consistent stationary, axisymmetric models of the magnetosphere are constructed based on force-free magnetic field configurations that contain a helically twisted force-free flux rope. Depending on the surface magnetic field polarity, there exist two kinds of magnetic field configurations, inverse and normal. For these two kinds of configurations, variations of the flux rope equilibrium height in response to gradual surface physical processes, such as flux injections and crust motions, are carefully examined. We find that equilibrium curvesmore » contain two branches: one represents a stable equilibrium branch, and the other an unstable equilibrium branch. As a result, the evolution of the system shows a catastrophic behavior: when the magnetar surface magnetic field evolves slowly, the height of the flux rope would gradually reach a critical value beyond which stable equilibriums can no longer be maintained. Subsequently, the flux rope would lose equilibrium and the gradual quasi-static evolution of the magnetosphere will be replaced by a fast dynamical evolution. In addition to flux injections, the relative motion of active regions would give rise to the catastrophic behavior and lead to magnetic eruptions as well. We propose that a gradual process could lead to a sudden release of magnetosphere energy on a very short dynamical timescale, without being initiated by a sudden fracture in the crust of the magnetar. Some implications of our model are also discussed.« less
Rettig, L.; Cortés, R.; Chu, J. -H.; ...
2016-01-25
Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time-and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of themore » dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. In conclusion, our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order.« less
Measuring the Thermodynamics of the Alloy/Scale Interface
NASA Technical Reports Server (NTRS)
Copland, Evan
2004-01-01
A method is proposed for the direct measurement of the thermodynamic properties of the alloy and oxide compound at the alloy/scale interface observed during steady-state oxidation. The thermodynamic properties of the alloy/scale interface define the driving force for solid-state transport in the alloy and oxide compound. Accurate knowledge of thermodynamic properties of the interface will advance our understanding of oxidation behavior. The method is based on the concept of local equilibrium and assumes that an alloy+scale equilibrium very closely approximates the alloy/scale interface observed during steady-state oxidation. The thermodynamics activities of this alloy+scale equilibrium are measured directly by Knudsen effusion-cell mass spectrometer (KEMS) using the vapor pressure technique. The theory and some practical considerations of this method are discussed in terms of beta-NiAl oxidation.
Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.
Jia, Chen; Qian, Minping; Jiang, Daquan
2014-08-01
A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.
Transient natural ventilation of a room with a distributed heat source
NASA Astrophysics Data System (ADS)
Fitzgerald, Shaun D.; Woods, Andrew W.
We report on an experimental and theoretical study of the transient flows which develop as a naturally ventilated room adjusts from one temperature to another. We focus on a room heated from below by a uniform heat source, with both high- and low-level ventilation openings. Depending on the initial temperature of the room relative to (i) the final equilibrium temperature and (ii) the exterior temperature, three different modes of ventilation may develop. First, if the room temperature lies between the exterior and the equilibrium temperature, the interior remains well-mixed and gradually heats up to the equilibrium temperature. Secondly, if the room is initially warmer than the equilibrium temperature, then a thermal stratification develops in which the upper layer of originally hot air is displaced upwards by a lower layer of relatively cool inflowing air. At the interface, some mixing occurs owing to the effects of penetrative convection. Thirdly, if the room is initially cooler than the exterior, then on opening the vents, the original air is displaced downwards and a layer of ambient air deepens from above. As this lower layer drains, it is eventually heated to the ambient temperature, and is then able to mix into the overlying layer of external air, and the room becomes well-mixed. For each case, we present new laboratory experiments and compare these with some new quantitative models of the transient flows. We conclude by considering the implications of our work for natural ventilation of large auditoria.
Muthukkumaran, A; Aravamudan, K
2017-12-15
Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.
Magnetospheric Reconnection in Modified Current-Sheet Equilibria
NASA Astrophysics Data System (ADS)
Newman, D. L.; Goldman, M. V.; Lapenta, G.; Markidis, S.
2012-10-01
Particle simulations of magnetic reconnection in Earth's magnetosphere are frequently initialized with a current-carrying Harris equilibrium superposed on a current-free uniform background plasma. The Harris equilibrium satisfies local charge neutrality, but requires that the sheet current be dominated by the hotter species -- often the ions in Earth's magnetosphere. This constraint is not necessarily consistent with observations. A modified kinetic equilibrium that relaxes this constraint on the currents was proposed by Yamada et al. [Phys. Plasmas., 7, 1781 (2000)] with no background population. These modified equilibria were characterized by an asymptotic converging or diverging electrostatic field normal to the current sheet. By reintroducing the background plasma, we have developed new families of equilibria where the asymptotic fields are suppressed by Debye shielding. Because the electrostatic potential profiles of these new equilibria contain wells and/or barriers capable of spatially isolating different populations of electrons and/or ions, these solutions can be further generalized to include classes of asymmetric kinetic equilibria. Examples of both symmetric and asymmetric equilibria will be presented. The dynamical evolution of these equilibria, when perturbed, will be further explored by means of implicit 2D PIC reconnection simulations, including comparisons with simulations employing standard Harris-equilibrium initializations.
Pasta Nucleosynthesis: Molecular dynamics simulations of nuclear statistical equilibrium
NASA Astrophysics Data System (ADS)
Caplan, Matthew; Horowitz, Charles; da Silva Schneider, Andre; Berry, Donald
2014-09-01
We simulate the decompression of cold dense nuclear matter, near the nuclear saturation density, in order to study the role of nuclear pasta in r-process nucleosynthesis in neutron star mergers. Our simulations are performed using a classical molecular dynamics model with 51 200 and 409 600 nucleons, and are run on GPUs. We expand our simulation region to decompress systems from initial densities of 0.080 fm-3 down to 0.00125 fm-3. We study proton fractions of YP = 0.05, 0.10, 0.20, 0.30, and 0.40 at T = 0.5, 0.75, and 1 MeV. We calculate the composition of the resulting systems using a cluster algorithm. This composition is in good agreement with nuclear statistical equilibrium models for temperatures of 0.75 and 1 MeV. However, for proton fractions greater than YP = 0.2 at a temperature of T = 0.5 MeV, the MD simulations produce non-equilibrium results with large rod-like nuclei. Our MD model is valid at higher densities than simple nuclear statistical equilibrium models and may help determine the initial temperatures and proton fractions of matter ejected in mergers.
Equilibrium I: Principles. Independent Learning Project for Advanced Chemistry (ILPAC). Unit P2.
ERIC Educational Resources Information Center
Inner London Education Authority (England).
This unit on the principles of equilibrium is one of 10 first year units produced by the Independent Learning Project for Advanced Chemistry (ILPAC). The unit consists of two levels. After a treatment of non-mathematical aspects in level one (the idea of a reversible reaction, characteristics of an equilibrium state, the Le Chatelier's principle),…
NASA Astrophysics Data System (ADS)
Auslander, Joseph Simcha
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Frey, Alexander
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Mountz, Elizabeth M.
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Abelard, Joshua Erold Robert
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Harbert, Emily Grace
We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.
NASA Astrophysics Data System (ADS)
Ferreira, David; Marshall, John; Ito, Takamitsu; McGee, David; Moreno-Chamarro, Eduardo
2017-04-01
The dynamics regulating large climatic transitions such as glacial-interglacial cycles or DO events remains a puzzle. Forcings behind these transitions are not robustly identified and potential candidates (e.g. Milankovitch cycles, freshwater perturbations) often appear too weak to explain such dramatic transitions. A potential solution to this long-standing puzzle is that Earth's climate is endowed with multiple equilibrium states of global extent. Such states are commonly found in low-order or conceptual climate models, but it is unclear whether a system as complex as Earth's climate can sustain multiple equilibrium states. Here we report that multiple equilibrium states of the climate system are also possible in a complex, fully dynamical coupled ocean-atmosphere-sea ice GCM with idealized Earth-like geometry, resolved weather systems and a hydrological cycle. In our model, two equilibrium states coexist for the same parameters and external forcings: a Warm climate with a small Northern hemisphere sea ice cap and a large southern one and a Cold climate with large ice caps at both poles. The dynamical states of the Warm and Cold solutions exhibit striking similarities with our present-day climate and the climate of the Last Glacial Maximum, respectively. A carbon cycle model driven by the two dynamical states produces an atmospheric pCO2 draw-down of about 110 pm between the Warm and Cold states, close to Glacial-Interglacial differences found in ice cores. Mechanism controlling the existence of the multiple states and changes in the atmospheric CO2 will be briefly presented. Finally we willdescribe transition experiments from the Cold to the Warm state, focusing on the lead-lags in the system, notably between the Northern and Southern Hemispheres climates.
NASA Astrophysics Data System (ADS)
DA Silva, L. M.
2015-12-01
Landscapes are mainly driven by river processes that control the dynamic reorganization of networks. Discovering and identifying whether river basins are in geometric equilibrium or disequilibrium requires an analysis of water divides, channels that shift laterally or expand upstream and river captures. Issues specifically discussed include the variation of drainage area change and erosion rates of the basins. In southeastern Brazil there are two main escarpments with extensive geomorphic surfaces: Serra do Mar and Serra da Mantiqueira Mountains. These landscapes are constituted of Neoproterozoic and early Paleozoic rocks, presenting steep escarpments with low-elevation coastal plains and higher elevation interior plateaus. To identify whether river basins and river profiles are in equilibrium or disequilibrium in Serra do Mar and Serra da Mantiqueira Mountains, we used the proxy (χ), evaluating the effect of drainage area change and erosion rates. We selected basins that drain both sides of these two main escarpments (oceanic and continental sides) and have denudation rates derived from pre-existing cosmogenic isotopes data (Rio de Janeiro, Paraná and Minas Gerais). Despite being an ancient and tectonically stable landscape, part of the coastal plain of Serra do Mar Mountain in Rio de Janeiro and Paraná is in geometric disequilibrium, with water divides moving in the direction of higher χ values. To achieve equilibrium, some basins located in the continental side are retracting and disappearing, losing area to the coastal basins. On the contrary, there are some adjacent sub-basins that are close to equilibrium, without strong contrasts in χ values. The same pattern was observed in Serra da Mantiqueira (Minas Gerais state), with stream captures and river network reorganization in its main rivers. The initial results suggest a strong contrast between erosion rates in the continental and the oceanic portions of the escarpments.