Sample records for initial experimental work

  1. Swept-Ramp Detonation Initiation Performance in a High-Pressure Pulse Detonation Combustor

    DTIC Science & Technology

    2010-12-01

    conditions at sea level, but at elevated temperatures of 300–500°F in the combustor. The current work was motivated by a need to experimentally...The current work was motivated by a need to experimentally evaluate the detonation initiation performance of a PDC at elevated combustor pressures...High-Speed Propulsion Technologies (After [3]) .....................2 Figure 2. Stationary One-Dimensional Combustion Wave Model (From [7

  2. Getting There from Here: Research on the Effects of Work-Family Initiatives on Work-Family Conflict and Business Outcomes.

    PubMed

    Kelly, Erin L; Kossek, Ellen Ernst; Hammer, Leslie B; Durham, Mary; Bray, Jeremy; Chermack, Kelly; Murphy, Lauren A; Kaskubar, Dan

    2008-08-01

    Many employing organizations have adopted work-family policies, programs, and benefits. Yet managers in employing organizations simply do not know what organizational initiatives actually reduce work-family conflict and how these changes are likely to impact employees and the organization. We examine scholarship that addresses two broad questions: first, do work-family initiatives reduce employees' work-family conflict and/or improve work-family enrichment? Second, does reduced work-family conflict improve employees' work outcomes and, especially, business outcomes at the organizational level? We review over 150 peer-reviewed studies from a number of disciplines in order to summarize this rich literature and identify promising avenues for research and conceptualization. We propose a research agenda based on four primary conclusions: the need for more multi-level research, the necessity of an interdisciplinary approach, the benefits of longitudinal studies that employ quasi-experimental or experimental designs and the challenges of translating research into practice in effective ways.

  3. Statistical Debugging

    DTIC Science & Technology

    2008-03-01

    in all parts of the program except the predicates. B. PRELIMINARY EXPERIMENTATION Working with the hand written program initially to get a feel...PROBLEM STATEMENT AND MOTIVATION .......................................2 II. RELATED WORK ...ISOLATION.........................................7 III. PRELIMINARY WORK

  4. Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage

    NASA Astrophysics Data System (ADS)

    Rongxiao, ZHAI; Mengtong, QIU; Weixi, LUO; Peitian, CONG; Tao, HUANG; Jiahui, YIN; Tianyang, ZHANG

    2018-04-01

    As one of the most important elements in linear transformer driver (LTD) based systems, the gas pressurized closing switches are required to operate with a very low prefire probability during the DC-charging process to ensure reliable operation and stable output of the whole pulsed power system. The most direct and effective way to control the prefire probability is to select a suitable working coefficient. The study of the development characteristics of the initially generated electrons is useful for optimizing the working coefficient and improving the prefire characteristic of the switches. In this paper an ultraviolet pulsed laser is used to generate initial electrons inside the gap volume. A current measuring system is used to measure the time-dependent current generated by the growth of the initial electrons so as to study the development characteristics of the electrons under different working coefficients. Experimental results show that the development characteristics of the initial electrons are influenced obviously by the working coefficient. With the increase of the working coefficient, the development degree of the electrons increases consequently. At the same times, there is a threshold of working coefficient which produces the effect of ionization on electrons. The range of the threshold has a slow growth but remains close to 65% with the gas pressure increase. When the working coefficient increases further, γ processes are starting to be generated inside the gap volume. In addition, an optimal working coefficient beneficial for improving the prefire characteristic is indicated and further tested.

  5. The effect of a dominant initial single mode on the Kelvin–Helmholtz instability evolution: New insights on previous experimental results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimony, Assaf; Shvarts, Dov; Malamud, Guy

    2016-04-12

    This paper brings new insights on an experiment, measuring the Kelvin–Helmholtz (KH) instability evolution, performed on the OMEGA-60 laser facility. Experimental radiographs show that the initial seed perturbations in the experiment are of multimode spectrum with a dominant single-mode of 16 μm wavelength. In single-mode-dominated KH instability flows, the mixing zone (MZ) width saturates to a constant value comparable to the wavelength. However, the experimental MZ width at late times has exceeded 100 μm, an order of magnitude larger. In this work, we use numerical simulations and a statistical model in order to investigate the vortex dynamics of the KHmore » instability for the experimental initial spectrum. Here, we conclude that the KH instability evolution in the experiment is dominated by multimode, vortex-merger dynamics, overcoming the dominant initial mode.« less

  6. Construction of an Exploratory List of Chemicals to Initiate the Search for Halon Alternatives

    DTIC Science & Technology

    1991-06-01

    of owne-depletion effectiveness is based on atmospheric modeling. The only experimental work is the determination of possible reaction paths and...results, and additional relevant comments. These compounds should be tested in a selective series of experiments based on the insights used in the...will generate initial information with regard to the relative ordering of the compounds in terms of screen properties. Careful experimentation will

  7. The free radical chain mechanism of the initial stages of crude oil oxidation in term of SARA fractions

    NASA Astrophysics Data System (ADS)

    Ushakova, A.; Emelyanov, D.; Zatsepin, V.; Varfolomeev, M.

    2018-05-01

    The formation and decomposition of hydro-peroxides are the key stages of combustion. These stages strongly depend on the several factors accelerating or slowing this process. The aim of this work is to estimate experimentally which oil components act as inhibitors of initial stages of oxidation and which accelerate the process. The next aim is to explore the process of adsorption of oil components on the grain of rock, which turned to be also a key process in the low temperature oxidation. The work includes experimental part where differential scanning calorimeter (PDSC) experiments with pure saturates, mixtures of saturates and aromatic oil fractions and mixtures of saturates, aromatic fractions and rock samples are considered. Effects of inhibition and acceleration of the initial oxidation stages are explored.

  8. Structural Qualification of Composite Airframes

    NASA Technical Reports Server (NTRS)

    Kedward, Keith T.; McCarty, John E.

    1997-01-01

    The development of fundamental approaches for predicting failure and elongation characteristics of fibrous composites are summarized in this document. The research described includes a statistical formulation for individual fiber breakage and fragmentation and clustered fiber breakage, termed macrodefects wherein the aligned composite may represent a structural component such as a reinforcing bar element, a rebar. Experimental work conducted in support of the future exploitation of aligned composite rebar elements is also described. This work discusses the experimental challenges associated with rebar tensile test evaluation and describes initial numerical analyses performed in support of the experimental program.

  9. Counter-intuitive experimental evidence on the initiation of radical crack in ceramic thin films at the atomic scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuang, Chunqiang, E-mail: chunqiang.zhuang@bjut.edu.cn; Li, Zhipeng; Lin, Songsheng

    2015-10-15

    The basic issue related to radial crack in ceramic thin films has received considerable attention due to the fact that the radial crack plays an important role in evaluating the toughness properties of ceramic materials. In this work, an atomic-scale new experimental evidence is clearly presented to reveal the counter-intuitive initiation, the nucleation and the propagation mechanism of the radial crack in Al-Cr-N ceramic thin films.

  10. Experimental Design and Optimization: Application to a Grignard Reaction

    ERIC Educational Resources Information Center

    Bouzidi, Naoual; Gozzi, Christel

    2008-01-01

    This project is conducted by students during the second semester of their second year in our educational institution. This project constitutes an initiation into research and allows a broadening of knowledge, a development in autonomy, organization, team work, and initiative. It helps prepare the student-engineer for an internship in industry. The…

  11. Teacher Professional Development to Foster Authentic Student Research Experiences

    NASA Astrophysics Data System (ADS)

    Conn, K.; Iyengar, E.

    2004-12-01

    This presentation reports on a new teacher workshop design that encourages teachers to initiate and support long-term student-directed research projects in the classroom setting. Teachers were recruited and engaged in an intensive marine ecology learning experience at Shoals Marine Laboratory, Appledore Island, Maine. Part of the weeklong summer workshop was spent in field work, part in laboratory work, and part in learning experimental design and basic statistical analysis of experimental results. Teachers were presented with strategies to adapt their workshop learnings to formulate plans for initiating and managing authentic student research projects in their classrooms. The authors will report on the different considerations and constraints facing the teachers in their home school settings and teachers' progress in implementing their plans. Suggestions for replicating the workshop will be offered.

  12. Designing Classrooms that Work: Teacher Training Guide.

    ERIC Educational Resources Information Center

    Ramsey, Kimberly; Stasz, Cathleen; Ormseth, Tor; Eden, Rick; Co, Jennifer

    This document is a guide for teachers and trainers participating in the initial experimental offering of a 6-week minisabbatical, Designing Classrooms that Work (CTW). The minisabbatical is designed to help teachers learn how to make the kinds of curricular and pedagogical changes implied by reforms to integrate vocational and academic education…

  13. Fourier Analysis of a Vibrating String through a Low-Cost Experimental Setup and a Smartphone

    ERIC Educational Resources Information Center

    Pereyra, C. J.; Osorio, M.; Laguarda, A.; Gau, D. L.

    2018-01-01

    In this work we present a simple and low-cost setup to illustrate the dependence of the behaviour of a standing wave in a guitar string with the initial conditions. To do so, we impose two kinds of initial conditions; in the first instance, the initial shape of the string is varied. Secondly, different nodes are imposed on the string. This…

  14. Characterizing Fracturing of Clay-Rich Lower Watrous Rock: From Laboratory Experiments to Nonlocal Damage-Based Simulations

    NASA Astrophysics Data System (ADS)

    Guy, N.; Seyedi, D. M.; Hild, F.

    2018-06-01

    The work presented herein aims at characterizing and modeling fracturing (i.e., initiation and propagation of cracks) in a clay-rich rock. The analysis is based on two experimental campaigns. The first one relies on a probabilistic analysis of crack initiation considering Brazilian and three-point flexural tests. The second one involves digital image correlation to characterize crack propagation. A nonlocal damage model based on stress regularization is used for the simulations. Two thresholds both based on regularized stress fields are considered. They are determined from the experimental campaigns performed on Lower Watrous rock. The results obtained with the proposed approach are favorably compared with the experimental results.

  15. Flow induction by pressure forces

    NASA Technical Reports Server (NTRS)

    Garris, C. A.; Toh, K. H.; Amin, S.

    1992-01-01

    A dual experimental/computational approach to the fluid mechanics of complex interactions that take place in a rotary-jet ejector is presented. The long-range goal is to perform both detailed flow mapping and finite element computational analysis. The described work represents an initial finding on the experimental mapping program. Test results on the hubless rotary-jet are discussed.

  16. Hypersonic Experimental and Computational Capability, Improvement and Validation. Volume 2

    NASA Technical Reports Server (NTRS)

    Muylaert, Jean (Editor); Kumar, Ajay (Editor); Dujarric, Christian (Editor)

    1998-01-01

    The results of the phase 2 effort conducted under AGARD Working Group 18 on Hypersonic Experimental and Computational Capability, Improvement and Validation are presented in this report. The first volume, published in May 1996, mainly focused on the design methodology, plans and some initial results of experiments that had been conducted to serve as validation benchmarks. The current volume presents the detailed experimental and computational data base developed during this effort.

  17. Asking for work adjustments or initiating behavioural changes - what makes a 'problematic co-worker' score Brownie points? An experimental study on the reactions towards colleagues with a personality disorder.

    PubMed

    Muschalla, Beate; Fay, Doris; Seemann, Anne

    2016-10-01

    People with mental disorders, especially personality disorders, often face low acceptance at work. This is particularly problematic when returning to work after sick leave, because it impedes reintegration into the former workplace. This study explores colleagues' reactions towards a problematic worker dependent on the returning person's reintegration strategy: The returning person undertaking changes in their behaviour is compared with the person requesting adjustments of the workplace. In an experimental study, 188 employed persons read one of four vignettes that described a return-to-work-situation of a problematic co-worker. Across all vignettes, the co-worker was depicted as having previously caused problems in the work team. In the first vignette, the co-worker did not change anything (control condition) when she returned to work; in the second, she asked for workplace adjustments; in the third vignette she initiated efforts to change her own behaviour; and the fourth vignette combined both workplace adjustments and behavioural change. Study participants were asked for their reactions towards the problematic co-worker. Vignettes that included a behavioural change evoked more positive reactions towards the co-worker than vignettes without any behavioural change. Asking for workplace adjustments alone did not yield more positive reactions compared to not initiating any change. When preparing employees with interactional problems for their return to work, it is not effective to only instruct them on their statutory entitlement for workplace adjustments. Instead, it is advisable to encourage them to proactively strive for behaviour changes.

  18. Fabrication, characterization, and heuristic trade space exploration of magnetically actuated Miura-Ori origami structures

    NASA Astrophysics Data System (ADS)

    Cowan, Brett; von Lockette, Paris R.

    2017-04-01

    The authors develop magnetically actuated Miura-Ori structures through observation, experiment, and computation using an initially heuristic strategy followed by trade space visualization and optimization. The work is novel, especially within origami engineering, in that beyond final target shape approximation, Miura-Ori structures in this work are additionally evaluated for the shape approximation while folding and for their efficient use of their embedded actuators. The structures consisted of neodymium magnets placed on the panels of silicone elastomer substrates cast in the Miura-Ori folding pattern. Initially four configurations, arrangements of magnets on the panels, were selected based on heuristic arguments that (1) maximized the amount of magnetic torque applied to the creases and (2) reduced the number of magnets needed to affect all creases in the pattern. The results of experimental and computational performance metrics were used in a weighted sum model to predict the optimum configuration, which was then fabricated and experimentally characterized for comparison to the initial prototypes. As expected, optimization of magnet placement and orientation was effective at increasing the degree of theoretical useful work. Somewhat unexpectedly, however, trade space results showed that even after optimization, the configuration with the most number of magnets was least effective, per magnet, at directing its actuation to the structure’s creases. Overall, though the winning configuration experimentally outperformed its initial, non-optimal counterparts, results showed that the choice of optimum configuration was heavily dependent on the weighting factors. These results highlight both the ability of the Miura-Ori to be actuated with external magnetic stimuli, the effectiveness of a heuristic design approach that focuses on the actuation mechanism, and the need to address path-dependent metrics in assessing performance in origami folding structures.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kay, Jeffrey J.; Park, Samuel; Kohl, Ian Thomas

    In this work, shock-induced reactions in high explosives and their chemical mechanisms were investigated using state-of-the-art experimental and theoretical techniques. Experimentally, ultrafast shock interrogation (USI, an ultrafast interferometry technique) and ultrafast absorption spectroscopy were used to interrogate shock compression and initiation of reaction on the picosecond timescale. The experiments yielded important new data that appear to indicate reaction of high explosives on the timescale of tens of picoseconds in response to shock compression, potentially setting new upper limits on the timescale of reaction. Theoretically, chemical mechanisms of shock-induced reactions were investigated using density functional theory. The calculations generated important insightsmore » regarding the ability of several hypothesized mechanisms to account for shock-induced reactions in explosive materials. The results of this work constitute significant advances in our understanding of the fundamental chemical reaction mechanisms that control explosive sensitivity and initiation of detonation.« less

  20. Towards adaptive, streaming analysis of x-ray tomography data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Mathew; Kleese van Dam, Kerstin; Marshall, Matthew J.

    2015-03-04

    Temporal and spatial resolution of chemical imaging methodologies such as x-ray tomography are rapidly increasing, leading to more complex experimental procedures and fast growing data volumes. Automated analysis pipelines and big data analytics are becoming essential to effectively evaluate the results of such experiments. Offering those data techniques in an adaptive, streaming environment can further substantially improve the scientific discovery process, by enabling experimental control and steering based on the evaluation of emerging phenomena as they are observed by the experiment. Pacific Northwest National Laboratory (PNNL)’ Chemical Imaging Initiative (CII - http://imaging.pnnl.gov/ ) has worked since 2011 towards developing amore » framework that allows users to rapidly compose and customize high throughput experimental analysis pipelines for multiple instrument types. The framework, named ‘Rapid Experimental Analysis’ (REXAN) Framework [1], is based on the idea of reusable component libraries and utilizes the PNNL developed collaborative data management and analysis environment ‘Velo’, to provide a user friendly analysis and data management environment for experimental facilities. This article will, discuss the capabilities established for X-Ray tomography, discuss lessons learned, and provide an overview of our more recent work in the Analysis in Motion Initiative (AIM - http://aim.pnnl.gov/ ) at PNNL to provide REXAN capabilities in a streaming environment.« less

  1. Experimental confirmation of a PDE-based approach to design of feedback controls

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Smith, Ralph C.; Brown, D. E.; Silcox, R. J.; Metcalf, Vern L.

    1995-01-01

    Issues regarding the experimental implementation of partial differential equation based controllers are discussed in this work. While the motivating application involves the reduction of vibration levels for a circular plate through excitation of surface-mounted piezoceramic patches, the general techniques described here will extend to a variety of applications. The initial step is the development of a PDE model which accurately captures the physics of the underlying process. This model is then discretized to yield a vector-valued initial value problem. Optimal control theory is used to determine continuous-time voltages to the patches, and the approximations needed to facilitate discrete time implementation are addressed. Finally, experimental results demonstrating the control of both transient and steady state vibrations through these techniques are presented.

  2. The development of uneven-aged southern pine silviculture before the Crossett Experimental Forest (Arkansas, USA)

    Treesearch

    Don C. Bragg

    2017-01-01

    Although the Crossett Experimental Forest (CEF) played a well-publicized role in the development of uneven-aged southern pine silviculture, work on a selection method in Arkansas (USA) did not originate there. In 1925, Leslie Pomeroy and Eugene Connor acquired the Ozark Badger Lumber Company and initiated an expert-driven selection management system compatible with...

  3. A REPORT ON EXPERIMENTATION IN THE TEACHING OF THE FIRST COURSE IN ALGEBRA AT EL CAMINO COLLEGE.

    ERIC Educational Resources Information Center

    MANSFIELD, HENRY, JR.

    AN INITIAL ATTEMPT TO EVALUATE PROGRAMED INSTRUCTIONAL MATERIAL IN ALGEBRA CLASSES LED TO FURTHER EXPERIMENTATION WITH A VARIETY OF PROCEDURES. IN 1964-65, NO SIGNIFICANT DIFFERENCES WERE FOUND IN THE PERCENT OF STUDENTS SUCCEEDING IN PROGRAMED AND CONVENTIONAL CLASSES, THOUGH STUDENTS IN PROGRAMED SECTIONS DID NOT SEEM MOTIVATED TO WORK AT THEIR…

  4. Physical modeling in geomorphology: are boundary conditions necessary?

    NASA Astrophysics Data System (ADS)

    Cantelli, A.

    2012-12-01

    Referring to the physical experimental design in geomorphology, boundary conditions are key elements that determine the quality of the results and therefore the study development. For years engineers have modeled structures, such as dams and bridges, with high precision and excellent results. Until the last decade, a great part of the physical experimental work in geomorphology has been developed with an engineer-like approach, requiring an accurate scaling analysis to determine inflow parameters and initial geometrical conditions. However, during the last decade, the way we have been approaching physical experiments has significantly changed. In particular, boundary conditions and initial conditions are considered unknown factors that need to be discovered during the experiment. This new philosophy leads to a more demanding data acquisition process but relaxes the obligation to a priori know the appropriate input and initial conditions and provides the flexibility to discover those data. Here I am going to present some practical examples of this experimental approach in deepwater geomorphology; some questions about scaling of turbidity currents and a new large experimental facility built at the Universidade Federal do Rio Grande do Sul, Brasil.

  5. Therapeutic Vascular Targeting and Irradiation: Correlation of MRI and Tissue Changes at Cellular and Molecular Levels to Optimizing Outcome

    DTIC Science & Technology

    2005-06-01

    subsequently trigger a cascade of tumor cell death in experimental tumors [4,5]. Although massive necrosis can be induced, tumors usually regrow from a...the Statement of Work Task 2, experimental radiation therapy has been designed and initiated based on the MRI oximetry data. Preliminary data of control...Hoechst dye 33342 showed a significant reduction in perfused vessels at 2hr after CA4P, which recovered 24 h later. * Experimental radiation therapy a

  6. Transport relaxation processes in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Jonas, J.

    The technique for solubility measurements of solids in compressed supercritical fluids using NMR and theoretical analysis of experimental data on collision induced scattering were examined. Initial tests for a determination of solid solubilities in supercritical fluids without mixing were previously described and these preparations have continued. Super critical carbon dioxide dissolving naphthalene, for which solubility data is already available (M. McHugh, M.E. Paulaitis, J. Chem. Eng. Data, Vol. 25 (4), 1980) is being studied. This initial testing of the NMR technique for measuring solubilities in a well characterized system should prove very valuable for our later determinations with the proposed mixing probe. Systematic experimental studies of collision induced spectra in several supercritical fluids using both Raman and Rayleigh scattering are continued. The experimental work on SF6 and CH4 was finished and the experimental data testing of the various theoretical models for collision induced scattering is being analyzed.

  7. Numerical investigations on pressurized AL-composite vessel response to hypervelocity impacts: Comparison between experimental works and a numerical code

    NASA Astrophysics Data System (ADS)

    Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre-Louis

    2015-09-01

    Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels) have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure) that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.

  8. Initial-State Quantum Fluctuations in the Little Bang

    DOE PAGES

    Gelis, François; Schenke, Björn

    2016-06-01

    In this work, we review recent developments in the ab initio theoretical description of the initial state in heavy-ion collisions. We emphasize the importance of fluctuations, both for the phenomenological description of experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) and for the theoretical understanding of the nonequilibrium early-time dynamics and thermalization of the medium.

  9. Long-Term High-Level Defense-Waste technology

    NASA Astrophysics Data System (ADS)

    1982-07-01

    In the residual liquid solidification effort, the primary alternative studied is the wiped film evaporator approach to solidifying salt well pumped liquids and returning the molten material to single shell tanks for microwave final stabilization to a hard dry product. Both systems analysis and experimental work are proceeding to evaluate this approach. The primary alternative for in situ stabilization of in-tank wastes is microwave drying of wet salt cake and unpumped sludges. Experimental work was successfully conducted on a 1/12 scale tank containing wet synthetic salt cake. Related systems analysis of a full scale system was initiated.

  10. Experimentally Estimated Impacts of School Vouchers on College Enrollment and Degree Attainment. Program on Education Policy and Governance Working Papers Series. PEPG 15-01

    ERIC Educational Resources Information Center

    Chingos, Matthew M.; Peterson, Paul E.

    2015-01-01

    We provide the first experimental estimates of the long-term impacts of a voucher to attend private school by linking data from a privately sponsored voucher initiative in New York City, which awarded the scholarships by lottery to low-income families, to administrative records on college enrollment and degree attainment. We find no significant…

  11. Working Together: Contributions of Corpus Analyses and Experimental Psycholinguistics to Understanding Conversation.

    PubMed

    Meyer, Antje S; Alday, Phillip M; Decuyper, Caitlin; Knudsen, Birgit

    2018-01-01

    As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation.

  12. National Ignition Facility: Experimental plan

    NASA Astrophysics Data System (ADS)

    1994-05-01

    As part of the Conceptual Design Report (CDR) for the National Ignition Facility (NIF), scientists from Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), the University of Rochester's Laboratory for Laser Energetics (UR/LLE), and EG&G formed an NIF Target Diagnostics Working Group. The purpose of the Target Diagnostics Working Group is to prepare conceptual designs of target diagnostics for inclusion in the facility CDR and to determine how these specifications impact the CDR. To accomplish this, a subgroup has directed its efforts at constructing an approximate experimental plan for the ignition campaign of the NIF CDR. The results of this effort are contained in this document, the Experimental Plan for achieving fusion ignition in the NIF. This group initially concentrated on the flow-down requirements of the experimental campaign leading to ignition, which will dominate the initial efforts of the NIF. It is envisaged, however, that before ignition, there will be parallel campaigns supporting weapons physics, weapons effects, and other research. This plan was developed by analyzing the sequence of activities required to finally fire the laser at the level of power and precision necessary to achieve the conditions of an ignition hohlraum target, and to then use our experience in activating and running Nova experiments to estimate the rate of completing these activities.

  13. Implementation and simulation of a cone dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Wang, Huaming; Zhu, Jianying

    2008-11-01

    The purpose is to investigate the performance of cone dielectric elastomer actuator (DEA) by experiment and FEM simulation. Two working equilibrium positions of cone DEA, which correspond to its initial displacement and displacement output with voltage off and on respectively, are determined through the analysis on its working principle. Experiments show that analytical results accord with experimental ones, and work output in a workcycle is hereby calculated. Actuator can respond quickly when voltage is applied and can return to its original position rapidly when voltage is released. Also, FEM simulation is used to obtain the movement of cone DEA in advance. Simulation results agree well with experimental ones and prove the feasibility of simulation. Also, causes for small difference between them in displacement output are analyzed.

  14. Employee Participation, Work Redesign, and New Technology: Implications for Public Policy in the 1990s. Background Paper No. 35A.

    ERIC Educational Resources Information Center

    Kochan, Thomas; And Others

    The 1980s have been a period during which important private experiments with innovations have occurred in employee participation, work redesign, and the introduction of new technologies and new systems of production. It is now time to move beyond the experimental stage. The following four interrelated policy initiatives should guide public efforts…

  15. A comparison of experimental and theoretical results for rotordynamic coefficients of four annular gas seals

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. C.; Elrod, D.; Nicks, C.

    1985-01-01

    The test facility and initial test program developed to experimentally measure the fluid forces induced by annular gas seals is described. A comparison of theoretically predicted and experimentally obtained data for smooth and honeycomb seals is provided. And a comparison of experimental data from the tests of three smooth-rotor/smooth-stator seals is provided. The leakage of the working fluid through the seal, the pressure gradient along the seal length, entrance pressure-loss data, and rotordynamic coefficients provide a basis for comparison. A short discussion on seal theory is included, and various rotordynamic coefficient identification schemes are described.

  16. Preclinical electrogastrography in experimental pigs

    PubMed Central

    Květina, Jaroslav; Varayil, Jithinraj Edakkanambeth; Ali, Shahzad Marghoob; Kuneš, Martin; Bureš, Jan; Tachecí, Ilja; Rejchrt, Stanislav; Kopáčová, Marcela

    2010-01-01

    Surface electrogastrography (EGG) is a non-invasive means of recording gastric myoelectric activity or slow waves from cutaneous leads placed over the stomach. This paper provides a comprehensive review of preclinical EGG. Our group recently set up and worked out the methods for EGG in experimental pigs. We gained our initial experience in the use of EGG in assessment of porcine gastric myoelectric activity after volume challenge and after intragastric administration of itopride and erythromycin. The mean dominant frequency in pigs is comparable with that found in humans. EGG in experimental pigs is feasible. Experimental EGG is an important basis for further preclinical projects in pharmacology and toxicology. PMID:21217873

  17. Old Wine into New Bottles.

    ERIC Educational Resources Information Center

    Crandall, G. Douglas

    1997-01-01

    Discusses how traditional lab exercises can be converted into investigative exercises. Describes an exercise on seed germination that has students design their own experiments based on their initial results. Involves students in the scientific process and allows them to experience the joys and disappointments of experimental work. (JRH)

  18. Shock Initiation Experiments with Ignition and Growth Modeling on the HMX-Based Explosive LX-14

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Dehaven, Martin R.; Strickland, Shawn L.; Tarver, Craig M.; Springer, H. Keo; Cowan, Matt R.

    2017-06-01

    Shock initiation experiments on the HMX-based explosive LX-14 were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between sample disks pressed to different densities ( 1.57 or 1.83 g/cm3 that corresponds to 85 or 99% of theoretical maximum density (TMD), respectively). The shock sensitivity was found to increase with decreasing density as expected. Ignition and Growth model parameters were derived that yielded reasonable agreement with the experimental data at both initial densities. The shock sensitivity at the tested densities will be compared to prior work published on other HMX-based formulations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded in part by the Joint DoD-DOE Munitions Program.

  19. Experimental residual stress evaluation of hydraulic expansion transitions in Alloy 690 steam generator tubing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, R.; Doherty, P.; Hornbach, D.

    1995-12-31

    Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tubemore » reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material.« less

  20. Initialization and Restart in Stochastic Local Search: Computing a Most Probable Explanation in Bayesian Networks

    NASA Technical Reports Server (NTRS)

    Mengshoel, Ole J.; Wilkins, David C.; Roth, Dan

    2010-01-01

    For hard computational problems, stochastic local search has proven to be a competitive approach to finding optimal or approximately optimal problem solutions. Two key research questions for stochastic local search algorithms are: Which algorithms are effective for initialization? When should the search process be restarted? In the present work we investigate these research questions in the context of approximate computation of most probable explanations (MPEs) in Bayesian networks (BNs). We introduce a novel approach, based on the Viterbi algorithm, to explanation initialization in BNs. While the Viterbi algorithm works on sequences and trees, our approach works on BNs with arbitrary topologies. We also give a novel formalization of stochastic local search, with focus on initialization and restart, using probability theory and mixture models. Experimentally, we apply our methods to the problem of MPE computation, using a stochastic local search algorithm known as Stochastic Greedy Search. By carefully optimizing both initialization and restart, we reduce the MPE search time for application BNs by several orders of magnitude compared to using uniform at random initialization without restart. On several BNs from applications, the performance of Stochastic Greedy Search is competitive with clique tree clustering, a state-of-the-art exact algorithm used for MPE computation in BNs.

  1. Working Together: Contributions of Corpus Analyses and Experimental Psycholinguistics to Understanding Conversation

    PubMed Central

    Meyer, Antje S.; Alday, Phillip M.; Decuyper, Caitlin; Knudsen, Birgit

    2018-01-01

    As conversation is the most important way of using language, linguists and psychologists should combine forces to investigate how interlocutors deal with the cognitive demands arising during conversation. Linguistic analyses of corpora of conversation are needed to understand the structure of conversations, and experimental work is indispensable for understanding the underlying cognitive processes. We argue that joint consideration of corpus and experimental data is most informative when the utterances elicited in a lab experiment match those extracted from a corpus in relevant ways. This requirement to compare like with like seems obvious but is not trivial to achieve. To illustrate this approach, we report two experiments where responses to polar (yes/no) questions were elicited in the lab and the response latencies were compared to gaps between polar questions and answers in a corpus of conversational speech. We found, as expected, that responses were given faster when they were easy to plan and planning could be initiated earlier than when they were harder to plan and planning was initiated later. Overall, in all but one condition, the latencies were longer than one would expect based on the analyses of corpus data. We discuss the implication of this partial match between the data sets and more generally how corpus and experimental data can best be combined in studies of conversation. PMID:29706919

  2. Heat strain models applicable for protective clothing: Comparison of core temperature response. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, R.R.; McLellan, T.M.; Withey, W.R.

    This report represents the results of TTCP-UTP6 efforts on modeling aspects when chemical protective ensembles are worn which need to be considered in warm environments. Since 1983, a significant data base has been collected using human experimental studies and wide clothing systems from which predictive modeling equations have been developed with individuals working in temperate and hot environments, but few comparisons of the -- results from various model outputs have ever been carried out. This initial comparison study was part of a key technical area (KIA) project for The Technical Cooperation Program (TTCP) UTP-6 working party. A modeling workshop wasmore » conducted in Toronto, Canada on 9-10 June 1994 to discuss the data reduction and results acquired in an initial clothing analysis study of TTCP using various chemical protective garments. To our knowledge, no comprehensive study to date has ever focused on comparing experimental results using an international standardized heat stress procedure matched to physiological outputs from various model predictions in individuals dressed in chemical protective clothing systems. This is the major focus of this TTCP key technical study. This technical report covers one aspect of the working party`s results.« less

  3. On the measurement of magnetic viscosity

    NASA Astrophysics Data System (ADS)

    Serletis, C.; Efthimiadis, K. G.

    2012-08-01

    This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.

  4. A study of roll attractor and wing rock of delta wings at high angles of attack

    NASA Technical Reports Server (NTRS)

    Niranjana, T.; Rao, D. M.; Pamadi, Bandu N.

    1993-01-01

    Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data.

  5. Study of Plasma Flows Generated in Plasma Focus Discharge in Different Regimes of Working Gas Filling

    NASA Astrophysics Data System (ADS)

    Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.

    2017-12-01

    Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.

  6. Numerical-experimental observation of shape bistability of red blood cells flowing in a microchannel

    NASA Astrophysics Data System (ADS)

    Guckenberger, Achim; Kihm, Alexander; John, Thomas; Wagner, Christian; Gekle, Stephan

    Red blood cells flowing through capillaries assume a wide variety of different shapes owing to their high deformability. Predicting the realized shapes is a complex field as they are determined by the intricate interplay between the flow conditions and the membrane mechanics. In this work we construct the shape phase diagram of a single red blood cell with a physiological viscosity ratio flowing in a microchannel. We use both experimental in-vitro measurements as well as 3D numerical simulations to complement the respective other one. Numerically, we have easy control over the initial starting configuration and natural access to the full 3D shape. With this information we obtain the phase diagram as a function of initial position, starting shape and cell velocity. Experimentally, we measure the occurrence frequency of the different shapes as a function of the cell velocity to construct the experimental diagram which is in good agreement with the numerical observations. Two different major shapes are found, namely croissants and slippers. Notably, both shapes show coexistence at low (<1 mm/s) and high velocities (>3 mm/s) while in-between only croissants are stable. This pronounced bistability indicates that RBC shapes are not only determined by system parameters such as flow velocity or channel size, but also strongly depend on the initial conditions.

  7. Outcomes of using wet pooling to detect STEC and Salmonella

    USDA-ARS?s Scientific Manuscript database

    Objective: The objective of this work was to examine the reliability of wet pooling sample broths. Experimental Design & Analysis: Fresh sample enrichment broths (n=737) were used to prepare 148 wet pools of 5 broths each. The initial broths and the pools were screened for STEC and Salmonella. ...

  8. Revisiting the Relationship between Exercise Heart Rate and Music Tempo Preference

    ERIC Educational Resources Information Center

    Karageorghis, Costas I.; Jones, Leighton; Priest, David-Lee; Akers, Rose I.; Clarke, Adam; Perry, Jennifer M.; Reddick, Benjamin T.; Bishop, Daniel T.; Lim, Harry B. T.

    2011-01-01

    In the present study, we investigated a hypothesized quartic relationship (meaning three inflection points) between exercise heart rate (HR) and preferred music tempo. Initial theoretical predictions suggested a positive linear relationship (Iwanaga, 1995a, 1995b); however, recent experimental work has shown that as exercise HR increases, step…

  9. Report of study visits by University of Bristol, UK to University of Illinois in Urbana-Champaign, USA to initiate collaboration and coordination with 2005 MURI MICROVASCULAR AUTONOMIC COMPOSITES

    DTIC Science & Technology

    2007-02-15

    fibre interaction are areas that require further research. Experimental and modelling studies undertaken at UIUC on individual microcapsules have many... Microcapsules : Work at UIUC has shown microcapsules to be a very effective method of self- healing to recover fracture toughness. In particular... microcapsule , cleaving it and initiating the release of monomer. A potential limitation of the microcapsule system is the limited volume of self-healing

  10. Progression paths in children's problem solving: The influence of dynamic testing, initial variability, and working memory.

    PubMed

    Resing, Wilma C M; Bakker, Merel; Pronk, Christine M E; Elliott, Julian G

    2017-01-01

    The current study investigated developmental trajectories of analogical reasoning performance of 104 7- and 8-year-old children. We employed a microgenetic research method and multilevel analysis to examine the influence of several background variables and experimental treatment on the children's developmental trajectories. Our participants were divided into two treatment groups: repeated practice alone and repeated practice with training. Each child received an initial working memory assessment and was subsequently asked to solve figural analogies on each of several sessions. We examined children's analogical problem-solving behavior and their subsequent verbal accounts of their employed solving processes. We also investigated the influence of verbal and visual-spatial working memory capacity and initial variability in strategy use on analogical reasoning development. Results indicated that children in both treatment groups improved but that gains were greater for those who had received training. Training also reduced the influence of children's initial variability in the use of analogical strategies with the degree of improvement in reasoning largely unrelated to working memory capacity. Findings from this study demonstrate the value of a microgenetic research method and the use of multilevel analysis to examine inter- and intra-individual change in problem-solving processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Stochastic switching of TiO2-based memristive devices with identical initial memory states

    PubMed Central

    2014-01-01

    In this work, we show that identical TiO2-based memristive devices that possess the same initial resistive states are only phenomenologically similar as their internal structures may vary significantly, which could render quite dissimilar switching dynamics. We experimentally demonstrated that the resistive switching of practical devices with similar initial states could occur at different programming stimuli cycles. We argue that similar memory states can be transcribed via numerous distinct active core states through the dissimilar reduced TiO2-x filamentary distributions. Our hypothesis was finally verified via simulated results of the memory state evolution, by taking into account dissimilar initial filamentary distribution. PMID:24994953

  12. Alternate methodologies to experimentally investigate shock initiation properties of explosives

    NASA Astrophysics Data System (ADS)

    Svingala, Forrest R.; Lee, Richard J.; Sutherland, Gerrit T.; Benjamin, Richard; Boyle, Vincent; Sickels, William; Thompson, Ronnie; Samuels, Phillip J.; Wrobel, Erik; Cornell, Rodger

    2017-01-01

    Reactive flow models are desired for new explosive formulations early in the development stage. Traditionally, these models are parameterized by carefully-controlled 1-D shock experiments, including gas-gun testing with embedded gauges and wedge testing with explosive plane wave lenses (PWL). These experiments are easy to interpret due to their 1-D nature, but are expensive to perform and cannot be performed at all explosive test facilities. This work investigates alternative methods to probe shock-initiation behavior of new explosives using widely-available pentolite gap test donors and simple time-of-arrival type diagnostics. These experiments can be performed at a low cost at most explosives testing facilities. This allows experimental data to parameterize reactive flow models to be collected much earlier in the development of an explosive formulation. However, the fundamentally 2-D nature of these tests may increase the modeling burden in parameterizing these models and reduce general applicability. Several variations of the so-called modified gap test were investigated and evaluated for suitability as an alternative to established 1-D gas gun and PWL techniques. At least partial agreement with 1-D test methods was observed for the explosives tested, and future work is planned to scope the applicability and limitations of these experimental techniques.

  13. Using experimental human influenza infections to validate a viral dynamic model and the implications for prediction.

    PubMed

    Chen, S C; You, S H; Liu, C Y; Chio, C P; Liao, C M

    2012-09-01

    The aim of this work was to use experimental infection data of human influenza to assess a simple viral dynamics model in epithelial cells and better understand the underlying complex factors governing the infection process. The developed study model expands on previous reports of a target cell-limited model with delayed virus production. Data from 10 published experimental infection studies of human influenza was used to validate the model. Our results elucidate, mechanistically, the associations between epithelial cells, human immune responses, and viral titres and were supported by the experimental infection data. We report that the maximum total number of free virions following infection is 10(3)-fold higher than the initial introduced titre. Our results indicated that the infection rates of unprotected epithelial cells probably play an important role in affecting viral dynamics. By simulating an advanced model of viral dynamics and applying it to experimental infection data of human influenza, we obtained important estimates of the infection rate. This work provides epidemiologically meaningful results, meriting further efforts to understand the causes and consequences of influenza A infection.

  14. Reaction Times to Consecutive Automation Failures: A Function of Working Memory and Sustained Attention.

    PubMed

    Jipp, Meike

    2016-12-01

    This study explored whether working memory and sustained attention influence cognitive lock-up, which is a delay in the response to consecutive automation failures. Previous research has demonstrated that the information that automation provides about failures and the time pressure that is associated with a task influence cognitive lock-up. Previous research has also demonstrated considerable variability in cognitive lock-up between participants. This is why individual differences might influence cognitive lock-up. The present study tested whether working memory-including flexibility in executive functioning-and sustained attention might be crucial in this regard. Eighty-five participants were asked to monitor automated aircraft functions. The experimental manipulation consisted of whether or not an initial automation failure was followed by a consecutive failure. Reaction times to the failures were recorded. Participants' working-memory and sustained-attention abilities were assessed with standardized tests. As expected, participants' reactions to consecutive failures were slower than their reactions to initial failures. In addition, working-memory and sustained-attention abilities enhanced the speed with which participants reacted to failures, more so with regard to consecutive than to initial failures. The findings highlight that operators with better working memory and sustained attention have small advantages when initial failures occur, but their advantages increase across consecutive failures. The results stress the need to consider personnel selection strategies to mitigate cognitive lock-up in general and training procedures to enhance the performance of low ability operators. © 2016, Human Factors and Ergonomics Society.

  15. Work plan for improving the DARWIN2.3 depleted material balance calculation of nuclides of interest for the fuel cycle

    NASA Astrophysics Data System (ADS)

    Rizzo, Axel; Vaglio-Gaudard, Claire; Martin, Julie-Fiona; Noguère, Gilles; Eschbach, Romain

    2017-09-01

    DARWIN2.3 is the reference package used for fuel cycle applications in France. It solves the Boltzmann and Bateman equations in a coupling way, with the European JEFF-3.1.1 nuclear data library, to compute the fuel cycle values of interest. It includes both deterministic transport codes APOLLO2 (for light water reactors) and ERANOS2 (for fast reactors), and the DARWIN/PEPIN2 depletion code, each of them being developed by CEA/DEN with the support of its industrial partners. The DARWIN2.3 package has been experimentally validated for pressurized and boiling water reactors, as well as for sodium fast reactors; this experimental validation relies on the analysis of post-irradiation experiments (PIE). The DARWIN2.3 experimental validation work points out some isotopes for which the depleted concentration calculation can be improved. Some other nuclides have no available experimental validation, and their concentration calculation uncertainty is provided by the propagation of a priori nuclear data uncertainties. This paper describes the work plan of studies initiated this year to improve the accuracy of the DARWIN2.3 depleted material balance calculation concerning some nuclides of interest for the fuel cycle.

  16. Actinobacteria consortium as an efficient biotechnological tool for mixed polluted soil reclamation: Experimental factorial design for bioremediation process optimization.

    PubMed

    Aparicio, Juan Daniel; Raimondo, Enzo Emanuel; Gil, Raúl Andrés; Benimeli, Claudia Susana; Polti, Marta Alejandra

    2018-01-15

    The objective of the present work was to establish optimal biological and physicochemical parameters in order to remove simultaneously lindane and Cr(VI) at high and/or low pollutants concentrations from the soil by an actinobacteria consortium formed by Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0. Also, the final aim was to treat real soils contaminated with Cr(VI) and/or lindane from the Northwest of Argentina employing the optimal biological and physicochemical conditions. In this sense, after determining the optimal inoculum concentration (2gkg -1 ), an experimental design model with four factors (temperature, moisture, initial concentration of Cr(VI) and lindane) was employed for predicting the system behavior during bioremediation process. According to response optimizer, the optimal moisture level was 30% for all bioremediation processes. However, the optimal temperature was different for each situation: for low initial concentrations of both pollutants, the optimal temperature was 25°C; for low initial concentrations of Cr(VI) and high initial concentrations of lindane, the optimal temperature was 30°C; and for high initial concentrations of Cr(VI), the optimal temperature was 35°C. In order to confirm the model adequacy and the validity of the optimization procedure, experiments were performed in six real contaminated soils samples. The defined actinobacteria consortium reduced the contaminants concentrations in five of the six samples, by working at laboratory scale and employing the optimal conditions obtained through the factorial design. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Pulsed High Density Experiment (PHDX) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slough, John P.; Andreason, Samuel

    The purpose of this paper is to present the conclusions that can be drawn from the Field Reversed Configuration (FRC) formation experiments conducted on the Pulsed High Density experiment (PHD) at the University of Washington. The experiment is ongoing. The experimental goal for this first stage of PHD was to generate a stable, high flux (>10 mWb), high energy (>10 KJ) target FRC. Such results would be adequate as a starting point for several later experiments. This work focuses on experimental implementation and the results of the first four month run. Difficulties were encountered due to the initial on-axis plasmamore » ionization source. Flux trapping with this ionization source acting alone was insufficient to accomplish experimental objectives. Additional ionization methods were utilized to overcome this difficulty. A more ideal plasma source layout is suggested and will be explored during a forthcoming work.« less

  18. Experimental investigation on no-vent fill process using tetrafluoromethane (CF4)

    NASA Astrophysics Data System (ADS)

    Kim, Youngcheol; Lee, Cheonkyu; Park, Jiho; Seo, Mansu; Jeong, Sangkwon

    2016-03-01

    This paper investigates the transfer of liquid cryogens using a no-vent fill (NVF) process experimentally to identify the dominant NVF parameters. The experimental apparatus has been fabricated with extensive instrumentations to precisely study the effects of each NVF parameter. Liquid tetrafluoromethane (CF4) is selected as the working fluid due to its similar molecular structures and similar normal boiling point and triple point with liquid methane which has been considered as an attractive future cryogenic propellant. The experimental results show that the initial receiver tank wall temperature and the incoming liquid temperature are the primary factors that characterize the (non-equilibrium) thermodynamic state at the start of a NVF transfer. The supply pressure is also critical as it indicates the ability to condense vapor in the receiver tank. A non-dimensional map based on energy balance is proposed to find acceptable initial conditions of the filling volume at the desired final tank pressure. The non-dimensional map shows good agreement with the NVF data not only in this paper but also in the previous research.

  19. Advanced oxidation of commercial herbicides mixture: experimental design and phytotoxicity evaluation.

    PubMed

    López, Alejandro; Coll, Andrea; Lescano, Maia; Zalazar, Cristina

    2017-05-05

    In this work, the suitability of the UV/H 2 O 2 process for commercial herbicides mixture degradation was studied. Glyphosate, the herbicide most widely used in the world, was mixed with other herbicides that have residual activity as 2,4-D and atrazine. Modeling of the process response related to specific operating conditions like initial pH and initial H 2 O 2 to total organic carbon molar ratio was assessed by the response surface methodology (RSM). Results have shown that second-order polynomial regression model could well describe and predict the system behavior within the tested experimental region. It also correctly explained the variability in the experimental data. Experimental values were in good agreement with the modeled ones confirming the significance of the model and highlighting the success of RSM for UV/H 2 O 2 process modeling. Phytotoxicity evolution throughout the photolytic degradation process was checked through germination tests indicating that the phytotoxicity of the herbicides mixture was significantly reduced after the treatment. The end point for the treatment at the operating conditions for maximum TOC conversion was also identified.

  20. Accelerating the connection between experiments and models: The FACE-MDS experience

    NASA Astrophysics Data System (ADS)

    Norby, R. J.; Medlyn, B. E.; De Kauwe, M. G.; Zaehle, S.; Walker, A. P.

    2014-12-01

    The mandate is clear for improving communication between models and experiments to better evaluate terrestrial responses to atmospheric and climatic change. Unfortunately, progress in linking experimental and modeling approaches has been slow and sometimes frustrating. Recent successes in linking results from the Duke and Oak Ridge free-air CO2 enrichment (FACE) experiments with ecosystem and land surface models - the FACE Model-Data Synthesis (FACE-MDS) project - came only after a period of slow progress, but the experience points the way to future model-experiment interactions. As the FACE experiments were approaching their termination, the FACE research community made an explicit attempt to work together with the modeling community to synthesize and deliver experimental data to benchmark models and to use models to supply appropriate context for the experimental results. Initial problems that impeded progress were: measurement protocols were not consistent across different experiments; data were not well organized for model input; and parameterizing and spinning up models that were not designed for simulating a specific site was difficult. Once these problems were worked out, the FACE-MDS project has been very successful in using data from the Duke and ORNL FACE experiment to test critical assumptions in the models. The project showed, for example, that the stomatal conductance model most widely used in models was supported by experimental data, but models did not capture important responses such as increased leaf mass per unit area in elevated CO2, and did not appropriately represent foliar nitrogen allocation. We now have an opportunity to learn from this experience. New FACE experiments that have recently been initiated, or are about to be initiated, include a eucalyptus forest in Australia; the AmazonFACE experiment in a primary, tropical forest in Brazil; and a mature oak woodland in England. Cross-site science questions are being developed that will have a strong modeling framework, and modelers and experimentalists will work to establish common measurement protocols and data format. By starting the model-experiment connection early and learning from our past experiences, we expect to significantly shorten the time lags between advances in process-oriented studies and large-scale models.

  1. Experimental Model of Biofilm Implant-Related Osteomyelitis To Test Combination Biomaterials Using Biofilms as Initial Inocula

    PubMed Central

    Williams, Dustin L.; Haymond, Bryan S.; Woodbury, Kassie L.; Beck, J. Peter; Moore, David E.; Epperson, R. Tyler; Bloebaum, Roy D.

    2012-01-01

    Currently, the majority of animal models that are used to study biofilm-related infections utilize planktonic bacterial cells as initial inocula to produce positive signals of infection in biomaterials studies. However, the use of planktonic cells has potentially led to inconsistent results in infection outcomes. In this study, well-established biofilms of methicillin-resistant Staphylococcus aureus (MRSA) were grown and used as initial inocula in an animal model of a Type IIIB open fracture. The goal of the work was to establish, for the first time, a repeatable model of biofilm implant-related osteomyelitis wherein biofilms were used as initial inocula to test combination biomaterials. Results showed that 100% of animals that were treated with biofilms developed osteomyelitis, whereas 0% of animals not treated with biofilm developed infection. The development of this experimental model may lead to an important shift in biofilm and biomaterials research by showing that when biofilms are used as initial inocula, they may provide additional insights into how biofilm-related infections in the clinic develop and how they can be treated with combination biomaterials to eradicate and/or prevent biofilm formation. PMID:22492534

  2. Experimental model of biofilm implant-related osteomyelitis to test combination biomaterials using biofilms as initial inocula.

    PubMed

    Williams, Dustin L; Haymond, Bryan S; Woodbury, Kassie L; Beck, J Peter; Moore, David E; Epperson, R Tyler; Bloebaum, Roy D

    2012-07-01

    Currently, the majority of animal models that are used to study biofilm-related infections use planktonic bacterial cells as initial inocula to produce positive signals of infection in biomaterials studies. However, the use of planktonic cells has potentially led to inconsistent results in infection outcomes. In this study, well-established biofilms of methicillin-resistant Staphylococcus aureus were grown and used as initial inocula in an animal model of a Type IIIB open fracture. The goal of the work was to establish, for the first time, a repeatable model of biofilm implant-related osteomyelitis, wherein biofilms were used as initial inocula to test combination biomaterials. Results showed that 100% of animals that were treated with biofilms developed osteomyelitis, whereas 0% of animals not treated with biofilm developed infection. The development of this experimental model may lead to an important shift in biofilm and biomaterials research by showing that when biofilms are used as initial inocula, they may provide additional insights into how biofilm-related infections in the clinic develop and how they can be treated with combination biomaterials to eradicate and/or prevent biofilm formation. Copyright © 2012 Wiley Periodicals, Inc.

  3. Large area sheet task: Advanced dendritic web growth development

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.; Mchugh, J. P.; Hopkins, R. H.; Meier, D.; Schruben, J.

    1981-01-01

    The growth of silicon dendritic web for photovoltaic applications was investigated. The application of a thermal model for calculating buckling stresses as a function of temperature profile in the web is discussed. Lid and shield concepts were evaluated to provide the data base for enhancing growth velocity. An experimental web growth machine which embodies in one unit the mechanical and electronic features developed in previous work was developed. In addition, evaluation of a melt level control system was begun, along with preliminary tests of an elongated crucible design. The economic analysis was also updated to incorporate some minor cost changes. The initial applications of the thermal model to a specific configuration gave results consistent with experimental observation in terms of the initiation of buckling vs. width for a given crystal thickness.

  4. On previous and present investigations of resonance gamma-ray interaction with nuclei at the Institute of Theoretical and Experimental Physics (ITEP, Moscow)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davydov, A. V.

    A brief survey of theoretical and experimental work that is devoted to studying the resonance absorption and scattering of gamma rays by nuclei and which was initiated at the Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the 1950s and has been continued to date is given. Investigations of various versions of interaction in beta decay, magnetic-field-perturbed angular distributions of resonantly scattered gamma rays, the problem of the Moessbauer gamma resonance of long-lived isomeric states of nuclei, and the resonance scattering of annihilation photons by nuclei are described.

  5. Research on assessment of bolted joint state using elastic wave propagation

    NASA Astrophysics Data System (ADS)

    Kędra, R.; Rucka, M.

    2015-07-01

    The work contains results of experimental investigation of elastic wave propagation in a bolted single-lap joint. Tests were carried out for the excitation perpendicular to the connection plane. In experimental studies, PZT transducers were used for both excitation and registration of ultrasonic waves. The analyses took into account varying contact conditions between the elements of the connection depending on the value of the prestressing force. The influence of loosening/tightening of bolts on the energy dissipation was analysed. The experimental results proved the influence of bolt torque on quantitative characteristics of the signals. To improve the diagnostic possibilities only the initial parts of signals were analysed.

  6. Fatigue Life Prediction Based on Crack Closure and Equivalent Initial Flaw Size

    PubMed Central

    Wang, Qiang; Zhang, Wei; Jiang, Shan

    2015-01-01

    Failure analysis and fatigue life prediction are necessary and critical for engineering structural materials. In this paper, a general methodology is proposed to predict fatigue life of smooth and circular-hole specimens, in which the crack closure model and equivalent initial flaw size (EIFS) concept are employed. Different effects of crack closure on small crack growth region and long crack growth region are considered in the proposed method. The EIFS is determined by the fatigue limit and fatigue threshold stress intensity factor △Kth. Fatigue limit is directly obtained from experimental data, and △Kth is calculated by using a back-extrapolation method. Experimental data for smooth and circular-hole specimens in three different alloys (Al2024-T3, Al7075-T6 and Ti-6Al-4V) under multiple stress ratios are used to validate the method. In the validation section, Semi-circular surface crack and quarter-circular corner crack are assumed to be the initial crack shapes for the smooth and circular-hole specimens, respectively. A good agreement is observed between model predictions and experimental data. The detailed analysis and discussion are performed on the proposed model. Some conclusions and future work are given. PMID:28793625

  7. Does Input Enhancement Work for Learning Politeness Strategies?

    ERIC Educational Resources Information Center

    Khatib, Mohammad; Safari, Mahmood

    2013-01-01

    The present study investigated the effect of input enhancement on the acquisition of English politeness strategies by intermediate EFL learners. Two groups of freshman English majors were randomly assigned to the experimental (enhanced input) group and the control (mere exposure) group. Initially, a TOEFL test and a discourse completion test (DCT)…

  8. Children and Welfare Reform: Highlights from Recent Research.

    ERIC Educational Resources Information Center

    Collins, Ann; Jones, Stephanie; Bloom, Heather

    Noting that the mid-1990s are an era of experimentation in welfare initiatives, this publication summarizes 34 research studies on children and welfare reform. Articles include studies of children and parents in poverty, studies of program models likely to have direct implications for children, and outcome evaluations of welfare-to-work programs…

  9. Experimental Investigation of the Role of Defects in Detonation Sensitivity of Energetic Materials: Development of Techniques for Characterization

    DTIC Science & Technology

    2009-12-31

    materials. The initial work was focused on design and construction of an apparatus for injecting defects into the crystals using PZT ceramics ...in the energy partitioning (Table 2), which offers some insight into the nature of the energetic texture of crystalline materials not apparent in

  10. OH-initiated transformation and hydrolysis of aspirin in AOPs system: DFT and experimental studies.

    PubMed

    He, Lin; Sun, Xiaomin; Zhu, Fanping; Ren, Shaojie; Wang, Shuguang

    2017-08-15

    Advanced oxidation processes (AOPs) are widely used in wastewater treatment of pharmaceutical and personal care products (PPCPs). In this work, the OH-initiated transformation as well as the hydrolysis of a typical PPCPs, aspirin, was investigated using density functional theory (DFT) calculations and laboratory experiments. For DFT calculations, the frontier electron densities and bond dissociation energies were analyzed. Profiles of the potential energy surface were constructed, and all the possible pathways were discussed. Additionally, rate constants for each pathway were calculated with transition state theory (TST) method. UV/H 2 O 2 experiments of aspirin were performed and degradation intermediates were identified by UPLC-MS-MS analysis. Different findings from previous experimental works were reported that the H-abstraction pathways at methyl position were dominated and OH-addition pathways on benzene ring were also favored. Meantime, hydroxyl ASA was confirmed as the main stable intermediate. Moreover, it was the first time to use DFT method to investigate the hydrolysis mechanisms of organic ester compound. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Experimental Aerodynamic Derivatives of a Sinusoidally Oscillating Airfoil in Two-Dimensional Flow

    NASA Technical Reports Server (NTRS)

    Halfman, Robert L

    1952-01-01

    Experimental measurements of the aerodynamic reactions on a symmetrical airfoil oscillating harmonically in a two-dimensional flow are presented and analyzed. Harmonic motions include pure pitch and pure translation, for several amplitudes and superimposed on an initial angle of attack, as well as combined pitch and translation. The apparatus and testing program are described briefly and the necessary theoretical background is presented. In general, the experimental results agree remarkably well with the theory, especially in the case of the pure motions. The net work per cycle for a motion corresponding to flutter is experimentally determined to be zero. Considerable consistent data for pure pitch were obtained from a search of available reference material, and several definite Reynolds number effects are evident.

  12. On the granular fingering instability: controlled triggering in laboratory experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Vriend, Nathalie; Tsang, Jonny; Arran, Matthew; Jin, Binbin; Johnsen, Alexander

    2017-11-01

    When a mixture of small, smooth particles and larger, coarse particles is released on a rough inclined plane, the initial uniform front may break up in distinct fingers which elongate over time. This fingering instability is sensitive to the unique arrangement of individual particles and is driven by granular segregation (Pouliquen et al., 1997). Variability in initial conditions create significant limitations for consistent experimental and numerical validation of newly developed theoretical models (Baker et al., 2016) for finger formation. We present an experimental study using a novel tool that sets the initial fingering width of the instability. By changing this trigger width between experiments, we explore the response of the avalanche breakup to perturbations of different widths. Discrete particle simulations (using MercuryDPM, Thornton et al., 2012) are conducted under a similar setting, reproducing the variable finger width, allowing validation between experiments and numerical simulations. A good agreement between simulations and experiments is obtained, and ongoing theoretical work is briefly introduced. NMV acknowledges the Royal Society Dorothy Hodgkin Research Fellowship.

  13. Rewetting of monogroove heat pipe in Space Station radiators

    NASA Technical Reports Server (NTRS)

    Chan, S. H.

    1994-01-01

    This annual report summarizes the work accomplished on rewetting of monogroove heat pipe in space station. Specifically, theoretical and experimental investigations of the rewetting characteristics of thin liquid films over unheated and heated capillary grooved plates were performed. To investigate the effect of gravity on rewetting, the grooved surface was placed in upward and downward facing positions. Profound gravitational effects were observed as the rewetting velocity was found to be higher in the upward than in the downward facing orientation. The difference was even greater with higher initial plate temperatures. With either orientation, it was found that the rewetting velocity increased with the initial plate temperature. But when the temperature was raised above a rewetting temperature, the rewetting velocity decreased with the initial plate temperature. Hydrodynamically controlled and heat conduction controlled rewetting models were then presented to explain and to predict the rewetting characteristics in these two distinct regions. The predicted rewetting velocities were found to be in good agreement with experimental data with elevated plate temperatures.

  14. Getting There from Here: Research on the Effects of Work–Family Initiatives on Work–Family Conflict and Business Outcomes

    PubMed Central

    KELLY, ERIN L.; KOSSEK, ELLEN ERNST; HAMMER, LESLIE B.; DURHAM, MARY; BRAY, JEREMY; CHERMACK, KELLY; MURPHY, LAUREN A.; KASKUBAR, DAN

    2009-01-01

    Many employing organizations have adopted work–family policies, programs, and benefits. Yet managers in employing organizations simply do not know what organizational initiatives actually reduce work–family conflict and how these changes are likely to impact employees and the organization. We examine scholarship that addresses two broad questions: first, do work–family initiatives reduce employees’ work–family conflict and/or improve work–family enrichment? Second, does reduced work–family conflict improve employees’ work outcomes and, especially, business outcomes at the organizational level? We review over 150 peer-reviewed studies from a number of disciplines in order to summarize this rich literature and identify promising avenues for research and conceptualization. We propose a research agenda based on four primary conclusions: the need for more multi-level research, the necessity of an interdisciplinary approach, the benefits of longitudinal studies that employ quasi-experimental or experimental designs and the challenges of translating research into practice in effective ways. PMID:20589229

  15. Gaseous detonation initiation via wave implosion

    NASA Astrophysics Data System (ADS)

    Jackson, Scott Irving

    Efficient detonation initiation is a topic of intense interest to designers of pulse detonation engines. This experimental work is the first to detonate propane-air mixtures with an imploding detonation wave and to detonate a gas mixture with a non-reflected, imploding shock. In order to do this, a unique device has been developed that is capable of generating an imploding toroidal detonation wave inside of a tube from a single ignition point without any obstruction to the tube flow path. As part of this study, an initiator that creates a large-aspect-ratio planar detonation wave in gas-phase explosive from a single ignition point has also been developed. The effectiveness of our initiation devices has been evaluated. The minimum energy required by the imploding shock for initiation was determined to scale linearly with the induction zone length, indicating the presence of a planar initiation mode. The imploding toroidal detonation initiator was found to be more effective at detonation initiation than the imploding shock initiator, using a comparable energy input to that of current initiator tubes.

  16. Halo current diagnostic system of experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D. L.; Shen, B.; Sun, Y.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  17. Evaluation of the Susceptibility to SCC Initiation of Alloy 690 in Simulated PWR Primary Water

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Kazuya; Couvant, Thierry

    Alloy 690 has been widely used in fabricating components of LWR plants as an alternative material to Alloy 600 which has exhibited a significant susceptibility to PWSCC. However, some authors have reported that Alloy 690 can suffer a significant susceptibility to SCC crack growth when highly cold worked. While most of the recent studies emphasize SCC propagation phase, EDF and its partners are focusing on the material's resistance to SCC initiation. This paper summarizes the current work carried out at EDF MAI on the SCC initiation. By means of constant elongation rate tests (CERTs) and constant displacement tests, experimental investigation of the susceptibility to PWSCC were performed. No SCC was observed on either an extruded bar or on two plates, even after 24%-1D cold rolling, confirming the superior PWSCC resistance of Alloy 690 independent of a amount of intergranular precipitation of carbides, and also revealing that such cold rolling does not necessarily decrease the resistance to SCC. On the other hand, a experimental steam generator tube that has a degraded microstructure due to specific heat-treatment revealed its susceptibility to SCC, probably because of the interactive effect of microstructure with heavy intragranular carbide precipitations and the cold worked superficial layer. This phenomenon is in good agreement with results previously published. In this study, the maximal crack depth slightly increased when DH increased from 5 to 60 cc.kg-1H2O. No significant prior ageing effect on the crack depth was observed, even when ageing was combined with high DH.

  18. THE ARMOUR DUST FUELED REACTOR (ADFR). Quarterly Progress Report No. 1 for the Period February 21, 1958 to May 21, 1958

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loewe, W.E.; Krucoff, D.

    1958-10-31

    Work has begun on the ADFR, a reactor using a new fuel form -- fissionable dust carried in an inent gas. Temperatures in the range 2,000 to 3,000 deg F appear feasible in an all-ceramic system. Experimental study of the fuel form was initiated, and a loop to circulate the fuel dust was constructed. Initial operation is encouraging. Theoretical studies were carried on in the areas of reactor physics, heat transfer, and safety. (auth)

  19. Experimental Investigation of the Role of Defects in Detonation Sensitivity of Energetic Materials: Development of Techniques for Characterization

    DTIC Science & Technology

    2008-03-04

    energetic materials. The initial work was focused on design and construction of an apparatus for injecting defects into the crystals using PZT ceramics ...the PIXEL description is of the energetic texture of crystalline materials not apparent in adequate. The next determinant, B, is a clear 0 ..H

  20. Individualized Coaching to Improve Teacher Practice across Grades and Subjects: New Experimental Evidence

    ERIC Educational Resources Information Center

    Kraft, Matthew A.; Blazar, David

    2017-01-01

    This article analyzes a coaching model focused on classroom management skills and instructional practices across grade levels and subject areas. We describe the design and implementation of MATCH Teacher Coaching among an initial cohort of 59 teachers working in New Orleans charter schools. We evaluate the effect of the program on teachers'…

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelis, François; Schenke, Björn

    In this work, we review recent developments in the ab initio theoretical description of the initial state in heavy-ion collisions. We emphasize the importance of fluctuations, both for the phenomenological description of experimental data from the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) and for the theoretical understanding of the nonequilibrium early-time dynamics and thermalization of the medium.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philippe, Sebastien

    A system that can compare physical objects while potentially protecting sensitive information about the objects themselves has been demonstrated experimentally at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). This work, by researchers at Princeton University and PPPL, marks an initial confirmation of the application of a powerful cryptographic technique in the physical world. Graduate student Sébastien Philippe discusses the experiment.

  3. Evaporative cooling and the Mpemba effect

    NASA Astrophysics Data System (ADS)

    Vynnycky, M.; Mitchell, S. L.

    2010-10-01

    The Mpemba effect is popularly summarized by the statement that “hot water can freeze faster than cold”, and has been observed experimentally since the time of Aristotle; however, there exist almost no theoretical models that predict the effect. With a view to initiating rigorous modelling activity on this topic, this paper analyzes in some depth the only available model in literature, which considers the potential role of evaporative cooling and treats the cooling water as a lumped mass. Certain omissions in the original work are highlighted and corrected, and results are obtained for a wide range of operating conditions—in particular, initial liquid temperature and cooling temperature. The implications and importance of the results of the model for experimental design are discussed, as are extensions of the model to handle more realistic 1-, 2- and 3-dimensional configurations.

  4. 75 FR 36467 - Livability Initiative Under Special Experimental Project No. 14

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ...] Livability Initiative Under Special Experimental Project No. 14 AGENCY: Federal Highway Administration (FHWA...). Under this initiative, the FHWA will utilize Special Experimental Project No. 14 (SEP-14) to permit, on... in order to use Federal-aid highway funds. DATES: This new experimental project is being initiated on...

  5. Understanding the Effect of Grain Boundary Character on Dynamic Recrystallization in Stainless Steel 316L

    NASA Astrophysics Data System (ADS)

    Beck, Megan; Morse, Michael; Corolewski, Caleb; Fritchman, Koyuki; Stifter, Chris; Poole, Callum; Hurley, Michael; Frary, Megan

    2017-08-01

    Dynamic recrystallization (DRX) occurs during high-temperature deformation in metals and alloys with low to medium stacking fault energies. Previous simulations and experimental research have shown the effect of temperature and grain size on DRX behavior, but not the effect of the grain boundary character distribution. To investigate the effects of the distribution of grain boundary types, experimental testing was performed on stainless steel 316L specimens with different initial special boundary fractions (SBF). This work was completed in conjunction with computer simulations that used a modified Monte Carlo method which allowed for the addition of anisotropic grain boundary energies using orientation data from electron backscatter diffraction (EBSD). The correlation of the experimental and simulation work allows for a better understanding of how the input parameters in the simulations correspond to what occurs experimentally. Results from both simulations and experiments showed that a higher fraction of so-called "special" boundaries ( e.g., Σ3 twin boundaries) delayed the onset of recrystallization to larger strains and that it is energetically favorable for nuclei to form on triple junctions without these so-called "special" boundaries.

  6. Study of thermocline development inside a dual-media storage tank at the beginning of dynamic processes

    NASA Astrophysics Data System (ADS)

    Esence, Thibaut; Bayón, Rocío; Bruch, Arnaud; Rojas, Esther

    2017-06-01

    This work presents some of the experimental results obtained during a test campaign performed at the STONE facility of CEA-Grenoble in collaboration with CIEMAT-PSA supported by both the SFERA-II and the STAGE-STE project. This installation consists of a thermocline tank with thermal oil and rock/sand filler and the tests aimed to study the development of the temperature profile inside the tank at the beginning of charge/discharge processes. The investigation of how this profile is created and which is its dependence on the experimental parameters is crucial for predicting the behavior of a dual-media thermocline tank. Tests have been performed for dynamic processes from initial states with constant uniform temperature or with a thermal gradient already present due to a partial thermocline zone extraction in the former process. Tests at different fluid velocities and temperatures have been carried out as well, in order to evaluate the influence of operating conditions. When a dynamic process of charge or discharge is started, the development of the thermal front is very sharp and localized at tank top or bottom if initial tank temperature is uniform, whereas it is less pronounced if the test begins from a non-thermally uniform initial state. In terms of operating conditions, it has been observed that the development of the thermocline thermal front is independent not only of the fluid velocity but also of its temperatures, within the working ranges here considered. Due to these experimental results, it will be possible to improve simulation models for thermocline tanks and hence to predict their behavior more accurately, especially when they are implemented in annual simulations of CSP plants.

  7. Aircraft engine hot section technology: An overview of the HOST Project

    NASA Technical Reports Server (NTRS)

    Sokolowski, Daniel E.; Hirschberg, Marvin H.

    1990-01-01

    NASA sponsored the Turbine Engine Hot Section (HOST) project to address the need for improved durability in advanced aircraft engine combustors and turbines. Analytical and experimental activities aimed at more accurate prediction of the aerothermal environment, the thermomechanical loads, the material behavior and structural responses to loads, and life predictions for cyclic high temperature operation were conducted from 1980 to 1987. The project involved representatives from six engineering disciplines who are spread across three work disciplines - industry, academia, and NASA. The HOST project not only initiated and sponsored 70 major activities, but also was the keystone in joining the multiple disciplines and work sectors to focus on critical research needs. A broad overview of the project is given along with initial indications of the project's impact.

  8. Reproducible model development in the cardiac electrophysiology Web Lab.

    PubMed

    Daly, Aidan C; Clerx, Michael; Beattie, Kylie A; Cooper, Jonathan; Gavaghan, David J; Mirams, Gary R

    2018-05-26

    The modelling of the electrophysiology of cardiac cells is one of the most mature areas of systems biology. This extended concentration of research effort brings with it new challenges, foremost among which is that of choosing which of these models is most suitable for addressing a particular scientific question. In a previous paper, we presented our initial work in developing an online resource for the characterisation and comparison of electrophysiological cell models in a wide range of experimental scenarios. In that work, we described how we had developed a novel protocol language that allowed us to separate the details of the mathematical model (the majority of cardiac cell models take the form of ordinary differential equations) from the experimental protocol being simulated. We developed a fully-open online repository (which we termed the Cardiac Electrophysiology Web Lab) which allows users to store and compare the results of applying the same experimental protocol to competing models. In the current paper we describe the most recent and planned extensions of this work, focused on supporting the process of model building from experimental data. We outline the necessary work to develop a machine-readable language to describe the process of inferring parameters from wet lab datasets, and illustrate our approach through a detailed example of fitting a model of the hERG channel using experimental data. We conclude by discussing the future challenges in making further progress in this domain towards our goal of facilitating a fully reproducible approach to the development of cardiac cell models. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The initial regime of drop coalescence

    NASA Astrophysics Data System (ADS)

    Anthony, Christopher; Harris, Michael; Basaran, Osman

    2017-11-01

    Drop coalescence plays a key role in both industry and nature. Consequently, study of the phenomenon has been the focus of numerous experimental, computational and theoretical works to date. In coalescence, two drops come into contact and a liquid bridge forms between them. As time advances, this bridge grows from microscopic to macroscopic scales. Despite the large volume of work dedicated to this problem, currently experiment, theory, and computation are not in perfect agreement with respect to the earliest times following the initial contact of the drops. Experiments report an initial regime where the radius of the connecting bridge grows linearly in time before a transition to either a Stokes regime or an inertial regime where either viscous or inertial forces balance capillary force. In the initial linear regime, referred to as the inertially-limited viscous regime, all three forces are thought to be important. This is in contrast to theory which predicts that all coalescence events begin in the Stokes regime. We use high accuracy numerical simulation to show that the existing discrepancy in the literature can be resolved by paying careful attention to the initial conditions that set the shape and size of the bridge connecting the two drops.

  10. Initiation reactions in acetylene pyrolysis

    DOE PAGES

    Zador, Judit; Fellows, Madison D.; Miller, James A.

    2017-05-10

    In gas-phase combustion systems the interest in acetylene stems largely from its role in molecular weight growth processes. The consensus is that above 1500 K acetylene pyrolysis starts mainly with the homolytic fission of the C–H bond creating an ethynyl radical and an H atom. However, below ~1500 K this reaction is too slow to initiate the chain reaction. It has been hypothesized that instead of dissociation, self-reaction initiates this process. Nevertheless, rigorous theoretical or direct experimental evidence is lacking, to an extent that even the molecular mechanism is debated in the literature. In this work we use rigorous abmore » initio transition-state theory master equation methods to calculate pressure- and temperature-dependent rate coefficients for the association of two acetylene molecules and related reactions. We establish the role of vinylidene, the high-energy isomer of acetylene in this process, compare our results with available experimental data, and assess the competition between the first-order and second-order initiation steps. As a result, we also show the effect of the rapid isomerization among the participating wells and highlight the need for time-scale analysis when phenomenological rate coefficients are compared to observed time scales in certain experiments.« less

  11. Experimental study on a prototype of heat pipe solar water heater using refrigerant R134a as a transfer fluid

    NASA Astrophysics Data System (ADS)

    Sitepu, T.; Sembiring, J.; Ambarita, H.

    2018-02-01

    A prototype of a solar water heater by using refrigerant as a heat transfer fluid is investigated experimentally. The objective is to explore the characteristics and the performance of the prototype. To make heat transfer from the collector to the heated fluid effectively, refrigerant R134a is used as a transfer. In the experiments, the initial pressure inside the heat pipe is varied. The prototype is exposed to solar irradiation in a location in Medan city for three days of the experiment. Solar collector temperatures, solar radiation, water temperature, and ambient temperature are measured. The efficiency of the system is analyzed. The results show that temperature of the hot water increases as the initial pressure of the working fluid increase. However, the increasing is not linear, and there must exist an optimum initial pressure. For the case with the refrigerant pressure of 110 psi, the maximum hot water temperature and maximum thermal efficiency are 45.36oC and 53.23%, respectively. The main conclusion can be drawn here is that solar water heater by using refrigerant R134a should be operated at initial pressure 110 psi.

  12. Experimental design approach to the optimization of ultrasonic degradation of alachlor and enhancement of treated water biodegradability.

    PubMed

    Torres, Ricardo A; Mosteo, Rosa; Pétrier, Christian; Pulgarin, Cesar

    2009-03-01

    This work presents the application of experimental design for the ultrasonic degradation of alachlor which is pesticide classified as priority substance by the European Commission within the scope of the Water Framework Directive. The effect of electrical power (20-80W), pH (3-10) and substrate concentration (10-50mgL(-1)) was evaluated. For a confidential level of 90%, pH showed a low effect on the initial degradation rate of alachlor; whereas electrical power, pollutant concentration and the interaction of these two parameters were significant. A reduced model taking into account the significant variables and interactions between variables has shown a good correlation with the experimental results. Additional experiments conducted in natural and deionised water indicated that the alachlor degradation by ultrasound is practically unaffected by the presence of potential *OH radical scavengers: bicarbonate, sulphate, chloride and oxalic acid. In both cases, alachlor was readily eliminated ( approximately 75min). However, after 4h of treatment only 20% of the initial TOC was removed, showing that alachlor by-products are recalcitrant to the ultrasonic action. Biodegradability test (BOD5/COD) carried out during the course of the treatment indicated that the ultrasonic system noticeably increases the biodegradability of the initial solution.

  13. Solid-particle jet formation under shock-wave acceleration.

    PubMed

    Rodriguez, V; Saurel, R; Jourdan, G; Houas, L

    2013-12-01

    When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials.

  14. Simulation studies of nucleation of ferroelectric polarization reversal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennecka, Geoffrey L.; Winchester, Benjamin Michael

    2014-08-01

    Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO 3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but alsomore » ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.« less

  15. Evaluation of the influence of bottom roughness on parameters of wave flows in channels

    NASA Astrophysics Data System (ADS)

    Valov, A. O.; Degtyarev, V. V.; Fedorova, N. N.

    2018-03-01

    In this paper, a comparative analysis of the results of numerical and experimental studies of the parameters of displacement waves in trays of a rectangular cross-sectional shape with different bottom roughness is performed with the "instantaneous" elimination of the obstacle creating the initial level difference. The program ANSYS complex is used in work.

  16. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI)

    PubMed Central

    Amberg, Alexander; Barrett, Dave; Beale, Michael H.; Beger, Richard; Daykin, Clare A.; Fan, Teresa W.-M.; Fiehn, Oliver; Goodacre, Royston; Griffin, Julian L.; Hankemeier, Thomas; Hardy, Nigel; Harnly, James; Higashi, Richard; Kopka, Joachim; Lane, Andrew N.; Lindon, John C.; Marriott, Philip; Nicholls, Andrew W.; Reily, Michael D.; Thaden, John J.; Viant, Mark R.

    2013-01-01

    There is a general consensus that supports the need for standardized reporting of metadata or information describing large-scale metabolomics and other functional genomics data sets. Reporting of standard metadata provides a biological and empirical context for the data, facilitates experimental replication, and enables the re-interrogation and comparison of data by others. Accordingly, the Metabolomics Standards Initiative is building a general consensus concerning the minimum reporting standards for metabolomics experiments of which the Chemical Analysis Working Group (CAWG) is a member of this community effort. This article proposes the minimum reporting standards related to the chemical analysis aspects of metabolomics experiments including: sample preparation, experimental analysis, quality control, metabolite identification, and data pre-processing. These minimum standards currently focus mostly upon mass spectrometry and nuclear magnetic resonance spectroscopy due to the popularity of these techniques in metabolomics. However, additional input concerning other techniques is welcomed and can be provided via the CAWG on-line discussion forum at http://msi-workgroups.sourceforge.net/ or http://Msi-workgroups-feedback@lists.sourceforge.net. Further, community input related to this document can also be provided via this electronic forum. PMID:24039616

  17. Recent Advances and Future Prospects in Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Plaster, Brad

    2017-09-01

    A broad program of initiatives in fundamental symmetries seeks answers to several of the most pressing open questions in nuclear physics, ranging from the scale of the neutrino mass, to the particle-antiparticle nature of the neutrino, to the origin of the matter-antimatter asymmetry, to the limits of Standard Model interactions. Although the experimental program is quite broad, with efforts ranging from precision measurements of neutrino properties; to searches for electric dipole moments; to precision measurements of magnetic dipole moments; and to precision measurements of couplings, particle properties, and decays; all of these seemingly disparate initiatives are unified by several common threads. These include the use and exploitation of symmetry principles, novel cross-disciplinary experimental work at the forefront of the precision frontier, and the need for accompanying breakthroughs in development of the theory necessary for an interpretation of the anticipated results from these experiments. This talk will highlight recent accomplishments and advances in fundamental symmetries and point to the extraordinary level of ongoing activity aimed at realizing the development and interpretation of next-generation experiments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.

  18. Multiaxial constitutive behavior of an interstitial-free steel: Measurements through X-ray and digital image correlation

    PubMed Central

    Jeong, Y.; Iadicola, M.A.; Gnäupel-Herold, T.; Creuziger, A.

    2017-01-01

    Constitutive behaviors of an interstitial-free steel sample were measured using an augmented Marciniak experiment. In these tests, multiaxial strain field data of the flat specimens were measured by the digital image correlation technique. In addition, the flow stress was measured using an X-ray diffractometer. The flat specimens in three different geometries were tested in order to achieve 1) balanced biaxial strain, and plane strain tests with zero strain in either 2) rolling direction or 3) transverse direction. The multiaxial stress and strain data were processed to obtain plastic work contours with reference to a uniaxial tension test along the rolling direction. The experimental results show that the mechanical behavior of the subjected specimen deviates significantly from isotropic behavior predicted by the von Mises yield criterion. The initial yield loci measured by a Marciniak tester is in good agreement with what is predicted by Hill's yield criterion. However, as deformation increases beyond the vonMises strain of 0.05, the shape of the work contour significantly deviates from that of Hill's yield locus. A prediction made by a viscoplastic self-consistent model is in better agreement with the experimental observation than the Hill yield locus with the isotropic work-hardening rule. However, none of the studied models matched the initial or evolving anisotropic behaviors of the interstitial-free steel measured by the augmented Marciniak experiment. PMID:28690400

  19. Applied Mycology Can Contribute to Sustainable Rural Livelihoods: Building upon China's Matsutake Management Initiatives.

    PubMed

    Brown, Madeline; McLellan, Timothy; Li, Huili; Karunarathna, Samantha C

    2018-02-01

    Matsutake mushrooms are an important part of rural livelihoods and forest ecosystems across large parts of China, as well as elsewhere in East Asia, Northern Europe and North America. Mushroom harvesters have developed sophisticated understandings of matsutake ecology and production, and are applying this knowledge in various innovative management strategies. At the same time, Chinese government agencies and scientists are promoting matsutake-based livelihoods to support development and conservation goals. We collaborated with matsutake harvesters in one Yunnan community to carry out a systematic experiment on a popular shiro-level management technique: covering matsutake shiros with either plastic or leaf litter. Our experimental results suggest that although leaf litter coverings are superior to plastic coverings, shiros that are left uncovered may produce the highest yields. Complementing our experimental work is a multi-sited household survey of existing matsutake management practices across Yunnan, which shows that a high proportion of harvesters are already engaged in a broad range of potentially beneficial management strategies. Though both findings highlight limitations of previous initiatives led by government and research actors in China, this existing body of work is an important foundation and opportunity for developing applied mycology in the region. In and beyond China, working with communities to develop site-specific management strategies through rigorous and participatory scientific inquiry can provide salient benefits for both scientists and resource users.

  20. Applied Mycology Can Contribute to Sustainable Rural Livelihoods: Building upon China's Matsutake Management Initiatives

    NASA Astrophysics Data System (ADS)

    Brown, Madeline; McLellan, Timothy; Li, Huili; Karunarathna, Samantha C.

    2018-02-01

    Matsutake mushrooms are an important part of rural livelihoods and forest ecosystems across large parts of China, as well as elsewhere in East Asia, Northern Europe and North America. Mushroom harvesters have developed sophisticated understandings of matsutake ecology and production, and are applying this knowledge in various innovative management strategies. At the same time, Chinese government agencies and scientists are promoting matsutake-based livelihoods to support development and conservation goals. We collaborated with matsutake harvesters in one Yunnan community to carry out a systematic experiment on a popular shiro-level management technique: covering matsutake shiros with either plastic or leaf litter. Our experimental results suggest that although leaf litter coverings are superior to plastic coverings, shiros that are left uncovered may produce the highest yields. Complementing our experimental work is a multi-sited household survey of existing matsutake management practices across Yunnan, which shows that a high proportion of harvesters are already engaged in a broad range of potentially beneficial management strategies. Though both findings highlight limitations of previous initiatives led by government and research actors in China, this existing body of work is an important foundation and opportunity for developing applied mycology in the region. In and beyond China, working with communities to develop site-specific management strategies through rigorous and participatory scientific inquiry can provide salient benefits for both scientists and resource users.

  1. Multiaxial constitutive behavior of an interstitial-free steel: Measurements through X-ray and digital image correlation.

    PubMed

    Jeong, Y; Iadicola, M A; Gnäupel-Herold, T; Creuziger, A

    2016-06-15

    Constitutive behaviors of an interstitial-free steel sample were measured using an augmented Marciniak experiment. In these tests, multiaxial strain field data of the flat specimens were measured by the digital image correlation technique. In addition, the flow stress was measured using an X-ray diffractometer. The flat specimens in three different geometries were tested in order to achieve 1) balanced biaxial strain, and plane strain tests with zero strain in either 2) rolling direction or 3) transverse direction. The multiaxial stress and strain data were processed to obtain plastic work contours with reference to a uniaxial tension test along the rolling direction. The experimental results show that the mechanical behavior of the subjected specimen deviates significantly from isotropic behavior predicted by the von Mises yield criterion. The initial yield loci measured by a Marciniak tester is in good agreement with what is predicted by Hill's yield criterion. However, as deformation increases beyond the vonMises strain of 0.05, the shape of the work contour significantly deviates from that of Hill's yield locus. A prediction made by a viscoplastic self-consistent model is in better agreement with the experimental observation than the Hill yield locus with the isotropic work-hardening rule. However, none of the studied models matched the initial or evolving anisotropic behaviors of the interstitial-free steel measured by the augmented Marciniak experiment.

  2. Cancer in light of experimental evolution.

    PubMed

    Sprouffske, Kathleen; Merlo, Lauren M F; Gerrish, Philip J; Maley, Carlo C; Sniegowski, Paul D

    2012-09-11

    Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Cancer in Light of Experimental Evolution

    PubMed Central

    Sprouffske, Kathleen; Merlo, Lauren M.F.; Gerrish, Philip J.; Maley, Carlo C.; Sniegowski, Paul D.

    2012-01-01

    Cancer initiation, progression, and the emergence of therapeutic resistance are evolutionary phenomena of clonal somatic cell populations. Studies in microbial experimental evolution and the theoretical work inspired by such studies are yielding deep insights into the evolutionary dynamics of clonal populations, yet there has been little explicit consideration of the relevance of this rapidly growing field to cancer biology. Here, we examine how the understanding of mutation, selection, and spatial structure in clonal populations that is emerging from experimental evolution may be applicable to cancer. Along the way, we discuss some significant ways in which cancer differs from the model systems used in experimental evolution. Despite these differences, we argue that enhanced prediction and control of cancer may be possible using ideas developed in the context of experimental evolution, and we point out some prospects for future research at the interface between these traditionally separate areas. PMID:22975007

  4. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goudarzi, S., E-mail: sgoudarzi@aeoi.org.ir; Babaee, H.; Esmaeli, A.

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D{sub 2} working gases at several discharge voltages and initial pressures are presented and analyzed.

  5. Experimental study of the performance of a very small repetitive plasma focus device in different working conditions

    NASA Astrophysics Data System (ADS)

    Goudarzi, S.; Babaee, H.; Esmaeli, A.; Nasiri, A.

    2017-01-01

    SORENA-1 is a very small repetitive Mather-type plasma focus device (20 J) that can operate at frequencies up to 1 Hz. This device has been designed and constructed in the Plasma and Nuclear Fusion Research School of the Nuclear Science and Technology Research Institute of Iran. In this article, the structure of SORENA-1 is described and results of experiments with Ar, Ne, and D2 working gases at several discharge voltages and initial pressures are presented and analyzed.

  6. Experiments in ultrasonic flaw detection using a MEMS transducer

    NASA Astrophysics Data System (ADS)

    Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2003-08-01

    In earlier work we developed a MEMS phased array transducer, fabricated in the MUMPs process, and we reported on initial experimental studies in which the device was affixed into contact with solids. We demonstrated the successful detection of signals from a conventional ultrasonic source, and the successful localization of the source in an off-axis geometry using phased array signal processing. We now describe the predicted transmission and coupling characteristics for such devices in contact with solids, demonstrating reasonable agreement with experimental behavior. We then describe the results of flaw detection experiments, as well as results for fluid-coupled detectors.

  7. Modeling of circulating fluised beds for post-combustion carbon capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.; Shadle, L.; Miller, D.

    2011-01-01

    A compartment based model for a circulating fluidized bed reactor has been developed based on experimental observations of riser hydrodynamics. The model uses a cluster based approach to describe the two-phase behavior of circulating fluidized beds. Fundamental mass balance equations have been derived to describe the movement of both gas and solids though the system. Additional work is being performed to develop the correlations required to describe the hydrodynamics of the system. Initial testing of the model with experimental data shows promising results and highlights the importance of including end effects within the model.

  8. Electrical coupled Morris-Lecar neurons: From design to pattern analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binczak, S.; Behdad, R.; Rossé, M.

    2016-06-08

    In this study, an experimental electronic neuron based on Morris-Lecar model is presented, able to become an experimental unit tool to study collective association of robust coupled neurons. The circuit design is given according to the ionic currents of this model. A weak coupling of such neurons under Multisim Software can generate clusters based on the boundary conditions of the neurons and their initial conditions. For this study, we work in the region close to the fold bifurcation of limit cycles. In this region two limit cycles exist, one of the cycles is stable and another one is unstable.

  9. Reassessment of Atomic Mobilities in fcc Cu-Ag-Sn System Aiming at Establishment of an Atomic Mobility Database in Sn-Ag-Cu-In-Sb-Bi-Pb Solder Alloys

    NASA Astrophysics Data System (ADS)

    Xu, Huixia; Zhang, Lijun; Cheng, Kaiming; Chen, Weimin; Du, Yong

    2017-04-01

    To establish an accurate atomic mobility database in solder alloys, a reassessment of atomic mobilities in the fcc (face centered cubic) Cu-Ag-Sn system was performed as reported in the present work. The work entailed initial preparation of three fcc Cu-Sn diffusion couples, which were used to determine the composition-dependent interdiffusivities at 873 K, 923 K, and 973 K, to validate the literature data and provide new experimental data at low temperatures. Then, atomic mobilities in three boundary binaries, fcc Cu-Sn, fcc Ag-Sn, and fcc Cu-Ag, were updated based on the data for various experimental diffusivities obtained from the literature and the present work, together with the available thermodynamic database for solder alloys. Finally, based on the large number of interdiffusivities recently measured from the present authors, atomic mobilities in the fcc Cu-Ag-Sn ternary system were carefully evaluated. A comprehensive comparison between various calculated/model-predicted diffusion properties and the experimental data was used to validate the reliability of the obtained atomic mobilities in ternary fcc Cu-Ag-Sn alloys.

  10. Observation of ion acoustic multi-Peregrine solitons in multicomponent plasma with negative ions

    NASA Astrophysics Data System (ADS)

    Pathak, Pallabi; Sharma, Sumita K.; Nakamura, Y.; Bailung, H.

    2017-12-01

    The evolution of the multi-Peregrine soliton is investigated in a multicomponent plasma and found to be critically dependent on the initial bound state. Formation and splitting of Peregrine soliton, broadening of the frequency spectra provide clear evidence of nonlinear-dispersive focusing due to modulational instability, a generic mechanism for rogue wave formation in which amplitude and phase modulation grow as a result of interplay between nonlinearity and anomalous dispersion. We have shown that initial perturbation parameters (amplitude & temporal length) critically determine the number of solitons evolution. It is also found that a sufficiently long wavelength perturbation of high amplitude invoke strong nonlinearity to generate a supercontinuum state. Continuous Wavelet Transform (CWT) and Fast Fourier Transform (FFT) analysis of the experimental time series data clearly indicate the spatio-temporal localization and spectral broadening. We consider a model based on the frame work of Nonlinear Schrodinger equation (NLSE) to explain the experimental observations.

  11. Experimental entanglement distillation and 'hidden' non-locality.

    PubMed

    Kwiat, P G; Barraza-Lopez, S; Stefanov, A; Gisin, N

    2001-02-22

    Entangled states are central to quantum information processing, including quantum teleportation, efficient quantum computation and quantum cryptography. In general, these applications work best with pure, maximally entangled quantum states. However, owing to dissipation and decoherence, practically available states are likely to be non-maximally entangled, partially mixed (that is, not pure), or both. To counter this problem, various schemes of entanglement distillation, state purification and concentration have been proposed. Here we demonstrate experimentally the distillation of maximally entangled states from non-maximally entangled inputs. Using partial polarizers, we perform a filtering process to maximize the entanglement of pure polarization-entangled photon pairs generated by spontaneous parametric down-conversion. We have also applied our methods to initial states that are partially mixed. After filtering, the distilled states demonstrate certain non-local correlations, as evidenced by their violation of a form of Bell's inequality. Because the initial states do not have this property, they can be said to possess 'hidden' non-locality.

  12. Experimental design applied to photo-Fenton treatment of highly methomyl-concentrated water.

    PubMed

    Micó, María M; Bacardit, Jordi; Sans, Carme

    2010-01-01

    This work is focused on the study of the suitability of the photo-Fenton process as a pretreatment for water highly contaminated with a methomyl commercial formulation in Advanced Greenhouses devices. Initial concentrations of reagents and pesticide were evaluated according to a central composite experimental design, with methomyl depletion and biocompatibility of the final effluent as response functions. A triad of optimal operation conditions could be determined, [Met.](0)=50 mg L(-1), [H(2)O(2)](0)=254 mg L(-1) and [Fe(2+)](0)=77 mg L(-1) for the best elimination yield and an acceptable BOD(5)/COD value, and initial concentration of methomyl can be established as the most important parameter for the performance of the treatment due to the limitations that impose on the hydrogen peroxide doses in the presence of the excipients of the commercial formulation.

  13. Social and Contextual Constraints on Embodied Perception.

    PubMed

    Schnall, Simone

    2017-03-01

    A number of papers have challenged research on physiological and psychological influences on perception by claiming to show that such findings can be explained by nonperceptual factors such as demand characteristics. Relatedly, calls for separating perception from judgment have been issued. However, such efforts fail to consider key processes known to shape judgment processes: people's inability to report accurately on their judgments, conversational dynamics of experimental research contexts, and misattribution and discounting processes. Indeed, the fact that initially observed effects of embodied influences disappear is predicted by an extensive amount of literature on judgments studied within social psychology. Thus, findings from such studies suggest that the initially presumed underlying processes are at work-namely, functional considerations that are informative in the context of preparing the body for action. In this article, I provide suggestions on how to conduct research on perception within the social constraints of experimental contexts.

  14. Improper ferroelectricity: A theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Hardy, J. R.; Ullman, F. G.

    1984-02-01

    A combined theoretical and experimental study has been made of the origins and properties of the improper ferroelectricity associated with structural modulations of non-zero wavelengths. Two classes of materials have been studied: rare earth molybdates (specifically, gadolinium molybdate: GMO), and potassium selenate and its isomorphs. In the former, the modulation is produced by a zone boundary phonon instability, and in the latter by the instability of a phonon of wave vector approximately two-thirds of the way to the zone-boundary. In the second case the initial result is a modulated structure whose repeat distance is not a rational multiple of the basic lattice repeat distance. This result is a modulated polarization which, when the basic modulation locks in to a rational multiple of the lattice spacing, becomes uniform, and improper ferroelectricity results. The origins of these effects have been elucidated by theoretical studies, initially semi-empirical, but subsequently from first-principles. These complemented the experimental work, which primarily used inelastic light scattering, uniaxial stress, and hydrostatic pressure, to probe the balance between the interionic forces through the effects on the phonons and dielectric properties.

  15. Classical Hodgkin's lymphoma in adults: guidelines of the Italian Society of Hematology, the Italian Society of Experimental Hematology, and the Italian Group for Bone Marrow Transplantation on initial work-up, management, and follow-up.

    PubMed

    Brusamolino, Ercole; Bacigalupo, Andrea; Barosi, Giovanni; Biti, Giampaolo; Gobbi, Paolo G; Levis, Alessandro; Marchetti, Monia; Santoro, Armando; Zinzani, Pier Luigi; Tura, Sante

    2009-04-01

    The Italian Society of Hematology (SIE), the Italian Society of Experimental Haematology (SIES) and the Italian Group for Bone Marrow Transplantation (GITMO) commissioned a project to develop practice guidelines for the initial work-up, therapy and follow-up of classical Hodgkin's lymphoma. Key questions to the clinical evaluation and treatment of this disease were formulated by an Advisory Committee, discussed and approved by an Expert Panel (EP) composed of senior hematologists and one radiotherapist. After a comprehensive and systematic literature review, the EP recommendations were graded according to their supporting evidence. An explicit approach to consensus methodologies was used for evidence interpretation and for producing recommendations in the absence of a strong evidence. The EP decided that the target domain of the guidelines should include only classical Hodgkin's lymphoma, as defined by the WHO classification, and exclude lymphocyte predominant histology. Distinct recommendations were produced for initial work-up, first-line therapy of early and advanced stage disease, monitoring procedures and salvage therapy, including hemopoietic stem cell transplant. Separate recommendations were formulated for elderly patients. Pre-treatment volumetric CT scan of the neck, thorax, abdomen, and pelvis is mandatory, while FDG-PET is recommended. As to the therapy of early stage disease, a combined modality approach is still recommended with ABVD followed by involved-field radiotherapy; the number of courses of ABVD will depend on the patient risk category (favorable or unfavorable). Full-term chemotherapy with ABVD is recommended in advanced stage disease; adjuvant radiotherapy in patients without initial bulk who achieved a complete remission is not recommended. In the elderly, chemotherapy regimens more intensive than ABVD are not recommended. Early evaluation of response with FDG-PET scan is suggested. Relapsed or refractory patients should receive high-dose chemotherapy and autologous hemopoietic stem cells transplant. Allogeneic transplant is recommended in patients relapsing after autologous transplant. All fertile patients should be informed of the possible effects of therapy on gonadal function and fertility preservation measures should be taken before the initiation of therapy.

  16. Rewetting of Monogroove Heat Pipe in Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Chan, S. H.; Shen, Ting Rong; Blake, John

    1996-01-01

    Experimental investigation of the rewetting characteristics of a uniformly heated grooved surface was performed, the results of which are presented in this work. It was found that, for a rewetting fluid of 2-propanol, the rewetting temperature was approx. 93-96 C for the upward-facing case and about 2 C lower for the downwardfacing case. When the initial plate temperature was higher than the rewetting temperature, the rewetting speed decreased with the initial plate temperature. The rewetting speed is also faster in the upward-facing case than in the downward-facing case for the same initial plate temperatures, which indicates a gravitational effect on rewetting. This trend is found to be consistent with the previously investigated end heating condition. The rewetting distance that is predicted by the conduction controlled model is found to be in fair agreement with the experimental data. Also, an apparatus that enables experiments to be performed in a reduced gravitational environment has been built and experiments are currently being performed. The design of this apparatus is presented along with preliminary data.

  17. FACTORS AFFECTING THE DISSIPATION OF WINDSCALE RADIOACTIVE EFFLUENT IN THE IRISH SEA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, A.E.; Charlesworth, F.R.

    1952-02-20

    diffusion, and residual currents was orginally assessed by Seligman and Scott in 1948. Further experimental work is described which has enabled a new assessment to be made. This work has included a measurement of the initial dilution of fresh water from the pipe line, and a study of the movement of water as indicated by drift bottles. lt is now envisaged that initial dilution, by a factor of 10, will be followed by eddy diffusion with the coefficients as measured by Seligman, and bulk movement primarily due to the force of the wind. Exceptions will occur when defined calm conditionsmore » exist. The discharged effluent will then tend to float on the surface with an initial dilution factor of only a few hundred and successive tidal releases will pour into the diffusing remains of the previous activity, there being no indications of residual currents. No work has been done to see if this more concentrated effluent can come ashore without further dilution. lt is recommended that, to avoid floating effluent, water should not be discharged during very calm weather. Maximum storage space can be assured by normally pumping effluent to sea at the next high tide after treatment. (auth)« less

  18. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  19. A method to enhance the curve negotiation performance of HTS Maglev

    NASA Astrophysics Data System (ADS)

    Che, T.; Gou, Y. F.; Deng, Z. G.; Zheng, J.; Zheng, B. T.; Chen, P.

    2015-09-01

    High temperature superconducting (HTS) Maglev has attracted more and more attention due to its special self-stable characteristic, and much work has been done to achieve its actual application, but the research about the curve negotiation is not systematic and comprehensive. In this paper, we focused on the change of the lateral displacements of the Maglev vehicle when going through curves under different velocities, and studied the change of the electromagnetic forces through experimental methods. Experimental results show that setting an appropriate initial eccentric distance (ED), which is the distance between the center of the bulk unit and the center of the permanent magnet guideway (PMG), when cooling the bulks is favorable for the Maglev system’s curve negotiation. This work will provide some available suggestions for improving the curve negotiation performance of the HTS Maglev system.

  20. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, B. William; Chiu, Ing L.

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Ofmore » particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.« less

  1. LATERAL HEAT FLOW INFRARED THERMOGRAPHY FOR THICKNESS INDEPENDENT DETERMINATION OF THERMAL DIFFUSIVITY IN CFRP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tralshawala, Nilesh; Howard, Don; Knight, Bryon

    2008-02-28

    In conventional infrared thermography, determination of thermal diffusivity requires thickness information. Recently GE has been experimenting with the use of lateral heat flow to determine thermal diffusivity without thickness information. This work builds on previous work at NASA Langley and Wayne State University but we incorporate thermal time of flight (tof) analysis rather than curve fitting to obtain quantitative information. We have developed appropriate theoretical models and a tof based data analysis framework to experimentally determine all components of thermal diffusivity from the time-temperature measurements. Initial validation was carried out using finite difference simulations. Experimental validation was done using anisotropicmore » carbon fiber reinforced polymer (CFRP) composites. We found that in the CFRP samples used, the in-plane component of diffusivity is about eight times larger than the through-thickness component.« less

  2. 75 FR 15767 - Livability Initiative under Special Experimental Project No. 14

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ...] Livability Initiative under Special Experimental Project No. 14 AGENCY: Federal Highway Administration (FHWA... initiative to harmonize and coordinate the Federal-aid Highway Program with grant-in- aid programs... (EPA). Under this initiative, the FHWA intends to utilize Special Experimental Project No. 14 (SEP-14...

  3. Initial comparison of single cylinder Stirling engine computer model predictions with test results

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.; Thieme, L. G.; Miao, D.

    1979-01-01

    A NASA developed digital computer code for a Stirling engine, modelling the performance of a single cylinder rhombic drive ground performance unit (GPU), is presented and its predictions are compared to test results. The GPU engine incorporates eight regenerator/cooler units and the engine working space is modelled by thirteen control volumes. The model calculates indicated power and efficiency for a given engine speed, mean pressure, heater and expansion space metal temperatures and cooler water inlet temperature and flow rate. Comparison of predicted and observed powers implies that the reference pressure drop calculations underestimate actual pressure drop, possibly due to oil contamination in the regenerator/cooler units, methane contamination in the working gas or the underestimation of mechanical loss. For a working gas of hydrogen, the predicted values of brake power are from 0 to 6% higher than experimental values, and brake efficiency is 6 to 16% higher, while for helium the predicted brake power and efficiency are 2 to 15% higher than the experimental.

  4. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.

    PubMed

    Bezerra, Rui M F; Fraga, Irene; Dias, Albino A

    2013-01-01

    Enzyme kinetic parameters are usually determined from initial rates nevertheless, laboratory instruments only measure substrate or product concentration versus reaction time (progress curves). To overcome this problem we present a methodology which uses integrated models based on Michaelis-Menten equation. The most severe practical limitation of progress curve analysis occurs when the enzyme shows a loss of activity under the chosen assay conditions. To avoid this problem it is possible to work with the same experimental points utilized for initial rates determination. This methodology is illustrated by the use of integrated kinetic equations with the well-known reaction catalyzed by alkaline phosphatase enzyme. In this work nonlinear regression was performed with the Solver supplement (Microsoft Office Excel). It is easy to work with and track graphically the convergence of SSE (sum of square errors). The diagnosis of enzyme inhibition was performed according to Akaike information criterion. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. On trajectories of rolling marbles in cones and other funnels

    NASA Astrophysics Data System (ADS)

    White, Gary D.

    2013-12-01

    We report on theoretical and experimental results for a ball that rolls without slipping on a surface of revolution, whose symmetry axis is aligned with a uniform gravitational field, particularly investigating both near-circular orbits and scattering-type orbits in cones. The experimental data give support for the theoretical treatment, a non-trivial application of Newton's second law that expands on our previous work and related work of others. Our findings refine those from a recent article in this journal, and largely replicate those obtained from an earlier Lagrangian approach, adding some new details and commentary. While the orbits of marbles rolling in cones do not match inverse-square-law orbits quantitatively (e.g., instead of Kepler's 3rd law, we have T2∝R), we argue that students should experience these qualitative phenomena—precession of orbits, escape velocity behavior, spin-orbit coupling, conservation laws for angular momentum, energy, and spin projection—as much for the fun and kinesthetic impressions as for the raw learning. We also report on a heretofore largely ignored variable in the exploration of rolling orbits in a gravity well: the marble's spin about its own axis as it rolls. Experimenters can, intentionally or not, vary this initial condition and produce different orbital periods for a given orbital radius—a distinctly non-celestial behavior. Careful selection of the initial spin direction and speed for a particular cone can result in marble orbits that mimic the planetary ellipses.

  6. Short-pulse laser amplification and saturation using stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Ren, J.; Kwan, T. J. T.; Schmitt, M. J.; Lundquist, P. B.; Sarkisyan, S.; Nelson-Melby, E.

    2010-11-01

    Recent theoretical and experimental work has focused on using backward-stimulated Raman scattering (BSRS) in plasmas as a means of laser pulse amplification and compression [1,2,3]. We present initial computational and experimental work on SRS amplification in a capillary-discharge generated Xe plasma. The experimental set-up uses a 200 ps pump pulse with an 800 nm wavelength seeded by a 100 fs pulse from a broadband source and counter-propagates the pulses through a plasma of length 1 cm and diameter 0.1 cm. Results from initial experiments characterizing the plasma and on short-pulse amplification will be presented. Additionally, we present results from calculations using pF3d [4], and discuss the role of SRS saturation and determine the possible significance of electron trapping with a model implemented in pF3d [5]. [1] G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. 81 4879 (1998). [2] V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82 4448 (1999). [3] R. K. Kirkwood, E. Dewald, and C. Niemann, et al., Phys. Plasmas 14 113109 (2007). [4] R. L. Berger, B. F. Lasinski, T. B. Kaiser, et al., Phys. Fluids B 5 2243 (1993). [5] H. X. Vu, D. F. DuBois, and B. Bezzerides, Phys. Plasmas 14 012702 (2007). Supported by US DOE and LANS, LLC under contract DE-AC52-06NA25396. LA-UR-10-04787

  7. Mixing Dynamics Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Mazuruk, Konstantin

    2000-01-01

    Microstructural and compositional homogeneity in metals and alloys can only be achieved if the initial melt is homogeneous prior to the onset of solidification processing. Naturally induced convection may initially facilitate this requirement but upon the onset of solidification significant compositional variations generally arise leading to undesired segregation. Application of alternating magnetic fields to promote a uniform bulk liquid concentration during solidification processing has been suggested. To investigate such possibilities an initial study of using traveling magnetic fields (TMF) to promote melt homogenization is reported in this work. Theoretically, the effect of TMF-induced convection on mixing phenomena is studied in the laminar regime of flow. Experimentally, with and without applied fields, both: mixing dynamics by optically monitoring the spreading of an initially localized dye in transparent fluids and, compositional variations in metal alloys have been investigated.

  8. Mixing Dynamics Induced by Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Mazuruk, Konstantin; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Microstructural and compositional homogeneity in metals and alloys can only be achieved if the initial melt is homogeneous prior to the onset of solidification processing. Naturally induced convection may initially facilitate this requirement but upon the onset of solidification significant compositional variations generally arise leading to undesired segregation. Application of alternating magnetic fields to promote a uniform bulk liquid concentration during solidification processing has been suggested. To investigate such possibilities an initial study of using traveling magnetic fields (TMF) to promote melt homogenization is reported in this work. Theoretically, the effect of TMF-induced convection on mixing phenomena is studied in the laminar regime of flow. Experimentally, with and without applied fields, both 1) mixing dynamics by optically monitoring the spreading of an initially localized dye in transparent fluids and, 2) compositional variations in metal alloys have been investigated.

  9. Equilibrium and kinetic studies of copper biosorption by dead Ceriporia lacerata biomass isolated from the litter of an invasive plant in China.

    PubMed

    Li, Xiaona; Li, Airong; Long, Mingzhong; Tian, Xingjun

    2015-01-01

    Ceriporia lacerata, a strain of white-rot fungus isolated from the litter of an invasive plant (Solidago canadensis) in China, was little known about its properties and utilization. In this work, the copper(II) biosorption characteristics of formaldehyde inactivated C. lacerata biomass were examined as a function of initial pH, initial copper(II) concentration and contact time, and the adsorptive equilibrium and kinetics were simulated, too. The optimum pH was found to be 6.0 at experimental conditions of initial copper(II) concentration 100 mg/L, biomass dose 2 g/L, contact time 12 h, shaking rate 150 r/min and temperature 25°C. Biosorption equilibrium cost about 1 hour at experimental conditions of pH 6.0, initial copper(II) concentration 100 mg/L, C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C. At optimum pH 6.0, highest copper(II) biosorption amounts were 6.79 and 7.76 mg/g for initial copper(II) concentration of 100 and 200 mg/L, respectively (with other experimental parameters of C. lacerata dose 2 g/L, shaking rate 150 r/min and temperature 25°C). The pseudo second-order adsorptive model gave the best adjustment for copper(II) biosorption kinetics. The equilibrium data fitted very well to both Langmuir and Freundlich adsorptive isotherm models. Without further acid or alkali treatment for improving adsorption properties, formaldehyde inactivated C. lacerata biomass possesses good biosorption characteristics on copper(II) removal from aqueous solutions.

  10. [Intervention methodology for training and information for workers of the building sector].

    PubMed

    Pedron, F; Zanin, T; Ferrante, D; Fania, E

    2006-01-01

    Regarding the seriousness of work-accident in Gorizia district, various organizations as ASL 2 "Isontina" (local health agency), INAIL of Friuli Venezia Giulia (National Institute for occupational accident insurance), trade unions and trade associations created a organization called "Observatory for Working-accidents and Professional Illness Prevention". The aim of this association is the promotion of safety in working environment. Diffusing importance of safety in building trade was the first projects of Observatory. So, Observatory carried an initiative to make more aware the workers. Than, it organized training courses for building workers. Moreover, the construction of an informative pamphlet on risks in building trade was made. For some experimental investigation, Observatory works with Department of Psychology, University of Trieste.

  11. Analytical and experimental investigation of microstructural alterations in bearing steel in rolling contact fatigue

    NASA Astrophysics Data System (ADS)

    Mobasher Moghaddam, Sina

    Rolling Contact Fatigue (RCF) is one the most common failure modes in bearings. RCF is usually associated with particular microstructural alterations. Such alterations (i.e. white etching cracks, butterflies, etc.) which lead to RCF failure are known to be among the most concerning matters to bearing industry. In the current work, an analytical as well as experimental approaches are used to investigate "butterfly wing" formation, crack initiation and propagation from inclusions. A new damage evolution equation coupled with a FE model is employed to account for the effect of mean stresses and alternating stresses simultaneously to investigate butterfly formation. The proposed damage evolution law matches experimentally observed butterfly orientation, shape, and size successfully. The model is used to obtain S-N results for butterfly formation at different Hertzian load levels. The results corroborate well with the experimental data available in the open literature. The model is used to predict debonding at the inclusion/matrix interface and the most vulnerable regions for crack initiation on butterfly/matrix interface. A new variable called butterfly formation index (BFI) is introduced to manifest the dependence of wing formation on depth. The value of critical damage inside the butterfly wings was obtained experimentally and was then used to simulate damage evolution. Voronoi tessellation was used to develop the FEM domains to capture the effect of microstructural randomness on butterfly wing formation, crack initiation and propagation. Then, the effects of different inclusion characteristics such as size, depth, and stiffness on RCF life are studied. The results show that stiffness of an inclusion and its location has a significant effect on the RCF life: stiffer inclusions and inclusions located at the depth of maximum shear stress reversal are more detrimental to the RCF life. Stress concentrations are not significantly affected by inclusion size for the cases investigated; however, a stereology study showed that larger inclusions have a higher chance to be located at the critical depth and cause failure. Crack maps were recorded and compared to spall geometries observed experimentally. The results show that crack initiation locations and final spall shapes are similar to what has been observed in failed bearings.

  12. A revised approach for an exact analytical solution for thermal response in biological tissues significant in therapeutic treatments.

    PubMed

    Dutta, Jaideep; Kundu, Balaram

    2017-05-01

    The genesis of the present research paper is to develop a revised exact analytical solution of thermal profile of 1-D Pennes' bioheat equation (PBHE) for living tissues influenced in thermal therapeutic treatments. In order to illustrate the temperature distribution in living tissue both Fourier and non-Fourier model of 1-D PBHE has been solved by 'Separation of variables' technique. Till date most of the research works have been carried out with the constant initial steady temperature of tissue which is not at all relevant for the biological body due to its nonhomogeneous living cells. There should be a temperature variation in the body before the therapeutic treatment. Therefore, a coupled heat transfer in skin surface before therapeutic heating must be taken account for establishment of exact temperature propagation. This approach has not yet been considered in any research work. In this work, an initial condition for solving governing differential equation of heat conduction in biological tissues has been represented as a function of spatial coordinate. In a few research work, initial temperature distribution with PBHE has been coupled in such a way that it eliminates metabolic heat generation. The study has been devoted to establish the comparison of thermal profile between present approach and published theoretical approach for particular initial and boundary conditions inflicted in this investigation. It has been studied that maximum temperature difference of existing approach for Fourier temperature distribution is 19.6% while in case of non-Fourier, it is 52.8%. We have validated our present analysis with experimental results and it has been observed that the temperature response based on the spatial dependent variable initial condition matches more accurately than other approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuser, Brent; Stubbins, James; Kozlowski, Tomasz

    The DOE NEUP sponsored IRP on accident tolerant fuel (ATF) entitled Engineered Zircaloy Cladding Modifications for Improved Accident Tolerance of LWR Nuclear Fuel involved three academic institutions, Idaho National Laboratory (INL), and ATI Materials (ATI). Detailed descriptions of the work at the University of Illinois (UIUC, prime), the University of Florida (UF), the University of Michigan (UMich), and INL are included in this document as separate sections. This summary provides a synopsis of the work performed across the IRP team. Two ATF solution pathways were initially proposed, coatings on monolithic Zr-based LWR cladding material and selfhealing modifications of Zr-based alloys.more » The coating pathway was extensively investigated, both experimentally and in computations. Experimental activities related to ATF coatings were centered at UIUC, UF, and UMich and involved coating development and testing, and ion irradiation. Neutronic and thermal hydraulic aspects of ATF coatings were the focus of computational work at UIUC and UMich, while materials science aspects were the focus of computational work at UF and INL. ATI provided monolithic Zircaloy 2 and 4 material and a binary Zr-Y alloy material. The selfhealing pathway was investigated with advanced computations only. Beryllium was identified as a valid self-healing additive early in this work. However, all attempts to fabricate a Zr-Be alloy failed. Several avenues of fabrication were explored. ATI ultimately declined our fabrication request over health concerns associated with Be (we note that Be was not part of the original work scope and the ATI SOW). Likewise, Ames Laboratory declined our fabrication request, citing known litigation dating to the 1980s and 1990s involving the U.S. Federal government and U.S. National Laboratory employees involving the use of Be. Materion (formerly, Brush Wellman) also declined our fabrication request, citing the difficulty in working with a highly reactive Zr and Be. International fabrication options were explored in Europe and Asia, but this proved to be impractical, if not impossible. Consequently, experimental investigation of the Zr-Be binary system was dropped and exploration binary Zr-Y binary system was initiated. The motivation behind the Zr-Y system is the known thermodynamic stability of yttria over zirconia.« less

  14. Balance between cell-substrate adhesion and myosin contraction determines the frequency of motility initiation in fish keratocytes.

    PubMed

    Barnhart, Erin; Lee, Kun-Chun; Allen, Greg M; Theriot, Julie A; Mogilner, Alex

    2015-04-21

    Cells are dynamic systems capable of spontaneously switching among stable states. One striking example of this is spontaneous symmetry breaking and motility initiation in fish epithelial keratocytes. Although the biochemical and mechanical mechanisms that control steady-state migration in these cells have been well characterized, the mechanisms underlying symmetry breaking are less well understood. In this work, we have combined experimental manipulations of cell-substrate adhesion strength and myosin activity, traction force measurements, and mathematical modeling to develop a comprehensive mechanical model for symmetry breaking and motility initiation in fish epithelial keratocytes. Our results suggest that stochastic fluctuations in adhesion strength and myosin localization drive actin network flow rates in the prospective cell rear above a critical threshold. Above this threshold, high actin flow rates induce a nonlinear switch in adhesion strength, locally switching adhesions from gripping to slipping and further accelerating actin flow in the prospective cell rear, resulting in rear retraction and motility initiation. We further show, both experimentally and with model simulations, that the global levels of adhesion strength and myosin activity control the stability of the stationary state: The frequency of symmetry breaking decreases with increasing adhesion strength and increases with increasing myosin contraction. Thus, the relative strengths of two opposing mechanical forces--contractility and cell-substrate adhesion--determine the likelihood of spontaneous symmetry breaking and motility initiation.

  15. The effect of work-time influence on health and well-being: a quasi-experimental intervention study among eldercare workers.

    PubMed

    Nabe-Nielsen, Kirsten; Garde, Anne Helene; Diderichsen, Finn

    2011-08-01

    The aim of this study was to investigate the effect of work-time influence on stress and energy, work-family conflicts, lifestyle factors, and biomarkers of cardiovascular disease risk. The study was a quasi-experimental intervention study with a one-year follow-up among eldercare workers (baseline: n = 309; follow-up: n = 297). The nine work units in the intervention group designed their own intervention. We categorized these work units into three subgroups according to the interventions that they initiated: (A) self-scheduling via a computer program (n = 35), (B) setting up a task group that developed a questionnaire on work-time preference and participated in a one-day course on flexible working hours with the intention to increase employee influence on the fixed rota (n = 62), and (C) discussions of how employee work-time influence could be increased (n = 25). These subgroups were compared with a reference group consisting of ten work units (n = 187). Data consisted of questionnaires, blood samples, and measurements of waist and hip circumference. The employees in subgroup A became increasingly involved in the planning of their own work schedule. Nevertheless, we found no effect on health and well-being attributable to the intervention. The introduction of self-scheduling can successfully increase employee work-time influence. Yet, this study does not support the theory that increased work-time influence leads to better health and well-being.

  16. Multibody modeling and verification

    NASA Technical Reports Server (NTRS)

    Wiens, Gloria J.

    1989-01-01

    A summary of a ten week project on flexible multibody modeling, verification and control is presented. Emphasis was on the need for experimental verification. A literature survey was conducted for gathering information on the existence of experimental work related to flexible multibody systems. The first portion of the assigned task encompassed the modeling aspects of flexible multibodies that can undergo large angular displacements. Research in the area of modeling aspects were also surveyed, with special attention given to the component mode approach. Resulting from this is a research plan on various modeling aspects to be investigated over the next year. The relationship between the large angular displacements, boundary conditions, mode selection, and system modes is of particular interest. The other portion of the assigned task was the generation of a test plan for experimental verification of analytical and/or computer analysis techniques used for flexible multibody systems. Based on current and expected frequency ranges of flexible multibody systems to be used in space applications, an initial test article was selected and designed. A preliminary TREETOPS computer analysis was run to ensure frequency content in the low frequency range, 0.1 to 50 Hz. The initial specifications of experimental measurement and instrumentation components were also generated. Resulting from this effort is the initial multi-phase plan for a Ground Test Facility of Flexible Multibody Systems for Modeling Verification and Control. The plan focusses on the Multibody Modeling and Verification (MMV) Laboratory. General requirements of the Unobtrusive Sensor and Effector (USE) and the Robot Enhancement (RE) laboratories were considered during the laboratory development.

  17. New infrastructure for studies of transmutation and fast systems concepts

    NASA Astrophysics Data System (ADS)

    Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria

    2017-09-01

    In this work we report initial studies on a low power Accelerator-Driven System as a possible experimental facility for the measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.

  18. Genomics as knowledge enterprise: Implementing an electronic research habitat at the Biopolis Experimental Therapeutics Center.

    PubMed

    Mitchell, Wayne; Breen, Colin; Entzeroth, Michael

    2008-03-01

    The Experimental Therapeutics Center (ETC) has been established at Biopolis to advance translational research by bridging the gap between discovery science and commercialization. We describe the Electronic Research Habitat at ETC, a comprehensive hardware and software infrastructure designed to effectively manage terabyte data flows and storage, increase back office efficiency, enhance the scientific work experience, and satisfy rigorous regulatory and legal requirements. Our habitat design is secure, scalable and robust, and it strives to embody the core values of the knowledge-based workplace, thus contributing to the strategic goal of building a "knowledge economy" in the context of Singapore's on-going biotechnology initiative.

  19. Stability limits and dynamics of nonaxisymmetric liquid bridges

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Resnik, Andy; Kaukler, William F.

    1993-01-01

    This program of theoretical and experimental ground-based and low gravity research is focussed on the understanding of the dynamics and stability limits of nonaxisymmetric liquid bridges. There are three basic objectives to the proposed work: (1) to determine the stability limits of nonaxisymmetric liquid bridges held between non-coaxially aligned disks; (2) to examine the dynamics of nonaxisymmetric bridges and nonaxisymmetric oscillations of initially axisymmetric bridges (some of these experiments require a low gravity environment and the ground-based research will culminate in a definitive flight experiment); and (3) to experimentally investigate the vibration sensitivity of liquid bridges under terrestrial and low gravity conditions.

  20. NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao

    2014-01-01

    Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: 1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and 2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about 3 for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel.

  1. NASA Numerical and Experimental Evaluation of UTRC Low Emissions Injector

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tedder, Sarah A.; Anderson, Robert C.; Iannetti, Anthony C.; Smith, Lance L.; Dai, Zhongtao

    2014-01-01

    Computational and experimental analyses of a PICS-Pilot-In-Can-Swirler technology injector, developed by United Technologies Research Center (UTRC) are presented. NASA has defined technology targets for near term (called "N+1", circa 2015), midterm ("N+2", circa 2020) and far term ("N+3", circa 2030) that specify realistic emissions and fuel efficiency goals for commercial aircraft. This injector has potential for application in an engine to meet the Pratt & Whitney N+3 supersonic cycle goals, or the subsonic N+2 engine cycle goals. Experimental methods were employed to investigate supersonic cruise points as well as select points of the subsonic cycle engine; cruise, approach, and idle with a slightly elevated inlet pressure. Experiments at NASA employed gas analysis and a suite of laser-based measurement techniques to characterize the combustor flow downstream from the PICS dump plane. Optical diagnostics employed for this work included Planar Laser-Induced Fluorescence of fuel for injector spray pattern and Spontaneous Raman Spectroscopy for relative species concentration of fuel and CO2. The work reported here used unheated (liquid) Jet-A fuel for all fuel circuits and cycle conditions. The initial tests performed by UTRC used vaporized Jet-A to simulate the expected supersonic cruise condition, which anticipated using fuel as a heat sink. Using the National Combustion Code a PICS-based combustor was modeled with liquid fuel at the supersonic cruise condition. All CFD models used a cubic non-linear k-epsilon turbulence wall functions model, and a semi-detailed Jet-A kinetic mechanism based on a surrogate fuel mixture. Two initial spray droplet size distribution and spray cone conditions were used: (1) an initial condition (Lefebvre) with an assumed Rosin-Rammler distribution, and 7 degree Solid Spray Cone; and (2) the Boundary Layer Stripping (BLS) primary atomization model giving the spray size distribution and directional properties. Contour and line plots are shown in comparison with experimental data (where this data is available) for flow velocities, fuel, and temperature distribution. The CFD results are consistent with experimental observations for fuel distribution and vaporization. Analysis of gas sample results, using a previously-developed NASA NOx correlation, indicates that for sea-level takeoff, the PICS configuration is predicted to deliver an EINOx value of about three for the targeted supersonic aircraft. Emissions results at supersonic cruise conditions show potential for meeting the NASA goals with liquid fuel.

  2. Effects of pay resets following drug use on attendance and hours worked in a therapeutic workplace.

    PubMed

    Holtyn, August F; Silverman, Kenneth

    2016-06-01

    This secondary data analysis examined effects of an abstinence contingency on participation in a therapeutic workplace. Participants exposed to a pay reset after drug use did not differ in overall attendance from participants who were not exposed to a pay reset after drug use; however, they initially worked less after a pay reset than participants who did not receive a pay reset, and their attendance increased as their pay increased. Overall participation was not influenced by the abstinence contingency, but transient decreases in attendance occurred. © 2016 Society for the Experimental Analysis of Behavior.

  3. Operation, Modeling and Analysis of the Reverse Water Gas Shift Process

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    2001-01-01

    The Reverse Water Gas Shift process is a candidate technology for water and oxygen production on Mars under the In-Situ Propellant Production project. This report focuses on the operation and analysis of the Reverse Water Gas Shift (RWGS) process, which has been constructed at Kennedy Space Center. A summary of results from the initial operation of the RWGS, process along with an analysis of these results is included in this report. In addition an evaluation of a material balance model developed from the work performed previously under the summer program is included along with recommendations for further experimental work.

  4. Strain-Life Assessment of Grainex Mar-M 247 for NASA's Turbine Seal Test Facility

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Halford, Gary R.; Steinetz, Bruce M.; Rimnac, Clare M.

    2004-01-01

    NASA s Turbine Seal Test Facility is used to test air-to-air seals for use primarily in advanced jet engine applications. Combinations of high temperature, high speed, and high pressure limit the disk life, due to the concern of crack initiation in the bolt holes of the Grainex Mar-M 247 disk. The primary purpose of this current work is to determine an inspection interval to ensure safe operation. The current work presents high temperature fatigue strain-life data for test specimens cut from an actual Grainex Mar-M 247 disk. Several different strain-life models were compared to the experimental data including the Manson-Hirschberg Method of Universal Slopes, the Halford-Nachtigall Mean Stress Method, and the Modified Morrow Method. The Halford-Nachtigall Method resulted in only an 18 percent difference between predicted and experimental results. Using the experimental data at a 99.95 percent prediction level and the presence of 6 bolt holes it was found that the disk should be inspected after 665 cycles based on a total strain of 0.5 percent at 649 C.

  5. Numerical Analysis of Heat Transfer During Quenching Process

    NASA Astrophysics Data System (ADS)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  6. Analytical scalings of the linear Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Cobos, Francisco; Wouchuk, Juan Gustavo

    2017-11-01

    In the linear Richtmyer-Meshkov instability (RMI), hydrodynamic perturbations are generated behind the transmitted and reflected rippled fronts. The contact surface reaches an asymptotic normal velocity and two different tangential velocities at each side, which are always different for moderate to strong levels of compression, depending on the amount of vorticity generated by the corrugated shocks. We show analytical scaling laws for the ripple velocity (δvi∞)in different physical limits and approximate formulas are provided, valid for arbitrary initial pre-shock parameters. An asymptotic growth for the contact surface ripple of the form ψi(t) ψ∞ + δ vi∞t is obtained. The quantity ψ∞ is in general different from the initial post-shock ripple amplitude, in agreement with the early finding of. Comparison to simulations and experimental work is shown. F.C. acknowledges support from UCLM for a predoctoral fellowship. This work has received support from MINECO, JCCM, and UCLM (Spain).

  7. Operation SUN BEAM. Shot Small Boy, Project Officers’ Report. Project 2. 1. Initial Radiation Measurements

    DTIC Science & Technology

    1981-05-01

    production 01 these gamma-rays and an experimental verification of their magnitude essential: 11) Tha transient radiation on electronics (TREE) work...Figure 2.6. It con- sisted of a scintillator, light pipe, photo sensitive device, and auxiliary electronic assembly. Arrangement of these elements in...types of mechanically interchangeable packages, consisting of a photosensitive device and auxiliary electronics , were available for each detector. (M

  8. Sebastien Philippe Discusses the Zero-Knowledge Protocol

    ScienceCinema

    Philippe, Sebastien

    2018-06-12

    A system that can compare physical objects while potentially protecting sensitive information about the objects themselves has been demonstrated experimentally at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). This work, by researchers at Princeton University and PPPL, marks an initial confirmation of the application of a powerful cryptographic technique in the physical world. Graduate student Sébastien Philippe discusses the experiment.

  9. Landscape-level impacts of livestock on the diversity of a desert grassland: preliminary results from long-term experimental studies

    Treesearch

    Charles G. Curtin

    2005-01-01

    This work is undertaken as a portion of long-term large-scale studies developed to determine how climate and disturbance (primarily fire and grazing) interact to structure desert grasslands. The results presented here are the initial grazing portions of the study. The analysis presented here indicates that following the reintroduction of cattle to the research area in...

  10. Novel Directional Solidification Processing of Hypermonotectic Alloys

    NASA Technical Reports Server (NTRS)

    Kaukler, William; Fedoseyev, Alex

    2002-01-01

    A model has been developed that determines the size of Liquid (sub 11) droplets generated during application of ultrasonic energy (as a function of amplitude) to immiscible alloys. The initial results are in accordance with experimental results based on Succinonitrile - Glycerol "alloys" and pure tin dispersions. Future work will take into account the importance of other effects, e.g., thermo-vibrational convection, sound attenuation, viscosity variations, and compositional changes.

  11. X-ray Diffraction System for Advanced Materials Analysis in Research and Education

    DTIC Science & Technology

    2016-05-27

    on education. These courses have are important because they prepare students for industry and, as they move to more research - intensive work, the...real-life experimental research experience with emphasis on nanoscale device fabrication. The course provides a strong background in devices with...institution, and will support future research initiatives based on a 5-year warranty and broad base of university funding to projects. The system is

  12. Magnesium incorporated bentonite clay for defluoridation of drinking water.

    PubMed

    Thakre, Dilip; Rayalu, Sadhana; Kawade, Raju; Meshram, Siddharth; Subrt, J; Labhsetwar, Nitin

    2010-08-15

    Low cost bentonite clay was chemically modified using magnesium chloride in order to enhance its fluoride removal capacity. The magnesium incorporated bentonite (MB) was characterized by using XRD and SEM techniques. Batch adsorption experiments were conducted to study and optimize various operational parameters such as adsorbent dose, contact time, pH, effect of co-ions and initial fluoride concentration. It was observed that the MB works effectively over wide range of pH and showed a maximum fluoride removal capacity of 2.26 mgg(-1) at an initial fluoride concentration of 5 mg L(-1), which is much better than the unmodified bentonite. The experimental data fitted well into Langmuir adsorption isotherm and follows pseudo-first-order kinetics. Thermodynamic study suggests that fluoride adsorption on MB is reasonably spontaneous and an endothermic process. MB showed significantly high fluoride removal in synthetic water as compared to field water. Desorption study of MB suggest that almost all the loaded fluoride was desorbed ( approximately 97%) using 1M NaOH solution however maximum fluoride removal decreases from 95.47 to 73 (%) after regeneration. From the experimental results, it may be inferred that chemical modification enhances the fluoride removal efficiency of bentonite and it works as an effective adsorbent for defluoridation of water. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Effects of initial-state nucleon shadowing on the elliptic flow of thermal photons

    NASA Astrophysics Data System (ADS)

    Dasgupta, Pingal; Chatterjee, Rupa; Singh, Sushant K.; Alam, Jan-e.

    2018-03-01

    Recently the effect of nucleon shadowing on the Monte Carlo-Glauber initial condition was studied and its role on the centrality dependence of elliptic flow (v2) and fluctuations in initial eccentricity for different colliding nuclei were explored. It was found that the results with shadowing effects are closer to the QCD-based dynamical model as well as to the experimental data. Inspired by this outcome, in this work we study the transverse momentum (pT) spectra and elliptic flow of thermal photons for Au +Au collisions at the BNL Relativisitic Heavy Ion Collider and Pb +Pb collisions at the CERN Large Hadron Collider by incorporating the shadowing effects in deducing the initial energy density profile required to solve the relativistic hydrodynamical equations. We find that the thermal photon spectra remain almost unaltered; however, the elliptic flow of photons is found to be enhanced significantly due to shadowing effects.

  14. Fourier analysis of a vibrating string through a low-cost experimental setup and a smartphone

    NASA Astrophysics Data System (ADS)

    Pereyra, C. J.; Osorio, M.; Laguarda, A.; Gau, D. L.

    2018-07-01

    In this work we present a simple and low-cost setup to illustrate the dependence of the behaviour of a standing wave in a guitar string with the initial conditions. To do so, we impose two kinds of initial conditions; in the first instance, the initial shape of the string is varied. Secondly, different nodes are imposed on the string. This dependence was studied using the Fourier analysis of the sound produced by the vibration of the string with a smartphone. The simplicity of the proposed activity makes it suitable to be implemented in any classroom to illustrate the concept of normal modes and as an example of Fourier series in a real system that is also familiar for the students.

  15. [Institutional renovation and scientific modernization: the creation of the Instituto de Investigaciones Hematológicas during the mid-1950s].

    PubMed

    Buschini, José

    2013-12-01

    Using documentary sources, this work analyzes the creation and initial functioning of the Instituto de Investigaciones Hematológicas (Institute of Hematological Research) of the National Academy of Medicine (Buenos Aires, Argentina) in the context of the scientific modernization initiated within the country during the mid-1950s. Particular attention is paid to the generation of material bases and institutional and cultural mechanisms for the development of scientific research and of clinical practices guided by procedures and techniques rooted in the basic sciences. The formation and development of a research school in the Experimental Leukemia Section of the institute is explored as a case illustrative of the effective consolidation of initiatives oriented towards the organization of a scientific center.

  16. Jet Velocity Profile Effects on Spray Characteristics of Impinging Jets at High Reynolds and Weber Numbers

    NASA Astrophysics Data System (ADS)

    Rodrigues, Neil S.; Kulkarni, Varun; Sojka, Paul E.

    2014-11-01

    While like-on-like doublet impinging jet atomization has been extensively studied in the literature, there is poor agreement between experimentally observed spray characteristics and theoretical predictions (Ryan et al. 1995, Anderson et al. 2006). Recent works (Bremond and Villermaux 2006, Choo and Kang 2007) have introduced a non-uniform jet velocity profile, which lead to a deviation from the standard assumptions for the sheet velocity and the sheet thickness parameter. These works have assumed a parabolic profile to serve as another limit to the traditional uniform jet velocity profile assumption. Incorporating a non-uniform jet velocity profile results in the sheet velocity and the sheet thickness parameter depending on the sheet azimuthal angle. In this work, the 1/7th power-law turbulent velocity profile is assumed to provide a closer match to the flow behavior of jets at high Reynolds and Weber numbers, which correspond to the impact wave regime. Predictions for the maximum wavelength, sheet breakup length, ligament diameter, and drop diameter are compared with experimental observations. The results demonstrate better agreement between experimentally measured values and predictions, compared to previous models. U.S. Army Research Office under the Multi-University Research Initiative Grant Number W911NF-08-1-0171.

  17. Fatigue Life Assessment of 65Si7 Leaf Springs: A Comparative Study

    PubMed Central

    Arora, Vinkel Kumar; Bhushan, Gian; Aggarwal, M. L.

    2014-01-01

    The experimental fatigue life prediction of leaf springs is a time consuming process. The engineers working in the field of leaf springs always face a challenge to formulate alternate methods of fatigue life assessment. The work presented in this paper provides alternate methods for fatigue life assessment of leaf springs. A 65Si7 light commercial vehicle leaf spring is chosen for this study. The experimental fatigue life and load rate are determined on a full scale leaf spring testing machine. Four alternate methods of fatigue life assessment have been depicted. Firstly by SAE spring design manual approach the fatigue test stroke is established and by the intersection of maximum and initial stress the fatigue life is predicted. The second method constitutes a graphical method based on modified Goodman's criteria. In the third method codes are written in FORTRAN for fatigue life assessment based on analytical technique. The fourth method consists of computer aided engineering tools. The CAD model of the leaf spring has been prepared in solid works and analyzed using ANSYS. Using CAE tools, ideal type of contact and meshing elements have been proposed. The method which provides fatigue life closer to experimental value and consumes less time is suggested. PMID:27379327

  18. Mechanistic and kinetic studies on the OH-initiated atmospheric oxidation of fluoranthene.

    PubMed

    Dang, Juan; Shi, Xiangli; Zhang, Qingzhu; Hu, Jingtian; Chen, Jianmin; Wang, Wenxing

    2014-08-15

    The atmospheric oxidation of polycyclic aromatic hydrocarbons (PAHs) can generate toxic derivatives which contribute to the carcinogenic potential of particulate organic matter. In this work, the mechanism of the OH-initiated atmospheric oxidation of fluoranthene (Flu) was investigated by using high-accuracy molecular orbital calculations. All of the possible oxidation pathways were discussed, and the theoretical results were compared with the available experimental observation. The rate constants of the crucial elementary reactions were evaluated by the Rice-Ramsperger-Kassel-Marcus (RRKM) theory. The main oxidation products are a range of ring-retaining and ring-opening chemicals containing fluoranthols, fluoranthones, fluoranthenequinones, nitro-fluoranthenes, dialdehydes and epoxides. The overall rate constant of the OH addition reaction is 1.72×10(-11) cm(3) molecule(-1) s(-1) at 298 K and 1 atm. The atmospheric lifetime of Flu determined by OH radicals is about 0.69 days. This work provides a comprehensive investigation of the OH-initiated oxidation of Flu and should help to clarify its atmospheric conversion. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Refinement of determination of critical thresholds of stress-strain behaviour by using AE data: potential for evaluation of durability of natural stone

    NASA Astrophysics Data System (ADS)

    Prikryl, Richard; Lokajíček, Tomáš

    2017-04-01

    According to previous studies, evaluation of stress-strain behaviour (in uniaxial compression) of various rocks appears to be effective tool allowing for prediction of resistance of natural stone to some physical weathering processes. Precise determination of critical thresholds, specifically of 'crack initiation' and 'crack damage' is fundamental issue in this approach. In contrast to 'crack damage stress/strain threshold', which can be easily read from deflection point on volumetric curve, detection of 'crack initiation' is much more difficult. Besides previously proposed mathematical processing of axial stress-strain curve, recording of acoustic emission (AE) data and their processing provide direct measure of various stress/strain thresholds, specifically of 'crack initiation'. This specific parameter is required during successive computation of energetic parameters (mechanical work), that can be stored by a material without formation of new defects (microcracks) due to acting stress. Based on our experimental data, this mechanical work seems to be proportional to the resistance of a material to formation of mode I (tensile) cracks that are responsible for destruction of subsurface below exposed faces of natural stone.

  20. 76 FR 66698 - Postsecondary Educational Institutions Invited To Participate in Experiments Under the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-27

    ... Experiments Under the Experimental Sites Initiative AGENCY: Office of Postsecondary Education, Department of... institutions to participate in experiments under the Experimental Sites Initiative. SUMMARY: The Secretary... participate in one or more new experiments under the Experimental Sites Initiative (ESI), as authorized by...

  1. Effects of a Flexibility/Support Intervention on Work Performance: Evidence From the Work, Family, and Health Network.

    PubMed

    Bray, Jeremy W; Hinde, Jesse M; Kaiser, David J; Mills, Michael J; Karuntzos, Georgia T; Genadek, Katie R; Kelly, Erin L; Kossek, Ellen E; Hurtado, David A

    2018-05-01

    To estimate the effects of a workplace initiative to reduce work-family conflict on employee performance. A group-randomized multisite controlled experimental study with longitudinal follow-up. An information technology firm. Employees randomized to the intervention (n = 348) and control condition (n = 345). An intervention, "Start. Transform. Achieve. Results." to enhance employees' control over their work time, to increase supervisors' support for this change, and to increase employees' and supervisors' focus on results. We estimated the effect of the intervention on 9 self-reported employee performance measures using a difference-in-differences approach with generalized linear mixed models. Performance measures included actual and expected hours worked, absenteeism, and presenteeism. This study found little evidence that an intervention targeting work-family conflict affected employee performance. The only significant effect of the intervention was an approximately 1-hour reduction in expected work hours. After Bonferroni correction, the intervention effect is marginally insignificant at 6 months and marginally significant at 12 and 18 months. The intervention reduced expected working time by 1 hour per week; effects on most other employee self-reported performance measures were statistically insignificant. When coupled with the other positive wellness and firm outcomes, this intervention may be useful for improving employee perceptions of increased access to personal time or personal wellness without sacrificing performance. The null effects on performance provide countervailing evidence to recent negative press on work-family and flex work initiatives.

  2. Turbine engine rotor health monitoring evaluation by means of finite element analyses and spin tests data

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George Y.

    2014-04-01

    Generally, rotating engine components undergo high centrifugal loading environment which subject them to various types of failure initiation mechanisms. Health monitoring of these components is a necessity and is often challenging to implement. This is primarily due to numerous factors including the presence of scattered loading conditions, flaw sizes, component geometry and materials properties, all which hinder the simplicity of applying health monitoring applications. This paper represents a summary work of combined experimental and analytical modeling that included data collection from a spin test experiment of a rotor disk addressing the aforementioned durability issues. It further covers presentation of results obtained from a finite element modeling study to characterize the structural durability of a cracked rotor as it relates to the experimental findings. The experimental data include blade tip clearance, blade tip timing and shaft displacement measurements. The tests were conducted at the NASA Glenn Research Center's Rotordynamics Laboratory, a high precision spin rig. The results are evaluated and examined to determine their significance on the development of a health monitoring system to pre-predict cracks and other anomalies and to assist in initiating a supplemental physics based fault prediction analytical model.

  3. Modelling explicit fracture of nuclear fuel pellets using peridynamics

    NASA Astrophysics Data System (ADS)

    Mella, R.; Wenman, M. R.

    2015-12-01

    Three dimensional models of explicit cracking of nuclear fuel pellets for a variety of power ratings have been explored with peridynamics, a non-local, mesh free, fracture mechanics method. These models were implemented in the explicitly integrated molecular dynamics code LAMMPS, which was modified to include thermal strains in solid bodies. The models of fuel fracture, during initial power transients, are shown to correlate with the mean number of cracks observed on the inner and outer edges of the pellet, by experimental post irradiation examination of fuel, for power ratings of 10 and 15 W g-1 UO2. The models of the pellet show the ability to predict expected features such as the mid-height pellet crack, the correct number of radial cracks and initiation and coalescence of radial cracks. This work presents a modelling alternative to empirical fracture data found in many fuel performance codes and requires just one parameter of fracture strain. Weibull distributions of crack numbers were fitted to both numerical and experimental data using maximum likelihood estimation so that statistical comparison could be made. The findings show P-values of less than 0.5% suggesting an excellent agreement between model and experimental distributions.

  4. Determination of Yield in Inconel 718 for Axial-Torsional Loading at Temperatures up to 649 C

    NASA Technical Reports Server (NTRS)

    Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.

    1998-01-01

    An experimental program has been implemented to determine small offset yield loci under axial-torsional loading at elevated temperatures. The nickel-base superalloy Inconel 718 (IN718) was chosen for study due to its common use in aeropropulsion applications. Initial and subsequent yield loci were determined for solutioned IN718 at 23, 371, and 454 C and for aged (precipitation hardened) IN718 at 23 and 649 C. The shape of the initial yield loci for solutioned and aged IN718 agreed well with the von Mises prediction. However, in general, the centers of initial yield loci were eccentric to the origin due to a strength-differential (S-D) effect that increased with temperature. Subsequent yield loci exhibited anisotropic hardening in the form of translation and distortion of the locus. This work shows that it is possible to determine yield surfaces for metallic materials at temperatures up to at least 649 C using multiple probes of a single specimen. The experimental data is first-of-its-kind for a superalloy at these very high temperatures and will facilitate a better understanding of multiaxial material response, eventually leading to improved design tools for engine designers.

  5. The center for expanded data annotation and retrieval

    PubMed Central

    Bean, Carol A; Cheung, Kei-Hoi; Dumontier, Michel; Durante, Kim A; Gevaert, Olivier; Gonzalez-Beltran, Alejandra; Khatri, Purvesh; Kleinstein, Steven H; O’Connor, Martin J; Pouliot, Yannick; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Wiser, Jeffrey A

    2015-01-01

    The Center for Expanded Data Annotation and Retrieval is studying the creation of comprehensive and expressive metadata for biomedical datasets to facilitate data discovery, data interpretation, and data reuse. We take advantage of emerging community-based standard templates for describing different kinds of biomedical datasets, and we investigate the use of computational techniques to help investigators to assemble templates and to fill in their values. We are creating a repository of metadata from which we plan to identify metadata patterns that will drive predictive data entry when filling in metadata templates. The metadata repository not only will capture annotations specified when experimental datasets are initially created, but also will incorporate links to the published literature, including secondary analyses and possible refinements or retractions of experimental interpretations. By working initially with the Human Immunology Project Consortium and the developers of the ImmPort data repository, we are developing and evaluating an end-to-end solution to the problems of metadata authoring and management that will generalize to other data-management environments. PMID:26112029

  6. The effect of resource history on the functioning of soil microbial communities is maintained across time

    NASA Astrophysics Data System (ADS)

    Keiser, A. D.; Strickland, M. S.; Fierer, N.; Bradford, M. A.

    2011-02-01

    Historical resource conditions appear to influence microbial community function. With time, historical influences might diminish as populations respond to the contemporary environment. Alternatively, they may persist given factors such as contrasting genetic potentials for adaptation to a new environment. Using experimental microcosms, we test competing hypotheses that function of distinct soil microbial communities in common environments (H1a) converge or (H1b) remain dissimilar over time. Using a 6 × 2 (soil community inoculum × litter environment) full-factorial design, we compare decomposition rates in experimental microcosms containing grass or hardwood litter environments. After 100 days, communities that develop are inoculated into fresh litters and decomposition followed for another 100 days. We repeat this for a third, 100-day period. In each successive, 100-day period, we find higher decomposition rates (i.e. functioning) suggesting communities function better when they have an experimental history of the contemporary environment. Despite these functional gains, differences in decomposition rates among initially distinct communities persist, supporting the hypothesis that dissimilarity is maintained across time. In contrast to function, community composition is more similar following a common, experimental history. We also find that "specialization" on one experimental environment incurs a cost, with loss of function in the alternate environment. For example, experimental history of a grass-litter environment reduced decomposition when communities were inoculated into a hardwood-litter environment. Our work demonstrates experimentally that despite expectations of fast growth rates, physiological flexibility and rapid evolution, initial functional differences between microbial communities are maintained across time. These findings question whether microbial dynamics can be omitted from models of ecosystem processes if we are to predict reliably global change effects on biogeochemical cycles.

  7. The effect of resource history on the functioning of soil microbial communities is maintained across time

    NASA Astrophysics Data System (ADS)

    Keiser, A. D.; Strickland, M. S.; Fierer, N.; Bradford, M. A.

    2011-06-01

    Historical resource conditions appear to influence microbial community function. With time, historical influences might diminish as populations respond to the contemporary environment. Alternatively, they may persist given factors such as contrasting genetic potentials for adaptation to a new environment. Using experimental microcosms, we test competing hypotheses that function of distinct soil microbial communities in common environments (H1a) converge or (H1b) remain dissimilar over time. Using a 6 × 2 (soil community inoculum × litter environment) full-factorial design, we compare decomposition rates in experimental microcosms containing grass or hardwood litter environments. After 100 days, communities that develop are inoculated into fresh litters and decomposition followed for another 100 days. We repeat this for a third, 100-day period. In each successive, 100-day period, we find higher decomposition rates (i.e. functioning) suggesting communities function better when they have an experimental history of the contemporary environment. Despite these functional gains, differences in decomposition rates among initially distinct communities persist, supporting the hypothesis that dissimilarity is maintained across time. In contrast to function, community composition is more similar following a common, experimental history. We also find that "specialization" on one experimental environment incurs a cost, with loss of function in the alternate environment. For example, experimental history of a grass-litter environment reduced decomposition when communities were inoculated into a hardwood-litter environment. Our work demonstrates experimentally that despite expectations of fast growth rates, physiological flexibility and rapid evolution, initial functional differences between microbial communities are maintained across time. These findings question whether microbial dynamics can be omitted from models of ecosystem processes if we are to predict reliably global change effects on biogeochemical cycles.

  8. Two-Phase Working Fluids for the Temperature Range 50 to 350 C

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Owzarski, P. C.

    1977-01-01

    The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 C to 350 C have been identified, and reflux heat pipes tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.

  9. Potent Inhalational Anesthetics for Dentistry

    PubMed Central

    Satuito, Mary; Tom, James

    2016-01-01

    Nitrous oxide and the volatile inhalational anesthetics have defined anxiety and pain control in both dentistry and medicine for over a century. From curious experimentation to spectacular public demonstrations, the initial work of 2 dentists, Horace Wells and William T. G. Morton, persists to this day in modern surgery and anesthesia. This article reviews the history, similarities, differences, and clinical applications of the most popular inhalational agents used in contemporary dental surgical settings. PMID:26866411

  10. Testing and modeling of PBX-9591 shock initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Kim; Foley, Timothy; Novak, Alan

    2010-01-01

    This paper describes an ongoing effort to develop a detonation sensitivity test for PBX-9501 that is suitable for studying pristine and damaged HE. The approach involves testing and comparing the sensitivities of HE pressed to various densities and those of pre-damaged samples with similar porosities. The ultimate objectives are to understand the response of pre-damaged HE to shock impacts and to develop practical computational models for use in system analysis codes for HE safety studies. Computer simulation with the CTH shock physics code is used to aid the experimental design and analyze the test results. In the calculations, initiation andmore » growth or failure of detonation are modeled with the empirical HVRB model. The historical LANL SSGT and LSGT were reviewed and it was determined that a new, modified gap test be developed to satisfy the current requirements. In the new test, the donor/spacer/acceptor assembly is placed in a holder that is designed to work with fixtures for pre-damaging the acceptor sample. CTH simulations were made of the gap test with PBX-9501 samples pressed to three different densities. The calculated sensitivities were validated by test observations. The agreement between the computed and experimental critical gap thicknesses, ranging from 9 to 21 mm under various test conditions, is well within 1 mm. These results show that the numerical modeling is a valuable complement to the experimental efforts in studying and understanding shock initiation of PBX-9501.« less

  11. Effect of Electron Seeding on Experimentally Measured Multipactor Discharge Threshold

    NASA Astrophysics Data System (ADS)

    Noland, Jonathan; Graves, Timothy; Lemon, Colby; Looper, Mark; Farkas, Alex

    2012-10-01

    Multipactor is a vacuum phenomenon in which electrons, moving in resonance with an externally applied electric field, impact material surfaces. If the number of secondary electrons created per primary electron impact averages more than unity, the resonant interaction can lead to an electron avalanche. Multipactor is a generally undesirable phenomenon, as it can cause local heating, absorb power, or cause detuning of RF circuits. In order to increase the probability of multipactor initiation, test facilities often employ various seeding sources such as radioactive sources (Cesium 137, Strontium 90), electron guns, or photon sources. Even with these sources, the voltage for multipactor initiation is not certain as parameters such as material type, RF pulse length, and device wall thickness can all affect seed electron flux and energy in critical gap regions, and hence the measured voltage threshold. This study investigates the effects of seed electron source type (e.g., photons versus beta particles), material type, gap size, and RF pulse length variation on multipactor threshold. In addition to the experimental work, GEANT4 simulations will be used to estimate the production rate of low energy electrons (< 5 keV) by high energy electrons and photons. A comparison of the experimental fluxes to the typical energetic photon and particle fluxes experienced by spacecraft in various orbits will also be made. Initial results indicate that for a simple, parallel plate device made of aluminum, there is no threshold variation (with seed electrons versus with no seed electrons) under continuous-wave RF exposure.

  12. The study of theoretical and experimental feasibilities of the rocket fuel components ignition by laser radiation

    NASA Astrophysics Data System (ADS)

    Belyaev, Vadim S.; Guterman, Vitaly Y.; Ivanov, Anatoly V.

    2004-06-01

    The report presents the theoretical and experimental results obtained during the first year of the ISTC project No. 1926. The energy and temporal characteristics of the laser radiation necessary to ignite the working components mixture in a rocket engine combustion chamber have been predicted. Two approaches have been studied: the optical gas fuel laser-induced breakdown; the laser-initiated plasma torch on target surface. The possibilities and conditions of the rocket fuel components ignition by a laser beam in the differently designed combustion chambers have been estimated and studied. The comparative analysis shows that both the optical spark and light focusing on target techniques can ignite the mixture.

  13. The role of prevention focus under stereotype threat: Initial cognitive mobilization is followed by depletion.

    PubMed

    Ståhl, Tomas; Van Laar, Colette; Ellemers, Naomi

    2012-06-01

    Previous research has demonstrated that stereotype threat induces a prevention focus and impairs central executive functions. The present research examines how these 2 consequences of stereotype threat are related. The authors argue that the prevention focus is responsible for the effects of stereotype threat on executive functions and cognitive performance. However, because the prevention focus is adapted to deal with threatening situations, the authors propose that it also leads to some beneficial responses to stereotype threat. Specifically, because stereotype threat signals a high risk of failure, a prevention focus initiates immediate recruitment of cognitive control resources. The authors further argue that this response initially facilitates cognitive performance but that the additional cognitive demands associated with working under threat lead to cognitive depletion over time. Study 1 demonstrates that stereotype threat (vs. control) facilitates immediate cognitive control capacity during a stereotype-relevant task. Study 2 experimentally demonstrates the process by showing that stereotype threat (vs. control) facilitates cognitive control as a default, as well as when a prevention focus has been experimentally induced, but not when a promotion focus has been induced. Study 3 shows that stereotype threat facilitates initial math performance under a prevention focus, whereas no effect is found under a promotion focus. Consistent with previous research, however, stereotype threat impaired math performance over time under a prevention focus, but not under a promotion focus. 2012 APA, all rights reserved

  14. Mathematical modeling of the ethanol fermentation of cashew apple juice by a flocculent yeast: the effect of initial substrate concentration and temperature.

    PubMed

    Pinheiro, Álvaro Daniel Teles; da Silva Pereira, Andréa; Barros, Emanuel Meneses; Antonini, Sandra Regina Ceccato; Cartaxo, Samuel Jorge Marques; Rocha, Maria Valderez Ponte; Gonçalves, Luciana Rocha B

    2017-08-01

    In this work, the effect of initial sugar concentration and temperature on the production of ethanol by Saccharomyces cerevisiae CCA008, a flocculent yeast, using cashew apple juice in a 1L-bioreactor was studied. The experimental results were used to develop a kinetic model relating biomass, ethanol production and total reducing sugar consumption. Monod, Andrews, Levenspiel and Ghose and Tyagi models were investigated to represent the specific growth rate without inhibition, with inhibition by substrate and with inhibition by product, respectively. Model validation was performed using a new set of experimental data obtained at 34 °C and using 100 g L -1 of initial substrate concentration. The model proposed by Ghose and Tyagi was able to accurately describe the dynamics of ethanol production by S. cerevisiae CCA008 growing on cashew apple juice, containing an initial reducing sugar concentration ranging from 70 to 170 g L -1 and temperature, from 26 to 42 °C. The model optimization was also accomplished based on the following parameters: percentage volume of ethanol per volume of solution (%V ethanol /V solution ), efficiency and reaction productivity. The optimal operational conditions were determined using response surface graphs constructed with simulated data, reaching an efficiency and a productivity of 93.5% and 5.45 g L -1  h -1 , respectively.

  15. Experimental and theoretical studies on the OH-initiated degradation of tert-butylamine

    NASA Astrophysics Data System (ADS)

    Tan, Wen; D'Anna, Barbara; Eichler, Philipp; Mikoviny, Tomas; Müller, Markus; Jørgen Nielsen, Claus; Wisthaler, Armin; Zhu, Liang

    2017-04-01

    Amine-based carbon dioxide (CO2) capture facilities release small amounts of amines into the atmosphere. Once airborne, the amines are photochemically transformed into imines, amides, nitrosamines, nitramines and other breakdown products. As some of these products pose a risk to human health and the environment, we have elucidated photochemical decomposition mechanisms of various types of amines in previous work. Our studies did, however, not include amines in which the primary amino group is attached to a tertiary carbon atom, with 2-amino-2-methyl-1-propanol (AMP, (CH3)2C(NH2)CH2OH) being a prominent candidate used in CO2 capture. Our initial step in elucidating the degradation mechanism of AMP was to study tert-butylamine (tBA, (CH3)3C(NH2)), which is a similar molecule but lacks the OH group. OH-initiated degradation of tBA was studied in chamber experiments at the European Photoreactor (EUPHORE) in Valencia (Spain) using state-of-the-art analytical instrumentation. A Proton-Transfer-Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) was used to measure tBA and tBA degradation products in the gas phase. Propan-2-imine (PI, (CH3)2C(=NH)) and tert-butylnitramine (tBNA, (CH3)3C(NHNO2)) were observed as the two major gas-phase products. An Aerosol Mass Spectrometer (AMS) made quantitative measurements of tert-butylaminium nitrate in the particle phase. A PTR-ToF-MS instrument equipped with a "chemical analysis of aerosol online" (CHARON) inlet detected the two major tBA degradation products (PI, tBNA) in the particle phase. Experimental work was supplemented by quantum chemistry calculations. We will present measured product yields and a complete degradation scheme of tBA. This work was supported by the Norwegian Research Council CLIMIT program under contract 244055.

  16. Pre-equilibrium Longitudinal Flow in the IP-Glasma Framework for Pb+Pb Collisions at the LHC

    NASA Astrophysics Data System (ADS)

    McDonald, Scott; Shen, Chun; Fillion-Gourdeau, François; Jeon, Sangyong; Gale, Charles

    2017-08-01

    In this work, we debut a new implementation of IP-Glasma and quantify the pre-equilibrium longitudinal flow in the IP-Glasma framework. The saturation physics based IP-Glasma model naturally provides a non-zero initial longitudinal flow through its pre-equilibrium Yang-Mills evolution. A hybrid IP-Glasma+MUSIC+UrQMD frame-work is employed to test this new implementation against experimental data and to make further predictions about hadronic flow observables in Pb+Pb collisions at 5.02 TeV. Finally, the non-zero pre-equilibrium longitudinal flow of the IP-Glasma model is quantified, and its origin is briefly discussed.

  17. Investigation of the effect of a power feed vacuum gap in solid liner experiments at 1 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bott-Suzuki, S. C., E-mail: sbottsuzuki@ucsd.edu, E-mail: sbottsuzuki@p3ucsd.com; Cordaro, S. W.; Caballero Bendixsen, L. S.

    We present an experimental study of plasma initiation of a solid metal liner at the 1 MA level. In contrast to previous work, we introduce a vacuum gap at one of the liner connections to the power feed to investigate how this affects plasma initiation and to infer how this may affect the symmetry of the liner in compression experiments. We observed that the vacuum gap causes non-uniform plasma initiation both azimuthally and axially in liners, diagnosed by gated optical imaging. Using magnetic field probes external to the liner, we also determined that the optical emission is strongly linked to themore » current distribution in the liner. The apparent persistent of azimuthal non-uniformities may have implications for fusion-scale liner experiments.« less

  18. Kinetics of imidazolium-based ionic liquids degradation in aqueous solution by Fenton oxidation.

    PubMed

    Domínguez, Carmen M; Munoz, Macarena; Quintanilla, Asunción; de Pedro, Zahara M; Casas, Jose A

    2017-10-15

    In the last few years, several works dealing with Fenton oxidation of ionic liquids (ILs) have proved the capability of this technology for their degradation, achieving complete ILs removal and non-toxic effluents. Nevertheless, very little is known about the kinetics of this process, crucial for its potential application. In this work, the effect of several operating conditions, including reaction temperature (50-90 °C), catalyst load (10-50 mg L -1 Fe 3+ ), initial IL concentration (100-2000 mg L -1 ), and hydrogen peroxide dose (10-200% of the stoichiometric amount for the complete IL mineralization) on 1-butyl-3-methylimidazolium chloride ([C 4 mim]Cl) oxidation has been investigated. Under the optimum operating conditions (T = 90 °C; [Fe 3+ ] 0  = 50 mg L -1 ; [H 2 O 2 ] 0  = 100% of the stoichiometric amount), the complete removal of [C 4 mim]Cl (1000 mg L -1 ) was achieved at 1.5-min reaction time. From the experimental results, a potential kinetic model capable to describe the removal of imidazolium-based ILs by Fenton oxidation has been developed. By fitting the proposed model to the experimental data, the orders of the reaction with respect to IL initial concentration, Fe 3+ amount and H 2 O 2 dose were found to be close to 1, with an apparent activation energy of 43.3 kJ mol -1 . The model resulted in a reasonable fit within the wide range of operating conditions tested in this work.

  19. On the Method of Efficient Ice Cold Energy Storage Using a Heat Transfer of Direct Contact Phase Change and a Natural Circulation of a Working Medium in an Enclosure

    NASA Astrophysics Data System (ADS)

    Utaka, Yoshio; Saito, Akio; Nakata, Naoki

    The objectives of this report are to propose a new method of the high performance cold energy storage using ice as a phase change material and to clarify the heat transfer characteristics of the apparatus of ice cold energy storage based on the proposed principle. A working medium vapor layer a water layer and a working medium liquid layer stratified in this order from the top were kept in an enclosure composed of a condenser, an evaporator and a condensate receiver-and-return tube. The direct contact heat transfers between water or ice and a working medium in an enclosure were applied for realizing the high performance cold energy storage and release. In the storage and release processes, water changes the phase between the liquid and the solid, and the working medium cnanges between the vapor and the liquid with a natural circulation. Experimental apparatus was manufactured and R12 and R114 were selected as working media in the thermal energy storage enclosure. It was confirmed by the measurements that the efficient formation and melting of ice were achieved. Then, th e heat transfer characteristics were clarified for the effects of the initial water height, the initial height of woking medium liquid layer and the inlet coolant temperature.

  20. Nonlinear mathematical modeling and sensitivity analysis of hydraulic drive unit

    NASA Astrophysics Data System (ADS)

    Kong, Xiangdong; Yu, Bin; Quan, Lingxiao; Ba, Kaixian; Wu, Liujie

    2015-09-01

    The previous sensitivity analysis researches are not accurate enough and also have the limited reference value, because those mathematical models are relatively simple and the change of the load and the initial displacement changes of the piston are ignored, even experiment verification is not conducted. Therefore, in view of deficiencies above, a nonlinear mathematical model is established in this paper, including dynamic characteristics of servo valve, nonlinear characteristics of pressure-flow, initial displacement of servo cylinder piston and friction nonlinearity. The transfer function block diagram is built for the hydraulic drive unit closed loop position control, as well as the state equations. Through deriving the time-varying coefficient items matrix and time-varying free items matrix of sensitivity equations respectively, the expression of sensitivity equations based on the nonlinear mathematical model are obtained. According to structure parameters of hydraulic drive unit, working parameters, fluid transmission characteristics and measured friction-velocity curves, the simulation analysis of hydraulic drive unit is completed on the MATLAB/Simulink simulation platform with the displacement step 2 mm, 5 mm and 10 mm, respectively. The simulation results indicate that the developed nonlinear mathematical model is sufficient by comparing the characteristic curves of experimental step response and simulation step response under different constant load. Then, the sensitivity function time-history curves of seventeen parameters are obtained, basing on each state vector time-history curve of step response characteristic. The maximum value of displacement variation percentage and the sum of displacement variation absolute values in the sampling time are both taken as sensitivity indexes. The sensitivity indexes values above are calculated and shown visually in histograms under different working conditions, and change rules are analyzed. Then the sensitivity indexes values of four measurable parameters, such as supply pressure, proportional gain, initial position of servo cylinder piston and load force, are verified experimentally on test platform of hydraulic drive unit, and the experimental research shows that the sensitivity analysis results obtained through simulation are approximate to the test results. This research indicates each parameter sensitivity characteristics of hydraulic drive unit, the performance-affected main parameters and secondary parameters are got under different working conditions, which will provide the theoretical foundation for the control compensation and structure optimization of hydraulic drive unit.

  1. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    PubMed Central

    Latif, Quresh S; Heath, Sacha K; Rotenberry, John T

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous work reproduced microhabitat-predation patterns experienced by Yellow Warblers (Setophaga petechia) in the Mono Lake basin at experimental nests without parents, suggesting that these patterns were driven by predator ecology rather than predator interactions with parents. In this study, we further explored effects of post-initiation parental behavior (nest defense and attendance) on predation risk by comparing natural versus experimental patterns related to territory density, seasonal timing of nest initiation, and nest age. Rates of parasitism by Brown-headed Cowbirds (Molothrus ater) were high in this system (49% nests parasitized), so we also examined parasitism-predation relationships. Natural nest predation rates (NPR) correlated negatively with breeding territory density and nonlinearly (U-shaped relationship) with nest-initiation timing, but experimental nests recorded no such patterns. After adjusting natural-nest data to control for these differences from experimental nests other than the presence of parents (e.g., defining nest failure similarly and excluding nestling-period data), we obtained similar results. Thus, parents were necessary to produce observed patterns. Lower natural NPR compared with experimental NPR suggested that parents reduced predation rates via nest defense, so this parental behavior or its consequences were likely correlated with density or seasonal timing. In contrast, daily predation rates decreased with nest age for both nest types, indicating this pattern did not involve parents. Parasitized nests suffered higher rates of partial predation but lower rates of complete predation, suggesting direct predation by cowbirds. Explicit behavioral research on parents, predators (including cowbirds), and their interactions would further illuminate mechanisms underlying the density, seasonal, and nest age patterns we observed. PMID:23301174

  2. EMMA, a Recoil Mass Spectrometer for TRIUMF's ISAC-II Facility

    NASA Astrophysics Data System (ADS)

    Davids, Barry; EMMA Collaboration

    2016-09-01

    EMMA is a recoil mass spectrometer for TRIUMF's ISAC-II facility in the final stages of installation and commissioning. In this talk I will briefly review the spectrometer's design capabilities, describe recent progress in its installation and commissioning, and discuss plans for its initial experimental program. This work was supported by the Natural Sciences and Engineering Council of Canada. TRIUMF receives federal funds through a contribution agreement with the National Research Council of Canada.

  3. Experiments with metallic and ceramic porous media

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Abbassi, P.; Khandhar, P. K.; Luna, Jack

    1988-01-01

    Work in the area of mechano-caloric phenomena was initiated during 1988 with startup in the Summer 1988 period. The ideal system utilizing He-II super-phenomena is modeled readily, within the frame of thermodynamics energetics, using the concept of an ideal superleak. The real system however uses porous media of non-ideal pore-grain ingredients. The early phase of experimental and related modeling studies is outlined for the time period from Summer 1988 to the end of 1988.

  4. Two-phase working fluids for the temperature range 100-350 C. [in heat pipes for solar applications

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Tower, L.

    1977-01-01

    The decomposition and corrosion of two-phase heat transfer liquids and metal envelopes have been investigated on the basis of molecular, bond strengths and chemical thermodynamics. Potentially stable heat transfer fluids for the temperature range 100 to 350 C have been identified, and reflux heat pipe tests initiated with 10 fluids and carbon steel and aluminum envelopes to experimentally establish corrosion behavior and noncondensable gas generation rates.

  5. Electron-phonon coupling and phonon subbands in small, electrically heated metal wires

    NASA Astrophysics Data System (ADS)

    Perrin, N.; Wybourne, M. N.

    1996-02-01

    The initial work of Perrin and Budd is extended to small metal wires in which the usual bulk phonon spectrum is modified into a series of acoustic subbands at low temperature. We analyze the contribution of the subbands to the lack of equilibrium between the electrons and the phonons in the wire heated by an applied electric field. The resulting electrical behavior of the wire is also considered and compared to experimental results.

  6. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking.

    PubMed

    Caputo, Joshua M; Collins, Steven H

    2014-12-03

    Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m · s(-1). Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models.

  7. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking

    NASA Astrophysics Data System (ADS)

    Caputo, Joshua M.; Collins, Steven H.

    2014-12-01

    Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m.s-1. Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models.

  8. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking

    PubMed Central

    Caputo, Joshua M.; Collins, Steven H.

    2014-01-01

    Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m·s−1. Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models. PMID:25467389

  9. Variable viscosity and density biofilm simulations using an immersed boundary method, part II: Experimental validation and the heterogeneous rheology-IBM

    NASA Astrophysics Data System (ADS)

    Stotsky, Jay A.; Hammond, Jason F.; Pavlovsky, Leonid; Stewart, Elizabeth J.; Younger, John G.; Solomon, Michael J.; Bortz, David M.

    2016-07-01

    The goal of this work is to develop a numerical simulation that accurately captures the biomechanical response of bacterial biofilms and their associated extracellular matrix (ECM). In this, the second of a two-part effort, the primary focus is on formally presenting the heterogeneous rheology Immersed Boundary Method (hrIBM) and validating our model by comparison to experimental results. With this extension of the Immersed Boundary Method (IBM), we use the techniques originally developed in Part I ([19]) to treat biofilms as viscoelastic fluids possessing variable rheological properties anchored to a set of moving locations (i.e., the bacteria locations). In particular, we incorporate spatially continuous variable viscosity and density fields into our model. Although in [14,15], variable viscosity is used in an IBM context to model discrete viscosity changes across interfaces, to our knowledge this work and Part I are the first to apply the IBM to model a continuously variable viscosity field. We validate our modeling approach from Part I by comparing dynamic moduli and compliance moduli computed from our model to data from mechanical characterization experiments on Staphylococcus epidermidis biofilms. The experimental setup is described in [26] in which biofilms are grown and tested in a parallel plate rheometer. In order to initialize the positions of bacteria in the biofilm, experimentally obtained three dimensional coordinate data was used. One of the major conclusions of this effort is that treating the spring-like connections between bacteria as Maxwell or Zener elements provides good agreement with the mechanical characterization data. We also found that initializing the simulations with different coordinate data sets only led to small changes in the mechanical characterization results. Matlab code used to produce results in this paper will be available at https://github.com/MathBioCU/BiofilmSim.

  10. Architectures for Quantum Simulation Showing a Quantum Speedup

    NASA Astrophysics Data System (ADS)

    Bermejo-Vega, Juan; Hangleiter, Dominik; Schwarz, Martin; Raussendorf, Robert; Eisert, Jens

    2018-04-01

    One of the main aims in the field of quantum simulation is to achieve a quantum speedup, often referred to as "quantum computational supremacy," referring to the experimental realization of a quantum device that computationally outperforms classical computers. In this work, we show that one can devise versatile and feasible schemes of two-dimensional, dynamical, quantum simulators showing such a quantum speedup, building on intermediate problems involving nonadaptive, measurement-based, quantum computation. In each of the schemes, an initial product state is prepared, potentially involving an element of randomness as in disordered models, followed by a short-time evolution under a basic translationally invariant Hamiltonian with simple nearest-neighbor interactions and a mere sampling measurement in a fixed basis. The correctness of the final-state preparation in each scheme is fully efficiently certifiable. We discuss experimental necessities and possible physical architectures, inspired by platforms of cold atoms in optical lattices and a number of others, as well as specific assumptions that enter the complexity-theoretic arguments. This work shows that benchmark settings exhibiting a quantum speedup may require little control, in contrast to universal quantum computing. Thus, our proposal puts a convincing experimental demonstration of a quantum speedup within reach in the near term.

  11. Use of phase change materials during compressed air expansion for isothermal CAES plants

    NASA Astrophysics Data System (ADS)

    Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.

    2017-11-01

    Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.

  12. Computer Game Play Reduces Intrusive Memories of Experimental Trauma via Reconsolidation-Update Mechanisms.

    PubMed

    James, Ella L; Bonsall, Michael B; Hoppitt, Laura; Tunbridge, Elizabeth M; Geddes, John R; Milton, Amy L; Holmes, Emily A

    2015-08-01

    Memory of a traumatic event becomes consolidated within hours. Intrusive memories can then flash back repeatedly into the mind's eye and cause distress. We investigated whether reconsolidation-the process during which memories become malleable when recalled-can be blocked using a cognitive task and whether such an approach can reduce these unbidden intrusions. We predicted that reconsolidation of a reactivated visual memory of experimental trauma could be disrupted by engaging in a visuospatial task that would compete for visual working memory resources. We showed that intrusive memories were virtually abolished by playing the computer game Tetris following a memory-reactivation task 24 hr after initial exposure to experimental trauma. Furthermore, both memory reactivation and playing Tetris were required to reduce subsequent intrusions (Experiment 2), consistent with reconsolidation-update mechanisms. A simple, noninvasive cognitive-task procedure administered after emotional memory has already consolidated (i.e., > 24 hours after exposure to experimental trauma) may prevent the recurrence of intrusive memories of those emotional events. © The Author(s) 2015.

  13. Computer Game Play Reduces Intrusive Memories of Experimental Trauma via Reconsolidation-Update Mechanisms

    PubMed Central

    James, Ella L.; Bonsall, Michael B.; Hoppitt, Laura; Tunbridge, Elizabeth M.; Geddes, John R.; Milton, Amy L.

    2015-01-01

    Memory of a traumatic event becomes consolidated within hours. Intrusive memories can then flash back repeatedly into the mind’s eye and cause distress. We investigated whether reconsolidation—the process during which memories become malleable when recalled—can be blocked using a cognitive task and whether such an approach can reduce these unbidden intrusions. We predicted that reconsolidation of a reactivated visual memory of experimental trauma could be disrupted by engaging in a visuospatial task that would compete for visual working memory resources. We showed that intrusive memories were virtually abolished by playing the computer game Tetris following a memory-reactivation task 24 hr after initial exposure to experimental trauma. Furthermore, both memory reactivation and playing Tetris were required to reduce subsequent intrusions (Experiment 2), consistent with reconsolidation-update mechanisms. A simple, noninvasive cognitive-task procedure administered after emotional memory has already consolidated (i.e., > 24 hours after exposure to experimental trauma) may prevent the recurrence of intrusive memories of those emotional events. PMID:26133572

  14. Z-path SAW RFID tag.

    PubMed

    Härmä, Sanna; Plessky, Victor P; Hartmann, Clinton S; Steichen, William

    2008-01-01

    Surface acoustic wave (SAW) radio-frequency identification (RFID) tags are soon expected to be produced in very high volumes. The size and cost of a SAW RFID tag will be key parameters for many applications. Therefore, it is of primary importance to reduce the chip size. In this work, we describe the design principles of a 2.4-GHz SAW RFID tag that is significantly smaller than earlier reported tags. We also present simulated and experimental results. The coded signal should arrive at the reader with a certain delay (typically about 1 micros), i.e., after the reception of environmental echoes. If the tag uses a bidirectional interdigital transducer (IDT), space for the initial delay is needed on both sides of the IDT. In this work, we replace the bidirectional IDT by a unidirectional one. This halves the space required by the initial delay because all the code reflectors must now be placed on the same side of the IDT. We reduce tag size even further by using a Z-path geometry in which the same space in x-direction is used for both the initial delay and the code reflectors. Chip length is thus determined only by the space required by the code reflectors.

  15. Renovation of the hot press in the Plutonium Experimental Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Congdon, J.W.; Nelson, G.H.

    1990-03-05

    The Plutonium Experimental Facility (PEF) will be used to develop a new fuel pellet fabrication process and to evaluate equipment upgrades. The facility was used from 1978 until 1982 to optimize the parameters for fuel pellet production using a process which was developed at Los Alamos National Laboratory. The PEF was shutdown and essentially abandoned until mid-1987 when the facility renovations were initiated by the Actinide Technology Section (ATS) of SRL. A major portion of the renovation work was related to the restart of the hot press system. This report describes the renovations and modifications which were required to restartmore » the PEF hot press. The primary purpose of documenting this work is to help provide a basis for Separations to determine the best method of renovating the hot press in the Plutonium Fuel Fabrication (PuFF) facility. This report also includes several SRL recommendations concerning the renovation and modification of the PuFF hot press. 4 refs.« less

  16. Experimental Evaluation and Workload Characterization for High-Performance Computer Architectures

    NASA Technical Reports Server (NTRS)

    El-Ghazawi, Tarek A.

    1995-01-01

    This research is conducted in the context of the Joint NSF/NASA Initiative on Evaluation (JNNIE). JNNIE is an inter-agency research program that goes beyond typical.bencbking to provide and in-depth evaluations and understanding of the factors that limit the scalability of high-performance computing systems. Many NSF and NASA centers have participated in the effort. Our research effort was an integral part of implementing JNNIE in the NASA ESS grand challenge applications context. Our research work under this program was composed of three distinct, but related activities. They include the evaluation of NASA ESS high- performance computing testbeds using the wavelet decomposition application; evaluation of NASA ESS testbeds using astrophysical simulation applications; and developing an experimental model for workload characterization for understanding workload requirements. In this report, we provide a summary of findings that covers all three parts, a list of the publications that resulted from this effort, and three appendices with the details of each of the studies using a key publication developed under the respective work.

  17. Different types of pausing modes during transcription initiation.

    PubMed

    Lerner, Eitan; Ingargiola, Antonino; Lee, Jookyung J; Borukhov, Sergei; Michalet, Xavier; Weiss, Shimon

    2017-08-08

    In many cases, initiation is rate limiting to transcription. This due in part to the multiple cycles of abortive transcription that delay promoter escape and the transition from initiation to elongation. Pausing of transcription in initiation can further delay promoter escape. The previously hypothesized pausing in initiation was confirmed by two recent studies from Duchi et al. 1 and from Lerner, Chung et al. 2 In both studies, pausing is attributed to a lack of forward translocation of the nascent transcript during initiation. However, the two works report on different pausing mechanisms. Duchi et al. report on pausing that occurs during initiation predominantly on-pathway of transcript synthesis. Lerner, Chung et al. report on pausing during initiation as a result of RNAP backtracking, which is off-pathway to transcript synthesis. Here, we discuss these studies, together with additional experimental results from single-molecule FRET focusing on a specific distance within the transcription bubble. We show that the results of these studies are complementary to each other and are consistent with a model involving two types of pauses in initiation: a short-lived pause that occurs in the translocation of a 6-mer nascent transcript and a long-lived pause that occurs as a result of 1-2 nucleotide backtracking of a 7-mer transcript.

  18. Progress towards measurement of entanglement entropy dynamics in one-dimensional interacting systems in the presence of disorder

    NASA Astrophysics Data System (ADS)

    Lukin, Alexander; Tai, M. Eric; Rispoli, Matthew; Schittko, Robert; Menke, Tim; Kaufman, Adam; Greiner, Markus

    2017-04-01

    Many-body localized states appear at odds with thermalization as they preserve the memory of their initial state. This behavior has drawn significant theoretical and experimental attention in recent years. Real space localization has been observed on various platforms and under a number of experimental conditions, both with and without interactions. However, the characteristic logarithmic growth of entanglement entropy, which distinguishes the many-body localized state from the non-interacting Anderson localized state, has only been studied in numerics and has yet to be investigated experimentally. We are working towards the phenomenon of localization in one dimensional, interacting Bose-Hubbard system using a quantum gas microscope. With site-resolved addressing and readout, our microscope provides full control over the studied system, in particular it allows us to add disorder into our system using a Fourier plane hologram. This gives us access to both local observables, such as the occupation of individual lattice sites, as well as the entanglement entropy. I will present our progress towards measuring the dependence of the entanglement entropy grows on the disorder strength and interactions in our system. National Science Foundation, Gordon and Betty Moore Foundation's EPiQS Initiative, Air Force Office of Scientific Research MURI program, NSF Graduate Research Fellowship Program (MNR).

  19. Improved fuzzy clustering algorithms in segmentation of DC-enhanced breast MRI.

    PubMed

    Kannan, S R; Ramathilagam, S; Devi, Pandiyarajan; Sathya, A

    2012-02-01

    Segmentation of medical images is a difficult and challenging problem due to poor image contrast and artifacts that result in missing or diffuse organ/tissue boundaries. Many researchers have applied various techniques however fuzzy c-means (FCM) based algorithms is more effective compared to other methods. The objective of this work is to develop some robust fuzzy clustering segmentation systems for effective segmentation of DCE - breast MRI. This paper obtains the robust fuzzy clustering algorithms by incorporating kernel methods, penalty terms, tolerance of the neighborhood attraction, additional entropy term and fuzzy parameters. The initial centers are obtained using initialization algorithm to reduce the computation complexity and running time of proposed algorithms. Experimental works on breast images show that the proposed algorithms are effective to improve the similarity measurement, to handle large amount of noise, to have better results in dealing the data corrupted by noise, and other artifacts. The clustering results of proposed methods are validated using Silhouette Method.

  20. Experimental and Numerical Investigations on Strength and Deformation Behavior of Cataclastic Sandstone

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Shao, J. F.; Xu, W. Y.; Zhao, H. B.; Wang, W.

    2015-05-01

    This work is devoted to characterization of the deformation and strength properties of cataclastic sandstones. Before conducting mechanical tests, the physical properties were first examined. These sandstones are characterized by a loose damaged microstructure and poorly cemented contacts. Then, a series of mechanical tests including hydrostatic, uniaxial, and triaxial compression tests were performed to study the mechanical strength and deformation of the sandstones. The results obtained show nonlinear stress-strain responses. The initial microcracks are closed at hydrostatic stress of 2.6 MPa, and the uniaxial compressive strength is about 0.98 MPa. Under triaxial compression, there is a clear transition from volumetric compressibility to dilatancy and a strong dependency on confining pressure. Based on the experimental evidence, an elastoplastic model is proposed using a linear yield function and a nonassociated plastic potential. There is good agreement between numerical results and experimental data.

  1. An analytical and experimental study of crack extension in center-notched composites

    NASA Technical Reports Server (NTRS)

    Beuth, Jack L., Jr.; Herakovich, Carl T.

    1987-01-01

    The normal stress ratio theory for crack extension in anisotropic materials is studied analytically and experimentally. The theory is applied within a microscopic-level analysis of a single center notch of arbitrary orientation in a unidirectional composite material. The bulk of the analytical work of this study applies an elasticity solution for an infinite plate with a center line to obtain critical stress and crack growth direction predictions. An elasticity solution for an infinite plate with a center elliptical flaw is also used to obtain qualitative predictions of the location of crack initiation on the border of a rounded notch tip. The analytical portion of the study includes the formulation of a new crack growth theory that includes local shear stress. Normal stress ratio theory predictions are obtained for notched unidirectional tensile coupons and unidirectional Iosipescu shear specimens. These predictions are subsequently compared to experimental results.

  2. Experimental and Computational Study of the Flow past a Simplified Geometry of an Engine/Pylon/Wing Installation at low velocity/moderate incidence flight conditions

    NASA Astrophysics Data System (ADS)

    Bury, Yannick; Lucas, Matthieu; Bonnaud, Cyril; Joly, Laurent; ISAE Team; Airbus Team

    2014-11-01

    We study numerically and experimentally the vortices that develop past a model geometry of a wing equipped with pylon-mounted engine at low speed/moderate incidence flight conditions. For such configuration, the presence of the powerplant installation under the wing initiates a complex, unsteady vortical flow field at the nacelle/pylon/wing junctions. Its interaction with the upper wing boundary layer causes a drop of aircraft performances. In order to decipher the underlying physics, this study is initially conducted on a simplified geometry at a Reynolds number of 200000, based on the chord wing and on the freestream velocity. Two configurations of angle of attack and side-slip angle are investigated. This work relies on unsteady Reynolds Averaged Navier Stokes computations, oil flow visualizations and stereoscopic Particle Image Velocimetry measurements. The vortex dynamics thus produced is described in terms of vortex core position, intensity, size and turbulent intensity thanks to a vortex tracking approach. In addition, the analysis of the velocity flow fields obtained from PIV highlights the influence of the longitudinal vortex initiated at the pylon/wing junction on the separation process of the boundary layer near the upper wing leading-edge.

  3. Information model of trainee characteristics with definition of stochastic behavior of dynamic system

    NASA Astrophysics Data System (ADS)

    Sumin, V. I.; Smolentseva, T. E.; Belokurov, S. V.; Lankin, O. V.

    2018-03-01

    In the work the process of formation of trainee characteristics with their subsequent change is analyzed and analyzed. Characteristics of trainees were obtained as a result of testing for each section of information on the chosen discipline. The results obtained during testing were input to the dynamic system. The area of control actions consisting of elements of the dynamic system is formed. The limit of deterministic predictability of element trajectories in dynamical systems based on local or global attractors is revealed. The dimension of the phase space of the dynamic system is determined, which allows estimating the parameters of the initial system. On the basis of time series of observations, it is possible to determine the predictability interval of all parameters, which make it possible to determine the behavior of the system discretely in time. Then the measure of predictability will be the sum of Lyapunov’s positive indicators, which are a quantitative measure for all elements of the system. The components for the formation of an algorithm allowing to determine the correlation dimension of the attractor for known initial experimental values of the variables are revealed. The generated algorithm makes it possible to carry out an experimental study of the dynamics of changes in the trainee’s parameters with initial uncertainty.

  4. Evaluation of New Reference Genes in Papaya for Accurate Transcript Normalization under Different Experimental Conditions

    PubMed Central

    Chen, Weixin; Chen, Jianye; Lu, Wangjin; Chen, Lei; Fu, Danwen

    2012-01-01

    Real-time reverse transcription PCR (RT-qPCR) is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s) validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP) treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s) or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A), TBP1 (TATA binding protein 1) and TBP2 (TATA binding protein 2) genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2), 18S rRNA (18S ribosomal RNA) and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase) were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental conditions. PMID:22952972

  5. Learning communication from erroneous video-based examples: A double-blind randomised controlled trial.

    PubMed

    Schmitz, Felix Michael; Schnabel, Kai Philipp; Stricker, Daniel; Fischer, Martin Rudolf; Guttormsen, Sissel

    2017-06-01

    Appropriate training strategies are required to equip undergraduate healthcare students to benefit from communication training with simulated patients. This study examines the learning effects of different formats of video-based worked examples on initial communication skills. First-year nursing students (N=36) were randomly assigned to one of two experimental groups (correct v. erroneous examples) or to the control group (no examples). All the groups were provided an identical introduction to learning materials on breaking bad news; the experimental groups also received a set of video-based worked examples. Each example was accompanied by a self-explanation prompt (considering the example's correctness) and elaborated feedback (the true explanation). Participants presented with erroneous examples broke bad news to a simulated patient significantly more appropriately than students in the control group. Additionally, they tended to outperform participants who had correct examples, while participants presented with correct examples tended to outperform the control group. The worked example effect was successfully adapted for learning in the provider-patient communication domain. Implementing video-based worked examples with self-explanation prompts and feedback can be an effective strategy to prepare students for their training with simulated patients, especially when examples are erroneous. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Experimental analysis of quasi-static and dynamic fracture initiation toughness of gy4 armor steel material

    NASA Astrophysics Data System (ADS)

    Ren, Peng; Guo, Zitao

    Quasi-static and dynamic fracture initiation toughness of gy4 armour steel material are investigated using three point bend specimen. The modified split Hopkinson pressure bar (SHPB) apparatus with digital image correlation (DIC) system is applied to dynamic loading experiments. Full-field deformation measurements are obtained by using DIC to elucidate on the strain fields associated with the mechanical response. A series of experiments are conducted at different strain rate ranging from 10-3 s-1 to 103 s-1, and the loading rate on the fracture initiation toughness is investigated. Specially, the scanning electron microscope imaging technique is used to investigate the fracture failure micromechanism of fracture surfaces. The gy4 armour steel material fracture toughness is found to be sensitive to strain rate and higher for dynamic loading as compared to quasi-static loading. This work is supported by National Nature Science Foundation under Grant 51509115.

  7. An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation.

    PubMed

    Huang, Feng; Lv, Yisheng; Wang, Liquan; Xu, Pengxiang; Lin, Jiaping; Lin, Shaoliang

    2016-08-14

    Polymerization-induced self-assembly is a one-pot route to produce concentrated dispersions of block copolymer nano-objects. Herein, dissipative particle dynamics simulations with a reaction model were employed to investigate the behaviors of polymerization-induced self-assembly. The polymerization kinetics in the polymerization-induced self-assembly were analyzed by comparing with solution polymerization. It was found that the polymerization rate enhances in the initial stage and decreases in the later stage. In addition, the effects of polymerization rate, length of macromolecular initiators, and concentration on the aggregate morphologies and formation pathway were studied. The polymerization rate and the length of the macromolecular initiators are found to have a marked influence on the pathway of the aggregate formations and the final structures. Morphology diagrams were mapped correspondingly. A comparison between simulation results and experimental findings is also made and an agreement is shown. This work can enrich our knowledge about polymerization-induced self-assembly.

  8. Arsenic uptake by Lemna minor in hydroponic system.

    PubMed

    Goswami, Chandrima; Majumder, Arunabha; Misra, Amal Kanti; Bandyopadhyay, Kaushik

    2014-01-01

    Arsenic is hazardous and causes several ill effects on human beings. Phytoremediation is the use of aquatic plants for the removal of toxic pollutants from external media. In the present research work, the removal efficiency as well as the arsenic uptake capacity of duckweed Lemna minor has been studied. Arsenic concentration in water samples and plant biomass were determined by AAS. The relative growth factor of Lemna minor was determined. The duckweed had potential to remove as well as uptake arsenic from the aqueous medium. Maximum removal of more than 70% arsenic was achieved atinitial concentration of 0.5 mg/1 arsenic on 15th day of experimental period of 22 days. Removal percentage was found to decrease with the increase in initial concentration. From BCF value, Lemna minor was found to be a hyperaccumulator of arsenic at initial concentration of 0.5 mg/L, such that accumulation decreased with increase in initial arsenic concentration.

  9. Effect of canal length and curvature on working length alteration with WaveOne reciprocating files.

    PubMed

    Berutti, Elio; Chiandussi, Giorgio; Paolino, Davide Salvatore; Scotti, Nicola; Cantatore, Giuseppe; Castellucci, Arnaldo; Pasqualini, Damiano

    2011-12-01

    This study evaluated the working length (WL) modification after instrumentation with WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) reciprocating files and the incidence of overinstrumentation in relation to the initial WL. Thirty-two root canals of permanent teeth were used. The angles of curvature of the canals were calculated on digital radiographs. The initial WL with K-files was transferred to the matched WaveOne Primary reciprocating files. After glide paths were established with PathFile (Dentsply Maillefer, Ballaigues, Switzerland), canals were shaped with WaveOne Primary referring to the initial WL. The difference between the postinstrumentation canal length and the initial canal length was analyzed by using a fiberoptic inspection microscope. Data were analyzed with a balanced 2-way factorial analysis of variance (P < .05). Referring to the initial WL, 24 of 32 WaveOne Primary files projected beyond the experimental apical foramen (minimum-maximum, 0.14-0.76 mm). A significant decrease in the canal length after instrumentation (95% confidence interval ranging from -0.34 mm to -0.26 mm) was detected. The canal curvature significantly influenced the WL variation (F(1) = 30.65, P < .001). The interaction between the initial canal length and the canal curvature was statistically significant (F(2) = 4.38, P = .014). Checking the WL before preparation of the apical third of the root canal is recommended when using the new WaveOne NiTi single-file system. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Calculation of the Initial Magnetic Field for Mercury's Magnetosphere Hybrid Model

    NASA Astrophysics Data System (ADS)

    Alexeev, Igor; Parunakian, David; Dyadechkin, Sergey; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku

    2018-03-01

    Several types of numerical models are used to analyze the interactions of the solar wind flow with Mercury's magnetosphere, including kinetic models that determine magnetic and electric fields based on the spatial distribution of charges and currents, magnetohydrodynamic models that describe plasma as a conductive liquid, and hybrid models that describe ions kinetically in collisionless mode and represent electrons as a massless neutralizing liquid. The structure of resulting solutions is determined not only by the chosen set of equations that govern the behavior of plasma, but also by the initial and boundary conditions; i.e., their effects are not limited to the amount of computational work required to achieve a quasi-stationary solution. In this work, we have proposed using the magnetic field computed by the paraboloid model of Mercury's magnetosphere as the initial condition for subsequent hybrid modeling. The results of the model have been compared to measurements performed by the Messenger spacecraft during a single crossing of the magnetosheath and the magnetosphere. The selected orbit lies in the terminator plane, which allows us to observe two crossings of the bow shock and the magnetopause. In our calculations, we have defined the initial parameters of the global magnetospheric current systems in a way that allows us to minimize paraboloid magnetic field deviation along the trajectory of the Messenger from the experimental data. We have shown that the optimal initial field parameters include setting the penetration of a partial interplanetary magnetic field into the magnetosphere with a penetration coefficient of 0.2.

  11. Investigation of multilayer magnetic domain lattice file

    NASA Technical Reports Server (NTRS)

    Torok, E. J.; Kamin, M.; Tolman, C. H.

    1982-01-01

    A theoretical and experimental investigation determined that current accessed self structured bubble memory devices have the potential of meeting projected data density and speed requirements. Device concepts analyzed include multilayer ferrimagnetic devices where the top layer contains a domain structure which defines the data location and the second contains the data. Current aperture and permalloy assisted current propagation devices were evaluated. Based on the result of this work more detailed device research was initiated. Detailed theoretical and experimental studies indicate that the difference in strip and threshold between a single bubble in the control layer and a double bubble which would exist in both the control layer and data layer is adequate to allow for detection of data. Detailed detector designs were investigated.

  12. Molecular modeling and biological evaluation of 2-N,N-dimethylaminecyclohexyl 1-N‧,N‧-dimethylcarbamate isomers and their methylsulfate salts as cholinesterases inhibitors

    NASA Astrophysics Data System (ADS)

    Bocca, Cleverson C.; Rittner, Roberto; Höehr, Nelci F.; Pinheiro, Glaucia M. S.; Abiko, Layara A.; Basso, Ernani A.

    2010-11-01

    This work presents a detailed theoretical and experimental study on the inhibitory properties of 2- N,N-dimethylaminecyclohexyl 1- N',N'-dimethylcarbamate isomers and their methylsulfate salts against the cholinesterases enzymes. The in vitro inhibition test performed by the Ellman's method showed that the salt form compounds were more active than the neutral ones in cholinesterases inhibition. The trans salt showed good selectivity towards the inhibition of erythrocyte cholinesterase with a maximum limit around 90% and 55% for the plasma cholinesterase inhibition. Molecular modeling, docking and experimental results performed in this study showed to be important initial steps toward the development of a novel pharmaceuticals in the fight against Alzheimer's disease.

  13. Damage and Failure Analysis of AZ31 Alloy Sheet in Warm Stamping Processes

    NASA Astrophysics Data System (ADS)

    Zhao, P. J.; Chen, Z. H.; Dong, C. F.

    2016-07-01

    In this study, a combined experimental-numerical investigation on the failure of AZ31 Mg alloy sheet in the warm stamping process was carried out based on modified GTN damage model which integrated Yld2000 anisotropic yield criterion. The constitutive equations of material were implemented into a VUMAT subroutine for solver ABAQUS/Explicit and applied to the formability analysis of mobile phone shell. The morphology near the crack area was observed using SEM, and the anisotropic damage evolution at various temperatures was simulated. The distributions of plastic strain, damage evolution, thickness, and fracture initiation obtained from FE simulation were analyzed. The corresponding forming limit diagrams were worked out, and the comparison with the experimental data showed a good agreement.

  14. Costs of a work-family intervention: evidence from the work, family, and health network.

    PubMed

    Barbosa, Carolina; Bray, Jeremy W; Brockwood, Krista; Reeves, Daniel

    2014-01-01

    To estimate the cost to the workplace of implementing initiatives to reduce work-family conflict. Prospective cost analysis conducted alongside a group-randomized multisite controlled experimental study, using a microcosting approach. An information technology firm. Employees (n = 1004) and managers (n = 141) randomized to the intervention arm. STAR (Start. Transform. Achieve. Results.) to enhance employees' control over their work time, increase supervisor support for employees to manage work and family responsibilities, and reorient the culture toward results. A taxonomy of activities related to customization, start-up, and implementation was developed. Resource use and unit costs were estimated for each activity, excluding research-related activities. Economic costing approach (accounting and opportunity costs). Sensitivity analyses on intervention costs. The total cost of STAR was $709,654, of which $389,717 was labor costs and $319,937 nonlabor costs (including $313,877 for intervention contract). The cost per employee participation in the intervention was $340 (95% confidence interval: $330-$351); $597 ($561-$634) for managers and $300 ($292-$308) for other employees (2011 prices). A detailed activity costing approach allows for more accurate cost estimates and identifies key drivers of cost. The key cost driver was employees' time spent on receiving the intervention. Ignoring this cost, which is usual in studies that cost workplace interventions, would seriously underestimate the cost of a workplace initiative.

  15. Mathematical modeling of damage in unidirectional composites

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Dharani, L. R.; Jones, W. F.

    1983-01-01

    Extending the work of Goree and Gross (1979), solutions are given for a two-dimensional region of unidirectional fibers embedded in an elastic matrix whose initial flaw may take the form of a transverse notch, a rectangular cutout, or a circular hole. Subsequent flaw-induced damage is generated by remote stresses acting parallel to the fibers. For the case of such ductile matrix composites as boron/aluminum, present results indicate that both longitudinal matrix yielding and transverse notch extension must be included in order for the model to agree with experimental results. Little difference is found for the three types of initial damage considered. In all cases, the presence of additional damage changes the nature of stress distribution through the unbroken fibers.

  16. A quantum theoretical study of polyimides

    NASA Technical Reports Server (NTRS)

    Burke, Luke A.

    1987-01-01

    One of the most important contributions of theoretical chemistry is the correct prediction of properties of materials before any costly experimental work begins. This is especially true in the field of electrically conducting polymers. Development of the Valence Effective Hamiltonian (VEH) technique for the calculation of the band structure of polymers was initiated. The necessary VEH potentials were developed for the sulfur and oxygen atoms within the particular molecular environments and the explanation explored for the success of this approximate method in predicting the optical properties of conducting polymers.

  17. Building a Science of Animal Minds: Lloyd Morgan, Experimentation, and Morgan's Canon.

    PubMed

    Fitzpatrick, Simon; Goodrich, Grant

    2017-08-01

    Conwy Lloyd Morgan (1852-1936) is widely regarded as the father of modern comparative psychology. Yet, Morgan initially had significant doubts about whether a genuine science of comparative psychology was even possible, only later becoming more optimistic about our ability to make reliable inferences about the mental capacities of non-human animals. There has been a fair amount of disagreement amongst scholars of Morgan's work about the nature, timing, and causes of this shift in Morgan's thinking. We argue that Morgan underwent two quite different shifts of attitude towards the proper practice of comparative psychology. The first was a qualified acceptance of the Romanesian approach to comparative psychology that he had initially criticized. The second was a shift away from Romanes' reliance on systematizing anecdotal evidence of animal intelligence towards an experimental approach, focused on studying the development of behaviour. We emphasize the role of Morgan's evolving epistemological views in bringing about the first shift - in particular, his philosophy of science. We emphasize the role of an intriguing but overlooked figure in the history of comparative psychology in explaining the second shift, T. Mann Jones, whose correspondence with Morgan provided an important catalyst for Morgan's experimental turn, particularly the special focus on development. We also shed light on the intended function of Morgan's Canon, the methodological principle for which Morgan is now mostly known. The Canon can only be properly understood by seeing it in the context of Morgan's own unique experimental vision for comparative psychology.

  18. Design and Implementation of a Biomolecular Concentration Tracker

    PubMed Central

    2015-01-01

    As a field, synthetic biology strives to engineer increasingly complex artificial systems in living cells. Active feedback in closed loop systems offers a dynamic and adaptive way to ensure constant relative activity independent of intrinsic and extrinsic noise. In this work, we use synthetic protein scaffolds as a modular and tunable mechanism for concentration tracking through negative feedback. Input to the circuit initiates scaffold production, leading to colocalization of a two-component system and resulting in the production of an inhibitory antiscaffold protein. Using a combination of modeling and experimental work, we show that the biomolecular concentration tracker circuit achieves dynamic protein concentration tracking in Escherichia coli and that steady state outputs can be tuned. PMID:24847683

  19. Nano-material size dependent laser-plasma thresholds

    NASA Astrophysics Data System (ADS)

    EL Sherbini, Ashraf M.; Parigger, Christian G.

    2016-10-01

    The reduction of laser fluence for initiation of plasma was measured for zinc monoxide nanoparticles of diameters in the range of 100 to 20 nm. In a previous work by EL Sherbini and Parigger [Wavelength Dependency and Threshold Measurements for Nanoparticle-enhanced Laser-induced Breakdown Spectroscopy, Spectrochim. Acta Part B 116 (2016) 8-15], the hypothesis of threshold dependence on particle size leads to the interpretation of the experiments for varying excitation wavelengths with fixed, 30 nm nanomaterial. The experimental results presented in this work were obtained with 1064 nm Nd:YAG radiation and confirm and validate the suspected reduction due to quenching of the thermal conduction length to the respective sizes of the nanoparticles.

  20. A novel pathway for the biosynthesis of heme in Archaea: genome-based bioinformatic predictions and experimental evidence.

    PubMed

    Storbeck, Sonja; Rolfes, Sarah; Raux-Deery, Evelyne; Warren, Martin J; Jahn, Dieter; Layer, Gunhild

    2010-12-13

    Heme is an essential prosthetic group for many proteins involved in fundamental biological processes in all three domains of life. In Eukaryota and Bacteria heme is formed via a conserved and well-studied biosynthetic pathway. Surprisingly, in Archaea heme biosynthesis proceeds via an alternative route which is poorly understood. In order to formulate a working hypothesis for this novel pathway, we searched 59 completely sequenced archaeal genomes for the presence of gene clusters consisting of established heme biosynthetic genes and colocalized conserved candidate genes. Within the majority of archaeal genomes it was possible to identify such heme biosynthesis gene clusters. From this analysis we have been able to identify several novel heme biosynthesis genes that are restricted to archaea. Intriguingly, several of the encoded proteins display similarity to enzymes involved in heme d(1) biosynthesis. To initiate an experimental verification of our proposals two Methanosarcina barkeri proteins predicted to catalyze the initial steps of archaeal heme biosynthesis were recombinantly produced, purified, and their predicted enzymatic functions verified.

  1. Malachite Green Adsorption by Spent Coffee Grounds

    NASA Astrophysics Data System (ADS)

    Syamimie Atirah Mat, Siti; Zati Hanani Syed Zuber, Sharifah; Rahim, Siti Kartini Enche Ab; Sohaimi, Khairunissa Syairah Ahmad; Halim, Noor Amirah Abdul; Fauziah Zainudin, Nor; Aida Yusoff, Nor; Munirah Rohaizad, Nor; Hidayah Ishak, Noor; Anuar, Adilah; Sarip, Mohd Sharizan Md

    2018-03-01

    In this work, the ability of spent coffee grounds (SCG) as a low-cost adsorbent to remove malachite green (MG) from aqueous solutions was studied. Batch adsorption tests were carried out to observe the effect of various experimental parameters such as contact time, initial concentration of malachite green and adsorbent dosage on the removal of dye. The results obtained show that the percentage of dye removal will decreased with the increased of initial concentration of dye in the range of 50 mg/L to 250 mg/L. Besides, percentage removal of dye was also found to be increased as the contact time increased until it reached equilibrium condition. The results also showed that the adsorbent dosage in range of 0.2 g to 1.0 g is proportional to the percentage removal of malachite green dye. Study on the kinetic adsorption and isotherm adsorption has also been investigated. The adsorption isotherm data were described by Langmuir isotherm with high-correlation coefficients while the experimental data showed the pseudo-second-order kinetics model was the best model for the adsorption of MG by SCG with the coefficients of correlation R2 > 0.9978.

  2. [Evaluation of the incidence of dental caries in patients with Down syndrome after their insertion in a preventive program].

    PubMed

    Castilho, Aline Rogéria Freire de; Marta, Sara Nader

    2010-10-01

    The objective of this work was to verify the incidence of dental caries by means of the CPO-D, CPO-S, ceo-d and ceo-s indexes in patients with Down syndrome regularly enrolled in a preventive program. Twenty four Down syndrome patients of both sexes age range of one to 48 years were examined. The prevalence (initial experimental situation) and incidence (final experimental situation) of dental caries were verified using of the initial and final CPO-D, CPO-S, ceo-d and ceo-s indexes of the participants. From 24 individual examined, 10 (42.0%) were free of caries. The prevalence of dental caries showed values of CPO-D= 2.33; CPO-S= 3.60; ceo-d= 1.75 e ceo-s= 2.80; while the incidence of caries showed values of 2.33; 3.80; 1.10 e 1.90, respectively. Down syndrome individuals evaluated in this study presented low level of caries and small incidence of new lesions, emphasizing the importance of the maintenance of these patients at preventive programs.

  3. Computational and Experimental Fluid-Structure Interaction Analysis of a High-Lift Wing with a Slat-Cove Filler for Noise Reduction

    NASA Technical Reports Server (NTRS)

    Scholten, William D.; Patterson, Ryan D.; Hartl, Darren J.; Strganac, Thomas W.; Chapelon, Quentin H. C.; Turner, Travis

    2017-01-01

    Airframe noise is a significant component of overall noise produced by transport aircraft during landing and approach (low speed maneuvers). A significant source for this noise is the cove of the leading-edge slat. The slat-cove filler (SCF) has been shown to be effective at mitigating slat noise. The objective of this work is to understand the fluid-structure interaction (FSI) behavior of a superelastic shape memory alloy (SMA) SCF in flow using both computational and physical models of a high-lift wing. Initial understanding of flow around the SCF and wing is obtained using computational fluid dynamics (CFD) analysis at various angles of attack. A framework compatible with an SMA constitutive model (implemented as a user material subroutine) is used to perform FSI analysis for multiple flow and configuration cases. A scaled physical model of the high-lift wing is constructed and tested in the Texas A&M 3 ft-by-4-foot wind tunnel. Initial validation of both CFD and FSI analysis is conducted by comparing lift, drag and pressure distributions with experimental results.

  4. A Novel Pathway for the Biosynthesis of Heme in Archaea: Genome-Based Bioinformatic Predictions and Experimental Evidence

    PubMed Central

    Storbeck, Sonja; Rolfes, Sarah; Raux-Deery, Evelyne; Warren, Martin J.; Jahn, Dieter; Layer, Gunhild

    2010-01-01

    Heme is an essential prosthetic group for many proteins involved in fundamental biological processes in all three domains of life. In Eukaryota and Bacteria heme is formed via a conserved and well-studied biosynthetic pathway. Surprisingly, in Archaea heme biosynthesis proceeds via an alternative route which is poorly understood. In order to formulate a working hypothesis for this novel pathway, we searched 59 completely sequenced archaeal genomes for the presence of gene clusters consisting of established heme biosynthetic genes and colocalized conserved candidate genes. Within the majority of archaeal genomes it was possible to identify such heme biosynthesis gene clusters. From this analysis we have been able to identify several novel heme biosynthesis genes that are restricted to archaea. Intriguingly, several of the encoded proteins display similarity to enzymes involved in heme d 1 biosynthesis. To initiate an experimental verification of our proposals two Methanosarcina barkeri proteins predicted to catalyze the initial steps of archaeal heme biosynthesis were recombinantly produced, purified, and their predicted enzymatic functions verified. PMID:21197080

  5. Interband coherence induced correction to Thouless pumping: possible observation in cold-atom systems

    NASA Astrophysics Data System (ADS)

    Raghava, Gudapati Naresh; Zhou, Longwen; Gong, Jiangbin

    2017-08-01

    In Thouless pump, the charge transport in a one-dimensional insulator over an adiabatic cycle is topologically quantized. For nonequilibrium initial states, however, interband coherence will induce a previously unknown contribution to Thouless pumping. Though not geometric in nature, this contribution is independent of the time scale of the pumping protocol. In this work, we perform a detailed analysis of our previous finding [H.L. Wang et al., Phys. Rev. B 91, 085420 (2015)] in an already available cold-atom setup. We show that initial states with interband coherence can be obtained via a quench of the system's Hamiltonian. Adiabatic pumping in the post-quench system are then examined both theoretically and numerically, in which the interband coherence is shown to play an important role and can hence be observed experimentally. By choosing adiabatic protocols with different switching-on rates, we also show that the contribution of interband coherence to adiabatic pumping can be tuned. It is further proposed that the interband coherence induced correction to Thouless pumping may be useful in capturing a topological phase transition point. All our results have direct experimental interests.

  6. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results

    NASA Astrophysics Data System (ADS)

    Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin

    2008-03-01

    We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.

  7. Effectiveness of Workplace Lactation Interventions on Breastfeeding Outcomes in the United States: An Updated Systematic Review.

    PubMed

    Kim, Julia H; Shin, Jong C; Donovan, Sharon M

    2018-06-01

    Background Returning to work is one of the main barriers to breastfeeding duration among working mothers in the United States. However, the impact of workplace lactation programs is unclear. Research Aim The aim of this study was to evaluate the effectiveness of workplace lactation programs in the United States on breastfeeding practices. Methods A systematic search was conducted of seven databases through September 2017. Articles ( N = 10) meeting the inclusion criteria of describing a workplace lactation intervention and evaluation in the United States and measuring initiation, exclusivity, or duration using an experimental or observational study design were critically evaluated. Two reviewers conducted quality assessments and reviewed the full-text articles during the analysis. Results Common services provided were breast pumps, social support, lactation rooms, and breastfeeding classes. Breastfeeding initiation was very high, ranging from 87% to 98%. Several factors were significantly associated with duration of exclusive breastfeeding: (a) receiving a breast pump for one year (8.3 versus 4.7 months), (b) return-to-work consultations (40% versus 17% at 6 months), and (c) telephone support (42% versus 15% at 6 months). Each additional service (except prenatal education) dose-dependently increased exclusively breastfeeding at 6 months. Sociodemographic information including older maternal age, working part-time, longer maternity leave, and white ethnicity were associated with longer breastfeeding duration. Conclusion Workplace lactation interventions increased breastfeeding initiation, duration, and exclusive breastfeeding, with greater changes observed with more available services. More evidence is needed on the impact of workplace support in low-income populations, and the cost-effectiveness of these programs in reducing health care costs.

  8. HERMIES-I: a mobile robot for navigation and manipulation experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbin, C.R.; Barhen, J.; de Saussure, G.

    1985-01-01

    The purpose of this paper is to report the current status of investigations ongoing at the Center for Engineering Systems Advanced Research (CESAR) in the areas of navigation and manipulation in unstructured environments. The HERMIES-I mobile robot, a prototype of a series which contains many of the major features needed for remote work in hazardous environments is discussed. Initial experimental work at CESAR has begun in the area of navigation. It briefly reviews some of the ongoing research in autonomous navigation and describes initial research with HERMIES-I and associated graphic simulation. Since the HERMIES robots will generally be composed ofmore » a variety of asynchronously controlled hardware components (such as manipulator arms, digital image sensors, sonars, etc.) it seems appropriate to consider future development of the HERMIES brain as a hypercube ensemble machine with concurrent computation and associated message passing. The basic properties of such a hypercube architecture are presented. Decision-making under uncertainty eventually permeates all of our work. Following a survey of existing analytical approaches, it was decided that a stronger theoretical basis is required. As such, this paper presents the framework for a recently developed hybrid uncertainty theory. 21 refs., 2 figs.« less

  9. Practical recommendations for the evaluation of improvement initiatives

    PubMed Central

    Parry, Gareth; Coly, Astou; Goldmann, Don; Rowe, Alexander K; Chattu, Vijay; Logiudice, Deneil; Rabrenovic, Mihajlo; Nambiar, Bejoy

    2018-01-01

    Abstract A lack of clear guidance for funders, evaluators and improvers on what to include in evaluation proposals can lead to evaluation designs that do not answer the questions stakeholders want to know. These evaluation designs may not match the iterative nature of improvement and may be imposed onto an initiative in a way that is impractical from the perspective of improvers and the communities with whom they work. Consequently, the results of evaluations are often controversial, and attribution remains poorly understood. Improvement initiatives are iterative, adaptive and context-specific. Evaluation approaches and designs must align with these features, specifically in their ability to consider complexity, to evolve as the initiative adapts over time and to understand the interaction with local context. Improvement initiatives often identify broadly defined change concepts and provide tools for care teams to tailor these in more detail to local conditions. Correspondingly, recommendations for evaluation are best provided as broad guidance, to be tailored to the specifics of the initiative. In this paper, we provide practical guidance and recommendations that funders and evaluators can use when developing an evaluation plan for improvement initiatives that seeks to: identify the questions stakeholders want to address; develop the initial program theory of the initiative; identify high-priority areas to measure progress over time; describe the context the initiative will be applied within; and identify experimental or observational designs that will address attribution. PMID:29447410

  10. The effect of surface tension, superheat and surface films on the rate of heat transfer from an iron droplet to a water cooled copper mold

    NASA Astrophysics Data System (ADS)

    Phinichka, Natthapong

    In strip casting the cast surface forms during the initial stage of solidification and the phenomenon that occurs during the first 50 milliseconds of contact time between the liquid steel and the mold define the cast surface and its quality. However the exact mechanism of the initial solidification and the process variables that affect initial solidification phenomena during that time are not well understood. The primary goal of this work is to develop a fundamental understanding of factors controlling strip casting. The purpose of the experimental study is to better understand the role of processing parameters on initial solidification phenomena, heat transfer rate and the formation of the cast steel surface. An investigation was made to evaluate the heat transfer rate of different kinds of steels. The experimental apparatus was designed for millisecond resolution of heat transfer behavior. A novel approach of simultaneous in-situ observation and measurement of rapid heat transfer was developed and enabled a coupling between the interfacial heat transfer rate and droplet solidification rate. The solidification rate was estimated from the varying position of the solidification front as captured by a CCD camera. The effects of experimental parameters such as melt superheat, sulfur content and oxide accumulation at the interface on measured heat flux were studied. It was found that the heat flux increased slightly when the percent of sulfur and increased significantly when superheat increased. The oxide accumulation at the interface was found to be manganese and silicon based oxide. When the liquid steel droplets were ejected onto the copper substrate repeatedly, without cleaning the substrate surface between the ejections, a large increase in the interfacial heat flux was observed. The results of the film study indicated that a liquid oxide film existed at the interface. The surface roughness measurement of the solidified specimen decreased with repeated experimentation and better contact between the droplet and the mold was found to be the cause of the improved heat transfer rate.

  11. Factors associated with pathways toward concurrent sex work and injection drug use among female sex workers who inject drugs in northern Mexico.

    PubMed

    Morris, Meghan D; Lemus, Hector; Wagner, Karla D; Martinez, Gustavo; Lozada, Remedios; Gómez, Rangel María Gudelia; Strathdee, Steffanie A

    2013-01-01

    To identify factors associated with time to initiation of (i) sex work prior to injecting drugs initiation; (ii) injection drug use prior to sex work initiation; and (iii) concurrent sex work and injection drug use (i.e. initiated at the same age) among female sex workers who currently inject drugs (FSW-IDU). Parametric survival analysis of baseline data for time to initiation event. Tijuana and Ciudad Juarez situated on the Mexico-US border. A total of 557 FSW-IDUs aged ≥18 years. Interview-administered surveys assessing context of sex work and injection drug use initiation. Nearly half (n = 258) initiated sex work prior to beginning to inject, a third (n = 163) initiated injection first and a quarter (n = 136) initiated both sex work and injection drug use concurrently. Low education and living in Ciudad Juarez accelerated time to sex work initiation. Being from a southern Mexican state and initiating drug use with inhalants delayed the time to first injection drug use. Having an intimate partner encourage entry into sex work and first injecting drugs to deal with depression accelerated time to initiating sex work and injection concurrently. Early physical abuse accelerated time to initiating sex work and injection, and substantially accelerated time to initiation of both behaviors concurrently. Among female sex workers who currently inject drugs in two Mexican-US border cities, nearly half appear to initiate sex work prior to beginning to inject, nearly one-third initiate injection drug use before beginning sex work and one-quarter initiate both behaviors concurrently. Predictors of these three trajectories differ, and this provides possible modifiable targets for prevention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  12. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    NASA Astrophysics Data System (ADS)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  13. Racial bias in sport medical staff's perceptions of others' pain.

    PubMed

    Druckman, James N; Trawalter, Sophie; Montes, Ivonne; Fredendall, Alexandria; Kanter, Noah; Rubenstein, Allison Paige

    2017-11-27

    Unequal treatment based on race is well documented in higher education and healthcare settings. In the present work, we examine racial bias at the intersection of these domains: racial bias in pain-related perceptions among National Collegiate Athletic Association (NCAA) Division 1 sport medical staff. Using experimental vignettes about a student-athlete who injured his/her anterior cruciate ligament (ACL), we find, like prior work, that respondents perceived Black (vs. White) targets as having higher initial pain tolerance. Moreover, this bias was mediated by perceptions of social class. We extend prior work by showing racial bias was not evident on other outcome measures, including perception of recovery process pain, likelihood of over-reporting pain, and over-use of drugs to combat pain. This suggests stricter boundary conditions on bias in pain perceptions than had been previously recognized.

  14. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.

    The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less

  15. Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies

    DOE PAGES

    Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.; ...

    2017-03-28

    The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less

  16. Particle Engulfment and Pushing By Solidifying Interfaces

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The study of particle behavior at solid/liquid interfaces (SLI s) is at the center of the Particle Engulfment and Pushing (PEP) research program. Interactions of particles with SLI s have been of interest since the 1960 s, starting with geological observations, i.e., frost heaving. Ever since, this field of research has become significant to such diverse areas as metal matrix composite materials, fabrication of superconductors, and inclusion control in steels. The PEP research effort is geared towards understanding the fundamental physics of the interaction between particles and a planar SLI. Experimental work including 1-g and mu-g experiments accompany the development of analytical and numerical models. The experimental work comprised of substantial groundwork with aluminum (Al) and zinc (Zn) matrices containing spherical zirconia particles, mu-g experiments with metallic Al matrices and the use of transparent organic metal-analogue materials. The modeling efforts have grown from the initial steady-state analytical model to dynamic models, accounting for the initial acceleration of a particle at rest by an advancing SLI. To gain a more comprehensive understanding, numerical models were developed to account for the influence of the thermal and solutal field. Current efforts are geared towards coupling the diffusive 2-D front tracking model with a fluid flow model to account for differences in the physics of interaction between 1-g and -g environments. A significant amount of this theoretical investigation has been and is being performed by co-investigators at NASA MSFC.

  17. Thin Shell evolution of NIF capsule with asymmetric drive and the resulting neutron diagnostics

    NASA Astrophysics Data System (ADS)

    Buchoff, Michael; Hammer, Jim

    2015-11-01

    One of the major impediments to achieving ignition via ICF is the non-spherical implosion arising from small asymmetries in the drive forcing the collapse of the capsule. Likewise, an experimental diagnostic for quantifying the characteristics of the implosion asymmetry is the final state neutrons, whose number and velocity distributions are not experimentally consistent with the expectation of a spherical implosion. In principle, connecting these initial and final state asymmetries could be solved via hydrodynamic simulations, but due to the multiple scales traversed throughout this process, these calculations are difficult and expensive, leaving much of the potential drive asymmetry profiles unexplored. In this work, we solve the resulting analytic equations from the thin-shell model proposed by Ott et. al. to evolve the capsule over a range of different drive asymmetries from its initial state (when the shell aspect ratio is much greater than 1) to a radius of roughly 250 microns, consisting of a layer of dense CH, a cold layer of dense DT, and a warm core of sparsely distributed DT. At this stage, more tractable hydrodynamical simulations are performed in the ARES code suite, determining the distribution of neutron from thermonuclear yield. These and future results allow for a multitude of tests of asymmetric sources to compare with and potentially guide experiment. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Lattice-Boltzmann Modeling of Community Challenge MicrofluidicExperiments to Evaluate the Effects of Wettability on Two-Fluid Flowin Porous Media

    NASA Astrophysics Data System (ADS)

    Miller, C. T.; McClure, J. E.; Bruning, K.

    2017-12-01

    Variations in the wettability of a solid material are well known to affect the flow of two fluids in a porous media. However, thesemechanisms have not been modeled with high fidelity at the microscale and such mechanisms are typically not included in macroscalemodels. Recent experimental work by Zhao, MacMinn, and Juanes published in the Proceedings of the National Academy of Sciences(2016) has investigated two-fluid displacement in microfluidic cells. Displacement patterns were investigated as a function of thecontact angle and the capillary number for both drainage and imbibition. These results yielded new mechanistic understanding ofprocesses such as pore filling and post bridging, which were imaged at high resolution. In a challenge to the pore-scale modeling community,the authors of this work released their experimental data and encouraged an international set of modeling research groups tosimulate the conditions that were experimentally observed. The intent is to compare the results that materialize to shed new light on thestate-of-science in pore-scale simulation of these challenging and interesting flow systems. In this work, we summarize the experimentalfindings and report on initial efforts to simulate these community challenge experiments using a high-resolution lattice-Boltzmann method(LBM). A three-dimensional, multiple-relaxation-time color model based on a 19-site lattice is advanced in this work to matchexperimental conditions in a novel manner. A computational approach is implemented for the LBM method on hybrid CPU-GPU nodes and shown toscale near optimally. A new algorithm is described to match experimental boundary conditions. A grid-resolution study is performedto determine the resolution needed to determine grid-independent numerical approximations. Finally, the LBM simulation results arecompared to the highly resolved microfluidic experiments, displacement mechanisms are investigated, and observations and analysis of thetopological state evolution of the system are reported.

  19. A high temperature and atmospheric pressure experimental and detailed chemical kinetic modelling study of 2-methyl furan oxidation

    PubMed Central

    Somers, Kieran P.; Simmie, John M.; Gillespie, Fiona; Burke, Ultan; Connolly, Jessica; Metcalfe, Wayne K.; Battin-Leclerc, Frédérique; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Curran, Henry J.

    2013-01-01

    An experimental ignition delay time study for the promising biofuel 2-methyl furan (2MF) was performed at equivalence ratios of 0.5, 1.0 and 2.0 for mixtures of 1% fuel in argon in the temperature range 1200–1800 K at atmospheric pressure. Laminar burning velocities were determined using the heat-flux method for mixtures of 2MF in air at equivalence ratios of 0.55–1.65, initial temperatures of 298–398 K and atmospheric pressure. A detailed chemical kinetic mechanism consisting of 2059 reactions and 391 species has been constructed to describe the oxidation of 2MF and is used to simulate experiment. Accurate reproduction of the experimental data has been obtained over all conditions with the developed mechanism. Rate of production and sensitivity analyses have been carried out to identify important consumption pathways of the fuel and key kinetic parameters under these conditions. The reactions of hydrogen atom with the fuel are highlighted as important under all experimental conditions studied, with abstraction by the hydrogen atom promoting reactivity and hydrogen atom addition to the furan ring inhibiting reactivity. This work, to the authors knowledge, is the first to combine theoretical and experimental work to describe the oxidation of any of the alkylated furans. The mechanism developed herein to describe 2MF combustion should also function as a sub-mechanism to describe the oxidation of 2,5-dimethyl furan whilst also providing key insights into the oxidation of this similar biofuel candidate. PMID:23814505

  20. Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator

    NASA Astrophysics Data System (ADS)

    Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul

    2016-09-01

    The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.

  1. ORBIT modelling of fast particle redistribution induced by sawtooth instability

    NASA Astrophysics Data System (ADS)

    Kim, Doohyun; Podestà, Mario; Poli, Francesca; Princeton Plasma Physics Laboratory Team

    2017-10-01

    Initial tests on NSTX-U show that introducing energy selectivity for sawtooth (ST) induced fast ion redistribution improves the agreement between experimental and simulated quantities, e.g. neutron rate. Thus, it is expected that a proper description of the fast particle redistribution due to ST can improve the modelling of ST instability and interpretation of experiments using a transport code. In this work, we use ORBIT code to characterise the redistribution of fast particles. In order to simulate a ST crash, a spatial and temporal displacement is implemented as ξ (ρ , t , θ , ϕ) = ∑ξmn (ρ , t) cos (mθ + nϕ) to produce perturbed magnetic fields from the equilibrium field B-> , δB-> = ∇ × (ξ-> × B->) , which affect the fast particle distribution. From ORBIT simulations, we find suitable amplitudes of ξ for each ST crash to reproduce the experimental results. The comparison of the simulation and the experimental results will be discussed as well as the dependence of fast ion redistribution on fast ion phase space variables (i.e. energy, magnetic moment and toroidal angular momentum). Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Contract Number DE-AC02-09CH11466.

  2. Thermal runaway detection of cylindrical 18650 lithium-ion battery under quasi-static loading conditions

    NASA Astrophysics Data System (ADS)

    Sheikh, Muhammad; Elmarakbi, Ahmed; Elkady, Mustafa

    2017-12-01

    This paper focuses on state of charge (SOC) dependent mechanical failure analysis of 18650 lithium-ion battery to detect signs of thermal runaway. Quasi-static loading conditions are used with four test protocols (Rod, Circular punch, three-point bend and flat plate) to analyse the propagation of mechanical failures and failure induced temperature changes. Finite element analysis (FEA) is used to model single battery cell with the concentric layered formation which represents a complete cell. The numerical simulation model is designed with solid element formation where stell casing and all layers followed the same formation, and fine mesh is used for all layers. Experimental work is also performed to analyse deformation of 18650 lithium-ion cell. The numerical simulation model is validated with experimental results. Deformation of cell mimics thermal runaway and various thermal runaway detection strategies are employed in this work including, force-displacement, voltage-temperature, stress-strain, SOC dependency and separator failure. Results show that cell can undergo severe conditions even with no fracture or rupture, these conditions may slow to develop but they can lead to catastrophic failures. The numerical simulation technique is proved to be useful in predicting initial battery failures, and results are in good correlation with the experimental results.

  3. Monitoring and optimizing the co-composting of dewatered sludge: a mixture experimental design approach.

    PubMed

    Komilis, Dimitrios; Evangelou, Alexandros; Voudrias, Evangelos

    2011-09-01

    The management of dewatered wastewater sludge is a major issue worldwide. Sludge disposal to landfills is not sustainable and thus alternative treatment techniques are being sought. The objective of this work was to determine optimal mixing ratios of dewatered sludge with other organic amendments in order to maximize the degradability of the mixtures during composting. This objective was achieved using mixture experimental design principles. An additional objective was to study the impact of the initial C/N ratio and moisture contents on the co-composting process of dewatered sludge. The composting process was monitored through measurements of O(2) uptake rates, CO(2) evolution, temperature profile and solids reduction. Eight (8) runs were performed in 100 L insulated air-tight bioreactors under a dynamic air flow regime. The initial mixtures were prepared using dewatered wastewater sludge, mixed paper wastes, food wastes, tree branches and sawdust at various initial C/N ratios and moisture contents. According to empirical modeling, mixtures of sludge and food waste mixtures at 1:1 ratio (ww, wet weight) maximize degradability. Structural amendments should be maintained below 30% to reach thermophilic temperatures. The initial C/N ratio and initial moisture content of the mixture were not found to influence the decomposition process. The bio C/bio N ratio started from around 10, for all runs, decreased during the middle of the process and increased to up to 20 at the end of the process. The solid carbon reduction of the mixtures without the branches ranged from 28% to 62%, whilst solid N reductions ranged from 30% to 63%. Respiratory quotients had a decreasing trend throughout the composting process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Routine High-Resolution Forecasts/Analyses for the Pacific Disaster Center: User Manual

    NASA Technical Reports Server (NTRS)

    Roads, John; Han, J.; Chen, S.; Burgan, R.; Fujioka, F.; Stevens, D.; Funayama, D.; Chambers, C.; Bingaman, B.; McCord, C.; hide

    2001-01-01

    Enclosed herein is our HWCMO user manual. This manual constitutes the final report for our NASA/PDC grant, NASA NAG5-8730, "Routine High Resolution Forecasts/Analysis for the Pacific Disaster Center". Since the beginning of the grant, we have routinely provided experimental high resolution forecasts from the RSM/MSM for the Hawaii Islands, while working to upgrade the system to include: (1) a more robust input of NCEP analyses directly from NCEP; (2) higher vertical resolution, with increased forecast accuracy; (3) faster delivery of forecast products and extension of initial 1-day forecasts to 2 days; (4) augmentation of our basic meteorological and simplified fireweather forecasts to firedanger and drought forecasts; (5) additional meteorological forecasts with an alternate mesoscale model (MM5); and (6) the feasibility of using our modeling system to work in higher-resolution domains and other regions. In this user manual, we provide a general overview of the operational system and the mesoscale models as well as more detailed descriptions of the models. A detailed description of daily operations and a cost analysis is also provided. Evaluations of the models are included although it should be noted that model evaluation is a continuing process and as potential problems are identified, these can be used as the basis for making model improvements. Finally, we include our previously submitted answers to particular PDC questions (Appendix V). All of our initially proposed objectives have basically been met. In fact, a number of useful applications (VOG, air pollution transport) are already utilizing our experimental output and we believe there are a number of other applications that could make use of our routine forecast/analysis products. Still, work still remains to be done to further develop this experimental weather, climate, fire danger and drought prediction system. In short, we would like to be a part of a future PDC team, if at all possible, to further develop and apply the system for the Hawaiian and other Pacific Islands as well as the entire Pacific Basin.

  5. Reactive transport of CO2-rich fluids in simulated wellbore interfaces: Experiments and models exploring behaviour on length scales of 1 to 6 m

    NASA Astrophysics Data System (ADS)

    Wolterbeek, T. K. T.; Raoof, A.; Peach, C. J.; Spiers, C. J.

    2016-12-01

    Defects present at casing-cement interfaces in wellbores constitute potential pathways for CO2 to migrate from geological storage systems. It is essential to understand how the transport properties of such pathways evolve when penetrated by CO2-rich fluids. While numerous studies have explored this problem at the decimetre length-scale, the 1-10-100 m scales relevant for real wellbores have received little attention. The present work addresses the effects of long-range reactive transport on a length scale of 1-6 m. This is done by means of a combined experimental and modelling study. The experimental work consisted of flow-through tests, performed on cement-filled steel tubes, 1-6 m in length, containing artificially debonded cement-interfaces. Four tests were performed, at 60-80 °C, imposing flow-through of CO2-rich fluid at mean pressures of 10-15 MPa, controlling the pressure difference at 0.12-4.8 MPa, while measuring flow-rate. In the modelling work, we developed a numerical model to explore reactive transport in CO2-exposed defects on a similar length scale. The formulation adopted incorporates fluid flow, advective and diffusive solute transport, and CO2-cement chemical reactions. Our results show that long-range reactive transport strongly affects the permeability evolution of CO2-exposed defects. In the experiments, sample permeability decreased by 2-4 orders, which microstructural observations revealed was associated with downstream precipitation of carbonates, possibly aided by migration of fines. The model simulations show precipitation in initially open defects produces a sharp decrease in flow rate, causing a transition from advection to diffusion-dominated reactive transport. While the modelling results broadly reproduce the experimental observations, it is further demonstrated that non-uniformity in initial defect aperture has a profound impact on self-sealing behaviour and system permeability evolution on the metre scale. The implication is that future reactive transport models and wellbore scale analyses must include defects with variable aperture in order to obtain reliable upscaling relations.

  6. Dietary lipids differentially modulate the initiation of experimental breast carcinogenesis through their influence on hepatic xenobiotic metabolism and DNA damage in the mammary gland.

    PubMed

    Manzanares, Miguel Ángel; de Miguel, Cristina; Ruiz de Villa, M Carme; Santella, Regina M; Escrich, Eduard; Solanas, Montserrat

    2017-05-01

    Breast cancer is the most common malignancy among women worldwide. In addition to reproductive factors, environmental factors such as nutrition and xenobiotic exposure have a role in the etiology of this malignancy. A stimulating and a potentially protective effect on experimental breast cancer has been previously described for high corn oil and high extra-virgin olive oil diets, respectively. This work investigates the effect of these lipids on the metabolism of 7,12-dimethylbenz(a)anthracene (DMBA), a polycyclic aromatic hydrocarbon that can initiate carcinogenesis and its consequences in an experimental rat breast cancer model. The PUFA n-6-enriched diet increased expression of Phase I enzymes prior to DMBA administration and raised the activity of CYP1s in the hours immediately after induction, while reducing the activity of Phase II enzymes, mainly NQO1. The levels of reactive metabolites measured in plasma by GC-MS and DMBA-DNA adducts in the mammary gland of the animals fed the high corn oil diet were also higher than in the other groups. On the other hand, the high extra-virgin olive oil diet and the control low-fat diet exhibited better coordinated Phase I and Phase II activity, with a lower production of reactive metabolites and less DNA damage in the mammary gland. The concordance between these effects and the different efficacy of the carcinogenesis process due to the dietary treatment suggest that lipids may differently modify mammary gland susceptibility or resistance to cancer initiation over the exposure to environmental carcinogens. Dietary lipids influence the initiation of DMBA-induced mammary cancer through the modulation of liver xenobiotic metabolism, formation of reactive metabolites and subsequent DNA damage in the target tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Analysis of middle bearing failure in rotor jet engine using tip-timing and tip-clearance techniques

    NASA Astrophysics Data System (ADS)

    Rzadkowski, R.; Rokicki, E.; Piechowski, L.; Szczepanik, R.

    2016-08-01

    The reported problem is the failure of the middle bearing in an aircraft rotor engine. Tip-timing and tip-clearance and variance analyses are carried out on a compressor rotor blade in the seventh stage above the middle bearing. The experimental analyses concern both an aircraft engine with a middle bearing in good working order and an engine with a damaged middle bearing. A numerical analysis of seventh stage blade free vibration is conducted to explain the experimental results. This appears to be an effective method of predicting middle bearing failure. The results show that variance first increases in the initial stages of bearing failure, but then starts to decrease and stabilize, and then again decrease shortly before complete bearing failure.

  8. Phase difference in modulated signals of two orthogonally polarized outputs of a Nd:YAG microchip laser with anisotropic optical feedback.

    PubMed

    Zhang, Peng; Tan, Yi-Dong; Liu, Ning; Wu, Yun; Zhang, Shu-Lian

    2013-11-01

    We present an experimental observation of the output responses of a Nd:YAG microchip laser with an anisotropic external cavity under weak optical feedback. The feedback mirror is stationary during the experiments. A pair of acousto-optic modulators is used to produce a frequency shift in the feedback light with respect to the initial light. The laser output is a beat signal with 40 kHz modulation frequency and is separated into two orthogonal directions by a Wollaston prism. Phase differences between the two intensity curves are observed as the laser works in two orthogonal modes, and vary with the external birefringence element and the pump power. Theoretical analyses are given, and the simulated results are consistent with the experimental phenomena.

  9. The role of tone sensation and musical stimuli in early experimental psychology.

    PubMed

    Klempe, Sven Hroar

    2011-01-01

    In this article, the role of music in early experimental psychology is examined. Initially, the research of Wilhelm Wundt is considered, as tone sensation and musical elements appear as dominant factors in much of his work. It is hypothesized that this approach was motivated by an understanding of psychology that dates back to Christian Wolff 's focus on sensation in his empirical psychology of 1732. Wolff, however, had built his systematization of psychology on Gottfried Wilhelm von Leibniz, who combined perception with mathematics,and referred to music as the area in which sensation is united with numerical exactitude. Immanuel Kant refused to accept empirical psychology as a science, whereas Johann Friedrich Herbart reintroduced the scientific basis of empirical psychology by, among other things, referring to music.

  10. An Enriched Shell Finite Element for Progressive Damage Simulation in Composite Laminates

    NASA Technical Reports Server (NTRS)

    McElroy, Mark W.

    2016-01-01

    A formulation is presented for an enriched shell nite element capable of progressive damage simulation in composite laminates. The element uses a discrete adaptive splitting approach for damage representation that allows for a straightforward model creation procedure based on an initially low delity mesh. The enriched element is veri ed for Mode I, Mode II, and mixed Mode I/II delamination simulation using numerical benchmark data. Experimental validation is performed using test data from a delamination-migration experiment. Good correlation was found between the enriched shell element model results and the numerical and experimental data sets. The work presented in this paper is meant to serve as a rst milestone in the enriched element's development with an ultimate goal of simulating three-dimensional progressive damage processes in multidirectional laminates.

  11. Screening the psychological laboratory: Hugo Münsterberg, psychotechnics, and the cinema, 1892-1916.

    PubMed

    Blatter, Jeremy

    2015-03-01

    According to Hugo Münsterberg, the direct application of experimental psychology to the practical problems of education, law, industry, and art belonged by definition to the domain of psychotechnics. Whether in the form of pedagogical prescription, interrogation technique, hiring practice, or aesthetic principle, the psychotechnical method implied bringing the psychological laboratory to bear on everyday life. There were, however, significant pitfalls to leaving behind the putative purity of the early psychological laboratory in pursuit of technological utility. In the Vocation Bureau, for example, psychological instruments were often deemed too intimidating for a public unfamiliar with the inner workings of experimental science. Similarly, when psychotechnical means were employed by big business in screening job candidates, ethical red flags were raised about this new alliance between science and capital. This tension was particularly evident in Münsterberg's collaboration with the Paramount Pictures Corporation in 1916. In translating psychological tests into short experimental films, Münsterberg not only envisioned a new mass medium for the dissemination of psychotechnics, but a means by which to initiate the masses into the culture of experimental psychology.

  12. An eight-dimensional quantum dynamics study of the Cl + CH{sub 4}→ HCl + CH{sub 3} reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Na; Yang, Minghui, E-mail: yangmh@wipm.ac.cn

    2015-10-07

    In this work, the later-barrier reaction Cl + CH{sub 4} → HCl + CH{sub 3} is investigated with an eight-dimensional quantum dynamics method [R. Liu et al., J. Chem. Phys. 137, 174113 (2012)] on the ab initio potential energy surface of Czakó and Bowman [J. Chem. Phys. 136, 044307 (2012)]. The reaction probabilities with CH{sub 4} initially in its ground and vibrationally excited states are calculated with a time-dependent wavepacket method. The theoretical integral cross sections (ICSs) are extensively compared with the available experimental measurements. For the ground state reaction, the theoretical ICSs excellently agree with the experimental ones. Themore » good agreements are also achieved for ratios between ICSs of excited reactions. For ICS ratios between various states, the theoretical values are also consistent with the experimental observations. The rate constants over 200-2000 K are calculated and the non-Arrhenius effect has been observed which is coincident with the previous experimental observations and theoretical calculations.« less

  13. Harmonization in preclinical epilepsy research: A joint AES/ILAE translational initiative.

    PubMed

    Galanopoulou, Aristea S; French, Jacqueline A; O'Brien, Terence; Simonato, Michele

    2017-11-01

    Among the priority next steps outlined during the first translational epilepsy research workshop in London, United Kingdom (2012), jointly organized by the American Epilepsy Society (AES) and the International League Against Epilepsy (ILAE), are the harmonization of research practices used in preclinical studies and the development of infrastructure that facilitates multicenter preclinical studies. The AES/ILAE Translational Task Force of the ILAE has been pursuing initiatives that advance these goals. In this supplement, we present the first reports of the working groups of the Task Force that aim to improve practices of performing rodent video-electroencephalography (vEEG) studies in experimental controls, generate systematic reviews of preclinical research data, and develop preclinical common data elements (CDEs) for epilepsy research in animals. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  14. Materials Genome Initiative

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    The Materials Genome Initiative (MGI) project element is a cross-Center effort that is focused on the integration of computational tools to simulate manufacturing processes and materials behavior. These computational simulations will be utilized to gain understanding of processes and materials behavior to accelerate process development and certification to more efficiently integrate new materials in existing NASA projects and to lead to the design of new materials for improved performance. This NASA effort looks to collaborate with efforts at other government agencies and universities working under the national MGI. MGI plans to develop integrated computational/experimental/ processing methodologies for accelerating discovery and insertion of materials to satisfy NASA's unique mission demands. The challenges include validated design tools that incorporate materials properties, processes, and design requirements; and materials process control to rapidly mature emerging manufacturing methods and develop certified manufacturing processes

  15. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Fitzpatrick, G. D.; Hansen, L. K.; Rasor, N. S.

    1974-01-01

    Basic analytical and experimental exploration was conducted on several types of advanced thermionic energy converters, and preliminary analysis was performed on systems utilizing advanced converter performance. The Pt--Nb cylindrical diode which exhibited a suppressed arc drop, as described in the preceding report, was reassembled and the existence of the postulated hydrid mode of operation was tentatively confirmed. Initial data obtained on ignited and unignited triode operation in the demountable cesium vapor system essentially confirmed the design principles developed in earlier work, with a few exceptions. Three specific advanced converter concepts were selected as candidates for concentrated basic study and for practical evaluation in fixed-configuration converters. Test vehicles and test stands for these converters and a unique controlled-atmosphere station for converter assembly and processing were designed, and procurement was initiated.

  16. Issues, concerns, and initial implementation results for space based telerobotic control

    NASA Technical Reports Server (NTRS)

    Lawrence, D. A.; Chapel, J. D.; Depkovich, T. M.

    1987-01-01

    Telerobotic control for space based assembly and servicing tasks presents many problems in system design. Traditional force reflection teleoperation schemes are not well suited to this application, and the approaches to compliance control via computer algorithms have yet to see significant testing and comparison. These observations are discussed in detail, as well as the concerns they raise for imminent design and testing of space robotic systems. As an example of the detailed technical work yet to be done before such systems can be specified, a particular approach to providing manipulator compliance is examined experimentally and through modeling and analysis. This yields some initial insight into the limitations and design trade-offs for this class of manipulator control schemes. Implications of this investigation for space based telerobots are discussed in detail.

  17. Equilibrium concentration profiles and sedimentation kinetics of colloidal gels under gravitational stress

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, S.; Secchi, E.; Brambilla, G.; Piazza, R.; Cipelletti, L.

    2012-07-01

    We study the sedimentation of colloidal gels by using a combination of light scattering, polarimetry and video imaging. The asymptotic concentration profiles φ(z,t → ∞) exhibit remarkable scaling properties: profiles for gels prepared at different initial volume fractions and particle interactions can be superimposed onto a single master curve by using suitable reduced variables. We show theoretically that this behavior stems from a power law dependence of the compressive elastic modulus versus φ, which we directly test experimentally. The sedimentation kinetics comprises an initial latency stage, followed by a rapid collapse where the gel height h decreases at constant velocity and a final compaction stage characterized by a stretched exponential relaxation of h toward a plateau. Analogies and differences with previous works are briefly discussed.

  18. Electron-beam generated porous dextran gels: experimental and quantum chemical studies.

    PubMed

    Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta

    2014-06-01

    The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.

  19. On the mechanical stability of porous coated press fit titanium implants: a finite element study of a pushout test.

    PubMed

    Helgason, Benedikt; Viceconti, Marco; Rúnarsson, Tómas P; Brynjólfsson, Sigurour

    2008-01-01

    Pushout tests can be used to estimate the shear strength of the bone implant interface. Numerous such experimental studies have been published in the literature. Despite this researchers are still some way off with respect to the development of accurate numerical models to simulate implant stability. In the present work a specific experimental pushout study from the literature was simulated using two different bones implant interface models. The implant was a porous coated Ti-6Al-4V retrieved 4 weeks postoperatively from a dog model. The purpose was to find out which of the interface models could replicate the experimental results using physically meaningful input parameters. The results showed that a model based on partial bone ingrowth (ingrowth stability) is superior to an interface model based on friction and prestressing due to press fit (initial stability). Even though the present study is limited to a single experimental setup, the authors suggest that the presented methodology can be used to investigate implant stability from other experimental pushout models. This would eventually enhance the much needed understanding of the mechanical response of the bone implant interface and help to quantify how implant stability evolves with time.

  20. Experiments on the Dynamics of Molecular Processes: a Chronicle of Fifty Years

    NASA Astrophysics Data System (ADS)

    Boato, Giovanni; Volpi, Gian Gualberto

    1999-10-01

    This paper reviews the way in which, in the Italy of the years immediately after World War II, interest in the dynamics of molecular processes was awakened. The narrative begins with the work of a small number of chemists and physicists who, in the initial stage, interacted closely. In the course of the years, their interests diverged and younger people joined the newly formed groups. Even now, after half a century, a common approach can still to be seen regarding how to attack problems and perform experiments. Experimental work is discussed, bringing out the common viewpoint of fields as diverse as mass spectrometry, isotope effects, chemical kinetics, molecular beams, molecule-molecule interactions, molecule-ion interactions, molecule-surface interactions, and plasma chemistry.

  1. UAS Integration into the NAS: Detect and Avoid Display Evaluations in Support of SC-228 MOPS Development

    NASA Technical Reports Server (NTRS)

    Fern, Lisa; Rorie, Conrad; Shively, Jay

    2016-01-01

    At the May 2015 SC-228 meeting, requirements for TCAS II interoperability became elevated in priority. A TCAS interoperability work group was formed to identify and address key issuesquestions. The TCAS work group came up with an initial list of questions and a plan to address those questions. As part of that plan, NASA proposed to run a mini HITL to address display, alerting and guidance issues. A TCAS Interoperability Workshop was held to determine potential displayalertingguidance issues that could be explored in future NASA mini HITLS. Consensus on main functionality of DAA guidance when TCAS II RA occurs. Prioritized list of independent variables for experimental design. Set of use cases to stress TCAS Interoperability.

  2. Active media for up-conversion diode-pumped lasers

    NASA Astrophysics Data System (ADS)

    Tkachuk, Alexandra M.

    1996-03-01

    In this work, we consider the different methods of populating the initial and final working levels of laser transitions in TR-doped crystals under the selective 'up-conversion' and 'avalanche' diode laser pumping. On the basis of estimates of the probabilities of competing non-radiative energy-transfer processes rates obtained from the experimental data and theoretical calculations, we estimated the efficiency of the up-conversion pumping and selfquenching of the upper TR3+ states excited by laser-diode emission. The effect of the host composition, dopant concentration, and temperature on the output characteristics and up-conversion processes in YLF:Er; BaY2F8:Er; BaY2F8:Er,Yb and BaY2F8:Yb,Ho are determined.

  3. Ignition and Growth Modeling of Shock Initiation of Different Particle Size Formulations of PBXC03 Explosive

    NASA Astrophysics Data System (ADS)

    Hussain, Tariq; Liu, Yan; Huang, Fenglei; Duan, Zhuoping

    2016-01-01

    The change in shock sensitivity of explosives having various explosive grain sizes is discussed. Along with other parameters, explosive grain size is one of the key parameters controlling the macroscopic behavior of shocked pressed explosives. Ignition and growth reactive flow modeling is performed for the shock initiation experiments carried out by using the in situ manganin piezoresistive pressure gauge technique to investigate the influences of the octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) particle size on the shock initiation and the subsequent detonation growth process for the three explosive formulations of pressed PBXC03 (87% HMX, 7% 1,3,5-trichloro-2,4,6-trinitrobenzene (TATB), 6% Viton by weight). All of the formulation studied had the same density but different explosive grain sizes. A set of ignition and growth parameters was obtained for all three formulations. Only the coefficient G1 of the first growth term in the reaction rate equation was varied with the grain size; all other parameters were kept the same for all formulations. It was found that G1 decreases almost linearly with HMX particle size for PBXC03. However, the equation of state (EOS) for solid explosive had to be adjusted to fit the experimental data. Both experimental and numerical simulation results show that the shock sensitivity of PBXC03 decreases with increasing HMX particle size for the sustained pressure pulses (around 4 GPa) as obtained in the experiment. This result is in accordance with the results reported elsewhere in literature. For future work, a better approach may be to find standard solid Grüneisen EOS and product Jones-Wilkins-Lee (JWL) EOS for each formulation for the best fit to the experimental data.

  4. Factors associated with pathways toward concurrent sex work and injection drug use among female sex workers who inject drugs in Northern Mexico

    PubMed Central

    Morris, Meghan D.; Lemus, Hector; Wagner, Karla D.; Martinez, Gustavo; Lozada, Remedios; Gómez, Rangel María Gudelia; Strathdee, Steffanie A.

    2012-01-01

    Aims To identify factors associated with time to initiation of (1) sex work prior to injecting drugs, (2) injection drug use, and (3) concurrent sex work and injection drug use (i.e., initiated at the same age) among female sex workers who currently inject drugs (FSW-IDU). Design Parametric survival analysis of baseline data for time to initiation event. Setting Tijuana and Ciudad Juarez situated on the Mexico-U.S. border. Participants 575 FSW-IDUs aged ≥18. Measurements Interview-administered surveys assessing context of sex work and injection drug use initiation. Findings Nearly half (n=256) initiated sex work prior to beginning to inject, a third (n=163) initiated injection first, and a quarter (n=136) initiated both sex work and injection drug use concurrently. Low education and living in Ciudad Juarez accelerated time to sex work initiation. Being from a southern Mexican state and initiating drug use with inhalants delayed the time to first injection drug use. Having an intimate partner encourage entry into sex work and first injecting drugs to deal with depression accelerated time to initiating sex work and injection concurrently. Early physical abuse accelerated time to initiating sex work and injection, and substantially accelerated time to initiation of both behaviors concurrently. Conclusions Among female sex workers who currently inject drugs in two Mexican-US border cities, nearly half appear to initiate sex work prior to beginning to inject, nearly one third initiate injection drug use before beginning sex work, and one quarter initiate both behaviors concurrently. Predictors of these three trajectories differ, and this provides possible modifiable targets for prevention. PMID:22775475

  5. The free growth criterion for grain initiation in TiB 2 inoculated γ-titanium aluminide based alloys

    NASA Astrophysics Data System (ADS)

    Gosslar, D.; Günther, R.

    2014-02-01

    γ-titanium aluminide (γ-TiAl) based alloys enable for the design of light-weight and high-temperature resistant engine components. This work centers on a numerical study of the condition for grain initiation during solidification of TiB2 inoculated γ-TiAl based alloys. Grain initiation is treated according to the so-called free growth criterion. This means that the free growth barrier for grain initiation is determined by the maximum interfacial mean curvature between a nucleus and the melt. The strategy presented in this paper relies on iteratively increasing the volume of a nucleus, which partially wets a hexagonal TiB2 crystal, minimizing the interfacial energy and calculating the corresponding interfacial curvature. The hereby obtained maximum curvature yields a scaling relation between the size of TiB2 crystals and the free growth barrier. Comparison to a prototypical TiB2 crystal in an as cast γ-TiAl based alloy allowed then to predict the free growth barrier prevailing under experimental conditions. The validity of the free growth criterion is discussed by an interfacial energy criterion.

  6. Determination of full piezoelectric complex parameters using gradient-based optimization algorithm

    NASA Astrophysics Data System (ADS)

    Kiyono, C. Y.; Pérez, N.; Silva, E. C. N.

    2016-02-01

    At present, numerical techniques allow the precise simulation of mechanical structures, but the results are limited by the knowledge of the material properties. In the case of piezoelectric ceramics, the full model determination in the linear range involves five elastic, three piezoelectric, and two dielectric complex parameters. A successful solution to obtaining piezoceramic properties consists of comparing the experimental measurement of the impedance curve and the results of a numerical model by using the finite element method (FEM). In the present work, a new systematic optimization method is proposed to adjust the full piezoelectric complex parameters in the FEM model. Once implemented, the method only requires the experimental data (impedance modulus and phase data acquired by an impedometer), material density, geometry, and initial values for the properties. This method combines a FEM routine implemented using an 8-noded axisymmetric element with a gradient-based optimization routine based on the method of moving asymptotes (MMA). The main objective of the optimization procedure is minimizing the quadratic difference between the experimental and numerical electrical conductance and resistance curves (to consider resonance and antiresonance frequencies). To assure the convergence of the optimization procedure, this work proposes restarting the optimization loop whenever the procedure ends in an undesired or an unfeasible solution. Two experimental examples using PZ27 and APC850 samples are presented to test the precision of the method and to check the dependency of the frequency range used, respectively.

  7. End-point detection in potentiometric titration by continuous wavelet transform.

    PubMed

    Jakubowska, Małgorzata; Baś, Bogusław; Kubiak, Władysław W

    2009-10-15

    The aim of this work was construction of the new wavelet function and verification that a continuous wavelet transform with a specially defined dedicated mother wavelet is a useful tool for precise detection of end-point in a potentiometric titration. The proposed algorithm does not require any initial information about the nature or the type of analyte and/or the shape of the titration curve. The signal imperfection, as well as random noise or spikes has no influence on the operation of the procedure. The optimization of the new algorithm was done using simulated curves and next experimental data were considered. In the case of well-shaped and noise-free titration data, the proposed method gives the same accuracy and precision as commonly used algorithms. But, in the case of noisy or badly shaped curves, the presented approach works good (relative error mainly below 2% and coefficients of variability below 5%) while traditional procedures fail. Therefore, the proposed algorithm may be useful in interpretation of the experimental data and also in automation of the typical titration analysis, specially in the case when random noise interfere with analytical signal.

  8. Energetic analysis of drop's maximum spreading on solid surface with low impact speed

    NASA Astrophysics Data System (ADS)

    Huang, Hai-Meng; Chen, Xiao-Peng

    2018-02-01

    Drops impacting on a flat solid surface will spread until it reaches maximum contact with the substrate underneath. After that, it recoils. In the present work, the variations of energy components during the spreading are studied carefully, including kinetic, capillary, and dissipated energies. Our experimental and numerical results show that, when the impact speed is low, the fast slipping of the contact line (in inertia-capillary regime) and corresponding "interface relaxation" lead to extra dissipation. An auxiliary dissipation is therefore introduced into the traditional theoretical model. The energy components predicted by the improved model agree with the experimental and numerical results very well. As the impact speed increases (the Weber number, W e =ρ D0V02/γ , becomes larger than 40 in the present work), the dissipation induced by the initial velocity plays more important roles. The analyses also indicate that on the hydrophobic surfaces the auxiliary dissipation is lower than that on hydrophilic ones. In the later circumstances, the contact angle is larger and the spreading is weaker.

  9. Containment system for experiments on radioactive and other hazardous materials in a Paris-Edinburgh press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, M. K., E-mail: mjacobsen@lanl.gov; Velisavljevic, N.

    2015-11-15

    Recent technical developments using the large volume Paris-Edinburgh press platform have enabled x-ray synchrotron studies at high pressure and temperature conditions. However, its application to some materials of interest, such as high hazard materials that require special handling due to safety issues, reactivity, or other challenges, has not been feasible without the introduction of special containment systems to eliminate the hazards. However, introduction of a containment system is challenging due to the requirement to provide full safety containment for operation in the variety of environments available, while not hindering any of the experimental probes that are available for inert samplemore » measurement. In this work, we report on the development and implementation of a full safety enclosure for a Paris-Edinburgh type press. During the initial development and subsequent application stage of work, experiments were performed on both cerium dioxide (CeO{sub 2}) and uranium (U). This device allows for full implementation of all currently available experimental probes involving the Paris-Edinburgh press at the High Pressure Collaborative Access Team sector of the Advanced Photon Source.« less

  10. Vortex Core Size in the Rotor Near-Wake

    NASA Technical Reports Server (NTRS)

    Young, Larry A.

    2003-01-01

    Using a kinetic energy conservation approach, a number of simple analytic expressions are derived for estimating the core size of tip vortices in the near-wake of rotors in hover and axial-flow flight. The influence of thrust, induced power losses, advance ratio, and vortex structure on rotor vortex core size is assessed. Experimental data from the literature is compared to the analytical results derived in this paper. In general, three conclusions can be drawn from the work in this paper. First, the greater the rotor thrust, t h e larger the vortex core size in the rotor near-wake. Second, the more efficient a rotor is with respect to induced power losses, the smaller the resulting vortex core size. Third, and lastly, vortex core size initially decreases for low axial-flow advance ratios, but for large advance ratios core size asymptotically increases to a nominal upper limit. Insights gained from this work should enable improved modeling of rotary-wing aerodynamics, as well as provide a framework for improved experimental investigations of rotor a n d advanced propeller wakes.

  11. Dynamic evolution of interface roughness during friction and wear processes.

    PubMed

    Kubiak, K J; Bigerelle, M; Mathia, T G; Dubois, A; Dubar, L

    2014-01-01

    Dynamic evolution of surface roughness and influence of initial roughness (S(a) = 0.282-6.73 µm) during friction and wear processes has been analyzed experimentally. The mirror polished and rough surfaces (28 samples in total) have been prepared by surface polishing on Ti-6Al-4V and AISI 1045 samples. Friction and wear have been tested in classical sphere/plane configuration using linear reciprocating tribometer with very small displacement from 130 to 200 µm. After an initial period of rapid degradation, dynamic evolution of surface roughness converges to certain level specific to a given tribosystem. However, roughness at such dynamic interface is still increasing and analysis of initial roughness influence revealed that to certain extent, a rheology effect of interface can be observed and dynamic evolution of roughness will depend on initial condition and history of interface roughness evolution. Multiscale analysis shows that morphology created in wear process is composed from nano, micro, and macro scale roughness. Therefore, mechanical parts working under very severe contact conditions, like rotor/blade contact, screws, clutch, etc. with poor initial surface finishing are susceptible to have much shorter lifetime than a quality finished parts. © Wiley Periodicals, Inc.

  12. Viscous flow calculations for the AGARD standard configuration airfoils with experimental comparisons

    NASA Technical Reports Server (NTRS)

    Howlett, James T.

    1989-01-01

    Recent experience in calculating unsteady transonic flow by means of viscous-inviscid interactions with the XTRAN2L computer code is examined. The boundary layer method for attached flows is based upon the work of Rizzetta. The nonisentropic corrections of Fuglsang and Williams are also incorporated along with the viscous interaction for some cases and initial results are presented. For unsteady flows, the inverse boundary layer equations developed by Vatsa and Carter are used in a quasi-steady manner and preliminary results are presented.

  13. New project to support scientific collaboration electronically

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Rasmussen, C. E.; Niciejewski, R. J.; Killeen, T. L.; Kelly, J. D.; Zambre, Y.; Rosenberg, T. J.; Stauning, P.; Friis-Christensen, E.; Mende, S. B.; Weymouth, T. E.; Prakash, A.; McDaniel, S. E.; Olson, G. M.; Finholt, T. A.; Atkins, D. E.

    A new multidisciplinary effort is linking research in the upper atmospheric and space, computer, and behavioral sciences to develop a prototype electronic environment for conducting team science worldwide. A real-world electronic collaboration testbed has been established to support scientific work centered around the experimental operations being conducted with instruments from the Sondrestrom Upper Atmospheric Research Facility in Kangerlussuaq, Greenland. Such group computing environments will become an important component of the National Information Infrastructure initiative, which is envisioned as the high-performance communications infrastructure to support national scientific research.

  14. Experimental and clinical study of EHF treatment of vascular-vestibular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mal`tsev, A.E.; Abakarov, A.T.; Istomin, V.S.

    1994-07-01

    The authors present the results of a study of the effectiveness of EHF radiation on the cerebral hemodynamics, bioelectrical activity of the cerebral cortex, and functional state of the vestibular analyzer in chronic studies of cats using a model of vascular-vestibular dysfunction. The clinical part of the work reflects the results of studies of the functional state of cerebral blood circulation and the vestibular analyzer during the EHF treatment of angiovertebrogenic vestibular dysfunction in a background of initial manifestations of cerebral blood supply deficiency (angiodistonic variant).

  15. Characterization of protein-folding pathways by reduced-space modeling.

    PubMed

    Kmiecik, Sebastian; Kolinski, Andrzej

    2007-07-24

    Ab initio simulations of the folding pathways are currently limited to very small proteins. For larger proteins, some approximations or simplifications in protein models need to be introduced. Protein folding and unfolding are among the basic processes in the cell and are very difficult to characterize in detail by experiment or simulation. Chymotrypsin inhibitor 2 (CI2) and barnase are probably the best characterized experimentally in this respect. For these model systems, initial folding stages were simulated by using CA-CB-side chain (CABS), a reduced-space protein-modeling tool. CABS employs knowledge-based potentials that proved to be very successful in protein structure prediction. With the use of isothermal Monte Carlo (MC) dynamics, initiation sites with a residual structure and weak tertiary interactions were identified. Such structures are essential for the initiation of the folding process through a sequential reduction of the protein conformational space, overcoming the Levinthal paradox in this manner. Furthermore, nucleation sites that initiate a tertiary interactions network were located. The MC simulations correspond perfectly to the results of experimental and theoretical research and bring insights into CI2 folding mechanism: unambiguous sequence of folding events was reported as well as cooperative substructures compatible with those obtained in recent molecular dynamics unfolding studies. The correspondence between the simulation and experiment shows that knowledge-based potentials are not only useful in protein structure predictions but are also capable of reproducing the folding pathways. Thus, the results of this work significantly extend the applicability range of reduced models in the theoretical study of proteins.

  16. Spent caustic oxidation using electro-generated Fenton's reagent in a batch reactor.

    PubMed

    Rodriguez, Nicolas; Hansen, Henrik K; Nunez, Patricio; Guzman, Jaime

    2008-07-01

    This work shows the results of four Electro-Fenton laboratory tests to reduce the chemical oxygen demand (COD) in spent caustic solutions. The treatment consisted of (i) a pH reduction followed by (ii) an Electro-Fenton process, which was analyzed in this work. The Fenton's reagent was produced in a specially designed reactor, where the waste stream flowed through a labyrinth made by ferrous plates. These plates acted as sacrificial anodes-releasing Fe(2 +) cations to the solution, where H(2)O(2) was also added. The Electro-Fenton process was analyzed varying the ferrous ion concentration ([Fe(+ 2)]), the spent caustic's initial temperature and the initial pH. Close to 95% removal of COD (from 8800 mg L(- 1)) was achieved at a pH of 4, a temperature of 40 degrees C and 100 mg L(- 1) of Fe(+ 2) (applying 1 A). Two models were considered to simulate the behavior of the reactor considering (i) axial dispersion and (ii) kinetic rate, respectively. The model that was based on kinetics, proved to be the slightly closest fit to the experimental values.

  17. PWSCC Susceptibility in Heat Affected Zones of Alloy 600

    NASA Astrophysics Data System (ADS)

    Couvant, Thierry; Brossier, Thomas; Cossange, Christian

    The recent field experience and several experimental results have shown the possible deleterious effect of a heat affected zone (HAZ) induced by welding on the susceptibility to the stress corrosion cracking (SCC) of Alloy 600 of bottom penetrations exposed to primary water of PWRs. This work tried to quantify the increasing susceptibility to initiation and crack propagation in 600/182 HAZ. The rolled plate did not exhibit any susceptibility to SCC except for a cold work higher than 10% typically. By contrast, the weld metal was well known for its high susceptibility to SCC. Metallurgical and mechanical characterizations of the HAZ indicated a slight gradient of Vickers micro hardness close to the fusion line (up to few mm) and a lack of intergranular precipitates up to 500 µm from the fusion line. SCC tests clearly demonstrated that a non-susceptible plate may exhibit a significant susceptibility to SCC propagation in the HAZ. Results of initiation tests did not allow to observe any SCC in the base metal, due to the high susceptibility to SCC of the weld.

  18. Work Optimization Predicts Accretionary Faulting: An Integration of Physical and Numerical Experiments

    NASA Astrophysics Data System (ADS)

    McBeck, Jessica A.; Cooke, Michele L.; Herbert, Justin W.; Maillot, Bertrand; Souloumiac, Pauline

    2017-09-01

    We employ work optimization to predict the geometry of frontal thrusts at two stages of an evolving physical accretion experiment. Faults that produce the largest gains in efficiency, or change in external work per new fault area, ΔWext/ΔA, are considered most likely to develop. The predicted thrust geometry matches within 1 mm of the observed position and within a few degrees of the observed fault dip, for both the first forethrust and backthrust when the observed forethrust is active. The positions of the second backthrust and forethrust that produce >90% of the maximum ΔWext/ΔA also overlap the observed thrusts. The work optimal fault dips are within a few degrees of the fault dips that maximize the average Coulomb stress. Slip gradients along the detachment produce local elevated shear stresses and high strain energy density regions that promote thrust initiation near the detachment. The mechanical efficiency (Wext) of the system decreases at each of the two simulated stages of faulting and resembles the evolution of experimental force. The higher ΔWext/ΔA due to the development of the first pair relative to the second pair indicates that the development of new thrusts may lead to diminishing efficiency gains as the wedge evolves. The numerical estimates of work consumed by fault propagation overlap the range calculated from experimental force data and crustal faults. The integration of numerical and physical experiments provides a powerful approach that demonstrates the utility of work optimization to predict the development of faults.

  19. Using the Git Software Tool on the Peregrine System | High-Performance

    Science.gov Websites

    branch workflow. Create a local branch called "experimental" based on the current master... git branch experimental Use your branch (start working on that experimental branch....) git checkout experimental git pull origin experimental # work, work, work, commit.... Send local branch to the repo git push

  20. Experimental investigation of a bioartificial capsule flowing in a narrow tube

    NASA Astrophysics Data System (ADS)

    Risso, Frédéric; Collé-Paillot, Fabienne; Zagzoule, Mokhtar

    This work is an experimental study of the motion and deformation of a bioartificial capsule flowing in a tube of 4 mm diameter. The capsules, initially designed for medical applications, are droplets of salt water surrounded by a thin polymeric membrane. They are immersed in a very viscous Newtonian silicone oil that flows through a tube in the Stokes regime. The properties of the capsules were carefully determined. Two previous experimental papers were devoted to their characterization by osmotic swelling and compression between two plates. The present work also provides a series of tests that allows an accurate definition of the experimental model under investigation. The capsules are buoyant and initially quasi-spherical. Nevertheless, buoyancy and small departures from sphericity are shown to have no significant effects, provided the flowing velocity is large enough for the viscous stress to become predominant. The capsules are also initially slightly over-inflated, but there is no mass transfer through the membrane during the present experiments. Their volume therefore remains constant. The membrane can be described as an elastic two-dimensional material, the elastic moduli of which are independent of the deformation. Far from the tube ends, the capsule reaches a steady state that depends on two parameters: the capillary number, Ca; and the ratio of the radius of the capsule to that of the tube, a/R. The capillary number, which compares the hydrodynamic stresses to the elastic tensions in the membrane, was varied between 0 and 0.125. The radius ratio, which measures the magnitude of the confinement, was varied from 0.75 to 0.95. In the range investigated, the membrane material always remains in the elastic domain. At fixed a/R, the capsule is stretched in the axial direction when Ca is increased. The process of deformation involves two main stages. At small to moderate Ca, the lateral dimension of the capsule decreases whereas its axial length increases. The capsule is rounded at both ends, but the curvature of its rear decreases as Ca increases. At large Ca, the rear buckles inward. Then, the negative rear curvature goes on decreasing whereas the lateral dimension of the capsule reaches a constant value. On the other hand, increasing a/R promotes the deformation: the process remains qualitatively the same, but the different stages are attained for smaller values of Ca. Comparisons with available numerical simulations show that the results are strongly dependent on the properties of the capsules.

  1. Experimental Observation of a Generalized Thouless Pump with a Single Spin

    NASA Astrophysics Data System (ADS)

    Ma, Wenchao; Zhou, Longwen; Zhang, Qi; Li, Min; Cheng, Chunyang; Geng, Jianpei; Rong, Xing; Shi, Fazhan; Gong, Jiangbin; Du, Jiangfeng

    2018-03-01

    Adiabatic cyclic modulation of a one-dimensional periodic potential will result in quantized charge transport, which is termed the Thouless pump. In contrast to the original Thouless pump restricted by the topology of the energy band, here we experimentally observe a generalized Thouless pump that can be extensively and continuously controlled. The extraordinary features of the new pump originate from interband coherence in nonequilibrium initial states, and this fact indicates that a quantum superposition of different eigenstates individually undergoing quantum adiabatic following can also be an important ingredient unavailable in classical physics. The quantum simulation of this generalized Thouless pump in a two-band insulator is achieved by applying delicate control fields to a single spin in diamond. The experimental results demonstrate all principal characteristics of the generalized Thouless pump. Because the pumping in our system is most pronounced around a band-touching point, this work also suggests an alternative means to detect quantum or topological phase transitions.

  2. Experimental Simulations of Lunar Magma Ocean Crystallization: The Plot (But Not the Crust) Thickens

    NASA Technical Reports Server (NTRS)

    Draper, D. S.; Rapp, J. F.; Elardo, S. M.; Shearer, C. K., Jr.; Neal, C. R.

    2016-01-01

    Numerical models of differentiation of a global-scale lunar magma ocean (LMO) have raised as many questions as they have answered. Recent orbital missions and sample studies have provided new context for a large range of lithologies, from the comparatively magnesian "purest anorthosite" reported by to Si-rich domes and spinel-rich clasts with widespread areal distributions. In addition, the GRAIL mission provided strong constraints on lunar crustal density and average thickness. Can this increasingly complex geology be accounted for via the formation and evolution of the LMO? We have in recent years been conducting extensive sets of petrologic experiments designed to fully simulate LMO crystallization, which had not been attempted previously. Here we review the key results from these experiments, which show that LMO differentiation is more complex than initial models suggested. Several important features expected from LMO crystallization models have yet to be reproduced experimentally; combined modelling and experimental work by our group is ongoing.

  3. Exploring the effects of particle size and shape on ejecta production in response to low-velocity impacts

    NASA Astrophysics Data System (ADS)

    Dove, A.; Barsoum, C.; Colwell, J. E.

    2016-12-01

    Understanding and predicting the complex behavior of granular material on planetary surfaces requires a combination of complementary experimental and numerical simulations. Such an approach allows us to use experimental results to empirically model the behavior of complex systems, and feed these results into simulations that can be run over a broader range of conditions. Studies of the response of granular systems, particularly planetary regolith and regolith simulants, to low-energy impacts is relevant to surface layers on planetary bodies, including asteroids, small moons, planetesimals, and planetary ring particles. Knowledge of the velocities and mass distributions of dust knocked off of planetary surfaces is necessary to understand the evolution of the upper layers of the soil, and to develop mitigation strategies for transported dust. In addition, the fine particles in the regolith pose an engineering and safety hazard for equipment, experiments, and astronauts working in severe environments. We will present the results of extended testing with a number of combinations of impactor and particle composition and morphology. A spherical glass or brass impactor is used for all experiments, which impacts a particle bed at a few m/s. This study includes three main particle material types - acrylic (used for comparison with initial modeling and previous experiments), glass, and stainless steel. We directly compare the results of these experiments by using 2mm spherical particles of each material type. Additionally, we vary the glass particle sizes between 1-3mm in order to analyze the effect of size on the cratering and ejecta properties. Finally, we varied the stainless steel particle shape from spherical to elongated cylinders with 2mm diameter and 2, 4, and 6 mm lengths. Here, we will focus on the experimental portion of this work - future results will elaborate upon the simulation validation. Interpretation of these results was informed by initial comparisons between the experimental observations and the numerical simulations, which allowed us to characterize the observational biases in the ejecta velocity and angle distributions.

  4. Mode coupling in spin torque oscillators

    DOE PAGES

    Zhang, Steven S. -L.; Zhou, Yan; Li, Dong; ...

    2016-09-15

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Here, our resultsmore » show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. In conclusion, the acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Steven S. -L.; Zhou, Yan; Li, Dong

    A number of recent experimental works have shown that the dynamics of a single spin torque oscillator can exhibit complex behavior that stems from interactions between two or more modes of the oscillator, such as observed mode-hopping or mode coexistence. There has been some initial work indicating how the theory for a single-mode (macro-spin) spin torque oscillator should be generalized to include several modes and the interactions between them. In the present work, we rigorously derive such a theory starting with the Landau–Lifshitz–Gilbert equation for magnetization dynamics by expanding up to third-order terms in deviation from equilibrium. Here, our resultsmore » show how a linear mode coupling, which is necessary for observed mode-hopping to occur, arises through coupling to a magnon bath. In conclusion, the acquired temperature dependence of this coupling implies that the manifold of orbits and fixed points may shift with temperature.« less

  6. A qualitative study exploring women's journeys to becoming smokers in the social context of urban India.

    PubMed

    Salvi, Devashri; Nagarkar, Aarti

    2018-04-01

    In India, the prevalence of smoking among women is increasing, and the reasons behind this are unclear. We aimed to study the factors leading to initiation and maintenance of the smoking habit in women in Pune, India. Twenty-seven urban women smokers, ranging from 21 to 60 years of age (31.96 ± 10.70 years), were interviewed between September 2015 and February 2016. The in-depth interviews consisted of questions on pre-decided categories, including initiation, motivation to continue smoking, and risk perception. Thematic analysis revealed that peer pressure, curiosity, fascination, experimentation, and belonging to a group were factors that led to initiation, while lack of alternatives for stress relief, work environments, and lack of leisure time activities provided circumstances to continue smoking. Participants recognized a sense of liberation and independence from smoking cigarettes and perceived health risks as minor and distant. These findings can be used to develop or modify interventions to prevent and control smoking among urban Indian women.

  7. Simulation of 2D Waves in Circular Membrane Using Excel Spreadsheet with Visual Basic for Teaching Activity

    NASA Astrophysics Data System (ADS)

    Eso, R.; Safiuddin, L. O.; Agusu, L.; Arfa, L. M. R. F.

    2018-04-01

    We propose a teaching instrument demonstrating the circular membrane waves using the excel interactive spreadsheets with the Visual Basic for Application (VBA) programming. It is based on the analytic solution of circular membrane waves involving Bessel function. The vibration modes and frequencies are determined by using Bessel approximation and initial conditions. The 3D perspective based on the spreadsheets functions and facilities has been explored to show the 3D moving objects in transitional or rotational processes. This instrument is very useful both in teaching activity and learning process of wave physics. Visualizing of the vibration of waves in the circular membrane which is showing a very clear manner of m and n vibration modes of the wave in a certain frequency has been compared and matched to the experimental result using resonance method. The peak of deflection varies in time if the initial condition was working and have the same pattern with matlab simulation in zero initial velocity

  8. Hydroperoxide Traces in Common Cyclic Ethers as Initiators for Controlled RAFT Polymerizations.

    PubMed

    Eggers, Steffen; Abetz, Volker

    2018-04-01

    Herein, a reversible addition-fragmentation chain transfer (RAFT) polymerization is introduced for reactive monomers like N-acryloylpyrrolidine or N,N-dimethylacrylamide working without a conventional radical initiator. As a very straightforward proof of principle, the method takes advantage of the usually inconvenient radical-generating hydroperoxide contaminations in cyclic ethers like tetrahydrofuran or 1,4-dioxane, which are very common solvents in polymer sciences. The polymerizations are surprisingly well controlled and the polymers can be extended with a second block, indicating their high livingness. "Solvent-initiated" RAFT polymerizations hence prove to be a feasible access to tailored materials with minimal experimental effort and standard laboratory equipment, only requiring the following ingredients: hydroperoxide-contaminated solvent, monomer, and RAFT agent. In other respects, however, the potential coinitiating ability of the used solvent is to be considered when investigating the kinetics of RAFT polymerizations or aiming for the synthesis of high-livingness polymers, e.g., multiblock copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Combined Homogeneous Surface Diffusion Model - Design of experiments approach to optimize dye adsorption considering both equilibrium and kinetic aspects.

    PubMed

    Muthukkumaran, A; Aravamudan, K

    2017-12-15

    Adsorption, a popular technique for removing azo dyes from aqueous streams, is influenced by several factors such as pH, initial dye concentration, temperature and adsorbent dosage. Any strategy that seeks to identify optimal conditions involving these factors, should take into account both kinetic and equilibrium aspects since they influence rate and extent of removal by adsorption. Hence rigorous kinetics and accurate equilibrium models are required. In this work, the experimental investigations pertaining to adsorption of acid orange 10 dye (AO10) on activated carbon were carried out using Central Composite Design (CCD) strategy. The significant factors that affected adsorption were identified to be solution temperature, solution pH, adsorbent dosage and initial solution concentration. Thermodynamic analysis showed the endothermic nature of the dye adsorption process. The kinetics of adsorption has been rigorously modeled using the Homogeneous Surface Diffusion Model (HSDM) after incorporating the non-linear Freundlich adsorption isotherm. Optimization was performed for kinetic parameters (color removal time and surface diffusion coefficient) as well as the equilibrium affected response viz. percentage removal. Finally, the optimum conditions predicted were experimentally validated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Wetting and spreading behaviors of impinging microdroplets on textured surfaces

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Hee; Lee, Sang Joon; CenterBiofluid and Biomimic Reseach Team

    2012-11-01

    Textured surfaces having an array of microscale pillars have been receiving large attention because of their potential uses for robust superhydrophobic and superoleophobic surfaces. In many practical applications, the textured surfaces usually accompany impinging small-scale droplets. To better understand the impinging phenomena on the textured surfaces, the wetting and spreading behaviors of water microdroplets are investigated experimentally. Microdroplets with diameter less than 50 μm are ejected from a piezoelectric printhead with varying Weber number. The final wetting state of an impinging droplet can be estimated by comparing the wetting pressures of the droplet and the capillary pressure of the textured surface. The wetting behaviors obtained experimentally are well agreed with the estimated results. In addition, the transition from bouncing to non-bouncing behaviors in the partially penetrated wetting state is observed. This transition implies the possibility of withdrawal of the penetrated liquid from the inter-pillar space. The maximum spreading factors (ratio of the maximum spreading diameter to the initial diameter) of the impinging droplets have close correlation with the texture area fraction of the surfaces. This work was supported by Creative Research Initiatives (Diagnosis of Biofluid Flow Phenomena and Biomimic Research) of MEST/KOSEF.

  11. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization

    PubMed Central

    Fujii, Kenjirou; Sakamoto, Yoshihiro; Wang, Wei; Arie, Hiroaki; Schmitz, Alexander; Sugano, Shigeki

    2015-01-01

    A hyperbolic positioning method with antenna arrays consisting of proximately-located antennas and a multi-channel pseudolite is proposed in order to overcome the problems of indoor positioning with conventional pseudolites (ground-based GPS transmitters). A two-dimensional positioning experiment using actual devices is conducted. The experimental result shows that the positioning accuracy varies centimeter- to meter-level according to the geometric relation between the pseudolite antennas and the receiver. It also shows that the bias error of the carrier-phase difference observables is more serious than their random error. Based on the size of the bias error of carrier-phase difference that is inverse-calculated from the experimental result, three-dimensional positioning performance is evaluated by computer simulation. In addition, in the three-dimensional positioning scenario, an initial value convergence analysis of the non-linear least squares is conducted. Its result shows that initial values that can converge to a right position exist at least under the proposed antenna setup. The simulated values and evaluation methods introduced in this work can be applied to various antenna setups; therefore, by using them, positioning performance can be predicted in advance of installing an actual system. PMID:26437405

  12. Control of the Pore Texture in Nanoporous Silicon via Chemical Dissolution.

    PubMed

    Secret, Emilie; Wu, Chia-Chen; Chaix, Arnaud; Galarneau, Anne; Gonzalez, Philippe; Cot, Didier; Sailor, Michael J; Jestin, Jacques; Zanotti, Jean-Marc; Cunin, Frédérique; Coasne, Benoit

    2015-07-28

    The surface and textural properties of porous silicon (pSi) control many of its physical properties essential to its performance in key applications such as optoelectronics, energy storage, luminescence, sensing, and drug delivery. Here, we combine experimental and theoretical tools to demonstrate that the surface roughness at the nanometer scale of pSi can be tuned in a controlled fashion using partial thermal oxidation followed by removal of the resulting silicon oxide layer with hydrofluoric acid (HF) solution. Such a process is shown to smooth the pSi surface by means of nitrogen adsorption, electron microscopy, and small-angle X-ray and neutron scattering. Statistical mechanics Monte Carlo simulations, which are consistent with the experimental data, support the interpretation that the pore surface is initially rough and that the oxidation/oxide removal procedure diminishes the surface roughness while increasing the pore diameter. As a specific example considered in this work, the initial roughness ξ ∼ 3.2 nm of pSi pores having a diameter of 7.6 nm can be decreased to 1.0 nm following the simple procedure above. This study allows envisioning the design of pSi samples with optimal surface properties toward a specific process.

  13. Drift effects on the tokamak power scrape-off width

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Goldston, R. J.; Kaveeva, E. G.; Mordijck, S.; Rozhansky, V. A.; Senichenkov, I. Yu.; Voskoboynikov, S. P.

    2015-11-01

    Recent experimental analysis suggests that the scrape-off layer (SOL) heat flux width (λq) for ITER will be near 1 mm, sharply narrowing the planned operating window. In this work, motivated by the heuristic drift (HD) model, which predicts the observed inverse plasma current scaling, SOLPS-ITER is used to explore drift effects on λq. Modeling focuses on an H-mode DIII-D discharge. In initial results, target recycling is set to 90%, resulting in sheath-limited SOL conditions. SOL particle diffusivity (DSOL) is varied from 0.1 to 1 m2/s. When drifts are included, λq is insensitive to DSOL, consistent with the HD model, with λq near 3 mm; in no-drift cases, λq varies from 2 to 5 mm. Drift effects depress near-separatrix potential, generating a channel of strong electron heat convection that is insensitive to DSOL. Sensitivities to thermal diffusivities, plasma current, toroidal magnetic field, and device size are also assessed. These initial results will be discussed in detail, and progress toward modeling experimentally relevant high-recycling conditions will be reported. Supported by U.S. DOE Contract DE-SC0010434.

  14. Numerical Investigation of Fracture Propagation in Geomaterials

    NASA Astrophysics Data System (ADS)

    Newell, P.; Borowski, E.; Major, J. R.; Eichhubl, P.

    2015-12-01

    Fracture in geomaterials is a critical behavior that affects the long-term structural response of geosystems. The processes involving fracture initiation and growth in rocks often span broad time scales and size scales, contributing to the complexity of these problems. To better understand fracture behavior, the authors propose an initial investigation comparing the fracture testing techniques of notched three-point bending (N3PB), short rod (SR), and double torsion (DT) on geomaterials using computational analysis. Linear softening cohesive fracture modeling (LCFM) was applied using ABAQUS to computationally simulate the three experimental set-ups. By applying material properties obtained experimentally, these simulations are intended to predict single-trace fracture growth. The advantages and limitations of the three testing techniques were considered for application to subcritical fracture propagation taking into account the accuracy of constraints, load applications, and modes of fracture. This work is supported as part of the Geomechanics of CO2 Reservoir Seals, a DOE-NETL funded under Award Number DE-FOA-0001037. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Revisiting Shock Initiation Modeling of Homogeneous Explosives

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-04-01

    Shock initiation of homogeneous explosives has been a subject of research since the 1960s, with neat and sensitized nitromethane as the main materials for experiments. A shock initiation model of homogeneous explosives was established in the early 1960s. It involves a thermal explosion event at the shock entrance boundary, which develops into a superdetonation that overtakes the initial shock. In recent years, Sheffield and his group, using accurate experimental tools, were able to observe details of buildup of the superdetonation. There are many papers on modeling shock initiation of heterogeneous explosives, but there are only a few papers on modeling shock initiation of homogeneous explosives. In this article, bulk reaction reactive flow equations are used to model homogeneous shock initiation in an attempt to reproduce experimental data of Sheffield and his group. It was possible to reproduce the main features of the shock initiation process, including thermal explosion, superdetonation, input shock overtake, overdriven detonation after overtake, and the beginning of decay toward Chapman-Jouget (CJ) detonation. The time to overtake (TTO) as function of input pressure was also calculated and compared to the experimental TTO.

  16. Capitalizing on Community: the Small College Environment and the Development of Researchers

    NASA Astrophysics Data System (ADS)

    Stoneking, M. R.

    2014-03-01

    Liberal arts colleges constitute an important source of and training ground for future scientists. At Lawrence University, we take advantage of our small college environment to prepare physics students for research careers by complementing content acquisition with skill development and project experience distributed throughout the curriculum and with co-curricular elements that are tied to our close-knit supportive physics community. Small classes and frequent contact between physics majors and faculty members offer opportunities for regular and detailed feedback on the development of research relevant skills such as laboratory record-keeping, data analysis, electronic circuit design, computational programming, experimental design and modification, and scientific communication. Part of our approach is to balance collaborative group work on small projects (such as Arduino-based electronics projects and optical design challenges) with independent work (on, for example, advanced laboratory experimental extensions and senior capstone projects). Communal spaces and specialized facilities (experimental and computational) and active on-campus research programs attract eager students to the program, establish a community-based atmosphere, provide unique opportunities for the development of research aptitude, and offer opportunities for genuine contribution to a research program. Recently, we have also been encouraging innovativetendencies in physics majors through intentional efforts to develop personal characteristics, encouraging students to become more tolerant of ambiguity, risk-taking, initiative-seeking, and articulate. Indicators of the success of our approach include the roughly ten physics majors who graduate each year and our program's high ranking among institutions whose graduates go on to receive the Ph.D. in physics. Work supported in part by the National Science Foundation.

  17. On the half-life of luminescence signals in dosimetric applications: A unified presentation

    NASA Astrophysics Data System (ADS)

    Pagonis, V.; Kitis, G.; Polymeris, G. S.

    2018-06-01

    Luminescence signals from natural and man-made materials are widely used in dosimetric and dating applications. In general, there are two types of half-lives of luminescence signals which are of importance to experimental and modeling work in this research area. The first type of half-life is the time required for the population of the trapped charge in a single trap to decay to half its initial value. The second type of half-life is the time required for the luminescence intensity to drop to half of its initial value. While there a handful of analytical expressions available in the literature for the first type of half-life, there are no corresponding analytical expressions for the second type. In this work new analytical expressions are derived for the half-life of luminescence signals during continuous wave optical stimulation luminescence (CW-OSL) or isothermal luminescence (ITL) experiments. The analytical expressions are derived for several commonly used luminescence models which are based on delocalized transitions involving the conduction band: first and second order kinetics, empirical general order kinetics (GOK), mixed order kinetics (MOK) and the one-trap one-recombination center (OTOR) model. In addition, half-life expressions are derived for a different type of luminescence model, which is based on localized transitions in a random distribution of charges. The new half-life expressions contain two parts. The first part is inversely proportional to the thermal or optical excitation rate, and depends on the experimental conditions and on the cross section of the relevant luminescence process. The second part is characteristic of the optical and/or thermal properties of the material, as expressed by the parameters in the model. A new simple and quick method for analyzing luminescence signals is developed, and examples are given of applying the new method to a variety of dosimetric materials. The new test allows quick determination of whether a set of experimentally measured luminescence signals originate in a single trap, or in multiple traps.

  18. Compressed Sensing Quantum Process Tomography for Superconducting Quantum Gates

    NASA Astrophysics Data System (ADS)

    Rodionov, Andrey

    An important challenge in quantum information science and quantum computing is the experimental realization of high-fidelity quantum operations on multi-qubit systems. Quantum process tomography (QPT) is a procedure devised to fully characterize a quantum operation. We first present the results of the estimation of the process matrix for superconducting multi-qubit quantum gates using the full data set employing various methods: linear inversion, maximum likelihood, and least-squares. To alleviate the problem of exponential resource scaling needed to characterize a multi-qubit system, we next investigate a compressed sensing (CS) method for QPT of two-qubit and three-qubit quantum gates. Using experimental data for two-qubit controlled-Z gates, taken with both Xmon and superconducting phase qubits, we obtain estimates for the process matrices with reasonably high fidelities compared to full QPT, despite using significantly reduced sets of initial states and measurement configurations. We show that the CS method still works when the amount of data is so small that the standard QPT would have an underdetermined system of equations. We also apply the CS method to the analysis of the three-qubit Toffoli gate with simulated noise, and similarly show that the method works well for a substantially reduced set of data. For the CS calculations we use two different bases in which the process matrix is approximately sparse (the Pauli-error basis and the singular value decomposition basis), and show that the resulting estimates of the process matrices match with reasonably high fidelity. For both two-qubit and three-qubit gates, we characterize the quantum process by its process matrix and average state fidelity, as well as by the corresponding standard deviation defined via the variation of the state fidelity for different initial states. We calculate the standard deviation of the average state fidelity both analytically and numerically, using a Monte Carlo method. Overall, we show that CS QPT offers a significant reduction in the needed amount of experimental data for two-qubit and three-qubit quantum gates.

  19. Thin layer drying of cassava starch using continuous vibrated fluidized bed dryer

    NASA Astrophysics Data System (ADS)

    Suherman, Trisnaningtyas, Rona

    2015-12-01

    This paper present the experimental work and thin layer modelling of cassava starch drying in continuous vibrated fluidized bed dryer. The experimental data was used to validate nine thin layer models of drying curve. Cassava starch with 0.21 initial moisture content was dried in different air drying temperature (50°C, 55°C, 60°C, 65°C, 70°C), different weir height in bed (0 and 1 cm), and different solid feed flow (10 and 30 gr.minute-1). The result showed air dryer temperature has a significant effect on drying curve, while the weir height and solid flow rate are slightly. Based on value of R2, χ2, and RMSE, Page Model is the most accurate simulation for thin layer drying model of cassava starch.

  20. How to make deposition of images a reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guss, J. Mitchell, E-mail: mitchell.guss@sydney.edu.au; McMahon, Brian; School of Molecular Bioscience, The University of Sydney, Sydney, NSW 2006

    2014-10-01

    An analysis is performed of the technical and financial challenges to be overcome if deposition of primary experimental data is to become routine. The IUCr Diffraction Data Deposition Working Group is investigating the rationale and policies for routine deposition of diffraction images (and other primary experimental data sets). An information-management framework is described that should inform policy directions, and some of the technical and other issues that need to be addressed in an effort to achieve such a goal are analysed. In the near future, routine data deposition could be encouraged at one of the growing number of institutional repositoriesmore » that accept data sets or at a generic data-publishing web repository service. To realise all of the potential benefits of depositing diffraction data, specialized archives would be preferable. Funding such an initiative will be challenging.« less

  1. Determination of necking time in tensile test specimens, under high-temperature creep conditions, subjected to distribution of stresses over the cross-section

    NASA Astrophysics Data System (ADS)

    Lokoshchenko, A.; Teraud, W.

    2018-04-01

    The work describes an experimental research of creep of cylindrical tensile test specimens made of aluminum alloy D16T at a constant temperature of 400°C. The issue to be examined was the necking at different values of initial tensile stresses. The use of a developed noncontacting measuring system allowed us to see variations in the specimen shape and to estimate the true stress in various times. Based on the obtained experimental data, several criteria were proposed for describing the point of time at which the necking occurs (necking point). Calculations were carried out at various values of the parameters in these criteria. The relative interval of deformation time in which the test specimen is uniformly stretched was also determined.

  2. Further Experimental Investigations of the Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Miller, P. L.; Peyser, T. A.; Stry, P. E.; Logory, L. M.; Farley, D. R.

    1996-11-01

    We report on further experimental investigations of the Richtmyer-Meshkov instability from an initially nonlinear perturbation, conducted on the Nova laser. The experiments use a Nova hohlraum as a driver source for a strong shock in a miniature shock tube attached to the hohlraum. The shock tube contains brominated plastic and low-density carbon foam as the two working fluids, with a micro-machined sawtooth interface between them serving as the perturbation. The shock, upon crossing the interface, instigates the Richtmyer-Meshkov instability from the perturbation. The resulting growth of the mixing layer is diagnosed radiographically. We have previously reported upon a results from a single wavelength and amplitude of perturbation (T. A. Peyser et al., Phys. Rev. Lett.) 75, 2332 (1996).. A study of the effect of variations in amplitude and wavelength on the nonlinear growth of the instability will be discussed.

  3. Shock-driven Rayleigh-Taylor / Richtmyer-Meshkov 2D multimode ripple evolution before and after re-shock

    NASA Astrophysics Data System (ADS)

    Nagel, Sabrina; Huntington, Channing; Bender, Jason; Raman, Kumar; Baumann, Ted; MacLaren, Stephan; Prisbrey, Shon; Zhou, Ye

    2017-10-01

    Laser-driven hydrodynamic experiments allow for the precise control over several important experimental parameters, including the timing of the laser irradiation delivered and the initial conditions of the laser-driven target. Our experimental platform at the National Ignition Facility enables the investigation of the physics of instability growth after the passage of a second shock (``reshock''). This is done by varying the laser to change the strength and timing of the secondary shock. Here we present x-ray images capturing the rapid post-reshock instability growth for a set of reshock strengths. The radiation hydrodynamics simulations used to design these experiments are also introduced. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-734509.

  4. Numerical Parameter Optimization of the Ignition and Growth Model for HMX Based Plastic Bonded Explosives

    NASA Astrophysics Data System (ADS)

    Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence

    2017-06-01

    We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.

  5. Experimental Observation of Nonlinear Mode Coupling In the Ablative Rayleigh-Taylor Instability on the NIF

    NASA Astrophysics Data System (ADS)

    Martinez, David

    2015-11-01

    We investigate on the National Ignition Facility (NIF) the ablative Rayleigh-Taylor (RT) instability in the transition from linear to highly nonlinear regimes. This work is part of the Discovery Science Program on NIF and of particular importance to indirect-drive inertial confinement fusion (ICF) where careful attention to the form of the rise to final peak drive is calculated to prevent the RT instability from shredding the ablator in-flight and leading to ablator mixing into the cold fuel. The growth of the ablative RT instability was investigated using a planar plastic foil with pre-imposed two-dimensional broadband modulations and diagnosed using x-ray radiography. The foil was accelerated for 12ns by the x-ray drive created in a gas-filled Au radiation cavity with a radiative temperature plateau at 175 eV. The dependence on initial conditions was investigated by systematically changing the modulation amplitude, ablator material and the modulation pattern. For each of these cases bubble mergers were observed and the nonlinear evolution of the RT instability showed insensitivity to the initial conditions. This experiment provides critical data needed to validate current theories on the ablative RT instability for indirect drive that relies on the ablative stabilization of short-scale modulations for ICF ignition. This paper will compare the experimental data to the current nonlinear theories. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC.

  6. Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide.

    PubMed

    Tang, Qiong; Lin, Song; Cheng, Ying; Liu, Sujun; Xiong, Jun-Ru

    2013-09-01

    This work investigated the ultrasonic assisted oxidative desulfurization of bunker-C oil with TBHP/MoO3 system. The operational parameters for the desulfurization procedure such as ultrasonic irradiation time, ultrasonic wave amplitude, catalyst initial concentration and oxidation agent initial concentration were studied. The experimental results show that the present oxidation system was very efficient for the desulfurization of bunker-C oil and ~35% sulfur was removed which was dependent on operational parameters. The application of ultrasonic irradiation allowed sulfur removal in a shorter time. The stronger the solvent polarity is, the higher the sulfur removal rate, but the recovery rate of oil is lower. The sulfur compounds in bunker-C oil reacted with TBHP to produce corresponding sulfoxide, and further oxidation produced the corresponding sulfone. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Computer simulations of the interaction of human immunodeficiency virus (HIV) aspartic protease with spherical gold nanoparticles: implications in acquired immunodeficiency syndrome (AIDS)

    NASA Astrophysics Data System (ADS)

    Whiteley, Chris G.; Lee, Duu-Jong

    2016-09-01

    The interaction of gold nanoparticles (AuNP) with human immune-deficiency virus aspartic protease (HIVPR) is modelled using a regime of molecular dynamics simulations. The simulations of the ‘docking’, first as a rigid-body complex, and eventually through flexible-fit analysis, creates 36 different complexes from four initial orientations of the nanoparticle strategically positioned around the surface of the enzyme. The structural deviations of the enzymes from the initial x-ray crystal structure during each docking simulation are assessed by comparative analysis of secondary structural elements, root mean square deviations, B-factors, interactive bonding energies, dihedral angles, radius of gyration (R g), circular dichroism (CD), volume occupied by C α , electrostatic potentials, solvation energies and hydrophobicities. Normalisation of the data narrows the selection from the initial 36 to one ‘final’ probable structure. It is concluded that, after computer simulations on each of the 36 initial complexes incorporating the 12 different biophysical techniques, the top five complexes are the same no matter which technique is explored. The significance of the present work is an expansion of an earlier study on the molecular dynamic simulation for the interaction of HIVPR with silver nanoparticles. This work is supported by experimental evidence since the initial ‘orientation’ of the AgNP with the enzyme is the same as the ‘final’ AuNP-HIVPR complex generated in the present study. The findings will provide insight into the forces of the binding of the HIVPR to AuNP. It is anticipated that the protocol developed in this study will act as a standard process for the interaction of any nanoparticle with any biomedical target.

  8. Computer simulations of the interaction of human immunodeficiency virus (HIV) aspartic protease with spherical gold nanoparticles: implications in acquired immunodeficiency syndrome (AIDS).

    PubMed

    Whiteley, Chris G; Lee, Duu-Jong

    2016-09-09

    The interaction of gold nanoparticles (AuNP) with human immune-deficiency virus aspartic protease (HIVPR) is modelled using a regime of molecular dynamics simulations. The simulations of the 'docking', first as a rigid-body complex, and eventually through flexible-fit analysis, creates 36 different complexes from four initial orientations of the nanoparticle strategically positioned around the surface of the enzyme. The structural deviations of the enzymes from the initial x-ray crystal structure during each docking simulation are assessed by comparative analysis of secondary structural elements, root mean square deviations, B-factors, interactive bonding energies, dihedral angles, radius of gyration (R g), circular dichroism (CD), volume occupied by C α , electrostatic potentials, solvation energies and hydrophobicities. Normalisation of the data narrows the selection from the initial 36 to one 'final' probable structure. It is concluded that, after computer simulations on each of the 36 initial complexes incorporating the 12 different biophysical techniques, the top five complexes are the same no matter which technique is explored. The significance of the present work is an expansion of an earlier study on the molecular dynamic simulation for the interaction of HIVPR with silver nanoparticles. This work is supported by experimental evidence since the initial 'orientation' of the AgNP with the enzyme is the same as the 'final' AuNP-HIVPR complex generated in the present study. The findings will provide insight into the forces of the binding of the HIVPR to AuNP. It is anticipated that the protocol developed in this study will act as a standard process for the interaction of any nanoparticle with any biomedical target.

  9. A Preliminary Study on the Vapor/Mist Phase Lubrication of a Spur Gearbox

    NASA Technical Reports Server (NTRS)

    Morales, Wilfredo; Handschuh, Robert F.

    1999-01-01

    Organophosphates have been the primary compounds used in vapor/mist phase lubrication studies involving ferrous bearing material. Experimental results have indicated that the initial formation of an iron phosphate film on a rubbing ferrous surface, followed by the growth (by cationic diffusion) of a lubricious pyrophosphate-type coating over the iron phosphate, is the reason organophosphates work well as vapor/mist phase lubricants. Recent work, however, has shown that this mechanism leads to the depletion of surface iron atoms and to eventual lubrication failure. A new organophosphate formulation was developed which circumvents surface iron depletion. This formulation was tested by generating an iron phosphate coating on an aluminum surface. The new formulation was then used to vapor/mist phase lubricate a spur gearbox in a preliminary study.

  10. Status of arenavirus vaccines and their application

    PubMed Central

    Johnson, Karl M.

    1975-01-01

    A limited but definite need exists for vaccines against Lassa, Junin, and Machupo viruses. Medical and laboratory personnel, as well as defined high-risk population groups, require protection from these highly virulent agents. To date little work has been done on inactivated vaccines for these viruses. A live attenuated Junin vaccine has been tested successfully in more than 600 persons, and a high-passage Machupo virus strain has protected rhesus monkeys against lethal infection produced by a homologous field strain. Work has been initiated on possible heterologous protection induced by infection or antigenic stimulation with arenaviruses not pathogenic for man. Crucial for the eventual development of effective vaccines are the construction of more maximum security laboratories and the further elucidation of the experimental and natural biology of the agents in lower animals and man. PMID:182407

  11. The net effects of the Project NetWork return-to-work case management experiment on participant earnings, benefit receipt, and other outcomes.

    PubMed

    Kornfeld, R; Rupp, K

    2000-01-01

    The Social Security Administration (SSA) initiated Project NetWork in 1991 to test case management as a means of promoting employment among persons with disabilities. The demonstration, which targeted Social Security Disability Insurance (DI) beneficiaries and Supplemental Security Income (SSI) applicants and recipients, offered intensive outreach, work-incentive waivers, and case management/referral services. Participation in Project NetWork was voluntary. Volunteers were randomly assigned to the "treatment" group or the "control" group. Those assigned to the treatment group met individually with a case or referral manager who arranged for rehabilitation and employment services, helped clients develop an individual employment plan, and provided direct employment counseling services. Volunteers assigned to the control group could not receive services from Project NetWork but remained eligible for any employment assistance already available in their communities. For both treatment and control groups, the demonstration waived specific DI and SSI program rules considered to be work disincentives. The experimental impact study thus measures the incremental effects of case and referral management services. The eight demonstration sites were successful in implementing the experimental design roughly as planned. Project NetWork staff were able to recruit large numbers of participants and to provide rehabilitation and employment services on a substantial scale. Most of the sites easily reached their enrollment targets and were able to attract volunteers with demographic characteristics similar to those of the entire SSI and DI caseload and a broad range of moderate and severe disabilities. However, by many measures, volunteers were generally more "work-ready" than project eligible in the demonstration areas who did not volunteer to receive NetWork services. Project NetWork case management increased average annual earnings by $220 per year over the first 2 years following random assignment. This statistically significant impact, an approximate 11-percent increase in earnings, is based on administrative data on earnings. For about 70 percent of sample members, a third year of followup data was available. For this limited sample, the estimated effect of Project NetWork on annual earnings declined to roughly zero in the third followup year. The findings suggest that the increase in earnings may have been short-lived and may have disappeared by the time Project NetWork services ended. Project NetWork did not reduce reliance on SSI or DI benefits by statistically significant amounts over the 30-42 month followup period. The services provided by Project NetWork thus did not reduce overall SSI and DI caseloads or benefits by substantial amounts, especially given that only about 5 percent of the eligible caseload volunteered to participate in Project NetWork. Project NetWork produced modest net benefits to persons with disabilities and net costs to taxpayers. Persons with disabilities gained mainly because the increases in their earnings easily outweighed the small (if any) reduction in average SSI and DI benefits. For SSA and the federal government as a whole, the costs of Project NetWork were not sufficiently offset by increases in tax receipts resulting from increased earnings or reductions in average SSI and DI benefits. The modest net benefits of Project NetWork to persons with disabilities are encouraging. How such benefits of an experimental intervention should be weighed against costs of taxpayers depends on value judgments of policymakers. Because different case management projects involve different kinds of services, these results cannot be directly generalized to other case management interventions. They are nevertheless instructive for planning new initiatives. Combining case and referral management services with various other interventions, such as longer term financial support for work or altered provider incentives, could produc

  12. Constitutive modeling and structural analysis considering simultaneous phase transformation and plastic yield in shape memory alloys

    NASA Astrophysics Data System (ADS)

    Hartl, D. J.; Lagoudas, D. C.

    2009-10-01

    The new developments summarized in this work represent both theoretical and experimental investigations of the effects of plastic strain generation in shape memory alloys (SMAs). Based on the results of SMA experimental characterization described in the literature and additional testing described in this work, a new 3D constitutive model is proposed. This phenomenological model captures both the conventional shape memory effects of pseudoelasticity and thermal strain recovery, and additionally considers the initiation and evolution of plastic strains. The model is numerically implemented in a finite element framework using a return mapping algorithm to solve the constitutive equations at each material point. This combination of theory and implementation is unique in its ability to capture the simultaneous evolution of recoverable transformation strains and irrecoverable plastic strains. The consideration of isotropic and kinematic plastic hardening allows the derivation of a theoretical framework capturing the interactions between irrecoverable plastic strain and recoverable strain due to martensitic transformation. Further, the numerical integration of the constitutive equations is formulated such that objectivity is maintained for SMA structures undergoing moderate strains and large displacements. The implemented model has been used to perform 3D analysis of SMA structural components under uniaxial and bending loads, including a case of local buckling behavior. Experimentally validated results considering simultaneous transformation and plasticity in a bending member are provided, illustrating the predictive accuracy of the model and its implementation.

  13. Measurement of fracture properties of concrete at high strain rates

    PubMed Central

    Cendón, D. A.; Sánchez-Gálvez, V.; Gálvez, F.

    2017-01-01

    An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956510

  14. Neural electrical activity and neural network growth.

    PubMed

    Gafarov, F M

    2018-05-01

    The development of central and peripheral neural system depends in part on the emergence of the correct functional connectivity in its input and output pathways. Now it is generally accepted that molecular factors guide neurons to establish a primary scaffold that undergoes activity-dependent refinement for building a fully functional circuit. However, a number of experimental results obtained recently shows that the neuronal electrical activity plays an important role in the establishing of initial interneuronal connections. Nevertheless, these processes are rather difficult to study experimentally, due to the absence of theoretical description and quantitative parameters for estimation of the neuronal activity influence on growth in neural networks. In this work we propose a general framework for a theoretical description of the activity-dependent neural network growth. The theoretical description incorporates a closed-loop growth model in which the neural activity can affect neurite outgrowth, which in turn can affect neural activity. We carried out the detailed quantitative analysis of spatiotemporal activity patterns and studied the relationship between individual cells and the network as a whole to explore the relationship between developing connectivity and activity patterns. The model, developed in this work will allow us to develop new experimental techniques for studying and quantifying the influence of the neuronal activity on growth processes in neural networks and may lead to a novel techniques for constructing large-scale neural networks by self-organization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The MGED ontology: a framework for describing functional genomics experiments.

    PubMed

    Stoeckert, Christian J; Parkinson, Helen

    2003-01-01

    The Microarray Gene Expression Data (MGED) society was formed with an initial focus on experiments involving microarray technology. Despite the diversity of applications, there are common concepts used and a common need to capture experimental information in a standardized manner. In building the MGED ontology, it was recognized that it would be impractical to cover all the different types of experiments on all the different types of organisms by listing and defining all the types of organisms and their properties. Our solution was to create a framework for describing microarray experiments with an initial focus on the biological sample and its manipulation. For concepts that are common for many species, we could provide a manageable listing of controlled terms. For concepts that are species-specific or whose values cannot be readily listed, we created an 'OntologyEntry' concept that referenced an external resource. The MGED ontology is a work in progress that needs additional instances and particularly needs constraints to be added. The ontology currently covers the experimental sample and design, and we have begun capturing aspects of the microarrays themselves as well. The primary application of the ontology will be to develop forms for entering information into databases, and consequently allowing queries, taking advantage of the structure provided by the ontology. The application of an ontology of experimental conditions extends beyond microarray experiments and, as the scope of MGED includes other aspects of functional genomics, so too will the MGED ontology.

  16. Characterization and Uncertainty Analysis of a Reference Pressure Measurement System for Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Amer, Tahani; Tripp, John; Tcheng, Ping; Burkett, Cecil; Sealey, Bradley

    2004-01-01

    This paper presents the calibration results and uncertainty analysis of a high-precision reference pressure measurement system currently used in wind tunnels at the NASA Langley Research Center (LaRC). Sensors, calibration standards, and measurement instruments are subject to errors due to aging, drift with time, environment effects, transportation, the mathematical model, the calibration experimental design, and other factors. Errors occur at every link in the chain of measurements and data reduction from the sensor to the final computed results. At each link of the chain, bias and precision uncertainties must be separately estimated for facility use, and are combined to produce overall calibration and prediction confidence intervals for the instrument, typically at a 95% confidence level. The uncertainty analysis and calibration experimental designs used herein, based on techniques developed at LaRC, employ replicated experimental designs for efficiency, separate estimation of bias and precision uncertainties, and detection of significant parameter drift with time. Final results, including calibration confidence intervals and prediction intervals given as functions of the applied inputs, not as a fixed percentage of the full-scale value are presented. System uncertainties are propagated beginning with the initial reference pressure standard, to the calibrated instrument as a working standard in the facility. Among the several parameters that can affect the overall results are operating temperature, atmospheric pressure, humidity, and facility vibration. Effects of factors such as initial zeroing and temperature are investigated. The effects of the identified parameters on system performance and accuracy are discussed.

  17. Experiments and simulations of single shock Richtmeyer-Meshkov Instability with measured, volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Sewell, Everest; Ferguson, Kevin; Greenough, Jeffrey; Jacobs, Jeffrey

    2014-11-01

    We describe new experiments of single shock Richtmeyer-Meshkov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbation plays a major role in the evolution of RMI, and previous experimental efforts only capture a narrow slice of the initial condition. The method presented uses a rastered laser sheet to capture additional images in the depth of the initial condition shortly before the experimental start time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation, which is simulated using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Comparison is made between the time evolution of the interface width and the mixedness ratio measured from the experiments against the predictions from the numerical simulations.

  18. Green Rust Reduction of Chromium Part 2: Comparison of Heterogeneous and Homogeneous Chromate Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wander, Matthew C.; Schoonen, Martin A.

    White and green rusts are the active chemical reagents of buried scrap iron pollutant remediation. In this work, a comparison of the initial electron-transfer step for the reduction of CrO{sub 4}{sup -2} by Fe{sub (aq)}{sup 2+} and Fe(OH){sub 2}(s) is presented. Using hybrid density functional theory and Hartree-Fock cluster calculations for the aqueous reaction, the rate constant for the homogeneous reduction of chromium by ferrous iron was determined to be 5 x 10{sup -2} M{sup -1} s{sup -1} for the initial electron transfer. Using a combination of Hartree-Fock slab and cluster calculations for the heterogeneous reaction, the initial electron transfermore » for the heterogeneous reduction of chromium by ferrous iron was determined to be 1 x 10{sup 2} s{sup -1}. The difference in rates is driven by the respective free energies of reaction: 33.4 vs -653.2 kJ/mol. This computational result is apparently the opposite of what has been observed experimentally, but further analysis suggests that these results are fully convergent with experiment. The experimental heterogeneous rate is limited by surface passivation from slow intersheet electron transfer, while the aqueous reaction may be an autocatalytic heterogeneous reaction involving the iron oxyhydroxide product. As a result, it is possible to produce a clear model of the pollutant reduction reaction sequence for these two reactants.« less

  19. Observing Quantum Monodromy: AN Energy-Momentum Map Built from Experimentally-Determined Level Energies Obtained from the νb{7} Far-Infrared Band System of Ncncs

    NASA Astrophysics Data System (ADS)

    Tokaryk, Dennis W.; Ross, Stephen Cary; Winnewisser, Brenda P.; Winnewisser, Manfred; De Lucia, Frank C.; Billinghurst, Brant E.

    2016-06-01

    The concept of Quantum Monodromy (QM) provides a fresh insight into the structure of rovibrational levels in those flexible molecules for which a bending mode can carry the molecule through the linear configuration. To confirm the existence of QM in a molecule required the fruits of several strands of development: the formulation of the abstract mathematical concept of monodromy, including the exploration of its relevance to systems described by classical mechanics and its manifestation in quantum molecular applications; the development of the required spectroscopic technology and computer-aided assignment; and the development of a theoretical model to apply in fitting to the observed data. We present a timeline for each of these strands, converging in our initial confirmation of QM in NCNCS from pure rotational data alone. In that work a Generalised SemiRigid Bender (GSRB) Hamiltonian was fitted to the experimental rotational structure. Rovibrational energies calculated from the fitted GSRB parameters allowed us to construct an ``Energy-Momentum" map and confirm the presence of QM in NCNCS. In further experimental work at the Canadian Light Source Synchrotron we have identified a network of transitions directly connecting the relevant energy levels and thereby have produced a refined Energy Momentum map for NCNCS from experimental measurements alone. This map extends from the ground vibrational level to well above the potential energy barrier, beautifully illustrating the characteristic signature of QM in a system uncomplicated by interaction with other vibrational modes. B. P. Winnewisser et al., Phys. Rev. Lett. 95, 243002 (2005)

  20. Who's lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma.

    PubMed

    Della Santina, Luca; Ou, Yvonne

    2017-05-01

    The purpose of this article is to summarize our current knowledge about the susceptibility of specific retinal ganglion cell (RGC) types in experimental glaucoma, and to delineate the initial morphological and functional alterations that occur in response to intraocular pressure (IOP) elevation. There has been debate in the field as to whether RGCs with large somata and axons are more vulnerable, with definitive conclusions still in progress because of the wide diversity of RGC types. Indeed, it is now estimated that there are greater than 30 different RGC types, and while we do not yet understand the complete details, we discuss a growing body of work that supports the selective vulnerability hypothesis of specific RGC types in experimental glaucoma. Specifically, structural and functional degeneration of various RGC types have been examined across different rodent models of experimental glaucoma (acute vs. chronic) and different strains, and an emerging consensus is that OFF RGCs appear to be more vulnerable to IOP elevation compared to ON RGCs. Understanding the mechanisms by which this selective vulnerability manifests across different RGC types should lead to novel and improved strategies for neuroprotection and neuroregeneration in glaucoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe.

    PubMed

    Li, Guoqing; Du, Yang; Wang, Shimao; Qi, Sheng; Zhang, Peili; Chen, Wenzhuo

    2017-10-05

    In this work, LES simulation coupled with a TFC sub-grid combustion model has been performed in a semi-confined pipe (L/D=10, V=10L) in the presence of four hollow-square obstacles (BR=49.8%) with circular hollow cross-section, in order to study the premixed gasoline-air mixture explosions. The comparisons between simulated results and experimental results have been conducted. It was found that the simulated results were in good agreement with experimental data in terms of flame structures, flame locations and overpressure time histories. Moreover, the interaction between flame propagation process and obstacles, overpressure dynamics were analyzed. In addition, the effects of initial gasoline vapor concentration (lean (ϕ=1.3%), stoichiometric (ϕ=1.7%) and rich (ϕ=2.1%)), and the number of obstacles (from 1 to 4) were also investigated by experiments. Some of the experimental results have been compared with the literature data. It is found that the explosion parameters of gasoline-air mixtures (e.g. the maximum overpressure peaks, average overpressure growth rates, etc.) are different from some other fuels such as hydrogen, methane and LPG, etc. Copyright © 2017. Published by Elsevier B.V.

  2. Modeling of experimental treatment of acetaldehyde-laden air and phenol-containing water using corona discharge technique.

    PubMed

    Faungnawakij, Kajornsak; Sano, Noriaki; Charinpanitkul, Tawatchai; Tanthapanichakoon, Wiwut

    2006-03-01

    Acetaldehyde-laden air and phenol-contaminated water were experimentally treated using corona discharge reactions and gas absorption in a single water-film column. Mathematical modeling of the combined treatment was developed in this work. Efficient removal of the gaseous acetaldehyde was achieved while the corona discharge reactions produced short-lived species such as O and O- as well as ozone. Direct contact of the radicals and ions with water was known to produce aqueous OH radical, which contributes to the decomposition of organic contaminants: phenol, absorbed acetaldehyde, and intermediate byproducts in the water. The influence of initial phenol concentration ranging from 15 to 50 mg L(-1) and that of influent acetaldehyde ranging from 0 to 200 ppm were experimentally investigated and used to build the math model. The maximum energetic efficiency of TOC, phenol, and acetaldehyde were obtained at 25.6 x 10(-9) mol carbon J(-1), 25.0 x 10(-9) mol phenol J(-1), and 2.0 x 10(-9) mol acetaldehyde J(-1), respectively. The predictions for the decomposition of acetaldehyde, phenol, and their intermediates were found to be in good agreement with the experimental results.

  3. Jet-mixing of initially-stratified liquid-liquid pipe flows: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wright, Stuart; Ibarra-Hernandes, Roberto; Xie, Zhihua; Markides, Christos; Matar, Omar

    2016-11-01

    Low pipeline velocities lead to stratification and so-called 'phase slip' in horizontal liquid-liquid flows due to differences in liquid densities and viscosities. Stratified flows have no suitable single point for sampling, from which average phase properties (e.g. fractions) can be established. Inline mixing, achieved by static mixers or jets in cross-flow (JICF), is often used to overcome liquid-liquid stratification by establishing unstable two-phase dispersions for sampling. Achieving dispersions in liquid-liquid pipeline flows using JICF is the subject of this experimental and modelling work. The experimental facility involves a matched refractive index liquid-liquid-solid system, featuring an ETFE test section, and experimental liquids which are silicone oil and a 51-wt% glycerol solution. The matching then allows the dispersed fluid phase fractions and velocity fields to be established through advanced optical techniques, namely PLIF (for phase) and PTV or PIV (for velocity fields). CFD codes using the volume of a fluid (VOF) method are then used to demonstrate JICF breakup and dispersion in stratified pipeline flows. A number of simple jet configurations are described and their dispersion effectiveness is compared with the experimental results. Funding from Cameron for Ph.D. studentship (SW) gratefully acknowledged.

  4. The European politics of animal experimentation: From Victorian Britain to 'Stop Vivisection'.

    PubMed

    Germain, Pierre-Luc; Chiapperino, Luca; Testa, Giuseppe

    2017-08-01

    This paper identifies a common political struggle behind debates on the validity and permissibility of animal experimentation, through an analysis of two recent European case studies: the Italian implementation of the European Directive 2010/63/EC regulating the use of animals in science, and the recent European Citizens' Initiative (ECI) 'Stop Vivisection'. Drawing from a historical parallel with Victorian antivivisectionism, we highlight important threads in our case studies that mark the often neglected specificities of debates on animal experimentation. From the representation of the sadistic scientist in the XIX century, to his/her claimed capture by vested interests and evasion of public scrutiny in the contemporary cases, we show that animals are not simply the focus of the debate, but also a privileged locus at which much broader issues are being raised about science, its authority, accountability and potential misalignment with public interest. By highlighting this common socio-political conflict underlying public controversies around animal experimentation, our work prompts the exploration of modes of authority and argumentation that, in establishing the usefulness of animals in science, avoid reenacting the traditional divide between epistemic and political fora. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Development of a new experimental device for long-duration magnetic reconnection in weakly ionized plasma

    NASA Astrophysics Data System (ADS)

    Yanai, Ryoma; Kaminou, Yasuhiro; Nishida, Kento; Inomoto, Michiaki

    2016-10-01

    Magnetic reconnection is a universal phenomenon which determines global structure and energy conversion in magnetized plasmas. Many experimental studies have been carried out to explore the physics of magnetic reconnection in fully ionized condition. However, it is predicted that the behavior of magnetic reconnection in weakly ionized plasmas such as solar chromosphere plasma will show different behavior such as ambipolar diffusion caused by interaction with neutral particles. In this research, we are developing a new experimental device to uncover the importance of ambipolar diffusion during magnetic reconnection in weakly ionized plasmas. We employ an inverter-driven rotating magnetic fields technique, which is used for generating steady azimuthal plasma current, to establish long-duration ( 1 ms) anti-parallel reconnection with magnetic field of 5 mT in weakly ionized plasma. We will present development status and initial results from the new experimental setup. This work was supported by JSPS A3 Foresight Program ``Innovative Tokamak Plasma Startup and Current Drive in Spherical Torus'', Giant-in Aid for Scientific Research (KAKENHI) 15H05750, 15K14279, 26287143 and the NIFS Collaboration Research program (NIFS14KNWP004).

  6. Two-Level factorial screening of new plasmid/strain combinations for prodution of recombinant-DNA products.

    PubMed

    Emborg, C; Jepsen, P K; Biedermann, K

    1989-05-01

    This article treats the basic problem of selection of experimental conditions for microbiological experiments for evaluation of newly isolated bacterial strains, mutants, or plasmid/strain combinations. For this purpose shake flask experiments in a 2(10-4)confounded factorial design at resolution IV with four blocks of 16 flasks were used. The design was used for testing of two new strain/plasmid combinations (E. coli MT 102/403-SD2 and W 3110/403-SD2) i.e., both strains with the same plasmid 403-SD2. Both strains were integrated in the design, so both strains were tested with nine factors (temperature, aeration, glucose, initial pH, pH regulation, reduced aeration, chloramphenicol, acetate, and glycerol). With both strains the interaction between initial pH and reduced aeration had a significant influence on the yield of the recombinant-DNA product nuclease. There was more than a factor of 10 between lowest and highest yield of product. In this interactive system the strains reacted differently. MT 102/403-SD2 had highest yields at high initial pH (8.4) and no reduction in aeration, whereas W 3110/403-SD2 had highest yields of nuclease at low initial pH (7.4) and reduced aeration (rubber stopper inserted after cultivation for 12 h). These data (and previous work) clearly demonstrate that it is impossible to suggest a simple set of experimental conditions for testing of new plasmid/strain combinations. It is clear that the exclusive application of a standardized growth technique e.g., LB-medium at 37 degrees C at an unspecified and uncontrolled aeration level, may lead to wrong conclusions on properties and potentials of now plasmid/strain combinations and may lead to rejection of useful strains or plasmids.

  7. Early Sex Work Initiation and Violence against Female Sex Workers in Mombasa, Kenya.

    PubMed

    Parcesepe, Angela M; L'Engle, Kelly L; Martin, Sandra L; Green, Sherri; Suchindran, Chirayath; Mwarogo, Peter

    2016-12-01

    Between 20 and 40 % of female sex workers (FSWs) began sex work before age 18. Little is known concerning whether early initiation of sex work impacts later experiences in adulthood, including violence victimization. This paper examines the relationship between early initiation of sex work and violence victimization during adulthood. The sample included 816 FSWs in Mombasa, Kenya, recruited from HIV prevention drop-in centers who were 18 years or older and moderate-risk drinkers. Early initiation was defined as beginning sex work at 17 or younger. Logistic regression modeled recent violence as a function of early initiation, adjusting for drop-in center, age, education, HIV status, supporting others, and childhood abuse. Twenty percent of the sample reported early initiation of sex work. Although both early initiators and other FSWs reported commonly experiencing recent violence, early initiators were significantly more likely to experience recent physical and sexual violence and verbal abuse from paying partners. Early initiation was not associated with physical or sexual violence from non-paying partners. Many FSWs begin sex work before age 18. Effective interventions focused on preventing this are needed. In addition, interventions are needed to prevent violence against all FSWs, in particular, those who initiated sex work during childhood or adolescence.

  8. Effects of anisotropy and irradiation on the deformation behavior of Zircaloy 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelloux, R.M.; Ballinger, R.; Lucas, G.

    1979-01-01

    An experimental program investigated the effects of texture anisotropy and irradiation on the mechanical behavior of Zircaloy-2. Short time and time dependent mechanical behavior were considered. Irradiation effects were simulated through the use of 4.75 MeV protons. The temperature ranges investigated were 298/sup 0/K and 573 to 673/sup 0/K. Both cold worked-stress relieved and annealed material were used in this experimental program. Short time yield behavior of different crystallographic textures was determined by uniaxial and plane strain tests in the temperature range 298/sup 0/K and 573 to 673/sup 0/K. Monotonic flow loci were constructed for each texture. Yield behavior ismore » a strong function of the crystallographic texture number f at all temperatures investigated. The rotation of texture with increasing plastic strain was investigated as a function of initial texture at 298/sup 0/K and 623/sup 0/K. The rate of texture rotation df/epsilon/sub p/ was found to be a unique function of the initial texture for plastic strains less than 0.08. Time dependent mechanical behavior was investigated in the range 573 to 673/sup 0/K using constant load creep and stress relaxation tests. The tensile creep strength is proportional to the resolved fraction of basal poles in the test direction. In variable stress and temperature tests, the time-hardening rule was found to be inapplicable. The strain-hardening rule was applied with success to data obtained at temperatures less than or equal to 648/sup 0/K. Irradiation creep tests were conducted in vacuum at 598/sup 0/K and 102 to 241 MPa on 80..mu..m thick Zircaloy-2 foil specimens in both the recrystallized and cold worked-stress relieved condition. In the irradiation creep tests irradiation hardening and enhanced irradiation creep were observed. Radiation hardening effects were significant in annealed material but were attenuated in cold worked-stress relieved material.« less

  9. Japan's telecommunications - New initiatives in space communications

    NASA Astrophysics Data System (ADS)

    Iida, T.

    1992-04-01

    Despite recent advances in optical transmission technology, intensive R&D work in the field of satellite communications is now being undertaken in Japan. It is believed that satellites offer advantages in several important areas, including wide coverage broadcasting, immediacy of service, suitability for the implementation of HDTV, and advantages in disaster communications and other social services. Here, some experimental projects in the field of satellite communications planned in Japan for the 1990s are summarized. In particular, attention is given to broadcast satellite development, intersatellite links, advanced mobile communication concepts, large antenna assembly experiment, small satellite R&D, and Pan-Pacific information network experiment.

  10. Experimental comparison of residual stresses for a thermomechanical model for the simulation of selective laser melting

    DOE PAGES

    Hodge, N. E.; Ferencz, R. M.; Vignes, R. M.

    2016-05-30

    Selective laser melting (SLM) is an additive manufacturing process in which multiple, successive layers of metal powders are heated via laser in order to build a part. Modeling of SLM requires consideration of the complex interaction between heat transfer and solid mechanics. Here, the present work describes the authors initial efforts to validate their first generation model. In particular, the comparison of model-generated solid mechanics results, including both deformation and stresses, is presented. Additionally, results of various perturbations of the process parameters and modeling strategies are discussed.

  11. The main directions in technology investigation of soid oxide fuel cell in Russian Federal Research Center Institute of Physics & Power Engineering (IPPE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ievleva, J.I.; Kolesnikov, V.P.; Mezhertisky, G.S.

    1996-04-01

    The main direction of science investigations for creation of efficient solid oxide fuel cells (SOFC) in IPPE are considered in this work. The development program of planar SOFC with thin-film electrolyte is shown. General design schemes of experimental SOFC units are presented. The flow design schemes of processes for initial materials and electrodes fabrication are shown. The results of investigations for creation thin-film solid oxide electrolyte at porous cathode by magnetron sputtering from complex metal target in oxidative environment are presented.

  12. A comparison of methods for teaching receptive language to toddlers with autism.

    PubMed

    Vedora, Joseph; Grandelski, Katrina

    2015-01-01

    The use of a simple-conditional discrimination training procedure, in which stimuli are initially taught in isolation with no other comparison stimuli, is common in early intensive behavioral intervention programs. Researchers have suggested that this procedure may encourage the development of faulty stimulus control during training. The current study replicated previous work that compared the simple-conditional and the conditional-only methods to teach receptive labeling of pictures to young children with autism spectrum disorder. Both methods were effective, but the conditional-only method required fewer sessions to mastery. © Society for the Experimental Analysis of Behavior.

  13. The theoretical and experimental study of a material structure evolution in gigacyclic fatigue regime

    NASA Astrophysics Data System (ADS)

    Plekhov, Oleg; Naimark, Oleg; Narykova, Maria; Kadomtsev, Andrey; Betekhtin, Vladimir

    2015-10-01

    The work is devoted to the study of the metal structure evolution under gigacyclic fatigue (VHCF) regime. The study of the mechanical properties of the samples (Armco iron) with different state of life time existing was carried out on the base of the acoustic resonance method. The damage accumulation (porosity of the samples) was studied by the hydrostatic weighing method. A statistical model of damage accumulation was proposed in order to describe the damage accumulation process. The model describes the influence of the sample surface on the location of fatigue crack initiation.

  14. Experiments on waves under impulsive wind forcing in view of the Phillips (1957) theory

    NASA Astrophysics Data System (ADS)

    Shemer, Lev; Zavadsky, Andrey

    2016-11-01

    Only limited information is currently available on the initial stages of wind-waves growth from rest under sudden wind forcing; the mechanisms leading to the appearance of waves are still not well understood. In the present work, waves emerging in a small-scale laboratory facility under the action of step-like turbulent wind forcing are studied using capacitance and laser slope gauges. Measurements are performed at a number of fetches and for a range of wind velocities. Taking advantage of the fully automated experimental procedure, at least 100 independent realizations are recorded for each wind velocity at every fetch. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters as a function of time elapsed from the blower activation. The accumulated results on the temporal variation of wind-wave field initially at rest allow quantitative comparison with the theory of Phillips (1957). Following Phillips, appearance of the initial detectable ripples was considered first, while the growth of short gravity waves at later times was analyzed separately. Good qualitative and partial quantitative agreement between the Phillips predictions and the measurements was obtained for both those stages of the initial wind-wave field evolution.

  15. Emergence of power-law scalings in shock-driven mixing transition

    NASA Astrophysics Data System (ADS)

    Vorobieff, Peter; Wayne, Patrick; Olmstead, Dell; Simons, Dylan; Truman, C. Randall; Kumar, Sanjay

    2016-11-01

    We present an experimental study of transition to turbulence due to shock-driven instability evolving on an initially cylindrical, diffuse density interface between air and a mixture of sulfur hexafluoride (SF6) and acetone. The plane of the shock is at an initial angle θ with the axis of the heavy-gas cylinder. We present the cases of planar normal (θ = 0) and oblique (θ =20°) shock interaction with the initial conditions. Flow is visualized in two perpendicular planes with planar laser-induced fluorescence (PLIF) triggered in acetone with a pulsed ultraviolet laser. Statistics of the flow are characterized in terms of the second-order structure function of the PLIF intensity. As instabilities in the flow evolve, the structure functions begin to develop power-law scalings, at late times manifesting over a range of scales spanning more than two orders of magnitude. We discuss the effects of the initial conditions on the emergence of these scalings, comparing the fully three-dimensional case (oblique shock interaction) with the quasi-two-dimensional case (planar normal shock interaction). We also discuss the flow anisotropy apparent in statistical differences in data from the two visualization planes. This work is funded by NNSA Grant DE-NA0002913.

  16. Electrical treeing behaviors in silicone rubber under an impulse voltage considering high temperature

    NASA Astrophysics Data System (ADS)

    Yunxiao, ZHANG; Yuanxiang, ZHOU; Ling, ZHANG; Zhen, LIN; Jie, LIU; Zhongliu, ZHOU

    2018-05-01

    In this paper, work was conducted to reveal electrical tree behaviors (initiation and propagation) of silicone rubber (SIR) under an impulse voltage with high temperature. Impulse frequencies ranging from 10 Hz to 1 kHz were applied and the temperature was controlled between 30 °C and 90 °C. Experimental results show that tree initiation voltage decreases with increasing pulse frequency, and the descending amplitude is different in different frequency bands. As the pulse frequency increases, more frequent partial discharges occur in the channel, increasing the tree growth rate and the final shape intensity. As for temperature, the initiation voltage decreases and the tree shape becomes denser as the temperature gets higher. Based on differential scanning calorimetry results, we believe that partial segment relaxation of SIR at high temperature leads to a decrease in the initiation voltage. However, the tree growth rate decreases with increasing temperature. Carbonization deposition in the channel under high temperature was observed under microscope and proven by Raman analysis. Different tree growth models considering tree channel characteristics are proposed. It is believed that increasing the conductivity in the tree channel restrains the partial discharge, holding back the tree growth at high temperature.

  17. Large Diameter, Radiative Extinction Experiments with Decane Droplets in Microgravity

    NASA Technical Reports Server (NTRS)

    Easton, John; Tien, James; Dietrich, Daniel

    1999-01-01

    The extinction of a diffusion flame is of fundamental interest in combustion science. Linan, Law, and Chung and Law analytically and experimentally determined an extinction boundary in terms of droplet diameter and pressure for a single droplet due to Damkohler, or blowoff, extinction. More recently, other researchers demonstrated extinction due to finite rate kinetics in reduced gravity for free droplets of heptane. Chao modeled the effect of radiative heat loss on a quasi-steady spherically symmetric single droplet burning in the absence of buoyancy. They determined that for increasing droplet diameter, a second limit can be reached such that combustion is no longer possible. This second, larger droplet diameter limit arises due to radiative heat loss, which increases with increasing droplet and flame diameter. This increase in radiative heat loss arises due to an increase in the surface area of the flame. Recently, Marchese modeled fuel droplets with detailed chemistry and radiative effects, and compared the results to other work. The modeling also showed the importance of radiative loss and radiative extinction Experiments examined the behavior of a large droplet of decane burning in reduced gravity onboard the NASA Lewis DC-9 aircraft, but did not show a radiative extinction boundary due to g-jitter (Variations in gravitational level and direction) effects. Dietrich conducted experiments in the reduced gravity environment of the Space Shuttle. This work showed that the extinction diameter of methanol droplets increased when the initial diameter of the droplets was large (in this case, approximately 5 mm). Theoretical results agreed with these experimental results only when the theory included radiative effects . Radiative extinction was experimentally verified by Nayagam in a later Shuttle mission. The following work focuses on the combustion and extinction of a single fuel droplet. The goal is to experimentally determine a large droplet diameter limit that arises due to radiative heat loss from the flame to the surroundings.

  18. On the Validity of Continuum Computational Fluid Dynamics Approach Under Very Low-Pressure Plasma Spray Conditions

    NASA Astrophysics Data System (ADS)

    Ivchenko, Dmitrii; Zhang, Tao; Mariaux, Gilles; Vardelle, Armelle; Goutier, Simon; Itina, Tatiana E.

    2018-01-01

    Plasma spray physical vapor deposition aims to substantially evaporate powders in order to produce coatings with various microstructures. This is achieved by powder vapor condensation onto the substrate and/or by deposition of fine melted powder particles and nanoclusters. The deposition process typically operates at pressures ranging between 10 and 200 Pa. In addition to the experimental works, numerical simulations are performed to better understand the process and optimize the experimental conditions. However, the combination of high temperatures and low pressure with shock waves initiated by supersonic expansion of the hot gas in the low-pressure medium makes doubtful the applicability of the continuum approach for the simulation of such a process. This work investigates (1) effects of the pressure dependence of thermodynamic and transport properties on computational fluid dynamics (CFD) predictions and (2) the validity of the continuum approach for thermal plasma flow simulation under very low-pressure conditions. The study compares the flow fields predicted with a continuum approach using CFD software with those obtained by a kinetic-based approach using a direct simulation Monte Carlo method (DSMC). It also shows how the presence of high gradients can contribute to prediction errors for typical PS-PVD conditions.

  19. Theoretical analysis of the axial growth of nanowires starting with a binary eutectic droplet via vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Li, Hejun; Zhang, Yulei; Zhao, Zhigang

    2018-06-01

    A series of theoretical analysis is carried out for the axial vapor-liquid-solid (VLS) growth of nanowires starting with a binary eutectic droplet. The growth model considering the entire process of axial VLS growth is a development of the approaches already developed by previous studies. In this model, the steady and unsteady state growth are considered both. The amount of solute species in a variable liquid droplet, the nanowire length, radius, growth rate and all other parameters during the entire axial growth process are treated as functions of growth time. The model provides theoretical predictions for the formation of nanowire shape, the length-radius and growth rate-radius dependences. It is also suggested by the model that the initial growth of single nanowire is significantly affected by Gibbs-Thompson effect due to the shape change. The model was applied on predictions of available experimental data of Si and Ge nanowires grown from Au-Si and Au-Ge systems respectively reported by other works. The calculations with the proposed model are in satisfactory agreement with the experimental results of the previous works.

  20. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties andmore » susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.« less

  1. Optimal Wonderful Life Utility Functions in Multi-Agent Systems

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)

    2000-01-01

    The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.

  2. Kinetics of Scheelite Conversion in Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Shen, Leiting; Li, Xiaobin; Zhou, Qiusheng; Peng, Zhihong; Liu, Guihua; Qi, Tiangui; Taskinen, Pekka

    2018-02-01

    Complete conversion of scheelite in H2SO4 solution plays a key role in exploration of cleaner technology for producing ammonium paratungstate. In this work, the factors influencing scheelite conversion were investigated experimentally to model its kinetics. The results indicated that the conversion rate increases with increasing temperature and reducing particle size, but is almost independent of stirring speed. Moreover, although the conversion rate increases with increasing initial H2SO4 concentration (≤ 1.25 mol/L), it decreases rapidly at 1.5 mol/L H2SO4 after 10 min due to formation of a H2WO4 layer. The experimental data agree quite well with the shrinking core model under chemical reaction control in ≤ 1.25 mol/L H2SO4 solution, and the kinetic equation was established as: 1- ( 1- α )^{ 1 / 3} = 2 2 2 5 4 6. 6\\cdot C_{{{H}_{ 2} {SO}_{ 4} }}^{ 1. 2 2 6} \\cdot r_{ 0}^{ - 1} \\cdot e^{{ - 3 9 2 6 0/RT}} \\cdot t (t, min). This work could contribute to better understanding of scheelite conversion in H2SO4 solution and development of a new route for ammonium paratungstate production.

  3. Containment system for experiments on radioactive and other hazardous materials in a Paris-Edinburgh press

    DOE PAGES

    Jacobsen, M. K.; Velisavljevic, N.

    2015-11-20

    Recent technical developments using the large volume Paris-Edinburgh press platform have enabled x-ray synchrotron studies at high pressure and temperature conditions. However, its application to some materials of interest, such as high hazard materials that require special handling due to safety issues, reactivity, or other challenges, has not been feasible without the introduction of special containment systems to eliminate the hazards. However, introduction of a containment system is challenging due to the requirement to provide full safety containment for operation in the variety of environments available, while not hindering any of the experimental probes that are available for inert samplemore » measurement. In this work, we report on the development and implementation of a full safety enclosure for a Paris-Edinburgh type press. During the initial development and subsequent application stage of work, experiments were performed on both cerium dioxide (CeO2) and uranium (U). As a result, this device allows for full implementation of all currently available experimental probes involving the Paris-Edinburgh press at the High Pressure Collaborative Access Team sector of the Advanced Photon Source.« less

  4. Ion recombination correction in carbon ion beams.

    PubMed

    Rossomme, S; Hopfgartner, J; Lee, N D; Delor, A; Thomas, R A S; Romano, F; Fukumura, A; Vynckier, S; Palmans, H

    2016-07-01

    In this work, ion recombination is studied as a function of energy and depth in carbon ion beams. Measurements were performed in three different passively scattered carbon ion beams with energies of 62 MeV/n, 135 MeV/n, and 290 MeV/n using various types of plane-parallel ionization chambers. Experimental results were compared with two analytical models for initial recombination. One model is generally used for photon beams and the other model, developed by Jaffé, takes into account the ionization density along the ion track. An investigation was carried out to ascertain the effect on the ion recombination correction with varying ionization chamber orientation with respect to the direction of the ion tracks. The variation of the ion recombination correction factors as a function of depth was studied for a Markus ionization chamber in the 62 MeV/n nonmodulated carbon ion beam. This variation can be related to the depth distribution of linear energy transfer. Results show that the theory for photon beams is not applicable to carbon ion beams. On the other hand, by optimizing the value of the ionization density and the initial mean-square radius, good agreement is found between Jaffé's theory and the experimental results. As predicted by Jaffé's theory, the results confirm that ion recombination corrections strongly decrease with an increasing angle between the ion tracks and the electric field lines. For the Markus ionization chamber, the variation of the ion recombination correction factor with depth was modeled adequately by a sigmoid function, which is approximately constant in the plateau and strongly increasing in the Bragg peak region to values of up to 1.06. Except in the distal edge region, all experimental results are accurately described by Jaffé's theory. Experimental results confirm that ion recombination in the investigated carbon ion beams is dominated by initial recombination. Ion recombination corrections are found to be significant and cannot be neglected for reference dosimetry and for the determination of depth dose curves in carbon ion beams.

  5. Hydrodynamics of back spatter by blunt bullet gunshot with a link to bloodstain pattern analysis

    NASA Astrophysics Data System (ADS)

    Comiskey, P. M.; Yarin, A. L.; Attinger, D.

    2017-07-01

    A theoretical model describing the blood spatter pattern resulting from a blunt bullet gunshot is proposed. The predictions are compared to experimental data acquired in the present work. This hydrodynamic problem belongs to the class of the impact hydrodynamics with the pressure impulse generating the blood flow. At the free surface, the latter is directed outwards and accelerated toward the surrounding air. As a result, the Rayleigh-Taylor instability of the flow of blood occurs, which is responsible for the formation of blood drops of different sizes and initial velocities. Thus, the initial diameter, velocity, and acceleration of the atomized blood drops can be determined. Then, the equations of motion are solved, describing drop trajectories in air accounting for gravity, and air drag. Also considered are the drop-drop interactions through air, which diminish air drag on the subsequent drops. Accordingly, deposition of two-phase (blood-drop and air) jets on a vertical cardstock sheet located between the shooter and the target (and perforated by the bullet) is predicted and compared with experimental data. The experimental data were acquired with a porous polyurethane foam sheet target impregnated with swine blood, and the blood drops were collected on a vertical cardstock sheet which was perforated by the blunt bullet. The highly porous target possesses a low hydraulic resistance and therefore resembles a pool of blood shot by a blunt bullet normally to its free surface. The back spatter pattern was predicted numerically and compared to the experimental data for the number of drops, their area, the total stain area, and the final impact angle as functions of radial location from the bullet hole in the cardstock sheet (the collection screen). Comparisons of the predicted results with the experimental data revealed satisfactory agreement. The predictions also allow one to find the impact Weber number on the collection screen, which is necessary to predict stain shapes and sizes.

  6. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    This paper presents results from an explanatory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered,more » focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected in the resulting steady-state analyses using NASA's FUN3D CFD software.« less

  7. An Experimental Cancer Information Service Using AIM-TWX *

    PubMed Central

    Blase, Nancy G.; Stock, Carole J.

    1972-01-01

    The Pacific Northwest Regional Health Sciences Library and the Washington/Alaska Regional Medical Program jointly conducted a service to provide photocopies of articles on cancer topics within twenty-four hours after receiving telephone requests for information from Central Washington physicians. AIM-TWX was utilized as the initial source of references whenever possible, and its benefit as such was evaluated. In the three-month experimental period, twenty-seven requesters made fifty-six requests and received photocopies of 185 articles; the estimated total cost was $1,000, less than $18 per request. A sample of requests showed AIM-TWX to have reduced the total work time per search; moreover, when it was used, AIM-TWX retrieved more than 70% of the articles selected to be sent. Physician response indicated that the service was both needed and appreciated. Further investigation by a similar information service is suggested. PMID:5067397

  8. Effects of cathode thickness and thermal treatment on the design of balanced blue light-emitting polymer device

    NASA Astrophysics Data System (ADS)

    Chin, Byung Doo; Duan, Lian; Kim, Moo-Hyun; Lee, Seong Taek; Chung, Ho Kyoon

    2004-11-01

    The interface between layered conjugated polymer and electrode is a most important factor to improve the performance and lifetime of polymeric light-emitting devices (PLEDs). In this work, a blue PLED with improved stability was achieved by the combination of optimized cathode structure as well as thermal treatment of light-emitting polymer (LEP). Experimental evidence of the initial luminance "settling in" stage was found to be dependent upon the cathode structure, while the long-term slope of luminance as a function of elapsed time is governed by the annealing conditions. Our study revealed the importance of extrinsic design of device for the improvement of PLED stability. Experimental data shows that a blue PLED annealed at 170°C and 6nm LiF at LiF /Ca/Al cathode retained the best lifetime, which can be explained by the improved polymer-metal interface and LEP's charge mobility.

  9. Identifying the perceptive users for online social systems

    PubMed Central

    Liu, Xiao-Lu; Guo, Qiang; Han, Jing-Ti

    2017-01-01

    In this paper, the perceptive user, who could identify the high-quality objects in their initial lifespan, is presented. By tracking the ratings given to the rewarded objects, we present a method to identify the user perceptibility, which is defined as the capability that a user can identify these objects at their early lifespan. Moreover, we investigate the behavior patterns of the perceptive users from three dimensions: User activity, correlation characteristics of user rating series and user reputation. The experimental results for the empirical networks indicate that high perceptibility users show significantly different behavior patterns with the others: Having larger degree, stronger correlation of rating series and higher reputation. Furthermore, in view of the hysteresis in finding the rewarded objects, we present a general framework for identifying the high perceptibility users based on user behavior patterns. The experimental results show that this work is helpful for deeply understanding the collective behavior patterns for online users. PMID:28704382

  10. Ion beam microtexturing of surfaces

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.

    1981-01-01

    Some recent work in surface microtecturing by ion beam sputtering is described. The texturing is accomplished by deposition of an impurity onto a substrate while simultaneously bombarding it with an ion beam. A summary of the theory regarding surface diffusion of impurities and the initiation of cone formation is provided. A detailed experimental study of the time-development of individual sputter cones is described. A quasi-liquid coating was observed that apparently reduces the sputter rate of the body of a cone compared to the bulk material. Experimental measurements of surface diffusion activation energies are presented for a variety of substrate-seed combinations and range from about 0.3 eV to 1.2 eV. Observations of apparent crystal structure in sputter cones are discussed. Measurements of the critical temperature for cone formation are also given along with a correlation of critical temperature with substrate sputter rate.

  11. Experimental investigation of microwave interaction with magnetoplasma in miniature multipolar configuration using impedance measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dey, Indranuj, E-mail: indranuj@aees.kyushu-u.ac.jp; Toyoda, Yuji; Yamamoto, Naoji

    2014-09-15

    A miniature microwave plasma source employing both radial and axial magnetic fields for plasma confinement has been developed for micro-propulsion applications. Plasma is initiated by launching microwaves via a short monopole antenna to circumvent geometrical cutoff limitations. The amplitude and phase of the forward and reflected microwave power is measured to obtain the complex reflection coefficient from which the equivalent impedance of the plasma source is determined. Effect of critical plasma density condition is reflected in the measurements and provides insight into the working of the miniature plasma source. A basic impedance calculation model is developed to help in understandingmore » the experimental observations. From experiment and theory, it is seen that the equivalent impedance magnitude is controlled by the coaxial discharge boundary conditions, and the phase is influenced primarily by the plasma immersed antenna impedance.« less

  12. Experimental demonstration of an Allee effect in microbial populations.

    PubMed

    Kaul, RajReni B; Kramer, Andrew M; Dobbs, Fred C; Drake, John M

    2016-04-01

    Microbial populations can be dispersal limited. However, microorganisms that successfully disperse into physiologically ideal environments are not guaranteed to establish. This observation contradicts the Baas-Becking tenet: 'Everything is everywhere, but the environment selects'. Allee effects, which manifest in the relationship between initial population density and probability of establishment, could explain this observation. Here, we experimentally demonstrate that small populations of Vibrio fischeri are subject to an intrinsic demographic Allee effect. Populations subjected to predation by the bacterivore Cafeteria roenbergensis display both intrinsic and extrinsic demographic Allee effects. The estimated critical threshold required to escape positive density-dependence is around 5, 20 or 90 cells ml(-1)under conditions of high carbon resources, low carbon resources or low carbon resources with predation, respectively. This work builds on the foundations of modern microbial ecology, demonstrating that mechanisms controlling macroorganisms apply to microorganisms, and provides a statistical method to detect Allee effects in data. © 2016 The Author(s).

  13. Experimental demonstration of an Allee effect in microbial populations

    PubMed Central

    Kramer, Andrew M.; Dobbs, Fred C.; Drake, John M.

    2016-01-01

    Microbial populations can be dispersal limited. However, microorganisms that successfully disperse into physiologically ideal environments are not guaranteed to establish. This observation contradicts the Baas-Becking tenet: ‘Everything is everywhere, but the environment selects’. Allee effects, which manifest in the relationship between initial population density and probability of establishment, could explain this observation. Here, we experimentally demonstrate that small populations of Vibrio fischeri are subject to an intrinsic demographic Allee effect. Populations subjected to predation by the bacterivore Cafeteria roenbergensis display both intrinsic and extrinsic demographic Allee effects. The estimated critical threshold required to escape positive density-dependence is around 5, 20 or 90 cells ml−1 under conditions of high carbon resources, low carbon resources or low carbon resources with predation, respectively. This work builds on the foundations of modern microbial ecology, demonstrating that mechanisms controlling macroorganisms apply to microorganisms, and provides a statistical method to detect Allee effects in data. PMID:27048467

  14. Towards oscillations-based simulation of social systems: a neurodynamic approach

    NASA Astrophysics Data System (ADS)

    Plikynas, Darius; Basinskas, Gytis; Laukaitis, Algirdas

    2015-04-01

    This multidisciplinary work presents synopsis of theories in the search for common field-like fundamental principles of self-organisation and communication existing on quantum, cellular, and even social levels. Based on these fundamental principles, we formulate conceptually novel social neuroscience paradigm (OSIMAS), which envisages social systems emerging from the coherent neurodynamical processes taking place in the individual mind-fields. In this way, societies are understood as global processes emerging from the superposition of the conscious and subconscious mind-fields of individual members of society. For the experimental validation of the biologically inspired OSIMAS paradigm, we have designed a framework of EEG-based experiments. Initial baseline individual tests of spectral cross-correlations of EEG-recorded brainwave patterns for some mental states have been provided in this paper. Preliminary experimental results do not refute the main OSIMAS postulates. This paper also provides some insights for the construction of OSIMAS-based simulation models.

  15. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    2016-01-01

    This paper presents results from an exploratory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected and the resulting steady-state analyses using NASA's FUN3D CFD software.

  16. Plasma Model V&V of Collisionless Electrostatic Shock

    NASA Astrophysics Data System (ADS)

    Martin, Robert; Le, Hai; Bilyeu, David; Gildea, Stephen

    2014-10-01

    A simple 1D electrostatic collisionless shock was selected as an initial validation and verification test case for a new plasma modeling framework under development at the Air Force Research Laboratory's In-Space Propulsion branch (AFRL/RQRS). Cross verification between PIC, Vlasov, and Fluid plasma models within the framework along with expected theoretical results will be shown. The non-equilibrium velocity distributions (VDF) captured by PIC and Vlasov will be compared to each other and the assumed VDF of the fluid model at selected points. Validation against experimental data from the University of California, Los Angeles double-plasma device will also be presented along with current work in progress at AFRL/RQRS towards reproducing the experimental results using higher fidelity diagnostics to help elucidate differences between model results and between the models and original experiment. DISTRIBUTION A: Approved for public release; unlimited distribution; PA (Public Affairs) Clearance Number 14332.

  17. Optimization to the Culture Conditions for Phellinus Production with Regression Analysis and Gene-Set Based Genetic Algorithm

    PubMed Central

    Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui

    2016-01-01

    Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365

  18. Initial Findings on Hydrodynamic Scaling Extrapolations of National Ignition Facility BigFoot Implosions

    NASA Astrophysics Data System (ADS)

    Nora, R.; Field, J. E.; Peterson, J. Luc; Spears, B.; Kruse, M.; Humbird, K.; Gaffney, J.; Springer, P. T.; Brandon, S.; Langer, S.

    2017-10-01

    We present an experimentally corroborated hydrodynamic extrapolation of several recent BigFoot implosions on the National Ignition Facility. An estimate on the value and error of the hydrodynamic scale necessary for ignition (for each individual BigFoot implosion) is found by hydrodynamically scaling a distribution of multi-dimensional HYDRA simulations whose outputs correspond to their experimental observables. The 11-parameter database of simulations, which include arbitrary drive asymmetries, dopant fractions, hydrodynamic scaling parameters, and surface perturbations due to surrogate tent and fill-tube engineering features, was computed on the TRINITY supercomputer at Los Alamos National Laboratory. This simple extrapolation is the first step in providing a rigorous calibration of our workflow to provide an accurate estimate of the efficacy of achieving ignition on the National Ignition Facility. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  19. An experimental study of the transient regime to fluidized chimney in a granular medium

    NASA Astrophysics Data System (ADS)

    Philippe, Pierre; Mena, Sarah; Brunier-Coulin, Florian; Curtis, Jennifer

    2017-06-01

    Localized fluidization within a granular packing along an almost cylindrical chimney is observed when an upward fluid-flow, injected through a small port diameter, exceeds a critical flow-rate. Once this threshold reached, a fluidized area is first initiated in the close vicinity of the injection hole before gradually growing upward to the top surface of the granular layer. In this work, we present an experimental investigation specifically dedicated to the kinetics of chimney fluidization in an immersed granular bed. Two different transient regimes are identified depending on wether the expansion of the fluidized area is rather fast and regular, reaching the final chimney state typically in less than 10 seconds, or, on the contrary, slow and very progressively accelerated, giving rise to transient duration up to 1 hour or even more. Some systematic investigations allow to propose several empirical scaling relations for the kinetics of chimney fluidization in the fast regular regime.

  20. Identifying the perceptive users for online social systems.

    PubMed

    Liu, Jian-Guo; Liu, Xiao-Lu; Guo, Qiang; Han, Jing-Ti

    2017-01-01

    In this paper, the perceptive user, who could identify the high-quality objects in their initial lifespan, is presented. By tracking the ratings given to the rewarded objects, we present a method to identify the user perceptibility, which is defined as the capability that a user can identify these objects at their early lifespan. Moreover, we investigate the behavior patterns of the perceptive users from three dimensions: User activity, correlation characteristics of user rating series and user reputation. The experimental results for the empirical networks indicate that high perceptibility users show significantly different behavior patterns with the others: Having larger degree, stronger correlation of rating series and higher reputation. Furthermore, in view of the hysteresis in finding the rewarded objects, we present a general framework for identifying the high perceptibility users based on user behavior patterns. The experimental results show that this work is helpful for deeply understanding the collective behavior patterns for online users.

  1. An Experimental and Computational Analysis of Primary Cilia Deflection Under Fluid Flow

    PubMed Central

    Downs, Matthew E.; Nguyen, An M.; Herzog, Florian A.; Hoey, David A.; Jacobs, Christopher R.

    2013-01-01

    In this work we have developed a novel model of the deflection of primary cilia experiencing fluid flow accounting for phenomena not previously considered. Specifically, we developed a large rotation formulation that accounts for rotation at the base of the cilium, the initial shape of the cilium and fluid drag at high deflection angles. We utilized this model to analyze full three dimensional datasets of primary cilia deflecting under fluid flow acquired with high-speed confocal microscopy. We found a wide variety of previously unreported bending shapes and behaviors. We also analyzed post-flow relaxation patterns. Results from our combined experimental and theoretical approach suggest that the average flexural rigidity of primary cilia might be higher than previously reported (Schwartz et al. 1997). In addition our findings indicate the mechanics of primary cilia are richly varied and mechanisms may exist to alter their mechanical behavior. PMID:22452422

  2. Compositional and Microstructural Evolution of Olivine Under Multiple-Cycle Pulsed Laser Irradiation as Revealed by FIB/Field-Emission TEM

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Loeffler, M. J.; Dukes, C. A.; Keller, L. P.; Baragiola, R. A.

    2016-01-01

    The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical SEM and TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation.

  3. Theory, simulation and experiments for precise deflection control of radiotherapy electron beams.

    PubMed

    Figueroa, R; Leiva, J; Moncada, R; Rojas, L; Santibáñez, M; Valente, M; Velásquez, J; Young, H; Zelada, G; Yáñez, R; Guillen, Y

    2018-03-08

    Conventional radiotherapy is mainly applied by linear accelerators. Although linear accelerators provide dual (electron/photon) radiation beam modalities, both of them are intrinsically produced by a megavoltage electron current. Modern radiotherapy treatment techniques are based on suitable devices inserted or attached to conventional linear accelerators. Thus, precise control of delivered beam becomes a main key issue. This work presents an integral description of electron beam deflection control as required for novel radiotherapy technique based on convergent photon beam production. Theoretical and Monte Carlo approaches were initially used for designing and optimizing device´s components. Then, dedicated instrumentation was developed for experimental verification of electron beam deflection due to the designed magnets. Both Monte Carlo simulations and experimental results support the reliability of electrodynamics models used to predict megavoltage electron beam control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Self-paced exercise program for office workers: impact on productivity and health outcomes.

    PubMed

    Low, David; Gramlich, Martha; Engram, Barbara Wright

    2007-03-01

    The impact of a self-paced exercise program on productivity and health outcomes of 32 adult workers in a large federal office complex was investigated during 3 months. Walking was the sole form of exercise. The first month, during which no walking occurred, was the control period. The second and third months were the experimental period. Participants were divided into three levels based on initial weight and self-determined walking distance goals. Productivity (using the Endicott Work Productivity Scale), walking distance (using a pedometer), and health outcomes (blood pressure, weight, pulse rate, and body fat percentage) were measured weekly. Results from this study, based on a paired t test analysis, suggest that although the self-paced exercise program had no impact on productivity, it lowered blood pressure and promoted weight loss. Further study using a larger sample and a controlled experimental design is recommended to provide conclusive evidence.

  5. Investigation of the asymptotic state of rotating turbulence using large-eddy simulation

    NASA Technical Reports Server (NTRS)

    Squires, Kyle D.; Chasnov, Jeffrey R.; Mansour, Nagi N.; Cambon, Claude

    1993-01-01

    Study of turbulent flows in rotating reference frames has long been an area of considerable scientific and engineering interest. Because of its importance, the subject of turbulence in rotating reference frames has motivated over the years a large number of theoretical, experimental, and computational studies. The bulk of these previous works has served to demonstrate that the effect of system rotation on turbulence is subtle and remains exceedingly difficult to predict. A rotating flow of particular interest in many studies, including the present work, is examination of the effect of solid-body rotation on an initially isotropic turbulent flow. One of the principal reasons for the interest in this flow is that it represents the most basic turbulent flow whose structure is altered by system rotation but without the complicating effects introduced by mean strains or flow inhomogeneities. The assumption of statistical homogeneity considerably simplifies analysis and computation. The principal objective of the present study has been to examine the asymptotic state of solid-body rotation applied to an initially isotropic, high Reynolds number turbulent flow. Of particular interest has been to determine the degree of two-dimensionalization and the existence of asymptotic self-similar states in homogeneous rotating turbulence.

  6. Parameter Calibration and Numerical Analysis of Twin Shallow Tunnels

    NASA Astrophysics Data System (ADS)

    Paternesi, Alessandra; Schweiger, Helmut F.; Scarpelli, Giuseppe

    2017-05-01

    Prediction of displacements and lining stresses in underground openings represents a challenging task. The main reason is primarily related to the complexity of this ground-structure interaction problem and secondly to the difficulties in obtaining a reliable geotechnical characterisation of the soil or the rock. In any case, especially when class A predictions fail in forecasting the system behaviour, performing class B or C predictions, which rely on a higher level of knowledge of the surrounding ground, can represent a useful resource for identifying and reducing model deficiencies. The case study presented in this paper deals with the construction works of twin-tube shallow tunnels excavated in a stiff and fine-grained deposit. The work initially focuses on the ground parameter calibration against experimental data, which together with the choice of an appropriate constitutive model plays a major role in the assessment of tunnelling-induced deformations. Since two-dimensional analyses imply initial assumptions to take into account the effect of the 3D excavation, three-dimensional finite element analyses were preferred. Comparisons between monitoring data and results of numerical simulations are provided. The available field data include displacements and deformation measurements regarding both the ground and tunnel lining.

  7. Experimental study of infrared filaments under different initial conditions

    NASA Astrophysics Data System (ADS)

    Mirell, Daniel Joseph

    In 1964, four years after the first working laser was constructed, long skinny damage tracks and fluorescence trails were seen inside of certain transparent media that were excited by intense light pulses [1]. What was so remarkable about these features was the narrowness of the spatial profile and their long propagation length in the beam in concert with the very high intensity of the light that would be necessary to produce them. A purely linear model of light propagation through such media was insufficient to explain the results of these experiments and hence a new area of nonlinear optics, latex coined filamentation (to describe the length, slimness, and intensity of the light field), was born. Filament studies begin with a medium that has a nonlinear index of refraction, n¯2, that interacts with an intense beam of light so as to cause it to self-focus. The n¯2 of liquid and solid transparent media is much higher than the n¯ 2 of gases and therefore a much higher intensity of laser source would need to be invented to begin the study of filaments in air. With the advent of the Ti-Sapphire Kerr-lens modelocked laser [2], working in combination with the development of the chirped pulse amplifier system in the mid-1990's, light intensities sufficient to produce filaments in air was realized. Since that time much experimental and theoretical work has been done to better understand some of the additional complexities that arise specifically in the filamentation of light in air using several different wavelengths (UV to IR) and pulsewidths (femto- to pico-seconds). Many theoretical models exist each with a different emphasis on the various physical mechanisms that may produce the features experimentally observed in filaments. The experimental work has sought to give the theoretician better data on some of the properties of filaments such as the: (a) spatial and temporal structure of the beam and of the produced plasma (that arises due to the high intensity light field that gives birth to multiphoton and avalanche ionization), (b) conical emission/supercontinuum generation, and (c) emitted THz radiation. The aim of all of this research is to gain a better understanding of filamentation so that we may learn how to control them for the applications of: (a) laser-induced lightning, (b) laser-induced breakdown spectroscopy, (c) LIDAR, (d) medical imaging and many more. In this dissertation we will focus on an experimental study of filamentation in air produced by 780 nm radiation, pulsewidths of 200 fs, and energies pulse of 9 mJ/pulse. We have used an aerodynamic window + vacuum system to study the difference between focusing filament forming pulses down initially in vacuum conditions to that where it is allowed to focus in atmosphere. Described herein is a new way to use an off-the-shelf, inexpensive and robust 1064 nm mirror to observe the beam profile and its evolution in the filament as well as the filaments spectral properties. In addition, experiments to test for the plasma have been conducted. The results of these experiments indicate filament sizes of 200mum, in contrast to the commonly reported value of 100pm. Filaments of this size exist over a length of approximately a meter which is 8 times longer than the associated Rayleigh range for such a spot size with a clear enhancement in filament persistence with the use of the aerodynamic window. In addition the appearance of newly generated "bluer" frequencies that is present under atmospheric focusing is ail but eliminated through an initial focusing of the beam in vacuum conditions. Plasma densities of 1016 e -/cm3 were measured using plasma interferometry.

  8. Large-Scale Laboratory Experiments of Initiation of Motion and Burial of Objects under Currents and Waves

    NASA Astrophysics Data System (ADS)

    Landry, B. J.; Wu, H.; Wenzel, S. P.; Gates, S. J.; Fytanidis, D. K.; Garcia, M. H.

    2017-12-01

    Unexploded ordnances (UXOs) can be found at the bottom of coastal areas as the residue of military wartime activities, training or accidents. These underwater objects are hazards for humans and the coastal environment increasing the need for addressing the knowledge gaps regarding the initiation of motion, fate and transport of UXOs under currents and wave conditions. Extensive experimental analysis was conducted for the initiation of motion of UXOs under various rigid bed roughness conditions (smooth PVC, pitted steel, marbles, gravels and bed of spherical particles) for both unidirectional and oscillatory flows. Particle image velocimetry measurements were conducted under both flow conditions to resolve the flow structure estimate the critical flow conditions for initiation of motion of UXOs. Analysis of the experimental observations shows that the geometrical characteristics of the UXOs, their properties (i.e. volume, mass) and their orientation with respect to the mean flow play an important role on the reorientation and mobility of the examined objects. A novel unified initiation of motion diagram is proposed using an effective/unified hydrodynamic roughness and a new length scale which includes the effect of the projected area and the bed-UXO contact area. Both unidirectional and oscillatory critical flow conditions collapsed into a single dimensionless diagram highlighting the importance and practical applicability of the proposed work. In addition to the rigid bed experiments, the burial dynamics of proud UXOs on a mobile sand bed were also examined. The complex flow-bedform-UXOs interactions were evaluated which highlighted the effect of munition density on burial rate and final burial depth. Burial dynamics and mechanisms for motion were examined for various UXOs types, and results show that, for the case of the low density UXOs under energetic conditions, lateral transport coexists with burial. Prior to burial, UXO re-orientation was also observed depending on the geometric characteristics of the objects.

  9. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia.

    PubMed

    Markou, Athina; Salamone, John D; Bussey, Timothy J; Mar, Adam C; Brunner, Daniela; Gilmour, Gary; Balsam, Peter

    2013-11-01

    The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu) meeting. A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia

    PubMed Central

    Markou, Athina; Salamone, John D.; Bussey, Timothy; Mar, Adam; Brunner, Daniela; Gilmour, Gary; Balsam, Peter

    2013-01-01

    The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu). A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. PMID:23994273

  11. Project EX: A Program of Empirical Research on Adolescent Tobacco Use Cessation

    PubMed Central

    Sussman, Steve; McCuller, William J; Zheng, Hong; Pfingston, Yvonne M; Miyano, James; Dent, Clyde W

    2004-01-01

    This paper presents the Project EX research program. The historical background for Project EX is presented, including a brief summary of reasons youth fail to quit tobacco use, the disappointing status of previous cessation research, and the teen cessation trial that provided the template for the current project (Project TNT). Next, program development studies for Project EX are described. Through use of focus groups, a theme study (concept evaluation of written activity descriptions), a component study, and pilot studies, an eight-session program was developed. This program involves novel activities (e.g., "talk show enactments," games, and alternative medicine-type activities such as yoga and meditation) in combination with motivation enhancement and cognitive-behavioral strategies to motivate and instruct in cessation initiation and maintenance efforts. The outcomes of the first experimental trial of Project EX, a school-based clinic program, are described, followed by a posthoc analysis of its effects mediation. A second EX study, a multiple baseline single group pilot study design in Wuhan, China, is described next. Description of a second experimental trial follows, which tested EX with nicotine gum versus a natural herb. A third experimental trial that tests a classroom prevention/cessation version of EX is then introduced. Finally, the implications of this work are discussed. The intent-to-treat quit rate for Project EX is approximately 15% across studies, double that of a standard care comparison. Effects last up to a six-month post-program at regular and alternative high schools. Through a systematic protocol of empirical program development and field trials, an effective and replicable model teen tobacco use cessation program is established. Future cessation work might expand on this work.

  12. Project EX: A Program of Empirical Research on Adolescent Tobacco Use Cessation

    PubMed Central

    Sussman, Steve; McCuller, William J; Zheng, Hong; Pfingston, Yvonne M; Miyano, James; Dent, Clyde W

    2004-01-01

    This paper presents the Project EX research program. The historical background for Project EX is presented, including a brief summary of reasons youth fail to quit tobacco use, the disappointing status of previous cessation research, and the teen cessation trial that provided the template for the current project (Project TNT). Next, program development studies for Project EX are described. Through use of focus groups, a theme study (concept evaluation of written activity descriptions), a component study, and pilot studies, an eight-session program was developed. This program involves novel activities (e.g., "talk show enactments," games, and alternative medicine-type activities such as yoga and meditation) in combination with motivation enhancement and cognitive-behavioral strategies to motivate and instruct in cessation initiation and maintenance efforts. The outcomes of the first experimental trial of Project EX, a school-based clinic program, are described, followed by a posthoc analysis of its effects mediation. A second EX study, a multiple baseline single group pilot study design in Wuhan, China, is described next. Description of a second experimental trial follows, which tested EX with nicotine gum versus a natural herb. A third experimental trial that tests a classroom prevention/cessation version of EX is then introduced. Finally, the implications of this work are discussed. The intent-to-treat quit rate for Project EX is approximately 15% across studies, double that of a standard care comparison. Effects last up to a six-month post-program at regular and alternative high schools. Through a systematic protocol of empirical program development and field trials, an effective and replicable model teen tobacco use cessation program is established. Future cessation work might expand on this work. PMID:19570278

  13. Simulation of Thermo-viscoplastic Behaviors for AISI 4140 Steel

    NASA Astrophysics Data System (ADS)

    Li, Hong-Bin; Feng, Yun-Li

    2016-04-01

    The thermo-viscoplastic behaviors of AISI 4140 steel are investigated over wide ranges of strain rate and deformation temperature by isothermal compression tests. Based on the experimental results, a unified viscoplastic constitutive model is proposed to describe the hot compressive deformation behaviors of the studied steel. In order to reasonably evaluate the work hardening behaviors, a strain hardening material constant (h0) is expressed as a function of deformation temperature and strain rate in the proposed constitutive model. Also, the sensitivity of initial value of internal variable s to the deformation temperature is discussed. Furthermore, it is found that the initial value of internal variable s can be expressed as a linear function of deformation temperature. Comparisons between the measured and predicted results confirm that the proposed constitutive model can give an accurate and precise estimate of the inelastic stress-strain relationships for the studied high-strength steel.

  14. Poloidal flux profile reconstruction from pointwise measurements via extended Kalman filtering in the DIII-D Tokamak

    DOE PAGES

    Wang, Hexiang; Barton, Justin E.; Schuster, Eugenio

    2015-09-01

    The accuracy of the internal states of a tokamak, which usually cannot be measured directly, is of crucial importance for feedback control of the plasma dynamics. A first-principles-driven plasma response model could provide an estimation of the internal states given the boundary conditions on the magnetic axis and at plasma boundary. However, the estimation would highly depend on initial conditions, which may not always be known, disturbances, and non-modeled dynamics. Here in this work, a closed-loop state observer for the poloidal magnetic flux is proposed based on a very limited set of real-time measurements by following an Extended Kalman Filteringmore » (EKF) approach. Comparisons between estimated and measured magnetic flux profiles are carried out for several discharges in the DIII-D tokamak. The experimental results illustrate the capability of the proposed observer in dealing with incorrect initial conditions and measurement noise.« less

  15. An effective method for terrestrial arthropod euthanasia.

    PubMed

    Bennie, Neil A C; Loaring, Christopher D; Bennie, Mikaella M G; Trim, Steven A

    2012-12-15

    As scientific understanding of invertebrate life increases, so does the concern for how to end that life in an effective way that minimises (potential) suffering and is also safe for those carrying out the procedure. There is increasing debate on the most appropriate euthanasia methods for invertebrates as their use in experimental research and zoological institutions grows. Their popularity as pet species has also led to an increase in the need for greater veterinary understanding. Through the use of a local injection of potassium chloride (KCl) initially developed for use in American lobsters, this paper describes a safe and effective method for euthanasia in terrestrial invertebrates. Initial work focused on empirically determining the dose for cockroaches, which was then extrapolated to other arthropod species. For this method of euthanasia, we propose the term 'targeted hyperkalosis' to describe death through terminal depolarisation of the thoracic ganglia as a result of high potassium concentration.

  16. Mixing Enhancement by Tabs in Round Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Seiner, John M.; Grosch, C. E.

    1998-01-01

    The objective of this study was to analyze jet plume mass flow entrainment rates associated with the introduction of counter-rotating streamwise vorticity by prism shaped devices (tabs) located at the lip of the nozzle. We have examined the resulting mixing process through coordinated experimental tests and numerical simulations of the supersonic flow from a model axisymmetric nozzle. In the numerical simulations, the total induced vorticity was held constant while varying the distribution of counter-rotating vorticity around the nozzle lip training edge. In the experiment, the number of tabs applied was varied while holding the total projected area constant. Evaluations were also conducted on initial vortex strength. The results of this work show that the initial growth rate of the jet shear layer is increasingly enhanced as more tabs are added, but that the lowest tab count results in the largest entrained mass flow. The numerical simulations confirm these results.

  17. Parametric Dependence of Initial LEV Behavior on Maneuvering Wings

    NASA Astrophysics Data System (ADS)

    Berdon, Randall; Wabick, Kevin; Buchholz, James; Johnson, Kyle; Thurow, Brian; University of Iowa Team; Auburn University Team

    2017-11-01

    A maneuvering rectangular wing of aspect ratio 2 is examined experimentally using dye visualization and PIV to characterize the initial development of the leading-edge vortex (LEV) during a rolling maneuver in a uniform free stream. Understanding the underlying physics during the early evolution of the vortex is important for developing strategies to manipulate vortex evolution. Varying the dimensionless radius of gyration of the wing (Rg/c, where Rg is the radius of gyration and c is the chord) and the advance ratio (J=U/ ΩRg, where U is the free-stream velocity and Ω is the roll rate) affects the structure of the vortex and its propensity to remain attached. The influence of these parameters will be discussed, toward identification of similarity parameters governing vortex development. This work is supported by the Air Force Office of Scientific Research (Grant Number FA9550-16-1-0107, Dr. Douglas Smith, program manager).

  18. Some Aspects of Advanced Tokamak Modeling in DIII-D

    NASA Astrophysics Data System (ADS)

    St John, H. E.; Petty, C. C.; Murakami, M.; Kinsey, J. E.

    2000-10-01

    We extend previous work(M. Murakami, et al., General Atomics Report GA-A23310 (1999).) done on time dependent DIII-D advanced tokamak simulations by introducing theoretical confinement models rather than relying on power balance derived transport coefficients. We explore using NBCD and off axis ECCD together with a self-consistent aligned bootstrap current, driven by the internal transport barrier dynamics generated with the GLF23 confinement model, to shape the hollow current profile and to maintain MHD stable conditions. Our theoretical modeling approach uses measured DIII-D initial conditions to start off the simulations in a smooth consistent manner. This mitigates the troublesome long lived perturbations in the ohmic current profile that is normally caused by inconsistent initial data. To achieve this goal our simulation uses a sequence of time dependent eqdsks generated autonomously by the EFIT MHD equilibrium code in analyzing experimental data to supply the history for the simulation.

  19. The Marble Experiment: Overview and Simulations

    NASA Astrophysics Data System (ADS)

    Douglas, M. R.; Murphy, T. J.; Cobble, J. A.; Fincke, J. R.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.

    2015-11-01

    The Marble ICF platform has recently been launched on both OMEGA and NIF with the goal to investigate the influence of heterogeneous mix on fusion burn. The unique separated reactant capsule design consists of an ``engineered'' CH capsule filled with deuterated plastic foam that contains pores or voids that are filled with tritium gas. Initially the deuterium and tritium are separated, but as the implosion proceeds, the D and T mix, producing a DT signature. The results of these experiments will be used to inform a probability density function (PDF) burn modelling approach for un-resolved cell morphology. Initial targets for platform development have consisted of either fine-pore foams or gas mixtures, with the goal to field the engineered foams in 2016. An overview of the Marble experimental campaign will be presented and simulations will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.

  20. [The neurological and embryological studies of Santiago Ramon y Cajal].

    PubMed

    Baratas Diaz, L A

    1997-01-01

    The neurological and embryological work of Santiago Ramon y Cajal appeared in three stages: a) Between 1888 and 1893 observations on the development of neuron prolongations led to the observation of the growth cone and formulation of the neurotropic hypothesis. b) Between 1905 and 1908 the study of regenerative phenomena in nerves and nervours centers presented a large body of evidence consistent with the neurotropic hypothesis. c)Between 1910 and 1914 an experimental program was undertaken to test the neurotropic hypothesis; this program led to conclusions on the origin and chemical nature of the growth stimulating factor. These contributions initiated an important line of research that none of Ramon y Cajal's disciples could continue. In the nineteen fifties a group of researchers from three disciplines (biochemistry, embryology and neurohistology) discovered the existence of nerve growth factor (NGF), thus initiating a fertile new field of knowledge in cell biology.

  1. Constructing Temporally Extended Actions through Incremental Community Detection

    PubMed Central

    Li, Ge

    2018-01-01

    Hierarchical reinforcement learning works on temporally extended actions or skills to facilitate learning. How to automatically form such abstraction is challenging, and many efforts tackle this issue in the options framework. While various approaches exist to construct options from different perspectives, few of them concentrate on options' adaptability during learning. This paper presents an algorithm to create options and enhance their quality online. Both aspects operate on detected communities of the learning environment's state transition graph. We first construct options from initial samples as the basis of online learning. Then a rule-based community revision algorithm is proposed to update graph partitions, based on which existing options can be continuously tuned. Experimental results in two problems indicate that options from initial samples may perform poorly in more complex environments, and our presented strategy can effectively improve options and get better results compared with flat reinforcement learning. PMID:29849543

  2. Changing Workplaces to Reduce Work-Family Conflict: Schedule Control in a White-Collar Organization.

    PubMed

    Kelly, Erin L; Moen, Phyllis; Tranby, Eric

    2011-04-01

    Work-family conflicts are common and consequential for employees, their families, and work organizations. Can workplaces be changed to reduce work-family conflict? Previous research has not been able to assess whether workplace policies or initiatives succeed in reducing work-family conflict or increasing work-family fit. Using longitudinal data collected from 608 employees of a white-collar organization before and after a workplace initiative was implemented, we investigate whether the initiative affects work-family conflict and fit, whether schedule control mediates these effects, and whether work demands, including long hours, moderate the initiative's effects on work-family outcomes. Analyses clearly demonstrate that the workplace initiative positively affects the work-family interface, primarily by increasing employees' schedule control. This study points to the importance of schedule control for our understanding of job quality and for management policies and practices.

  3. Early sex work initiation and condom use among alcohol-using female sex workers in Mombasa, Kenya: a cross-sectional analysis

    PubMed Central

    Parcesepe, Angela M; L’Engle, Kelly L; Martin, Sandra L; Green, Sherri; Suchindran, Chirayath; Mwarogo, Peter

    2016-01-01

    Objectives Early initiation of sex work is prevalent among female sex workers (FSWs) worldwide. The objectives of this study were to investigate if early initiation of sex work was associated with: (1) consistent condom use, (2) condom negotiation self-efficacy or (3) condom use norms among alcohol-using FSWs in Mombasa, Kenya. Methods In-person interviews were conducted with 816 FSWs in Mombasa, Kenya. Sample participants were: recruited from HIV prevention drop-in centres, 18 years or older and moderate risk drinkers. Early initiation was defined as first engaging in sex work at 17 years or younger. Logistic regression modelled outcomes as a function of early initiation, adjusting for drop-in centre, years in sex work, supporting others and HIV status. Results FSWs who initiated sex work early were significantly less likely to report consistent condom use with paying sex partners compared with those who initiated sex work in adulthood. There was no significant difference between groups in consistent condom use with non-paying sex partners. FSWs who initiated sex work early endorsed less condom negotiation self-efficacy with paying sex partners compared with FSWs who did not initiate sex work early. Conclusions Findings highlight a need for early intervention for at-risk youth and adolescent FSWs, particularly in relation to HIV sexual risk behaviours. Evidence-based interventions for adolescent FSWs or adult FSWs who began sex work in adolescence should be developed, implemented and evaluated. PMID:27217378

  4. Ab initio molecular dynamics of H2O adsorbed on solid MgO

    NASA Astrophysics Data System (ADS)

    Langel, Walter; Parrinello, Michele

    1995-08-01

    The Car-Parrinello method has been applied to study the adsorption of water on solid magnesium oxide with surface defects. A step consisting of an (100) and an (010) surface on an (011) base plane allows us to model the experimentally observed microfaceting. In and on this step dissociation of water into a hydroxyl group and a H-atom took place following a complicated pathway only accessible by the simulation of thermal motion. Under comparable conditions physisorption only was observed on a regular (001) plane. This solves an experimental controversy and it is in agreement with the observation, that disordered surfaces are more active in initiating the dissociation of the water molecules. Our work allows us to identify an important active center. We can also account for the experimentally observed broadening and shifting to the red of the stretching mode of hydrogen bonded hydroxyl groups, and we provide a detailed explanation of the origin of this effect. This allows us to verify earlier theories of hydrogen bonding such as that of the adiabatic separation of the proton dynamics.

  5. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing.

    PubMed

    Sillin, Henry O; Aguilera, Renato; Shieh, Hsien-Hang; Avizienis, Audrius V; Aono, Masakazu; Stieg, Adam Z; Gimzewski, James K

    2013-09-27

    Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network. The effects of changing connectivity density on the nonlinear dynamics were examined as characterized by higher harmonic generation in response to AC inputs. To demonstrate their utility for computation, we subjected the simulated network to training within the framework of reservoir computing and showed initial evidence of the ASN acting as a reservoir which may be optimized for specific tasks by adjusting the input gain. The work presented represents steps in a unified approach to experimentation and theory of complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.

  6. Internal aerodynamics of a generic three-dimensional scramjet inlet at Mach 10

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1995-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10 has been performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration. The work proceeded in several phases: the initial inviscid assessment of the internal shock structure, the preliminary computational parametric study, the coupling of the optimized configuration with the physical limitations of the facility, the wind tunnel blockage assessment, and the computational and experimental parametric study of the final configuration. Good agreement between computation and experimentation was observed in the magnitude and location of the interactions, particularly for weakly interacting flow fields. Large-scale forward separations resulted when the interaction strength was increased by increasing the contraction ratio or decreasing the Reynolds number.

  7. Ice Layer Spreading along a Solid Substrate during Solidification of Supercooled Water: Experiments and Modeling.

    PubMed

    Schremb, Markus; Campbell, James M; Christenson, Hugo K; Tropea, Cameron

    2017-05-16

    The thermal influence of a solid wall on the solidification of a sessile supercooled water drop is experimentally investigated. The velocity of the initial ice layer propagating along the solid substrate prior to dendritic solidification is determined from videos captured using a high-speed video system. Experiments are performed for varying substrate materials and liquid supercooling. In contrast to recent studies at moderate supercooling, in the case of metallic substrates only a weak influence of the substrate's thermal properties on the ice layer velocity is observed. Using the analytical solution of the two-phase Stefan problem, a semiempirical model for the ice layer velocity is developed. The experimental data are well described for all supercooling levels in the entire diffusion limited solidification regime. For higher supercooling, the model overestimates the freezing velocity due to kinetic effects during molecular attachment at the solid-liquid interface, which are not accounted for in the model. The experimental findings of the present work offer a new perspective on the design of anti-icing systems.

  8. Acoustic experimental investigation of interaction femtosecond laser pulses with gas-aerosol media and biological tissues

    NASA Astrophysics Data System (ADS)

    Bochkarev, N. N.; Kabanov, A. M.; Stepanov, A. N.

    2008-02-01

    Using two optical acoustic approaches we experimentally investigated spatial location of filament zone of propagation channel of focused laser radiation. For femtosecond pulses passing in air it was shown that nonlinear focus length had spatial scale of 1/P at initial power P moderate for self-focusing and at optical system focus distance significantly lower than Rayleigh beam length. The results of experimental optical acoustic investigation of femto- and nanosecond pulses attenuation by some biological tissues (muscular tissue, adipose tissue, cutaneous covering, milk) and optical breakdown thresholds on these one are presented. It was shown that penetration depth of short laser pulse radiation into biological tissues is the same as for longer one. However, amplitude of acoustic response to a process of interaction of femtosecond laser pulse with biological tissue is larger in several times than that to interaction with nanosecond pulses of the same power and spectral distribution. The obtained of threshold values can be interesting for tabulation of limit allowable levels of irradiation at work with laser radiation. Such values are unknown for femtosecond laser pulses today.

  9. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing

    NASA Astrophysics Data System (ADS)

    Sillin, Henry O.; Aguilera, Renato; Shieh, Hsien-Hang; Avizienis, Audrius V.; Aono, Masakazu; Stieg, Adam Z.; Gimzewski, James K.

    2013-09-01

    Atomic switch networks (ASNs) have been shown to generate network level dynamics that resemble those observed in biological neural networks. To facilitate understanding and control of these behaviors, we developed a numerical model based on the synapse-like properties of individual atomic switches and the random nature of the network wiring. We validated the model against various experimental results highlighting the possibility to functionalize the network plasticity and the differences between an atomic switch in isolation and its behaviors in a network. The effects of changing connectivity density on the nonlinear dynamics were examined as characterized by higher harmonic generation in response to AC inputs. To demonstrate their utility for computation, we subjected the simulated network to training within the framework of reservoir computing and showed initial evidence of the ASN acting as a reservoir which may be optimized for specific tasks by adjusting the input gain. The work presented represents steps in a unified approach to experimentation and theory of complex systems to make ASNs a uniquely scalable platform for neuromorphic computing.

  10. Experimental Investigations And Numerical Modelling of 210CR12 Steel in Semi-Solid State

    NASA Astrophysics Data System (ADS)

    Macioł, Piotr; Zalecki, Władysław; Kuziak, Roman; Jakubowicz, Aleksandra; Weglarczyk, Stanisław

    2011-05-01

    Experimental investigation, including hot compression and simple closed die filling was performed. Temperature range of tests was between 1225 °C and 1320 °C. Temperature selection was adequate with liquid fraction between 20 and 60%, which is typical for thixoforming processes. In the die filling test, steel dies with ceramic layer was used (highly refractory air-setting mortar JM 3300 manufactured by Thermal Ceramics). Experiments were carried out on the Gleeble 3800 physical simulator with MCU unit. In the paper, methodology of experimental investigation is described. Dependency of forming forces on temperature and forming velocities is analysed. Obtained results are discussed. The second part of the paper concerns numerical modelling of semi-solid forming. Numerical models for both sets of test were developed. Structural and Computational Fluid Dynamics models are compared. Initial works in microstructural modelling of 210CR12 steel behaviour are described. Lattice Boltzman Method model for thixotropic flows is introduced. Microscale and macroscale models were integrated into multiscale simulation of semi-solid forming. Some fundamental issues related to multiscale modelling of thixoforming are discussed.

  11. Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method

    NASA Astrophysics Data System (ADS)

    Ghavidel, Elham; Sari, Amir Hossein; Dorranian, Davoud

    2018-07-01

    In this work, the effects of liquid environments on the characteristics and optical properties of carbon nanostructures - in particular, Graphene Oxide (GO) - prepared by pulsed laser ablation were studied experimentally. The second harmonic beam of a Q-switched Nd:YAG laser of 532 nm wavelength at 6 ns pulse width and 0.7 J/cm2 fluence was employed to irradiate the graphite target in liquid nitrogen, deionized water, and 0.01 M CTAB solution under the same initial experimental conditions. Produced nanostructures were characterized by Raman scattering spectrum, FE-SEM and TEM images, Photoluminescence, and UV-Vis-NIR spectrum. TEM and FE-SEM images show sheet-like morphology with few square micrometer area graphenes in all samples. Raman and UV-Vis-NIR analyses show that graphene is oxidized due to the presence of oxygen molecules in ablation environment. Results demonstrate that the graphene nanosheets produced in deionized water are multilayer, contains the largest sp2 domain size, the least defects and the lowest possibility of aggregation.

  12. Effectiveness of Student Learning during Experimental Work in Primary School.

    PubMed

    Logar, Ana; Peklaj, Cirila; Ferk Savec, Vesna

    2017-09-01

    The aim of the research was to optimize the effectiveness of student learning based on experimental work in chemistry classes in Slovenian primary schools. To obtain evidence about how experimental work is implemented during regular chemistry classes, experimental work was videotaped during 19 units of chemistry lessons at 12 Slovenian primary schools from the pool of randomly selected schools. Altogether 332 eight-grade students were involved in the investigation, with an average age of 14.2 years. Students were videotaped during chemistry lessons, and their worksheets were collected afterward. The 12 chemistry teachers, who conducted lessons in these schools, were interviewed before the lessons; their teaching plans were also collected. The collected data was analyzed using qualitative methods. The results indicate that many teachers in Slovenian primary schools are not fully aware of the potential of experimental work integrated into chemistry lessons for the development of students' experimental competence. Further research of the value of different kinds of training to support teachers for the use of experimental work in chemistry teaching is needed.

  13. Microwave permeability of stripe patterned FeCoN thin film

    NASA Astrophysics Data System (ADS)

    Wu, Yuping; Yang, Yong; Ma, Fusheng; Zong, Baoyu; Yang, Zhihong; Ding, Jun

    2017-03-01

    Magnetic stripe patterns are of great importance for microwave applications owing to their highly tunable microwave permeability by adjusting the geometrical dimensions. In this work, stripe patterned FeCoN films with 160 nm thickness are fabricated by using standard UV photolithography. Their microwave permeability are investigated systematically via both experiment and micromagnetic simulation. The good agreement between experimental and simulation results suggests that stripe width is crucial for the microwave magnetic properties of the stripe pattern. It is demonstrated by simulation that with increasing stripe width from 1 to 80 μm the initial permeability shows a continuous growth from about 8-322, whiles the resonance frequency drops dramatically from 18.7 to 3.1 GHz at 4 μm gap size. Smaller gap size would result in slightly increased initial permeability due to larger magnetic volume ratio, accompanied by decreased resonance frequency because of stronger magnetostatic interaction. Moreover, the experimental investigation on stripe length effect indicates that the stripe length should be kept as long as possible to achieve uniform bulk resonance mode and high permeability value. Insufficient stripe length would result in low frequency edge mode and decayed bulk mode. This study could provide valuable guidelines on the selection of proper geometry dimensions of FeCoN stripe patterns for high frequency applications.

  14. Comparison of Visual and Acoustic Emission Observations in a Four Point Bending Experiment on Barre Granite

    NASA Astrophysics Data System (ADS)

    Li, Bing Qiuyi; Einstein, Herbert H.

    2017-09-01

    We present an experimental study in which a pre-notched specimen of Barre Granite was subjected to four point bending under crack mouth opening displacement control. The experimental observations consisted of load-displacement measurements, acoustic emissions, and photography on a macroscopic ( cm) as well as microscopic ( μm) scale. These observations were compared and analysed to better understand process zone development and crack propagation. Load-displacement data showed that the load reaches its maximum at crack initiation, and the machine input work is constant while the crack propagates. AE moment magnitudes between Mw = -6 to -10 were observed, and focal mechanisms consisted of both shear and tensile components. During process zone development, AE formed a large cloud of events located near the notch tip and then tended to occur away from the notch tip as the crack propagated. Image analysis at the microscopic scale showed that microcracks formed and coalesced during process zone development; specifically, the microcracks initiated in tension and then propagated as a series of en-echelon cracks. In general, the synthesis of the three observations showed that a wider bulb of activity at lower energy tended to occur during process zone development, while crack propagation tended to be more spatially concentrated and contained higher energy.

  15. Mathematical Models of Cardiac Pacemaking Function

    NASA Astrophysics Data System (ADS)

    Li, Pan; Lines, Glenn T.; Maleckar, Mary M.; Tveito, Aslak

    2013-10-01

    Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  16. Designing synthetic RNAs to determine the relevance of structural motifs in picornavirus IRES elements

    NASA Astrophysics Data System (ADS)

    Fernandez-Chamorro, Javier; Lozano, Gloria; Garcia-Martin, Juan Antonio; Ramajo, Jorge; Dotu, Ivan; Clote, Peter; Martinez-Salas, Encarnacion

    2016-04-01

    The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.

  17. Magnetic Gauge Instrumentation on the LANL Gas-Driven Two-Stage Gun

    NASA Astrophysics Data System (ADS)

    Alcon, R. R.; Sheffield, S. A.; Martinez, A. R.; Gustavsen, R. L.

    1997-07-01

    Our gas-driven two-stage gun was designed and built to do initiation studies on insensitive high explosives as well as other equation of state experiments on inert materials. Our preferred method of measuring initiation phenomena involves the use of in-situ magnetic particle velocity gauges. In order to provide the 1-D experimental area to accommodate this type of gauging in our two-stage gun, it has a 50-mm-diameter launch tube. We have used magnetic gauging on our 72-mm bore diameter single-stage gun for over 15 years and it has proven a very effective technique for all types of shock wave experiments, including those on high explosives. This technique has now been installed on our two-stage gun. We describe the experimental method, as well as some of the difficulties that arose during the installation. Several magnetic gauge experiments have been completed on plastic and high explosive materials. Waveforms obtained in some of the experiments will be discussed. Up to 10 in-situ particle velocity measurements can be made in a single experiment. This new technique is now working quite well, as is evidenced by the data. To our knowledge, this is the first time magnetic gauging has been used on a two-stage gun.

  18. Experimental and numerical investigation of crack initiation and propagation in silicon nitride ceramic under rolling and cyclic contact

    NASA Astrophysics Data System (ADS)

    Raga, Rahul; Khader, Iyas; Zdeněk, Chlup; Kailer, Andreas

    2017-05-01

    The focus of the work was to investigate crack initiation and propagation mechanisms in silicon nitride undergoing non-conforming hybrid contact under various tribological conditions. In order to understand the prevailing modes of damage in silicon nitride, two distinct model experiments were proposed, namely, rolling contact and cyclic contact experiments. The rolling contact experiment was designed in order to mimic the contact conditions appearing in hybrid bearings at contact pressures ranging from 3 to 6 GPa. On the other hand, cyclic contact experiments with stresses ranging from 4 to 15 GPa under different media were carried out to study damage under localised stresses. In addition, the experimentally observed cracks were implemented in a finite element model to study the stress redistribution and correlate the generated stresses with the corresponding mechanisms. Crack propagation under rolling contact was attributed to two different mechanisms, namely, fatigue induced fracture and lubricant driven crack propagation. The numerical simulations shed light on the tensile stress driven surface and subsurface crack propagation mechanisms. On the other hand, the cyclic contact experiments showed delayed crack formation for lubricated cyclic contact. Ceramographic cross-sectional analysis showed crack patterns similar to Hertzian crack propagation under cyclic contact load.

  19. Response surface methodology investigation into the interactions between arsenic and humic acid in water during the coagulation process.

    PubMed

    Watson, Malcolm Alexander; Tubić, Aleksandra; Agbaba, Jasmina; Nikić, Jasmina; Maletić, Snežana; Molnar Jazić, Jelena; Dalmacija, Božo

    2016-07-15

    Interactions between arsenic and natural organic matter (NOM) are key limiting factors during the optimisation of drinking water treatment when significant amounts of both must be removed. This work uses Response Surface Methodology (RSM) to investigate how they interact during their simultaneous removal by iron chloride coagulation, using humic acid (HA) as a model NOM substance. Using a three factor Box-Behnken experimental design, As and HA removals were modelled, as well as a combined removal response. ANOVA results showed the significance of the coagulant dose for all three responses. At high initial arsenic concentrations (200μg/l), As removal was significantly hindered by the presence of HA. In contrast, the HA removal response was found to be largely independent of the initial As concentration, with the optimum coagulant dose increasing at increasing HA concentrations. The combined response was similar to the HA removal response, and the interactions evident are most interesting in terms of optimising treatment processes during the preparation of drinking water, highlighting the importance of utilizing RSM for such investigations. The combined response model was successfully validated with two different groundwaters used for drinking water supply in the Republic of Serbia, showing excellent agreement under similar experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Alternate working fluids for solar air conditioning applications

    NASA Technical Reports Server (NTRS)

    Evans, R. D.; Beck, J. K.

    1978-01-01

    An experimental investigation of sixteen different refrigerant-absorbent fluid pairs has been carried out in order to determine their suitability as the working fluid in a solar-powered absorption cycle air conditioner. The criteria used in the initial selection of a refrigerant-absorbent pair included: high affinity (large negative deviation from Raoult's Law), high solubility, low specific heat, low viscosity, stability, corrosive properties, safety, and cost. For practical solar considerations of a fluid pair, refrigerants were selected with low boiling points whereas absorbent fluids were selected with a boiling point considerably above that of the refrigerant. Additional restrictions are determined by the operating temperatures of the absorber and the generator; these temperatures were specified as 100 F (39 C) and 170 F (77 C). Data are presented for a few selected pressures at the specified absorber and generator temperatures.

  1. Amplification of spontaneous emission on sodium D-lines using nonresonance broadband optical pumping

    NASA Astrophysics Data System (ADS)

    Petukhov, T. D.; Evtushenko, G. S.; Tel'minov, E. N.

    2018-04-01

    This work describes an experimental study of obtaining the amplified spontaneous emission (ASE) on sodium D-lines using nonresonance broadband optical pumping. ASE is observed at transitions D2 and D1 line: 589 nm (32 P3/2 - 32 S1/2) and 589.6 nm (32 P1/2 - 32 S1/2). The active medium was pumped by the dye laser with FWHM of 5 nm, maximum radiation in the range 584.5-586.5 nm, and pulse energy above 2 mJ. The working temperature of the active medium was 260 °C, initial pressure of buffer gas-helium was 300 torr (operating pressure - 500 torr). A change in the absorption spectra at D lines at different temperatures of the active medium and buffer gas pressures was observed

  2. An Investigation of the Effect of Surface Impurities on the Adsorption Kinetics of Hydrogen Chemisorbed onto Iron

    NASA Technical Reports Server (NTRS)

    Shanabarger, M. R.

    1997-01-01

    The original goal of this program was to investigate the effect surface impurities have on the heterogeneous kinetic processes of those molecular species which produce gaseous hydrogen degradation of the mechanical properties of metallic structural materials. However, shortly after the initiation of the original program, the program's NASA Technical Monitor, Dr. Howard Nelson, requested that the effort supported by this Co-operative Agreement be redirected to study more pressing materials issues associated to the development of the National Aero-Space Plane (NASP). The results of these efforts are outlined in this report. Detailed discussions of specific work, including experimental techniques and procedures, will be found in the publications listed with the subsection discussing that specific work as well and in Section 5. No inventions were generated or disclosed within this Agreement.

  3. Non-contact control of the working condition of mechanical units of the steam compressor for desalination plant

    NASA Astrophysics Data System (ADS)

    Danilin, A. I.; Chernyavsky, A. Zh.; Danilin, S. A.; Neverov, V. V.; Voroh, D. A.; Blagin, E. V.

    2018-03-01

    New methods and means for monitoring working condition of the rotating elements of steam compressor unit such as blade ring of the impeller and gears of multiplier are considered. Blade control is carried out by the signalling device of pre-emergency deformation of impeller blades. Control of the gears condition is carried out by apparatus system which allows to analyse change of the signal form caused by the gears wear. Influence of the wear types on the typical information parameters of the analysed signals is described. Technical characteristics of the devices and experimental research results are presented. Described control systems allow to detect deviations equal to 1-2% from initial condition. Application of such systems gives the opportunity to improve fault diagnosis and maintenance in 2-3 times.

  4. Computer Modeling and Simulation of Bullet Impact to the Human Thorax

    DTIC Science & Technology

    2000-06-01

    manufacturers into the design and assessment stag~e of their body armor systems. V50 36 testing as used by body armor manufacturers experimentally identifies a...was due to the use of numerical integration by the experimenters at AFIP to obtain the velocities and displacements. In order to set a standard for... numerical integration. As such, in the sternum velocity graph, the initial downward motion of the experimental results, dependent upon the initial negative

  5. Battery state-of-charge estimation using approximate least squares

    NASA Astrophysics Data System (ADS)

    Unterrieder, C.; Zhang, C.; Lunglmayr, M.; Priewasser, R.; Marsili, S.; Huemer, M.

    2015-03-01

    In recent years, much effort has been spent to extend the runtime of battery-powered electronic applications. In order to improve the utilization of the available cell capacity, high precision estimation approaches for battery-specific parameters are needed. In this work, an approximate least squares estimation scheme is proposed for the estimation of the battery state-of-charge (SoC). The SoC is determined based on the prediction of the battery's electromotive force. The proposed approach allows for an improved re-initialization of the Coulomb counting (CC) based SoC estimation method. Experimental results for an implementation of the estimation scheme on a fuel gauge system on chip are illustrated. Implementation details and design guidelines are presented. The performance of the presented concept is evaluated for realistic operating conditions (temperature effects, aging, standby current, etc.). For the considered test case of a GSM/UMTS load current pattern of a mobile phone, the proposed method is able to re-initialize the CC-method with a high accuracy, while state-of-the-art methods fail to perform a re-initialization.

  6. Interaction of Vortex Ring with Cutting Plate

    NASA Astrophysics Data System (ADS)

    Musta, Mustafa

    2015-11-01

    The interaction of a vortex ring impinging on a thin cutting plate was made experimentally using Volumetric 3-component Velocitmetry (v3v) technique. The vortex rings were generated with piston-cylinder vortex ring generator using piston stroke-to-diameter ratios and Re at 2-3 and 1500 - 3000, respectively. The cutting of vortex rings below center line leads to the formation of secondary vortices on each side of the plate which is look like two vortex rings, and a third vortex ring propagates further downstream in the direction of the initial vortex ring, which is previously showed by flow visualization study of Weigand (1993) and called ``trifurcation''. Trifurcation is very sensitive to the initial Reynolds number and the position of the plate with respect to the vortex ring generator pipe. The present work seeks more detailed investigation on the trifurcation using V3V technique. Conditions for the formation of trifurcation is analyzed and compared with Weigand (1993). The formed secondary vortex rings and the propagation of initial vortex ring in the downstream of the plate are analyzed by calculating their circulation, energy and trajectories.

  7. Elastic-plastic finite element analyses of an unidirectional, 9 vol percent tungsten fiber reinforced copper matrix composite

    NASA Technical Reports Server (NTRS)

    Sanfeliz, Jose G.

    1993-01-01

    Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.

  8. Boiling water jet outflow from a thin nozzle: spatial modeling

    NASA Astrophysics Data System (ADS)

    Bolotnova, R. Kh.; Korobchinskaya, V. A.

    2017-09-01

    This study presents dual-temperature two-phase model for liquid-vapor mixture with account for evaporation and inter-phase heat transfer (taken in single-velocity single-pressure approximation). Simulation was performed using the shock-capturing method and moving Lagrangian grids. Analysis was performed for simulated and experimental values of nucleation frequency (for refining the initial number and radius of microbubbles) which affect the evaporation rate. Validity of 2D and 1D simulation was examined through comparison with experimental data. The peculiarities of the water-steam formation at the initial stage of outflow through a thin nozzle were studied for different initial equilibrium states of water for the conditions close to chosen experimental conditions.

  9. Correlates of early versus later initiation into sex work in two Mexico-U.S. border cities.

    PubMed

    Loza, Oralia; Strathdee, Steffanie A; Lozada, Remedios; Staines, Hugo; Ojeda, Victoria D; Martínez, Gustavo A; Amaro, Hortensia; Patterson, Thomas L

    2010-01-01

    To examine correlates of early initiation into sex work in two Mexico-U.S. border cities. Female sex workers (FSWs) >/=18 years without known HIV infection living in Tijuana and Ciudad Juarez who had recent unprotected sex with clients underwent baseline interviews. Correlates of initiation into sex work before age 18 were identified with logistic regression. Of 920 FSWs interviewed in Tijuana (N=474) and Ciudad Juarez (N=446), 9.8% (N=90) were early initiators (<18 years) into sex work. Median age of entry into sex work was 26 years (range: 6-58). After adjusting for age, compared to older initiators, early initiators were more likely to use inhalants (21.1% vs. 9.6%, p=.002), initiate sex work to pay for alcohol (36.7% vs. 18.4%, p < .001), report abuse as a child (42.2% vs. 18.7%, p<.0001), and they were less likely to be migrants (47.8% vs. 62.3%, p=.02). Factors independently associated with early initiation included inhalant use (adjOR=2.39), initiating sex work to pay for alcohol (adjOR=1.88) and history of child abuse (adjOR=2.92). Factors associated with later initiation included less education (adjOR=0.43 per 5-year increase), migration (adjOR=0.47), and initiating sex work for better pay (adjOR=0.44) or to support children (adjOR=0.03). Different pathways for entering sex work are apparent among younger versus older females in the Mexico-U.S. border region. Among girls, interventions are needed to prevent inhalant use and child abuse and to offer coping skills; among older initiators, income-generating strategies, childcare, and services for migrants may help to delay or prevent entry into sex work. Copyright 2010 Society for Adolescent Medicine. Published by Elsevier Inc. All rights reserved.

  10. Correlates of Early versus Later Initiation into Sex Work in Two Mexico–U.S. Border Cities

    PubMed Central

    Loza, Oralia; Strathdee, Steffanie A.; Lozada, Remedios; Staines, Hugo; Ojeda, Victoria D.; Martínez, Gustavo A.; Amaro, Hortensia; Patterson, Thomas L.

    2009-01-01

    Purpose To examine correlates of early initiation into sex work in two Mexico–U.S. border cities. Methods Female sex workers (FSWs) ≥18 years without known HIV infection living in Tijuana and Ciudad Juarez who had recent unprotected sex with clients underwent baseline interviews. Correlates of initiation into sex work before age 18 were identified with logistic regression. Results Of 920 FSWs interviewed in Tijuana (N=474) and Ciudad Juarez (N=446), 9.8% (N=90) were early initiators (<18 years) into sex work. Median age of entry into sex work was 26 years (range: 6–58). After adjusting for age, compared to older initiators, early initiators were more likely to use inhalants (21.1% vs 9.6%, p=0.002), initiate sex work to pay for alcohol (36.7% vs 18.4%, p<.001), report abuse as a child (42.2% vs 18.7%, p<.0001), and they were less likely to be migrants (47.8% vs 62.3%, p=0.02). Factors independently associated with early initiation included inhalant use (adjOR=2.39), initiating sex work to pay for alcohol (adjOR=1.88) and history of child abuse (adjOR=2.92). Factors associated with later initiation included less education (adjOR=0.43 per 5-year increase), migration (adjOR=0.47), and initiating sex work for better pay (adjOR=0.44) or to support children (adjOR=0.03). Conclusions Different pathways for entering sex work are apparent among younger versus older females in the Mexico–U.S. border region. Among girls, interventions are needed to prevent inhalant use and child abuse and to offer coping skills; among older initiators, income-generating strategies, childcare, and services for migrants may help to delay or prevent entry into sex work. PMID:20123256

  11. Need for Initiatives to Promote Procedural Understanding in Physics among School Teachers

    NASA Astrophysics Data System (ADS)

    Khaparde, Rajesh B.

    2010-07-01

    It is believed that there are three essential abilities which a student develops through a set of introductory physics laboratory courses. These abilities include 1) conceptual understanding, 2) experimental skills, and 3) procedural understanding. While the first two are well accepted, the third one is often implicit and goes behind the planning and execution of experimental physics. Procedural understanding has been described by a number of researchers including R. Gott and S. Duggan [1], and R. Roberts [2]. The author in his work [3] has adopted the approach of these researchers and extended it to physics laboratory training at the university level. Procedural understanding is the understanding of a set of ideas or concepts related to the `knowing how' of science and needed to put science into practice. It is the understanding of `concepts of evidence' like variable identification, sample size, variable types, relative scale, range, interval, choice of instruments, repeatability, graph type, etc. It is the thinking behind the doing and is a kind of cognitive understanding in its own right. It has been observed that while school (Grade 1-12) teachers are reasonably prepared to help students with respect to the development of conceptual understanding and experimental skills, a few are aware of the contents, methods and strategies related to the development of procedural understanding. It is felt that school teachers can play a very important role in helping students to develop procedural understanding at an early stage of their education and before students enter university courses. A need was felt to initiate and promote well-planned teacher improvement programmes at various levels of school education, with an objective to develop procedural understanding and understand the strategies of teaching suitable for various regions and learning environments. The author has initiated one such programme in India and will present details of a workshop organized at Mumbai, India.

  12. Condensed Matter Physics in Colombia is in its forties

    NASA Astrophysics Data System (ADS)

    Camacho, Angela

    2015-03-01

    Physics in Colombia started to develop in the 70's as a research part of basic sciences with the acquisition, at that time, of large research equipments such as x-rays and EPR. Experimental work was soon supplemented by theoretical investigations, which led to the formation of research groups in condensed matter. In the early 80's existed such groups in five universities. In this report we present, after a short history of the main steps that guided the initial research subjects, the major areas already developed and the minor research groups that are in the stage of consolidation. Currently this type of work is done at least in 20 universities. We also show the actual numbers of researchers, publications, PhD students and laboratories discriminated in gender to complete an overview of Condensed Matter Physics in Colombia. Finally, we present a short review of the main theoretical issues that have been worked in the last decade focusing on low dimensional systems, their structural and optical properties

  13. Surface recrystallization theory of the wear of copper in liquid methane

    NASA Technical Reports Server (NTRS)

    Bill, R. C.; Wisander, D. W.

    1974-01-01

    Copper was subjected to sliding against 440C in liquid methane. The normal load range was from 1/4 to 2 kilograms, and the sliding velocity range was from 3.1 to 25 meters per second. Over this range of experimental parameters, the wear rate of the copper rider was found to be proportional to the sliding velocity squared and to the normal load. Transmission electron microscopy was used to study the dislocation structure in the copper very near the wear scar surface. It was found that near the wear scar surface, the microstructure was characterized by a fine-cell recrystallized zone in which individual dislocations could be distinguished in the cell walls. The interiors of the cells, about 0.5 micrometer in diameter, were nearly dislocation free. Below the recrystallized layer was a zone that was intensely cold worked by the friction process. With increasing depth, this intensely cold worked zone gradually became indistinguishable from the partially cold worked bulk of the copper, representative of the initial condition of the material.

  14. Aluminum work function: Effect of oxidation, mechanical scraping and ion bombardment

    NASA Technical Reports Server (NTRS)

    Vinet, P.; Lemogne, T.; Montes, H.

    1985-01-01

    Surface studies have been performed on aluminum polycrystalline surfaces which have been mechanically scraped. Such studies were initiated in order to understand surface effects occurring in tribological processes which involve rubbing surfaces and the effects of adsorption of oxygen. To characterize the surfaces, the following three different experimental approaches have been used: (1) X.P.S. (X-ray photoelectron spectroscopy), in order to check the cleanliness of the surfaces and follow the adsorption and oxidation kinetics; (2) Analysis of the work function changes by following the energy spectra of secondary electrons emitted under low energy electron bombardment; and (3) Analysis of photoemission intensities under U.V. excitation. The reference state being chosen to be the surface cleaned by ion bombardment and exposures to oxygen atmospheres have been shown to lower the work function of clean polycrystalline aluminum by 1.2 eV. The oxygen pressure is found to affect only the kinetics of these experiments. Mechanical scraping has been shown to induce a decrease ( 0.3 eV) in the work function, which could sharply modify the kinetics of adsorption on the surface.

  15. Intensive working memory training: a single case experimental design in a patient following hypoxic brain damage.

    PubMed

    Hynes, S M; Fish, J; Manly, T

    2014-01-01

    Recent reports suggest that intensive, progressive training on working memory tasks can lead to generalized cognitive gains. A patient, following hypoxic brain damage, showed significant difficulties in working memory and time-perception. This study examined the impact and specificity of any benefits resulting from automated working memory training (AWMT) in comparison with the effects of an equivalent programme that emphasized automated novel problem-solving (APST) which served as an active control. Following initial assessment, the patient trained for 4 weeks (20 days), 20-30 minutes a day on the APST tasks before repeating key outcome measures. He then trained for an identical period on AWMT. There were no cognitive gains apparent following APST. Furthermore, there were no disproportionate gains on digit span following AWMT. AWMT was, however, associated with improvement in time-perception that had previously been resistant to rehabilitation. In line with previous reports, AWMT was also followed by gains on a measure of planning. The results provide encouraging evidence that AWMT may have generalized benefits in the context of impaired WM capacity following brain injury.

  16. Race, Exposure, and Initial Affective Ratings in Interpersonal Attraction.

    ERIC Educational Resources Information Center

    Nikels, Kenneth W.; Hamm, Norman H.

    To test the mere exposure hypothesis, subjects were exposed to 20 slides of black and white stimulus persons. Based upon pre-experimental ratings, each slide had been initially assigned to one of four groups: high favorable black, high favorable white, low favorable black, and low favorable white. The experimental group, consisting of 25 white…

  17. A Sino-Finnish Initiative for Experimental Teaching Practices Using the Design Factory Pedagogical Platform

    ERIC Educational Resources Information Center

    Björklund, Tua A.; Nordström, Katrina M.; Clavert, Maria

    2013-01-01

    The paper presents a Sino-Finnish teaching initiative, including the design and experiences of a series of pedagogical workshops implemented at the Aalto-Tongji Design Factory (DF), Shanghai, China, and the experimentation plans collected from the 54 attending professors and teachers. The workshops aimed to encourage trying out interdisciplinary…

  18. [Organizational and individual determinants of using initiatives conducive to successful work-life balance].

    PubMed

    Andysz, Aleksandra; Najder, Anna; Merecz-Kot, Dorota

    2014-01-01

    Appropriate distribution of time and energy between work and personal life poses a challenge to many working people. Unfortunately, many professionally active people experience work-family conflict. In order to minimize it, employees are offered various solutions aimed at reconciling professional and private spheres (work-life balance (WLB) initiatives). The authors attempt to answer what makes employees use WLB initiatives and what influences the decision to reject the available options. The review is based on the articles published after 2000, searched by Google Scholar and Web of Knowledge with use of the key words: work-life balance, work-family conflict, work-life balance initiatives, work-life balance initiatives use, use of WLB solutions. We focused on organizational and individual determinants of WLB initiatives use, such as organizational culture, stereotypes and values prevailing in the work environment that may result in stigmatization of workers - flexibility stigma. We discuss the reasons why supervisors and co-workers stigmatize their colleagues, and what are the consequences of experiencing such stigmatization. Among the individual determinants of WLB initiatives use, we have inter alia focused on the preference for integration vs. separation of the spheres of life. The presented material shows that social factors - cultural norms prevailing in a society, relationships in the workplace and individual factors, such as the level of self-control - are of equal importance for decisions of using WLB initiatives as their existence. Our conclusion is that little attention has been paid to the research on determinants of WLB initiatives use, especially to individual ones.

  19. An experimental study of ammonia borane based hydrogen storage systems

    NASA Astrophysics Data System (ADS)

    Deshpande, Kedaresh A.

    2011-12-01

    Hydrogen is a promising fuel for the future, capable of meeting the demands of energy storage and low pollutant emission. Chemical hydrides are potential candidates for chemical hydrogen storage, especially for automobile applications. Ammonia borane (AB) is a chemical hydride being investigated widely for its potential to realize the hydrogen economy. In this work, the yield of hydrogen obtained during neat AB thermolysis was quantified using two reactor systems. First, an oil bath heated glass reactor system was used with AB batches of 0.13 gram (+/- 0.001 gram). The rates of hydrogen generation were measured. Based on these experimental data, an electrically heated steel reactor system was designed and constructed to handle up to 2 grams of AB per batch. A majority of components were made of stainless-steel. The system consisted of an AB reservoir and feeder, a heated reactor, a gas processing unit and a system control and monitoring unit. An electronic data acquisition system was used to record experimental data. The performance of the steel reactor system was evaluated experimentally through batch reactions of 30 minutes each, for reaction temperatures in the range from 373 K to 430 K. The experimental data showed exothermic decomposition of AB accompanied by rapid generation of hydrogen during the initial period of the reaction. 90% of the hydrogen was generated during the initial 120 seconds after addition of AB to the reactor. At 430 K, the reaction produced 12 wt.% of hydrogen. The heat diffusion in the reactor system and the process of exothermic decomposition of AB were coupled in a two-dimensional model. Neat AB thermolysis was modeled as a global first order reactions based on Arrhenius theory. The values of equation constants were derived from curve fit of experimental data. The pre-exponential constant and the activation energy were estimated to be 4 s-1 (+/- 0.4 s-1) and 13000 J mol -1 s-1 (+/- 1050 J mol-1 s -1) respectively. The model was solved in COMSOL Multiphysics. The model was capable of simulating the transient response of the system and captured the observed trends such as the decrease in reactor temperature upon addition of AB and exothermic decomposition.

  20. Experiments and simulations of Richtmyer-Meshkov Instability with measured,volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Sewell, Everest; Ferguson, Kevin; Jacobs, Jeffrey; Greenough, Jeff; Krivets, Vitaliy

    2016-11-01

    We describe experiments of single-shock Richtmyer-Meskhov Instability (RMI) performed on the shock tube apparatus at the University of Arizona in which the initial conditions are volumetrically imaged prior to shock wave arrival. Initial perturbations play a major role in the evolution of RMI, and previous experimental efforts only capture a single plane of the initial condition. The method presented uses a rastered laser sheet to capture additional images throughout the depth of the initial condition immediately before the shock arrival time. These images are then used to reconstruct a volumetric approximation of the experimental perturbation. Analysis of the initial perturbations is performed, and then used as initial conditions in simulations using the hydrodynamics code ARES, developed at Lawrence Livermore National Laboratory (LLNL). Experiments are presented and comparisons are made with simulation results.

  1. Specialised use of working memory by Portia africana, a spider-eating salticid.

    PubMed

    Cross, Fiona R; Jackson, Robert R

    2014-03-01

    Using expectancy-violation methods, we investigated the role of working memory in the predatory strategy of Portia africana, a salticid spider from Kenya that preys by preference on other spiders. One of this predator's tactics is to launch opportunistic leaping attacks on to other spiders in their webs. Focussing on this particular tactic, our experiments began with a test spider on a ramp facing a lure (dead prey spider mounted on a cork disc) that could be reached by leaping. After the test spider faced the lure for 30 s, we blocked the test spider's view of the lure by lowering an opaque shutter before the spider leapt. When the shutter was raised 90 s later, either the same lure came into view again (control) or a different lure came into view (experimental: different prey type in same orientation or same prey type in different orientation). We recorded attack frequency (number of test spiders that leapt at the lure) and attack latency (time elapsing between shutter being raised and spiders initiating a leap). Attack latencies in control trials were not significantly different from attack latencies in experimental trials, regardless of whether it was prey type or prey orientation that changed in the experimental trials. However, compared with test spiders in the no-change control trials, significantly fewer test spiders leapt when prey type changed. There was no significant effect on attack frequency when prey orientation changed. These findings suggest that this predator represents prey type independently of prey orientation.

  2. Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States

    NASA Astrophysics Data System (ADS)

    Hoang, Thai M.; Pan, Rui; Ahn, Jonghoon; Bang, Jaehoon; Quan, H. T.; Li, Tongcang

    2018-02-01

    Nonequilibrium processes of small systems such as molecular machines are ubiquitous in biology, chemistry, and physics but are often challenging to comprehend. In the past two decades, several exact thermodynamic relations of nonequilibrium processes, collectively known as fluctuation theorems, have been discovered and provided critical insights. These fluctuation theorems are generalizations of the second law and can be unified by a differential fluctuation theorem. Here we perform the first experimental test of the differential fluctuation theorem using an optically levitated nanosphere in both underdamped and overdamped regimes and in both spatial and velocity spaces. We also test several theorems that can be obtained from it directly, including a generalized Jarzynski equality that is valid for arbitrary initial states, and the Hummer-Szabo relation. Our study experimentally verifies these fundamental theorems and initiates the experimental study of stochastic energetics with the instantaneous velocity measurement.

  3. Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism

    DTIC Science & Technology

    2016-10-05

    of these species experimentally challenging. In these cases , TALIF is a good alternative. The energy levels used in this study are shown in Fig. 2.1...flame velocities achieved in lean mixtures (ER=0.5 in our experimental case ) can be an interesting issue for industrial applications. One of the possible...dielectric barrier discharge (nSDBD) was studied experimentally at high initial pressures P = 3 − 6 bar. The discharge was studied in different gas mixtures

  4. Photoionization microscopy: Hydrogenic theory in semiparabolic coordinates and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Kalaitzis, P.; Danakas, S.; Lépine, F.; Bordas, C.; Cohen, S.

    2018-05-01

    Photoionization microscopy (PM) is an experimental method allowing for high-resolution measurements of the electron current probability density in the case of photoionization of an atom in an external uniform static electric field. PM is based on high-resolution velocity-map imaging and offers the unique opportunity to observe the quantum oscillatory spatial structure of the outgoing electron flux. We present the basic elements of the quantum-mechanical theoretical framework of PM for hydrogenic systems near threshold. Our development is based on the computationally more convenient semiparabolic coordinate system. Theoretical results are first subjected to a quantitative comparison with hydrogenic images corresponding to quasibound states and a qualitative comparison with nonresonant images of multielectron atoms. Subsequently, particular attention is paid on the structure of the electron's momentum distribution transversely to the static field (i.e., of the angularly integrated differential cross-section as a function of electron energy and radius of impact on the detector). Such 2D maps provide at a glance a complete picture of the peculiarities of the differential cross-section over the entire near-threshold energy range. Hydrogenic transverse momentum distributions are computed for the cases of the ground and excited initial states and single- and two-photon ionization schemes. Their characteristics of general nature are identified by comparing the hydrogenic distributions among themselves, as well as with a presently recorded experimental distribution concerning the magnesium atom. Finally, specificities attributed to different target atoms, initial states, and excitation scenarios are also discussed, along with directions of further work.

  5. Experimental design data for the biosynthesis of citric acid using Central Composite Design method.

    PubMed

    Kola, Anand Kishore; Mekala, Mallaiah; Goli, Venkat Reddy

    2017-06-01

    In the present investigation, we report that statistical design and optimization of significant variables for the microbial production of citric acid from sucrose in presence of filamentous fungi A. niger NCIM 705. Various combinations of experiments were designed with Central Composite Design (CCD) of Response Surface Methodology (RSM) for the production of citric acid as a function of six variables. The variables are; initial sucrose concentration, initial pH of medium, fermentation temperature, incubation time, stirrer rotational speed, and oxygen flow rate. From experimental data, a statistical model for this process has been developed. The optimum conditions reported in the present article are initial concentration of sucrose of 163.6 g/L, initial pH of medium 5.26, stirrer rotational speed of 247.78 rpm, incubation time of 8.18 days, fermentation temperature of 30.06 °C and flow rate of oxygen of 1.35 lpm. Under optimum conditions the predicted maximum citric acid is 86.42 g/L. The experimental validation carried out under the optimal values and reported citric acid to be 82.0 g/L. The model is able to represent the experimental data and the agreement between the model and experimental data is good.

  6. Effects of environmental and pharmacological manipulations on a novel delayed nonmatching-to-sample 'working memory' procedure in unrestrained rhesus monkeys.

    PubMed

    Hutsell, Blake A; Banks, Matthew L

    2015-08-15

    Working memory is a domain of 'executive function.' Delayed nonmatching-to-sample (DNMTS) procedures are commonly used to examine working memory in both human laboratory and preclinical studies. The aim was to develop an automated DNMTS procedure maintained by food pellets in rhesus monkeys using a touch-sensitive screen attached to the housing chamber. Specifically, the DNMTS procedure was a 2-stimulus, 2-choice recognition memory task employing unidimensional discriminative stimuli and randomized delay interval presentations. DNMTS maintained a delay-dependent decrease in discriminability that was independent of the retention interval distribution. Eliminating reinforcer availability during a single delay session or providing food pellets before the session did not systematically alter accuracy, but did reduce total choices. Increasing the intertrial interval enhanced accuracy at short delays. Acute Δ(9)-THC pretreatment produced delay interval-dependent changes in the forgetting function at doses that did not alter total choices. Acute methylphenidate pretreatment only decreased total choices. All monkeys were trained to perform NMTS at the 1s training delay within 60 days of initiating operant touch training. Furthermore, forgetting functions were reliably delay interval-dependent and stable over the experimental period (∼6 months). Consistent with previous studies, increasing the intertrial interval improved DNMTS performance, whereas Δ(9)-THC disrupted DNMTS performance independent of changes in total choices. Overall, the touchscreen-based DNMTS procedure described provides an efficient method for training and testing experimental manipulations on working memory in unrestrained rhesus monkeys. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Experimental investigation of the Peregrine Breather of gravity waves on finite water depth

    NASA Astrophysics Data System (ADS)

    Dong, G.; Liao, B.; Ma, Y.; Perlin, M.

    2018-06-01

    A series of laboratory experiments were performed to study the Peregrine Breather (PB) evolution in a wave flume of finite depth and deep water. Experimental cases were selected with water depths k0h (k0 is the wave number and h is the water depth) varying from 3.11 to 8.17 and initial steepness k0a0 (a0 is the background wave amplitude) in the range 0.06 to 0.12, and the corresponding initial Ursell number in the range 0.03 to 0.061. Experimental results indicate that the water depth plays an important role in the formation of the extreme waves in finite depth; the maximum wave amplification of the PB packets is also strongly dependent on the initial Ursell number. For experimental cases with the initial Ursell number larger than 0.05, the maximum crest amplification can exceed three. If the initial Ursell number is nearly 0.05, a shorter propagation distance is needed for maximum amplification of the height in deeper water. A time-frequency analysis using the wavelet transform reveals that the energy of the higher harmonics is almost in-phase with the carrier wave. The contribution of the higher harmonics to the extreme wave is significant for the cases with initial Ursell number larger than 0.05 in water depth k0h < 5.0. Additionally, the experimental results are compared with computations based on both the nonlinear Schrödinger (NLS) equation and the Dysthe equation, both with a dissipation term. It is found that both models with a dissipation term can predict the maximum amplitude amplification of the primary waves. However, the Dysthe equation also can predict the group horizontal asymmetry.

  8. Random Initialisation of the Spectral Variables: an Alternate Approach for Initiating Multivariate Curve Resolution Alternating Least Square (MCR-ALS) Analysis.

    PubMed

    Kumar, Keshav

    2017-11-01

    Multivariate curve resolution alternating least square (MCR-ALS) analysis is the most commonly used curve resolution technique. The MCR-ALS model is fitted using the alternate least square (ALS) algorithm that needs initialisation of either contribution profiles or spectral profiles of each of the factor. The contribution profiles can be initialised using the evolve factor analysis; however, in principle, this approach requires that data must belong to the sequential process. The initialisation of the spectral profiles are usually carried out using the pure variable approach such as SIMPLISMA algorithm, this approach demands that each factor must have the pure variables in the data sets. Despite these limitations, the existing approaches have been quite a successful for initiating the MCR-ALS analysis. However, the present work proposes an alternate approach for the initialisation of the spectral variables by generating the random variables in the limits spanned by the maxima and minima of each spectral variable of the data set. The proposed approach does not require that there must be pure variables for each component of the multicomponent system or the concentration direction must follow the sequential process. The proposed approach is successfully validated using the excitation-emission matrix fluorescence data sets acquired for certain fluorophores with significant spectral overlap. The calculated contribution and spectral profiles of these fluorophores are found to correlate well with the experimental results. In summary, the present work proposes an alternate way to initiate the MCR-ALS analysis.

  9. Reminiscences of a journeyman scientist: studies of thermoregulation in non-human primates and humans.

    PubMed

    Adair, Eleanor Reed

    2008-12-01

    After graduating from Mount Holyoke College in 1948 where I majored in experimental psychology I worked at the College for 2 years with the Johns Hopkins Thermophysiological Unit. My graduate work later at the University of Wisconsin, centering on sensory psychology, culminated in my 1955 PhD thesis on human dark adaptation. I continued work in sensory psychology later with Neal Miller at Yale and then moved to the John B. Pierce Foundation--a Yale affiliate--where I began the studies of thermoregulation that constitute the center of my scientific career. Those studies were largely--later wholly--conducted using microwave energy as a thermal load and were thus published in Bioelectromagnetics even as I played an active role in the Bioelectromagnetics Society. In the beginning this work was centered on the responses of Squirrel Monkeys to thermal loads. Later, serving as Senior Scientist at the Air Force Research Laboratory at San Antonio, I completed an extensive analysis of thermal regulation in humans. I consider this work of special note inasmuch as the extraordinary human thermoregulatory ability was surely among the attributes that were paramount in initially separating humans from the other anthropoid primates.

  10. Examining the Displacement of Energy during Formation of Shear Bands

    NASA Astrophysics Data System (ADS)

    Hernandez, M.; Hilley, G. E.

    2011-12-01

    M.X. Hernandez, G. Hilley Department of Geological and Environmental Sciences, Stanford University, Stanford, CA This study has originated from an experimental (sandbox) setting that we have previously used to document the link between the kinematics and dynamics of deforming sand in the verge of frictional failure. Our initial experimental setting included a load control system that allowed us to track the changes in load, that when applied to the sand, deform and generate individual shear bands or localized faults. Over the course of earlier experiments, three cameras located at different positions outside the sandbox monitored the movement throughout the run. This current stage of analysis includes using computer programs such as QuickTime to create image sequences of the shear band formation, and Microsoft Excel to visually graph and plot each data sequence. This allows us to investigate the correlation between changes in work measured within our experiments, the construction of topography, slip along shear bands, and the creation of new shear bands. We observed that the measured load generally increased during the experiment to maintain a constant displacement rate as the sand wedge thickened and modeled topography increased. Superposed on this trend were periodic drops in load that appeared temporally coincident with the formation of shear bands in the sand. Using the time series of the loads applied during the experiment, changes in the position of the backstop over time, and the loads measured before, during, and after the time of each shear band formation, we are examining the fraction of the apples work that is absorbed by friction and shear band formation, and what fraction of the apples work is expended in increasing the potential energy of the thickening sand wedge. Our results indicate that before the formation of a continuous shear band, the rate of work done on the sand by the experimental apparatus decreases. This may suggest that once formed, work done against friction in the sand is significantly less than that expended in forming shear bands and thickening the sand wedge.

  11. Design and Test of a 65nm CMOS Front-End with Zero Dead Time for Next Generation Pixel Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaioni, L.; Braga, D.; Christian, D.

    This work is concerned with the experimental characterization of a synchronous analog processor with zero dead time developed in a 65 nm CMOS technology, conceived for pixel detectors at the HL-LHC experiment upgrades. It includes a low noise, fast charge sensitive amplifier with detector leakage compensation circuit, and a compact, single ended comparator able to correctly process hits belonging to two consecutive bunch crossing periods. A 2-bit Flash ADC is exploited for digital conversion immediately after the preamplifier. A description of the circuits integrated in the front-end processor and the initial characterization results are provided

  12. Experimental OAI-Based Digital Library Systems

    NASA Technical Reports Server (NTRS)

    Nelson, Michael L. (Editor); Maly, Kurt (Editor); Zubair, Mohammad (Editor); Rusch-Feja, Diann (Editor)

    2002-01-01

    The objective of Open Archives Initiative (OAI) is to develop a simple, lightweight framework to facilitate the discovery of content in distributed archives (http://www.openarchives.org). The focus of the workshop held at the 5th European Conference on Research and Advanced Technology for Digital Libraries (ECDL 2001) was to bring researchers in the area of digital libraries who are building OAI based systems so as to share their experiences, problems they are facing, and approaches they are taking to address them. The workshop consisted of invited talks from well-established researchers working in building OAI based digital library system along with short paper presentations.

  13. Constantin Levaditi (1874-1953): a pioneer in Immunology and Virology.

    PubMed

    Kalantzis, George; Skiadas, Panagiotis; Lascaratos, John

    2006-08-01

    The eminent doctor Constantin Levaditi represents one of the most important researchers in the field of medicine in the 20th century. Although he was engaged in many areas of the rapidly growing field of immunology, his name is associated mainly with research in poliomyelitis. His laboratory research contributed decisively to the clarification of the epidemiology of this dreadful disease that claimed thousands of victims. Moreover, his experimental work constituted the basis for the development of the vaccine against poliomyelitis, initially in 1955 by Jonas Salk (1914-95) using inactivated virus, and then in 1960 by Albert Sabin (1906-93) who used live attenuated virus.

  14. Increasing rice plant growth by Trichoderma sp.

    NASA Astrophysics Data System (ADS)

    Doni, Febri; Isahak, Anizan; Zain, Che Radziah Che Mohd; Sulaiman, Norela; Fathurahman, F.; Zain, Wan Nur Syazana Wan Mohd.; Kadhimi, Ahsan A.; Alhasnawi, Arshad Naji; Anhar, Azwir; Yusoff, Wan Mohtar Wan

    2016-11-01

    Trichoderma sp. is a plant growth promoting fungi in many crops. Initial observation on the ability to enhance rice germination and vigor have been reported. In this study, the effectiveness of a local isolate Trichoderma asprellum SL2 to enhance rice seedling growth was assessed experimentally under greenhouse condition using a completely randomized design. Results showed that inoculation of rice plants with Trichoderma asprellum SL2 significantly increase rice plants height, root length, wet weight, leaf number and biomass compared to untreated rice plants (control). The result of this study can serve as a reference for further work on the application of beneficial microorganisms to enhance rice production.

  15. The role of fluid pressure on frictional behavior at the base of the seismogenic zone

    USGS Publications Warehouse

    Hirth, Greg; Beeler, Nicholas M.

    2015-01-01

    To characterize stress and deformation style at the base of the seismogenic zone, we investigate how the mechanical properties of fluid-rock systems respond to variations in temperature and strain rate. The role of fluids on the processes responsible for the brittle-ductile transition in quartz-rich rocks has not been explored at experimental conditions where the kinetic competition between microcracking and viscous flow is similar to that expected in the Earth. Our initial analysis of this competition suggests that the effective stress law for sliding friction should not work as efficiently near the brittle-ductile transition as it does at shallow conditions

  16. Sub-microradian Surface Slope Metrology with the ALS Developmental Long Trace Profiler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V; Barber, Samuel; Domning, Edward E.

    2009-09-11

    A new low budget slope measuring instrument, the Developmental Long Trace Profiler (DLTP), was recently brought to operation at the ALS Optical Metrology Laboratory. The design, instrumental control and data acquisition system, initial alignment and calibration procedures, as well as the developed experimental precautions and procedures are described in detail. The capability of the DLTP to achieve sub-microradian surface slope metrology is verified via cross-comparison measurements with other high performance slope measuring instruments when measuring the same high quality test optics. The directions of future work to develop a surface slope measuring profiler with nano-radian performance are also discussed.

  17. Laser produced nanocavities in silica and sapphire: a parametric study

    NASA Astrophysics Data System (ADS)

    Hallo, L.; Bourgeade, A.; Travaillé, G.; Tikhonchuk, V. T.; Nkonga, B.; Breil, J.

    2008-05-01

    We present a model, that describes a sub-micron cavity formation in a transparent dielectric under a tight focusing of a ultra-short laser pulse. The model solves the full set of Maxwell's equations in the three-dimensional geometry along with non-linear propagation phenomenons. This allows us to initialize hydrodynamic simulations of the sub-micron cavity formation. Cavity characteristics, which depend on 3D energy release and non linear effects, have been investigated and compared with experimental results. For this work, we want to deeply acknowledge the numerical support provided by the CEA Centre de Calcul Recherche et Technologie, whose help guaranteed the achievement of this study.

  18. Detecting the Stochastic Gravitational-Wave Background

    NASA Astrophysics Data System (ADS)

    Colacino, Carlo Nicola

    2017-12-01

    The stochastic gravitational-wave background (SGWB) is by far the most difficult source of gravitational radiation detect. At the same time, it is the most interesting and intriguing one. This book describes the initial detection of the SGWB and describes the underlying mathematics behind one of the most amazing discoveries of the 21st century. On the experimental side it would mean that interferometric gravitational wave detectors work even better than expected. On the observational side, such a detection could give us information about the very early Universe, information that could not be obtained otherwise. Even negative results and improved upper bounds could put constraints on many cosmological and particle physics models.

  19. Fast particle ejection by a growing laser-induced bubble

    NASA Astrophysics Data System (ADS)

    Zuo, Zhigang; Wu, Shengji; Stone, Howard; Liu, Shuhong

    2017-11-01

    We document experimentally four different interactions of a laser-induced bubble and a free-settling particle, with different combinations of the geometric and physical parameters of the system. In particular, we also discover the high-speed ejection of the particle, and a cavity behind the particle, in cases when initially the particle is in very close proximity to the bubble. These observations offer new insights into the causal mechanism for the enhanced cavitation erosion in silt-laden water. The work was supported by the National Natural Science Foundation of China (No. 51476083) and the open research project of State Key Laboratory of Hydroscience and Engineering.

  20. Early sex work initiation and condom use among alcohol-using female sex workers in Mombasa, Kenya: a cross-sectional analysis.

    PubMed

    Parcesepe, Angela M; L'Engle, Kelly L; Martin, Sandra L; Green, Sherri; Suchindran, Chirayath; Mwarogo, Peter

    2016-12-01

    Early initiation of sex work is prevalent among female sex workers (FSWs) worldwide. The objectives of this study were to investigate if early initiation of sex work was associated with: (1) consistent condom use, (2) condom negotiation self-efficacy or (3) condom use norms among alcohol-using FSWs in Mombasa, Kenya. In-person interviews were conducted with 816 FSWs in Mombasa, Kenya. Sample participants were: recruited from HIV prevention drop-in centres, 18 years or older and moderate risk drinkers. Early initiation was defined as first engaging in sex work at 17 years or younger. Logistic regression modelled outcomes as a function of early initiation, adjusting for drop-in centre, years in sex work, supporting others and HIV status. FSWs who initiated sex work early were significantly less likely to report consistent condom use with paying sex partners compared with those who initiated sex work in adulthood. There was no significant difference between groups in consistent condom use with non-paying sex partners. FSWs who initiated sex work early endorsed less condom negotiation self-efficacy with paying sex partners compared with FSWs who did not initiate sex work early. Findings highlight a need for early intervention for at-risk youth and adolescent FSWs, particularly in relation to HIV sexual risk behaviours. Evidence-based interventions for adolescent FSWs or adult FSWs who began sex work in adolescence should be developed, implemented and evaluated. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  1. Estimating Impacts on Program-Related Subgroups Using Propensity Score Matching: Evidence from the Early College High School Study

    ERIC Educational Resources Information Center

    Unlu, Fatih; Yamaguchi, Ryoko; Bernstein, Larry; Edmunds, Julie

    2010-01-01

    This paper addresses methodological issues arising from an experimental study of North Carolina's Early College High School Initiative, a four-year longitudinal experimental study funded by Institute for Education Sciences. North Carolina implemented the Early College High School (ECHS) Initiative in response to low high school graduation rates.…

  2. Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction

    NASA Astrophysics Data System (ADS)

    Pigneur, Marine; Berrada, Tarik; Bonneau, Marie; Schumm, Thorsten; Demler, Eugene; Schmiedmayer, Jörg

    2018-04-01

    We present an experimental study on the nonequilibrium tunnel dynamics of two coupled one-dimensional Bose-Einstein quasicondensates deep in the Josephson regime. Josephson oscillations are initiated by splitting a single one-dimensional condensate and imprinting a relative phase between the superfluids. Regardless of the initial state and experimental parameters, the dynamics of the relative phase and atom number imbalance shows a relaxation to a phase-locked steady state. The latter is characterized by a high phase coherence and reduced fluctuations with respect to the initial state. We propose an empirical model based on the analogy with the anharmonic oscillator to describe the effect of various experimental parameters. A microscopic theory compatible with our observations is still missing.

  3. Transforming Social Work Education: The First Decade of the Hartford Geriatric Social Work Initiative

    ERIC Educational Resources Information Center

    Hooyman, Nancy R.

    2009-01-01

    This book, celebrating the Geriatric Social Work Initiative's 10th Anniversary, documents the effect that its educational programs have had on shaping gerontological social work education as a whole. Each chapter highlights various aspects of this John A. Hartford Foundation-funded initiative--its competency-based education, model for curricular…

  4. Validation of Monte Carlo simulation of neutron production in a spallation experiment

    DOE PAGES

    Zavorka, L.; Adam, J.; Artiushenko, M.; ...

    2015-02-25

    A renewed interest in experimental research on Accelerator-Driven Systems (ADS) has been initiated by the global attempt to produce energy from thorium as a safe(r), clean(er) and (more) proliferation-resistant alternative to the uranium-fuelled thermal nuclear reactors. The ADS research has been actively pursued at the Joint Institute for Nuclear Research (JINR), Dubna, since decades. Most recently, the emission of fast neutrons was experimentally investigated at the massive (m = 512 kg) natural uranium spallation target QUINTA. The target has been irradiated with the relativistic deuteron beams of energy from 0.5 AGeV up to 4 AGeV at the JINR Nuclotron acceleratormore » in numerous experiments since 2011. Neutron production inside the target was studied through the gamma-ray spectrometry measurement of natural uranium activation detectors. Experimental reaction rates for (n,γ), (n,f) and (n,2n) reactions in uranium have provided valuable information about the neutron distribution over a wide range of energies up to some GeV. The experimental data were compared to the predictions of Monte Carlo simulations using the MCNPX 2.7.0 code. In conclusion, the results are presented and potential sources of partial disagreement are discussed later in this work.« less

  5. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    PubMed

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results.

  6. NiTi Alloy Negator Springs for Long-Stroke Constant-Force Shape Memory Actuators: Modeling, Simulation and Testing

    NASA Astrophysics Data System (ADS)

    Spaggiari, Andrea; Dragoni, Eugenio; Tuissi, Ausonio

    2014-07-01

    This work aims at the experimental characterization and modeling validation of shape memory alloy (SMA) Negator springs. According to the classic engineering books on springs, a Negator spring is a spiral spring made of strip of metal wound on the flat with an inherent curvature such that, in repose, each coil wraps tightly on its inner neighbor. The main feature of a Negator springs is the nearly constant force displacement behavior in the unwinding of the strip. Moreover the stroke is very long, theoretically infinite, as it depends only on the length of the initial strip. A Negator spring made in SMA is built and experimentally tested to demonstrate the feasibility of this actuator. The shape memory Negator spring behavior can be modeled with an analytical procedure, which is in good agreement with the experimental test and can be used for design purposes. In both cases, the material is modeled as elastic in austenitic range, while an exponential continuum law is used to describe the martensitic behavior. The experimental results confirms the applicability of this kind of geometry to the shape memory alloy actuators, and the analytical model is confirmed to be a powerful design tool to dimension and predict the spring behavior both in martensitic and austenitic range.

  7. Competitive clonal hematopoiesis in mouse chimeras explained by a stochastic model of stem cell organization.

    PubMed

    Roeder, Ingo; Kamminga, Leonie M; Braesel, Katrin; Dontje, Bert; de Haan, Gerald; Loeffler, Markus

    2005-01-15

    Many current experimental results show the necessity of new conceptual approaches to understand hematopoietic stem cell organization. Recently, we proposed a novel theoretical concept and a corresponding quantitative model based on microenvironment-dependent stem cell plasticity. The objective of our present work is to subject this model to an experimental test for the situation of chimeric hematopoiesis. Investigating clonal competition processes in DBA/2-C57BL/6 mouse chimeras, we observed biphasic chimerism development with initially increasing but long-term declining DBA/2 contribution. These experimental results were used to select the parameters of the mathematical model. To validate the model beyond this specific situation, we fixed the obtained parameter configuration to simulate further experimental settings comprising variations of transplanted DBA/2-C57BL/6 proportions, secondary transplantations, and perturbation of stabilized chimeras by cytokine and cytotoxic treatment. We show that the proposed model is able to consistently describe the situation of chimeric hematopoiesis. Our results strongly support the view that the relative growth advantage of strain-specific stem cells is not a fixed cellular property but is sensitively dependent on the actual state of the entire system. We conclude that hematopoietic stem cell organization should be understood as a flexible, self-organized rather than a fixed, preprogrammed process.

  8. Experimental validation benchmark data for CFD of transient convection from forced to natural with flow reversal on a vertical flat plate

    DOE PAGES

    Lance, Blake W.; Smith, Barton L.

    2016-06-23

    Transient convection has been investigated experimentally for the purpose of providing Computational Fluid Dynamics (CFD) validation benchmark data. A specialized facility for validation benchmark experiments called the Rotatable Buoyancy Tunnel was used to acquire thermal and velocity measurements of flow over a smooth, vertical heated plate. The initial condition was forced convection downward with subsequent transition to mixed convection, ending with natural convection upward after a flow reversal. Data acquisition through the transient was repeated for ensemble-averaged results. With simple flow geometry, validation data were acquired at the benchmark level. All boundary conditions (BCs) were measured and their uncertainties quantified.more » Temperature profiles on all four walls and the inlet were measured, as well as as-built test section geometry. Inlet velocity profiles and turbulence levels were quantified using Particle Image Velocimetry. System Response Quantities (SRQs) were measured for comparison with CFD outputs and include velocity profiles, wall heat flux, and wall shear stress. Extra effort was invested in documenting and preserving the validation data. Details about the experimental facility, instrumentation, experimental procedure, materials, BCs, and SRQs are made available through this paper. As a result, the latter two are available for download and the other details are included in this work.« less

  9. Novel methods to estimate the enantiomeric ratio and the kinetic parameters of enantiospecific enzymatic reactions.

    PubMed

    Machado, G D.C.; Paiva, L M.C.; Pinto, G F.; Oestreicher, E G.

    2001-03-08

    1The Enantiomeric Ratio (E) of the enzyme, acting as specific catalysts in resolution of enantiomers, is an important parameter in the quantitative description of these chiral resolution processes. In the present work, two novel methods hereby called Method I and II, for estimating E and the kinetic parameters Km and Vm of enantiomers were developed. These methods are based upon initial rate (v) measurements using different concentrations of enantiomeric mixtures (C) with several molar fractions of the substrate (x). Both methods were tested using simulated "experimental data" and actual experimental data. Method I is easier to use than Method II but requires that one of the enantiomers is available in pure form. Method II, besides not requiring the enantiomers in pure form shown better results, as indicated by the magnitude of the standard errors of estimates. The theoretical predictions were experimentally confirmed by using the oxidation of 2-butanol and 2-pentanol catalyzed by Thermoanaerobium brockii alcohol dehydrogenase as reaction models. The parameters E, Km and Vm were estimated by Methods I and II with precision and were not significantly different from those obtained experimentally by direct estimation of E from the kinetic parameters of each enantiomer available in pure form.

  10. Effect of Assumed Damage and Location on the Delamination Onset Predictions for Skin-Stiffener Debonding

    NASA Technical Reports Server (NTRS)

    Paris, Isabelle L.; Krueger, Ronald; OBrien, T. Kevin

    2004-01-01

    The difference in delamination onset predictions based on the type and location of the assumed initial damage are compared in a specimen consisting of a tapered flange laminate bonded to a skin laminate. From previous experimental work, the damage was identified to consist of a matrix crack in the top skin layer followed by a delamination between the top and second skin layer (+45 deg./-45 deg. interface). Two-dimensional finite elements analyses were performed for three different assumed flaws and the results show a considerable reduction in critical load if an initial delamination is assumed to be present, both under tension and bending loads. For a crack length corresponding to the peak in the strain energy release rate, the delamination onset load for an assumed initial flaw in the bondline is slightly higher than the critical load for delamination onset from an assumed skin matrix crack, both under tension and bending loads. As a result, assuming an initial flaw in the bondline is simpler while providing a critical load relatively close to the real case. For the configuration studied, a small delamination might form at a lower tension load than the critical load calculated for a 12.7 mm (0.5") delamination, but it would grow in a stable manner. For the bending case, assuming an initial flaw of 12.7 mm (0.5") is conservative, the crack would grow unstably.

  11. Characterizing Adhesion between a Micropatterned Surface and a Soft Synthetic Tissue.

    PubMed

    Kern, Madalyn D; Qi, Yuan; Long, Rong; Rentschler, Mark E

    2017-01-31

    The work of adhesion and work of separation are characteristic properties of a contact interface that describe the amount of energy per unit area required to adhere or separate two contacting substrates, respectively. In this work, the authors present experimental and data analysis procedures that allow the contact interface between a soft synthetic tissue and a smooth or micropatterned poly(dimethylsiloxane) (PDMS) substrate to be characterized in terms of these characteristic parameters. Because of physical geometry limitations, the experimental contact geometry chosen for this study differs from conventional test geometries. Therefore, the authors used finite element modeling to develop correction factors specific to the experimental contact geometry used in this work. A work of adhesion was directly extracted from experimental data while the work of separation was estimated on the basis of experimental results. These values are compared to other theoretical calculations for validation. The results of this work indicate that the micropatterned PDMS substrate significantly decreases both the work of adhesion and work of separation as compared to a smooth PDMS substrate when in contact with a soft synthetic tissue substrate.

  12. Thermal decomposition pathways of hydroxylamine: theoretical investigation on the initial steps.

    PubMed

    Wang, Qingsheng; Wei, Chunyang; Pérez, Lisa M; Rogers, William J; Hall, Michael B; Mannan, M Sam

    2010-09-02

    Hydroxylamine (NH(2)OH) is an unstable compound at room temperature, and it has been involved in two tragic industrial incidents. Although experimental studies have been carried out to study the thermal stability of hydroxylamine, the detailed decomposition mechanism is still in debate. In this work, several density functional and ab initio methods were used in conjunction with several basis sets to investigate the initial thermal decomposition steps of hydroxylamine, including both unimolecular and bimolecular reaction pathways. The theoretical investigation shows that simple bond dissociations and unimolecular reactions are unlikely to occur. The energetically favorable initial step of decomposition pathways was determined as a bimolecular isomerization of hydroxylamine into ammonia oxide with an activation barrier of approximately 25 kcal/mol at the MPW1K level of theory. Because hydroxylamine is available only in aqueous solutions, solvent effects on the initial decomposition pathways were also studied using water cluster methods and the polarizable continuum model (PCM). In water, the activation barrier of the bimolecular isomerization reaction decreases to approximately 16 kcal/mol. The results indicate that the bimolecular isomerization pathway of hydroxylamine is more favorable in aqueous solutions. However, the bimolecular nature of this reaction means that more dilute aqueous solution will be more stable.

  13. Chemotaxis in P. Aeruginosa Biofilm Formation

    NASA Astrophysics Data System (ADS)

    Bienvenu, Samuel; Strain, Shinji; Thatcher, Travis; Gordon, Vernita

    2010-10-01

    Pseudomonas biofilms form infections in the lungs of Cystic Fibrosis (CF) patients that damage lung tissue and lead to death. Previous work shows chemotaxis is important for Pseudomonas in CF lungs. The work studied swimming bacteria at high concentrations. In contrast, medically relevant biofilms initiate from sparse populations of surface-bound bacteria. The recent development of software techniques for automated, high-throughput bacteria tracking leaves us well-poised to quantitatively study these chemotactic conditions. We will develop experimental systems for such studies, focusing on L-Arginine (an amino acid), D-Galactose (a sugar present in lungs), and succinate and glucose (carbon sources for bacteria). This suite of chemoattractants will allow us to study how chemoattractant characteristics--size and diffusion behavior--change bacterial response; the interaction of competing chemoattractants; and, differences in bacterial behaviors, like motility modes, in response to different types of chemoattractions and varying neighbor cell density.

  14. Effects of Injection Scheme on Rotating Detonation Engine Operation

    NASA Astrophysics Data System (ADS)

    Chacon, Fabian; Duvall, James; Gamba, Mirko

    2017-11-01

    In this work, we experimentally investigate the operation and performance characteristics of a rotating detonation engine (RDE) operated with different fuel injection schemes and operating conditions. In particular, we investigate the detonation and operation characteristics produced with an axial flow injector configuration and semi-impinging injector configurations. These are compared to the characteristics produced with a canonical radial injection system (AFRL injector). Each type produces a different flowfield and mixture distribution, leading to a different detonation initiation, injector dynamic response, and combustor pressure rise. By using a combination of diagnostics, we quantify the pressure loses and gains in the system, the ability to maintain detonation over a range of operating points, and the coupling between the detonation and the air/fuel feed lines. We particularly focus on how this coupling affects both the stability and the performance of the detonation wave. This work is supported by the DOE/UTSR program under project DE-FE0025315.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonnelli, E.; Diniz, R.; Dos Santos, A.

    The presented work shows the preliminary results of an experimental procedure to overcome the helium-3 detectors shortage in the IPEN/MB-01 nuclear reactor and be feasible the study of the high subcritical states with less sensitivity detectors. The main principle was employing the input logic nuclear module which was possible to execute logic operations with the neutron signals. Though these signals was possible to construct the Auto Power Spectral Densities (APSD) and obtain the Prompt Neutron Constant Decay (α). Two different kinds of thermal neutron detectors were used ({sup 3}He and BF{sub 3}). The arrangement was initially constituted by one ofmore » each type detector and, posteriorly, for a more complete data acquisition, in groups of two detectors for all subcritical configurations. The experiment was carried out using the control banks (BC-1 and BC-2) insertion to achieve all the subcritical states studied in this work. (authors)« less

  16. Perceptual-cognitive expertise in sport: some considerations when applying the expert performance approach.

    PubMed

    Williams, A Mark; Ericsson, K Anders

    2005-06-01

    The number of researchers studying perceptual-cognitive expertise in sport is increasing. The intention in this paper is to review the currently accepted framework for studying expert performance and to consider implications for undertaking research work in the area of perceptual-cognitive expertise in sport. The expert performance approach presents a descriptive and inductive approach for the systematic study of expert performance. The nature of expert performance is initially captured in the laboratory using representative tasks that identify reliably superior performance. Process-tracing measures are employed to determine the mechanisms that mediate expert performance on the task. Finally, the specific types of activities that lead to the acquisition and development of these mediating mechanisms are identified. General principles and mechanisms may be discovered and then validated by more traditional experimental designs. The relevance of this approach to the study of perceptual-cognitive expertise in sport is discussed and suggestions for future work highlighted.

  17. Manipulation of Unknown Objects to Improve the Grasp Quality Using Tactile Information.

    PubMed

    Montaño, Andrés; Suárez, Raúl

    2018-05-03

    This work presents a novel and simple approach in the area of manipulation of unknown objects considering both geometric and mechanical constraints of the robotic hand. Starting with an initial blind grasp, our method improves the grasp quality through manipulation considering the three common goals of the manipulation process: improving the hand configuration, the grasp quality and the object positioning, and, at the same time, prevents the object from falling. Tactile feedback is used to obtain local information of the contacts between the fingertips and the object, and no additional exteroceptive feedback sources are considered in the approach. The main novelty of this work lies in the fact that the grasp optimization is performed on-line as a reactive procedure using the tactile and kinematic information obtained during the manipulation. Experimental results are shown to illustrate the efficiency of the approach.

  18. Initial exploration of scenarios with Internal Transport Barrier in the first NBI-heated L-mode TCV plasmas

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Sauter, Olivier; Coda, Stefano; Merle, Antoine; Karpushov, Alexander; Pigatto, Leonardo; Bolzonella, Tommaso; Piovesan, Paolo; Vianello, Nicola; TCV Team; EUROfusion MST1 Team

    2016-10-01

    Fully non-inductive operation of high performance plasmas is one of the main objectives of contemporary Tokamak research. In this perspective, plasmas with Internal Transport Barriers (ITBs) are an attractive scenario, since they can attain a high fraction of bootstrap current. In this work we start exploring ITB scenarios on the Tokamak à Configuration Variable (TCV) heated by a newly available 1MW Neutral Beam Injector (NBI). Here we investigate for the first time in this device the impact of the additional NBI power on the performance and stability of L-mode plasmas with ITBs. Results of both experimental data analyses and ASTRA transport simulations are presented. The work examines also the Magneto Hydro-Dynamics (MHD) activity and stability of the explored plasmas. In particular, the role of plasma magnetic equilibrium parameters, such as plasma elongation and triangularity, on the sustainment of these NBI-heated ITB scenarios is discussed.

  19. Navier-Stokes simulation of the crossflow instability in swept-wing flows

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1989-01-01

    The computational modeling of the transition process characteristic of flows over swept wings are described. Specifically, the crossflow instability and crossflow/T-S wave interactions are analyzed through the numerical solution of the full three-dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiments. The leading edge region of a swept wing is considered in a three-dimensional spatial simulation with random disturbances as the initial conditions. The work has been closely coordinated with the experimental program of Professor William Saric, examining the same problem. Comparisons with NASA flight test data and the experiments at Arizona State University were a necessary and an important integral part of this work.

  20. MS-Electronic Nose Performance Improvement Using GC Retention Times And 2-Way And 3-Way Data Processing Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burian, Cosmin; Llobet, Eduard; Vilanova, Xavier

    We have designed a challenging experimental sample set in the form of 20 solutions with a high degree of similarity in order to study whether the addition of chromatographic separation information improves the performance of regular MS based electronic noses. In order to make an initial study of the approach, two different chromatographic methods were used. By processing the data of these experiments with 2 and 3-way algorithms, we have shown that the addition of chromatographic separation information improves the results compared to the 2-way analysis of mass spectra or total ion chromatogram treated separately. Our findings show that whenmore » the chromatographic peaks are resolved (longer measurement times), 2-way methods work better than 3-way methods, whereas in the case of a more challenging measurement (more coeluted chromatograms, much faster GC-MS measurements) 3-way methods work better.« less

  1. Marshak Lectureship: Vibrational properties of isolated color centers in diamond

    NASA Astrophysics Data System (ADS)

    Alkauskas, Audrius

    In this talk we review our recent work on first-principles calculations of vibrational properties of isolated defect spin qubits and single photon emitters in diamond. These properties include local vibrational spectra, luminescence lineshapes, and electron-phonon coupling. They are key in understanding physical mechanisms behind spin-selective optical initialization and read-out, quantum efficiency of single-photon emitters, as well as in the experimental identification of as yet unknown centers. We first present the methodology to calculate and analyze vibrational properties of effectively isolated defect centers. We then apply the methodology to the nitrogen-vacancy and the silicon-vacancy centers in diamond. First-principles calculations yield important new insights about these important defects. Work performed in collaboration with M. W. Doherty, A. Gali, E. Londero, L. Razinkovas, and C. G. Van de Walle. Supported by the Research Council of Lithuania (Grant M-ERA.NET-1/2015).

  2. Analytical and experimental investigation of the effects of concrete removal operations on adjacent concrete that is to remain

    DOT National Transportation Integrated Search

    2002-01-15

    This report contains both analytical and experimental work, as well as mathematical work on concrete bridge, located on Route 89 in Vermont. The bridge was renovated by replacing the deck. The experimental work included monitoring the effect of the H...

  3. Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding

    DOE PAGES

    Chen, Qi; Luan, Zheng -Jiao; Yu, Hui -Lei; ...

    2015-10-31

    A new carboxylic esterase RhEst1 which catalyzes the hydrolysis of (S)-(+)-2,2-dimethylcyclopropanecarboxylate (S-DmCpCe), the key chiral building block of cilastatin, was identified and subsequently crystallized in our previous work. Mutant RhEst 1A147I/V148F/G254A was found to show a 5-fold increase in the catalytic activity. In this work, molecular dynamic simulations were performed to elucidate the molecular determinant of the enzyme activity. Our simulations show that the substrate binds much more strongly in the A147I/V148F/G254A mutant than in wild type, with more hydrogen bonds formed between the substrate and the catalytic triad and the oxyanion hole. The OH group of the catalytic residuemore » Ser101 in the mutant is better positioned to initiate the nucleophilic attack on S-DmCpCe. Interestingly, the "170-179" loop which is involved in shaping the catalytic sites and facilitating the product release shows remarkable dynamic differences in the two systems. Based on the simulation results, six residues were identified as potential "hot-spots" for further experimental testing. Consequently, the G126S and R133L mutants show higher catalytic efficiency as compared with the wild type. In conclusion, this work provides molecular-level insights into the substrate binding mechanism of carboxylic esterase RhEst1, facilitating future experimental efforts toward developing more efficient RhEst1 variants for industrial applications.« less

  4. Experimental Characterization of Close-Emitter Interference in an Optical Camera Communication System

    PubMed Central

    Chavez-Burbano, Patricia; Rabadan, Jose; Perez-Jimenez, Rafael

    2017-01-01

    Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios. PMID:28677613

  5. Experimental Characterization of Close-Emitter Interference in an Optical Camera Communication System.

    PubMed

    Chavez-Burbano, Patricia; Guerra, Victor; Rabadan, Jose; Rodríguez-Esparragón, Dionisio; Perez-Jimenez, Rafael

    2017-07-04

    Due to the massive insertion of embedded cameras in a wide variety of devices and the generalized use of LED lamps, Optical Camera Communication (OCC) has been proposed as a practical solution for future Internet of Things (IoT) and smart cities applications. Influence of mobility, weather conditions, solar radiation interference, and external light sources over Visible Light Communication (VLC) schemes have been addressed in previous works. Some authors have studied the spatial intersymbol interference from close emitters within an OCC system; however, it has not been characterized or measured in function of the different transmitted wavelengths. In this work, this interference has been experimentally characterized and the Normalized Power Signal to Interference Ratio (NPSIR) for easily determining the interference in other implementations, independently of the selected system devices, has been also proposed. A set of experiments in a darkroom, working with RGB multi-LED transmitters and a general purpose camera, were performed in order to obtain the NPSIR values and to validate the deduced equations for 2D pixel representation of real distances. These parameters were used in the simulation of a wireless sensor network scenario in a small office, where the Bit Error Rate (BER) of the communication link was calculated. The experiments show that the interference of other close emitters in terms of the distance and the used wavelength can be easily determined with the NPSIR. Finally, the simulation validates the applicability of the deduced equations for scaling the initial results into real scenarios.

  6. Improving performance and happiness among healthcare workers through a body-mind approach in a healthcare setting in Sri Lanka.

    PubMed

    Gunathunga, M W

    2016-10-17

    Cognitive ergonomics in the work place has become a serious concern with the need to keep people happy at work while maintaining high productivity. Hence, it is worth exploring how the outcomes of lifestyle-based mind development programs can bring about happiness in workplace while keeping productivity and quality of services high. The objective of the present work was to test a body-mind technique to improve cognitive ergonomics in a health care work setting. Principal investigator explored many body-mind techniques before selecting the present method of "insight meditation" which he mastered before applying it on a group of scholars who made it a part of their lifestyle. Later it was introduced to a sample of 500 volunteer health personnel in the western province to generate a ripple effect of happiness at work. Initial qualitative information indicated improvement of some aspects of cognitive ergonomics among those who practiced it. There was a relief from stress during the practice sessions and improvements in the commitment to work and in team spirit. A demand was observed for further training. A quasi-experimental study to test the improvements is underway. Health workers showed interest in the mind training and potential benefits to individuals and the institutions were observed.

  7. The differential effects of full-time and part-time work status on breastfeeding.

    PubMed

    Mandal, Bidisha; Roe, Brian Eric; Fein, Sara Beck

    2010-09-01

    Return to work is associated with diminished breastfeeding. Although more mothers breastfeed after returning to work compared to a decade ago, research has not documented the variations in breastfeeding initiation and duration based on full-time and part-time (less than 35h/week) work status. In this study, we clarify these differences. Longitudinal data from the Infant Feeding Practices Study II, collected between 2005 and 2007, for over 1400 mothers are used. In analyzing initiation, mother's work status was categorized by the expected number of hours she planned to work postpartum. In the duration model, work status was categorized based on the actual number of hours worked upon mother's return to employment after controlling for baby's age when she returned to work. Covariates in logistic and censored regressions included demographics, maternity leave, parity, past breastfeeding experience, hospital experience, and social support. Compared with expecting not to work, expecting to work <35h/week was not associated with breastfeeding initiation while expecting to work full-time decreased breastfeeding initiation. Compared with breastfeeding mothers who did not work, returning to work within 12 weeks regardless of work status and returning to work after 12 weeks while working more than 34h/week were associated with significantly shorter breastfeeding duration. Part-time work and increased amount of leave taken promote breastfeeding initiation and duration.

  8. AFRL Ludwieg Tube Initial Performance

    DTIC Science & Technology

    2017-11-01

    Nov 2016 14. ABSTRACT The Air Force Research Laboratory has developed and constructed a Ludwieg tube wind tunnel for hypersonic experimental ...Ludwieg tube wind tunnel for hypersonic experimental research. This wind tunnel is now operational and its initial performance has been...opening and the first expansion wave reflection was 100 ms, as expected. About 80 ms of quasi -steady pressure was obtained after the valve-opening

  9. Dynamic fiber Bragg gratings based health monitoring system of composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Panopoulou, A.; Loutas, T.; Roulias, D.; Fransen, S.; Kostopoulos, V.

    2011-09-01

    The main purpose of the current work is to develop a new system for structural health monitoring of composite aerospace structures based on real-time dynamic measurements, in order to identify the structural state condition. Long-gauge Fibre Bragg Grating (FBG) optical sensors were used for monitoring the dynamic response of the composite structure. The algorithm that was developed for structural damage detection utilizes the collected dynamic response data, analyzes them in various ways and through an artificial neural network identifies the damage state and its location. Damage was simulated by slightly varying locally the mass of the structure (by adding a known mass) at different zones of the structure. Lumped masses in different locations upon the structure alter the eigen-frequencies in a way similar to actual damage. The structural dynamic behaviour has been numerically simulated and experimentally verified by means of modal testing on two different composite aerospace structures. Advanced digital signal processing techniques, e.g. the wavelet transform (WT), were used for the analysis of the dynamic response for feature extraction. WT's capability of separating the different frequency components in the time domain without loosing frequency information makes it a versatile tool for demanding signal processing applications. The use of WT is also suggested by the no-stationary nature of dynamic response signals and the opportunity of evaluating the temporal evolution of their frequency contents. Feature extraction is the first step of the procedure. The extracted features are effective indices of damage size and location. The classification step comprises of a feed-forward back propagation network, whose output determines the simulated damage location. Finally, dedicated training and validation activities were carried out by means of numerical simulations and experimental procedures. Experimental validation was performed initially on a flat stiffened panel, representing a section of a typical aeronautical structure, manufactured and tested in the lab and, as a second step, on a scaled up space oriented structure, which is a composite honeycomb plate, used as a deployment base for antenna arrays. An integrated FBG sensor network, based on the advantage of multiplexing, was mounted on both structures and different excitation positions and boundary conditions were used. The analysis of operational dynamic responses was employed to identify both the damage and its position. The system that was designed and tested initially on the thin composite panel, was successfully validated on the larger honeycomb structure. Numerical simulation of both structures was used as a support tool at all the steps of the work providing among others the location of the optical sensors used. The proposed work will be the base for the whole system qualification and validation on an antenna reflector in future work.

  10. Changing Workplaces to Reduce Work-Family Conflict: Schedule Control in a White-Collar Organization

    PubMed Central

    Kelly, Erin L.; Moen, Phyllis; Tranby, Eric

    2011-01-01

    Work-family conflicts are common and consequential for employees, their families, and work organizations. Can workplaces be changed to reduce work-family conflict? Previous research has not been able to assess whether workplace policies or initiatives succeed in reducing work-family conflict or increasing work-family fit. Using longitudinal data collected from 608 employees of a white-collar organization before and after a workplace initiative was implemented, we investigate whether the initiative affects work-family conflict and fit, whether schedule control mediates these effects, and whether work demands, including long hours, moderate the initiative’s effects on work-family outcomes. Analyses clearly demonstrate that the workplace initiative positively affects the work-family interface, primarily by increasing employees’ schedule control. This study points to the importance of schedule control for our understanding of job quality and for management policies and practices. PMID:21580799

  11. Defeating crypsis: detection and learning of camouflage strategies.

    PubMed

    Troscianko, Jolyon; Lown, Alice E; Hughes, Anna E; Stevens, Martin

    2013-01-01

    Camouflage is perhaps the most widespread defence against predators in nature and an active area of interdisciplinary research. Recent work has aimed to understand what camouflage types exist (e.g. background matching, disruptive, and distractive patterns) and their effectiveness. However, work has almost exclusively focused on the efficacy of these strategies in preventing initial detection, despite the fact that predators often encounter the same prey phenotype repeatedly, affording them opportunities to learn to find those prey more effectively. The overall value of a camouflage strategy may, therefore, reflect both its ability to prevent detection by predators and resist predator learning. We conducted four experiments with humans searching for hidden targets of different camouflage types (disruptive, distractive, and background matching of various contrast levels) over a series of touch screen trials. As with previous work, disruptive coloration was the most successful method of concealment overall, especially with relatively high contrast patterns, whereas potentially distractive markings were either neutral or costly. However, high contrast patterns incurred faster decreases in detection times over trials compared to other stimuli. In addition, potentially distractive markings were sometimes learnt more slowly than background matching markings, despite being found more readily overall. Finally, learning effects were highly dependent upon the experimental paradigm, including the number of prey types seen and whether subjects encountered targets simultaneously or sequentially. Our results show that the survival advantage of camouflage strategies reflects both their ability to avoid initial detection (sensory mechanisms) and predator learning (perceptual mechanisms).

  12. Production and partial characterization of lipases from a newly isolated Penicillium sp. using experimental design.

    PubMed

    Wolski, E; Rigo, E; Di Luccio, M; Oliveira, J V; de Oliveira, D; Treichel, H

    2009-07-01

    The objective of this work was to investigate the lipase production by a newly isolated Penicillium sp., using experimental design technique, in submerged fermentation using a medium based on peptone, yeast extract, NaCl and olive oil, as well as to characterize the crude enzymatic extracts obtained. Lipase activity values of 9.5 U ml(-1) in 96 h of fermentation was obtained at the maximized operational conditions of peptone, yeast extract, NaCl and olive oil concentrations (g l(-1)) of 20.0, 5.0, 5.0 and of 10.0 respectively. The partial characterization of crude enzymatic extract obtained by submerged fermentation showed optimum activity at pH range from 4.9 to 5.5 and temperature from 37 degrees C to 42 degrees C. The crude extract maintained its initial activity at freezing temperatures up to 100 days. A newly isolated strain of Penicillium sp. used in this work yielded good lipase activities compared to the literature. The growing interest in lipase production is related to the potential biotechnological applications that these enzymes present. New lipase producers are relevant to finding enzymes with different catalytic properties of commercial interest could be obtained, without using genetically modified organisms (GMO).

  13. An investigation of thermal comfort inside a bus during heating period within a climatic chamber.

    PubMed

    Pala, Uzeyir; Oz, H Ridvan

    2015-05-01

    By this study, it was aimed to define a testing and calculation model for thermal comfort assessment of a bus HVAC design and to compare effects of changing parameters on passenger's thermal comfort. For this purpose, a combined theoretical and experimental work during heating period inside a coach was carried out. The bus was left under 20 °C for more than 7 h within a climatic chamber and all heat sources were started at the beginning of a standard test. To investigate effects of fast transient conditions on passengers' physiology and thermal comfort, temperatures, air humidity and air velocities were measured. Human body was considered as one complete piece composed of core and skin compartments and the Transient Energy Balance Model developed by Gagge et al. in 1971 was used to calculate changes in thermal parameters between passenger bodies and bus interior environment. Depending on the given initial and environmental conditions, the graphs of passengers Thermal Sensation and Thermal Discomfort Level were found. At the end, a general mathematical model supported with a related experimental procedure was developed for the use of automotive HVAC engineers and scientists working on thermal comfort as a human dimension. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Modeling RNA polymerase interaction in mitochondria of chordates

    PubMed Central

    2012-01-01

    Background In previous work, we introduced a concept, a mathematical model and its computer realization that describe the interaction between bacterial and phage type RNA polymerases, protein factors, DNA and RNA secondary structures during transcription, including transcription initiation and termination. The model accurately reproduces changes of gene transcription level observed in polymerase sigma-subunit knockout and heat shock experiments in plant plastids. The corresponding computer program and a user guide are available at http://lab6.iitp.ru/en/rivals. Here we apply the model to the analysis of transcription and (partially) translation processes in the mitochondria of frog, rat and human. Notably, mitochondria possess only phage-type polymerases. We consider the entire mitochondrial genome so that our model allows RNA polymerases to complete more than one circle on the DNA strand. Results Our model of RNA polymerase interaction during transcription initiation and elongation accurately reproduces experimental data obtained for plastids. Moreover, it also reproduces evidence on bulk RNA concentrations and RNA half-lives in the mitochondria of frog, human with or without the MELAS mutation, and rat with normal (euthyroid) or hyposecretion of thyroid hormone (hypothyroid). The transcription characteristics predicted by the model include: (i) the fraction of polymerases terminating at a protein-dependent terminator in both directions (the terminator polarization), (ii) the binding intensities of the regulatory protein factor (mTERF) with the termination site and, (iii) the transcription initiation intensities (initiation frequencies) of all promoters in all five conditions (frog, healthy human, human with MELAS syndrome, healthy rat, and hypothyroid rat with aberrant mtDNA methylation). Using the model, absolute levels of all gene transcription can be inferred from an arbitrary array of the three transcription characteristics, whereas, for selected genes only relative RNA concentrations have been experimentally determined. Conversely, these characteristics and absolute transcription levels can be obtained using relative RNA concentrations and RNA half-lives known from various experimental studies. In this case, the “inverse problem” is solved with multi-objective optimization. Conclusions In this study, we demonstrate that our model accurately reproduces all relevant experimental data available for plant plastids, as well as the mitochondria of chordates. Using experimental data, the model is applied to estimate binding intensities of phage-type RNA polymerases to their promoters as well as predicting terminator characteristics, including polarization. In addition, one can predict characteristics of phage-type RNA polymerases and the transcription process that are difficult to measure directly, e.g., the association between the promoter’s nucleotide composition and the intensity of polymerase binding. To illustrate the application of our model in functional predictions, we propose a possible mechanism for MELAS syndrome development in human involving a decrease of Phe-tRNA, Val-tRNA and rRNA concentrations in the cell. In addition, we describe how changes in methylation patterns of the mTERF binding site and three promoters in hypothyroid rat correlate with changes in intensities of the mTERF binding and transcription initiations. Finally, we introduce an auxiliary model to describe the interaction between polysomal mRNA and ribonucleases. PMID:22873568

  15. [The construction of cancer as an object of scientific study and sanitary problem in Argentina: discourses, experimental practices and institutional initiatives, 1903-1922].

    PubMed

    Buschini, José D

    2014-01-01

    This article analyzes the construction of cancer as a sanitary problem and an object of scientific inquiry in Argentina in the first two decades of the twentieth century. It considers the acquisition and circulation of foreign knowledge on the subject, the context in which the first experimental developments arose, the institutional initiatives promoted by the medical profession and the way in which state authorities and civil society were enlisted to further these initiatives. There is a detailed examination of the process of creating the Instituto de Medicina Experimental, a center wholly devoted to the study and treatment of cancer, which was inaugurated in 1922, symbolically ending the first phase of constructing cancer as a problem in the country.

  16. Sensitivity of Emissions to Uncertainties in Residual Gas Fraction Measurements in Automotive Engines: A Numerical Study

    DOE PAGES

    Aithal, S. M.

    2018-01-01

    Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less

  17. Two-dimensional computational modeling of high-speed transient flow in gun tunnel

    NASA Astrophysics Data System (ADS)

    Mohsen, A. M.; Yusoff, M. Z.; Hasini, H.; Al-Falahi, A.

    2018-03-01

    In this work, an axisymmetric numerical model was developed to investigate the transient flow inside a 7-meter-long free piston gun tunnel. The numerical solution of the gun tunnel was carried out using the commercial solver Fluent. The governing equations of mass, momentum, and energy were discretized using the finite volume method. The dynamic zone of the piston was modeled as a rigid body, and its motion was coupled with the hydrodynamic forces from the flow solution based on the six-degree-of-freedom solver. A comparison of the numerical data with the theoretical calculations and experimental measurements of a ground-based gun tunnel facility showed good agreement. The effects of parameters such as working gases and initial pressure ratio on the test conditions in the facility were examined. The pressure ratio ranged from 10 to 50, and gas combinations of air-air, helium-air, air-nitrogen, and air-CO2 were used. The results showed that steady nozzle reservoir conditions can be maintained for a longer duration when the initial conditions across the diaphragm are adjusted. It was also found that the gas combination of helium-air yielded the highest shock wave strength and speed, but a longer test time was achieved in the test section when using the CO2 test gas.

  18. Oxidative desulfurization: kinetic modelling.

    PubMed

    Dhir, S; Uppaluri, R; Purkait, M K

    2009-01-30

    Increasing environmental legislations coupled with enhanced production of petroleum products demand, the deployment of novel technologies to remove organic sulfur efficiently. This work represents the kinetic modeling of ODS using H(2)O(2) over tungsten-containing layered double hydroxide (LDH) using the experimental data provided by Hulea et al. [V. Hulea, A.L. Maciuca, F. Fajula, E. Dumitriu, Catalytic oxidation of thiophenes and thioethers with hydrogen peroxide in the presence of W-containing layered double hydroxides, Appl. Catal. A: Gen. 313 (2) (2006) 200-207]. The kinetic modeling approach in this work initially targets the scope of the generation of a superstructure of micro-kinetic reaction schemes and models assuming Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) mechanisms. Subsequently, the screening and selection of above models is initially based on profile-based elimination of incompetent schemes followed by non-linear regression search performed using the Levenberg-Marquardt algorithm (LMA) for the chosen models. The above analysis inferred that Eley-Rideal mechanism describes the kinetic behavior of ODS process using tungsten-containing LDH, with adsorption of reactant and intermediate product only taking place on the catalyst surface. Finally, an economic index is presented that scopes the economic aspects of the novel catalytic technology with the parameters obtained during regression analysis to conclude that the cost factor for the catalyst is 0.0062-0.04759 US $ per barrel.

  19. Sensitivity of Emissions to Uncertainties in Residual Gas Fraction Measurements in Automotive Engines: A Numerical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aithal, S. M.

    Initial conditions of the working fluid (air-fuel mixture) within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF) in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accuratelymore » interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4%) in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.« less

  20. Modeling nanostructural surface modifications in metal cutting by an approach of thermodynamic irreversibility: Derivation and experimental validation

    NASA Astrophysics Data System (ADS)

    Buchkremer, S.; Klocke, F.

    2017-01-01

    Performance and operational safety of many metal parts in engineering depend on their surface integrity. During metal cutting, large thermomechanical loads and high gradients of the loads concerning time and location act on the surfaces and may yield significant structural material modifications, which alter the surface integrity. In this work, the derivation and validation of a model of nanostructural surface modifications in metal cutting are presented. For the first time in process modeling, initiation and kinetics of these modifications are predicted using a thermodynamic potential, which considers the interdependent developments of plastic work, dissipation, heat conduction and interface energy as well as the associated productions and flows of entropy. The potential is expressed based on the free Helmholtz energy. The irreversible thermodynamic state changes in the workpiece surface are homogenized over the volume in order to bridge the gap between discrete phenomena involved with the initiation and kinetics of dynamic recrystallization and its macroscopic implications for surface integrity. The formulation of the thermodynamic potential is implemented into a finite element model of orthogonal cutting of steel AISI 4140. Close agreement is achieved between predicted nanostructures and those obtained in transmission electron microscopical investigations of specimen produced in cutting experiments.

  1. Constitutive modeling for isotropic materials (HOST)

    NASA Technical Reports Server (NTRS)

    Lindholm, Ulric S.; Chan, Kwai S.; Bodner, S. R.; Weber, R. M.; Walker, K. P.; Cassenti, B. N.

    1984-01-01

    The results of the first year of work on a program to validate unified constitutive models for isotropic materials utilized in high temperature regions of gas turbine engines and to demonstrate their usefulness in computing stress-strain-time-temperature histories in complex three-dimensional structural components. The unified theories combine all inelastic strain-rate components in a single term avoiding, for example, treating plasticity and creep as separate response phenomena. An extensive review of existing unified theories is given and numerical methods for integrating these stiff time-temperature-dependent constitutive equations are discussed. Two particular models, those developed by Bodner and Partom and by Walker, were selected for more detailed development and evaluation against experimental tensile, creep and cyclic strain tests on specimens of a cast nickel base alloy, B19000+Hf. Initial results comparing computed and test results for tensile and cyclic straining for temperature from ambient to 982 C and strain rates from 10(exp-7) 10(exp-3) s(exp-1) are given. Some preliminary date correlations are presented also for highly non-proportional biaxial loading which demonstrate an increase in biaxial cyclic hardening rate over uniaxial or proportional loading conditions. Initial work has begun on the implementation of both constitutive models in the MARC finite element computer code.

  2. 5 CFR 595.103 - What requirements must agencies establish for determining which physician positions are covered?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... research and experimental work, including the conduct of medical work pertaining to food, drugs, cosmetics, and devices (or the review or evaluation of such medical research and experimental work), or the... medical research and experimental programs. (c) The agency head may establish as separate categories any...

  3. 5 CFR 595.103 - What requirements must agencies establish for determining which physician positions are covered?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... research and experimental work, including the conduct of medical work pertaining to food, drugs, cosmetics, and devices (or the review or evaluation of such medical research and experimental work), or the... medical research and experimental programs. (c) The agency head may establish as separate categories any...

  4. 5 CFR 595.103 - What requirements must agencies establish for determining which physician positions are covered?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... research and experimental work, including the conduct of medical work pertaining to food, drugs, cosmetics, and devices (or the review or evaluation of such medical research and experimental work), or the... medical research and experimental programs. (c) The agency head may establish as separate categories any...

  5. 5 CFR 595.103 - What requirements must agencies establish for determining which physician positions are covered?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... research and experimental work, including the conduct of medical work pertaining to food, drugs, cosmetics, and devices (or the review or evaluation of such medical research and experimental work), or the... medical research and experimental programs. (c) The agency head may establish as separate categories any...

  6. Water dissociation in a radio-frequency electromagnetic field with ex situ electrodes—modelling of discharge initiation

    NASA Astrophysics Data System (ADS)

    Schneider, Jens; Holzer, Frank; Rabe, Carsten; Häupl, Tilmann; Kopinke, Frank-Dieter; Roland, Ulf

    2013-04-01

    Applying a new experimental design with a capillary glass reactor and plate electrodes outside of the reactor allowed the initiation of discharges in aqueous electrolytes under the influence of a radio-frequency (RF) electromagnetic field. This study focused on the mechanism leading to the initiation of such discharges in the restriction of a glass tube. The light emission correlated with discharges was analysed with optical emission spectroscopy. Electrons with energies between 20 and 45 eV were responsible for the dissociation of water molecules into (excited) OH, H and O radicals. Current-voltage characteristics were measured before and under discharge conditions. Modelling of the experimental setup and simulation of electrical field strength distribution support the hypothesis of the origin of discharges in general and experimental findings such as ring-shaped discharges and a minimum solution conductivity of about 1 S m-1 required for discharge initiation with RF voltages of 2 kV.

  7. SU-F-T-211: Evaluation of a Dual Focusing Magnet System for the Treatment of Small Proton Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, TT; McAuley, GA; Heczko, S

    Purpose: To investigate magnetic focusing for small volume proton targets using a doublet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Monte Carlo computer simulations were performed using the Geant4 toolkit to compare dose depositions of proton beams transported through two focusing magnets or in their absence. Proton beams with energies of 127 MeV and initial diameters of 5, 8 and 10 mm were delivered through two identical focusing magnets similar to those currently in experimental use at Loma Linda University Medical Center. Analogous experiments used optimized configurations based on the simulation results. Dose was measured bymore » a diode detector and Gafchromic EBT3 film and compared to simulation data. Based on results from the experimental data, an additional set of simulations was performed with an initial beam diameter of 18 mm and a two differing length magnets (40mm & 68mm). Results: Experimental data matched well with Monte Carlo simulations. However, under conditions necessary to produce circular beam spots at target depth, magnetically focused beams using two identical 40 mm length magnets did not meet all of our performance criteria of circular beam spots, improved peak to entrance (P/E) dose ratios and dose delivery efficiencies. The simulations using the longer 68 mm 2nd magnet yielded better results with 34% better P/E dose ratio and 20–50% better dose delivery efficiencies when compared to unfocused 10 mm beams. Conclusion: While magnetic focusing using two magnets with identical focusing power did not yield desired results, ongoing Monte Carlo simulations suggest that increasing the length of the 2nd magnet to 68 mm could improve P/E dose ratios and dose efficiencies. Future work includes additional experimental validation of the longer 2nd magnet setup as well as experiments with triplet magnet systems. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).« less

  8. Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests

    NASA Astrophysics Data System (ADS)

    Jezequel, T.; Auzoux, Q.; Le Boulch, D.; Bono, M.; Andrieu, E.; Blanc, C.; Chabretou, V.; Mozzani, N.; Rautenberg, M.

    2018-02-01

    During accidental power transient conditions with Pellet Cladding Interaction (PCI), the synergistic effect of the stress and strain imposed on the cladding by thermal expansion of the fuel, and corrosion by iodine released as a fission product, may lead to cladding failure by Stress Corrosion Cracking (SCC). In this study, internal pressure tests were conducted on unirradiated cold-worked stress-relieved Zircaloy-4 cladding tubes in an iodine vapor environment. The goal was to investigate the influence of loading type (constant pressure tests, constant circumferential strain rate tests, or constant circumferential strain tests) and test temperature (320, 350, or 380 °C) on iodine-induced stress corrosion cracking (I-SCC). The experimental results obtained with different loading types were consistent with each other. The apparent threshold hoop stress for I-SCC was found to be independent of the test temperature. SEM micrographs of the tested samples showed many pits distributed over the inner surface, which tended to coalesce into large pits in which a microcrack could initiate. A model for the time-to-failure of a cladding tube was developed using finite element simulations of the viscoplastic mechanical behavior of the material and a modified Kachanov's damage growth model. The times-to-failure predicted by this model are consistent with the experimental data.

  9. Experimental and Modeling Studies of Crush, Puncture, and Perforation Scenarios in the Steven Impact Test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vandersall, K S; Chidester, S K; Forbes, J W

    2002-06-28

    The Steven test and associated modeling has greatly increased the fundamental knowledge of practical predictions of impact safety hazards for confined and unconfined explosive charges. Building on a database of initial work, experimental and modeling studies of crush, puncture, and perforation scenarios were investigated using the Steven impact test. The descriptions of crush, puncture, and perforation arose from safety scenarios represented by projectile designs that ''crush'' the energetic material or either ''puncture'' with a pinpoint nose or ''perforate'' the front cover with a transportation hook. As desired, these scenarios offer different aspects of the known mechanisms that control ignition: friction,more » shear and strain. Studies of aged and previously damaged HMX-based high explosives included the use of embedded carbon foil and carbon resistor gauges, high-speed cameras, and blast wave gauges to determine the pressure histories, time required for an explosive reaction, and the relative violence of those reactions, respectively. Various ignition processes were modeled as the initial reaction rate expression in the Ignition and Growth reaction rate equations. Good agreement with measured threshold velocities, pressure histories, and times to reaction was calculated for LX-04 impacted by several projectile geometries using a compression dependent ignition term and an elastic-plastic model with a reasonable yield strength for impact strain rates.« less

  10. On the tensile strength of soil grains in Hertzian response

    NASA Astrophysics Data System (ADS)

    Nadimi, Sadegh; Fonseca, Joana

    2017-06-01

    The breakage initiation of soil grains is controlled by its tensile capacity. Despite the importance of tensile strength, it is often disregarded due to difficulties in measurement. This paper presents an experimental and numerical investigation on the effect of tensile strength on Hertzian response of a single soil grain. Hertz theory is commonly used in numerical simulation to present the contact constitutive behaviour of a purely elastic grain under normal loading. This normal force:displacement comes from stress distribution and concentration inside the grain. When the stress reaches the tensile capacity, a crack initiates. A series of numerical tests have been conducted to determine the sensitivity of Hertzian response to the selected tensile strength used as an input data. An elastic-damage constitutive model has been employed for spherical grains in a combined finite-discrete element framework. The interpretation of results was enriched by considering previous theoretical work. In addition, systematic experimental tests have been carried out on both spherical glass beads and grains of two different sands, i.e. Leighton Buzzard silica sand and coarse carbonate sand from Persian Gulf. The preliminary results suggest that lower tensile strength leads to a softer response under normal loading. The wider range of responses obtained for the carbonate sand, are believed to be related to the large variety of grain shape associated with bioclastic origin of the constituent grains.

  11. Theoretical Treatment of Ion Transfers in Two Polarizable Interface Systems When the Analyte Has Access to Both Interfaces.

    PubMed

    Olmos, José Manuel; Molina, Ángela; Laborda, Eduardo; Millán-Barrios, Enrique; Ortuño, Joaquín Ángel

    2018-02-06

    A new theory is presented to tackle the study of transfer processes of hydrophilic ions in two polarizable interface systems when the analyte is initially present in both aqueous phases. The treatment is applied to macrointerfaces (linear diffusion) and microholes (highly convergent diffusion), obtaining analytical equations for the current response in any voltammetric technique. The novel equations predict two signals in the current-potential curves that are symmetric when the compositions of the aqueous phases are identical while asymmetries appear otherwise. The theoretical results show good agreement with the experimental behavior of the "double transfer voltammograms" reported by Dryfe et al. in cyclic voltammetry (CV) ( Anal. Chem. 2014 , 86 , 435 - 442 ) as well as with cyclic square wave voltammetry (cSWV) experiments performed in the current work. The theoretical treatment is also extended to the situation where the target ion is lipophilic and initially present in the organic phase. The theory predicts an opposite effect of the lipophilicity of the ion on the shape of the voltammograms, which is validated experimentally via both CV and cSWV. For the above two cases, simple and manageable expressions and diagnosis criteria are derived for the qualitative and quantitative study of ion lipophilicity. The ion-transfer potentials can be easily quantified from the separation between the two signals making use of explicit analytical equations.

  12. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    PubMed Central

    2012-01-01

    Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal of AR14 and AR18 followed Freundlich (r2>0.99) and Langmuir (r2>0.99) isotherm models. Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99) and intra-particle diffusion (r2>0.98) models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer. Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89% regeneration for AR14 and AR18, respectively. PMID:23369579

  13. Recovery of isopropyl alcohol from waste solvent of a semiconductor plant.

    PubMed

    Lin, Sheng H; Wang, Chuen S

    2004-01-30

    An important waste solvent generated in the semiconductor manufacturing process was characterized by high isopropyl alcohol (IPA) concentration over 65%, other organic pollutants and strong color. Because of these characteristics, IPA recovery was deemed as a logic choice for tackling this waste solvent. In the present work, an integrated method consisting of air stripping in conjunction with condensation and packed activated carbon fiber (ACF) adsorption for dealing with this waste solvent. The air stripping with proper stripping temperature control was employed to remove IPA from the waste solvent and the IPA vapor in the gas mixture was condensed out in a side condenser. The residual IPA remaining in the gas mixture exiting the side condenser was efficiently removed in a packed ACF column. The air stripping with condensation was able to recover up to 93% of total IPA in the initial waste solvent. The residual IPA in the gas mixture, representing less than 3% of the initial IPA, was efficiently captured in the packed ACF column. Experimental tests were conducted to examine the performances of each unit and to identify the optimum operating conditions. Theoretical modeling of the experimental IPA breakthrough curves was also undertaken using a macroscopic model. The verified breakthrough model significantly facilitates the adsorption column design. The recovered IPA was found to be of high purity and could be considered for reuse. Copyright 2003 Elsevier B.V.

  14. Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics

    NASA Astrophysics Data System (ADS)

    Carlsson, Philip T. M.; Zeuch, Thomas

    2018-03-01

    We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

  15. Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov Instabilities

    DOE PAGES

    Prime, Michael Bruce; Buttler, William Tillman; Buechler, Miles Allen; ...

    2017-03-08

    Recently, Richtmyer–Meshkov Instabilities (RMI) have been proposed for studying the average strength at strain rates up to at least 10 7/s. RMI experiments involve shocking a metal interface that has initial sinusoidal perturbations. The perturbations invert and grow subsequent to shock and may arrest because of strength effects. In this work we present new RMI experiments and data on a copper target that had five regions with different perturbation amplitudes on the free surface opposite the shock. We estimate the high-rate, low-pressure copper strength by comparing experimental data with Lagrangian numerical simulations. From a detailed computational study we find thatmore » mesh convergence must be carefully addressed to accurately compare with experiments, and numerical viscosity has a strong influence on convergence. We also find that modeling the as-built perturbation geometry rather than the nominal makes a significant difference. Because of the confounding effect of tensile damage on total spike growth, which has previously been used as the metric for estimating strength, we instead use a new strength metric: the peak velocity during spike growth. Furthermore, this new metric also allows us to analyze a broader set of experimental results that are sensitive to strength because some larger initial perturbations grow unstably to failure and so do not have a finite total spike growth.« less

  16. Liquid Phase adsorption kinetics and equilibrium of toluene by novel modified-diatomite.

    PubMed

    Sheshdeh, Reza Khalighi; Abbasizadeh, Saeed; Nikou, Mohammad Reza Khosravi; Badii, Khashayar; Sharafi, Mohammad Sadegh

    2014-01-01

    The adsorption equilibria of toluene from aqueous solutions on natural and modified diatomite were examined at different operation parameters such as pH, contact time, initial toluene concentration was evaluated and optimum experimental conditions were identified. The surface area and morphology of the nanoparticles were characterized by SEM, BET, XRD, FTIR and EDX analysis. It was found that in order to obtain the highest possible removal of toluene, the experiments can be carried out at pH 6, temperature 25°C, an agitation speed of 200 rpm, an initial toluene concentration of 150 mg/L, a centrifugal rate of 4000 rpm, adsorbent dosage = 0.1 g and a process time of 90 min. The results of this work show that the maximum percentage removal of toluene from aqueous solution in the optimum conditions for NONMD was 96.91% (145.36 mg/g). Furthermore, under same conditions, the maximum adsorption of natural diatomite was 71.45% (107.18 mg/g). Both adsorption kinetic and isotherm experiments were carried out. The experimental data showed that the adsorption follows the Langmuir model and Freundlich model on natural and modified diatomite respectively. The kinetics results were found to conform well to pseudo-second order kinetics model with good correlation. Thus, this study demonstrated that the modified diatomite could be used as potential adsorbent for removal of toluene from aqueous solution.

  17. Estimation of metal strength at very high rates using free-surface Richtmyer–Meshkov Instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prime, Michael Bruce; Buttler, William Tillman; Buechler, Miles Allen

    Recently, Richtmyer–Meshkov Instabilities (RMI) have been proposed for studying the average strength at strain rates up to at least 10 7/s. RMI experiments involve shocking a metal interface that has initial sinusoidal perturbations. The perturbations invert and grow subsequent to shock and may arrest because of strength effects. In this work we present new RMI experiments and data on a copper target that had five regions with different perturbation amplitudes on the free surface opposite the shock. We estimate the high-rate, low-pressure copper strength by comparing experimental data with Lagrangian numerical simulations. From a detailed computational study we find thatmore » mesh convergence must be carefully addressed to accurately compare with experiments, and numerical viscosity has a strong influence on convergence. We also find that modeling the as-built perturbation geometry rather than the nominal makes a significant difference. Because of the confounding effect of tensile damage on total spike growth, which has previously been used as the metric for estimating strength, we instead use a new strength metric: the peak velocity during spike growth. Furthermore, this new metric also allows us to analyze a broader set of experimental results that are sensitive to strength because some larger initial perturbations grow unstably to failure and so do not have a finite total spike growth.« less

  18. The roles of time and displacement in velocity-dependent volumetric strain of fault zones

    USGS Publications Warehouse

    Beeler, N.M.; Tullis, T.E.

    1997-01-01

    The relationship between measured friction??A and volumetric strain during frictional sliding was determined using a rate and state variable dependent friction constitutive equation, a common work balance relating friction and volume change, and two types of experimental faults: initially bare surfaces of Westerly granite and rock surfaces separated by a 1 mm layer of < 90 ??m Westerly granite gouge. The constitutive equation is the sum of a constant term representing the nominal resistance to sliding and two smaller terms: a rate dependent term representing the shear viscosity of the fault surface (direct effect), and a term which represents variations in the area of contact (evolution effect). The work balance relationship requires that ??A differs from the frictional resistance that leads to shear heating by the derivative of fault normal displacement with respect shear displacement, d??n ld??s. An implication of this relationship is that the rate dependence of d??n ld??s contributes to the rate dependence of ??A. Experiments show changes in sliding velocity lead to changes in both fault strength and volume. Analysis of data with the rate and state equations combined with the work balance relationship preclude the conventional interpretation of the direct effect in the rate and state variable constitutive equations. Consideration of a model bare surface fault consisting of an undeformable indentor sliding on a deformable surface reveals a serious flaw in the work balance relationship if volume change is time-dependent. For the model, at zero slip rate indentation creep under the normal load leads to time-dependent strengthening of the fault surface but, according to the work balance relationship, no work is done because compaction or dilatancy can only be induced by shearing. Additional tests on initially bare surfaces and gouges show that fault normal strain in experiments is time-dependent, consistent with the model. This time-dependent fault normal strain, which is not accounted for in the work balance relationship, explains the inconsistency between the constitutive equations and the work balance. For initially bare surface faults, all rate dependence of volume change is due to time dependence. Similar results are found for gouge. We conclude that ??A reflects the frictional resistance that results in shear heating, and no correction needs to be made for the volume changes. The result that time-dependent volume changes do not contribute to ??A is a general result and extends beyond these experiments, the simple indentor model and particular constitutive equations used to illustrate the principle.

  19. A comparison of 1D and 1.5D arrays for imaging volumetric flaws in small bore pipework

    NASA Astrophysics Data System (ADS)

    Barber, T. S.; Wilcox, P. D.; Nixon, A. D.

    2015-03-01

    1.5D arrays can be seen as a potentially ideal compromise between 1D arrays and 2D matrix arrays in terms of focusing capability, element density, weld coverage and data processing time. This paper presents an initial study of 1D and 1.5D arrays for high frequency (15MHz) imaging of volumetric flaws in small-bore (30-60mm outer diameter) thin-walled (3-8mm) pipework. A combination of 3D modelling and experimental work is used to determine Signal to Noise Ratio (SNR) improvement with a strong relationship between SNR and the longer dimension of element size observed. Similar behavior is demonstrated experimentally rendering a 1mm diameter Flat Bottom Hole (FBH) in Copper-Nickel alloy undetectable using a larger array element. A 3-5dB SNR increase is predicted when using a 1.5D array assuming a spherical reflector and a 2dB increase was observed on experimental trials with a FBH. It is argued that this improvement is likely to be a lower bound estimate due to the specular behavior of a FBH with future trials planned on welded samples with realistic flaws.

  20. The effects of alcohol on emotion in social drinkers

    PubMed Central

    Sayette, Michael A.

    2017-01-01

    Understanding why people drink alcohol and in some cases develop drinking problems has long puzzled researchers, clinicians, and patients alike. In the mid-1940s and early 1950s, experimental research began to systematically investigate alcohol’s hedonic properties. Presumably, alcohol consumption would prove reinforcing as a consequence of its capacity either to relieve stress or to brighten positive emotional experiences. This article reviews experimental research through the years examining the impact of alcohol on both the relief of negative affect and the enhancement of positive affect. It covers initial accounts that emphasized direct pharmacological effects of ethanol on the central nervous system. These early studies offered surprisingly tepid support for the premise that alcohol improved emotional states. Next, studies conducted in the 1970s are considered. Informed by social learning theory and employing advances derived from experimental psychology, this research sought to better understand the complex effects of alcohol on emotion. Coverage of this work is followed by discussion of current formulations, which integrate biological and behavioral approaches with the study of cognitive, affective, and social processes. These current perspectives provide insight into the particular conditions under which alcohol can boost emotional experiences. Finally, future research directions and clinical implications are considered. PMID:28110679

Top