Flight Test of an Intelligent Flight-Control System
NASA Technical Reports Server (NTRS)
Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.
2003-01-01
The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data inputs with the outputs provided to instrumentation only. The IFCS was not used to control the airplane. In another stage of the flight test, the Phase I pre-trained neural network was integrated into a Phase III version of the flight control system. The Phase I pretrained neural network provided realtime stability and control derivatives to a Phase III controller that was based on a stochastic optimal feedforward and feedback technique (SOFFT). This combined Phase I/III system was operated together with the research flight-control system (RFCS) of the F-15 ACTIVE during the flight test. The RFCS enables the pilot to switch quickly from the experimental- research flight mode back to the safe conventional mode. These initial IFCS ACP flight tests were completed in April 1999. The Phase I/III flight test milestone was to demonstrate, across a range of subsonic and supersonic flight conditions, that the pre-trained neural network could be used to supply real-time aerodynamic stability and control derivatives to the closed-loop optimal SOFFT flight controller. Additional objectives attained in the flight test included (1) flight qualification of a neural-network-based control system; (2) the use of a combined neural-network/closed-loop optimal flight-control system to obtain level-one handling qualities; and (3) demonstration, through variation of control gains, that different handling qualities can be achieved by setting new target parameters. In addition, data for the Phase-II (on-line-learning) neural network were collected, during the use of stacked-frequency- sweep excitation, for post-flight analysis. Initial analysis of these data showed the potential for future flight tests that will incorporate the real-time identification and on-line learning aspects of the IFCS.
Traveler Phase 1A Joint Review
NASA Technical Reports Server (NTRS)
St. John, Clint; Scofield, Jan; Skoog, Mark; Flock, Alex; Williams, Ethan; Guirguis, Luke; Loudon, Kevin; Sutherland, Jeffrey; Lehmann, Richard; Garland, Michael;
2017-01-01
The briefing contains the preliminary findings and suggestions for improvement of methods used in development and evaluation of a multi monitor runtime assurance architecture for autonomous flight vehicles. Initial system design, implementation, verification, and flight testing has been conducted. As of yet detailed data review is incomplete, and flight testing has been limited to initial monitor force fights. Detailed monitor flight evaluations have yet to be performed.
2014-11-06
Initial flight-testing of the ACTE followed extensive wind tunnel experiments. For the first phase of ACTE flights, the experimental control surfaces were locked at a specified setting. Varied flap settings on subsequent tests are now demonstrating the capability of the flexible surfaces under actual flight conditions.
Program Aids Design Of Fluid-Circulating Systems
NASA Technical Reports Server (NTRS)
Bacskay, Allen; Dalee, Robert
1992-01-01
Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.
Optimal Electrodynamic Tether Phasing Maneuvers
NASA Technical Reports Server (NTRS)
Bitzer, Matthew S.; Hall, Christopher D.
2007-01-01
We study the minimum-time orbit phasing maneuver problem for a constant-current electrodynamic tether (EDT). The EDT is assumed to be a point mass and the electromagnetic forces acting on the tether are always perpendicular to the local magnetic field. After deriving and non-dimensionalizing the equations of motion, the only input parameters become current and the phase angle. Solution examples, including initial Lagrange costates, time of flight, thrust plots, and thrust angle profiles, are given for a wide range of current magnitudes and phase angles. The two-dimensional cases presented use a non-tilted magnetic dipole model, and the solutions are compared to existing literature. We are able to compare similar trajectories for a constant thrust phasing maneuver and we find that the time of flight is longer for the constant thrust case with similar initial thrust values and phase angles. Full three-dimensional solutions, which use a titled magnetic dipole model, are also analyzed for orbits with small inclinations.
Transfer of Instrument Training and the Synthetic Flight Training System.
ERIC Educational Resources Information Center
Caro, Paul W.
One phase of an innovative flight training program, its development, and initial administration is described in this paper. The operational suitability test activities related to a determination of the transfer of instrument training value of the Army's Synthetic Flight Training System (SFTS) Device 2B24. Sixteen active Army members of an Officer…
Advanced flight hardware for organic separations
NASA Astrophysics Data System (ADS)
Deuser, Mark S.; Vellinger, John C.; Weber, John T.
1997-01-01
Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT fabricated and integrated the ADSEP flight hardware for a commercially-driven flight experiment as the initial step in marketing space processing services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.
Advanced flight hardware for organic separations using aqueous two-phase partitioning
NASA Astrophysics Data System (ADS)
Deuser, Mark S.; Vellinger, John C.; Weber, John T.
1996-03-01
Separation of cells and cell components is the limiting factor in many biomedical research and pharmaceutical development processes. Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT is fabricating and integrating the ADSEP flight hardware for a commercially-driven SPACEHAB 04 experiment that will be the initial step in marketing space separations services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.
Artificial intelligence and expert systems in-flight software testing
NASA Technical Reports Server (NTRS)
Demasie, M. P.; Muratore, J. F.
1991-01-01
The authors discuss the introduction of advanced information systems technologies such as artificial intelligence, expert systems, and advanced human-computer interfaces directly into Space Shuttle software engineering. The reconfiguration automation project (RAP) was initiated to coordinate this move towards 1990s software technology. The idea behind RAP is to automate several phases of the flight software testing procedure and to introduce AI and ES into space shuttle flight software testing. In the first phase of RAP, conventional tools to automate regression testing have already been developed or acquired. There are currently three tools in use.
Heliocentric phasing performance of electric sail spacecraft
NASA Astrophysics Data System (ADS)
Mengali, Giovanni; Quarta, Alessandro A.; Aliasi, Generoso
2016-10-01
We investigate the heliocentric in-orbit repositioning problem of a spacecraft propelled by an Electric Solar Wind Sail. Given an initial circular parking orbit, we look for the heliocentric trajectory that minimizes the time required for the spacecraft to change its azimuthal position, along the initial orbit, of a (prescribed) phasing angle. The in-orbit repositioning problem can be solved using either a drift ahead or a drift behind maneuver and, in general, the flight times for the two cases are different for a given value of the phasing angle. However, there exists a critical azimuthal position, whose value is numerically found, which univocally establishes whether a drift ahead or behind trajectory is superior in terms of flight time it requires for the maneuver to be completed. We solve the optimization problem using an indirect approach for different values of both the spacecraft maximum propulsive acceleration and the phasing angle, and the solution is then specialized to a repositioning problem along the Earth's heliocentric orbit. Finally, we use the simulation results to obtain a first order estimate of the minimum flight times for a scientific mission towards triangular Lagrangian points of the Sun-[Earth+Moon] system.
NASA Astrophysics Data System (ADS)
Schulze, Norman R.; Maxfield, B.; Boucher, C.
1995-01-01
Solid State Laser Initiated Ordnance (LIO) offers new technology having potential for enhanced safety, reduced costs, and improved operational efficiency. Concerns over the absence of programmatic applications of the technology, which has prevented acceptance by flight programs, should be abated since LIO has now been operationally implemented by the Laser Initiated Ordnance Sounding Rocket Demonstration (LOSRD) Program. The first launch of solid state laser diode LIO at the NASA Wallops Flight Facility (WFF) occurred on March 15, 1995 with all mission objectives accomplished. This project, Phase 3 of a series of three NASA Headquarters LIO demonstration initiatives, accomplished its objective by the flight of a dedicated, all-LIO sounding rocket mission using a two-stage Nike-Orion launch vehicle. LIO flight hardware, made by The Ensign-Bickford Company under NASA's first Cooperative Agreement with Profit Making Organizations, safely initiated three demanding pyrotechnic sequence events, namely, solid rocket motor ignition from the ground and in flight, and flight termination, i.e., as a Flight Termination System (FTS). A flight LIO system was designed, built, tested, and flown to support the objectives of quickly and inexpensively putting LIO through ground and flight operational paces. The hardware was fully qualified for this mission, including component testing as well as a full-scale system test. The launch accomplished all mission objectives in less than 11 months from proposal receipt. This paper concentrates on accomplishments of the ordnance aspects of the program and on the program's implementation and results. While this program does not generically qualify LIO for all applications, it demonstrated the safety, technical, and operational feasibility of those two most demanding applications, using an all solid state safe and arm system in critical flight applications.
NASA Technical Reports Server (NTRS)
Oubre, Cherie M.; Birmele, Michele N.; Castro, Victoria A.; Venkateswaran, Kasthuri J.; Vaishampayan, Parag A.; Jones, Kathy U.; Singhal, Adesh; Johnston, Angela S.; Roman, Monserrate C.; Ozbolt, Tamra A.;
2013-01-01
Because the International Space Station is a closed environment with rotations of astronauts and equipment that each introduce their own microbial flora, it is necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor- and time-intensive methods to enumerate total bacterial and fungal cells, with limited characterization, during in-flight testing. Although this culture-based method is sufficient for monitoring the International Space Station, on future long-duration missions more detailed characterization will need to be performed during flight, as sample return and ground characterization may not be available. At a workshop held in 2011 at NASA's Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these long-term exploration missions, molecular-based methodologies such as polymerase chain reaction (PCR) were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for space flight environmental monitoring. The goal was to evaluate quantitative or semi-quantitative PCR approaches for low-cost in-flight rapid identification of microorganisms that could affect crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity. This phase was followed by proof-of-concept testing of the highest qualifying candidates with a universally available challenge organism, Salmonella enterica. The analysis identified two technologies that were able to perform sample-to-answer testing with initial cell sample concentrations between 50 and 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness.
A Method of Trajectory Design for Manned Asteroids Exploration
NASA Astrophysics Data System (ADS)
Gan, Q. B.; Zhang, Y.; Zhu, Z. F.; Han, W. H.; Dong, X.
2014-11-01
A trajectory optimization method of the nuclear propulsion manned asteroids exploration is presented. In the case of launching between 2035 and 2065, based on the Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory in the feasible regions is selected by pruning the flight sequences. Setting the nuclear propulsion flight plan as propel-coast-propel, and taking the minimal mass of aircraft departure as the index, the nuclear propulsion flight trajectory is separately optimized using a hybrid method. With the initial value of the optimized local parameters of each three phases, the global parameters are jointedly optimized. At last, the minimal departure mass trajectory design result is given.
NASA Astrophysics Data System (ADS)
Sanchez, Nate; Neal, Will; Jensen, Brian; Gibson, John; Martinez, Mike; Jaramillo, Dennis; Iverson, Adam; Carlson, Carl
2017-06-01
Recent advances in diagnostics coupled with synchrotron sources have allowed the in-situ investigation of exploding foil initiators (EFI) during flight. We present the first images of EFIs during flight utilizing x-ray phase contrast imaging at the Advanced Photon Source (APS) located in Argonne National Laboratory. These images have provided the DOE/DoD community with unprecedented images resolving details on the micron scale of the flyer formation, plasma instabilities and in flight characteristics along with the subsequent interaction with high explosives on the nanosecond time scale. Phase contrast imaging has allowed the ability to make dynamic measurements on the length and time scale necessary to resolve initiator function and provide insight to key design parameters. These efforts have also probed the fundamental physics at ``burst'' to better understand what burst means in a physical sense, rather than the traditional understanding of burst as a peak in voltage and increase in resistance. This fundamental understanding has led to increased knowledge on the mechanisms of burst and has allowed us to improve our predictive capability through magnetohydrodnamic modeling. Results will be presented from several EFI designs along with a look to the future for upcoming work.
Investigation of acoustic emission coupling techniques
NASA Technical Reports Server (NTRS)
Jolly, W. D.
1988-01-01
A three-phase research program was initiated by NASA in 1983 to investigate the use of acoustic monitoring techniques to detect incipient failure in turbopump bearings. Two prototype acoustic coupler probes were designed and evaluated, and four units of the final probe design were fabricated. Success in this program could lead to development of an on-board monitor which could detect bearing damage in flight and reduce or eliminate the need for disassembly after each flight. This final report reviews the accomplishments of the first two phases and presents the results of fabrication and testing completed in the final phase of the research program.
NASA Astrophysics Data System (ADS)
McCain, Harry G.; Andary, James F.; Hewitt, Dennis R.; Haley, Dennis C.
The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the general nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.
McCain, H G; Andary, J F; Hewitt, D R; Haley, D C
1991-01-01
The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.
NASA Technical Reports Server (NTRS)
McCain, H. G.; Andary, J. F.; Hewitt, D. R.; Haley, D. C.
1991-01-01
The Flight Telerobotic Servicer (FTS) Project at the Goddard Space Flight Center is developing an advanced telerobotic system to assist in and reduce crew extravehicular activity (EVA) for Space Station) Freedom (SSF). The FTS will provide a telerobotic capability to the Freedom Station in the early assembly phases of the program and will be employed for assembly, maintenance, and inspection applications throughout the lifetime of the space station. Appropriately configured elements of the FTS will also be employed for robotic manipulation in remote satellite servicing applications and possibly the Lunar/Mars Program. In mid-1989, the FTS entered the flight system design and implementation phase (Phase C/D) of development with the signing of the FTS prime contract with Martin Marietta Astronautics Group in Denver, Colorado. The basic FTS design is now established and can be reported on in some detail. This paper will describe the FTS flight system design and the rationale for the specific design approaches and component selections. The current state of space technology and the nature of the FTS task dictate that the FTS be designed with sophisticated teleoperation capabilities for its initial primary operating mode. However, there are technologies, such as advanced computer vision and autonomous planning techniques currently in research and advanced development phases which would greatly enhance the FTS capabilities to perform autonomously in less structured work environments. Therefore, a specific requirement on the initial FTS design is that it has the capability to evolve as new technology becomes available. This paper will describe the FTS design approach for evolution to more autonomous capabilities. Some specific task applications of the FTS and partial automation approaches of these tasks will also be discussed in this paper.
NASA Technical Reports Server (NTRS)
Griner, James H.
2014-01-01
NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.
Autonomous Flight Safety System
NASA Technical Reports Server (NTRS)
Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim
2004-01-01
Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.
Neonicotinoids Interfere with Specific Components of Navigation in Honeybees
Fischer, Johannes; Müller, Teresa; Spatz, Anne-Kathrin; Greggers, Uwe; Grünewald, Bernd; Menzel, Randolf
2014-01-01
Three neonicotinoids, imidacloprid, clothianidin and thiacloprid, agonists of the nicotinic acetylcholine receptor in the central brain of insects, were applied at non-lethal doses in order to test their effects on honeybee navigation. A catch-and-release experimental design was applied in which feeder trained bees were caught when arriving at the feeder, treated with one of the neonicotinoids, and released 1.5 hours later at a remote site. The flight paths of individual bees were tracked with harmonic radar. The initial flight phase controlled by the recently acquired navigation memory (vector memory) was less compromised than the second phase that leads the animal back to the hive (homing flight). The rate of successful return was significantly lower in treated bees, the probability of a correct turn at a salient landscape structure was reduced, and less directed flights during homing flights were performed. Since the homing phase in catch-and-release experiments documents the ability of a foraging honeybee to activate a remote memory acquired during its exploratory orientation flights, we conclude that non-lethal doses of the three neonicotinoids tested either block the retrieval of exploratory navigation memory or alter this form of navigation memory. These findings are discussed in the context of the application of neonicotinoids in plant protection. PMID:24646521
Initial flight test of a Loran-C receiver/data collection system
NASA Technical Reports Server (NTRS)
Fischer, J. P.; Nickum, J. D.
1978-01-01
Development of a low cost Loran C receiver for general aviation use is discussed. The preparation and procedure of a flight test conducted with a receiver design which utilizes a phase locked loop oscillator to track the Loran C signals is described. It is indicated that such a receiver is a viable alternative for future work in developing a low cost Loran-C navigator.
DANTi: Detect and Avoid iN The Cockpit
NASA Technical Reports Server (NTRS)
Chamberlain, James; Consiglio, Maria; Munoz, Cesar
2017-01-01
Mid-air collision risk continues to be a concern for manned aircraft operations, especially near busy non-towered airports. The use of Detect and Avoid (DAA) technologies and draft standards developed for unmanned aircraft systems (UAS), either alone or in combination with other collision avoidance technologies, may be useful in mitigating this collision risk for manned aircraft. This paper describes a NASA research effort known as DANTi (DAA iN The Cockpit), including the initial development of the concept of use, a software prototype, and results from initial flight tests conducted with this prototype. The prototype used a single Automatic Dependent Surveillance - Broadcast (ADS-B) traffic sensor and the own aircraft's position, track, heading and air data information, along with NASA-developed DAA software to display traffic alerts and maneuver guidance to manned aircraft pilots on a portable tablet device. Initial flight tests with the prototype showed a successful DANTi proof-of-concept, but also demonstrated that the traffic separation parameter set specified in the RTCA SC-228 Phase I DAA MOPS may generate excessive false alerts during traffic pattern operations. Several parameter sets with smaller separation values were also tested in flight, one of which yielded more timely alerts for the maneuvers tested. Results from this study may further inform future DANTi efforts as well as Phase II DAA MOPS development.
Kramer, H J; Heer, M; Cirillo, M; De Santo, N G
2001-09-01
Renal excretory function and hemodynamics are determined by the effective circulating plasma volume as well as by the interplay of systemic and local vasoconstrictors and vasodilators. Microgravity results in a headward shift of body fluid. Because the control conditions of astronauts were poorly defined in many studies, controversial results have been obtained regarding diuresis and natriuresis as well as renal hemodynamic changes in response to increased central blood volume, especially during the initial phase of space flight. Renal excretory function and renal hemodynamics in microgravity are affected in a complex fashion, because during the initial phase of space flight, variable mechanisms become operative to modulate the effects of increased central blood volume. They include interactions between vasodilators (dopamine, atrial natriuretic peptide, and prostaglandins) and vasoconstrictors (sympathetic nervous system and the renin-angiotensin system). The available data suggest a moderate rise in glomerular filtration rate during the first 2 days after launch without a significant increase in effective renal plasma flow. In contrast, too few data regarding the effects of space flight on renal function during the first 12 hours after launch are available and are, in addition, partly contradictory. Thus, detailed and well-controlled studies are required to shed more light on the role of the various factors besides microgravity that determine systemic and renal hemodynamics and renal excretory function during the different stages of space flight.
NASA Technical Reports Server (NTRS)
Hass, Neal E.; Cabell, Karen F.; Storch, Andrea M.
2010-01-01
The initial phase of hydrocarbon-fueled ground tests supporting Flight 2 of the Hypersonic International Flight Research Experiment (HIFiRE) Program has been conducted in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF). The HIFiRE Program, an Air Force-lead international cooperative program includes eight different flight test experiments designed to target specific challenges of hypersonic flight. The second of the eight planned flight experiments is a hydrocarbon-fueled scramjet flight test intended to demonstrate dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools. A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink, direct-connect ground test article that duplicates both the flowpath lines and the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests are to verify the operability of the HIFiRE isolator/combustor across the Mach 6.0-8.0 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition prior to the HiFIRE payload Critical Design Review. Although the phase I test plans include testing over the Mach 6 to 8 flight simulation range, only Mach 6 testing will be reported in this paper. Experimental results presented here include flowpath surface pressure, temperature, and heat flux distributions that demonstrate the operation of the flowpath over a small range of test conditions around the nominal Mach 6 simulation, as well as a range of fuel equivalence ratios and fuel injection distributions. Both ethylene and a mixture of ethylene and methane (planned for flight) were tested. Maximum back pressure and flameholding limits, as well as a baseline fuel schedule, that covers the Mach 5.84-6.5 test space have been identified.
Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight
NASA Astrophysics Data System (ADS)
Froning, H. D.; Miley, G. H.; Luo, Nie; Yang, Yang; Momota, H.; Burton, E.
2005-02-01
Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines.
NASA Technical Reports Server (NTRS)
Skavdahl, H.; Patterson, D. H.
1972-01-01
The initial flight test phase of the modified C-8A airplane was conducted. The primary objective of the testing was to establish the basic airworthiness of the research vehicle. This included verification of the structural design and evaluation of the aircraft's systems. Only a minimum amount of performance testing was scheduled; this has been used to provide a preliminary indication of the airplane's performance and flight characteristics for future flight planning. The testing included flutter and loads investigations up to the maximum design speed. The operational characteristics of all systems were assessed including hydraulics, environmental control system, air ducts, the vectoring conical nozzles, and the stability augmentation system (SAS). Approaches to stall were made at three primary flap settings: up, 30 deg and 65 deg, but full stalls were not scheduled. Minimum control speeds and maneuver margins were checked. All takeoffs and landings were conventional, and STOL performance was not scheduled during this phase of the evaluation.
NASA Technical Reports Server (NTRS)
Caporale, A. J.
1968-01-01
A brief history is reported of the first San Marco project, a joint program of the United States and Italy. The Project was a three phase effort to investigate upper air density and associated ionosphere phenomena. The initial phase included the design and development of the spacecraft, the experiments, the launch complex, and a series of suborbital flights, from Wallops Island. The second phase, consisting of designing, fabricating, and testing a spacecraft for the first orbital mission, culminated in an orbital launch also from Wallops Island. The third phase consisted of further refining the experiments and spacecraft instrumentation and of establishing a full-bore scout complex in Kenya. The launch of San Marco B, in April 1967, from this complex into an equatorial orbit, concluded the initial San Marco effort.
Flight performance measurement utilizing a figure of merit (FOM)
NASA Technical Reports Server (NTRS)
Mosier, Kathleen L.; Zacharias, Greg L.
1993-01-01
One of the goals of the NASA Strategic Behavior/Workload Management Program is to develop standardized procedures for constructing figures of merit (FOMs) that describe minimal criteria for flight task performance, as well as summarize overall performance quality. Such a measure could be utilized for evaluating flight crew performance, for assessing the effectiveness of new equipment or technological innovations, or for measuring performance at a particular airport. In this report, we describe the initial phases in the creation of a FOM to be employed in examining crew performance in NASA-Ames Air Ground Compatibility and Strategic Behavior/Workload Management programs.
MATD Operational Phase: Experiences and Lessons Learned
NASA Astrophysics Data System (ADS)
Messidoro, P.; Bader, M.; Brunner, O.; Cerrato, A.; Sembenini, G.
2004-08-01
The Model And Test Effectiveness Database (MATD) initiative is ending the first year of its operational phase. MATD represents a common repository of project data, Assembly Integration and Verification (AIV) data, on ground and flight anomalies data, of recent space projects, and offers, with the application of specific methodologies, the possibility to analyze the collected data in order to improve the test philosophies and the related standards. Basically the following type of results can be derived from the database: - Statistics on ground failures and flight anomalies - Feed-back from the flight anomalies to the Test Philosophies - Test Effectiveness evaluation at system and lower levels - Estimate of the index of effectiveness of a specific Model and Test Philosophy in comparison with the applicable standards - Simulation of different Test philosophies and related balancing of Risk/cost/schedule on the basis of MATD data The paper after a short presentation of the status of the MATD initiative, summarises the most recent lessons learned which are resulting from the data analysis and highlights how MATD is being utilized for the actual risk/cost/schedule/Test effectiveness evaluations of the past programmes so as for the prediction of the new space projects.
Shuttle avionics software development trials: Tribulations and successes, the backup flight system
NASA Technical Reports Server (NTRS)
Chevers, E. S.
1985-01-01
The development and verification of the Backup Flight System software (BFS) is discussed. The approach taken for the BFS was to develop a very simple and straightforward software program and then test it in every conceivable manner. The result was a program that contained approximately 12,000 full words including ground checkout and the built in test program for the computer. To perform verification, a series of tests was defined using the actual flight type hardware and simulated flight conditions. Then simulated flights were flown and detailed performance analysis was conducted. The intent of most BFS tests was to demonstrate that a stable flightpath could be obtained after engagement from an anomalous initial condition. The extention of the BFS to meet the requirements of the orbital flight test phase is also described.
Information Display System for Atypical Flight Phase
NASA Technical Reports Server (NTRS)
Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris J. (Inventor);
2007-01-01
Method and system for displaying information on one or more aircraft flights, where at least one flight is determined to have at least one atypical flight phase according to specified criteria. A flight parameter trace for an atypical phase is displayed and compared graphically with a group of traces, for the corresponding flight phase and corresponding flight parameter, for flights that do not manifest atypicality in that phase.
NASA Technical Reports Server (NTRS)
1974-01-01
The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.
The Wallops Flight Facility Rapid Response Range Operations Initiative
NASA Technical Reports Server (NTRS)
Underwood, Bruce E.; Kremer, Steven E.
2004-01-01
While the dominant focus on short response missions has appropriately centered on the launch vehicle and spacecraft, often overlooked or afterthought phases of these missions have been launch site operations and the activities of launch range organizations. Throughout the history of organized spaceflight, launch ranges have been the bane of flight programs as the source of expense, schedule delays, and seemingly endless requirements. Launch Ranges provide three basic functions: (1) provide an appropriate geographical location to meet orbital other mission trajectory requirements, (2) provide project services such as processing facilities, launch complexes, tracking and data services, and expendable products, and (3) assure safety and property protection to participating personnel and third-parties. The challenge with which launch site authorities continuously struggle, is the inherent conflict arising from projects whose singular concern is execution of their mission, and the range s need to support numerous simultaneous customers. So, while tasks carried out by a launch range committed to a single mission pale in comparison to efforts of a launch vehicle or spacecraft provider and could normally be carried out in a matter of weeks, major launch sites have dozens of active projects separate sponsoring organizations. Accommodating the numerous tasks associated with each mission, when hardware failures, weather, maintenance requirements, and other factors constantly conspire against the range resource schedulers, make the launch range as significant an impediment to responsive missions as launch vehicles and their cargo. The obvious solution to the launch site challenge was implemented years ago when the Department of Defense simply established dedicated infrastructure and personnel to dedicated missions, namely an Inter Continental Ballistic Missile. This however proves to be prohibitively expensive for all but the most urgent of applications. So the challenge becomes how can a launch site provide acceptably responsive mission services to a particular customer without dedicating extensive resources and while continuing to serve other projects? NASA's Wallops Flight Facility (WFF) is pursuing solutions to exactly this challenge. NASA, in partnership with the Virginia Commercial Space Flight Authority, has initiated the Rapid Response Range Operations Initiative (R3Ops). R3Ops is a multi-phased effort to incrementally establish and demonstrate increasingly responsive launch operations, with an ultimate goal of providing ELV-class services in a maximum of 7-10 days from initial notification routinely, and shorter schedules possible with committed resources. This target will be pursued within the reality of simultaneous concurrent programs, and ideally, largely independent of specialized flight system configurations. WFF has recently completed Phase 1 of R3Ops, an in-depth collection (through extensive expert interviews) and software modeling of individual steps by various range disciplines. This modeling is now being used to identify existing inefficiencies in current procedures, to identify bottlenecks, and show interdependencies. Existing practices are being tracked to provide a baseline to benchmark against as new procedures are implemented. This paper will describe in detail the philosophies behind WFF's R3Ops, the data collected and modeled in Phase 1, and strategies for meeting responsive launch requirements in a multi-user range environment planned for subsequent phases of this initiative.
Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.
1999-01-01
This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.
Concept for a high performance MHD airbreathing-IEC fusion rocket
NASA Astrophysics Data System (ADS)
Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.
2001-02-01
Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .
NASA Technical Reports Server (NTRS)
1976-01-01
The Work Breakdown Structure (WBS) and Dictionary (DR-MA-06) for initial and subsequent flights of the Atmospheric Cloud Physics Laboratory (ACPL) is presented. An attempt is made to identify specific equipment and components in each of the eleven subsystems; they are listed under the appropriate subdivisions of the WBS. The reader is cautioned that some of these components are likely to change substantially during the course of the study, and the list provided should only be considered representative.
NASA Technical Reports Server (NTRS)
Gates, Ordway B., Jr.; Woodling, C. H.
1959-01-01
Theoretical analysis of the longitudinal behavior of an automatically controlled supersonic interceptor during the attack phase against a nonmaneuvering target is presented. Control of the interceptor's flight path is obtained by use of a pitch rate command system. Topics lift, and pitching moment, effects of initial tracking errors, discussion of normal acceleration limited, limitations of control surface rate and deflection, and effects of neglecting forward velocity changes of interceptor during attack phase.
Identification of a new stem cell population that generates Drosophila flight muscles.
Gunage, Rajesh D; Reichert, Heinrich; VijayRaghavan, K
2014-08-18
How myoblast populations are regulated for the formation of muscles of different sizes is an essentially unanswered question. The large flight muscles of Drosophila develop from adult muscle progenitor (AMP) cells set-aside embryonically. The thoracic segments are all allotted the same small AMP number, while those associated with the wing-disc proliferate extensively to give rise to over 2500 myoblasts. An initial amplification occurs through symmetric divisions and is followed by a switch to asymmetric divisions in which the AMPs self-renew and generate post-mitotic myoblasts. Notch signaling controls the initial amplification of AMPs, while the switch to asymmetric division additionally requires Wingless, which regulates Numb expression in the AMP lineage. In both cases, the epidermal tissue of the wing imaginal disc acts as a niche expressing the ligands Serrate and Wingless. The disc-associated AMPs are a novel muscle stem cell population that orchestrates the early phases of adult flight muscle development.
Orion MPCV GN and C End-to-End Phasing Tests
NASA Technical Reports Server (NTRS)
Neumann, Brian C.
2013-01-01
End-to-end integration tests are critical risk reduction efforts for any complex vehicle. Phasing tests are an end-to-end integrated test that validates system directional phasing (polarity) from sensor measurement through software algorithms to end effector response. Phasing tests are typically performed on a fully integrated and assembled flight vehicle where sensors are stimulated by moving the vehicle and the effectors are observed for proper polarity. Orion Multi-Purpose Crew Vehicle (MPCV) Pad Abort 1 (PA-1) Phasing Test was conducted from inertial measurement to Launch Abort System (LAS). Orion Exploration Flight Test 1 (EFT-1) has two end-to-end phasing tests planned. The first test from inertial measurement to Crew Module (CM) reaction control system thrusters uses navigation and flight control system software algorithms to process commands. The second test from inertial measurement to CM S-Band Phased Array Antenna (PAA) uses navigation and communication system software algorithms to process commands. Future Orion flights include Ascent Abort Flight Test 2 (AA-2) and Exploration Mission 1 (EM-1). These flights will include additional or updated sensors, software algorithms and effectors. This paper will explore the implementation of end-to-end phasing tests on a flight vehicle which has many constraints, trade-offs and compromises. Orion PA-1 Phasing Test was conducted at White Sands Missile Range (WSMR) from March 4-6, 2010. This test decreased the risk of mission failure by demonstrating proper flight control system polarity. Demonstration was achieved by stimulating the primary navigation sensor, processing sensor data to commands and viewing propulsion response. PA-1 primary navigation sensor was a Space Integrated Inertial Navigation System (INS) and Global Positioning System (GPS) (SIGI) which has onboard processing, INS (3 accelerometers and 3 rate gyros) and no GPS receiver. SIGI data was processed by GN&C software into thrust magnitude and direction commands. The processing changes through three phases of powered flight: pitchover, downrange and reorientation. The primary inputs to GN&C are attitude position, attitude rates, angle of attack (AOA) and angle of sideslip (AOS). Pitch and yaw attitude and attitude rate responses were verified by using a flight spare SIGI mounted to a 2-axis rate table. AOA and AOS responses were verified by using a data recorded from SIGI movements on a robotic arm located at NASA Johnson Space Center. The data was consolidated and used in an open-loop data input to the SIGI. Propulsion was the Launch Abort System (LAS) Attitude Control Motor (ACM) which consisted of a solid motor with 8 nozzles. Each nozzle has active thrust control by varying throat area with a pintle. LAS ACM pintles are observable through optically transparent nozzle covers. SIGI movements on robot arm, SIGI rate table movements and LAS ACM pintle responses were video recorded as test artifacts for analysis and evaluation. The PA-1 Phasing Test design was determined based on test performance requirements, operational restrictions and EGSE capabilities. This development progressed during different stages. For convenience these development stages are initial, working group, tiger team, Engineering Review Team (ERT) and final.
Incidence of Latent Virus Shedding during Space Flight
NASA Technical Reports Server (NTRS)
Mehta, Satish K.; Cohrs, Randall J.; Gilden, Donald H.; Tyring, Stephen K.; Ott, C. Mark; Pierson, Duane L.
2008-01-01
Measurements of immune parameters of both cellular and innate immunity indicate alterations in immune function in astronauts. Immune changes are due to stress and perhaps other factors associated with launch, flight, and landing phases. Medical relevance of observed changes is not known. The reactivation of latent viruses has been identified as an important in vivo indicator of clinically relevant immune changes. The polymerase chain reaction (PCR) was used to detect the presence of specific viral DNA in body fluids. Initial studies demonstrated Epstein-Barr virus (EBV) reactivation during all 3 mission phases. EBV is shed in saliva following reactivation from B-cells. Incidence of EBV in saliva was higher than control subjects during all 3 mission phases. However, quantitative PCR revealed 10-fold higher levels of EBV DNA present in saliva collected during flight than found in pre- and post flight specimens. To determine if other latent viruses showed similar effects, cytomegalovirus (CMV), another herpes virus, shed in urine following reactivation was studied. A very low incidence (less than 2%) of CMV in urine is found in healthy, lowstressed individuals. However, 25-50% of astronauts shed CMV in their urine before, during, or after flight. Our studies are now focused on varicella-zoster virus (VZV), the etiological agent of chicken-pox during childhood and shingles later in life. We demonstrated reactivation of VZV and shedding of the virus during and after spaceflight in saliva of astronauts with no sign of active infection or symptoms. The maximum shedding of VZV occurred during the flight phase and diminishes rapidly during the first five days after landing. We have utilized the same PCR assay for VZV in a clinical study of shingles patients. Generally, shingles patients shed much more VZV in saliva than astronauts. However, the VZV levels in astronauts overlap with the lower range of VZV numbers in shingles patients. Saliva from shingles patients and astronauts were cultured and infectious VZV was recovered from both groups. We have concluded that multiple latent viruses do reactivate before, during, and after spaceflight and serve as very sensitive indicators for diminished cellular immunity. Future plans will be focused on the clinical risks posed by the reactivation of these viruses. Initial efforts will determine the effect of longer missions on the International Space Station on the reactivation patterns of these viruses.
Development and Testing of the Phase 0 Autonomous Formation Flight Research System
NASA Technical Reports Server (NTRS)
Petersen, Shane; Fantini, Jay; Norlin, Ken; Theisen, John; Krasiewski, Steven
2004-01-01
The Autonomous Formation Flight (AFF) project was initiated in 1995 to demonstrate at least 10-percent drag reduction by positioning a trailing aircraft in the wingtip vortex of a leading aircraft. If successful, this technology would provide increased fuel savings, reduced emissions, and extended flight duration for fleet aircraft flying in formation. To demonstrate this technology, the AFF project at NASA Dryden Flight Research Center developed a system architecture incorporating two F-18 aircraft flying in leading-trailing formation. The system architecture has been designed to allow the trailing aircraft to maintain station-keeping position relative to the leading aircraft within +/-10 ft. Development of this architecture would be directed at the design and development of a computing system to feed surface position commands into the flight control computers, thereby controlling the longitudinal and lateral position of the trailing aircraft. In addition, modification to the instrumentation systems of both aircraft, pilot displays, and a means of broadcasting the leading aircraft inertial and global positioning system-based positional data to the trailing aircraft would be needed. This presentation focuses on the design and testing of the AFF Phase 0 research system.
NASA Technical Reports Server (NTRS)
Cabell, Karen; Hass, Neal; Storch, Andrea; Gruber, Mark
2011-01-01
A series of hydrocarbon-fueled direct-connect scramjet ground tests has been completed in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) at simulated Mach 8 flight conditions. These experiments were part of an initial test phase to support Flight 2 of the Hypersonic International Flight Research Experimentation (HIFiRE) Program. In this flight experiment, a hydrocarbon-fueled scramjet is intended to demonstrate transition from dual-mode to scramjet-mode operation and verify the scramjet performance prediction and design tools A performance goal is the achievement of a combusted fuel equivalence ratio greater than 0.7 while in scramjet mode. The ground test rig, designated the HIFiRE Direct Connect Rig (HDCR), is a full-scale, heat sink test article that duplicates both the flowpath lines and a majority of the instrumentation layout of the isolator and combustor portion of the flight test hardware. The primary objectives of the HDCR Phase I tests were to verify the operability of the HIFiRE isolator/combustor across the simulated Mach 6-8 flight regime and to establish a fuel distribution schedule to ensure a successful mode transition. Both of these objectives were achieved prior to the HiFIRE Flight 2 payload Critical Design Review. Mach 8 ground test results are presented in this report, including flowpath surface pressure distributions that demonstrate the operation of the flowpath in scramjet-mode over a small range of test conditions around the nominal Mach 8 simulation, as well as over a range of fuel equivalence ratios. Flowpath analysis using ground test data is presented elsewhere; however, limited comparisons with analytical predictions suggest that both scramjet-mode operation and the combustion performance objective are achieved at Mach 8 conditions.
Recent Ground Hold and Rapid Depressurization Testing of Multilayer Systems
NASA Technical Reports Server (NTRS)
Johnson, Wesley L.
2014-01-01
In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.
A Method of Trajectory Design for Manned Asteroid Explorations1,2
NASA Astrophysics Data System (ADS)
Gan, Qing-Bo; Zhang, Yang; Zhu, Zheng-Fan; Han, Wei-Hua; Dong, Xin
2015-07-01
A trajectory optimization method for the nuclear-electric propulsion manned asteroid explorations is presented. In the case of launching between 2035 and 2065, based on the two-pulse single-cycle Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory is selected by pruning the flight sequences in two feasible regions. Setting the flight strategy of propelling-taxiing-propelling, and taking the minimal fuel consumption as the performance index, the nuclear-electric propulsion flight trajectory is optimized using the hybrid method. Finally, taking the segmentally optimized parameters as the initial values, in accordance with the overall mission constraints, the globally optimized parameters are obtained. And the numerical and diagrammatical results are given at the same time.
Parameter identification for nonlinear aerodynamic systems
NASA Technical Reports Server (NTRS)
Pearson, Allan E.
1992-01-01
Continuing work on frequency analysis for transfer function identification is discussed. A new study was initiated into a 'weighted' least squares algorithm within the context of the Fourier modulating function approach. The first phase of applying these techniques to the F-18 flight data is nearing completion, and these results are summarized.
Development of Autonomous Aerobraking (Phase 1)
NASA Technical Reports Server (NTRS)
Murri, Daniel G.; Powell, Richard W.; Prince, Jill L.
2012-01-01
The NASA Engineering and Safety Center received a request from Mr. Daniel Murri (NASA Technical Fellow for Flight Mechanics) to develop an autonomous aerobraking capability. An initial evaluation for all phases of this assessment was approved to proceed at the NESC Review Board meeting. The purpose of phase 1 of this study was to provide an assessment of the feasibility of autonomous aerobraking. During this phase, atmospheric, aerodynamic, and thermal models for a representative spacecraft were developed for both the onboard algorithm known as Autonomous Aerobraking Development Software, and a ground-based "truth" simulation developed for testing purposes. The results of the phase 1 assessment are included in this report.
NASA Astrophysics Data System (ADS)
Barrie, A.; Gliese, U.; Gershman, D. J.; Avanov, L. A.; Rager, A. C.; Pollock, C. J.; Dorelli, J.
2015-12-01
The Fast Plasma Investigation (FPI) on the Magnetospheric Multiscale mission (MMS) combines data from eight spectrometers, each with four deflection states, into a single map of the sky. Any systematic discontinuity, artifact, noise source, etc. present in this map may be incorrectly interpreted as legitimate data and incorrect conclusions reached. For this reason it is desirable to have all spectrometers return the same output for a given input, and for this output to be low in noise sources or other errors. While many missions use statistical analyses of data to calibrate instruments in flight, this process is difficult with FPI for two reasons: 1. Only a small fraction of high resolution data is downloaded to the ground due to bandwidth limitations and 2: The data that is downloaded is, by definition, scientifically interesting and therefore not ideal for calibration. FPI uses a suite of new tools to calibrate in flight. A new method for detection system ground calibration has been developed involving sweeping the detection threshold to fully define the pulse height distribution. This method has now been extended for use in flight as a means to calibrate MCP voltage and threshold (together forming the operating point) of the Dual Electron Spectrometers (DES) and Dual Ion Spectrometers (DIS). A method of comparing higher energy data (which has low fractional voltage error) to lower energy data (which has a higher fractional voltage error) will be used to calibrate the high voltage outputs. Finally, a comparison of pitch angle distributions will be used to find remaining discrepancies among sensors. Initial flight results from the four MMS observatories will be discussed here. Specifically, data from initial commissioning, inter-instrument cross calibration and interference testing, and initial Phase1A routine calibration results. Success and performance of the in flight calibration as well as deviation from the ground calibration will be discussed.
NASA Technical Reports Server (NTRS)
1972-01-01
The detailed abort sequence trees for the reference zirconium hydride (ZrH) reactor power module that have been generated for each phase of the reference Space Base program mission are presented. The trees are graphical representations of causal sequences. Each tree begins with the phase identification and the dichotomy between success and failure. The success branch shows the mission phase objective as being achieved. The failure branch is subdivided, as conditions require, into various primary initiating abort conditions.
NASA Technical Reports Server (NTRS)
Holloway, G. F.
1975-01-01
An unmanned test flight program required to evaluate the command module heat shield and the structural integrity of the command and service module/Saturn launch vehicle is described. The mission control programer was developed to provide the unmanned interface between the guidance and navigation computer and the other spacecraft systems for mission event sequencing and real-time ground control during missions AS-202, Apollo 4, and Apollo 6. The development of this unmanned programer is traced from the initial concept through the flight test phase. Detailed discussions of hardware development problems are given with the resulting solutions. The mission control programer functioned correctly without any flight anomalies for all missions. The Apollo 4 mission control programer was reused for the Apollo 6 flight, thus being one of the first subsystems to be reflown on an Apollo space flight.
NASA Astrophysics Data System (ADS)
Lamkin, T.; Whitney, Brian
1995-09-01
This paper describes the engineering thought process behind the failure analysis, redesign, and rework of the flight hardware for the Brilliant Eyes Thermal Storage Unit (BETSU) experiment. This experiment was designed to study the zero-g performance of 2-methylpentane as a suitable phase change material. This hydrocarbon served as the cryogenic storage medium for the BETSU experiment which was flown 04 Mar 94 on board Shuttle STS-62. Ground testing had indicated satisfactory performance of the BETSU at the 120 Kelvin design temperature. However, questions remained as to the micro-gravity performance of this unit; potential deviations in ground (1 g) versus space flight (0 g) performance, and how the unit would operate in a realistic space environment undergoing cyclical operation. The preparations and rework performed on the BETSU unit, which failed initial flight qualification, give insight and lessons learned to successfully develop and qualify a space flight experiment.
Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System
NASA Technical Reports Server (NTRS)
Gasbarre, J. F.; Dillman, R. A.
2003-01-01
The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.
AFTI/F-16 50th flight team photo
NASA Technical Reports Server (NTRS)
1983-01-01
An early (1983) photograph of the AFTI F-16 team, commemorating the aircraft's 50th flight. It shows the initial configuration and paint finish of the AFTI F-16, as well as the forward mounted canards and the spin chute. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring the aircraft back to level flight. The AFTI F-16 program ended at Dryden on November 4, 1997 after 15 years and over 700 research flights. The USAF continued to fly the aircraft until retiring it to the Air Force Museum on January 9, 2001.
14 CFR 121.425 - Flight engineers: Initial and transition flight training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.425 - Flight engineers: Initial and transition flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.426 - Flight navigators: Initial and transition flight training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.426 - Flight navigators: Initial and transition flight training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.425 - Flight engineers: Initial and transition flight training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.426 - Flight navigators: Initial and transition flight training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.426 - Flight navigators: Initial and transition flight training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.425 - Flight engineers: Initial and transition flight training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...
14 CFR 121.425 - Flight engineers: Initial and transition flight training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineers: Initial and transition flight training. 121.425 Section 121.425 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.425 Flight engineers: Initial and transition flight training. (a) Initial and transition flight...
Identification of atypical flight patterns
NASA Technical Reports Server (NTRS)
Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris (Inventor)
2005-01-01
Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous-valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding atypicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis.
Using Pilots to Assess the Value and Approach of CMMI Implementation
NASA Technical Reports Server (NTRS)
Godfrey, Sara; Andary, James; Rosenberg, Linda
2002-01-01
At Goddard Space Flight Center (GSFC), we have chosen to use Capability Maturity Model Integrated (CMMI) to guide our process improvement program. Projects at GSFC consist of complex systems of software and hardware that control satellites, operate ground systems, run instruments, manage databases and data and support scientific research. It is a challenge to launch a process improvement program that encompasses our diverse systems, yet is manageable in terms of cost effectiveness. In order to establish the best approach for improvement, our process improvement effort was divided into three phases: 1) Pilot projects; 2) Staged implementation; and 3) Sustainment and continual improvement. During Phase 1 the focus of the activities was on a baselining process, using pre-appraisals in order to get a baseline for making a better cost and effort estimate for the improvement effort. Pilot pre-appraisals were conducted from different perspectives so different approaches for process implementation could be evaluated. Phase 1 also concentrated on establishing an improvement infrastructure and training of the improvement teams. At the time of this paper, three pilot appraisals have been completed. Our initial appraisal was performed in a flight software area, considering the flight software organization as the organization. The second appraisal was done from a project perspective, focusing on systems engineering and acquisition, and using the organization as GSFC. The final appraisal was in a ground support software area, again using GSFC as the organization. This paper will present our initial approach, lessons learned from all three pilots and the changes in our approach based on the lessons learned.
Command Flight Path Display. Phase I and II. Appendices A - E.
1983-09-01
information inherent in the display. These misconceptions have resulted in creating a number of variations in the display format, elimination of basic...CFPD FLT J螏 Lt. J. Wetherbee airplance . I didn’t seem to have too much trouble maintaining center line of that highway. Initially I wrote that
The aerodynamic challenges of the design and development of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Young, J. C.; Underwood, J. M.; Hillje, E. R.; Whitnah, A. M.; Romere, P. O.; Gamble, J. D.; Roberts, B. B.; Ware, G. M.; Scallion, W. I.; Spencer, B., Jr.
1985-01-01
The major aerodynamic design challenge at the beginning of the United States Space Transportation System (STS) research and development phase was to design a vehicle that would fly as a spacecraft during early entry and as an aircraft during the final phase of entry. The design was further complicated because the envisioned vehicle was statically unstable during a portion of the aircraft mode of operation. The second challenge was the development of preflight aerodynamic predictions with an accuracy consistent with conducting a manned flight on the initial orbital flight. A brief history of the early contractual studies is presented highlighting the technical results and management decisions influencing the aerodynamic challenges. The configuration evolution and the development of preflight aerodynamic predictions will be reviewed. The results from the first four test flights shows excellent agreement with the preflight aerodynamic predictions over the majority of the flight regimes. The only regimes showing significant disagreement is confined primarily to early entry, where prediction of the basic vehicle trim and the influence of the reaction control system jets on the flow field were found to be deficient. Postflight results are analyzed to explain these prediction deficiencies.
Architecting Systems for Human Space Flight
NASA Technical Reports Server (NTRS)
Wocken, Gerald
2002-01-01
Human-system interactions have been largely overlooked in the traditional systems engineering process. Awareness of human factors (HF) has increased in the past few years, but the involvement of HF specialists is still often too little and too late. In systems involving long-duration human space flight, it is essential that the human component be properly considered in the initial architectural definition phase, as well as throughout the system design process. HF analysis must include not only the strengths and limitations of humans in general, but the variability between individuals and within an individual over time, and the dynamics of group interactions.
NASA Technical Reports Server (NTRS)
Haberbusch, Mark S.; Meyer, Michael L. (Technical Monitor)
2002-01-01
A thermodynamic study has been conducted that investigated the effects of the boost-phase environment on densified propellant thermal conditions for expendable launch vehicles. Two thermodynamic models were developed and utilized to bound the expected thermodynamic conditions inside the cryogenic liquid hydrogen and oxygen propellant tanks of an Atlas IIAS/Centaur launch vehicle during the initial phases of flight. The ideal isentropic compression model was developed to predict minimum pressurant gas requirements. The thermal equilibrium model was developed to predict the maximum pressurant gas requirements. The models were modified to simulate the required flight tank pressure profiles through ramp pressurization, liquid expulsion, and tank venting. The transient parameters investigated were: liquid temperature, liquid level, and pressurant gas consumption. Several mission scenarios were analyzed using the thermodynamic models, and the results indicate that flying an Atlas IIAS launch vehicle with densified propellants is feasible and beneficial but may require some minor changes to the vehicle.
TT and C - First TDRSS, Then Commercial GEO and Big LEO and Now through LEO
NASA Technical Reports Server (NTRS)
Morgan, Dwayne; Bull, Barton; Grant, Charles; Streich, Ronald; Powers, Edward I. (Technical Monitor)
2001-01-01
The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce Telemetry Tracking and Control (TT&C) costs of launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating ground infrastructure. Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia have successfully used commercial GEO & Big LEO communications satellites for Long Duration Balloon flight TT&C. In addition, TDRSS capability for these balloons has been developed by WFF for the Ultra Long Duration Balloons with the first test flight launch in January 2001 for one global circumnavigation at 120,000 feet altitude launched from Alice Springs. Australia. Numerous other low cost applications can new utilize the commercial LEO satellites for TT&C. The Flight Modern became a GSFC/WFF Advanced Range Technology Initiative (ARTI) in an effort to streamline TT&C capability to the user community at low cost. Phase I ground tests of The Flight Modem verified downlink communications quality of service and measured transmission latencies. These tests were completed last year, Phase II consisting of aircraft flight tests provide much of the data presented in this paper. Phase III of the Flight Modern baseline test program is a demonstration of the ruggedized version of the WFF Flight Modem flown on one sounding rocket launched from Sweden. Flights of opportunity have been and are being actively pursued with other centers, ranges and users at universities. The WFF goal is to reduce TT&C costs by providing a low cost COTS Flight Modem with a User Handbook containing system capability and limitation descriptions. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initialed from practically any location with no infrastructure. The WFF, like most ranges, has been using GPS receivers on sounding rockets and long duration balloons for several years, The WFF Flight Modem contains a GPS receiver to provide vehicle position for tracking and vehicle recovery. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem. and a single board computer with custom software is described and a number of technical challenges are discussed along with the plan for their resolution. These include antenna development, high Doppler rates, reliability, environmental ruggedness, hand over between satellites and data security. An aggressive test plan is included which in addition to environmental Testing measures bit error rate latency and antenna patterns. Additional flight tests are planned far the near future on aircraft, long duration balloons and sounding rockets and these results as well as the current status of the project arc reported. Use of the WFF Flight Modem on small satellites is also being pursued. The LEO satellite constellation altitude above 1400 km is not an obstacle because most spacecraft do not require continuous Communications. The challenge is scheduling where store and forward techniques for command are required and downlink when the communications link allows connection (above 60 percent of the time depending on the satellite altitude). Sophisticated scheduling techniques utilizing 2-line orbital element sets available on the NASA/NORAD Internet site could be implemented for rare special cases. The current 9600 baud rate of the LEO communications link may be increased With special techniques that are planned for development in the WFF Flight Modem project.
A practical concept for powered or tethered weight-lifting LTA vehicles
NASA Technical Reports Server (NTRS)
Balleyguier, M. A.
1975-01-01
A concept for a multi-hull weightlifting airship is presented. The concept is based upon experience in the design and handling of gas-filled balloons for commercial purposes, it was first tested in April, 1972. In the flight test, two barrage balloons were joined side-by-side, with an intermediate frame, and launched in captive flight. The success of this flight test led to plans for a development program calling for a powered, piloted prototype, a follow-on 40 ton model, and a 400 ton transport model. All of these airships utilize a tetrehedric three-line tethering method for loading and unloading phases of flight, which bypasses many of the difficulties inherent in the handling of a conventional airship near the ground. Both initial and operating costs per ton of lift capability are significantly less for the subject design than for either helicopters or airships of conventional mono-hull design.
2007-09-26
NASA Dryden Flight Research Center's two T-38A Talon mission support aircraft flew together for the first time on Sept. 26, 2007 while conducting pitot-static airspeed calibration checks during routine pilot proficiency flights. The two aircraft, flown by NASA research pilots Kelly Latimer and Frank Batteas, joined up with a NASA Dryden F/A-18 flown by NASA research pilot Dick Ewers to fly the airspeed calibrations at several speeds and altitudes that would be flown by the Stratospheric Observatory for Infrared Astronomy (SOFIA) Boeing 747SP during its initial flight test phase. The T-38s, along with F/A-18s, serve in a safety chase role during those test missions, providing critical instrument and visual monitoring for the flight test series.
NASA Technical Reports Server (NTRS)
Bihrle, W., Jr.
1976-01-01
A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.
14 CFR 121.426 - Flight navigators: Initial and transition flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight navigators: Initial and transition flight training. 121.426 Section 121.426 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.426 Flight navigators: Initial and transition flight training. Link to an amendment published at...
MagLifter Site Investigation and Implementation Strategies
NASA Technical Reports Server (NTRS)
Burke, Pamela; Slaughter, Maynard; Beer, C. Neil
1995-01-01
MagLifter, as defined here, is an advanced, earth-bound catapult system to provide the initial lift for earth orbiting vehicles to reduce or eliminate the need for multistage propulsion, thus reducing the cost of orbital space flight. It is presumed that magnetic levitation will catapult the vehicle to a desired initial velocity sufficient for reaching orbit with the vehicles own engines. Of necessity, the system must be located on and around a mountain with sufficient relief to allow the catapult to accelerate the launch vehicle to a sufficient speed in the desired direction to allow it to reach orbit. Such a mountain site must meet criteria consistent with current and future space launch needs and conditions. It is the purpose of this report to set forth preliminary criteria for choosing a suitable maglifter site. The report is divided into four major sections: (1) Assumed Launch System and Flight Vehicle Characteristics; (2) Task 1.A - Initial Site Selection Criteria; (3) Conclusions; and (4) Appendix - Phases of the Site Selection Process.
High-lift flow-physics flight experiments on a subsonic civil transport aircraft (B737-100)
NASA Technical Reports Server (NTRS)
Vandam, Cornelis P.
1994-01-01
As part of the subsonic transport high-lift program, flight experiments are being conducted using NASA Langley's B737-100 to measure the flow characteristics of the multi-element high-lift system at full-scale high-Reynolds-number conditions. The instrumentation consists of hot-film anemometers to measure boundary-layer states, an infra-red camera to detect transition from laminar to turbulent flow, Preston tubes to measure wall shear stress, boundary-layer rakes to measure off-surface velocity profiles, and pressure orifices to measure surface pressure distributions. The initial phase of this research project was recently concluded with two flights on July 14. This phase consisted of a total of twenty flights over a period of about ten weeks. In the coming months the data obtained in this initial set of flight experiments will be analyzed and the results will be used to finalize the instrumentation layout for the next set of flight experiments scheduled for Winter and Spring of 1995. The main goal of these upcoming flights will be: (1) to measure more detailed surface pressure distributions across the wing for a range of flight conditions and flap settings; (2) to visualize the surface flows across the multi-element wing at high-lift conditions using fluorescent mini tufts; and (3) to measure in more detail the changes in boundary-layer state on the various flap elements as a result of changes in flight condition and flap deflection. These flight measured results are being correlated with experimental data measured in ground-based facilities as well as with computational data calculated with methods based on the Navier-Stokes equations or a reduced set of these equations. Also these results provide insight into the extent of laminar flow that exists on actual multi-element lifting surfaces at full-scale high-life conditions. Preliminary results indicate that depending on the deflection angle, the slat and flap elements have significant regions of laminar flow over a wide range of angles of attack. Boundary-layer transition mechanisms that were observed include attachment-line contamination on the slat and inflectional instability on the slat and fore flap. Also, the results agree fairly well with the predictions reported in a paper presented at last year's AIAA Fluid Dynamics Conference. The fact that extended regions of laminar flow are shown to exist on the various elements of the high-lift system raises the question what the effect is of loss of laminar flow as a result of insect contamiantion, rain or ice accumulation on high-life performance.
First Phase of X-48B Flight Tests Completed
2010-03-19
A joint NASA/Boeing team completed the first phase of flight tests on the unique X-48B Blended Wing Body aircraft at NASA's Dryden Flight Research Center at Edwards, CA. The team completed the 80th and last flight of the project's first phase on March 19, 2010.
NASA Technical Reports Server (NTRS)
Lucas, E. J.; Fanning, A. E.; Steers, L. I.
1978-01-01
Results are reported from the initial phase of an effort to provide an adequate technical capability to accurately predict the full scale, flight vehicle, nozzle-afterbody performance of future aircraft based on partial scale, wind tunnel testing. The primary emphasis of this initial effort is to assess the current capability and identify the cause of limitations on this capability. A direct comparison of surface pressure data is made between the results from an 0.1-scale model wind tunnel investigation and a full-scale flight test program to evaluate the current subscale testing techniques. These data were acquired at Mach numbers 0.6, 0.8, 0.9, 1.2, and 1.5 on four nozzle configurations at various vehicle pitch attitudes. Support system interference increments were also documented during the wind tunnel investigation. In general, the results presented indicate a good agreement in trend and level of the surface pressures when corrective increments are applied for known effects and surface differences between the two articles under investigation.
Transition Analysis for the HIFiRE-1 Flight Experiment
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; Kimmel, Roger; Adamczak, David; Smith, Mark S.
2011-01-01
The HIFiRE-1 flight experiment provided a valuable database pertaining to boundary layer transition over a 7-degree half-angle, circular cone model from supersonic to hypersonic Mach numbers, and a range of Reynolds numbers and angles of incidence. This paper reports the initial findings from the ongoing computational analysis pertaining to the measured in-flight transition behavior. Transition during the ascent phase at nearly zero degree angle of attack is dominated by second mode instabilities except in the vicinity of the cone meridian where a roughness element was placed midway along the length of the cone. The first mode instabilities were found to be weak at all trajectory points analyzed from the ascent phase. For times less than approximately 18.5 seconds into the flight, the peak amplification ratio for second mode disturbances is sufficiently small because of the lower Mach numbers at earlier times, so that the transition behavior inferred from the measurements is attributed to an unknown physical mechanism, potentially related to step discontinuities in surface height near the locations of a change in the surface material. Based on the time histories of temperature and/or heat flux at transducer locations within the aft portion of the cone, the onset of transition correlated with a linear PSE N-factor of approximately 14.
NASA Technical Reports Server (NTRS)
Charles, John B.; Richard, Elizabeth E.
2010-01-01
There is currently too little reproducible data for a scientifically valid understanding of the initial responses of a diverse human population to weightlessness and other space flight factors. Astronauts on orbital space flights to date have been extremely healthy and fit, unlike the general human population. Data collection opportunities during the earliest phases of space flights to date, when the most dynamic responses may occur in response to abrupt transitions in acceleration loads, have been limited by operational restrictions on our ability to encumber the astronauts with even minimal monitoring instrumentation. The era of commercial personal suborbital space flights promises the availability of a large (perhaps hundreds per year), diverse population of potential participants with a vested interest in their own responses to space flight factors, and a number of flight providers interested in documenting and demonstrating the attractiveness and safety of the experience they are offering. Voluntary participation by even a fraction of the flying population in a uniform set of unobtrusive biomedical data collections would provide a database enabling statistical analyses of a variety of acute responses to a standardized space flight environment. This will benefit both the space life sciences discipline and the general state of human knowledge.
Adaptive guidance for an aero-assisted boost vehicle
NASA Astrophysics Data System (ADS)
Pamadi, Bandu N.; Taylor, Lawrence W., Jr.; Price, Douglas B.
An adaptive guidance system incorporating dynamic pressure constraint is studied for a single stage to low earth orbit (LEO) aero-assist booster with thrust gimbal angle as the control variable. To derive an adaptive guidance law, cubic spline functions are used to represent the ascent profile. The booster flight to LEO is divided into initial and terminal phases. In the initial phase, the ascent profile is continuously updated to maximize the performance of the boost vehicle enroute. A linear feedback control is used in the terminal phase to guide the aero-assisted booster onto the desired LEO. The computer simulation of the vehicle dynamics considers a rotating spherical earth, inverse square (Newtonian) gravity field and an exponential model for the earth's atmospheric density. This adaptive guidance algorithm is capable of handling large deviations in both atmospheric conditions and modeling uncertainties, while ensuring maximum booster performance.
Transition to Glass: Pilot Training for High-Technology Transport Aircraft
NASA Technical Reports Server (NTRS)
Wiener, Earl L.; Chute, Rebecca D.; Moses, John H.
1999-01-01
This report examines the activities of a major commercial air carrier between 1993 and late 1996 as it acquired an advanced fleet of high-technology aircraft (Boeing 757). Previously, the airline's fleet consisted of traditional (non-glass) aircraft, and this report examines the transition from a traditional fleet to a glass one. A total of 150 pilots who were entering the B-757 transition training volunteered for the study, which consisted of three query phases: (1) first day of transition training, (2) 3 to 4 months after transition training, and (3) 12 to 14 months after initial operating experience. Of these initial 150 pilots, 99 completed all three phases of the study, with each phase consisting of probes on attitudes and experiences associated with their training and eventual transition to flying the line. In addition to the three questionnaires, 20 in-depth interviews were conducted. Although the primary focus of this study was on the flight training program, additional factors such as technical support, documentation, and training aids were investigated as well. The findings generally indicate that the pilot volunteers were highly motivated and very enthusiastic about their training program. In addition, the group had low levels of apprehension toward automation and expressed a high degree of satisfaction toward their training. However, there were some concerns expressed regarding the deficiencies in some of the training aids and lack of a free-play flight management system training device.
The Performance of a Subsonic Diffuser Designed for High Speed Turbojet-Propelled Flight
NASA Technical Reports Server (NTRS)
Biesiadny, Thomas J. (Technical Monitor); Wendt, Bruce J.
2004-01-01
An initial-phase subsonic diffuser has been designed for the turbojet flowpath of the hypersonic x43B flight demonstrator vehicle. The diffuser fit into a proposed mixed-compression supersonic inlet system and featured a cross-sectional shape transitioning flowpath (high aspect ratio rectangular throat-to-circular engine face) and a centerline offset. This subsonic diffuser has been fabricated and tested at the W1B internal flow facility at NASA Glenn Research Center. At an operating throat Mach number of 0.79, baseline Pitot pressure recovery was found to be just under 0.9, and DH distortion intensity was about 0.4 percent. The diffuser internal flow stagnated, but did not separate on the offset surface of this initial-phase subsonic diffuser. Small improvements in recovery (+0.4 percent) and DH distortion (-32 percent) were obtained from using vane vortex generator flow control applied just downstream of the diffuser throat. The optimum vortex generator array patterns produced inflow boundary layer divergence (local downwash) on the offset surface centerline of the diffuser, and an inflow boundary layer convergence (local upwash) on the centerline of the opposite surface.
How Cheap Is Soaring Flight in Raptors? A Preliminary Investigation in Freely-Flying Vultures
Duriez, Olivier; Kato, Akiko; Tromp, Clara; Dell'Omo, Giacomo; Vyssotski, Alexei L.; Sarrazin, François; Ropert-Coudert, Yan
2014-01-01
Measuring the costs of soaring, gliding and flapping flight in raptors is challenging, but essential for understanding their ecology. Among raptors, vultures are scavengers that have evolved highly efficient soaring-gliding flight techniques to minimize energy costs to find unpredictable food resources. Using electrocardiogram, GPS and accelerometer bio-loggers, we report the heart rate (HR) of captive griffon vultures (Gyps fulvus and G. himalayensis) trained for freely-flying. HR increased three-fold at take-off (characterized by prolonged flapping flight) and landing (>300 beats-per-minute, (bpm)) compared to baseline levels (80–100 bpm). However, within 10 minutes after the initial flapping phase, HR in soaring/gliding flight dropped to values similar to baseline levels, i.e. slightly lower than theoretically expected. However, the extremely rapid decrease in HR was unexpected, when compared with other marine gliders, such as albatrosses. Weather conditions influenced flight performance and HR was noticeably higher during cloudy compared to sunny conditions when prolonged soaring flight is made easier by thermal ascending air currents. Soaring as a cheap locomotory mode is a crucial adaptation for vultures who spend so long on the wing for wide-ranging movements to find food. PMID:24454760
How cheap is soaring flight in raptors? A preliminary investigation in freely-flying vultures.
Duriez, Olivier; Kato, Akiko; Tromp, Clara; Dell'Omo, Giacomo; Vyssotski, Alexei L; Sarrazin, François; Ropert-Coudert, Yan
2014-01-01
Measuring the costs of soaring, gliding and flapping flight in raptors is challenging, but essential for understanding their ecology. Among raptors, vultures are scavengers that have evolved highly efficient soaring-gliding flight techniques to minimize energy costs to find unpredictable food resources. Using electrocardiogram, GPS and accelerometer bio-loggers, we report the heart rate (HR) of captive griffon vultures (Gyps fulvus and G. himalayensis) trained for freely-flying. HR increased three-fold at take-off (characterized by prolonged flapping flight) and landing (>300 beats-per-minute, (bpm)) compared to baseline levels (80-100 bpm). However, within 10 minutes after the initial flapping phase, HR in soaring/gliding flight dropped to values similar to baseline levels, i.e. slightly lower than theoretically expected. However, the extremely rapid decrease in HR was unexpected, when compared with other marine gliders, such as albatrosses. Weather conditions influenced flight performance and HR was noticeably higher during cloudy compared to sunny conditions when prolonged soaring flight is made easier by thermal ascending air currents. Soaring as a cheap locomotory mode is a crucial adaptation for vultures who spend so long on the wing for wide-ranging movements to find food.
Physics, chemistry and pulmonary sequelae of thermodegradation events in long-mission space flight
NASA Technical Reports Server (NTRS)
Todd, Paul; Sklar, Michael; Ramirez, W. Fred; Smith, Gerald J.; Morgenthaler, George W.; Oberdoerster, Guenter
1993-01-01
An event in which electronic insulation consisting of polytetrafluoroethylene undergoes thermodegradation on the Space Station Freedom is considered experimentally and theoretically from the initial chemistry and convective transport through pulmonary deposition in humans. The low-gravity enviroment impacts various stages of event simulation. Vapor-phase and particulate thermodegradation products were considered as potential spacecraft contaminants. A potential pathway for the production of ultrafine particles was identified. Different approaches to the simulation and prediction of contaminant transport were studied and used to predict the distribution of generic vapor-phase products in a Space Station model. A lung transport model was used to assess the pulmonary distribution of inhaled particles, and, finally, the impact of adaptation to low gravity on the human response to this inhalation risk was explored on the basis of known physiological modifications of the immune, endocrine, musculoskeletal and pulmonary systems that accompany space flight.
NASA Technical Reports Server (NTRS)
Fern, Lisa; Rorie, R. Conrad; Shively, R. Jay
2014-01-01
In 2011 the National Aeronautics and Space Administration (NASA) began a five-year Project to address the technical barriers related to routine access of Unmanned Aerial Systems (UAS) in the National Airspace System (NAS). Planned in two phases, the goal of the first phase was to lay the foundations for the Project by identifying those barriers and key issues to be addressed to achieve integration. Phase 1 activities were completed two years into the five-year Project. The purpose of this paper is to review activities within the Human Systems Integration (HSI) subproject in Phase 1 toward its two objectives: 1) develop GCS guidelines for routine UAS access to the NAS, and 2) develop a prototype display suite within an existing Ground Control Station (GCS). The first objective directly addresses a critical barrier for UAS integration into the NAS - a lack of GCS design standards or requirements. First, the paper describes the initial development of a prototype GCS display suite and supporting simulation software capabilities. Then, three simulation experiments utilizing this simulation architecture are summarized. The first experiment sought to determine a baseline performance of UAS pilots operating in civil airspace under current instrument flight rules for manned aircraft. The second experiment examined the effect of currently employed UAS contingency procedures on Air Traffic Control (ATC) participants. The third experiment compared three GCS command and control interfaces on UAS pilot response times in compliance with ATC clearances. The authors discuss how the results of these and future simulation and flight-testing activities contribute to the development of GCS guidelines to support the safe integration of UAS into the NAS. Finally, the planned activities for Phase 2, including an integrated human-in-the-loop simulation and two flight tests are briefly described.
Heart rate and performance during combat missions in a flight simulator.
Lahtinen, Taija M M; Koskelo, Jukka P; Laitinen, Tomi; Leino, Tuomo K
2007-04-01
The psychological workload of flying has been shown to increase heart rate (HR) during flight simulator operation. The association between HR changes and flight performance remains unclear. There were 15 pilots who performed a combat flight mission in a Weapons Tactics Trainer simulator of an F-18 Hornet. An electrocardiogram (ECG) was recorded, and individual incremental heart rates (deltaHR) from the HR during rest were calculated for each flight phase and used in statistical analyses. The combat flight period was divided into 13 phases, which were evaluated on a scale of 1 to 5 by the flight instructor. HR increased during interceptions (from a mean resting level of 79.0 to mean value of 96.7 bpm in one of the interception flight phases) and decreased during the return to base and slightly increased during the ILS approach and landing. DeltaHR appeared to be similar among experienced and less experienced pilots. DeltaHR responses during the flight phases did not correlate with simulator flight performance scores. Overall simulator flight performance correlated statistically significantly (r = 0.50) with the F-18 Hornet flight experience. HR reflected the amount of cognitive load during the simulated flight. Hence, HR analysis can be used in the evaluation of the psychological workload of military simulator flight phases. However, more detailed flight performance evaluation methods are needed for this kind of complex flight simulation to replace the traditional but rough interval scales. Use of a visual analog scale by the flight instructors is suggested for simulator flight performance evaluation.
Writing executable assertions to test flight software
NASA Technical Reports Server (NTRS)
Mahmood, A.; Andrews, D. M.; Mccluskey, E. J.
1984-01-01
An executable assertion is a logical statement about the variables or a block of code. If there is no error during execution, the assertion statement results in a true value. Executable assertions can be used for dynamic testing of software. They can be employed for validation during the design phase, and exception and error detection during the operation phase. The present investigation is concerned with the problem of writing executable assertions, taking into account the use of assertions for testing flight software. They can be employed for validation during the design phase, and for exception handling and error detection during the operation phase The digital flight control system and the flight control software are discussed. The considered system provides autopilot and flight director modes of operation for automatic and manual control of the aircraft during all phases of flight. Attention is given to techniques for writing and using assertions to test flight software, an experimental setup to test flight software, and language features to support efficient use of assertions.
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Lyle, Karen H.; Burley, Casey L.
1998-01-01
An algorithm for generating appropriate velocity boundary conditions for an acoustic boundary element analysis from the kinematics of an operating propeller is presented. It constitutes the initial phase of Integrating sophisticated rotorcraft models into a conventional boundary element analysis. Currently, the pressure field is computed by a linear approximation. An initial validation of the developed process was performed by comparing numerical results to test data for the external acoustic pressure on the surface of a tilt-rotor aircraft for one flight condition.
NASA Technical Reports Server (NTRS)
Birmele, Michele
2012-01-01
The International Space Station (ISS) is a closed environment wih rotations of crew and equipment each introducing their own microbial flora making it necessary to monitor the air, surfaces, and water for microbial contamination. Current microbial monitoring includes labor and time intensive methods to enumerate total bacterial and fungal cells with limited characterization during in-flight testing. Although this culture-based method has been sufficient for monitoring the ISS, future long duration missions will need to perform more comprehensive characterization in-flight, since sample return and ground characterization may not be available. A workshop was held in 2011 at the Johnson Space Center to discuss alternative methodologies and technologies suitable for microbial monitoring for these longterm exploration missions where molecular-based methodologies, such as polymerase chain reaction (PCR), were recommended. In response, a multi-center (Marshall Space Flight Center, Johnson Space Center, Jet Propulsion Laboratory, and Kennedy Space Center) collaborative research effort was initiated to explore novel commercial-off-the-shelf hardware options for spaceflight environmental monitoring. The goal was to evaluate quantitative/semi-quantitative PCR approaches to space applications for low cost in-flight rapid identification of microorganisms affecting crew safety. The initial phase of this project identified commercially available platforms that could be minimally modified to perform nominally in microgravity followed by proof-of-concept testing on the highest qualifying candidates with a universally available test organism, Salmonella enterica. The platforms evaluated during proof-of-concept testing included the iCubate 2.0(TradeMark) (iCubate, Huntsville, AL), RAZOR EX (BioFire Diagnostics; Salt Lake City, Utah) and SmartCycler(TradeMark) (Cepheid; Sunnyvale, CA). The analysis identified two potential technologies (iCubate 2.0 and RAZOR EX) that were able to perform sample-to-answer testing with cell sample concentrations between SO to 400 cells. In addition, the commercial systems were evaluated for initial flight safety and readiness, sample concentration needs were reviewed, and a competitive procurement of commercially available platforms was initiated.
Limbach, Christoph; Hauslage, Jens; Schäfer, Claudia; Braun, Markus
2005-01-01
Early processes underlying plant gravity sensing were investigated in rhizoids of Chara globularis under microgravity conditions provided by parabolic flights of the A300-Zero-G aircraft and of sounding rockets. By applying centrifugal forces during the microgravity phases of sounding rocket flights, lateral accelerations of 0.14g, but not of 0.05g, resulted in a displacement of statoliths. Settling of statoliths onto the subapical plasma membrane initiated the gravitropic response. Since actin controls the positioning of statoliths and restricts sedimentation of statoliths in these cells, it can be calculated that lateral actomyosin forces in a range of 2 × 10−14 n act on statoliths to keep them in place. These forces represent the threshold value that has to be exceeded by any lateral acceleration stimulus for statolith sedimentation and gravisensing to occur. When rhizoids were gravistimulated during parabolic plane flights, the curvature angles of the flight samples, whose sedimented statoliths became weightless for 22 s during the 31 microgravity phases, were not different from those of in-flight 1g controls. However, in ground control experiments, curvature responses were drastically reduced when the contact of statoliths with the plasma membrane was intermittently interrupted by inverting gravistimulated cells for less than 10 s. Increasing the weight of sedimented statoliths by lateral centrifugation did not enhance the gravitropic response. These results provide evidence that graviperception in characean rhizoids requires contact of statoliths with membrane-bound receptor molecules rather than pressure or tension exerted by the weight of statoliths. PMID:16183834
Limbach, Christoph; Hauslage, Jens; Schäfer, Claudia; Braun, Markus
2005-10-01
Early processes underlying plant gravity sensing were investigated in rhizoids of Chara globularis under microgravity conditions provided by parabolic flights of the A300-Zero-G aircraft and of sounding rockets. By applying centrifugal forces during the microgravity phases of sounding rocket flights, lateral accelerations of 0.14 g, but not of 0.05 g, resulted in a displacement of statoliths. Settling of statoliths onto the subapical plasma membrane initiated the gravitropic response. Since actin controls the positioning of statoliths and restricts sedimentation of statoliths in these cells, it can be calculated that lateral actomyosin forces in a range of 2 x 10(-14) n act on statoliths to keep them in place. These forces represent the threshold value that has to be exceeded by any lateral acceleration stimulus for statolith sedimentation and gravisensing to occur. When rhizoids were gravistimulated during parabolic plane flights, the curvature angles of the flight samples, whose sedimented statoliths became weightless for 22 s during the 31 microgravity phases, were not different from those of in-flight 1g controls. However, in ground control experiments, curvature responses were drastically reduced when the contact of statoliths with the plasma membrane was intermittently interrupted by inverting gravistimulated cells for less than 10 s. Increasing the weight of sedimented statoliths by lateral centrifugation did not enhance the gravitropic response. These results provide evidence that graviperception in characean rhizoids requires contact of statoliths with membrane-bound receptor molecules rather than pressure or tension exerted by the weight of statoliths.
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. Link to...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
14 CFR 121.419 - Pilots and flight engineers: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; (ix) Flight planning; (x) Each normal and emergency procedure; and (xi) The approved Airplane Flight... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Pilots and flight engineers: Initial... Program § 121.419 Pilots and flight engineers: Initial, transition, and upgrade ground training. (a...
NASA Astrophysics Data System (ADS)
Buchholz, Bernhard; Afchine, Armin; Klein, Alexander; Schiller, Cornelius; Krämer, Martina; Ebert, Volker
2017-01-01
The novel Hygrometer for Atmospheric Investigation (HAI) realizes a unique concept for simultaneous gas-phase and total (gas-phase + evaporated cloud particles) water measurements. It has been developed and successfully deployed for the first time on the German HALO research aircraft. This new instrument combines direct tunable diode laser absorption spectroscopy (dTDLAS) with a first-principle evaluation method to allow absolute water vapor measurements without any initial or repetitive sensor calibration using a reference gas or a reference humidity generator. HAI contains two completely independent dual-channel (closed-path, open-path) spectrometers, one at 1.4 and one at 2.6 µm, which together allow us to cover the entire atmospheric H2O range from 1 to 40 000 ppmv with a single instrument. Both spectrometers each comprise a separate, wavelength-individual extractive, closed-path cell for total water (ice and gas-phase) measurements. Additionally, both spectrometers couple light into a common open-path cell outside of the aircraft fuselage for a direct, sampling-free, and contactless determination of the gas-phase water content. This novel twin dual-channel setup allows for the first time multiple self-validation functions, in particular a reliable, direct, in-flight validation of the open-path channels. During the first field campaigns, the in-flight deviations between the independent and calibration-free channels (i.e., closed-path to closed-path and open-path to closed-path) were on average in the 2 % range. Further, the fully autonomous HAI hygrometer allows measurements up to 240 Hz with a minimal integration time of 1.4 ms. The best precision is achieved by the 1.4 µm closed-path cell at 3.8 Hz (0.18 ppmv) and by the 2.6 µm closed-path cell at 13 Hz (0.055 ppmv). The requirements, design, operation principle, and first in-flight performance of the hygrometer are described and discussed in this work.
Aizpurua, Ostaizka; Aihartza, Joxerra; Alberdi, Antton; Baagøe, Hans J; Garin, Inazio
2014-09-15
Formerly thought to be a strictly insectivorous trawling bat, recent studies have shown that Myotis capaccinii also preys on fish. To determine whether differences exist in bat flight behaviour, prey handling and echolocation characteristics when catching fish and insects of different size, we conducted a field experiment focused on the last stage of prey capture. We used synchronized video and ultrasound recordings to measure several flight and dip features as well as echolocation characteristics, focusing on terminal buzz phase I, characterized by a call rate exceeding 100 Hz, and buzz phase II, characterized by a drop in the fundamental well below 20 kHz and a repetition rate exceeding 150 Hz. When capturing insects, bats used both parts of the terminal phase to the same extent, and performed short and superficial drags on the water surface. In contrast, when preying on fish, buzz I was longer and buzz II shorter, and the bats made longer and deeper dips. These variations suggest that lengthening buzz I and shortening buzz II when fishing is beneficial, probably because buzz I gives better discrimination ability and the broader sonar beam provided by buzz II is useless when no evasive flight of the prey is expected. Additionally, bats continued emitting calls beyond the theoretical signal-overlap zone, suggesting that they might obtain information even when they have surpassed that threshold, at least initially. This study shows that M. capaccinii can regulate the temporal components of its feeding buzzes and modify prey capture technique according to the target. © 2014. Published by The Company of Biologists Ltd.
Acoustics Research of Propulsion Systems
NASA Technical Reports Server (NTRS)
Gao, Ximing; Houston, Janice D.
2014-01-01
The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.
Phase Change Material Heat Sink for an ISS Flight Experiment
NASA Technical Reports Server (NTRS)
Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas
2015-01-01
A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.
Autonomous Aerobraking Development Software: Phase 2 Summary
NASA Technical Reports Server (NTRS)
Cianciolo, Alicia D.; Maddock, Robert W.; Prince, Jill L.; Bowes, Angela; Powell, Richard W.; White, Joseph P.; Tolson, Robert; O'Shaughnessy, Daniel; Carrelli, David
2013-01-01
NASA has used aerobraking at Mars and Venus to reduce the fuel required to deliver a spacecraft into a desired orbit compared to an all-propulsive solution. Although aerobraking reduces the propellant, it does so at the expense of mission duration, large staff, and DSN coverage. These factors make aerobraking a significant cost element in the mission design. By moving on-board the current ground-based tasks of ephemeris determination, atmospheric density estimation, and maneuver sizing and execution, a flight project would realize significant cost savings. The NASA Engineering and Safety Center (NESC) sponsored Phase 1 and 2 of the Autonomous Aerobraking Development Software (AADS) study, which demonstrated the initial feasibility of moving these current ground-based functions to the spacecraft. This paper highlights key state-of-the-art advancements made in the Phase 2 effort to verify that the AADS algorithms are accurate, robust and ready to be considered for application on future missions that utilize aerobraking. The advancements discussed herein include both model updates and simulation and benchmark testing. Rigorous testing using observed flight atmospheres, operational environments and statistical analysis characterized the AADS operability in a perturbed environment.
Support to X-33/Resusable Launch Vehicle Technology Program
NASA Technical Reports Server (NTRS)
2000-01-01
The X-33 Guidance, Navigation, and Control (GN&C) Peer Review Team (PRT) was formed to assess the integrated X-33 vehicle GN&C system in order to identify any areas of disproportionate risk for initial flight. The eventual scope of the PRT assessment encompasses the GN&C algorithms, software, avionics, control effectors, applicable models, and testing. The initial (phase 1) focus of the PRT was on the GN&C algorithms and the Flight Control Actuation Subsystem (FCAS). The PRT held meetings during its phase 1 assessment at X-33 assembly facilities in Palmdale, California on May 17-18, 2000 and at Honeywell facilities in Tempe, Arizona on June 7, 2000. The purpose of these meetings was for the PRT members to get background briefings on the X-33 vehicle and for the PRT team to be briefed on the design basis and current status of the X-33 GN&C algorithms as well as the FCAS. The following material is covered in this PRT phase 1 final report. Some significant GN&C-related accomplishments by the X-33 development team are noted. Some topics are identified that were found during phase 1 to require fuller consideration when the PRT reconvenes in the future. Some new recommendations by the PRT to the X-33 program will likely result from a thorough assessment of these subjects. An initial list of recommendations from the PRT to the X-33 program is provided. These recommendations stem from topics that received adequate review by the PRT in phase 1. Significant technical observations by the PRT members as a result of the phase 1 meetings are detailed. (These are covered in an appendix.) There were many X-33 development team members who contributed to the technical information used by the PRT during the phase 1 assessment, who supported presentations to the PRT, and who helped to address the many questions posed by the PRT members at and after the phase 1 meetings. In all instances the interaction between the PRT and the X-33 development team members was cordial and very professional. The members of the PRT are grateful for the time and effort applied by all of these individuals and hope that the contents of this report will help to make the X-33 program a success.
CRYOGENIC UPPER STAGE SYSTEM SAFETY
NASA Technical Reports Server (NTRS)
Smith, R. Kenneth; French, James V.; LaRue, Peter F.; Taylor, James L.; Pollard, Kathy (Technical Monitor)
2005-01-01
NASA s Exploration Initiative will require development of many new systems or systems of systems. One specific example is that safe, affordable, and reliable upper stage systems to place cargo and crew in stable low earth orbit are urgently required. In this paper, we examine the failure history of previous upper stages with liquid oxygen (LOX)/liquid hydrogen (LH2) propulsion systems. Launch data from 1964 until midyear 2005 are analyzed and presented. This data analysis covers upper stage systems from the Ariane, Centaur, H-IIA, Saturn, and Atlas in addition to other vehicles. Upper stage propulsion system elements have the highest impact on reliability. This paper discusses failure occurrence in all aspects of the operational phases (Le., initial burn, coast, restarts, and trends in failure rates over time). In an effort to understand the likelihood of future failures in flight, we present timelines of engine system failures relevant to initial flight histories. Some evidence suggests that propulsion system failures as a result of design problems occur shortly after initial development of the propulsion system; whereas failures because of manufacturing or assembly processing errors may occur during any phase of the system builds process, This paper also explores the detectability of historical failures. Observations from this review are used to ascertain the potential for increased upper stage reliability given investments in integrated system health management. Based on a clear understanding of the failure and success history of previous efforts by multiple space hardware development groups, the paper will investigate potential improvements that can be realized through application of system safety principles.
The path to an experiment in space (from concept to flight)
NASA Technical Reports Server (NTRS)
Salzman, Jack A.
1994-01-01
The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.
X-29 Research Pilot Rogers Smith
NASA Technical Reports Server (NTRS)
1988-01-01
Rogers Smith, a NASA research pilot, is seen here at the cockpit of the X-29 forward-swept-wing technology demonstrator at NASA's Ames-Dryden Flight Research Facility (later the Dryden Flight Research Center), Edwards, California, in 1988. The X-29 explored the use of advanced composites in aircraft construction; variable camber wing surfaces; the unique forward-swept-wing and its thin supercritical airfoil; strake flaps; and a computerized fly-by-wire flight control system that overcame the aircraft's instability. Grumman Aircraft Corporation built two X-29s. They were flight tested at Dryden from 1984 to 1992 in a joint NASA, DARPA (Defense Advanced Research Projects Agency) and U.S. Air Force program. Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft. Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave pilots excellent control response at angles of attack of up to 45 degrees. During its flight history, the X-29 aircraft flew 422 research missions and a total of 436 missions. Sixty of the research flights were part of the X-29 follow-on 'vortex control' phase. The forward-swept wing of the X-29 resulted in reverse airflow, toward the fuselage rather than away from it, as occurs on the usual aft-swept wing. Consequently, on the forward-swept wing, the ailerons remained unstalled at high angles of attack. This provided better airflow over the ailerons and prevented stalling (loss of lift) at high angles of attack. Introduction of composite materials in the 1970s opened a new field of aircraft construction. It also made possible the construction of the X-29's thin supercritical wing. State-of-the-art composites allowed aeroelastic tailoring which, in turn, allowed the wing some bending but limited twisting and eliminated structural divergence within the flight envelope (i.e. deformation of the wing or the wing breaking off in flight). Additionally, composite materials allowed the wing to be sufficiently rigid for safe flight without adding an unacceptable weight penalty. The X-29 project consisted of two phases plus the follow-on vortex-control phase. Phase 1 demonstrated that the forward sweep of the X-29 wings kept the wing tips unstalled at the moderate angles of attack flown in that phase (a maximum of 21 degrees). Phase I also demonstrated that the aeroelastic tailored wing prevented structural divergence of the wing within the flight envelope, and that the control laws and control-surface effectiveness were adequate to provide artificial stability for an otherwise unstable aircraft. Phase 1 further demonstrated that the X-29 configuration could fly safely and reliably, even in tight turns. During Phase 2 of the project, the X-29, flying at an angle of attack of up to 67 degrees, demonstrated much better control and maneuvering qualities than computational methods and simulation models had predicted . During 120 research flights in this phase, NASA, Air Force, and Grumman project pilots reported the X-29 aircraft had excellent control response to an angle of attack of 45 degrees and still had limited controllability at a 67-degree angle of attack. This controllability at high angles of attack can be attributed to the aircraft's unique forward-swept wing- canard design. The NASA/Air Force-designed high-gain flight control laws also contributed to the good flying qualities. During the Air Force-initiated vortex-control phase, the X-29 successfully demonstrated vortex flow control (VFC). This VFC was more effective than expected in generating yaw forces, especially in high angles of attack where the rudder is less effective. VFC was less effective in providing control when sideslip (wind pushing on the side of the aircraft) was present, and it did little to decrease rocking oscillation of the aircraft. The X-29 vehicle was a single-engine aircraft, 48.1 feet long with a wing span of 27.2 feet. Each aircraft was powered by a General Electric F404-GE-400 engine producing 16,000 pounds of thrust. The program was a joint effort of the Department of Defense's Defense Advanced Research Projects Agency (DARPA), the U.S. Air Force, the Ames-Dryden Flight Research Facility, the Air Force Flight Test Center, and the Grumman Corporation. The program was managed by the Air Force's Wright Laboratory, Wright Patterson Air Force Base, Ohio.
Challenges in modeling the X-29 flight test performance
NASA Technical Reports Server (NTRS)
Hicks, John W.; Kania, Jan; Pearce, Robert; Mills, Glen
1987-01-01
Presented are methods, instrumentation, and difficulties associated with drag measurement of the X-29A aircraft. The initial performance objective of the X-29A program emphasized drag polar shapes rather than absolute drag levels. Priorities during the flight envelope expansion restricted the evaluation of aircraft performance. Changes in aircraft configuration, uncertainties in angle-of-attack calibration, and limitations in instrumentation complicated the analysis. Limited engine instrumentation with uncertainties in overall in-flight thrust accuracy made it difficult to obtain reliable values of coefficient of parasite drag. The aircraft was incapable of tracking the automatic camber control trim schedule for optimum wing flaperon deflection during typical dynamic performance maneuvers; this has also complicated the drag polar shape modeling. The X-29A was far enough off the schedule that the developed trim drag correction procedure has proven inadequate. However, good drag polar shapes have been developed throughout the flight envelope. Preliminary flight results have compared well with wind tunnel predictions. A more comprehensive analysis must be done to complete performance models. The detailed flight performance program with a calibrated engine will benefit from the experience gained during this preliminary performance phase.
Challenges in modeling the X-29A flight test performance
NASA Technical Reports Server (NTRS)
Hicks, John W.; Kania, Jan; Pearce, Robert; Mills, Glen
1987-01-01
The paper presents the methods, instrumentation, and difficulties associated with drag measurement of the X-29A aircraft. The initial performance objective of the X-29A program emphasized drag polar shapes rather than absolute drag levels. Priorities during the flight envelope expansion restricted the evaluation of aircraft performance. Changes in aircraft configuration, uncertainties in angle-of-attack calibration, and limitations in instrumentation complicated the analysis. Limited engine instrumentation with uncertainties in overall in-flight thrust accuracy made it difficult to obtain reliable values of coefficient of parasite drag. The aircraft was incapable of tracking the automatic camber control trim schedule for optimum wing flaperon deflection during typical dynamic performance maneuvers; this has also complicated the drag polar shape modeling. The X-29A was far enough off the schedule that the developed trim drag correction procedure has proven inadequate. Despite these obstacles, good drag polar shapes have been developed throughout the flight envelope. Preliminary flight results have compared well with wind tunnel predictions. A more comprehensive analysis must be done to complete the performance models. The detailed flight performance program with a calibrated engine will benefit from the experience gained during this preliminary performance phase.
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of being performed in an airplane simulator without a visual system; and (ii) A flight check in the... flight training. 121.424 Section 121.424 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.424 Pilots: Initial, transition, and upgrade flight training. (a) Initial, transition, and upgrade...
14 CFR 135.295 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... PERSONS ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.295 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use a flight attendant crewmember, nor... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Initial and recurrent flight attendant...
14 CFR 135.295 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... PERSONS ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.295 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use a flight attendant crewmember, nor... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Initial and recurrent flight attendant...
14 CFR 135.295 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... PERSONS ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.295 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use a flight attendant crewmember, nor... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Initial and recurrent flight attendant...
14 CFR 135.295 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... PERSONS ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.295 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use a flight attendant crewmember, nor... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Initial and recurrent flight attendant...
14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 125.289 Section 125.289 Aeronautics and Space FEDERAL AVIATION...
14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 125.289 Section 125.289 Aeronautics and Space FEDERAL AVIATION...
14 CFR 135.295 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... PERSONS ON BOARD SUCH AIRCRAFT Crewmember Testing Requirements § 135.295 Initial and recurrent flight attendant crewmember testing requirements. No certificate holder may use a flight attendant crewmember, nor... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Initial and recurrent flight attendant...
14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 125.289 Section 125.289 Aeronautics and Space FEDERAL AVIATION...
14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 125.289 Section 125.289 Aeronautics and Space FEDERAL AVIATION...
14 CFR 125.289 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... AIRCRAFT Flight Crewmember Requirements § 125.289 Initial and recurrent flight attendant crewmember testing... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 125.289 Section 125.289 Aeronautics and Space FEDERAL AVIATION...
NASA Technical Reports Server (NTRS)
Carter, John; Stephenson, Mark
1999-01-01
The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.
Code of Federal Regulations, 2014 CFR
2014-01-01
... flight simulator, or in a flight training device. This paragraph applies after March 19, 1997. (b) The... simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training... simulator or in a flight training device. (2) Training in the operation of flight simulators or flight...
An assessment of space shuttle flight software development processes
NASA Technical Reports Server (NTRS)
1993-01-01
In early 1991, the National Aeronautics and Space Administration's (NASA's) Office of Space Flight commissioned the Aeronautics and Space Engineering Board (ASEB) of the National Research Council (NRC) to investigate the adequacy of the current process by which NASA develops and verifies changes and updates to the Space Shuttle flight software. The Committee for Review of Oversight Mechanisms for Space Shuttle Flight Software Processes was convened in Jan. 1992 to accomplish the following tasks: (1) review the entire flight software development process from the initial requirements definition phase to final implementation, including object code build and final machine loading; (2) review and critique NASA's independent verification and validation process and mechanisms, including NASA's established software development and testing standards; (3) determine the acceptability and adequacy of the complete flight software development process, including the embedded validation and verification processes through comparison with (1) generally accepted industry practices, and (2) generally accepted Department of Defense and/or other government practices (comparing NASA's program with organizations and projects having similar volumes of software development, software maturity, complexity, criticality, lines of code, and national standards); (4) consider whether independent verification and validation should continue. An overview of the study, independent verification and validation of critical software, and the Space Shuttle flight software development process are addressed. Findings and recommendations are presented.
Time-of-Flight Measurements as a Possible Method to Observe Anyonic Statistics
NASA Astrophysics Data System (ADS)
Umucalılar, R. O.; Macaluso, E.; Comparin, T.; Carusotto, I.
2018-06-01
We propose a standard time-of-flight experiment as a method for observing the anyonic statistics of quasiholes in a fractional quantum Hall state of ultracold atoms. The quasihole states can be stably prepared by pinning the quasiholes with localized potentials and a measurement of the mean square radius of the freely expanding cloud, which is related to the average total angular momentum of the initial state, offers direct signatures of the statistical phase. Our proposed method is validated by Monte Carlo calculations for ν =1 /2 and 1 /3 fractional quantum Hall liquids containing a realistic number of particles. Extensions to quantum Hall liquids of light and to non-Abelian anyons are briefly discussed.
NASA Technical Reports Server (NTRS)
1984-01-01
The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.
British government, industry agree to fund Hotel launcher studies
NASA Astrophysics Data System (ADS)
Brown, D. A.
1986-02-01
A program status assessment is presented for the horizontal takeoff and landing 'Hotol' single-stage-to-orbit space launcher, for which parallel, two-year airframe and propulsion system proof-of-concept studies have been approved. A two-year initial development program for the airframe would be followed by a four-year development and manufacturing phase that would begin upon the propulsion system concept's successful demonstration. Flight trials could begin in 1996. A number of significant modifications have already been made to the initial design concept, such as to the foreplanes, afterbody, engine intake, and orbital control system.
Computer Program for Vibration Prediction of Fighter Aircraft Equipments
1977-11-01
scribing a useful variety of flight vibration phases . Notice that identical variations can be reflected into the high frequency rolloff curve (equation 13...flight attitudes ranging from straight and level states to a variety of significant flight maneuvers and phases . Pro- gram outputs, digital and...R (f) adjusted value of R(f) due to c (g 2/Hz) SBT (f) special function for the buffet turn flight phase PBT (f) pressure spectral density speqtrum
Space station experiment definition: Long-term cryogenic fluid storage
NASA Technical Reports Server (NTRS)
Jetley, R. L.; Scarlotti, R. D.
1987-01-01
The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.
NASA Technical Reports Server (NTRS)
Burgess, Malcolm; Davis, Dean; Hollister, Walter; Sorensen, John A.
1991-01-01
The possibility of the Threat Alert and Collision Avoidance System (TCAS) traffic sensor and display being used for meaningful Cockpit Display of Traffic Information (CDTI) applications has resulted in the Federal Aviation Administration initiating a project to establish the technical and operational requirements to realize this potential. Phase 1 of the project is presented here. Phase 1 was organized to define specific CDTI applications for the terminal area, to determine what has already been learned about CDTI technology relevant to these applications, and to define the engineering required to supply the remaining TCAS-CDTI technology for capacity benefit realization. The CDTI applications examined have been limited to those appropriate to the final approach and departure phases of flight.
Simulation of the XV-15 tilt rotor research aircraft
NASA Technical Reports Server (NTRS)
Churchill, G. B.; Dugan, D. C.
1982-01-01
The effective use of simulation from issuance of the request for proposal through conduct of a flight test program for the XV-15 Tilt Rotor Research Aircraft is discussed. From program inception, simulation complemented all phases of XV-15 development. The initial simulation evaluations during the source evaluation board proceedings contributed significantly to performance and stability and control evaluations. Eight subsequent simulation periods provided major contributions in the areas of control concepts; cockpit configuration; handling qualities; pilot workload; failure effects and recovery procedures; and flight boundary problems and recovery procedures. The fidelity of the simulation also made it a valuable pilot training aid, as well as a suitable tool for military and civil mission evaluations. Simulation also provided valuable design data for refinement of automatic flight control systems. Throughout the program, fidelity was a prime issue and resulted in unique data and methods for fidelity evaluation which are presented and discussed.
The F-18 High Alpha Research Vehicle: A High-Angle-of-Attack Testbed Aircraft
NASA Technical Reports Server (NTRS)
Regenie, Victoria; Gatlin, Donald; Kempel, Robert; Matheny, Neil
1992-01-01
The F-18 High Alpha Research Vehicle is the first thrust-vectoring testbed aircraft used to study the aerodynamics and maneuvering available in the poststall flight regime and to provide the data for validating ground prediction techniques. The aircraft includes a flexible research flight control system and full research instrumentation. The capability to control the vehicle at angles of attack up to 70 degrees is also included. This aircraft was modified by adding a pitch and yaw thrust-vectoring system. No significant problems occurred during the envelope expansion phase of the program. This aircraft has demonstrated excellent control in the wing rock region and increased rolling performance at high angles of attack. Initial pilot reports indicate that the increased capability is desirable although some difficulty in judging the size and timing of control inputs was observed. The aircraft, preflight ground testing and envelope expansion flight tests are described.
An Investigation of Rotorcraft Stability-Phase Margin Requirements in Hover
NASA Technical Reports Server (NTRS)
Blanken, Chris L.; Lusardi, Jeff A.; Ivler, Christina M.; Tischler, Mark B.; Hoefinger, Marc T.; Decker, William A.; Malpica, Carlos A.; Berger, Tom; Tucker, George E.
2009-01-01
A cooperative study was performed to investigate the handling quality effects from reduced flight control system stability margins, and the trade-offs with higher disturbance rejection bandwidth (DRB). The piloted simulation study, perform on the NASA-Ames Vertical Motion Simulator, included three classes of rotorcraft in four configurations: a utility-class helicopter; a medium-lift helicopter evaluated with and without an external slung load; and a large (heavy-lift) civil tiltrotor aircraft. This large aircraft also allowed an initial assessment of ADS-33 handling quality requirements for an aircraft of this size. Ten experimental test pilots representing the U.S. Army, Marine Corps, NASA, rotorcraft industry, and the German Aerospace Center (DLR), evaluated the four aircraft configurations, for a range of flight control stability-margins and turbulence levels, while primarily performing the ADS-33 Hover and Lateral Reposition MTEs. Pilot comments and aircraft-task performance data were analyzed. The preliminary stability margin results suggest higher DRB and less phase margin cases are preferred as the aircraft increases in size. Extra care will need to be taken to assess the influence of variability when nominal flight control gains start with reduced margins. Phase margins as low as 20-23 degrees resulted in low disturbance-response damping ratios, objectionable oscillations, PIO tendencies, and a perception of an incipient handling qualities cliff. Pilot comments on the disturbance response of the aircraft correlated well to the DRB guidelines provided in the ADS-33 Test Guide. The A D-3S3 mid-term response-to-control damping ratio metrics can be measured and applied to the disturbance-response damping ratio. An initial assessment of LCTR yaw bandwidth shows the current Level 1 boundary needs to be relaxed to help account for a large pilot off-set from the c.g. Future efforts should continue to investigate the applicability/refinement of the current ADS-33 requirements to large vehicles, like an LCTR.
An Overview of the NASA F-18 High Alpha Research Vehicle
NASA Technical Reports Server (NTRS)
Bowers, Albion H.; Pahle, Joseph W.; Wilson, R. Joseph; Flick, Bradley C.; Rood, Richard L.
1996-01-01
This paper gives an overview of the NASA F-18 High Alpha Research Vehicle. The three flight phases of the program are introduced, along with the specific goals and data examples taken during each phase. The aircraft configuration and systems needed to perform the disciplinary and inter-disciplinary research are discussed. The specific disciplines involved with the flight research are introduced, including aerodynamics, controls, propulsion, systems, and structures. Decisions that were made early in the planning of the aircraft project and the results of those decisions are briefly discussed. Each of the three flight phases corresponds to a particular aircraft configuration, and the research dictated the configuration to be flown. The first phase gathered data with the baseline F-18 configuration. The second phase was the thrust-vectoring phase. The third phase used a modified forebody with deployable nose strakes. Aircraft systems supporting these flights included extensive instrumentation systems, integrated research flight controls using flight control hardware and corresponding software, analog interface boxes to control forebody strakes, a thrust-vectoring system using external post-exit vanes around axisymmetric nozzles, a forebody vortex control system with strakes, and backup systems using battery-powered emergency systems and a spin recovery parachute.
Two Phase Technology Development Initiatives
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
1999-01-01
Three promising thermal technology development initiatives, vapor compression thermal control system, electronics cooling, and electrohydrodynamics applications are outlined herein. These technologies will provide thermal engineers with additional tools to meet the thermal challenges presented by increased power densities and reduced architectural options that will be available in future spacecraft. Goddard Space Flight Center and the University of Maryland are fabricating and testing a 'proto- flight' vapor compression based thermal control system for the Ultra Long Duration Balloon (ULDB) Program. The vapor compression system will be capable of transporting approximately 400 W of heat while providing a temperature lift of 60C. The system is constructed of 'commercial off-the-shelf' hardware that is modified to meet the unique environmental requirements of the ULDB. A demonstration flight is planned for 1999 or early 2000. Goddard Space Flight Center has embarked upon a multi-discipline effort to address a number of design issues regarding spacecraft electronics. The program addressed the high priority design issues concerning the total mass of standard spacecraft electronics enclosures and the impact of design changes on thermal performance. This presentation reviews the pertinent results of the Lightweight Electronics Enclosure Program. Electronics cooling is a growing challenge to thermal engineers due to increasing power densities and spacecraft architecture. The space-flight qualification program and preliminary results of thermal performance tests of copper-water heat pipes are presented. Electrohydrodynamics (EHD) is an emerging technology that uses the secondary forces that result from the application of an electric field to a flowing fluid to enhance heat transfer and manage fluid flow. A brief review of current EHD capabilities regarding heat transfer enhancement of commercial heat exchangers and capillary pumped loops is presented. Goddard Space Flight Center research efforts applying this technique to fluid management and fluid pumping are discussed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Management § 91.1095 Initial and transition training and checking: Flight instructors (aircraft), flight... instructor certificate— (i) The fundamental principles of the teaching-learning process; (ii) Teaching...
X-29 in Protective Cover Being Transported by Truck to Dryden
NASA Technical Reports Server (NTRS)
1988-01-01
In a stark juxtaposition of nature and technology, the second X-29 forward-swept-wing research aircraft is shown here passing by one of the classic, spiny Joshua trees that populate the Mojave desert while being transported by truck to NASA's Ames-Dryden Flight Research Facility (later the Dryden Flight Research Center), Edwards, California, on November 7, 1988. The aircraft, with its protective covering, traveled by ship from the manufacturer's plant on Long Island through the Panama Canal to Port Hueneme and then was trucked to Dryden. X-29 No. 2 was used in a high angle-of-attack research program which began in spring 1989. Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft. Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave pilots excellent control response at angles of attack of up to 45 degrees. During its flight history, the X-29 aircraft flew 422 research missions and a total of 436 missions. Sixty of the research flights were part of the X-29 follow-on 'vortex control' phase. The forward-swept wing of the X-29 resulted in reverse airflow, toward the fuselage rather than away from it, as occurs on the usual aft-swept wing. Consequently, on the forward-swept wing, the ailerons remained unstalled at high angles of attack. This provided better airflow over the ailerons and prevented stalling (loss of lift) at high angles of attack. Introduction of composite materials in the 1970s opened a new field of aircraft construction. It also made possible the construction of the X-29's thin supercritical wing. State-of-the-art composites allowed aeroelastic tailoring which, in turn, allowed the wing some bending but limited twisting and eliminated structural divergence within the flight envelope (i.e. deformation of the wing or the wing breaking off in flight). Additionally, composite materials allowed the wing to be sufficiently rigid for safe flight without adding an unacceptable weight penalty. The X-29 project consisted of two phases plus the follow-on vortex-control phase. Phase 1 demonstrated that the forward sweep of the X-29 wings kept the wing tips unstalled at the moderate angles of attack flown in that phase (a maximum of 21 degrees). Phase I also demonstrated that the aeroelastic tailored wing prevented structural divergence of the wing within the flight envelope, and that the control laws and control-surface effectiveness were adequate to provide artificial stability for an otherwise unstable aircraft. Phase 1 further demonstrated that the X-29 configuration could fly safely and reliably, even in tight turns. During Phase 2 of the project, the X-29, flying at an angle of attack of up to 67 degrees, demonstrated much better control and maneuvering qualities than computational methods and simulation models had predicted . During 120 research flights in this phase, NASA, Air Force, and Grumman project pilots reported the X-29 aircraft had excellent control response to an angle of attack of 45 degrees and still had limited controllability at a 67-degree angle of attack. This controllability at high angles of attack can be attributed to the aircraft's unique forward-swept wing- canard design. The NASA/Air Force-designed high-gain flight control laws also contributed to the good flying qualities. During the Air Force-initiated vortex-control phase, the X-29 successfully demonstrated vortex flow control (VFC). This VFC was more effective than expected in generating yaw forces, especially in high angles of attack where the rudder is less effective. VFC was less effective in providing control when sideslip (wind pushing on the side of the aircraft) was present, and it did little to decrease rocking oscillation of the aircraft. The X-29 vehicle was a single-engine aircraft, 48.1 feet long with a wing span of 27.2 feet. Each aircraft was powered by a General Electric F404-GE-400 engine producing 16,000 pounds of thrust. The program was a joint effort of the Department of Defense's Defense Advanced Research Projects Agency (DARPA), the U.S. Air Force, the Ames-Dryden Flight Research Facility, the Air Force Flight Test Center, and the Grumman Corporation. The program was managed by the Air Force's Wright Laboratory, Wright Patterson Air Force Base, Ohio.
Western Aeronautical Test Range (WATR) Mission Control Gold Room During X-29 Flight
NASA Technical Reports Server (NTRS)
1989-01-01
The mission control Gold room is seen here during a research flight of the X-29 at the Dryden Flight Research Center, Edwards, California. All aspects of a research mission are monitored from one of two of these control rooms at Dryden. Dryden and its control rooms are part of the Western Aeronautical Test Range (WATR). The WATR consists of a highly automated complex of computer controlled tracking, telemetry, and communications systems and control room complexes that are capable of supporting any type of mission ranging from system and component testing, to sub-scale and full-scale flight tests of new aircraft and reentry systems. Designated areas are assigned for spin/dive tests; corridors are provided for low, medium, and high-altitude supersonic flight; and special STOL/VSTOL facilities are available at Ames Moffett and Crows Landing. Special use airspace, available at Edwards, covers approximately twelve thousand square miles of mostly desert area. The southern boundary lies to the south of Rogers Dry Lake, the western boundary lies midway between Mojave and Bakersfield, the northern boundary passes just south of Bishop, and the eastern boundary follows about 25 miles west of the Nevada border except in the northern areas where it crosses into Nevada. Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft. Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave pilots excellent control response at angles of attack of up to 45 degrees. During its flight history, the X-29 aircraft flew 422 research missions and a total of 436 missions. Sixty of the research flights were part of the X-29 follow-on 'vortex control' phase. The forward-swept wing of the X-29 resulted in reverse airflow, toward the fuselage rather than away from it, as occurs on the usual aft-swept wing. Consequently, on the forward-swept wing, the ailerons remained unstalled at high angles of attack. This provided better airflow over the ailerons and prevented stalling (loss of lift) at high angles of attack. Introduction of composite materials in the 1970s opened a new field of aircraft construction. It also made possible the construction of the X-29's thin supercritical wing. State-of-the-art composites allowed aeroelastic tailoring which, in turn, allowed the wing some bending but limited twisting and eliminated structural divergence within the flight envelope (i.e. deformation of the wing or the wing breaking off in flight). Additionally, composite materials allowed the wing to be sufficiently rigid for safe flight without adding an unacceptable weight penalty. The X-29 project consisted of two phases plus the follow-on vortex-control phase. Phase 1 demonstrated that the forward sweep of the X-29 wings kept the wing tips unstalled at the moderate angles of attack flown in that phase (a maximum of 21 degrees). Phase I also demonstrated that the aeroelastic tailored wing prevented structural divergence of the wing within the flight envelope, and that the control laws and control-surface effectiveness were adequate to provide artificial stability for an otherwise unstable aircraft. Phase 1 further demonstrated that the X-29 configuration could fly safely and reliably, even in tight turns. During Phase 2 of the project, the X-29, flying at an angle of attack of up to 67 degrees, demonstrated much better control and maneuvering qualities than computational methods and simulation models had predicted . During 120 research flights in this phase, NASA, Air Force, and Grumman project pilots reported the X-29 aircraft had excellent control response to an angle of attack of 45 degrees and still had limited controllability at a 67-degree angle of attack. This controllability at high angles of attack can be attributed to the aircraft's unique forward-swept wing- canard design. The NASA/Air Force-designed high-gain flight control laws also contributed to the good flying qualities. During the Air Force-initiated vortex-control phase, the X-29 successfully demonstrated vortex flow control (VFC). This VFC was more effective than expected in generating yaw forces, especially in high angles of attack where the rudder is less effective. VFC was less effective in providing control when sideslip (wind pushing on the side of the aircraft) was present, and it did little to decrease rocking oscillation of the aircraft. The X-29 vehicle was a single-engine aircraft, 48.1 feet long with a wing span of 27.2 feet. Each aircraft was powered by a General Electric F404-GE-400 engine producing 16,000 pounds of thrust. The program was a joint effort of the Department of Defense's Defense Advanced Research Projects Agency (DARPA), the U.S. Air Force, the Ames-Dryden Flight Research Facility, the Air Force Flight Test Center, and the Grumman Corporation. The program was managed by the Air Force's Wright Laboratory, Wright Patterson Air Force Base, Ohio.
Code of Federal Regulations, 2011 CFR
2011-01-01
... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2012 CFR
2012-01-01
... an aircraft, in a flight simulator, or in a flight training device. This paragraph applies after... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Simulation analysis of the effect of initial delay on flight delay diffusion
NASA Astrophysics Data System (ADS)
Que, Zufu; Yao, Hongguang; Yue, Wei
2018-01-01
The initial delay of the flight is an important factor affecting the spread of flight delays, so clarifying their relationship conduces to control flight delays in the aeronautical network. Through establishing a model of the chain aviation network and making simulation analysis of the effects of initial delay on the delay longitudinal diffusion, it’s found that the number of delayed airports in the air network, the total delay time and the average delay time of the delayed airport are generally positively correlated with the initial delay. This indicates that the occurrence of the initial delay should be avoided or reduced as much as possible to improve the punctuality of the flight.
Developing a Free-Piston Stirling Convertor for advanced radioisotope space power systems
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Augenblick, John E.; White, Maurice A.; Peterson, Allen A.; Redinger, Darin L.; Petersen, Stephen L.
2002-01-01
The Department of Energy (DOE) has selected Free-Piston Stirling Convertors as a technology for future advanced radioisotope space power systems. In August 2000, DOE awarded competitive Phase I, Stirling Radioisotope Generator (SRG) power system integration contracts to three major aerospace contractors, resulting in SRG conceptual designs in February 2001. All three contractors based their designs on the Technology Demonstration Convertor (TDC) developed by Stirling Technology Company (STC) for DOE. The contract award to a single system integration contractor for Phases II and III of the SRG program is anticipated in late 2001. The first potential SRG mission is targeted for a Mars rover. This paper provides a description of the Flight Prototype (FP) Stirling convertor design as compared to the previous TDC design. The initial flight prototype units are already undergoing performance tuning at STC. The new design will be hermetically scaled and will provide a weight reduction from approximately 4.8 kg to approximately 3.9 kg. .
Multiple latent viruses reactivate in astronauts during Space Shuttle missions.
Mehta, S K; Laudenslager, M L; Stowe, R P; Crucian, B E; Sams, C F; Pierson, D L
2014-10-01
Latent virus reactivation and diurnal salivary cortisol and dehydroepiandrosterone were measured prospectively in 17 astronauts (16 male and 1 female) before, during, and after short-duration (12-16 days) Space Shuttle missions. Blood, urine, and saliva samples were collected during each of these phases. Antiviral antibodies and viral load (DNA) were measured for Epstein-Barr virus (EBV), varicella-zoster virus (VZV), and cytomegalovirus (CMV). Three astronauts did not shed any virus in any of their samples collected before, during, or after flight. EBV was shed in the saliva in all of the remaining 14 astronauts during all 3 phases of flight. Seven of the 14 EBV-shedding subjects also shed VZV during and after the flight in their saliva samples, and 8 of 14 EBV-shedders also shed CMV in their urine samples before, during, and after flight. In 6 of 14 crewmembers, all 3 target viruses were shed during one or more flight phases. Both EBV and VZV DNA copies were elevated during the flight phase relative to preflight or post-flight levels. EBV DNA in peripheral blood was increased preflight relative to post-flight. Eighteen healthy controls were also included in the study. Approximately 2-5% of controls shed EBV while none shed VZV or CMV. Salivary cortisol measured preflight and during flight were elevated relative to post-flight. In contrast DHEA decreased during the flight phase relative to both preflight and post-flight. As a consequence, the molar ratio of the area under the diurnal curve of cortisol to DHEA with respect to ground (AUCg) increased significantly during flight. This ratio was unrelated to viral shedding. In summary, three herpes viruses can reactivate individually or in combination during spaceflight. Copyright © 2014 Elsevier Inc. All rights reserved.
Telemetry Tracking & Control (TT&C) - First TDRSS, then Commercial GEO & Big LEO and Now Through LEO
NASA Technical Reports Server (NTRS)
Morgan, Dwayne R.; Streich, Ron G.; Bull, Barton; Grant, Chuck; Power, Edward I. (Technical Monitor)
2001-01-01
The advent of low earth orbit (LEO) commercial communication satellites provides an opportunity to dramatically reduce Telemetry, Tracking and Control (TT&C) costs of launch vehicles, Unpiloted Aerial Vehicles (UAVs), Research Balloons and spacecraft by reducing or eliminating ground infrastructure. Personnel from the Goddard Space Flight Center's Wallops Flight Facility (GSFC\\WFF) have successfully used commercial Geostationary Earth Orbit (GEO) and Big LEO communications satellites for Long Duration Balloon Flight TT&C. The Flight Modem is a GSFC\\WFF Advanced Range Technology initiative (ARTI) designed to streamline TT&C capability in the user community of these scientific data gathering platforms at low cost. Making use of existing LEO satellites and adapting and ruggedized commercially available components; two-way, over the horizon communications may be established with these vehicles at great savings due to reduced infrastructure. Initially planned as a means for permitting GPS data for tracking and recovery of sounding rocket and balloon payloads, expectations are that the bandwidth can soon be expanded to allow more comprehensive data transfer. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem and a single board computer with custom software is described and technical challenges are discussed along with the plan for their resolution. A three-phase testing and development plan is outlined and the current results are reported. Results and status of ongoing flight tests on aircraft and sounding rockets are reported. Future applications on these platforms and the potential for satellite support are discussed along with an analysis of cost effectiveness of this method vs. other tracking and data transmission schemes.
14 CFR 91.1091 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2010 CFR
2010-01-01
... or 135 of this chapter; (2) Has satisfactorily completed the training phases for the aircraft... appropriate training phases for the aircraft, including recurrent training, that are required to serve as a... aircraft, in a flight simulator, or in a flight training device for a particular type, class, or category...
Energy metabolism during endurance flight and the post-flight recovery phase.
Jenni-Eiermann, Susanne
2017-07-01
Migrating birds are known to fly non-stop for thousands of kilometres without food or water intake and at a high metabolic rate thereby relying on energy stores which were built up preceding a flight bout. Hence, from a physiological point of view the metabolism of a migrant has to switch between an active fasting phase during flight and a fuelling phase during stopover. To meet the energetic and water requirements of endurance flight, migratory birds have to store an optimal fuel composition and they have to be able to quickly mobilize and deliver sufficient energy to the working flight muscles. After flight, birds have to recover from a strenuous exercise and sleeplessness, but, at the same time, they have to be alert to escape from predators and to prepare the next flight bout. In this overview, metabolic adaptations of free-ranging migrants to both phases will be presented and compared with results from windtunnel studies. The questions whether migratory strategy (long distance versus short distance) and diet composition influence the metabolic pathways will be discussed.
NASA's Space Launch System Advanced Booster Development
NASA Technical Reports Server (NTRS)
Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.
2014-01-01
The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. These new boosters will enable the flexible path approach to deep space exploration, opening up vast opportunities for human missions to near-Earth asteroids and Mars. This evolved capability will offer large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... accomplished in part or in full in an airplane, in a flight simulator, or in a flight training device. This... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for check airmen (simulator) must include the...
Flight Test of the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Voracek, David
2007-01-01
A viewgraph presentation of flight tests performed on the F/A active aeroelastic wing airplane is shown. The topics include: 1) F/A-18 AAW Airplane; 2) F/A-18 AAW Control Surfaces; 3) Flight Test Background; 4) Roll Control Effectiveness Regions; 5) AAW Design Test Points; 6) AAW Phase I Test Maneuvers; 7) OBES Pitch Doublets; 8) OBES Roll Doublets; 9) AAW Aileron Flexibility; 10) Phase I - Lessons Learned; 11) Control Law Development and Verification & Validation Testing; 12) AAW Phase II RFCS Envelopes; 13) AAW 1-g Phase II Flight Test; 14) Region I - Subsonic 1-g Rolls; 15) Region I - Subsonic 1-g 360 Roll; 16) Region II - Supersonic 1-g Rolls; 17) Region II - Supersonic 1-g 360 Roll; 18) Region III - Subsonic 1-g Rolls; 19) Roll Axis HOS/LOS Comparison Region II - Supersonic (open-loop); 20) Roll Axis HOS/LOS Comparison Region II - Supersonic (closed-loop); 21) AAW Phase II Elevated-g Flight Test; 22) Region I - Subsonic 4-g RPO; and 23) Phase II - Lessons Learned
NASA Technical Reports Server (NTRS)
Varela, Jose G.; Reddy, Satish; Moeller, Enrique; Anderson, Keith
2017-01-01
NASA's Orion Capsule Parachute Assembly System (CPAS) Project is now in the qualification phase of testing, and the Adams simulation has continued to evolve to model the complex dynamics experienced during the test article extraction and separation phases of flight. The ability to initiate tests near the upper altitude limit of the Orion parachute deployment envelope requires extractions from the aircraft at 35,000 ft-MSL. Engineering development phase testing of the Parachute Test Vehicle (PTV) carried by the Carriage Platform Separation System (CPSS) at altitude resulted in test support equipment hardware failures due to increased energy caused by higher true airspeeds. As a result, hardware modifications became a necessity requiring ground static testing of the textile components to be conducted and a new ground dynamic test of the extraction system to be devised. Force-displacement curves from static tests were incorporated into the Adams simulations, allowing prediction of loads, velocities and margins encountered during both flight and ground dynamic tests. The Adams simulation was then further refined by fine tuning the damping terms to match the peak loads recorded in the ground dynamic tests. The failure observed in flight testing was successfully replicated in ground testing and true safety margins of the textile components were revealed. A multi-loop energy modulator was then incorporated into the system level Adams simulation model and the effect on improving test margins be properly evaluated leading to high confidence ground verification testing of the final design solution.
Solar residential heating and cooling system development test program
NASA Technical Reports Server (NTRS)
Humphries, W. R.; Melton, D. E.
1974-01-01
A solar heating and cooling system is described, which was installed in a simulated home at Marshall Space Flight Center. Performance data are provided for the checkout and initial operational phase for key subsystems and for the total system. Valuable information was obtained with regard to operation of a solar cooling system during the first summer of operation. Areas where improvements and modifications are required to optimize such a system are discussed.
Huet, Michaël; Jacobs, David M; Camachon, Cyril; Missenard, Olivier; Gray, Rob; Montagne, Gilles
2011-12-01
The present study reports two experiments in which a total of 20 participants without prior flight experience practiced the final approach phase in a fixed-base simulator. All participants received self-controlled concurrent feedback during 180 practice trials. Experiment 1 shows that participants learn more quickly under variable practice conditions than under constant practice conditions. This finding is attributed to the education of attention to the more useful informational variables: Variability of practice reduces the usefulness of initially used informational variables, which leads to a quicker change in variable use, and hence to a larger improvement in performance. In the practice phase of Experiment 2 variability was selectively applied to some experimental factors but not to others. Participants tended to converge toward the variables that were useful in the specific conditions that they encountered during practice. This indicates that an explanation for variability of practice effects in terms of the education of attention is a useful alternative to traditional explanations based on the notion of the generalized motor program and to explanations based on the notions of noise and local minima.
The Design of a Primary Flight Trainer using Concurrent Engineering Concepts
NASA Technical Reports Server (NTRS)
Ladesic, James G.; Eastlake, Charles N.; Kietzmann, Nicholas H.
1993-01-01
Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.
Space Station Freedom Water Recovery test total organic carbon accountability
NASA Technical Reports Server (NTRS)
Davidson, Michael W.; Slivon, Laurence; Sheldon, Linda; Traweek, Mary
1991-01-01
Marshall Space Flight Center's (MSFC) Water Recovery Test (WRT) addresses the concept of integrated hygiene and potable reuse water recovery systems baselined for Space Station Freedom (SSF). To assess the adequacy of water recovery system designs and the conformance of reclaimed water quality to established specifications, MSFC has initiated an extensive water characterization program. MSFC's goal is to quantitatively account for a large percentage of organic compounds present in waste and reclaimed hygiene and potable waters from the WRT and in humidity condensate from Spacelab missions. The program is coordinated into Phase A and B. Phase A's focus is qualitative and semi-quantitative. Precise quantitative analyses are not emphasized. Phase B's focus centers on a near complete quantitative characterization of all water types. Technical approaches along with Phase A and partial Phase B investigations on the compositional analysis of Total Organic Carbon (TOC) Accountability are presented.
Flight Test of the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Clarke, Robert; Allen, Michael J.; Dibley, Ryan P.; Gera, Joseph; Hodgkinson, John
2005-01-01
Successful flight-testing of the Active Aeroelastic Wing airplane was completed in March 2005. This program, which started in 1996, was a joint activity sponsored by NASA, Air Force Research Laboratory, and industry contractors. The test program contained two flight test phases conducted in early 2003 and early 2005. During the first phase of flight test, aerodynamic models and load models of the wing control surfaces and wing structure were developed. Design teams built new research control laws for the Active Aeroelastic Wing airplane using these flight-validated models; and throughout the final phase of flight test, these new control laws were demonstrated. The control laws were designed to optimize strategies for moving the wing control surfaces to maximize roll rates in the transonic and supersonic flight regimes. Control surface hinge moments and wing loads were constrained to remain within hydraulic and load limits. This paper describes briefly the flight control system architecture as well as the design approach used by Active Aeroelastic Wing project engineers to develop flight control system gains. Additionally, this paper presents flight test techniques and comparison between flight test results and predictions.
NASA Technical Reports Server (NTRS)
Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.
1984-01-01
Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.
Code of Federal Regulations, 2012 CFR
2012-01-01
... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...
Code of Federal Regulations, 2011 CFR
2011-01-01
... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...
Code of Federal Regulations, 2013 CFR
2013-01-01
... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...
Code of Federal Regulations, 2014 CFR
2014-01-01
... observation check may be accomplished in part or in full in an aircraft, in a flight simulator, or in a flight... accomplished in full or in part in flight, in a flight simulator, or in a flight training device, as appropriate. (g) The initial and transition flight training for a check pilot (simulator) must include the...
NASA Technical Reports Server (NTRS)
Wortz, E. C.; Saur, A. J.; Nowlis, D. P.; Kendall, M. P.
1974-01-01
Results are presented of an initial experiment in a research program designed to develop objective techniques for psychological assessment of individuals and groups participating in long-duration space flights. Specifically examined is the rationale for utilizing measures of attention as an objective assessment technique. Subjects participating in the experiment performed various tasks (eg, playing matrix games which appeared on a display screen along with auditory stimuli). The psychophysiological reactions of the subjects were measured and are given. Previous research of various performance and psychophysiological methods of measuring attention is also discussed. The experiment design (independent and dependent variables) and apparatus (computers and display devices) are described and shown. Conclusions and recommendations are presented.
Flying Beyond the Stall: The X-31 and the Advent of Supermaneuverability
NASA Technical Reports Server (NTRS)
Joyce, Douglas A.
2014-01-01
This is the story of a unique research airplane-unique because the airplane and the programs that supported it did things that have never been done before or since. The major purpose of this book is to tell the story of NASA's role in the X-31 program. In order to do this, though, it is necessary to put NASA's participation in perspective with the other phases of the program, namely the genesis of the concept, the design and fabrication of the aircraft, the initial flight testing done without NASA participation, the flight testing done with NASA participation, and the subsequent Navy X-31 Vectoring ESTOL (extreme short takeoff and landings) Control Operation Research (VECTOR) program.
Resolution of psychosocial crises associated with flying in space
NASA Astrophysics Data System (ADS)
Suedfeld, Peter; Brcic, Jelena
2011-07-01
Erikson (1959) proposed a theoretical basis for healthy psychosocial development. His theory posits eight critical conflict situations throughout one's lifetime, each of which can result in a favorable or unfavorable resolution. Autobiographies, memoirs, interviews, personal diaries, and oral histories of 97 international astronauts were content analyzed to assess reported resolutions of Erikson's psychosocial crises, regardless of chronological sequence. We made comparisons across flight phases (before, during, and after), gender, nationality of home space agency, and flight duration. Astronauts reported more favorable than unfavorable outcomes across flight phases and demographic variables. Differences across demographic variables and flight phases, as well as the changes as a result of the flight are discussed.
NASA Technical Reports Server (NTRS)
Mcintosh, Roy; Mccreight, Craig; Brennan, Patrick J.
1993-01-01
The Low Temperature Heat Pipe Flight Experiment (HEPP) is a fairly complicated thermal control experiment that was designed to evaluate the performance of two different low temperature ethane heat pipes and a low-temperature (182 K) phase change material. A total of 390 days of continuous operation with an axially grooved aluminum fixed conductance heat pipe and an axially grooved stainless steel heat pipe diode was demonstrated before the data acquisition system's batteries lost power. Each heat pipe had approximately 1 watt applied throughout this period. The HEPP was not able to cool below 188.6 K during the mission. As a result, the preprogrammed transport test sequence which initiates when the PCM temperature drops below 180 K was never exercised, and transport tests with both pipes and the diode reverse mode test could not be run in flight. Also, because the melt temperature of the n-heptane PCM is 182 K, its freeze/thaw behavior could not be tested. Post-flight thermal vacuum tests and thermal analyses have indicated that there was an apparent error in the original thermal analyses that led to this unfortunate result. Post-flight tests have demonstrated that the performance of both heat pipes and the PCM has not changed since being fabricated more than 14 years ago. A summary of HEPP's flight data and post-flight test results are presented.
14 CFR 135.349 - Flight attendants: Initial and transition ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ground training. 135.349 Section 135.349 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... ON BOARD SUCH AIRCRAFT Training § 135.349 Flight attendants: Initial and transition ground training. Initial and transition ground training for flight attendants must include instruction in at least the...
14 CFR 135.349 - Flight attendants: Initial and transition ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ground training. 135.349 Section 135.349 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... ON BOARD SUCH AIRCRAFT Training § 135.349 Flight attendants: Initial and transition ground training. Initial and transition ground training for flight attendants must include instruction in at least the...
14 CFR 91.1105 - Flight attendants: Initial and transition ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight attendants: Initial and transition ground training. 91.1105 Section 91.1105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... transition ground training. Initial and transition ground training for flight attendants must include...
14 CFR 91.1105 - Flight attendants: Initial and transition ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight attendants: Initial and transition ground training. 91.1105 Section 91.1105 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... transition ground training. Initial and transition ground training for flight attendants must include...
NASA Technical Reports Server (NTRS)
Silva-Martinez, Jackelynne; Ellenberger, Richard; Dory, Jonathan
2017-01-01
This project aims to identify poor human factors design decisions that led to error-prone systems, or did not facilitate the flight crew making the right choices; and to verify that NASA is effectively preventing similar incidents from occurring again. This analysis was performed by reviewing significant incidents and close calls in human spaceflight identified by the NASA Johnson Space Center Safety and Mission Assurance Flight Safety Office. The review of incidents shows whether the identified human errors were due to the operational phase (flight crew and ground control) or if they initiated at the design phase (includes manufacturing and test). This classification was performed with the aid of the NASA Human Systems Integration domains. This in-depth analysis resulted in a tool that helps with the human factors classification of significant incidents and close calls in human spaceflight, which can be used to identify human errors at the operational level, and how they were or should be minimized. Current governing documents on human systems integration for both government and commercial crew were reviewed to see if current requirements, processes, training, and standard operating procedures protect the crew and ground control against these issues occurring in the future. Based on the findings, recommendations to target those areas are provided.
Development of An Intelligent Flight Propulsion Control System
NASA Technical Reports Server (NTRS)
Calise, A. J.; Rysdyk, R. T.; Leonhardt, B. K.
1999-01-01
The initial design and demonstration of an Intelligent Flight Propulsion and Control System (IFPCS) is documented. The design is based on the implementation of a nonlinear adaptive flight control architecture. This initial design of the IFPCS enhances flight safety by using propulsion sources to provide redundancy in flight control. The IFPCS enhances the conventional gain scheduled approach in significant ways: (1) The IFPCS provides a back up flight control system that results in consistent responses over a wide range of unanticipated failures. (2) The IFPCS is applicable to a variety of aircraft models without redesign and,(3) significantly reduces the laborious research and design necessary in a gain scheduled approach. The control augmentation is detailed within an approximate Input-Output Linearization setting. The availability of propulsion only provides two control inputs, symmetric and differential thrust. Earlier Propulsion Control Augmentation (PCA) work performed by NASA provided for a trajectory controller with pilot command input of glidepath and heading. This work is aimed at demonstrating the flexibility of the IFPCS in providing consistency in flying qualities under a variety of failure scenarios. This report documents the initial design phase where propulsion only is used. Results confirm that the engine dynamics and associated hard nonlineaaities result in poor handling qualities at best. However, as demonstrated in simulation, the IFPCS is capable of results similar to the gain scheduled designs of the NASA PCA work. The IFPCS design uses crude estimates of aircraft behaviour. The adaptive control architecture demonstrates robust stability and provides robust performance. In this work, robust stability means that all states, errors, and adaptive parameters remain bounded under a wide class of uncertainties and input and output disturbances. Robust performance is measured in the quality of the tracking. The results demonstrate the flexibility of the IFPCS architecture and the ability to provide robust performance under a broad range of uncertainty. Robust stability is proved using Lyapunov like analysis. Future development of the IFPCS will include integration of conventional control surfaces with the use of propulsion augmentation, and utilization of available lift and drag devices, to demonstrate adaptive control capability under a greater variety of failure scenarios. Further work will specifically address the effects of actuator saturation.
NASA Astrophysics Data System (ADS)
Ehl, Stefan; Ebertshäuser, Marlene; Gros, Patrick; Schmitt, Thomas
2017-11-01
High mountain ecosystems are extreme habitats, and adaptation strategies to this ecosystem are still poorly understood in most groups. To unravel such strategies, we performed a MRR study in the Hohe Tauern National Park (Salzburg, Austria) with two nymphalid butterfly species, Boloria pales and B. napaea. We analysed their population structure over one flight period by studying the development of population size and wing wear. B. pales had more individuals and a higher survival probability than B. napaea; the sensitivity to extreme weather conditions or other external influences was higher in B. napaea. We only observed proterandry in B. pales. Imagines of both species survived under snow for at least some days. Additionally, we observed a kind of risk-spreading, in that individuals of both species, and especially B. pales, have regularly emerged throughout the flight period. This emergence pattern divided the population's age structure into three phases: an initial phase with decreasing wing quality (emergence > mortality), followed by an equilibrium phase with mostly constant average wing condition (emergence = mortality) and a final ageing phase with strongly deteriorating wing condition (mortality » emergence). Consequently, neither species would likely become extinct because of particularly unsuitable weather conditions during a single flight period. The observed differences between the two species suggest a better regional adaptation of B. pales, which is restricted to high mountain systems of Europe. In contrast, the arctic-alpine B. napaea might be best adapted to conditions in the Arctic and not the more southern high mountain systems. However, this needs to be examined during future research in the Arctic.
Telemetry Tracking and Control Through Commercial LEO Satellites
NASA Technical Reports Server (NTRS)
Streich, Ronald C.; Morgan, Dwayne R.; Bull, Barton B.; Grant, Charles E.; Powers, Edward I. (Technical Monitor)
2001-01-01
Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF in Virginia have successfully tested commercial LEO communications satellites for sounding rocket, balloon and aircraft flight TT&C. The Flight Modern became a GSFC/WFF Advanced Range Technology Initiative (ARTI) in an effort to streamline TT&C capability to the user community at low cost. Ground tests of the Flight Modem verified duplex communications quality of service and measured transmission latencies. These tests were completed last year and results reported in the John Hopkins University (JHU) Applied Physics Laboratory (APL) 4th International Symposium on Reducing Spacecraft Costs for Ground Systems and Operations. The second phase of the Flight Modem baseline test program was a demonstration of the ruggedized version of the WFF Flight Modem flown on a sounding rocket launched it the Swedish rocket range (Esrangc) near Kiruna, Sweden, with results contained in this paper. Aircraft flight tests have been and continue to be conducted. Flights of opportunity are being actively pursued with other centers, ranges and users at universities. The WFF Flight Modem contains a CPS receiver to provide vehicle position for tracking and vehicle recovery. The system architecture, which integrates antennas, CPS receiver, commercial satellite packet data modem and a single board computer with custom software, is described. Small satellite use of the WFF Flight Modem is also being investigated, The Flight Modem provides an independent vehicle position source for Range Safety applications. The LEO communication system contains a coarse position location system, which is compared to GPS ace acy. This comparison allows users, to determine the need for a CPS receiver in addition to the satellite packet data modem for their application.
Hammond, Sarah; O'Shea, Michael
2007-11-01
There are two modes of flight initiation in Drosophila melanogaster-escape and voluntary. Although the circuitry underlying escape is accounted for by the Giant fibre (GF) system, the system underlying voluntary flight initiation is unknown. The GF system is functionally complete before the adult fly ecloses, but immature adults initially fail to react to a stimulus known to reliably evoke escape in mature adults. This suggests that escape in early adulthood, approximately 2-h post-eclosion, is not automatically triggered by the hard-wired GF system. Indeed, we reveal that escape behaviour displays a staged emergence during the first hour post-eclosion, suggesting that the GF system is subject to declining levels of suppression. Voluntary flight initiations are not observed at all during the period when the GF system is released from its suppression, nor indeed for some time after. We addressed the question whether voluntary flight initiation requires the GF system by observing take-off in Shak-B ( 2 ) mutant flies, in which the GF system is defunct. While the escape response is severely impaired in these mutants, they displayed normal voluntary flight initiation. Thus, the escape mechanism is subject to developmental modulation following eclosion and the GF system does not underlie voluntary flight.
Science in a Team Environment (AKA, How to Play Nicely with Others)
NASA Technical Reports Server (NTRS)
Platts, S. H.; Primeaux, L.; Swarmer, T.; Yarbough, P. O
2017-01-01
So you want to do NASA funded research in a spaceflight analog? There are several things about participating in an HRP managed analog that may be different from the way you normally do work in your laboratory. The purpose of this presentation is to highlight those differences and explain some of the unique aspects of doing this research. Participation in an HRP funded analog study complement, even if initially selected for funding, is not automatic and involves numerous actions from ISSMP, HRP, and the PI. There are steps that have to be taken and processes to follow before approval and ISSMP-FA integration. After the proposal and acceptance process the Investigator works closely with the Flight Analog team to ensure full integration of their study requirements into a compliment. A complement is comprised of a group of studies requiring a common platform and/or scenario that are able to be integrated on a non-interference basis for implementation. Full integration into the analog platform can be broken down into three phases: integration, preparation, and implementation. These phases occur in order with some overlap in the integration and preparation phase. The ISSMP-FA team integrates, plans and implements analog study complements. Properly defining your research requirements and getting them documented is one of the most critical components to ensure successful integration and implementation of your study, but is also one of the most likely to be neglected by PIs. Requirements that are not documented, or that are documented poorly are unlikely to get done, no matter how much you push. The process to document requirements is two-fold, consisting of an initial individual requirements integration and then a compliment requirements integration. Understanding the requirements in detail and early ensures that the science is not compromised by outside influences. This step is vital to the integration, preparation, and implementation phases. The individual requirements integration is the first step in ensuring that the research fits into an available analog platform or allows for the Flight Analog team to provide information on structural study changes for participation in the analog. At this early point investigators need to understand exactly what their requirements are to produce relevant data and convey their must have needs to the Flight Analog team. The fluid nature of analog platforms allow for minor alterations to the operational structure. Participation in analog research requires flexibility from the investigator to ensure implementation of their research into a flight like analog platform. The compliment integration requires plasticity; investigators are asked to work closely with one another and the Flight Analog team to combine research studies into a single study plan. This study plan's ultimate goal is to facilitate multiple study participation with minimal scientific impact to each individual study. The Flight Analogs team works to find the best compromise for all parties while protecting the flight like atmosphere of a particular analog. Additional restrictions, limitations and constraints may be required by the analog in order to make all of the science work. Many studies need to be combined into each complement and there are a limited number of hours available for data collection. Through data/sample sharing, we can reduce the burden on the test subject, while usually avoiding significant science impacts. Restrictions on food, exercise, medications and sleep cycle are important to consider for your research.
Flight demonstration of laser diode initiated ordnance
NASA Technical Reports Server (NTRS)
Boucher, Craig J.; Schulze, Norman R.
1995-01-01
A program has been initiated by NASA Headquarters to validate laser initiated ordnance in flight applications. The primary program goal is to bring together a team of government and industry members to develop a laser initiated ordnance system having the test and analysis pedigree to be flown on launch vehicles. The culmination of this effort was a flight of the Pegasus launch vehicle which had two fin rockets initiated by this laser system. In addition, a laser initiated ordnance squib was fired into a pressure bomb during thrusting flight. The complete ordnance system comprising a laser diode firing unit, fiber optic cable assembly, laser initiated detonator, and laser initiated squib was designed and built by The Ensign Bickford Company. The hardware was tested to the requirements of the Pegasus launch vehicle and integrated into the vehicle by The Ensign Bickford Company and the Orbital Sciences Corporation. Discussions include initial program concept, contract implementation, team member responsibilities, analysis results, vehicle integration, safing architecture, ordnance interfaces, mission timeline and telemetry data. A complete system description, summary of the analyses, the qualification test results, and the results of flight are included.
Flight controller alertness and performance during MOD shiftwork operations
NASA Technical Reports Server (NTRS)
Kelly, Sean M.; Rosekind, Mark R.; Dinges, David F.; Miller, Donna L.; Gillen, Kelly A.; Gregory, Kevin B.; Aguilar, Ronald D.; Smith, Roy M.
1994-01-01
Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations. During STS operations, MOD personnel provide 24 hr. coverage of critical tasks. A joint JSC and ARC project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during STS-53 in Dec. 1992. The study measures included a background questionnaire, a subjective daily logbook completed on a 24 hr. basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen Flight controllers representing the 3 Orbit shifts participated. The initial results clearly support further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further extended duration orbiters, timelines and planning for 24 circadian disruption will remain highly relevant in the MOD environment.
NASA Technical Reports Server (NTRS)
1976-01-01
Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.
Initial flight qualification and operational maintenance of X-29A flight software
NASA Technical Reports Server (NTRS)
Earls, Michael R.; Sitz, Joel R.
1989-01-01
A discussion is presented of some significant aspects of the initial flight qualification and operational maintenance of the flight control system softward for the X-29A technology demonstrator. Flight qualification and maintenance of complex, embedded flight control system software poses unique problems. The X-29A technology demonstrator aircraft has a digital flight control system which incorporates functions generally considered too complex for analog systems. Organizational responsibilities, software assurance issues, tools, and facilities are discussed.
14 CFR 135.338 - Qualifications: Flight instructors (aircraft) and flight instructors (simulator).
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Has satisfactorily completed the training phases for the aircraft, including recurrent training, that... satisfactorily completed the appropriate training phases for the aircraft, including recurrent training, that are... AND RULES GOVERNING PERSONS ON BOARD SUCH AIRCRAFT Training § 135.338 Qualifications: Flight...
Smooth Pursuit Saccade Amplitude Modulation During Exposure to Microgravity
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Kozlovskaya, I. B.; Sayenko, D. G.; Sayenko, I.; Somers, J. T.; Paloski, W. H.
2002-01-01
Russian investigators have reported changes in pursuit tracking of a vertically moving point stimulus during space flight. Early in microgravity, changes were manifested by decreased eye movement amplitude (undershooting) and the appearance of correction saccades. As the flight progressed, pursuit of the moving point stimulus deteriorated while associated saccadic movements were unchanged. Immediately postflight there was an improved execution of active head movements indicating that the deficiencies in pursuit function noted in microgravity may be of central origin. In contrast, tests of two cosmonauts showed that horizontal and vertical smooth pursuit were unchanged inflight. However, results of corresponding saccadic tasks showed a tendency toward the overshooting of a horizontal target early inflight with high accuracy developing later inflight, accompanied by an increased saccade velocity and a trend toward decreased saccade latency. Based on these equivocal results, we have further investigated the effects of space flight on the smooth pursuit mechanism during and after short duration flight, and postflight on returning MIR crewmembers. Sinusoidal target movement was presented horizontally at frequencies of 0.33 and 1.0 Hz. Subjects were asked to perform two trials for each stimulus combination: (1) moving eyes-only (EO) and (2) moving eyes and head (EH) with the target motion. Peak amplitude was 30 deg for 0.33 Hz trials and 15 deg for the 1.0 Hz trials. The relationship between saccade amplitude and peak velocity were plotted as a main sequence for each phase of flight, and linear regression analysis allowed us to determine the slope of each main sequence plot. The linear slopes were then combined for each flight phase for each individual subject. The main sequence for both EO and EH trials at both the 0.33 and 1.0 Hz frequencies during flight for the short duration flyers showed a reduction in saccade velocity and amplitude when compared to the preflight main sequence . This difference in the regression slopes between flight phase, head/eye condition (EO or EH), and pursuit target frequency was observed across all subjects (statistically significant at the p<0.02, df= 2). It is interesting to note that postflight for the short duration flyers there was an immediate recovery to the preflight main sequence across all trials. There were no significant differences observed between the preflight slopes for either head movement condition (EO vs. EH). When the immediate postflight (R+O) regression slopes were compared with the preflight slopes, there was a tendency (not significant) for both saccade amplitude and peak velocity to increase during the postflight testing. This tendency had vanished by R+ 1. Of particular interest was the redistribution of saccades during the latter stages of the flight and immediately postflight in the EO condition. At the 1.0 Hz frequency the saccades tended to be clustered near the lowest target velocity. It was also interesting to note that gaze performance (eye in skull + head in space) was consistently better during the EH condition; a finding also observed by our Russian colleagues. As the results of the long duration flight become available we expect that they will not only show that postflight effects will be similar to those observed during the short duration flights, but will also last for a greater period of time following flight. It is not clear what mechanism is responsible for the decreased peak saccadic velocity during flight unless the change is related to the control of retinal slip. For example, it is possible that saccades will tend to initially undershoot their targets by a small percentage and these saccades are then followed, if vision is available, by a small augmenting corrective saccade. It has been postulated that the functional significance of this undershooting tendency is to maintain the spatial representation of the target on the same side of the fovea (as opposedo racing across the fovea) and hence in the same cerebral hemisphere that initiated the primary saccade thus minimizing delays caused by an intra-hemispheric transfer of information . One could also speculate that with saccade velocities greater than normal, additional corrective saccades would be required to bring the target back on the fovea. A less plausible explanation of our findings could be fatigue. Yet it seems unlikely that our subjects would show lower velocities on all inflight test days while showing increased saccade velocities immediately following space flight where fatigue is usually the greatest. Finally, the redistribution effect noted late inflight is likely caused by adaptive changes. Overall, corrective saccades appeared to be used in maintaining gaze on target; reducing retinal slip and assisting space travelers in maintaining clear vision throughout the different phases of the space flight.
2007-08-14
Boeing Phantom Works' subscale Blended Wing Body technology demonstration aircraft began its initial flight tests from NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. in the summer of 2007. The 8.5 percent dynamically scaled unmanned aircraft, designated the X-48B by the Air Force, is designed to mimic the aerodynamic characteristics of a full-scale large cargo transport aircraft with the same blended wing body shape. The initial flight tests focused on evaluation of the X-48B's low-speed flight characteristics and handling qualities. About 25 flights were planned to gather data in these low-speed flight regimes. Based on the results of the initial flight test series, a second set of flight tests was planned to test the aircraft's low-noise and handling characteristics at transonic speeds.
14 CFR 135.347 - Pilots: Initial, transition, upgrade, and differences flight training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the aircraft simulator or training device; and (2) A flight check in the aircraft or a check in the... differences flight training. 135.347 Section 135.347 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... flight training. (a) Initial, transition, upgrade, and differences training for pilots must include...
14 CFR 135.347 - Pilots: Initial, transition, upgrade, and differences flight training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... the aircraft simulator or training device; and (2) A flight check in the aircraft or a check in the... differences flight training. 135.347 Section 135.347 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... flight training. (a) Initial, transition, upgrade, and differences training for pilots must include...
14 CFR 135.347 - Pilots: Initial, transition, upgrade, and differences flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the aircraft simulator or training device; and (2) A flight check in the aircraft or a check in the... differences flight training. 135.347 Section 135.347 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... flight training. (a) Initial, transition, upgrade, and differences training for pilots must include...
14 CFR 135.347 - Pilots: Initial, transition, upgrade, and differences flight training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the aircraft simulator or training device; and (2) A flight check in the aircraft or a check in the... differences flight training. 135.347 Section 135.347 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... flight training. (a) Initial, transition, upgrade, and differences training for pilots must include...
14 CFR 135.347 - Pilots: Initial, transition, upgrade, and differences flight training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the aircraft simulator or training device; and (2) A flight check in the aircraft or a check in the... differences flight training. 135.347 Section 135.347 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... flight training. (a) Initial, transition, upgrade, and differences training for pilots must include...
14 CFR 91.1067 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... recurrent flight attendant crewmember testing requirements. No program manager or owner may use a flight... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 91.1067 Section 91.1067 Aeronautics and Space FEDERAL AVIATION...
14 CFR 91.1067 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... recurrent flight attendant crewmember testing requirements. No program manager or owner may use a flight... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 91.1067 Section 91.1067 Aeronautics and Space FEDERAL AVIATION...
14 CFR 91.1067 - Initial and recurrent flight attendant crewmember testing requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... recurrent flight attendant crewmember testing requirements. No program manager or owner may use a flight... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Initial and recurrent flight attendant crewmember testing requirements. 91.1067 Section 91.1067 Aeronautics and Space FEDERAL AVIATION...
ALOS-2 current status and operation plan
NASA Astrophysics Data System (ADS)
Suzuki, Shinichi; Kankaku, Yukihiro; Osawa, Yuji
2013-10-01
The Advanced Land Observing Satellite-2 (ALOS-2) carries the state-of-the-art L-band Synthetic Aperture Radar (SAR) called PALSAR-2 which succeeds to the ALOS / PALSAR. PALSAR-2 will have enhanced performance in both high resolution and wide swath compared to PALSAR. It will allow comprehensive monitoring of disasters. Wider bandwidth and shorter revisit time will give better conference for INSAR data analysis such as crustal deformation and deforestation. The Proto Flight Test (PFT) of ALOS-2 has been conducted since June 2012. In parallel, the PFT of PALSAR-2 has been conducted since March 2012. As of August 2013, ALOS-2 system has completed the interface test with ground system and is preparing for the Vibration test, Acoustic test and Electromagnetic Compatibility test. After completing these tests, ALOS-2 will be transported to JAXA Tanegashima Space Center for launch. The initial commissioning phase of ALOS-2 is planned for six months which are comprised of LEOP (Launch and Early Orbit Phase) and initial Cal/Val phase. During the LEOP, all components will be checked with direct downlink via Xband and with data relay communication via JAXA's DRTS (Data Relay Test Satellite). During the initial Cal/Val phase, the PALSAR-2 data will be verified and calibrated by using Corner Reflectors and Geometric Calibrator at ground. The data acquisition during the commissioning phase will be consistent with the systematic acquisition strategy prepared for the routine operation. This paper describes the current status and operation plan of ALOS-2.
NASA Technical Reports Server (NTRS)
Benepe, D. B.; Cunningham, A. M., Jr.; Traylor, S., Jr.; Dunmyer, W. D.
1978-01-01
Plotted power spectra for all of the flight points examined during the Phase 2 flight data analysis are presented. Detailed descriptions of the aircraft, the flight instrumentation and the analysis techniques are given. Measured and calculated vibration mode frequencies are also presented to assist in further interpretation of the PSD data.
Shuttle-tethered satellite system definition study extension
NASA Technical Reports Server (NTRS)
1980-01-01
A system requirements definition and configuration study (Phase B) of the Tethered Satellite System (TSS) was conducted during the period 14 November 1977 to 27 February 1979. Subsequently a study extension was conducted during the period 13 June 1979 to 30 June 1980, for the purpose of refining the requirements identified during the main phase of the study, and studying in some detail the implications of accommodating various types of scientific experiments on the initial verification flight mission. An executive overview is given of the Tethered Satellite System definition developed during the study. The results of specific study tasks undertaken in the extension phase of the study are reported. Feasibility of the Tethered Satellite System has been established with reasonable confidence and the groundwork laid for proceeding with hardware design for the verification mission.
2010-03-19
A joint NASA/Boeing team completed the first phase of flight tests on the unique X-48B Blended Wing Body aircraft at NASA's Dryden Flight Research Center at Edwards, CA. The team completed the 80th and last flight of the project's first phase on March 19, 2010.
Report of the Defense Science Board Task Force on National Aero-Space Plane (NASP) Program
NASA Technical Reports Server (NTRS)
1992-01-01
Six years ago, the Defense Science Board (DSB) initiated a review of the concept, technical basis, program content, and missions of the National Aerospace Plane (NASP) program. The report was completed in Sep. 1988, and the recommendations contributed to strengthening the technical efforts in the NASP program. Since then, substantial technological progress has been made in the technology development phase (Phase 2) of the program. Phase 2 of the program is currently scheduled to end in late Fiscal Year 1993, with a decision whether to proceed to the experimental flight vehicle phase (Phase 3) to be made at that time. This decision will be a very significant one for the Department of Defense (DoD) and the National Aeronautics and Space Administration (NASA). In February of this year, the DSB was chartered to revisit the NASP program to assess the degree to which the many technical challenges of the program have been resolved, or are likely to be resolved by the end of Phase 2.
The fault monitoring and diagnosis knowledge-based system for space power systems: AMPERES, phase 1
NASA Technical Reports Server (NTRS)
Lee, S. C.
1989-01-01
The objective is to develop a real time fault monitoring and diagnosis knowledge-based system (KBS) for space power systems which can save costly operational manpower and can achieve more reliable space power system operation. The proposed KBS was developed using the Autonomously Managed Power System (AMPS) test facility currently installed at NASA Marshall Space Flight Center (MSFC), but the basic approach taken for this project could be applicable for other space power systems. The proposed KBS is entitled Autonomously Managed Power-System Extendible Real-time Expert System (AMPERES). In Phase 1 the emphasis was put on the design of the overall KBS, the identification of the basic research required, the initial performance of the research, and the development of a prototype KBS. In Phase 2, emphasis is put on the completion of the research initiated in Phase 1, and the enhancement of the prototype KBS developed in Phase 1. This enhancement is intended to achieve a working real time KBS incorporated with the NASA space power system test facilities. Three major research areas were identified and progress was made in each area. These areas are real time data acquisition and its supporting data structure; sensor value validations; development of inference scheme for effective fault monitoring and diagnosis, and its supporting knowledge representation scheme.
Code of Federal Regulations, 2013 CFR
2013-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2014 CFR
2014-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2011 CFR
2011-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2012 CFR
2012-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Code of Federal Regulations, 2010 CFR
2010-01-01
... simulator or training device; and (2) A flight check in the aircraft or a check in the simulator or training..., requalification, and differences flight training. 91.1103 Section 91.1103 Aeronautics and Space FEDERAL AVIATION... OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1103 Pilots: Initial...
Orbital express capture system: concept to reality
NASA Astrophysics Data System (ADS)
Stamm, Shane; Motaghedi, Pejmun
2004-08-01
The development of autonomous servicing of on-orbit spacecraft has been a sought after objective for many years. A critical component of on-orbit servicing involves the ability to successfully capture, institute mate, and perform electrical and fluid transfers autonomously. As part of a Small Business Innovation Research (SBIR) grant, Starsys Research Corporation (SRC) began developing such a system. Phase I of the grant started in 1999, with initial work focusing on simultaneously defining the parameters associated with successful docking while designing to those parameters. Despite the challenge of working without specific requirements, SRC completed development of a prototype design in 2000. Throughout the following year, testing was conducted on the prototype to characterize its performance. Having successfully completed work on the prototype, SRC began a Phase II SBIR effort in mid-2001. The focus of the second phase was a commercialization effort designed to augment the prototype model into a more flight-like design. The technical requirements, however, still needed clear definition for the design to progress. The advent of the Orbital Express (OE) program provided much of that definition. While still in the proposal stages of the OE program, SRC began tailoring prototype redesign efforts to the OE program requirements. A primary challenge involved striking a balance between addressing the technical requirements of OE while designing within the scope of the SBIR. Upon award of the OE contract, the Phase II SBIR design has been fully developed. This new design, designated the Mechanical Docking System (MDS), successfully incorporated many of the requirements of the OE program. SRC is now completing dynamic testing on the MDS hardware, with a parallel effort of developing a flight design for OE. As testing on the MDS progresses, the design path that was once common to both SBIR effort and the OE program begins to diverge. The MDS will complete the scope of the Phase II SBIR work, while the new mechanism, the Orbital Express Capture System, will emerge as a flight-qualified design for the Orbital Express program.
Nascimento, Felipe A C; Majumdar, Arnab; Jarvis, Steve
2012-07-01
Accident rates for night sorties by helicopters traveling to offshore oil and gas platforms are at least five times higher than those during the daytime. Because pilots need to transition from automated flight to a manually flown night visual segment during arrival, the approach and landing phases cause great concern. Despite this, in Brazil, regulatory changes have been sought to allow for the execution of offshore night flights because of the rapid expansion of the petroleum industry. This study explores the factors that affect safety during night visual segments in Brazil using 28 semi-structured interviews with offshore helicopter pilots, followed by a template analysis of the narratives. The relationships among the factors suggest that flawed safety oversights, caused by a combination of lack of infrastructure for night flights offshore and declining training, currently favor spatial disorientation on the approach and near misses when close to the destination. Safety initiatives can be derived on the basis of these results. Copyright © 2012 Elsevier Ltd. All rights reserved.
Unified powered flight guidance
NASA Technical Reports Server (NTRS)
Brand, T. J.; Brown, D. W.; Higgins, J. P.
1973-01-01
A complete revision of the orbiter powered flight guidance scheme is presented. A unified approach to powered flight guidance was taken to accommodate all phases of exo-atmospheric orbiter powered flight, from ascent through deorbit. The guidance scheme was changed from the previous modified version of the Lambert Aim Point Maneuver Mode used in Apollo to one that employs linear tangent guidance concepts. This document replaces the previous ascent phase equation document.
EMG analysis of human postural responses during parabolic flight microgravity episodes
NASA Technical Reports Server (NTRS)
Layne, Charles S.; Spooner, Brian S.
1990-01-01
Anticipatory postural activity in the trunk and legs precedes rapid shoulder flexion in unit gravity. The hypothesis that anticipatory activity is a component of a single neural command for arm movement was tested by monitoring the surface electromyographic activity of the biceps femoris, paraspinals, and deltoid muscles of three subjects during the microgravity phase of parabolic flight. If part of a single command, anticipatory postural activity would be expected to remain intact despite the absence of the body's center of gravity in a reduced gravity environment. However, in at least 75 percent of the microgravity trials anticipatory biceps femoris activity was absent, indicating a separation of postural and agonist muscle activity. Such a finding suggests that anticipatory postural biceps femoris activity may be initiated independently of agonist (deltoid) activity.
Flight Validation of a Metrics Driven L(sub 1) Adaptive Control
NASA Technical Reports Server (NTRS)
Dobrokhodov, Vladimir; Kitsios, Ioannis; Kaminer, Isaac; Jones, Kevin D.; Xargay, Enric; Hovakimyan, Naira; Cao, Chengyu; Lizarraga, Mariano I.; Gregory, Irene M.
2008-01-01
The paper addresses initial steps involved in the development and flight implementation of new metrics driven L1 adaptive flight control system. The work concentrates on (i) definition of appropriate control driven metrics that account for the control surface failures; (ii) tailoring recently developed L1 adaptive controller to the design of adaptive flight control systems that explicitly address these metrics in the presence of control surface failures and dynamic changes under adverse flight conditions; (iii) development of a flight control system for implementation of the resulting algorithms onboard of small UAV; and (iv) conducting a comprehensive flight test program that demonstrates performance of the developed adaptive control algorithms in the presence of failures. As the initial milestone the paper concentrates on the adaptive flight system setup and initial efforts addressing the ability of a commercial off-the-shelf AP with and without adaptive augmentation to recover from control surface failures.
Space shuttle orbiter leading-edge flight performance compared to design goals
NASA Technical Reports Server (NTRS)
Curry, D. M.; Johnson, D. W.; Kelly, R. E.
1983-01-01
Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.
Yee, Lindsay D; Craven, Jill S; Loza, Christine L; Schilling, Katherine A; Ng, Nga Lee; Canagaratna, Manjula R; Ziemann, Paul J; Flagan, Richard C; Seinfeld, John H
2012-06-21
The extended photooxidation of and secondary organic aerosol (SOA) formation from dodecane (C(12)H(26)) under low-NO(x) conditions, such that RO(2) + HO(2) chemistry dominates the fate of the peroxy radicals, is studied in the Caltech Environmental Chamber based on simultaneous gas and particle-phase measurements. A mechanism simulation indicates that greater than 67% of the initial carbon ends up as fourth and higher generation products after 10 h of reaction, and simulated trends for seven species are supported by gas-phase measurements. A characteristic set of hydroperoxide gas-phase products are formed under these low-NO(x) conditions. Production of semivolatile hydroperoxide species within three generations of chemistry is consistent with observed initial aerosol growth. Continued gas-phase oxidation of these semivolatile species produces multifunctional low volatility compounds. This study elucidates the complex evolution of the gas-phase photooxidation chemistry and subsequent SOA formation through a novel approach comparing molecular level information from a chemical ionization mass spectrometer (CIMS) and high m/z ion fragments from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Combination of these techniques reveals that particle-phase chemistry leading to peroxyhemiacetal formation is the likely mechanism by which these species are incorporated in the particle phase. The current findings are relevant toward understanding atmospheric SOA formation and aging from the "unresolved complex mixture," comprising, in part, long-chain alkanes.
NASA Technical Reports Server (NTRS)
Bosworth, John T.; Burken, John J.
1997-01-01
Safety and productivity of the initial flight test phase of a new vehicle have been enhanced by developing the ability to measure the stability margins of the combined control system and vehicle in flight. One shortcoming of performing this analysis is the long duration of the excitation signal required to provide results over a wide frequency range. For flight regimes such as high angle of attack or hypersonic flight, the ability to maintain flight condition for this time duration is difficult. Significantly reducing the required duration of the excitation input is possible by tailoring the input to excite only the frequency range where the lowest stability margin is expected. For a multiple-input/multiple-output system, the inputs can be simultaneously applied to the control effectors by creating each excitation input with a unique set of frequency components. Chirp-Z transformation algorithms can be used to match the analysis of the results to the specific frequencies used in the excitation input. This report discusses the application of a tailored excitation input to a high-fidelity X-31A linear model and nonlinear simulation. Depending on the frequency range, the results indicate the potential to significantly reduce the time required for stability measurement.
Solar power satellite system definition study. Volume 5: Space transportation analysis, phase 3
NASA Technical Reports Server (NTRS)
1980-01-01
A small Heavy Lift Launch Vehicle (HLLV) for the Solar Power Satellites (SPS) System was analyzed. It is recommended that the small HLLV with a payload of 120 metric tons be adopted as the SPS launch vehicle. The reference HLLV, a shuttle-derived option with a payload of 400 metric tons, should serve as a backup and be examined further after initial flight experience. The electric orbit transfer vehicle should be retained as the reference orbit-to-orbit cargo system.
NASA Technical Reports Server (NTRS)
Hetherington, N. W.; Rosenblatt, L. S.; Higgins, E. A.; Winget, C. M.
1973-01-01
A mathematical model previously presented by Rosenblatt et al. (1973) for estimating the rates of resynchronization of individual biorhythms following transmeridian flights or photoperiod shifts is extended to estimation of rates at which two biorythms resynchronize with respect to each other. Such quantification of the rate of restoration of the initial phase relationship of the two biorhythms is pointed out as a valuable tool in the study of internal desynchronosis.
Deep Throttle Turbopump Technology Testing
NASA Technical Reports Server (NTRS)
Ferguson, T. V.; Guinzburg, A.; McGlynn, R. D.; Williams, M.
2002-01-01
The objectives of this viewgraph presentation were to: (1) enhance and demonstrate critical technologies in support of planned RBCC flight test programs; and (2) obtain knowledge of wide flow range as it is applicable to liquid rocket engine turbopumps operating over extreme throttle ranges. This program was set up to demonstrate wide flow range diffuser technologies. The testing phase of the contract to provide data to anchor initial designs was partially successful. Data collected suggest flow phenomena exists at off-design flow rates.
Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels.
Brembs, Björn; Christiansen, Frauke; Pflüger, Hans Joachim; Duch, Carsten
2007-10-10
Insect flight is one of the fastest, most intense and most energy-demanding motor behaviors. It is modulated on multiple levels by the biogenic amine octopamine. Within the CNS, octopamine acts directly on the flight central pattern generator, and it affects motivational states. In the periphery, octopamine sensitizes sensory receptors, alters muscle contraction kinetics, and enhances flight muscle glycolysis. This study addresses the roles for octopamine and its precursor tyramine in flight behavior by genetic and pharmacological manipulation in Drosophila. Octopamine is not the natural signal for flight initiation because flies lacking octopamine [tyramine-beta-hydroxylase (TbetaH) null mutants] can fly. However, they show profound differences with respect to flight initiation and flight maintenance compared with wild-type controls. The morphology, kinematics, and development of the flight machinery are not impaired in TbetaH mutants because wing-beat frequencies and amplitudes, flight muscle structure, and overall dendritic structure of flight motoneurons are unaffected in TbetaH mutants. Accordingly, the flight behavior phenotypes can be rescued acutely in adult flies. Flight deficits are rescued by substituting octopamine but also by blocking the receptors for tyramine, which is enriched in TbetaH mutants. Conversely, ablating all neurons containing octopamine or tyramine phenocopies TbetaH mutants. Therefore, both octopamine and tyramine systems are simultaneously involved in regulating flight initiation and maintenance. Different sets of rescue experiments indicate different sites of action for both amines. These findings are consistent with a complex system of multiple amines orchestrating the control of motor behaviors on multiple levels rather than single amines eliciting single behaviors.
14 CFR 121.424 - Pilots: Initial, transition, and upgrade flight training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... initial flight training that are capable of being performed in an airplane simulator without a visual system; and (ii) A flight check in the simulator or the airplane to the level of proficiency of a pilot... training required by § 121.423 must be performed in a Level C or higher full flight simulator unless the...
RLV-TD Flight Measured Aeroacoustic Levels and its Comparison with Predictions
NASA Astrophysics Data System (ADS)
Manokaran, K.; Prasath, M.; Venkata Subrahmanyam, B.; Ganesan, V. R.; Ravindran, Archana; Babu, C.
2017-12-01
The Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) is a wing body configuration successfully flight tested. One of the important flight measurements is the acoustic levels. There were five external microphones, mounted on the fuselage-forebody, wing, vertical tail, inter-stage (ITS) and core base shroud to measure the acoustic levels from lift-off to splash down. In the ascent phase, core base shroud recorded the overall maximum at both lift-off and transonic conditions. In-flight noise levels measured on the wing is second highest, followed by fuselage and vertical tail. Predictions for flight trajectory compare well at all locations except for vertical tail (4.5 dB). In the descent phase, maximum measured OASPL occurs at transonic condition for the wing, followed by vertical tail and fuselage. Predictions for flight trajectory compare well at all locations except for wing (- 6.0 dB). Spectrum comparison is good in the ascent phase compared to descent phase. Roll Reaction control system (RCS) thruster firing signature is seen in the acoustic measurements on the wing and vertical tail during lift-off.
Final Phase Flight Performance and Touchdown Time Assessment of TDV in RLV-TD HEX-01 Mission
NASA Astrophysics Data System (ADS)
Yadav, Sandeep; Jayakumar, M.; Nizin, Aziya; Kesavabrahmaji, K.; Shyam Mohan, N.
2017-12-01
RLV-TD HEX-01 mission was configured as a precursor flight to actual two stages to orbit vehicle. In this mission RLV-TD was designed as a two stage vehicle for demonstrating the hypersonic flight of a winged body vehicle at Mach No. 5. One of the main objectives of this mission was to generate data for better understanding of new technologies required to design the future vehicle. In this mission, the RLV-TD vehicle was heavily instrumented to get data related to performance of different subsystems. As per the mission design, RLV-TD will land in sea after flight duration of 700 s and travelling a distance of nearly 500 km in Bay of Bengal from the launch site for a nominal trajectory. The visibility studies for telemetry data of vehicle for the nominal and off nominal trajectories were carried out. Based on that, three ground stations were proposed for the telemetry data reception (including one in sea). Even with this scheme it was seen that during the final phase of the flight there will not be any ground station visible to the flight due to low elevation. To have the mission critical data during final phase of the flight, telemetry through INSAT scheme was introduced. During the end of the mission RLV-TD will be landing in the sea on a hypothetical runway. To know the exact time of touchdown for the flight in sea, there was no direct measurement available. Simultaneously there were all chances of losing ground station visibility just before touchdown, making it difficult to assess flight performance during that phase. In this work, telemetry and instrumentation scheme of RLV-TD HEX-01 mission is discussed with an objective to determine the flight performance during the final phase. Further, using various flight sensor data the touchdown time of TDV is assessed for this mission.
Growth-rate periodicity of Streptomyces levoris during space flight
NASA Technical Reports Server (NTRS)
Rogers, T. D.; Brower, M. E.; Taylor, G. R.
1977-01-01
Streptomyces levoris provides a suitable biological test system to investigate the effects of space flight on the rhythms of vegetative and spore phase characteristics of both growth-rate periodicity and culture morphology during the pre-, in-, and post-flight periods of the Apollo-Soyuz Test Project. The objectives of the American participation were to study the effects of space flight on the biorhythms of Streptomyces levoris based on a comparison of the growth-rate periodicity of the vegetative and spore phase within each culture, to examine the possible alteration of spore morphology and development by SEM, and to compare the effects of a 12-hr phase shift on the periodic growth characteristics of this microorganism in cultures which were exchanged during the joint activities of the space flight. No uniform differences in the biorhythm of Streptomyces levoris during space flight were observed. It appears that the single most variable factor related to the experiment was the lack of temperature control for the space-flight specimens.
NASA Technical Reports Server (NTRS)
Benepe, D. B.; Cunningham, A. M., Jr.; Traylor, S., Jr.; Dunmyer, W. D.
1978-01-01
Power spectral density (PSD) data for all of the flight points examined during the Phase 2 flight data analysis are presented in tabular form. Detailed descriptions of the aircraft, the flight instrumentation and the analysis techniques are given. Measured and calculated vibration mode frequencies are also presented to assist in further interpretation of the PSD data.
Analysis of In-Flight Vibration Measurements from Helicopter Transmissions
NASA Technical Reports Server (NTRS)
Mosher, Marianne; Huff, Ed; Barszcz
2004-01-01
In-flight vibration measurements from the transmission of an OH-58C KIOWA are analyzed. In order to understand the effect of normal flight variation on signal shape, the first gear mesh components of the planetary gear system and bevel gear are studied in detail. Systematic patterns occur in the amplitude and phase of these signal components with implications for making time synchronous averages and interpreting gear metrics in flight. The phase of the signal component increases as the torque increases; limits on the torque range included in a time synchronous average may now be selected to correspond to phase change limits on the underlying signal. For some sensors and components, an increase in phase variation and/or abrupt change in the slope of the phase dependence on torque are observed in regions of very low amplitude of the signal component. A physical mechanism for this deviation is postulated. Time synchronous averages should not be constructed in torque regions with wide phase variation.
Description and Flight Test Results of the NASA F-8 Digital Fly-by-Wire Control System
NASA Technical Reports Server (NTRS)
1975-01-01
A NASA program to develop digital fly-by-wire (DFBW) technology for aircraft applications is discussed. Phase I of the program demonstrated the feasibility of using a digital fly-by-wire system for aircraft control through developing and flight testing a single channel system, which used Apollo hardware, in an F-8C airplane. The objective of Phase II of the program is to establish a technology base for designing practical DFBW systems. It will involve developing and flight testing a triplex digital fly-by-wire system using state-of-the-art airborne computers, system hardware, software, and redundancy concepts. The papers included in this report describe the Phase I system and its development and present results from the flight program. Man-rated flight software and the effects of lightning on digital flight control systems are also discussed.
Two-Phase Flow Technology Developed and Demonstrated for the Vision for Exploration
NASA Technical Reports Server (NTRS)
Sankovic, John M.; McQuillen, John B.; Lekan, Jack F.
2005-01-01
NASA s vision for exploration will once again expand the bounds of human presence in the universe with planned missions to the Moon and Mars. To attain the numerous goals of this vision, NASA will need to develop technologies in several areas, including advanced power-generation and thermal-control systems for spacecraft and life support. The development of these systems will have to be demonstrated prior to implementation to ensure safe and reliable operation in reduced-gravity environments. The Two-Phase Flow Facility (T(PHI) FFy) Project will provide the path to these enabling technologies for critical multiphase fluid products. The safety and reliability of future systems will be enhanced by addressing focused microgravity fluid physics issues associated with flow boiling, condensation, phase separation, and system stability, all of which are essential to exploration technology. The project--a multiyear effort initiated in 2004--will include concept development, normal-gravity testing (laboratories), reduced gravity aircraft flight campaigns (NASA s KC-135 and C-9 aircraft), space-flight experimentation (International Space Station), and model development. This project will be implemented by a team from the NASA Glenn Research Center, QSS Group, Inc., ZIN Technologies, Inc., and the Extramural Strategic Research Team composed of experts from academia.
X-48B Flight Test Progress Overview
NASA Technical Reports Server (NTRS)
Risch, Timoth K.; Cosentino, Gary B.; Regan, Christopher D.; Kisska, Michael; Princen, Norman
2009-01-01
The results of a series of 39 flight tests of the X-48B Low Speed Vehicle (LSV) performed at the NASA Dryden Flight Research Center from July 2007 through December 2008 are reported here. The goal of these tests is to evaluate the aerodynamic and controls and dynamics performance of the subscale LSV aircraft, eventually leading to the development of a control system for a full-scale vehicle. The X-48B LSV is an 8.5%-scale aircraft of a potential, full-scale Blended Wing Body (BWB) type aircraft and is flown remotely from a ground control station using a computerized flight control system located onboard the aircraft. The flight tests were the first two phases of a planned three-phase research program aimed at ascertaining the flying characteristics of this type of aircraft. The two test phases reported here are: 1) envelope expansion, during which the basic flying characteristics of the airplane were examined, and 2) parameter identification, stalls, and engine-out testing, during which further information on the aircraft performance was obtained and the airplane was tested to the limits of controlled flight. The third phase, departure limiter assaults, has yet to be performed. Flight tests in two different wing leading edge configurations (slats extended and slats retracted) as well as three weight and three center of gravity positions were conducted during each phase. Data gathered in the test program included measured airplane performance parameters such as speed, acceleration, and control surface deflections along with qualitative flying evaluations obtained from pilot and crew observations. Flight tests performed to-date indicate the aircraft exhibits good handling qualities and performance, consistent with pre-flight simulations.
Human Factors in the Design of the Crew Exploration Vehicle (CEV)
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Byrne, Vicky; Holden, Kritina
2007-01-01
NASA s Space Exploration vision for humans to venture to the moon and beyond provides interesting human factors opportunities and challenges. The Human Engineering group at NASA has been involved in the initial phases of development of the Crew Exploration Vehicle (CEV), Orion. Getting involved at the ground level, Human Factors engineers are beginning to influence design; this involvement is expected to continue throughout the development lifecycle. The information presented here describes what has been done to date, what is currently going on, and what is expected in the future. During Phase 1, prior to the contract award to Lockheed Martin, the Human Engineering group was involved in generating requirements, conducting preliminary task analyses based on interviews with subject matter experts in all vehicle systems areas, and developing preliminary concepts of operations based on the task analysis results. In addition, some early evaluations to look at CEV net habitable volume were also conducted. The program is currently in Phase 2, which is broken down into design cycles, including System Readiness Review, Preliminary Design Review, and Critical Design Review. Currently, there are ongoing Human Engineering Technical Interchange Meetings being held with both NASA and Lockheed Martin in order to establish processes, desired products, and schedules. Multiple design trades and quick-look evaluations (e.g. display device layout and external window size) are also in progress. Future Human Engineering activities include requirement verification assessments and crew/stakeholder evaluations of increasing fidelity. During actual flights of the CEV, the Human Engineering group is expected to be involved in in-situ testing and lessons learned reporting, in order to benefit human space flight beyond the initial CEV program.
Transition from wing to leg forces during landing in birds.
Provini, Pauline; Tobalske, Bret W; Crandell, Kristen E; Abourachid, Anick
2014-08-01
Transitions to and from the air are critical for aerial locomotion and likely shaped the evolution of flying animals. Research on take-off demonstrates that legs generate greater body accelerations compared with wings, and thereby contribute more to initial flight velocity. Here, we explored coordination between wings and legs in two species with different wingbeat styles, and quantified force production of these modules during the final phase of landing. We used the same birds that we had previously studied during take-off: zebra finch (Taeniopygia guttata, N=4) and diamond dove (Geopelia cuneata, N=3). We measured kinematics using high-speed video, aerodynamics using particle image velocimetry, and ground-reaction forces using a perch mounted on a force plate. In contrast with the first three wingbeats of take-off, the final four wingbeats during landing featured ~2 times greater force production. Thus, wings contribute proportionally more to changes in velocity during the last phase of landing compared with the initial phase of take-off. The two species touched down at the same velocity (~1 m s(-1)), but they exhibited significant differences in the timing of their final wingbeat relative to touchdown. The ratio of average wing force to peak leg force was greater in diamond doves than in zebra finches. Peak ground reaction forces during landing were ~50% of those during take-off, consistent with the birds being motivated to control landing. Likewise, estimations of mechanical energy flux for both species indicate that wings produce 3-10 times more mechanical work within the final wingbeats of flight compared with the kinetic energy of the body absorbed by legs during ground contact. © 2014. Published by The Company of Biologists Ltd.
In-flight tracking of helicopter rotor blades with tabs using shape memory alloy actuators
NASA Astrophysics Data System (ADS)
Epps, Jeanette Jo
The objective of this research is to develop a methodology to track helicopter rotor blades in-flight with tabs using shape memory alloy actuators. Tracking is required to reduce vibratory loads that are generated due to dissimilarity of blades. The research was conducted in two phases. The first phase involved a study on the thermo-mechanical behavior of shape memory alloys and the development of an analytical model to describe the behavior of the tab actuator (SMA-SMA actuator). The second phase of the research involved applying the knowledge of the SMA behavior to develop, construct and test a tab actuator to deflect a trailing-edge tab. In the first phase, four constitutive models for SMA were investigated and validated with test data. The models investigated were the Tanaka, Liang and Rogers, Brinson, and Boyd and Lagoudas models. These models were used to predict the quasi-static stress-strain-temperature behavior. All models showed acceptable correlation with test data. Then a constrained recovery model was developed for the case where the SMA wire is plastically deformed, clamped at both ends, and then heat activated. The Brinson model over-predicted the recovery stress-temperature behavior. The refined model developed in this dissertation showed acceptable correlation with test data. In the second phase of the research, a NACA 0012 blade section with a tab actuator embedded was constructed. The actuator was tested on bench-top as well as in an open-jet wind tunnel to determine the actuator performance under different flight conditions. This task also included building and testing a locking mechanism and a position feedback controller. It was shown that a 2-wire actuator, with all wires plastically elongated to 4.21% initially, is able to deflect the tab of a blade section sufficiently at a forward velocity of 120 ft/sec for angles of attack up to 15°. The tab deflected up 9.35° and deflected down 31°. A 5-wire actuator with all wires plastically deformed 2.43% initially was also tested in the open-jet wind tunnel. The tab deflected up 14° and down 11.5° at a forward velocity of 120 ft/sec and an angle of attack of 15°. The position feedback controller demonstrated its ability to track to a desired tab position in about 10 seconds. The locking mechanism showed its ability to lock the tab in position for the tab deflecting up during bench-top tests. (Abstract shortened by UMI.)
Electrical Stimulation of Coleopteran Muscle for Initiating Flight.
Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka
2016-01-01
Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots.
Electrical Stimulation of Coleopteran Muscle for Initiating Flight
Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka
2016-01-01
Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093
Remote observations of reentering spacecraft including the space shuttle orbiter
NASA Astrophysics Data System (ADS)
Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, Jay H.; Gibson, David M.
Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.
Interenvironmental Transfer of Microorganisms on the Exterior Surfaces of Jet Aircraft
Pfaender, Frederic K.; Swatek, Frank E.
1970-01-01
The likelihood of microorganisms being transferred to new environments by jet aircraft was investigated. Initial random sampling of the aircraft surface revealed the presence of microorganisms in varying numbers on different aerodynamic surfaces. Bacteria of the genus Bacillus were the most common isolates, comprising approximately one-third of the total organisms found. The most frequently isolated fungi were Cladosporium, Alternaria, Penicillium, and several yeasts. Sampling of surfaces before and immediately after a flight demonstrated that microorganisms were collected during flight in areas protected from the airstream and lost in those areas directly exposed to it. These experiments also showed that the majority of the organisms contaminating the aircraft were acquired from the air at ground level. The placement of microorganisms on the aircraft surface before a flight and determination of their survival after flight indicated that the test organisms were most likely to be transported in the areas protected from the airstream. The organisms showing the best chance of being transferred seem to be the sporeforming bacteria, arthrospore-forming fungi, and some yeasts. All phases of this work showed that microorganisms could be carried by jet aircraft to environments they could not reach by natural means of dispersal. PMID:5480099
Remote Observations of Reentering Spacecraft Including the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
Horvath, Thomas J.; Cagle, Melinda F.; Grinstead, jay H.; Gibson, David
2013-01-01
Flight measurement is a critical phase in development, validation and certification processes of technologies destined for future civilian and military operational capabilities. This paper focuses on several recent NASA-sponsored remote observations that have provided unique engineering and scientific insights of reentry vehicle flight phenomenology and performance that could not necessarily be obtained with more traditional instrumentation methods such as onboard discrete surface sensors. The missions highlighted include multiple spatially-resolved infrared observations of the NASA Space Shuttle Orbiter during hypersonic reentry from 2009 to 2011, and emission spectroscopy of comparatively small-sized sample return capsules returning from exploration missions. Emphasis has been placed upon identifying the challenges associated with these remote sensing missions with focus on end-to-end aspects that include the initial science objective, selection of the appropriate imaging platform and instrumentation suite, target flight path analysis and acquisition strategy, pre-mission simulations to optimize sensor configuration, logistics and communications during the actual observation. Explored are collaborative opportunities and technology investments required to develop a next-generation quantitative imaging system (i.e., an intelligent sensor and platform) with greater capability, which could more affordably support cross cutting civilian and military flight test needs.
Nebel, Silke; Buehler, Deborah M; MacMillan, Alexander; Guglielmo, Christopher G
2013-07-15
Migratory birds have been implicated in the spread of some zoonotic diseases, but how well infected individuals can fly remains poorly understood. We used western sandpipers, Calidris mauri, to experimentally test whether flight is affected when long-distance migrants are mounting an immune response and whether migrants maintain immune defences during a flight in a wind tunnel. We measured five indicators of innate immunity in 'flown-healthy' birds (flying in a wind tunnel without mounting an immune response), 'flown-sick' birds (flying while mounting an acute phase response, which is part of induced innate immunity), and a non-flying control group ('not-flown'). Voluntary flight duration did not differ between flown-healthy and flown-sick birds, indicating that mounting an acute phase response to simulated infection did not hamper an individual's ability to fly for up to 3 h. However, in comparison to not-flown birds, bacterial killing ability of plasma was significantly reduced after flight in flown-sick birds. In flown-healthy birds, voluntary flight duration was positively correlated with bacterial killing ability and baseline haptoglobin concentration of the blood plasma measured 1-3 weeks before experimental flights, suggesting that high quality birds had strong immune systems and greater flight capacity. Our findings indicate that flight performance is not diminished by prior immune challenge, but that flight while mounting an acute phase response negatively affects other aspects of immune function. These findings have important implications for our understanding of the transmission of avian diseases, as they suggest that birds can still migrate while fighting an infection.
STS-1 operational flight profile. Volume 6: Abort analysis
NASA Technical Reports Server (NTRS)
1980-01-01
The abort analysis for the cycle 3 Operational Flight Profile (OFP) for the Space Transportation System 1 Flight (STS-1) is defined, superseding the abort analysis previously presented. Included are the flight description, abort analysis summary, flight design groundrules and constraints, initialization information, general abort description and results, abort solid rocket booster and external tank separation and disposal results, abort monitoring displays and discussion on both ground and onboard trajectory monitoring, abort initialization load summary for the onboard computer, list of the key abort powered flight dispersion analysis.
Assessment of noise in the airplane cabin environment.
Zevitas, Christopher D; Spengler, John D; Jones, Byron; McNeely, Eileen; Coull, Brent; Cao, Xiaodong; Loo, Sin Ming; Hard, Anna-Kate; Allen, Joseph G
2018-03-15
To measure sound levels in the aircraft cabin during different phases of flight. Sound level was measured on 200 flights, representing six aircraft groups using continuous monitors. A linear mixed-effects model with random intercept was used to test for significant differences in mean sound level by aircraft model and across each flight phase as well as by flight phase, airplane type, measurement location and proximity to engine noise. Mean sound levels across all flight phases and aircraft groups ranged from 37.6 to >110 dB(A) with a median of 83.5 dB(A). Significant differences in noise levels were also observed based on proximity to the engines and between aircraft with fuselage- and wing mounted engines. Nine flights (4.5%) exceeded the recommended 8-h TWA exposure limit of 85 dB(A) by the NIOSH and ACGIH approach, three flights (1.5%) exceeded the 8-h TWA action level of 85 dB(A) by the OSHA approach, and none of the flights exceeded the 8-h TWA action level of 90 dB(A) by the OSHA PEL approach. Additional characterization studies, including personal noise dosimetry, are necessary to document accurate occupational exposures in the aircraft cabin environment and identify appropriate response actions. FAA should consider applying the more health-protective NIOSH/ACGIH occupational noise recommendations to the aircraft cabin environment.
NASA Astrophysics Data System (ADS)
Thienel, Lee; Stouffer, Chuck
1995-09-01
This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.
NASA Technical Reports Server (NTRS)
Thienel, Lee; Stouffer, Chuck
1995-01-01
This paper presents an overview of the Cryogenic Test Bed (CTB) experiments including experiment results, integration techniques used, and lessons learned during integration, test and flight phases of the Cryogenic Heat Pipe Flight Experiment (STS-53) and the Cryogenic Two Phase Flight Experiment (OAST-2, STS-62). We will also discuss the Cryogenic Flexible Diode Heat Pipe (CRYOFD) experiment which will fly in the 1996/97 time frame and the fourth flight of the CTB which will fly in the 1997/98 time frame. The two missions tested two oxygen axially grooved heat pipes, a nitrogen fibrous wick heat pipe and a 2-methylpentane phase change material thermal storage unit. Techniques were found for solving problems with vibration from the cryo-collers transmitted through the compressors and the cold heads, and mounting the heat pipe without introducing parasitic heat leaks. A thermally conductive interface material was selected that would meet the requirements and perform over the temperature range of 55 to 300 K. Problems are discussed with the bi-metallic thermostats used for heater circuit protection and the S-Glass suspension straps originally used to secure the BETSU PCM in the CRYOTP mission. Flight results will be compared to 1-g test results and differences will be discussed.
Effects of workload preview on task scheduling during simulated instrument flight.
Andre, A D; Heers, S T; Cashion, P A
1995-01-01
Our study examined pilot scheduling behavior in the context of simulated instrument flight. Over the course of the flight, pilots flew along specified routes while scheduling and performing several flight-related secondary tasks. The first phase of flight was flown under low-workload conditions, whereas the second phase of flight was flown under high-workload conditions in the form of increased turbulence and a disorganized instrument layout. Six pilots were randomly assigned to each of three workload preview groups. Subjects in the no-preview group were not given preview of the increased-workload conditions. Subjects in the declarative preview group were verbally informed of the nature of the flight workload manipulation but did not receive any practice under the high-workload conditions. Subjects in the procedural preview group received the same instructions as the declarative preview group but also flew half of the practice flight under the high-workload conditions. The results show that workload preview fostered efficient scheduling strategies. Specifically, those pilots with either declarative or procedural preview of future workload demands adopted an efficient strategy of scheduling more of the difficult secondary tasks during the low-workload phase of flight. However, those pilots given a procedural preview showed the greatest benefits in overall flight performance.
14 CFR 121.420 - Flight navigators: Initial and transition ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ground training. 121.420 Section 121.420 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.420 Flight navigators: Initial and transition ground training. (a) Initial and transition ground.... (7) Any other instruction as necessary to ensure his competence. (b) Initial ground training for...
14 CFR 121.420 - Flight navigators: Initial and transition ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ground training. 121.420 Section 121.420 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.420 Flight navigators: Initial and transition ground training. (a) Initial and transition ground.... (7) Any other instruction as necessary to ensure his competence. (b) Initial ground training for...
14 CFR 121.421 - Flight attendants: Initial and transition ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ground training. 121.421 Section 121.421 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.421 Flight attendants: Initial and transition ground training. (a) Initial and transition ground... equipment and the controls for cabin heat and ventilation. (b) Initial and transition ground training for...
14 CFR 121.421 - Flight attendants: Initial and transition ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ground training. 121.421 Section 121.421 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... § 121.421 Flight attendants: Initial and transition ground training. (a) Initial and transition ground... equipment and the controls for cabin heat and ventilation. (b) Initial and transition ground training for...
Hua, Ning; Piersma, Theunis; Ma, Zhijun
2013-01-01
Refuelling by migratory birds before take-off on long flights is generally considered a two-phase process, with protein accumulation preceding rapid fat deposition. The first phase expresses the demands for a large digestive system for nutrient storage after shrinkage during previous flights, the second phase the demands for fat stores to fuel the subsequent flight. At the last staging site in northward migration, this process may include expression of selection pressures both en route to and after arrival at the breeding grounds, which remains unascertained. Here we investigated changes in body composition during refuelling of High Arctic breeding red knots (Calidris canutus piersmai) in the northern Yellow Sea, before their flight to the tundra. These red knots followed a three-phase fuel deposition pattern, with protein being stored in the first and last phases, and fat being deposited mainly in the second phase. Thus, they did not shrink nutritional organs before take-off, and even showed hypertrophy of the nutritional organs. These suggest the build up of strategic protein stores before departure to cope with a protein shortage upon arrival on the breeding grounds. Further comparative studies are warranted to examine the degree to which the deposition of stores by migrant birds generally reflects a balance between concurrent and upcoming environmental selection pressures. PMID:23638114
NASA Technical Reports Server (NTRS)
Keeley, J. T.
1976-01-01
Typical missions identified for AMPS flights in the arly 1980's are described. Experiment objectives and typical scientific instruments selected to accomplish these objectives are discussed along with mission requirements and shuttle and Spacelab capabilities assessed to determine any AMPS unique requirements. Preliminary design concepts for the first two AMPS flights form the basis for the Phase C/D program plan. This plan implements flights 1 and 2 and indicates how both the scientific and flight support hardware can be systematically evolved for future AMPS flights.
STS Approach and Landing Test (ALT): Flight 5 - Slow Motion video of pilot-induced oscillation (PIO)
NASA Technical Reports Server (NTRS)
1977-01-01
During 1977 the NASA Dryden Flight Research Center, Edwards, California, hosted the Approach and Landing Tests for the space shuttle prototype Enterprise. Since the shuttles would land initially on Rogers Dry Lakebed adjacent to Dryden on Edwards Air Force Base, NASA had already modified a Boeing 747 to carry them back to their launch site at Kennedy Space Center, Florida. Computer calculations and simulations had predicted the mated shuttle and 747 could fly together safely, but NASA wanted to verify that prediction in a controlled flight-test environment before the shuttles went into operation. The agency also wanted to glide test the orbiter to ensure it could land safely before sending it into space with human beings aboard. So NASA's Johnson Space Center, Houston, Texas, developed a three-phase test program. First, an unpiloted-captive phase tested the shuttle/747 combination without a crew on the Enterprise in case of a problem that required jettisoning the prototype. There were three taxi tests and five flight tests without a crew in the shuttle. That phase ended on March 2, 1977. The second or captive-active phase-completed on July 26, 1977, flew the orbiter mated to the 747 with a two-person crew inside. Finally there were five flights-completed on October 26, 1977, in which the orbiter separated from the Shuttle Carrier Aircraft (SCA, as the 747 was designated) and landed. Beginning on August 12, 1977, the first four landings took place uneventfully on lakebed runways, but the fifth occurred on the concrete, 15,000-foot runway at Edwards. For the first three flights, a tail cone was placed around the dummy main engines to reduce buffeting. The tail-cone fairing was removed for the last two flights. This movie clip begins with the Enterprise just prior to touchdown on the main runway at Edwards AFB after it's fifth and final unpowered free flight. Shuttle pilots Gordon Fullerton and Fred Haise were attempting a couple of firsts on this flight--a precision 'spot' landing on the concrete runway and flying the orbiter without it's tail-cone fairing, since the previous lakebed landing without the fairing had been made by Joe Engle and Richard Truly. Both Haise and Fullerton had prepared as well as possible for the variables of this mission by flying simulated approach profiles in NASA's shuttle training aircraft. However, as with most simulations, the performance wasn't completely identical to that of the real vehicle. Consequently Haise, the mission commander in the left seat, was too fast on the orbiter's landing approach. Deploying the speed brakes, he tried vainly to hit the assigned landing mark but in the stress of the moment, began to overcorrect the vehicle. The orbiter entered a pilot-induced oscillation or PIO along both it's roll and pitch axis causing the vehicle to begin to 'porpoise' down the runway. As it settled down to land it began to bounce from one main landing gear to the next before being brought under control and finally landed by the crew. Engineers at Dryden later determined that a roughly 270-millisecond time delay in the space shuttle's fly-by-wire system had been the cause of the problem, which was then explored with NASA Dryden's F-8 Digital Fly-By-Wire aircraft and corrected with a suppression filter integrated into the orbiter's flight control system.
STS Approach and Landing Test (ALT): Flight 5 - pilot-induced oscillation (PIO) on landing
NASA Technical Reports Server (NTRS)
1977-01-01
During 1977 the NASA Dryden Flight Research Center, Edwards, California, hosted the Approach and Landing Tests for the space shuttle prototype Enterprise. Since the shuttles would land initially on Rogers Dry Lakebed adjacent to Dryden on Edwards Air Force Base, NASA had already modified a Boeing 747 to carry them back to their launch site at Kennedy Space Center, Florida. Computer calculations and simulations had predicted the mated shuttle and 747 could fly together safely, but NASA wanted to verify that prediction in a controlled flight-test environment before the shuttles went into operation. The agency also wanted to glide test the orbiter to ensure it could land safely before sending it into space with human beings aboard. So NASA's Johnson Space Center, Houston, Texas, developed a three-phase test program. First, an unpiloted-captive phase tested the shuttle/747 combination without a crew on the Enterprise in case of a problem that required jettisoning the prototype. There were three taxi tests and five flight tests without a crew in the shuttle. That phase ended on March 2, 1977. The second or captive-active phase-completed on July 26, 1977, flew the orbiter mated to the 747 with a two-person crew inside. Finally there were five flights-completed on October 26, 1977, in which the orbiter separated from the Shuttle Carrier Aircraft (SCA, as the 747 was designated) and landed. Beginning on August 12, 1977, the first four landings took place uneventfully on lakebed runways, but the fifth occurred on the concrete, 15,000-foot runway at Edwards. For the first three flights, a tail cone was placed around the dummy main engines to reduce buffeting. The tail-cone fairing was removed for the last two flights. This movie clip begins with the Enterprise just prior to touchdown on the main runway at Edwards AFB after it's fifth and final unpowered free flight. Shuttle pilots Gordon Fullerton and Fred Haise were attempting a couple of firsts on this flight--a precision 'spot' landing on the concrete runway and flying the orbiter without it's tail-cone fairing, since the previous lakebed landing without the fairing had been made by Joe Engle and Richard Truly. Both Haise and Fullerton had prepared as well as possible for the variables of this mission by flying simulated approach profiles in NASA's shuttle training aircraft. However, as with most simulations, the performance wasn't completely identical to that of the real vehicle. Consequently Haise, the mission commander in the left seat, was too fast on the orbiter's landing approach. Deploying the speed brakes, he tried vainly to hit the assigned landing mark but in the stress of the moment, began to overcorrect the vehicle. The orbiter entered a pilot-induced oscillation or PIO along both it's roll and pitch axis causing the vehicle to begin to 'porpoise' down the runway. As it settled down to land it began to bounce from one main landing gear to the next before being brought under control and finally landed by the crew. Engineers at Dryden later determined that a roughly 270-millisecond time delay in the space shuttle's fly-by-wire system had been the cause of the problem, which was then explored with NASA Dryden's F-8 Digital Fly-By-Wire aircraft and corrected with a suppression filter integrated into the orbiter's flight control system.
NASA Astrophysics Data System (ADS)
Hirohashi, Kensuke; Inamuro, Takaji
2017-08-01
Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m. We set the parameters at Re = 200, Fr = 15 and m = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ, and the horizontal motion of the model depends on the stroke angle β. Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β. The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β.
NASA Technical Reports Server (NTRS)
Ng, Y. S.; Lee, J. H.
1989-01-01
The Superfluid Helium On-Orbit Transfer Flight Experiment (SHOOT) is designed to demonstrate the techniques and components required for orbital superfluid (He II) replenishment of observatories and satellites. One of the tasks planned in the experiment is to cool a warm cryogen tank and a warm transfer line to liquid helium temperature. A math model, based on single-phase vapor flow heat transfer, has been developed to predict the cooldown time, component temperature histories, and helium consumption rate, for various initial conditions of the components and for the thermomechanical pump heater powers of 2 W and 0.5 W. This paper discusses the model and the analytical results, which can be used for planning the experiment operations and determining the pump heater power required for the cooldown operation.
Replacement of Ablators with Phase-Change Material for Thermal Protection of STS Elements
NASA Technical Reports Server (NTRS)
Kaul, Raj K.; Stuckey, Irvin; Munafo, Paul M. (Technical Monitor)
2002-01-01
As part of the research and development program to develop new Thermal Protection System (TPS) materials for aerospace applications at NASA's Marshall Space Flight Center (MSFC), an experimental study was conducted on a new concept for a non-ablative TPS material. Potential loss of TPS material and ablation by-products from the External Tank (ET) or Solid Rocket Booster (SRB) during Shuttle flight with the related Orbiter tile damage necessitates development of a non-ablative thermal protection system. The new Thermal Management Coating (TMC) consists of phase-change material encapsulated in micro spheres and a two-part resin system to adhere the coating to the structure material. The TMC uses a phase-change material to dissipate the heat produced during supersonic flight rather than an ablative material. This new material absorbs energy as it goes through a phase change during the heating portion of the flight profile and then the energy is slowly released as the phase-change material cools and returns to its solid state inside the micro spheres. The coating was subjected to different test conditions simulating design flight environments at the NASA/MSFC Improved Hot Gas Facility (IHGF) to study its performance.
78 FR 15876 - Activation of Ice Protection
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... procedures in the Airplane Flight Manual for operating in icing conditions must be initiated. (2) Visual cues... procedures in the Airplane Flight Manual for operating in icing conditions must be initiated. (3) If the... operating rules for flight in icing conditions. This document corrects an error in the amendatory language...
NASA Technical Reports Server (NTRS)
Baer-Riedhart, Jennifer L.; Landy, Robert J.
1987-01-01
The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.
Loads Model Development and Analysis for the F/A-18 Active Aeroelastic Wing Airplane
NASA Technical Reports Server (NTRS)
Allen, Michael J.; Lizotte, Andrew M.; Dibley, Ryan P.; Clarke, Robert
2005-01-01
The Active Aeroelastic Wing airplane was successfully flight-tested in March 2005. During phase 1 of the two-phase program, an onboard excitation system provided independent control surface movements that were used to develop a loads model for the wing structure and wing control surfaces. The resulting loads model, which was used to develop the control laws for phase 2, is described. The loads model was developed from flight data through the use of a multiple linear regression technique. The loads model input consisted of aircraft states and control surface positions, in addition to nonlinear inputs that were calculated from flight-measured parameters. The loads model output for each wing consisted of wing-root bending moment and torque, wing-fold bending moment and torque, inboard and outboard leading-edge flap hinge moment, trailing-edge flap hinge moment, and aileron hinge moment. The development of the Active Aeroelastic Wing loads model is described, and the ability of the model to predict loads during phase 2 research maneuvers is demonstrated. Results show a good match to phase 2 flight data for all loads except inboard and outboard leading-edge flap hinge moments at certain flight conditions. The average load prediction errors for all loads at all flight conditions are 9.1 percent for maximum stick-deflection rolls, 4.4 percent for 5-g windup turns, and 7.7 percent for 4-g rolling pullouts.
Airspace Technology Demonstration 2 (ATD-2) Technology Description Document (TDD)
NASA Technical Reports Server (NTRS)
Ging, Andrew; Engelland, Shawn; Capps, Al; Eshow, Michelle; Jung, Yoon; Sharma, Shivanjli; Talebi, Ehsan; Downs, Michael; Freedman, Cynthia; Ngo, Tyler;
2018-01-01
This Technology Description Document (TDD) provides an overview of the technology for the Phase 1 Baseline Integrated Arrival, Departure, and Surface (IADS) prototype system of the National Aeronautics and Space Administration's (NASA) Airspace Technology Demonstration 2 (ATD-2) project, to be demonstrated beginning in 2017 at Charlotte Douglas International Airport (CLT). Development, integration, and field demonstration of relevant technologies of the IADS system directly address recommendations made by the Next Generation Air Transportation System (NextGen) Integration Working Group (NIWG) on Surface and Data Sharing and the Surface Collaborative Decision Making (Surface CDM) concept of operations developed jointly by the Federal Aviation Administration (FAA) and aviation industry partners. NASA is developing the IADS traffic management system under the ATD-2 project in coordination with the FAA, flight operators, CLT airport, and the National Air Traffic Controllers Association (NATCA). The primary goal of ATD-2 is to improve the predictability and operational efficiency of the air traffic system in metroplex environments, through the enhancement, development, and integration of the nation's most advanced and sophisticated arrival, departure, and surface prediction, scheduling, and management systems. The ATD-2 project is a 5-year research activity beginning in 2015 and extending through 2020. The Phase 1 Baseline IADS capability resulting from the ATD-2 research will be demonstrated at the CLT airport beginning in 2017. Phase 1 will provide the initial demonstration of the integrated system with strategic and tactical scheduling, tactical departure scheduling to an en route meter point, and an early implementation prototype of a Terminal Flight Data Manager (TFDM) Electronic Flight Data (EFD) system. The strategic surface scheduling element of the capability is consistent with the Surface CDM Concept of Operations published in 2014 by the FAA Surface Operations Directorate.
Morpheus: Advancing Technologies for Human Exploration
NASA Technical Reports Server (NTRS)
Olansen, Jon B.; Munday, Stephen R.; Mitchell, Jennifer D.; Baine, Michael
2012-01-01
NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing. Designed to serve as a vertical testbed (VTB) for advanced spacecraft technologies, the vehicle provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. This allows individual technologies to mature into capabilities that can be incorporated into human exploration missions. The Morpheus vehicle is propelled by a LOX/Methane engine and sized to carry a payload of 1100 lb to the lunar surface. In addition to VTB vehicles, the Project s major elements include ground support systems and an operations facility. Initial testing will demonstrate technologies used to perform autonomous hazard avoidance and precision landing on a lunar or other planetary surface. The Morpheus vehicle successfully performed a set of integrated vehicle test flights including hot-fire and tethered hover tests, leading up to un-tethered free-flights. The initial phase of this development and testing campaign is being conducted on-site at the Johnson Space Center (JSC), with the first fully integrated vehicle firing its engine less than one year after project initiation. Designed, developed, manufactured and operated in-house by engineers at JSC, the Morpheus Project represents an unprecedented departure from recent NASA programs that traditionally require longer, more expensive development lifecycles and testing at remote, dedicated testing facilities. Morpheus testing includes three major types of integrated tests. A hot-fire (HF) is a static vehicle test of the LOX/Methane propulsion system. Tether tests (TT) have the vehicle suspended above the ground using a crane, which allows testing of the propulsion and integrated Guidance, Navigation, and Control (GN&C) in hovering flight without the risk of a vehicle departure or crash. Morpheus free-flights (FF) test the complete Morpheus system without the additional safeguards provided during tether. A variety of free-flight trajectories are planned to incrementally build up to a fully functional Morpheus lander capable of flying planetary landing trajectories. In FY12, these tests will culminate with autonomous flights simulating a 1 km lunar approach trajectory, hazard avoidance maneuvers and precision landing in a prepared hazard field at the Kennedy Space Center (KSC). This paper describes Morpheus integrated testing campaign, infrastructure, and facilities, and the payloads being incorporated on the vehicle. The Project s fast pace, rapid prototyping, frequent testing, and lessons learned depart from traditional engineering development at JSC. The Morpheus team employs lean, agile development with a guiding belief that technologies offer promise, but capabilities offer solutions, achievable without astronomical costs and timelines.
Knowledge-based decision support for Space Station assembly sequence planning
NASA Astrophysics Data System (ADS)
1991-04-01
A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.
Knowledge-based decision support for Space Station assembly sequence planning
NASA Technical Reports Server (NTRS)
1991-01-01
A complete Personal Analysis Assistant (PAA) for Space Station Freedom (SSF) assembly sequence planning consists of three software components: the system infrastructure, intra-flight value added, and inter-flight value added. The system infrastructure is the substrate on which software elements providing inter-flight and intra-flight value-added functionality are built. It provides the capability for building representations of assembly sequence plans and specification of constraints and analysis options. Intra-flight value-added provides functionality that will, given the manifest for each flight, define cargo elements, place them in the National Space Transportation System (NSTS) cargo bay, compute performance measure values, and identify violated constraints. Inter-flight value-added provides functionality that will, given major milestone dates and capability requirements, determine the number and dates of required flights and develop a manifest for each flight. The current project is Phase 1 of a projected two phase program and delivers the system infrastructure. Intra- and inter-flight value-added were to be developed in Phase 2, which has not been funded. Based on experience derived from hundreds of projects conducted over the past seven years, ISX developed an Intelligent Systems Engineering (ISE) methodology that combines the methods of systems engineering and knowledge engineering to meet the special systems development requirements posed by intelligent systems, systems that blend artificial intelligence and other advanced technologies with more conventional computing technologies. The ISE methodology defines a phased program process that begins with an application assessment designed to provide a preliminary determination of the relative technical risks and payoffs associated with a potential application, and then moves through requirements analysis, system design, and development.
ADDJUST - An automated system for steering Centaur launch vehicles in measured winds
NASA Technical Reports Server (NTRS)
Swanson, D. C.
1977-01-01
ADDJUST (Automatic Determination and Dissemination of Just-Updated Steering Terms) is an automated computer and communication system designed to provide Atlas/Centaur and Titan/Centaur launch vehicles with booster-phase steering data on launch day. Wind soundings are first obtained, from which a smoothed wind velocity vs altitude relationship is established. Design for conditions at the end of the boost phase with initial pitch and yaw maneuvers, followed by zero total angle of attack through the filtered wind establishes the required vehicle attitude as a function of altitude. Polynomial coefficients for pitch and yaw attitude vs altitude are determined and are transmitted for validation and loading into the Centaur airborne computer. The system has enabled 14 consecutive launches without a flight wind delay.
Ghose, Kaushik; Moss, Cynthia F
2006-02-08
Adaptive behaviors require sensorimotor computations that convert information represented initially in sensory coordinates to commands for action in motor coordinates. Fundamental to these computations is the relationship between the region of the environment sensed by the animal (gaze) and the animal's locomotor plan. Studies of visually guided animals have revealed an anticipatory relationship between gaze direction and the locomotor plan during target-directed locomotion. Here, we study an acoustically guided animal, an echolocating bat, and relate acoustic gaze (direction of the sonar beam) to flight planning as the bat searches for and intercepts insect prey. We show differences in the relationship between gaze and locomotion as the bat progresses through different phases of insect pursuit. We define acoustic gaze angle, theta(gaze), to be the angle between the sonar beam axis and the bat's flight path. We show that there is a strong linear linkage between acoustic gaze angle at time t [theta(gaze)(t)] and flight turn rate at time t + tau into the future [theta(flight) (t + tau)], which can be expressed by the formula theta(flight) (t + tau) = ktheta(gaze)(t). The gain, k, of this linkage depends on the bat's behavioral state, which is indexed by its sonar pulse rate. For high pulse rates, associated with insect attacking behavior, k is twice as high compared with low pulse rates, associated with searching behavior. We suggest that this adjustable linkage between acoustic gaze and motor output in a flying echolocating bat simplifies the transformation of auditory information to flight motor commands.
Dynamic stability and handling qualities tests on a highly augmented, statically unstable airplane
NASA Technical Reports Server (NTRS)
Gera, Joseph; Bosworth, John T.
1987-01-01
Initial envelope clearance and subsequent flight testing of a new, fully augmented airplane with an extremely high degree of static instability can place unusual demands on the flight test approach. Previous flight test experience with these kinds of airplanes is very limited or nonexistent. The safe and efficient flight testing may be further complicated by a multiplicity of control effectors that may be present on this class of airplanes. This paper describes some novel flight test and analysis techniques in the flight dynamics and handling qualities area. These techniques were utilized during the initial flight envelope clearance of the X-29A aircraft and were largely responsible for the completion of the flight controls clearance program without any incidents or significant delays.
Bi-Component Droplet Combustion in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, Benjamin D.
2004-01-01
This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground-based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting ground-based studies have been performed. Some of the most recent ground-based research is summarized.
Bi-Component Droplet Combustion in Reduced Gravity
NASA Technical Reports Server (NTRS)
Shaw, B. D.
2001-01-01
This research deals with reduced-gravity combustion of bi-component droplets initially in the mm size range or larger. The primary objectives of the research are to study the effects of droplet internal flows, thermal and solutal Marangoni stresses, and species volatility differences on liquid species transport and overall combustion phenomena (e.g., gas-phase unsteadiness, burning rates, sooting, radiation, and extinction). The research program utilizes a reduced-gravity environment so that buoyancy effects are rendered negligible. Use of large droplets also facilitates visualization of droplet internal flows, which is important for this research. In the experiments, droplets composed of low- and high-volatility species are burned. The low-volatility components are initially present in small amounts. As combustion of a droplet proceeds, the liquid surface mass fraction of the low-volatility component will increase with time, resulting in a sudden and temporary decrease in droplet burning rates as the droplet rapidly heats to temperatures close to the boiling point of the low-volatility component. This decrease in burning rates causes a sudden and temporary contraction of the flame. The decrease in burning rates and the flame contraction can be observed experimentally. Measurements of burning rates as well as the onset time for flame contraction allow effective liquid-phase species diffusivities to be calculated, e.g., using asymptotic theory. It is planned that droplet internal flows will be visualized in future flight and ground-based experiments. In this way, effective liquid species diffusivities can be related to droplet internal flow characteristics. This program is a continuation of extensive ground based experimental and theoretical research on bi-component droplet combustion that has been ongoing for several years. The focal point of this program is a flight experiment (Bi-Component Droplet Combustion Experiment, BCDCE). This flight experiment is under development. However, supporting studies have been performed. Because of space limitations, only some of the research performed over the last two years (since the 5th Microgravity Combustion Workshop) is summarized here.
Apollo experience report: The role of flight mission rules in mission preparation and conduct
NASA Technical Reports Server (NTRS)
Keyser, L. W.
1974-01-01
The development of flight mission rules from the mission development phase through the detailed mission-planning phase and through the testing and training phase is analyzed. The procedure for review of the rules and the coordination requirements for mission-rule development are presented. The application of the rules to real-time decision making is outlined, and consideration is given to the benefit of training ground controllers and flightcrews in the methods of determining the best response to a nonnominal in-flight situation for which no action has been preplanned. The Flight Mission Rules document is discussed in terms of the purpose and objective thereof and in terms of the definition, the development, and the use of mission rules.
NASA Astrophysics Data System (ADS)
Hörst, Sarah M.; Yoon, Y. Heidi; Ugelow, Melissa S.; Parker, Alex H.; Li, Rui; de Gouw, Joost A.; Tolbert, Margaret A.
2018-02-01
Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan's atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, measurements taken by the Cassini Ultraviolet Imaging Spectrograph (UVIS) and Cassini Plasma Spectrometer (CAPS) indicate that haze formation initiates in the thermosphere where there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2. The discovery of previously unpredicted nitrogen species in measurements of Titan's atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini. The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan's atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (Tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ real-time measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products. The results presented here confirm that FUV photons produce not only solid phase nitrogen bearing products but also gas phase nitrogen species. We find that in both the gas and solid phase, nitrogen is found in nitriles rather than amines and that both the gas phase and solid phase products are composed primarily of molecules with a low degree of aromaticity. The UV experiments reproduce the absolute abundances measured in Titan's stratosphere for a number of gas phase species including C4H2, C6H6, HCN, CH3CN, HC3N, and C2H5CN.
DOT National Transportation Integrated Search
1991-04-01
This study evaluates the content validity of the Initial Qualifications Course provided to flight service specialists (FSS) by the FAA Academy. The purpose of FSS Initial Qualifications Course (FAA Academy course 50232) is to predict the student's pr...
NASA Technical Reports Server (NTRS)
Merrill, John T.; Rodriguez, Jose M.
1991-01-01
Trajectory and photochemical model calculations based on retrospective meteorological data for the operations areas of the NASA Pacific Exploratory Mission (PEM)-West mission are summarized. The trajectory climatology discussed here is intended to provide guidance for flight planning and initial data interpretation during the field phase of the expedition by indicating the most probable path air parcels are likely to take to reach various points in the area. The photochemical model calculations which are discussed indicate the sensitivity of the chemical environment to various initial chemical concentrations and to conditions along the trajectory. In the post-expedition analysis these calculations will be used to provide a climatological context for the meteorological conditions which are encountered in the field.
Sauvard, Daniel; Imbault, Vanessa; Darrouzet, Éric
2018-01-01
The invasive yellow-legged hornet, Vespa velutina nigrithorax Lepeletier, 1836 (Hymenoptera: Vespidae), is native to Southeast Asia. It was first detected in France (in the southwest) in 2005. It has since expanded throughout Europe and has caused significant harm to honeybee populations. We must better characterize the hornet's flight capacity to understand the species' success and develop improved control strategies. Here, we carried out a study in which we quantified the flight capacities of V. velutina workers using computerized flight mills. We observed that workers were able to spend around 40% of the daily 7-hour flight tests flying. On average, they flew 10km to 30km during each flight test, although there was a large amount of variation. Workers sampled in early summer had lower flight capacities than workers sampled later in the season. Flight capacity decreased as workers aged. However, in the field, workers probably often die before this decrease becomes significant. During each flight test, workers performed several continuous flight phases of variable length that were separated by rest phases. Based on the length of those continuous flight phases and certain key assumptions, we estimated that V. velutina colony foraging radius is at least 700 m (half that in early summer); however, some workers are able to forage much farther. While these laboratory findings remain to be confirmed by field studies, our results can nonetheless help inform V. velutina biology and control efforts.
Imbault, Vanessa; Darrouzet, Éric
2018-01-01
The invasive yellow-legged hornet, Vespa velutina nigrithorax Lepeletier, 1836 (Hymenoptera: Vespidae), is native to Southeast Asia. It was first detected in France (in the southwest) in 2005. It has since expanded throughout Europe and has caused significant harm to honeybee populations. We must better characterize the hornet’s flight capacity to understand the species’ success and develop improved control strategies. Here, we carried out a study in which we quantified the flight capacities of V. velutina workers using computerized flight mills. We observed that workers were able to spend around 40% of the daily 7-hour flight tests flying. On average, they flew 10km to 30km during each flight test, although there was a large amount of variation. Workers sampled in early summer had lower flight capacities than workers sampled later in the season. Flight capacity decreased as workers aged. However, in the field, workers probably often die before this decrease becomes significant. During each flight test, workers performed several continuous flight phases of variable length that were separated by rest phases. Based on the length of those continuous flight phases and certain key assumptions, we estimated that V. velutina colony foraging radius is at least 700 m (half that in early summer); however, some workers are able to forage much farther. While these laboratory findings remain to be confirmed by field studies, our results can nonetheless help inform V. velutina biology and control efforts. PMID:29883467
Mars Science Laboratory Boot Robustness Testing
NASA Technical Reports Server (NTRS)
Banazadeh, Payam; Lam, Danny
2011-01-01
Mars Science Laboratory (MSL) is one of the most complex spacecrafts in the history of mankind. Due to the nature of its complexity, a large number of flight software (FSW) requirements have been written for implementation. In practice, these requirements necessitate very complex and very precise flight software with no room for error. One of flight software's responsibilities is to be able to boot up and check the state of all devices on the spacecraft after the wake up process. This boot up and initialization is crucial to the mission success since any misbehavior of different devices needs to be handled through the flight software. I have created a test toolkit that allows the FSW team to exhaustively test the flight software under variety of different unexpected scenarios and validate that flight software can handle any situation after booting up. The test includes initializing different devices on spacecraft to different configurations and validate at the end of the flight software boot up that the flight software has initialized those devices to what they are suppose to be in that particular scenario.
NASA Technical Reports Server (NTRS)
Goseva-Popstojanova, Katerina; Tyo, Jacob P.; Sizemore, Brian
2017-01-01
NASA develops, runs, and maintains software systems for which security is of vital importance. Therefore, it is becoming an imperative to develop secure systems and extend the current software assurance capabilities to cover information assurance and cybersecurity concerns of NASA missions. The results presented in this report are based on the information provided in the issue tracking systems of one ground mission and one flight mission. The extracted data were used to create three datasets: Ground mission IVV issues, Flight mission IVV issues, and Flight mission Developers issues. In each dataset, we identified the software bugs that are security related and classified them in specific security classes. This information was then used to create the security vulnerability profiles (i.e., to determine how, why, where, and when the security vulnerabilities were introduced) and explore the existence of common trends. The main findings of our work include:- Code related security issues dominated both the Ground and Flight mission IVV security issues, with 95 and 92, respectively. Therefore, enforcing secure coding practices and verification and validation focused on coding errors would be cost effective ways to improve mission's security. (Flight mission Developers issues dataset did not contain data in the Issue Category.)- In both the Ground and Flight mission IVV issues datasets, the majority of security issues (i.e., 91 and 85, respectively) were introduced in the Implementation phase. In most cases, the phase in which the issues were found was the same as the phase in which they were introduced. The most security related issues of the Flight mission Developers issues dataset were found during Code Implementation, Build Integration, and Build Verification; the data on the phase in which these issues were introduced were not available for this dataset.- The location of security related issues, as the location of software issues in general, followed the Pareto principle. Specifically, for all three datasets, from 86 to 88 the security related issues were located in two to four subsystems.- The severity levels of most security issues were moderate, in all three datasets.- Out of 21 primary security classes, five dominated: Exception Management, Memory Access, Other, Risky Values, and Unused Entities. Together, these classes contributed from around 80 to 90 of all security issues in each dataset. This again proves the Pareto principle of uneven distribution of security issues, in this case across CWE classes, and supports the fact that addressing these dominant security classes provides the most cost efficient way to improve missions' security. The findings presented in this report uncovered the security vulnerability profiles and identified the common trends and dominant classes of security issues, which in turn can be used to select the most efficient secure design and coding best practices compiled by the part of the SARP project team associated with the NASA's Johnson Space Center. In addition, these findings provide valuable input to the NASA IVV initiative aimed at identification of the two 25 CWEs of ground and flight missions.
Results of the second flight test of the Loran-C receiver/data collection system
NASA Technical Reports Server (NTRS)
Fischer, J. P.
1979-01-01
The components of the Loran-C navigation system which were developed thus far are a phase-locked-loop receiver and a microcomputer development system. The microcomputer is being used as a means of testing and implementing software to handle sensor control and navigation calculations. Currently, the microcomputer is being used to collect and record data from the receiver in addition to development work. With these components, it was possible to record receiver data over a period of time and then reduce this data to obtain statistical information. It was particularly interesting to load the equipment developed in the laboratory into an aircraft and collect data while in flight. For initial flight tests, some important considerations were how well the entire system will perform in the field, signal strength levels while on the ground and in the air, the amount of noise present, changing of signal-to-noise ratio for various aircraft configurations and maneuvers, receiver overloading due to other equipment and antennas, and the overall usefulness of Loran-C as a navigation aid.
Advances in Electrically Driven Thermal Management
NASA Technical Reports Server (NTRS)
Didion, Jeffrey R.
2017-01-01
Electrically Driven Thermal Management is a vibrant technology development initiative incorporating ISS based technology demonstrations, development of innovative fluid management techniques and fundamental research efforts. The program emphasizes high temperature high heat flux thermal management required for future generations of RF electronics and power electronic devices. This presentation reviews i.) preliminary results from the Electrohydrodynamic (EHD) Long Term Flight Demonstration launched on STP-H5 payload in February 2017 ii.) advances in liquid phase flow distribution control iii.) development of the Electrically Driven Liquid Film Boiling Experiment under the NASA Microgravity Fluid Physics Program.
MIDURA (Minefield Detection Using Reconnaissance Assets) 1982-1983 Experimental Test Plan.
1982-04-01
3.2.4.2 Subjection Validation at the Salem ONG 27 3.2.4.3 Objective Validity at Fort Huachuca 28 4. TEST FLIGHTS AT ARRAYS IIa, lib, Ilia AND IIIb...subjective validation at the Salem ONG; (3) objective validation at Fort Huachuca. 3.2.4.1 Subjective Image Interpretation at ERIM The initial phase...The ERIM II’s will provide for each image estimate of PD’ Pc and PFA on a 0.00 to 1.00 scale. P is defined as the subjective probability estimate that
Evaluation of materials for high performance solar arrays
NASA Technical Reports Server (NTRS)
Whitaker, A. F.; Smith, C. F., Jr.; Peacock, C. L., Jr.; Little, S. A.
1978-01-01
A program has been underway to evaluate materials for advanced solar arrays which are required to provide power to weight ratios up to 100 W/kg. Severe mission environments together with the lack of knowledge of space environmental materials degradation rates require the generation of irradiation and outgassing engineering data for use in the initial design phase of the flight solar arrays. Therefore, approximately 25 candidate array materials were subjected to selected mission environments of vacuum, UV, and particle irradiation, and their mechanical and/or optical properties were determined where appropriate.
NASA Technical Reports Server (NTRS)
1976-01-01
A preliminary identification of the Supporting Research and Technology (SR&T) necessary during the planned evolution of atmospheric cloud physics is discussed. All requirements are for subsequent flights over its expected ten year lifetime. Those components identified as requiring some SR&T work prior to inclusion are listed. A data sheet is included for each item, briefly justifying the need, giving general objectives for the proposed development effort and identifying approximate schedule requirements on the program.
Apollo 16, LM-11 ascent propulsion system final flight evaluation
NASA Technical Reports Server (NTRS)
Griffin, W. G.
1974-01-01
The duty cycle for the LM-11 APS consisted of two firings, an ascent stage liftoff from the lunar surface, and the terminal phase initiation (TPI) burn. APS performance for the first firing was evaluated and found to be satisfactory. No propulsion data were received from the second APS burn; however, all indications were that the burn was nominal. Engine ignition for the APS lunar liftoff burn occured at the Apollo elapsed time (AET) of 175:31:47.9 (hours:minutes:seconds). Burn duration was 427.7 seconds.
Comparison of two head-up displays in simulated standard and noise abatement night visual approaches
NASA Technical Reports Server (NTRS)
Cronn, F.; Palmer, E. A., III
1975-01-01
Situation and command head-up displays were evaluated for both standard and two segment noise abatement night visual approaches in a fixed base simulation of a DC-8 transport aircraft. The situation display provided glide slope and pitch attitude information. The command display provided glide slope information and flight path commands to capture a 3 deg glide slope. Landing approaches were flown in both zero wind and wind shear conditions. For both standard and noise abatement approaches, the situation display provided greater glidepath accuracy in the initial phase of the landing approaches, whereas the command display was more effective in the final approach phase. Glidepath accuracy was greater for the standard approaches than for the noise abatement approaches in all phases of the landing approach. Most of the pilots preferred the command display and the standard approach. Substantial agreement was found between each pilot's judgment of his performance and his actual performance.
Kennedy, Quinn; Taylor, Joy; Heraldez, Daniel; Noda, Art; Lazzeroni, Laura C; Yesavage, Jerome
2013-07-01
Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Two-hundred and thirty-six pilots (40-69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%-12% of the negative age effect on initial flight performance. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance.
2013-01-01
Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365
NASA Technical Reports Server (NTRS)
1988-01-01
F-104G (N826NA) in flight over the Mojave Desert in January 1988. This aircraft was the last of eleven F-104s delivered to the Dryden Flight Research Center over a period of four decades. The initial group of four (a YF-104A, two F-104As and a two-seat F-104B) arrived between August 1956 and December 1959. One of the F-104As was returned to the Air Force in 1961, and the other was lost in a non-fatal accident in 1962. To support X-15 activities, three special F-104Ns went to NASA in 1963. One crashed in the XB-70 midair collision, and it was replaced by an F-104A/G. (This was an F-104A modified to a G configuration.) As the initial F-104 fleet aged, a pair of two-seat TF-104Gs and a single-seat F-104G joined the Dryden inventory in June 1975. F-104G N826NA, shown in the photo, was one of these. Between 1975 and 1990, the older F-104s were retired - the YF-104A in November 1975, the F-104A/G in June 1977, the F-104B in June 1983, and the two F-104Ns in January 1987 and October 1990. As the F-104s phased out, the replacement F-18s started arriving at Dryden in 1984. F-104s N826NA made its 1,415th and last flight on February 3, 1994. The last two TF-104s ended service in September 1995, ending a 39 year involvement with the aircraft by the NACA and NASA.
On Choosing a Rational Flight Trajectory to the Moon
NASA Astrophysics Data System (ADS)
Gordienko, E. S.; Khudorozhkov, P. A.
2017-12-01
The algorithm for choosing a trajectory of spacecraft flight to the Moon is discussed. The characteristic velocity values needed for correcting the flight trajectory and a braking maneuver are estimated using the Monte Carlo method. The profile of insertion and flight to a near-circular polar orbit with an altitude of 100 km of an artificial lunar satellite (ALS) is given. The case of two corrections applied during the flight and braking phases is considered. The flight to an ALS orbit is modeled in the geocentric geoequatorial nonrotating coordinate system with the influence of perturbations from the Earth, the Sun, and the Moon factored in. The characteristic correction costs corresponding to corrections performed at different time points are examined. Insertion phase errors, the errors of performing the needed corrections, and the errors of determining the flight trajectory parameters are taken into account.
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin
2011-01-01
The colorimetric water quality monitoring kit (CWQMK) was delivered to the International Space Station (ISS) on STS-128/17A and was initially deployed in September 2009. The kit was flown as a station development test objective (SDTO) experiment to evaluate the acceptability of colorimetric solid phase extraction (CSPE) technology for routine water quality monitoring on the ISS. During the SDTO experiment, water samples from the U.S. water processor assembly (WPA), the U.S. potable water dispenser (PWD), and the Russian system for dispensing ground-supplied water (SVO-ZV) were collected and analyzed with the CWQMK. Samples from the U.S. segment of the ISS were analyzed for molecular iodine, which is the biocide added to water in the WPA. Samples from the SVOZV system were analyzed for ionic silver, the biocide used on the Russian segment of the ISS. In all, thirteen in-flight analysis sessions were completed as part of the SDTO experiment. This paper provides an overview of the experiment and reports the results obtained with the CWQMK. The forward plan for certifying the CWQMK as operational hardware and expanding the capabilities of the kit are also discussed.
Optical ranging and communication method based on all-phase FFT
NASA Astrophysics Data System (ADS)
Li, Zening; Chen, Gang
2014-10-01
This paper describes an optical ranging and communication method based on all-phase fast fourier transform (FFT). This kind of system is mainly designed for vehicle safety application. Particularly, the phase shift of the reflecting orthogonal frequency division multiplexing (OFDM) symbol is measured to determine the signal time of flight. Then the distance is calculated according to the time of flight. Several key factors affecting the phase measurement accuracy are studied. The all-phase FFT, which can reduce the effects of frequency offset, phase noise and the inter-carrier interference (ICI), is applied to measure the OFDM symbol phase shift.
NASA Technical Reports Server (NTRS)
Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III
2006-01-01
Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.
Space Tissue Loss Configuration B (STL-B)
NASA Technical Reports Server (NTRS)
1998-01-01
The goal of these experiments was to determine the effect of microgravity on the early development of the fish medaka. There were two objectives for this flight series. The primary objective was to assess the effects of microgravity on different stages of development and to ascertain whether the relevant developmental questions can be addressed at the gross morphological level or if the issues involve more subtle questions about regulation at the molecular and cellular levels. The secondary objective was the assessment of the utility of flight hardware with the capabilities to perform embryological studies. We have been able to take advantage of the flight testing phase of the STL-B hardware to also study the effects of microgravity on the early development of the fish, Medaka. Our initial studies involved monitoring the early Medaka development and raising flight embryos for breeding. Images of the developing embryos were collected either via video which was either taken by the astronauts or broadcast to Earth. Sample video images were digitized and stored on a hard drive resident within the on-board STL-B unit. Embryos were fixed at specific intervals, returned to Earth and are being analyzed for the timing and location of molecular events associated with controlling the morphological pattern for the onset of adult structures.
Development of the Fish Medaka in Microgravity
NASA Technical Reports Server (NTRS)
Wolgemuth, Debra J.
1995-01-01
The goal of these experiments was to determine the effect of microgravity on the early development of the fish medaka. There were two objectives for this flight series. The primary objective was to assess the effects of microgravity on different stages of development and to ascertain whether the relevant developmental questions can be addressed at the gross morphological level or if the issues involve more subtle questions about regulation at the molecular and cellular levels. The secondary objective was the assessment of the utility of flight hardware with the capabilities to perform embryological studies. We have been able to take advantage of the flight testing phase of the STL-B hardware to also study the effects of microgravity on the early development of the fish, Medaka. Our initial studies involved monitoring the early Medaka development and raising flight embryos for breeding. Images of the developing embryos were collected either via video which was either taken by the astronauts or broadcast to Earth. Sample video images were digitized and stored on a hard drive resident within the on-board STL-B unit. Embryos were fixed at specific intervals, returned to Earth and are being analyzed for the timing and location of molecular events associated with controlling the morphological pattern for the onset of adult structures.
13kW Advanced Electric Propulsion Flight System Development and Qualification
NASA Technical Reports Server (NTRS)
Jackson, Jerry; Allen, May; Myers, Roger; Soendker, Erich; Welander, Benjamin; Tolentino, Artie; Hablitzel, Sam; Yeatts, Chyrl; Xu, Steven; Sheehan, Chris;
2017-01-01
The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.
The importance of being light: aerodynamic forces and weight in ski jumping.
Schmölzer, B; Müller, W
2002-08-01
Many contemporary world class ski jumpers are alarmingly underweight and several cases of anorexia nervosa have come to light. Athletes strive for low body weight because it gives them a major competitive advantage. In order to stop this hazardous development, changes to the regulations are being discussed, and the International Ski Federation and the International Olympic Committee wish to be proactive in safe guarding the interest of the athletes and their health. This study of ski jumping uses field studies conducted during World Cup competitions, large-scale wind tunnel measurements with 1:1 models of ski jumpers in current equipment and highly accurate computer simulations of the flight phase that include the effects due to the athlete's position changes. Particular attention has been directed to the design of a reference jump that mirrors current flight style and equipment regulations (2001), and to the investigation of effects associated with variation in body mass, air density, and wind gusts during the simulated flight. The detailed analysis of the physics of ski jumping described here can be used for the investigation of all initial value and parameter variations that determine the flight path of a ski jumper and will form a reliable basis for setting regulations that will make it less attractive or even disadvantageous for the athlete to be extremely light.
Influence of the menstrual cycle on flight simulator performance after alcohol ingestion.
Mumenthaler, M S; O'Hara, R; Taylor, J L; Friedman, L; Yesavage, J A
2001-07-01
Previous studies investigating the influence of the menstrual cycle on cognitive functioning of women after alcohol ingestion have obtained inconsistent results. The present study tested the hypothesis that flight simulator performance during acute alcohol intoxication and 8 hours after drinking differs between the menstrual and the luteal phase of the menstrual cycle. White female pilots (N = 24) were tested during the menstrual and the luteal phases of their menstrual cycles. On each test day they performed a baseline simulator flight, consumed 0.67 g/kg ethanol, and performed an acute-intoxication and an 8-hour-carryover simulator flight. Subjects reached highly significant increases in estradiol (E2) as well as progesterone (P) levels during the luteal test day. Yet, there were no significant differences in overall flight performance after alcohol ingestion between the menstrual and luteal phases during acute intoxication or at 8-hour carryover. We found no correlations between E, or P levels and overall flight performance. However, there was a statistically significant Phase x Order interaction: Pilots who started the experiment with their menstrual day were less susceptible to the effects of alcohol during the second test day than were pilots who started with their luteal day. The tested menstrual cycle phases and varying E2 and P levels did not significantly influence postdrink flight performance. Because the present study included a comparatively large sample size and because it involved complex "real world" tasks (piloting an aircraft), we believe that the present findings are important. We hope that our failure to detect menstrual cycle effects will encourage researchers to include women in their investigations of alcohol effects and human performance.
NASA Technical Reports Server (NTRS)
Callantine, Todd J.; Cabrall, Christopher; Kupfer, Michael; Omar, Faisal G.; Prevot, Thomas
2012-01-01
NASA?s Air Traffic Management Demonstration-1 (ATD-1) is a multi-year effort to demonstrate high-throughput, fuel-efficient arrivals at a major U.S. airport using NASA-developed scheduling automation, controller decision-support tools, and ADS-B-enabled Flight-Deck Interval Management (FIM) avionics. First-year accomplishments include the development of a concept of operations for managing scheduled arrivals flying Optimized Profile Descents with equipped aircraft conducting FIM operations, and the integration of laboratory prototypes of the core ATD-1 technologies. Following each integration phase, a human-in-the-loop simulation was conducted to evaluate and refine controller tools, procedures, and clearance phraseology. From a ground-side perspective, the results indicate the concept is viable and the operations are safe and acceptable. Additional training is required for smooth operations that yield notable benefits, particularly in the areas of FIM operations and clearance phraseology.
NASA Technical Reports Server (NTRS)
Serke, David J.; Solheim, Frederick; Ware, Randolph; Politovich, Marcia K.; Brunkow, David; Bowie, Robert
2010-01-01
A narrow-beam (1 degree beamwidth), multi-channel (20 to 30 and 89 GHz), polarized (89 vertical and horizontal) radiometer with full azimuth and elevation scanning capabilities has been built with the purpose of improving the detection of in-flight icing hazards to aircraft in the near airport environment. This goal was achieved by co-locating the radiometer with Colorado State University's CHILL polarized Doppler radar and taking advantage of similar beamwidth and volume scan regiments. In this way, the liquid water path and water vapor measurements derived from the radiometer were merged with CHILL's moment fields to provide diagnoses of water phase and microphysics aloft. The radiometer was field tested at Colorado State University's CHILL radar site near Greeley, Colorado, during the summer of 2009. Instrument design, calibration and initial field testing results are discussed in this paper
Induced Abnormality In Mir- and Earth-Grown Super Dwarf Wheat
NASA Technical Reports Server (NTRS)
Bubenheim, David L.; Stieber, Joseph; Campbell, William F.; Salisbury, Frank B.; Levinski, Margarita; Sytchev, Vladimir; Podolsky, Igor; Chernova, Lola; Ivanova, Irene; Kliss, Mark (Technical Monitor)
1998-01-01
Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with normal wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen grains however, contain only one nucleus, while normal viable pollen is trinucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was identified - a high level of atmospheric ethylene (1200 ppb). Ground studies conducted exposing "Super-dwarf" wheat to ethylene at just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples.
Test and evaluation of Apollo 14 composite casting demonstration specimens 6, 9, and 12, phase 1
NASA Technical Reports Server (NTRS)
Reger, J. L.
1971-01-01
Flight and control specimens 6, 9, and 12 from the Apollo 14 composite casting demonstration were evaluated with respect to the degree of dispersion achieved for mixtures of immiscible materials under one-gravity and low gravity environments. The flight and control capsules 6, 9, and 12 contained paraffin and sodium acetate; paraffin, sodium acetate and argon; and paraffin, sodium acetate and 100 micrometer diameter tungsten microspheres, respectively. The evaluation and documentation utilized photographic and microstructure examinations, density measurements, and droplet size and distribution determinations. In addition, theoretical analyses were performed in order to aid in the understanding of the fluid behavior of the specimens during processing and subsequent solidification. A comparison of evaluated data with the theoretical analyses reveals that although the immiscible materials were uniquely dispersed in a low gravity environment, nonuniform dispersions were obtained primarily due to insufficient initial mixing and an essentially unidirectional thermal gradient during cooldown.
SSME digital control design characteristics
NASA Technical Reports Server (NTRS)
Mitchell, W. T.; Searle, R. F.
1985-01-01
To protect against a latent programming error (software fault) existing in an untried branch combination that would render the space shuttle out of control in a critical flight phase, the Backup Flight System (BFS) was chartered to provide a safety alternative. The BFS is designed to operate in critical flight phases (ascent and descent) by monitoring the activities of the space shuttle flight subsystems that are under control of the primary flight software (PFS) (e.g., navigation, crew interface, propulsion), then, upon manual command by the flightcrew, to assume control of the space shuttle and deliver it to a noncritical flight condition (safe orbit or touchdown). The problems associated with the selection of the PFS/BFS system architecture, the internal BFS architecture, the fault tolerant software mechanisms, and the long term BFS utility are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis, Elise; Gundlach-Graham, Alexander W.; Enke, Chris
2013-05-01
Time-of-flight (TOF) and distance-of-flight (DOF) mass spectrometers require means for focusing ions at the detector(s) because of initial dispersions of position and energy at the time of their acceleration. Time-of-flight mass spectrometers ordinarily employ constant energy acceleration (CEA), which creates a space-focus plane at which the initial spatial dispersion is corrected. In contrast, constant-momentum acceleration (CMA), in conjunction with an ion mirror, provides focus of the initial energy dispersion at the energy focus time for ions of all m/z at their respective positions along the flight path. With CEA, the initial energy dispersion is not simultaneously correctable as its effectmore » on ion velocity is convoluted with that of the spatial dispersion. The initial spatial dispersion with CMA remains unchanged throughout the field-free region of the flight path, so spatial dispersion can be reduced before acceleration. Improved focus is possible when each dispersion can be addressed independently. With minor modification, a TOF mass spectrometer can be operated in CMA mode by treating the TOF detector as though it were a single element in the array of detectors that would be used in a DOF mass spectrometer. Significant improvement in mass resolution is thereby achieved, albeit over a narrow range of m/z values. In this paper, experimental and theoretical results are presented that illustrate the energy-focusing capabilities of both DOF and TOF mass spectrometry.« less
Aerogel Insulation Systems for Space Launch Applications
NASA Technical Reports Server (NTRS)
Fesmire, James E.
2005-01-01
New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.
New results in gravity dependent two-phase flow regime mapping
NASA Astrophysics Data System (ADS)
Kurwitz, Cable; Best, Frederick
2002-01-01
Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .
Initial Considerations for Navigation and Flight Dynamics of a Crewed Near-Earth Object Mission
NASA Technical Reports Server (NTRS)
Holt, Greg N.; Getchius, Joel; Tracy, William H.
2011-01-01
A crewed mission to a Near-Earth Object (NEO) was recently identified as a NASA Space Policy goal and priority. In support of this goal, a study was conducted to identify the initial considerations for performing the navigation and flight dynamics tasks of this mission class. Although missions to a NEO are not new, the unique factors involved in human spaceflight present challenges that warrant special examination. During the cruise phase of the mission, one of the most challenging factors is the noisy acceleration environment associated with a crewed vehicle. Additionally, the presence of a human crew necessitates a timely return trip, which may need to be expedited in an emergency situation where the mission is aborted. Tracking, navigation, and targeting results are shown for sample human-class trajectories to NEOs. Additionally, the benefit of in-situ navigation beacons on robotic precursor missions is presented. This mission class will require a longer duration flight than Apollo and, unlike previous human missions, there will likely be limited communication and tracking availability. This will necessitate the use of more onboard navigation and targeting capabilities. Finally, the rendezvous and proximity operations near an asteroid will be unlike anything previously attempted in a crewed spaceflight. The unknown gravitational environment and physical surface properties of the NEO may cause the rendezvous to behave differently than expected. Symbiosis of the human pilot and onboard navigation/targeting are presented which give additional robustness to unforeseen perturbations.
Ion beam plume and efflux characterization flight experiment study. [space shuttle payload
NASA Technical Reports Server (NTRS)
Sellen, J. M., Jr.; Zafran, S.; Cole, A.; Rosiak, G.; Komatsu, G. K.
1977-01-01
A flight experiment and flight experiment package for a shuttle-borne flight test of an 8-cm mercury ion thruster was designed to obtain charged particle and neutral particle material transport data that cannot be obtained in conventional ground based laboratory testing facilities. By the use of both ground and space testing of ion thrusters, the flight worthiness of these ion thrusters, for other spacecraft applications, may be demonstrated. The flight experiment definition for the ion thruster initially defined a broadly ranging series of flight experiments and flight test sensors. From this larger test series and sensor list, an initial flight test configuration was selected with measurements in charged particle material transport, condensible neutral material transport, thruster internal erosion, ion beam neutralization, and ion thrust beam/space plasma electrical equilibration. These measurement areas may all be examined for a seven day shuttle sortie mission and for available test time in the 50 - 100 hour period.
Attitude algorithm and initial alignment method for SINS applied in short-range aircraft
NASA Astrophysics Data System (ADS)
Zhang, Rong-Hui; He, Zhao-Cheng; You, Feng; Chen, Bo
2017-07-01
This paper presents an attitude solution algorithm based on the Micro-Electro-Mechanical System and quaternion method. We completed the numerical calculation and engineering practice by adopting fourth-order Runge-Kutta algorithm in the digital signal processor. The state space mathematical model of initial alignment in static base was established, and the initial alignment method based on Kalman filter was proposed. Based on the hardware in the loop simulation platform, the short-range flight simulation test and the actual flight test were carried out. The results show that the error of pitch, yaw and roll angle is fast convergent, and the fitting rate between flight simulation and flight test is more than 85%.
Hardware Assessment in Support of the Dynamic Power Convertor Development Effort
NASA Technical Reports Server (NTRS)
Wilson, Scott D.; Oriti, Sal M.; Schifer, Nicholas A.
2017-01-01
Stirling Radioisotope Power Systems (RPS) are being developed by NASA's RPS Program in collaboration with the U.S. Department of Energy (DOE). Efforts ranging from 2001 to 2015 enabled development of the Technology Demonstration Convertor (TDC) for use in the 110-watt Stirling Radioisotope Generator (SRG-110) and the Advanced Stirling Convertor (ASC) for use in the Advanced Stirling Radioisotope Generator (ASRG). The DOE selected Lockheed Martin Space Systems Company (LMSSC) as the system integration contractor for both flight development efforts. The SRG-110 housed two TDCs fabricated by Infinia and resulted in the production of 16x demonstration units and 2x engineering units. The project was redirected in 2006 to make use of a more efficient and lower mass ASCs under development by Sunpower Inc. The DOE managed the flight contract with LMSSC and subcontractor Sunpower Inc. from 2007 to 2013 to build the ASRG, with support from NASA Glenn Research Center (GRC). Sunpower Inc. held two parallel contracts to produce ASCs, one with Lockheed Martin to produce ASC-F flight units and one with GRC for the production of ASC-E3 engineering unit pathfinders that were used to refine the flight design and production processes. The DOE initiated termination of the ASRG contract in late 2013. After ASRG had ended, GRC completed characterization testing of the ASRG Engineering Unit #2 (EU2) and the GRC contract with Sunpower was also completed. The NASA RPS Program Office has recently initiated a new Dynamic Power Conversion development effort which includes the potential maturation of Stirling, Brayton, and Rankine power convertors for the next generation of RPS. The effort started with the request for proposal and review of submits. Contracts are anticipated for release in 2017 and will initially focus on a design phase prior to fabrication and testing. This new effort will focus on robustness in addition to high efficiency, specific power, and reliability. Also, some requirements introduced during the ASRG contract have also been included in the new effort, such as constant lateral loading. Due to the focus on robustness and new requirements relative to the older TDC design, the Stirling Cycle Development Project has initiated an assessment of government owned hardware to help inform requirements evolution and evaluation of future designs. While lessons learned from the ASRG flight development project have been taken into consideration, the evaluation of the TDC design had not been completed for some existing environments or relatively new requirements. To further assess the TDC design, a series of tasks were initiated to evaluate degradation for units that have operated unattended for over 105,000 hours, demonstrate robustness to a random vibration environment, characterize and evaluate performance for varying lateral load profiles. The status for each task are described.
New model of flap-gliding flight.
Sachs, Gottfried
2015-07-21
A new modelling approach is presented for describing flap-gliding flight in birds and the associated mechanical energy cost of travelling. The new approach is based on the difference in the drag characteristics between flapping and non-flapping due to the drag increase caused by flapping. Thus, the possibility of a gliding flight phase, as it exists in flap-gliding flight, yields a performance advantage resulting from the decrease in the drag when compared with continuous flapping flight. Introducing an appropriate non-dimensionalization for the mathematical relations describing flap-gliding flight, results and findings of generally valid nature are derived. It is shown that there is an energy saving of flap-gliding flight in the entire speed range compared to continuous flapping flight. The energy saving reaches the highest level in the lower speed region. The travelling speed of flap-gliding flight is composed of the weighted average of the differing speeds in the flapping and gliding phases. Furthermore, the maximum range performance achievable with flap-gliding flight and the associated optimal travelling speed are determined. Copyright © 2015 Elsevier Ltd. All rights reserved.
Numerical Flight Mechanics Analysis Of The SHEFEX I Ascent And Re-Entry Phases
NASA Astrophysics Data System (ADS)
Bartolome Calvo, Javier; Eggers, Thino
2011-08-01
The SHarp Edge Flight EXperiment (SHEFEX) I provides a huge amount of scientific data to validate numerical tools in hypersonic flows. These data allow the direct comparison of flight measurements with the current numerical tools available at DLR. Therefore, this paper is devoted to apply a recently developed direct coupling between aerodynamics and flight dynamics to the SHEFEX I flight. In a first step, mission analyses are carried out using the trajectory optimization program REENT 6D coupled to missile DATCOM. In a second step, the direct coupling between the trajectory program and the DLR TAU code, in which the unsteady Euler equations including rigid body motion are solved, is applied to analyze some interesting parts of ascent and re-entry phases of the flight experiment. The agreement of the numerical predictions with the obtained flight data is satisfactory assuming a variable fin deflection angle.
Earth-to-Orbit Rocket Propulsion
NASA Technical Reports Server (NTRS)
Beaurain, Andre; Souchier, Alain; Moravie, Michel; Sackheim, Robert L.; Cikanek, Harry A., III
2003-01-01
The Earth-to-orbit (ETO) phase of access to space is and always will be the first and most critical phase of all space missions. This first phase of all space missions has unique characteristics that have driven space launcher propulsion requirements for more than half a century. For example, the need to overcome the force of the Earth s gravity in combination with high levels of atmospheric drag to achieve the initial orbital velocity; i.e., Earth parking orbit or =9 km/s, will always require high thrust- to-weight (TN) propulsion systems. These are necessary with a T/W ratio greater than one during the ascent phase. The only type of propulsion system that can achieve these high T/W ratios are those that convert thermal energy to kinetic energy. There are only two basic sources of onboard thermal energy: chemical combustion-based systems or nuclear thermal-based systems (fission, fusion, or antimatter). The likelihood of advanced open-cycle, nuclear thermal propulsion being developed for flight readiness or becoming environmentally acceptable during the next century is extremely low. This realization establishes that chemical propulsion for ET0 launchers will be the technology of choice for at least the next century, just as it has been for the last half century of rocket flight into space. The world s space transportation propulsion requirements have evolved through several phases over the history of the space program, as has been necessitated by missions and systems development, technological capabilities available, and the growth and evolution of the utilization of space for economic, security, and science benefit. Current projections for the continuing evolution of requirements and concepts may show how future space transportation system needs could be addressed. The evolution and projections will be described in detail in this manuscript.
Cuervo, Darío; Loli, Cynthia; Fernández-Álvarez, María; Muñoz, Gloria; Carreras, Daniel
2017-10-15
A complete analytical protocol for the determination of 25 doping-related peptidic drugs and 3 metabolites in urine was developed by means of accurate-mass quadrupole time-of-flight (Q-TOF) LC-MS analysis following solid-phase extraction (SPE) on microplates and conventional SPE pre-treatment for initial testing and confirmation, respectively. These substances included growth hormone releasing factors, gonadotropin releasing factors and anti-diuretic hormones, with molecular weights ranging from 540 to 1320Da. Optimal experimental conditions were stablished after investigation of different parameters concerning sample preparation and instrumental analysis. Weak cation exchange SPE followed by C18 HPLC chromatography and accurate mass detection provided the required sensitivity and selectivity for all the target peptides under study. 2mg SPE on 96-well microplates can be used in combination with full scan MS detection for the initial testing, thus providing a fast, cost-effective and high-throughput protocol for the processing of a large batch of samples simultaneously. On the other hand, extraction on 30mg SPE cartridges and subsequent target MS/MS determination was the protocol of choice for confirmatory purposes. The methodology was validated in terms of selectivity, recovery, matrix effect, precision, sensitivity (limit of detection, LOD), cross contamination, carryover, robustness and stability. Recoveries ranged from 6 to 70% (microplates) and 17-95% (cartridges), with LODs from 0.1 to 1ng/mL. The suitability of the method was assessed by analyzing different spiked or excreted urines containing some of the target substances. Copyright © 2017 Elsevier B.V. All rights reserved.
Fuzzy Logic Trajectory Design and Guidance for Terminal Area Energy Management
NASA Technical Reports Server (NTRS)
Burchett, Bradley
2003-01-01
The second generation reusable launch vehicle will leverage many new technologies to make flight to low earth orbit safer and more cost effective. One important capability will be completely autonomous flight during reentry and landing, thus making it unnecessary to man the vehicle for cargo missions with stringent weight constraints. Implementation of sophisticated new guidance and control methods will enable the vehicle to return to earth under less than favorable conditions. The return to earth consists of three phases--Entry, Terminal Area Energy Management (TAEM), and Approach and Landing. The Space Shuttle is programmed to fly all three phases of flight automatically, and under normal circumstances the astronaut-pilot takes manual control only during the Approach and Landing phase. The automatic control algorithms used in the Shuttle for TAEM and Approach and Landing have been developed over the past 30 years. They are computationally efficient, and based on careful study of the spacecraft's flight dynamics, and heuristic reasoning. The gliding return trajectory is planned prior to the mission, and only minor adjustments are made during flight for perturbations in the vehicle energy state. With the advent of the X-33 and X-34 technology demonstration vehicles, several authors investigated implementing advanced control methods to provide autonomous real-time design of gliding return trajectories thus enhancing the ability of the vehicle to adjust to unusual energy states. The bulk of work published to date deals primarily with the approach and landing phase of flight where changes in heading angle are small, and range to the runway is monotonically decreasing. These benign flight conditions allow for model simplification and fairly straightforward optimization. This project focuses on the TAEM phase of flight where mathematically precise methods have produced limited results. Fuzzy Logic methods are used to make onboard autonomous gliding return trajectory design robust to a wider energy envelope, and the possibility of control surface failures, thus increasing the flexibility of unmanned gliding recovery and landing.
Overview of Additive Manufacturing Initiatives at NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Clinton, R. G., Jr.
2018-01-01
NASA's In Space Manufacturing Initiative (ISM) includes: The case for ISM - why; ISM path to exploration - results from the 3D Printing In Zero-G Technology Demonstration - ISM challenges; In space Robotic Manufacturing and Assembly (IRMA); Additive construction. Additively Manufacturing (AM) development for liquid rocket engine space flight hardware. MSFC standard and specification for additively manufactured space flight hardware. Summary.
Castro, Lauren A; Peterson, Jennifer K; Saldana, Azael; Perea, Milixa Y; Calzada, Jose E; Pineda, Vanessa; Dobson, Andrew P; Gottdenker, Nicole L
2014-09-01
ABSTRACT Flight dispersal of the triatomine bug species Rhodnius pallescens Barber, the principal vector of Chagas disease in Panama, is an important mechanism for spreading Trypanosoma cruzi, causative agent of Chagas disease. This study measures R. pallescens flight performance using a tethered flight mill both when uninfected, and when infected with T. cruzi or Trypanosoma rangeli. Forty-four out of the 48 (91.7%) insects initiated flight across all treatments, and trypanosome infection did not significantly impact flight initiation. Insects from all treatments flew a cumulative distance ranging from 0.5 to 5 km before fatiguing. The median cumulative distance flown before insect fatigue was higher in T. cruzi- and T. rangeli-infected insects than in control insects; however, this difference was not statistically significant. There was a positive relationship between parasite load ingested and time until flight initiation in T. rangeli-infected bugs, and T. rangeli- and T. cruzi-infected females flew significantly faster than males at different time points. These novel findings allow for a better understanding of R. pallescens dispersal ability and peridomestic management strategies for the prevention of Chagas disease in Panama.
Mars entry-to-landing trajectory optimization and closed loop guidance
NASA Technical Reports Server (NTRS)
Ilgen, Marc R.; Manning, Raymund A.; Cruz, Manuel I.
1991-01-01
The guidance strategy of the Mars Rover Sample Return mission is presented in detail. Aeromaneuver versus aerobrake trades are examined, and an aerobrake analysis is presented which takes into account targeting, guidance, flight control, trajectory profile, delivery accuracy. An aeromaneuver analysis is given which includes the entry corridor, maneuver footprint, guidance, preentry phase, constant drag phase, equilibrium guide phase, variable drag phase, influence of trajectory profile on the entry flight loads, parachute deployment conditions and strategies, and landing accuracy. The Mars terminal descent phase is analyzed.
Midcourse Guidance Study for Tactical Guided Weapons. Volume I. Survey and Analysis
1976-08-01
relatively moderate when compared to air intercept guidance requirements.) The alignment phase involved the comparison of gyrocom- passing (using... phase of flight for discrete updates. The AFBGW aero and guidance configuration is derived from current Air Force glide weapon concepts. The AFBGW... comparable midcourse flight phase . Harpoon and Standard Arm represent performance levels similar to the AFBGW requirements, but differences in
Autolysis of Escherichia coli and Bacillus subtilis cells in low gravity
NASA Technical Reports Server (NTRS)
Kacena, M. A.; Smith, E. E.; Todd, P.
1999-01-01
The role of gravity in the autolysis of Bacillus subtilis and Escherichia coli was studied by growing cells on Earth and in microgravity on Space Station Mir. Autolysis analysis was completed by examining the death phase or exponential decay of cells for approximately 4 months following the stationary phase. Consistent with published findings, the stationary-phase cell population was 170% and 90% higher in flight B. subtilis and E. coli cultures, respectively, than in ground cultures. Although both flight autolysis curves began at higher cell densities than control curves, the rate of autolysis in flight cultures was identical to that of their respective ground control rates.
Space-Based Range Safety and Future Space Range Applications
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.
2005-01-01
The National Aeronautics and Space Administration (NASA) Space-Based Telemetry and Range Safety (STARS) study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety [global positioning system (GPS) metric tracking data, flight termination command and range safety data relay] and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California, USA) using the NASA Tracking and Data Relay Satellite System (TDRSS) as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit (RSU) provided real-time video for three days during the historic Global Flyer (Scaled Composites, Mojave, California, USA) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This paper discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.
Space-Based Range Safety and Future Space Range Applications
NASA Technical Reports Server (NTRS)
Whiteman, Donald E.; Valencia, Lisa M.; Simpson, James C.
2005-01-01
The National Aeronautics and Space Administration Space-Based Telemetry and Range Safety study is a multiphase project to demonstrate the performance, flexibility and cost savings that can be realized by using space-based assets for the Range Safety (global positioning system metric tracking data, flight termination command and range safety data relay) and Range User (telemetry) functions during vehicle launches and landings. Phase 1 included flight testing S-band Range Safety and Range User hardware in 2003 onboard a high-dynamic aircraft platform at Dryden Flight Research Center (Edwards, California) using the NASA Tracking and Data Relay Satellite System as the communications link. The current effort, Phase 2, includes hardware and packaging upgrades to the S-band Range Safety system and development of a high data rate Ku-band Range User system. The enhanced Phase 2 Range Safety Unit provided real-time video for three days during the historic GlobalFlyer (Scaled Composites, Mojave, California) flight in March, 2005. Additional Phase 2 testing will include a sounding rocket test of the Range Safety system and aircraft flight testing of both systems. Future testing will include a flight test on a launch vehicle platform. This report discusses both Range Safety and Range User developments and testing with emphasis on the Range Safety system. The operational concept of a future space-based range is also discussed.
NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program
NASA Technical Reports Server (NTRS)
Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.
2001-01-01
To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.
REIMR: A Process for Utilizing Propulsion-Oriented 'Lessons-Learned' to Mitigate Development Risk
NASA Technical Reports Server (NTRS)
Ballard, Richard O.; Brown, Kendall K.
2005-01-01
This paper is a summary overview of a study conducted a t the NASA Marshall Space Flight Center (MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). The results of this study was the identification of the "Fundamental Root Causes" that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future engine development efforts. This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided.
NASA Technical Reports Server (NTRS)
McCoy, Allen H.
1998-01-01
Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near-real time system identification was also demonstrated during the flight test program.
Tu-144LL SST Flying Laboratory Lifts off Runway on a High-Speed Research Flight
NASA Technical Reports Server (NTRS)
1998-01-01
The Tupolev Tu-144LL lifts off from the Zhukovsky Air Development Center near Moscow, Russia, on a 1998 test flight. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
14 CFR 121.403 - Training program: Curriculum.
Code of Federal Regulations, 2011 CFR
2011-01-01
...: Curriculum. (a) Each certificate holder must prepare and keep current a written training program curriculum... functions that will be performed during each flight training phase or flight check, indicating those... of training that will be applied to each phase of training. (6) A copy of each statement issued by...
14 CFR 121.403 - Training program: Curriculum.
Code of Federal Regulations, 2010 CFR
2010-01-01
...: Curriculum. (a) Each certificate holder must prepare and keep current a written training program curriculum... functions that will be performed during each flight training phase or flight check, indicating those... of training that will be applied to each phase of training. (6) A copy of each statement issued by...
Evaluation of on-board hydrogen storage methods for hypersonic vehicles
NASA Technical Reports Server (NTRS)
Akyurtlu, Ates; Akyurtlu, J. F.; Adeyiga, A. A.; Perdue, Samara; Northam, G. B.
1989-01-01
Hydrogen is the foremost candidate as a fuel for use in high speed transport. Since any aircraft moving at hypersonic speeds must have a very slender body, means of decreasing the storage volume requirements below that for liquid hydrogen are needed. The total performance of the hypersonic plane needs to be considered for the evaluation of candidate fuel and storage systems. To accomplish this, a simple model for the performance of a hypersonic plane is presented. To allow for the use of different engines and fuels during different phases of flight, the total trajectory is divided into three phases: subsonic-supersonic, hypersonic and rocket propulsion phase. The fuel fraction for the first phase is found be a simple energy balance using an average thrust to drag ratio for this phase. The hypersonic flight phase is investigated in more detail by taking small altitude increments. This approach allowed the use of flight profiles other than the constant dynamic pressure flight. The effect of fuel volume on drag, structural mass and tankage mass was introduced through simplified equations involving the characteristic dimension of the plane. The propellant requirement for the last phase is found by employing the basic rocket equations. The candidate fuel systems such as the cryogenic fuel combinations and solid and liquid endothermic hydrogen generators are first screened thermodynamically with respect to their energy densities and cooling capacities and then evaluated using the above model.
Optimal design of the satellite constellation arrangement reconfiguration process
NASA Astrophysics Data System (ADS)
Fakoor, Mahdi; Bakhtiari, Majid; Soleymani, Mahshid
2016-08-01
In this article, a novel approach is introduced for the satellite constellation reconfiguration based on Lambert's theorem. Some critical problems are raised in reconfiguration phase, such as overall fuel cost minimization, collision avoidance between the satellites on the final orbital pattern, and necessary maneuvers for the satellites in order to be deployed in the desired position on the target constellation. To implement the reconfiguration phase of the satellite constellation arrangement at minimal cost, the hybrid Invasive Weed Optimization/Particle Swarm Optimization (IWO/PSO) algorithm is used to design sub-optimal transfer orbits for the satellites existing in the constellation. Also, the dynamic model of the problem will be modeled in such a way that, optimal assignment of the satellites to the initial and target orbits and optimal orbital transfer are combined in one step. Finally, we claim that our presented idea i.e. coupled non-simultaneous flight of satellites from the initial orbital pattern will lead to minimal cost. The obtained results show that by employing the presented method, the cost of reconfiguration process is reduced obviously.
Midodrine as a Countermeasure for Post-spaceflight Orthostatic Hypotension
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Ziegler, Michael G.; Waters, Wendy W.; Meck, Janice V.
2007-01-01
Up to 30 % of astronauts exhibit post-spaceflight orthostatic hypotension due to inadequate norepinephrine release during upright posture following short duration spaceflight. We hypothesize that the (alpha)1-adrenergic agonist midodrine will be an effective countermeasure. This study is being conducted in 2 phases. The first phase is complete and consisted testing six short duration crew members. All of these subjects participated in preflight and postflight tilt testing on a control flight as well as on the test flights, where midodrine was administered after landing, 1 hour before testing. Hemodynamic variables were compared between the 2 flights. Midodrine improved stroke volume, cardiac output, systolic pressure and heart rate, without increasing vascular resistance. None of these subjects experienced orthostatic hypotension on landing day. Phase II is similar to phase I, except that midodrine is ingested in flight (near TIG) and the tilt test is performed immediately after landing on the CTV. One crewmember has completed phase II testing. This crewmember had no evidence of orthostatic hypotension or presyncope, four additional crewmembers have volunteered for this study. To date, midodrine has been shown to be a safe and effective countermeasure to post-spaceflight orthostatic hypotension.
Accurate Modeling of Stability and Control Properties for Fighter Aircraft from CFD
2012-03-01
first an aircraft to flight test which is not until late in the design phase where millions if not billions of dollars have already been invested. It...of an aircraft and even late in the design phase there are often large gaps in data due to budget cuts to flight testing and limitations to maneuvers...early in the design cycle has been the source of many costly fixes to fighter aircraft after flight testing begins. Early prediction of these nonlinear
1982-07-01
was scheduled for an end-of-phase assessment ( equivalent to the stage check for the control group on the sixth flight). If performance was to NATOPS...proficiency was demonstrated. The same procedure was used for B stage flight except that the phase check (fourth flight) was equivalent to the control ...experimental grouo did not differ from the control qroup on tasks requirinq visual cues as a primary reference for successful completion (e.g
An experimental microcomputer controlled system for synchronized pulsating anti-gravity suit.
Moore, T W; Foley, J; Reddy, B R; Kepics, F; Jaron, D
1987-07-01
An experimental system to deliver synchronized external pressure pulsations to the lower body is described in this technical note. The system is designed using a microcomputer with a real time interface and an electro-pneumatic subsystem capable of delivering pressure pulses to a modified anti-G suit at a fast rate. It is versatile, containing many options for synchronizing, phasing and sequencing of the pressure pulsations and controlling the pressure level in the suit bladders. Details of its software and hardware are described along with the results of initial testing in a Dynamic Flight Simulator on human volunteers.
Test bed design for evaluating the Space Station ECLSS Water Recovery System
NASA Technical Reports Server (NTRS)
Ezell, Timothy G.; Long, David A.
1990-01-01
The design of the Phase III Environmental Control and Life Support System (ECLSS) Water Recovery System (WRS) test bed is in progress at the Marshall Space Flight Center (MSFC), building 4755, in Huntsville, Alabama. The overall design for the ECLSS WRS test bed will be discussed. Described within this paper are the design, fabrication, placement, and testing of the supporting facility which will provide the test bed for the ECLSS subsystems. Topics to be included are sterilization system design, component selection, microbial design considerations, and verification of test bed design prior to initiating WRS testing.
Scouts behave as streakers in honeybee swarms
NASA Astrophysics Data System (ADS)
Greggers, Uwe; Schöning, Caspar; Degen, Jacqueline; Menzel, Randolf
2013-08-01
Harmonic radar tracking was used to record the flights of scout bees during takeoff and initial flight path of two honeybee swarms. One swarm remained intact and performed a full flight to a destination beyond the range of the harmonic radar, while a second swarm disintegrated within the range of the radar and most of the bees returned to the queen. The initial stretch of the full flight is characterized by accelerating speed, whereas the disintegrating swarm flew steadily at low speed. The two scouts in the swarm displaying full flight performed characteristic flight maneuvers. They flew at high speed when traveling in the direction of their destination and slowed down or returned over short stretches at low speed. Scouts in the disintegrating swarm did not exhibit the same kind of characteristic flight performance. Our data support the streaker bee hypothesis proposing that scout bees guide the swarm by traveling at high speed in the direction of the new nest site for short stretches of flight and slowing down when reversing flight direction.
Pilot-in-the-Loop CFD Method Development
2017-04-20
the methods on the NAVAIR Manned Flight Simulator. Activities this period During this report period, we implemented the CRAFT CFD code on the...Penn State VLRCROE Flight simulator and performed the first Pilot-in-the-Loop PILCFD tests at Penn State using the COCOA5 clusters. The initial tests...integration of the flight simulator and Penn State computing infrastructure. Initial tests showed slower performance than real-time (3x slower than real
Knowledge-based system for flight information management. Thesis
NASA Technical Reports Server (NTRS)
Ricks, Wendell R.
1990-01-01
The use of knowledge-based system (KBS) architectures to manage information on the primary flight display (PFD) of commercial aircraft is described. The PFD information management strategy used tailored the information on the PFD to the tasks the pilot performed. The KBS design and implementation of the task-tailored PFD information management application is described. The knowledge acquisition and subsequent system design of a flight-phase-detection KBS is also described. The flight-phase output of this KBS was used as input to the task-tailored PFD information management KBS. The implementation and integration of this KBS with existing aircraft systems and the other KBS is described. The flight tests are examined of both KBS's, collectively called the Task-Tailored Flight Information Manager (TTFIM), which verified their implementation and integration, and validated the software engineering advantages of the KBS approach in an operational environment.
NASA Technical Reports Server (NTRS)
Olson, L.; Sunkel, J. W.
1982-01-01
An overview of the ascent trajectory and GN&C (guidance, navigation, and control) system design is followed by a summary of flight test results for the ascent phase of STS-1. The most notable variance from nominal pre-flight predictions was the lofted trajectory observed in first stage due to an unanticipated shift in pitch aerodynamic characteristics from those predicted by wind tunnel tests. The GN&C systems performed as expected on STS-1 throughout powered flight. Following a discussion of the software constants changed for Flight 2 to provide adequate performance margin, a summary of test results from STS-2 and STS-3 is presented. Vehicle trajectory response and GN&C system behavior were very similar to STS-1. Ascent aerodynamic characteristics extracted from the first two test flights were included in the data base used to design the first stage steering and pitch trim profiles for STS-3.
Information Management For Tactical Reconnaissance
NASA Astrophysics Data System (ADS)
White, James P.
1984-12-01
The expected battlefield tactics of the 1980's and 1990's will be fluid and dynamic. If tactical reconnaissance is to meet this challenge, it must explore all ways of accelerating the flow of information through the reconnaissance cycle, from the moment a tasking request is received to the time the mission results are delivered to the requestor. In addition to near real-time dissemination of reconnaissance information, the mission planning phase needs to be more responsive to the rapidly changing battlefield scenario. By introducing Artificial Intelligence (AI) via an expert system to the mission planning phase, repetitive and computational tasks can be more readily performed by the ground-based mission planning system, thereby permitting the aircrew to devote more of their time to target study. Transporting the flight plan, plus other mission data, to the aircraft is simple with the Fairchild Data Transfer Equipment (DTE). Aircrews are relieved of the tedious, error-prone, and time-consuming task of manually keying-in avionics initialization data. Post-flight retrieval of mission data via the DTE will permit follow-on aircrews, just starting their mission planning phase, to capitalize on current threat data collected by the returning aircrew. Maintenance data retrieved from the recently flown mission will speed-up the aircraft turn-around by providing near-real time fault detection/isolation. As future avionics systems demand more information, a need for a computer-controlled, smart data base or expert system on-board the aircraft will emerge.
NASA Technical Reports Server (NTRS)
Sopher, R.; Twomey, W. J.
1990-01-01
NASA-Langley is sponsoring a rotorcraft structural dynamics program with the objective to establish in the U.S. a superior capability to utilize finite element analysis models for calculations to support industrial design of helicopter airframe structures. In the initial phase of the program, teams from the major U.S. manufacturers of helicopter airframes will apply extant finite element analysis methods to calculate loads and vibrations of helicopter airframes, and perform correlations between analysis and measurements. The aforementioned rotorcraft structural dynamics program was given the acronym DAMVIBS (Design Analysis Method for Vibrations). Sikorsky's RDYNE Rotorcraft Dynamics Analysis used for the correlation study, the specifics of the application of RDYNE to the AH-1G, and comparisons of the predictions of the method with flight data for loads and vibrations on the AH-1G are described. RDYNE was able to predict trends of variations of loads and vibrations with airspeed, but in some instances magnitudes differed from measured results by factors of two or three to one. Sensitivities were studied of predictions to rotor inflow modeling, effects of torsional modes, number of blade bending modes, fuselage structural damping, and hub modal content.
Plan for CELSS test bed project
NASA Technical Reports Server (NTRS)
Knott, W. M.
1986-01-01
The Closed Ecological Life Support Systems (CELSS) testbed project will achieve two major goals: It will develop the knowledge and technology needed to build and test biological or combined biological physiochemical regenerative life support systems. It will fabricate, test, and operate ground based facilities to accomplish proof-of-concent testing and evaluation leading to flight experimentation. The project will combine basic research and applied research/engineering to achieve a phased, integrated development of hardware, systems, and techniques for food and oxygen production, food processing, and waste processing in closed systems. The project will design, fabricate, and operate within three years a botanical production system scaled to a sufficient size to verify oxygen and nutrient load production (carbohydrates, fats, proteins) at a useable level. It will develop within five years a waste management system compatible with the botanical production system and a food processing system that converts available biomass into edible products. It will design, construct, and operate within ten years a ground based candidate CELSS that includes man as an active participant in the system. It will design a flight CELSS module within twelve years and construct and conduct initial flight tests within fifteen years.
Flying the orbiter in the approach/landing phase
NASA Technical Reports Server (NTRS)
Nagel, S. R.
1983-01-01
The Columbia has completed a spectacularly successful four flight Orbital Flight Test program as well as the first operational mission in which two satellites were deployed. It is unprecedented that a vehicle so complex as the Shuttle could have reached such a state of maturity in so few missions. This maturity is reflected not only in terms of basic performance during dynamic flight phases, but also in the outstanding performance of individual spacecraft systems. Appreciably more CSS time has been logged during entry and particularly in the approach and landing phase than any other segment of the mission profile. The discussion that follows, therefore, will outline this phase in some detail including pilot comments, techniques, crew displays and landing aids. Some problem areas related to landing the Orbiter will be discussed, as well as possible solutions.
Algorithm for the stabilization of motion a bounding vehicle in the flight phase
NASA Technical Reports Server (NTRS)
Lapshin, V. V.
1980-01-01
The unsupported phase of motion of a multileg bounding vehicle is examined. An algorithm for stabilization of the angular motion of the vehicle housing by change of the motion of the legs during flight is constructed. The results of mathematical modelling of the stabilization process by computer are presented.
Omega flight-test data reduction sequence. [computer programs for reduction of navigation data
NASA Technical Reports Server (NTRS)
Lilley, R. W.
1974-01-01
Computer programs for Omega data conversion, summary, and preparation for distribution are presented. Program logic and sample data formats are included, along with operational instructions for each program. Flight data (or data collected in flight format in the laboratory) is provided by the Ohio University Omega receiver base in the form of 6-bit binary words representing the phase of an Omega station with respect to the receiver's local clock. All eight Omega stations are measured in each 10-second Omega time frame. In addition, an event-marker bit and a time-slot D synchronizing bit are recorded. Program FDCON is used to remove data from the flight recorder tape and place it on data-processing cards for later use. Program FDSUM provides for computer plotting of selected LOP's, for single-station phase plots, and for printout of basic signal statistics for each Omega channel. Mean phase and standard deviation are printed, along with data from which a phase distribution can be plotted for each Omega station. Program DACOP simply copies the Omega data deck a controlled number of times, for distribution to users.
NASA Technical Reports Server (NTRS)
Kerr, James R.; Haskins, James F.
1987-01-01
Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.
Drury, Douglas W; Whitesell, Matthew E; Wade, Michael J
2016-03-01
We investigated the environmental conditions that induce a flight response in the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), including resource quality, temperature, relative humidity, and light. Over 72-h trial periods, we observed the proportion of individuals emigrating by flight to range from 0.0 in extreme heat or cold to 0.82 with starvation. Resource quality, presence of a light source, and temperature all directly influenced the initiation of the flight response. We did not detect any effect of relative humidity or sudden change in temperature on the incidence of flight. We discuss our findings in the context of Tribolium ecology and evolution.
Overview of the LaNCETS Flight Experiment and CFD Analysis. Supplemental Movies
NASA Technical Reports Server (NTRS)
Cliatt, Larry J., II; Haering, Edward A., Jr.; Bui, Trong
2008-01-01
This presentation focuses on nearfield airborne pressure signatures from the Lift and Nozzle Change Effect on Tail Shocks (LaNCETS) flight test experiment. The primary motivation for nearfield probing in the supersonic regime is to measure the shock structure of aircraft in an ongoing effort to overcome the overland sonic boom barrier for commercial supersonic transportation. LaNCETS provides the opportunity to investigate lift distribution and engine plume effects. During Phase 1 flight testing an F-15B was used to probe the F-15 LaNCETS aircraft in order to validate CFD and pre-flight prediction tools. A total of 29 probings were taken at 40,000 ft. altitude at Machs 1.2, 1.4 and 1.6. LaNCETS Phase 1 flight data are presented as a detailed pressure signature superimposed over a picture of the LaNCETS aircraft. The attenuation of the Inlet-Canard shocks with distance as well as its forward propagation and the coalescence of the noseboom shock are illustrated. A detailed CFD study on a simplified LaNCETS aircraft jet nozzle was performed providing the ability to more accurately capture the shocks from the propulsion system and emphasizing how under- and over-expanding the nozzle affects the existence of shock trains inside the jet plume. With Phase 1 being a success preparations are being made to move forward to Phase 2. Phase 2 will fly similar flight conditions, but this time changing the aircraft's lift distribution by biasing the canard positions, and changing the plume shape by under- and over-expanding the nozzle. Nearfield probing will again be completed in the same manner as in Phase 1. An additional presentation focuses on LaNCETS CFD solution methodology. Discussions highlight grid preprocessing, grid shearing and stretching, flow solving and contour plots. Efforts are underway to better capture the flow features via grid modification and flow solution methodology, which will help to achieve better agreement with flight data. An included CD-ROM provides animations of the nearfield probing procedure and of real data from one of the probings integrated with GPS positional and velocity data. An additional in-flight video from the rear seat of the probing aircraft is also provided.
Cryogenic Two-Phase Flight Experiment: Results overview
NASA Technical Reports Server (NTRS)
Swanson, T.; Buchko, M.; Brennan, P.; Bello, M.; Stoyanof, M.
1995-01-01
This paper focuses on the flight results of the Cryogenic Two-Phase Flight Experiment (CRYOTP), which was a Hitchhiker based experiment that flew on the space shuttle Columbia in March of 1994 (STS-62). CRYOTP tested two new technologies for advanced cryogenic thermal control; the Space Heat Pipe (SHP), which was a constant conductance cryogenic heat pipe, and the Brilliant Eyes Thermal Storage Unit (BETSU), which was a cryogenic phase-change thermal storage device. These two devices were tested independently during the mission. Analysis of the flight data indicated that the SHP was unable to start in either of two attempts, for reasons related to the fluid charge, parasitic heat leaks, and cryocooler capacity. The BETSU test article was successfully operated with more than 250 hours of on-orbit testing including several cooldown cycles and 56 freeze/thaw cycles. Some degradation was observed with the five tactical cryocoolers used as thermal sinks, and one of the cryocoolers failed completely after 331 hours of operation. Post-flight analysis indicated that this problem was most likely due to failure of an electrical controller internal to the unit.
HiMAT highly maneuverable aircraft technology, flight report
NASA Technical Reports Server (NTRS)
1982-01-01
Flight verification of a primary flight control system, designed to control the unstable HiMAT aircraft is presented. The initial flight demonstration of a maneuver autopilot in the level cruise mode and the gathering of a limited amount of airspeed calibration data.
Tu-144LL SST Flying Laboratory on Taxiway at Zhukovsky Air Development Center near Moscow, Russia
NASA Technical Reports Server (NTRS)
1998-01-01
The sleek lines of the Tupolev Tu-144LL are evident as it sits on the taxiway at the Zhukovsky Air Development Center near Moscow, Russia. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
The DAST-1 remotely piloted research vehicle development and initial flight testing
NASA Technical Reports Server (NTRS)
Kotsabasis, A.
1981-01-01
The development and initial flight testing of the DAST (drones for aerodynamic and structural testing) remotely piloted research vehicle, fitted with the first aeroelastic research wing ARW-I are presented. The ARW-I is a swept supercritical wing, designed to exhibit flutter within the vehicle's flight envelope. An active flutter suppression system (FSS) designed to increase the ARW-I flutter boundary speed by 20 percent is described. The development of the FSS was based on prediction techniques of structural and unsteady aerodynamic characteristics. A description of the supporting ground facilities and aircraft systems involved in the remotely piloted research vehicle (RPRV) flight test technique is given. The design, specification, and testing of the remotely augmented vehicle system are presented. A summary of the preflight and flight test procedures associated with the RPRV operation is given. An evaluation of the blue streak test flight and the first and second ARW-I test flights is presented.
NASA Technical Reports Server (NTRS)
1972-01-01
The planning data are presented for subsequent phases of free-flying teleoperator program (FFTO) and includes costs, schedules and supporting research and technology activities required to implement the free-flying teleoperator system and associated flight equipment. The purpose of the data presented is to provide NASA with the information needed to continue development of the FFTO and integrate it into the space shuttle program. The planning data describes three major program phases consisting of activities and events scheduled to effect integrated design, development, fabrication and operation of an FFTO system. Phase A, Concept Generation, represents a study effort directed toward generating and evaluating a number of feasible FFTO experiment system concepts. Phase B, Definition, will include preliminary design and supporting analysis of the FFTO, the shuttle based equipment and ground support equipment. Phase C/D, Design, Development and Operations will include detail design of the operational FFTO, its integration into the space shuttle, hardware fabrication and testing, delivery of flight hardware and support of flight operations. Emphasis is placed on the planning for Phases A and B since these studies will be implemented early in the development cycle. Phase C/D planning is more general and subject to refinement during the definition phase.
Initiating Sustainable Operations at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Adams, Daniel E.; Orrell, Josh
2003-01-01
Marshall Space Flight Center conducted a preliminary sustainability assessment to identify sustainable projects for potential implementation at its facility in Huntsville, Alabama. This presentation will discuss the results of that assessment, highlighting current and future initiatives aimed at integrating sustainability into daily operations.
Chemical Vapor Deposition at High Pressure in a Microgravity Environment
NASA Technical Reports Server (NTRS)
McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao
1999-01-01
In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.
Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities
NASA Technical Reports Server (NTRS)
Pausder, Heinz-Juergen; Blanken, Chris L.
1992-01-01
Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hr of flight time during 10 days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.
Investigation of the effects of bandwidth and time delay on helicopter roll-axis handling qualities
NASA Technical Reports Server (NTRS)
Pausder, Heinz-Juergen; Blanken, Chris L.
1993-01-01
Several years of cooperative research conducted under the U.S./German Memorandum of Understanding (MOU) in helicopter flight control has recently resulted in a successful handling qualities study. The focus of this cooperative research has been the effects on handling qualities due to time delays in combination with a high bandwidth vehicle. The jointly performed study included the use of U.S. ground-based simulation and German in-flight simulation facilities. The NASA-Ames Vertical Motion Simulator (VMS) was used to develop a high bandwidth slalom tracking task which took into consideration the constraints of the facilities. The VMS was also used to define a range of the test parameters and to perform initial handling qualities evaluations. The flight tests were conducted using DLR's variable-stability BO 105 S3 Advanced Technology Testing Helicopter System (ATTHeS). Configurations included a rate command and an attitude command response system with added time delays up to 160 milliseconds over the baseline and bandwidth values between 1.5 and 4.5 rad/sec. Sixty-six evaluations were performed in about 25 hours of flight time during ten days of testing. The results indicate a need to more tightly constrain the allowable roll axis phase delay for the Level 1 and Level 2 requirements in the U.S. Army's specification for helicopter handling qualities, ADS-33C.
1998-05-26
The Alpha Magnetic Spectrometer (AMS) experiment and four Get Away Special (GAS) payload canisters are secure in Discovery's payload bay shortly before the payload bay doors are closed for the flight of STS-91 at Launch Pad 39A. Launch is planned for June 2 with a window opening around 6:10 p.m. EDT. The AMS experiment is the first of a new generation of space-based experiments which will use particles, instead of light, to study the Universe and will search for both antimatter and "dark matter," as well as measure normal matter cosmic and gamma rays. The GAS Program, initiated to provide extremely low-cost access to space, is managed by the Shuttle Small Payloads Project at NASA's Goddard Space Flight Center. Eight GAS experiments will be conducted on STS-91. The mission will also feature the ninth Shuttle docking with the Russian Space Station Mir, the first Mir docking for Discovery, the conclusion of Phase I of the joint U.S.-Russian International Space Station Program, and the first flight of the new Space Shuttle super lightweight external tank. The STS-91 flight crew includes Commander Charles Precourt; Pilot Dominic Gorie; and Mission Specialists Wendy B. Lawrence; Franklin Chang-Diaz, Ph.D.; Janet Kavandi, Ph.D.; and Valery Ryumin, with the Russian Space Agency. Andrew Thomas, Ph.D., will be returning to Earth with the crew after living more than four months aboard Mir
Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter
2011-01-01
On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where the sample return capsule was expected to become visible. An overview of the design methodologies and trade-offs used in the Hayabusa re-entry observation campaign are presented.
Titan/Centaur D-1TTC-5 Helios B flight data report
NASA Technical Reports Server (NTRS)
Adams, K. A.
1976-01-01
The fourth operational flight of the newest NASA unmanned launch vehicle is reported. The spacecraft was the Helios B, the second of two solar probes designed and built by the Federal Republic of Germany. The primary mission objective, to place the Helios spacecraft on a heliocentric orbit in the ecliptic plane with a perihelion distance of 0.29 AU, was successfully accomplished. After successful injection of the Helios spacecraft, a series of experiments were performed with the Centaur stage to demonstrate its operational capabilities. All objectives of the extended mission phase were successfully met. This report presents the analysis of the launch vehicle flight data for the primary mission phase of the TC-5 flight.
Rehabilitation After International Space Station Flights
NASA Technical Reports Server (NTRS)
Chauvin, S. J.; Shepherd, B. A. S.; Guilliams, M. E.; Taddeo, T.
2003-01-01
Rehabilitating U.S. crew members to preflight status following flights on the Russian Mir Space Station required longer than six months for full functional recovery of some of the seven crew members. Additional exercise hardware has been added on the International Space Station as well as a rehabilitative emphasis on functional fitness/agility and proprioception. The authors will describe and present the results of the rehabilitation program for ISS and evaluate rehabilitative needs for longer missions. Pre- and in-flight programs emphasize strength and aerobic conditioning. One year before launch, crew members are assigned an Astronaut Strength and Conditioning specialist. Crew members are scheduled for 2 hours, 3 days a week, for pre-flight training and 2.5 hours, six days a week, for in-flight training. Crewmembers are tested on functional fitness, agility, isokinetic strength, and submaximal cycle ergometer evaluation before and after flight. The information from these tests is used for exercise prescriptions, comparison, and evaluation of the astronaut and training programs. The rehabilitation program lasts for 45 days and is scheduled for 2 hours during each crew workday. Phase 1 of the rehabilitation program starts on landing day and places emphasis on ambulation, flexibility, and muscle strengthening. Phase 2 adds proprioceptive exercise and cardiovascular conditioning. Phase 3 (the longest phase) focuses on functional development. All programs are tailored specifically for each individual according to their test results, preferred recreational activities, and mission roles and duties. Most crew members reached or exceeded their preflight test values 45 days after flight. Some crew members subjectively indicated the need for a longer rehabilitation period. The current rehabilitation program for returning ISS crew members seems adequate in content but may need to be extended for longer expeditions.
Trajectory design for the Deep Space Program Science Experiment (DSPSE) mission
NASA Astrophysics Data System (ADS)
Carrington, D.; Carrico, J.; Jen, J.; Roberts, C.; Seacord, A.; Sharer, P.; Newman, L.; Richon, K.; Kaufman, B.; Middour, J.
In 1994, the Deep Space Program Science Experiment (DSPSE) spacecraft will become the first spacecraft to perform, in succession, both a lunar orbiting mission and a deep-space asteroid encounter mission. The primary mission objective is to perform a long-duration flight-test of various new-technology lightweight components, such as sensors, in a deep-space environment. The mission has two secondary science objectives: to provide high-resolution imaging of the entire lunar surface for mapping purposes and flyby imaging of the asteroid 1620 Geographos. The DSPSE mission is sponsored by the Strategic Defense Initiative Organization (SDIO). As prime contractor, the Naval Research Laboratory (NRL) is building the spacecraft and will conduct mission operations. The Goddard Space Flight Center's (GSFC) Flight Dynamics Division is supporting NRL in the areas of The Deep Space Network (DSN) will provide tracking support. The DSPSE mission will begin with a launch from the Western Test Range in late January 1994. Following a minimum 1.5-day stay in a low-Earth parking orbit, a solid kick motor burn will boost DSPSE into an 18-day, 2.5-revolution phasing orbit transfer trajectory to the Moon. Two burns to insert DSPSE into a lunar polar orbit suitable for the mapping mission will be followed by mapping orbit maintenance and adjustment operations over a period of 2 sidereal months. In May 1994, a lunar orbit departure maneuver, in conjunction with a lunar swingby 26 days later, will propel DSPSE onto a heliocentric transfer that will intercept Geographos on September 1, 1994. This paper presents the characteristics, deterministic delta-Vs, and design details of each trajectory phase of this unique mission, together with the requirements, constraints, and design considerations to which each phase is subject. Numerous trajectory plots and tables of significant trajectory events are included. Following a discussion of the results of a preliminary launch window analysis, a summary of the deterministic impulsive delta-V budget required to establish the baseline mission trajectory design is presented.
Evaluating Trauma Sonography for Operational Use in the Microgravity Environment
NASA Technical Reports Server (NTRS)
Kirkpatrick, Andrew W.; Jones, Jeffrey A.; Sargsyan, Ashot; Hamilton, Douglas; Melton, Shannon; Beck, George; Nicolaou, Savvas; Campbell, Mark; Dulchavsky, Scott
2007-01-01
Sonography is the only medical imaging modality aboard the ISS, and is likely to remain the leading imaging modality in future human space flight programs. While trauma sonography (TS) has been well recognized for terrestrial trauma settings, the technique had to be evaluated for suitability in space flight prior to adopting it as an operational capability. The authors found the following four-phased evaluative approach applicable to this task: 1) identifying standard or novel terrestrial techniques for potential use in space medicine; 2) developing and testing these techniques with suggested modifications on the ground (1g) either in clinical settings or in animal models, as appropriate; 3) evaluating and refining the techniques in parabolic flight (0g); and 4) validating and implementing for clinical use in space. In Phase I of the TS project, expert opinion and literature review suggested TS to be a potential screening tool for trauma in space. In Phase II, animal models were developed and tested in ground studies, and clinical studies were carried out in collaborating trauma centers. In Phase III, animal models were flight-tested in the NASA KC-135 Reduced Gravity Laboratory. Preliminary results of the first three phases demonstrated potential clinical utility of TS in microgravity. Phase IV studies have begun to address crew training issues, on-board imaging protocols, and data transfer procedures necessary to offer the modified TS technique for space use.
Technology verification phase. Dynamic isotope power system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halsey, D.G.
1982-03-10
The Phase I requirements of the Kilowatt Isotope Power System (KIPS) program were to make a detailed Flight System Conceptual Design (FSCD) for an isotope fueled organic Rankine cycle power system and to build and test a Ground Demonstration System (GDS) which simulated as closely as possible the operational characteristics of the FSCD. The activities and results of Phase II, the Technology Verification Phase, of the program are reported. The objectives of this phase were to increase system efficiency to 18.1% by component development, to demonstrate system reliability by a 5000 h endurance test and to update the flight systemmore » design. During Phase II, system performance was improved from 15.1% to 16.6%, an endurance test of 2000 h was performed while the flight design analysis was limited to a study of the General Purpose Heat Source, a study of the regenerator manufacturing technique and analysis of the hardness of the system to a laser threat. It was concluded from these tests that the GDS is basically prototypic of a flight design; all components necessary for satisfactory operation were demonstrated successfully at the system level; over 11,000 total h of operation without any component failure attested to the inherent reliability of this type of system; and some further development is required, specifically in the area of performance. (LCL)« less
NASA Astrophysics Data System (ADS)
Buchholz, B.; Ebert, V.; Kraemer, M.; Afchine, A.
2014-12-01
Common gas phase H2O measurements on fast airborne platforms e.g. using backward facing or "Rosemount"-inlets can lead to a high risk of ice and droplets contamination. In addition, currently no single hygrometer exists that allows a simultaneous, high-speed measurement of all phases (gas, liquid, ice) with the same detection principle. In the rare occasions multi-phase measurements are realized, gas-and condensed-phase observations rely on different methods, instruments and calibration strategies so that precision and accuracy levels are quite difficult to quantify. This is effectively avoided by the novel TDLAS instrument, HAI, Hygrometer for Atmospheric Investigation, which allows a simultaneous, high speed, multi-phase detection without any sensor calibration in a unique "2+2" channel concept. Hai combines two independent wavelength channels, at 1.4 µm and at 2.6 µm, for a wide dynamic range from 1 to 30 000 ppmv, with a simultaneous closed path (extractive) and open path detection. Thus, "Total", i.e. gas-phase plus condensed-phase water is measured by sampling via a forward facing inlet into "closed-path" extractive cells. A selective, sampling-free, high speed gas phase detection is realized via a dual-wavelength "open-path" cell placed outside of the aircraft fuselage. All channels can be sampled with 120 Hz (measurement cycle time Dt=1.6 ms) allowing an unprecedented spatial resolution of 30 cm at 900 km/h. The evaluation of the individual multi-channel raw-data is done post flight, without any channel interdependencies, in calibration-free mode, thus allowing fast, accurate and precise multi-phase water detection in flight. The performance could be shown in more than 200 net flights hours in three scientific flight campaigns (TACTS, ESMVal, ML-CIRRUS) on the new German HALO aircraft. In addition the level of the accuracy of the calibration free evaluation was evaluated at the German national primary water vapor standard.
Automated flight test management system
NASA Technical Reports Server (NTRS)
Hewett, M. D.; Tartt, D. M.; Agarwal, A.
1991-01-01
The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
14 CFR 135.345 - Pilots: Initial, transition, and upgrade ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; (9) Flight planning; (10) Each normal and emergency procedure; and (11) The approved Aircraft Flight... following, as applicable to their duties: (a) General subjects— (1) The certificate holder's flight locating...., flight controls, electrical, and hydraulic), other systems, as appropriate, principles of normal...
Behaviour of emerging contaminants in sewage sludge after anaerobic digestion.
Boix, C; Ibáñez, M; Fabregat-Safont, D; Morales, E; Pastor, L; Sancho, J V; Sánchez-Ramírez, J E; Hernández, F
2016-11-01
Nowadays, there is an increasing concern over the presence of contaminants in the aquatic environment, where they can be introduced from wastewater after their incomplete removal in the treatment plants. In this work, degradation of selected emerging pollutants in the aqueous and solid phases of sewage sludge has been investigated after anaerobic digestion using two different digesters: mesophilic and thermophilic. Initially, sludge samples were screened by ultra-high-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF MS) for identification of emerging contaminants in the samples. In a second step, a target quantitative method based on LC coupled to tandem MS was applied for selected pollutants identified in the previous screening. The behaviour of the compounds under anaerobic conditions was studied estimating the degradation efficiency and distribution of compounds between both sludge phases. Irbesartan and benzoylecgonine seemed to be notably degraded in both phases of the sludge. Venlafaxine showed a significant concentration decrease in the aqueous phase in parallel to an increase in the solid phase. The majority of the compounds showed an increase of their concentrations in both phases after the digestion. Concentrations in the solid phase were commonly higher than in the aqueous for most contaminants, indicating that they were preferentially adsorbed onto the solid particles. Copyright © 2016 Elsevier Ltd. All rights reserved.
ACAS-Xu Initial Self-Separation Flight Tests
NASA Technical Reports Server (NTRS)
Marston, Mike; Baca, Gabe
2015-01-01
The purpose of this flight test report is to document and report the details of the ACAS Xu (Airborne Collision Avoidance System For Unmanned Aircraft) / Self-Separation flight test series performed at Edwards AFB from November to December of 2014. Included in this document are details about participating aircraft, aircrew, mission crew, system configurations, flight data, flight execution, flight summary, test results, and lessons learned.
Saturn 5 launch vehicle flight evaluation report-AS-509 Apollo 14 mission
NASA Technical Reports Server (NTRS)
1971-01-01
A postflight analysis of the Apollo 14 flight is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight failures are identified, their causes are determined and corrective actions are recommended. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.
Electrolysis Performance Improvement Concept Study (EPICS) Flight Experiment-Reflight
NASA Technical Reports Server (NTRS)
Schubert, F. H.
1997-01-01
The Electrolysis Performance Improvement Concept Study (EPICS) is a flight experiment to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer (SFE) concept which was selected for the use aboard the International Space Station (ISS) for oxygen (O2) generation. It also is to investigate the impact of microgravity on electrochemical cell performance. Electrochemical cells are important to the space program because they provide an efficient means of generating O2 and hydrogen (H2) in space. Oxygen and H2 are essential not only for the survival of humans in space but also for the efficient and economical operation of various space systems. Electrochemical cells can reduce the mass, volume and logistical penalties associated with resupply and storage by generating and/or consuming these gases in space. An initial flight of the EPICS was conducted aboard STS-69 from September 7 to 8, 1995. A temperature sensor characteristics shift and a missing line of software code resulted in only partial success of this initial flight. Based on the review and recommendations of a National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) review team a reflight activity was initiated to obtain the remaining desired results, not achieved during the initial flight.
Smart command recognizer (SCR) - For development, test, and implementation of speech commands
NASA Technical Reports Server (NTRS)
Simpson, Carol A.; Bunnell, John W.; Krones, Robert R.
1988-01-01
The SCR, a rapid prototyping system for the development, testing, and implementation of speech commands in a flight simulator or test aircraft, is described. A single unit performs all functions needed during these three phases of system development, while the use of common software and speech command data structure files greatly reduces the preparation time for successive development phases. As a smart peripheral to a simulation or flight host computer, the SCR interprets the pilot's spoken input and passes command codes to the simulation or flight computer.
NASA Technical Reports Server (NTRS)
Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana
2011-01-01
This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.
A tractable prescription for large-scale free flight expansion of wavefunctions
NASA Astrophysics Data System (ADS)
Deuar, P.
2016-11-01
A numerical recipe is given for obtaining the density image of an initially compact quantum mechanical wavefunction that has expanded by a large but finite factor under free flight. The recipe given avoids the memory storage problems that plague this type of calculation by reducing the problem to the sum of a number of fast Fourier transforms carried out on the relatively small initial lattice. The final expanded state is given exactly on a coarser magnified grid with the same number of points as the initial state. An important application of this technique is the simulation of measured time-of-flight images in ultracold atom experiments, especially when the initial clouds contain superfluid defects. It is shown that such a finite-time expansion, rather than a far-field approximation is essential to correctly predict images of defect-laden clouds, even for long flight times. Examples shown are: an expanding quasicondensate with soliton defects and a matter-wave interferometer in 3D.
14 CFR Appendix B of Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2010 CFR
2010-01-01
... Performed by Certified Personnel 4.0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and Assumptions 4.1.2Sample Calculation and Products 4.1.3 Launch Specific Updates and Final Flight Safety Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety...
14 CFR Appendix B of Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2012 CFR
2012-01-01
... Performed by Certified Personnel 4.0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and Assumptions 4.1.2Sample Calculation and Products 4.1.3 Launch Specific Updates and Final Flight Safety Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety...
14 CFR Appendix B of Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2011 CFR
2011-01-01
... Performed by Certified Personnel 4.0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and Assumptions 4.1.2Sample Calculation and Products 4.1.3 Launch Specific Updates and Final Flight Safety Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety...
The space station assembly phase: Flight telerobotic servicer feasibility, volume 1
NASA Technical Reports Server (NTRS)
Smith, Jeffrey H.; Gyamfi, Max A.; Volkmer, Kent; Zimmerman, Wayne F.
1987-01-01
The question is addressed which was raised by the Critical Evaluation Task Force (CETF) analysis of the space station: if a Flight Telerobotic Servicer (FTS) of a given technical risk could be built for use during space station assembly, could it save significant extravehicular (EVA) resources. Key issues and trade-offs associated with using an FTS to aid in space station assembly phase tasks such as construction and servicing are identified. A methodology is presented that incorporates assessment of candidate assembly phase tasks, telerobotics performance capabilities, development costs, operational constraints (STS and proximity operations), maintenance, attached payloads, and polar platforms. A discussion of the issues is presented with focus on potential FTS roles: (1) as a research-oriented test bed to learn more about space usage of telerobotics; (2) as a research-based test bed with an experimental demonstration orientation and limited assembly and servicing applications; or (3) as an operational system to augment EVA, to aid the construction of the space station, and to reduce the programmatic (schedule) risk by increasing the flexibility of mission operations. During the course of the study, the baseline configuration was modified into Phase 1 (a station assembled in 12 flights), and Phase 2 (a station assembled over a 30 flight period) configuration.
[EEG-correlates of pilots' functional condition in simulated flight dynamics].
Kiroy, V N; Aslanyan, E V; Bakhtin, O M; Minyaeva, N R; Lazurenko, D M
2015-01-01
The spectral characteristics of the EEG recorded on two professional pilots in the simulator TU-154 aircraft in flight dynamics, including takeoff, landing and horizontal flight (in particular during difficult conditions) were analyzed. EEG recording was made with frequency band 0.1-70 Hz continuously from 15 electrodes. The EEG recordings were evaluated using analysis of variance and discriminant analysis. Statistical significant of the identified differences and the influence of the main factors and their interactions were evaluated using Greenhouse - Gaiser corrections. It was shown that the spectral characteristics of the EEG are highly informative features of the state of the pilots, reflecting the different flight phases. High validity ofthe differences including individual characteristic, indicates their non-random nature and the possibility of constructing a system of pilots' state control during all phases of flight, based on EEG features.
Application of phase matching autofocus in airborne long-range oblique photography camera
NASA Astrophysics Data System (ADS)
Petrushevsky, Vladimir; Guberman, Asaf
2014-06-01
The Condor2 long-range oblique photography (LOROP) camera is mounted in an aerodynamically shaped pod carried by a fast jet aircraft. Large aperture, dual-band (EO/MWIR) camera is equipped with TDI focal plane arrays and provides high-resolution imagery of extended areas at long stand-off ranges, at day and night. Front Ritchey-Chretien optics is made of highly stable materials. However, the camera temperature varies considerably in flight conditions. Moreover, a composite-material structure of the reflective objective undergoes gradual dehumidification in dry nitrogen atmosphere inside the pod, causing some small decrease of the structure length. The temperature and humidity effects change a distance between the mirrors by just a few microns. The distance change is small but nevertheless it alters the camera's infinity focus setpoint significantly, especially in the EO band. To realize the optics' resolution potential, the optimal focus shall be constantly maintained. In-flight best focus calibration and temperature-based open-loop focus control give mostly satisfactory performance. To get even better focusing precision, a closed-loop phase-matching autofocus method was developed for the camera. The method makes use of an existing beamsharer prism FPA arrangement where aperture partition exists inherently in an area of overlap between the adjacent detectors. The defocus is proportional to an image phase shift in the area of overlap. Low-pass filtering of raw defocus estimate reduces random errors related to variable scene content. Closed-loop control converges robustly to precise focus position. The algorithm uses the temperature- and range-based focus prediction as an initial guess for the closed-loop phase-matching control. The autofocus algorithm achieves excellent results and works robustly in various conditions of scene illumination and contrast.
Apollo experience report: Flight planning for manned space operations
NASA Technical Reports Server (NTRS)
Oneill, J. W.; Cotter, J. B.; Holloway, T. W.
1972-01-01
The history of flight planning for manned space missions is outlined, and descriptions and examples of the various evolutionary phases of flight data documents from Project Mercury to the Apollo Program are included. Emphasis is given to the Apollo flight plan. Time line format and content are discussed in relationship to the manner in which they are affected by the types of flight plans and various constraints.
Drury, Douglas W.; Whitesell, Matthew E.; Wade, Michael J.
2016-01-01
We investigated the environmental conditions that induce a flight response in the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), including resource quality, temperature, relative humidity, and light. Over 72-h trial periods, we observed the proportion of individuals emigrating by flight to range from 0.0 in extreme heat or cold to 0.82 with starvation. Resource quality, presence of a light source, and temperature all directly influenced the initiation of the flight response. We did not detect any effect of relative humidity or sudden change in temperature on the incidence of flight. We discuss our findings in the context of Tribolium ecology and evolution. PMID:27087697
NASA Technical Reports Server (NTRS)
Gomez-Rosa, Carlos; Cifuentes, Juan; Wasiak, Francis; Alfonzo, Agustin
2015-01-01
The mission readiness environment is where spacecraft and ground systems converge to form the entire as built flight system for the final phase of operationally-themed testing. For most space missions, this phase starts between nine to twelve months prior to the planned launch. In the mission readiness environment, the goal is to perform sufficient testing to exercise the flight teams and systems through all mission phases in order to demonstrate that all elements are ready to support. As part of the maturation process, a mission rehearsal program is introduced to focus on team processes within the final flight system, in a more realistic operational environment. The overall goal for a mission rehearsal program is to: 1) ensure all flight system elements are able to meet mission objectives as a cohesive team; 2) reduce the risk in space based operations due to deficiencies in people, processes, procedures, or systems; and 3) instill confidence in the teams that will execute these first time flight activities. A good rehearsal program ensures critical events are exercised, discovers team or flight system nuances whose impact were previously unknown, and provides a real-time environment in which to interact with the various teams and systems. For flight team members, the rehearsal program provides experience and training in the event of planned (or unplanned) flight contingencies. To preserve the essence for team based rehearsals, this paper will explore the important elements necessary for a successful rehearsal program, document differences driven by Earth Orbiting (Aqua, Aura, Suomi-National Polar-orbiting Partnership (NPP)) and Deep Space missions (New Horizons, Mars Atmosphere and Volatile EvolutioN (MAVEN)) and discuss common challenges to both mission types. In addition, large scale program considerations and enhancements or additional steps for developing a rehearsal program will also be considered. For NASA missions, the mission rehearsal phase is a key milestone for predicting and ensuring on-orbit success.
NASA Technical Reports Server (NTRS)
Bothwell, Mary
2004-01-01
A viewgraph presentation describing the the six phases of a space mission is shown. The contents include: 1) What Does Planning Involve?; 2) Designing the Flight System; 3) Building the Flight System; 4) Testing the Flight System; 5) Flying the Mission; and 6) Analyzing the Data.
Overview of the DARPA/AFRL/NASA Smart Wing Phase II program
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Sanders, Brian P.; Pinkerton-Florance, Jennifer L.; Garcia, Ephrahim
2001-06-01
The DARPA/AFRL/NASA Smart Wing program, conducted by a team led by Northrop Grumman Corporation (NGC) under the DARPA Smart Materials and Structures initiative, addresses the development of smart technologies and demonstration of relevant concepts to improve the aerodynamic performance of military aircraft. This paper presents an overview of the smart wing program. The program is divided into two phases. Under Phase 1, (1995 - 1999) the NGC team developed adaptive wing structures with integrated actuation mechanisms to replace standard hinged control surfaces and provide variable, optimal aerodynamic shapes for a variety of flight regimes. Two half-span 16% scale wind tunnel models, representative of an advanced military aircraft wing, one with conventional control surfaces and the other with shape memory alloy (SMA) actuated smart control surfaces, were fabricated and tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT) wind tunnel during two series of tests, conducted in May 1996 and June 1998, respectively. Details of the Phase 1 effort are documented in several papers. The on-going Phase 2 effort discussed here was started in January 1997 and includes several significant improvements over Phase 1: 1) a much larger, full-span model; 2) both leading edge (LE) and trailing edge (TE) smart control surfaces; 3) high-band width actuation systems; and 4) wind tunnel tests at transonic Mach numbers and high dynamic pressures (up to 300 psf.) representative of operational flight regimes. Phase 2 includes two wind tunnel tests, both at the NASA LaRC TDT - the first one was completed in March 2000 and the second (and final) test is scheduled for April 2001. The first test-demonstrated roll-effectiveness over a wide range of Mach numbers achieved using a combination of hingeless, smoothly contoured, SMA actuated, LE and TE control surfaces. The second test addresses the development and demonstration of high bandwidth actuation. An overview of the Phase 2 effort is presented here; detailed discussions of the wind tunnel testing, model design and fabrication, and actuation system development are given in companion papers.
A kinesthetic-tactual display for stall deterrence
NASA Technical Reports Server (NTRS)
Gilson, R. D.; Ventola, R. W.; Fenton, R. E.
1975-01-01
A kinesthetic tactual display may be effectively used as a control aid per previous flight tests. Angle of attack information would be continuously presented to a pilot, via this display, during critical operational phases where stalls are probable. A two phase plan for evaluating this concept is presented. A first development phase would encompass: (1) display fabrication for a conventional control yoke; (2) its installation, together with other necessary instrumentation, in an experimental aircraft; and (3) preliminary flight testing by experienced pilots.
NASA Technical Reports Server (NTRS)
Pavlock, Kate Maureen
2013-01-01
Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... which initial and transition flight training must include an in-flight element. Technical Amendment This.... 28471; Amendment Nos. 121-355 and 135-125] RIN 2120-AF08 Training and Qualification Requirements for Check Airmen and Flight Instructors; Technical Amendment AGENCY: Federal Aviation Administration (FAA...
76 FR 81890 - Airworthiness Directives; The Boeing Company Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... inspection interval for these inspections is 1,400 flight cycles. The compliance times for the initial... repetitive inspection interval for these inspections is either 4,000 flight cycles or 12,000 flight cycles..., 2009. Repeat the inspections thereafter at intervals not to exceed 1,400 flight cycles. Doing the...
Simulation and ground testing with the Advanced Video Guidance Sensor
NASA Technical Reports Server (NTRS)
Howard, Richard T.; Johnston, Albert S.; Bryan, Thomas C.; Book, Michael L.
2005-01-01
The Advanced Video Guidance Sensor (AVGS), an active sensor system that provides near-range 6-degree-of-freedom sensor data, has been developed as part of an automatic rendezvous and docking system for the Demonstration of Autonomous Rendezvous Technology (DART). The sensor determines the relative positions and attitudes between the active sensor and the passive target at ranges up to 300 meters. The AVGS uses laser diodes to illuminate retro-reflectors in the target, a solid-state imager to detect the light returned from the target, and image capture electronics and a digital signal processor to convert the video information into the relative positions and attitudes. The development of the sensor, through initial prototypes, final prototypes, and three flight units, has required a great deal of testing at every phase, and the different types of testing, their effectiveness, and their results, are presented in this paper, focusing on the testing of the flight units. Testing has improved the sensor's performance.
Induced abnormality in Mir- and Earth grown Super Dwarf wheat.
Bubenheim, D L; Stieber, J; Campbell, W F; Salisbury, F B; Levinski, M; Sytchev, V; Podolsky, I; Chernova, L; Pdolsky, I
2003-01-01
Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with Earth-grown wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super-Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen gains, however, contained only one nuclei, while normal viable pollen is tri-nucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was the presence of a high level of atmospheric ethylene (1,200 ppb). Ground studies conducted by exposing 'Super-Dwarf' wheat to ethylene just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.
Induced abnormality in Mir- and Earth grown Super Dwarf wheat
NASA Technical Reports Server (NTRS)
Bubenheim, D. L.; Stieber, J.; Campbell, W. F.; Salisbury, F. B.; Levinski, M.; Sytchev, V.; Podolsky, I.; Chernova, L.; Pdolsky, I.
2003-01-01
Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with Earth-grown wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super-Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen gains, however, contained only one nuclei, while normal viable pollen is tri-nucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was the presence of a high level of atmospheric ethylene (1,200 ppb). Ground studies conducted by exposing 'Super-Dwarf' wheat to ethylene just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.
Dynamic performance of an aero-assist spacecraft - AFE
NASA Technical Reports Server (NTRS)
Chang, Ho-Pen; French, Raymond A.
1992-01-01
Dynamic performance of the Aero-assist Flight Experiment (AFE) spacecraft was investigated using a high-fidelity 6-DOF simulation model. Baseline guidance logic, control logic, and a strapdown navigation system to be used on the AFE spacecraft are also modeled in the 6-DOF simulation. During the AFE mission, uncertainties in the environment and the spacecraft are described by an error space which includes both correlated and uncorrelated error sources. The principal error sources modeled in this study include navigation errors, initial state vector errors, atmospheric variations, aerodynamic uncertainties, center-of-gravity off-sets, and weight uncertainties. The impact of the perturbations on the spacecraft performance is investigated using Monte Carlo repetitive statistical techniques. During the Solid Rocket Motor (SRM) deorbit phase, a target flight path angle of -4.76 deg at entry interface (EI) offers very high probability of avoiding SRM casing skip-out from the atmosphere. Generally speaking, the baseline designs of the guidance, navigation, and control systems satisfy most of the science and mission requirements.
Execution of the Spitzer In-orbit Checkout and Science Verification Plan
NASA Technical Reports Server (NTRS)
Miles, John W.; Linick, Susan H.; Long, Stacia; Gilbert, John; Garcia, Mark; Boyles, Carole; Werner, Michael; Wilson, Robert K.
2004-01-01
The Spitzer Space Telescope is an 85-cm telescope with three cryogenically cooled instruments. Following launch, the observatory was initialized and commissioned for science operations during the in-orbit checkout (IOC) and science verification (SV) phases, carried out over a total of 98.3 days. The execution of the IOC/SV mission plan progressively established Spitzer capabilities taking into consideration thermal, cryogenic, optical, pointing, communications, and operational designs and constraints. The plan was carried out with high efficiency, making effective use of cryogen-limited flight time. One key component to the success of the plan was the pre-launch allocation of schedule reserve in the timeline of IOC/SV activities, and how it was used in flight both to cover activity redesign and growth due to continually improving spacecraft and instrument knowledge, and to recover from anomalies. This paper describes the adaptive system design and evolution, implementation, and lessons learned from IOC/SV operations. It is hoped that this information will provide guidance to future missions with similar engineering challenges
Mercury contamination study for flight system safety
NASA Technical Reports Server (NTRS)
Gorzynski, C. S., Jr.; Maycock, J. N.
1972-01-01
The effects and prevention of possible mercury pollution from the failure of solar electric propulsion spacecraft using mercury propellant were studied from tankage loading of post launch trajector injection. During preflight operations and initial flight mode there is little danger of mercury pollution if proper safety precautions are taken. Any spillage on the loading, mating, transportation, or launch pad areas is obvious and can be removed by vacuum cleaning soil and chemical fixing. Mercury spilled on Cape Kennedy ground soil will be chemically complexed and retained by the sandstone subsoil. A cover layer of sand or gravel on spilled mercury which has settled to the bottom of a water body adjacent to the system operation will control and eliminate the formation of toxic organic mercurials. Mercury released into the earth's atmosphere through leakage of a fireball will be diffused to low concentration levels. However, gas phase reactions of mercury with ozone could cause a local ozone depletion and result in serious ecological hazards.
NASA Technical Reports Server (NTRS)
Luz, P. L.; Rice, T.
1998-01-01
This technical memorandum reports on the mirror material properties that were compiled by NASA Marshall Space Flight Center (MSFC) from April 1996 to June 1997 for preliminary design of the Next Generation Space Telescope (NGST) Study. The NGST study began in February 1996, when the Program Development Directorate at NASA MSFC studied the feasibility of the NGST and developed the pre-phase A program for it. After finishing some initial studies and concepts development work on the NGST, MFSC's Program Development Directorate handed this work to the Observatory Projects Office at MSFC and then to NASA Goddard Space Flight Center (GSFC). This technical memorandum was written by MSFC's Preliminary Design Office and Materials and Processes Laboratory for the NGST Optical Telescope Assembly (OTA) team, in Support of NASA GSFC. It contains material properties for 9 mirror Substrate materials, using information from at least 6 industrial Suppliers, 16 textbooks, 44 technical papers, and 130 technical abstracts.
Kristensen, K; Jensen, L N; Glasius, M; Bilde, M
2017-10-18
This study presents a newly constructed temperature controlled cold-room smog chamber at Aarhus University, Denmark. The chamber is herein utilized to study the effect of sub-zero temperature on the formation and chemical composition of secondary organic aerosol (SOA) from ozone initiated oxidation of α-pinene. The chemical composition of α-pinene SOA formed from dark ozonolysis of α-pinene at 293 K and 258 K was investigated using High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS) and Ultra-High Performance Liquid Chromatography/Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry (UHPLC/ESI-qToF-MS). For comparison, an OH-initiated oxidation experiment was performed at 293 K. In ozonolysis experiments it was found that oxygen-to-carbon (O : C) ratios were higher in the particles formed at 293 K compared to 258 K. A total of 16 different organic acids and 30 dimers esters were quantified in the collected particles composing up to 34% of the total α-pinene SOA mass with increased mass fraction of carboxylic acids in particles from α-pinene ozonolysis at 258 K compared to 293 K. In contrast, dimer esters showed suppressed formation at the sub-zero reaction temperature, thus contributing 3% to SOA mass at 258 K while contributing 9% at 293 K. SOA formed in the OH-initiated oxidation of α-pinene at 293 K resulted in low concentrations of dimer esters supporting Criegee intermediates as a possible pathway to dimer ester formation. Vapour pressure estimates of the identified carboxylic acids and dimer esters are presented and show how otherwise semi-volatile carboxylic acids at sufficiently low temperatures may classify as low or even extremely low volatile organic compounds (ELVOC), thus may add to an enhanced particle formation observed at the sub-zero temperature through gas-to-particle conversion. The change in chemical composition of the SOA particles with temperature is ascribed to a combination of effects: the decreased vapour pressures and hence increased condensation of carboxylic acids from the gas phase to the particle phase along with suppressed formation of the high molecular weight dimer esters and different gas and particle phase chemistry results in particles of different chemical composition as a consequence of low reaction temperatures.
Adaptive Guidance and Control Algorithms applied to the X-38 Reentry Mission
NASA Astrophysics Data System (ADS)
Graesslin, M.; Wallner, E.; Burkhardt, J.; Schoettle, U.; Well, K. H.
International Space Station's Crew Return/Rescue Vehicle (CRV) is planned to autonomously return the complete crew of 7 astronauts back to earth in case of an emergency. As prototype of such a vehicle, the X-38, is being developed and built by NASA with European participation. The X-38 is a lifting body with a hyper- sonic lift to drag ratio of about 0.9. In comparison to the Space Shuttle Orbiter, the X-38 has less aerodynamic manoeuvring capability and less actuators. Within the German technology programme TETRA (TEchnologies for future space TRAnsportation systems) contributing to the X-38 program, guidance and control algorithms have been developed and applied to the X-38 reentry mission. The adaptive guidance concept conceived combines an on-board closed-loop predictive guidance algorithm with flight load control that temporarily overrides the attitude commands of the predictive component if the corre- sponding load constraints are violated. The predictive guidance scheme combines an optimization step and a sequence of constraint restoration cycles. In order to satisfy on-board computation limitations the complete scheme is performed only during the exo-atmospheric flight coast phase. During the controlled atmospheric flight segment the task is reduced to a repeatedly solved targeting problem based on the initial optimal solution, thus omitting in-flight constraints. To keep the flight loads - especially the heat flux, which is in fact a major concern of the X-38 reentry flight - below their maximum admissible values, a flight path controller based on quadratic minimization techniques may override the predictive guidance command for a flight along the con- straint boundary. The attitude control algorithms developed are based on dynamic inversion. This methodology enables the designer to straightforwardly devise a controller structure from the system dynamics. The main ad- vantage of this approach with regard to reentry control design lies in the fact that inversion renders a scheduled controller. Throughout the reentry, varying sets of actuators are available for control. Depending on which set is available, different inversion schemes are applied. With at least three controls effectors, decoupled control of the attitude angles can be achieved via a successive inversion which exploits the time-scale separation inherent in the attitude dynamics. However, during a flight phase where control needs to be achieved with only two body flaps, internal dynamics must be taken into account. To this end, a redefinition of the controlled variables is carried out so that the internal dynamics are stabilized while satisfactory tracking performance is achieved. The objectives of the present paper are to discuss the guidance and control approach taken, and asses the per- formance of the concepts by numerical flight simulations. For this purpose results obtained by means of a nu- merical flight simulator (CREDITS), that accurately models the characteristics of the X-38 vehicle, are presented to demonstrate the performance and effectiveness of the guidance and control design. Sensitivities to non- nominal flight conditions have been evaluated by Monte-Carlo analyses comprising motion simulations in both three and six degree of freedom. The results show that the mission requirements are met.
Development of countermeasures for use in space missions. [to adaptive response to space flight
NASA Technical Reports Server (NTRS)
Nicogossian, A. E. T.; Pool, S.; Huntoon, C. S. L.; Leonard, J. I.
1985-01-01
Several measures used to mitigate the inappropriate adaptive responses of space flight are investigated. Weighlessness results in a cephalic fluid shift, which causes a reduction in the circulating blood volume, and removal of weight bearing forces from musculoskeletal systems. The physiological changes that occur from one-g initiated hypovolemia and zero-g initiated fluild shifts are analyzed and compared. The role of barorecptors on the activation of the adrenergic responses that occurs as a result of hypovolemia is studied. The proper selection and administration of in-flight and post flight countermeasures, which include passive and active physical conditioning techniques, drugs, and vitamins are examined.
Experiments using electronic display information in the NASA terminal configured vehicle
NASA Technical Reports Server (NTRS)
Morello, S. A.
1980-01-01
The results of research experiments concerning pilot display information requirements and visualization techniques for electronic display systems are presented. Topics deal with display related piloting tasks in flight controls for approach-to-landing, flight management for the descent from cruise, and flight operational procedures considering the display of surrounding air traffic. Planned research of advanced integrated display formats for primary flight control throughout the various phases of flight is also discussed.
ERIC Educational Resources Information Center
Huet, Michael; Jacobs, David M.; Camachon, Cyril; Missenard, Olivier; Gray, Rob; Montagne, Gilles
2011-01-01
The present study reports two experiments in which a total of 20 participants without prior flight experience practiced the final approach phase in a fixed-base simulator. All participants received self-controlled concurrent feedback during 180 practice trials. Experiment 1 shows that participants learn more quickly under variable practice…
2012-06-01
executed a concerted effort to employ reliability standards and testing from the design phase through fielding. Reliability programs remain standard...performed flight test engineer duties on several developmental flight test programs and served as Chief Engineer for a flight test squadron. Major...Quant is an acquisition professional with over 250 flight test hours in various aircraft, including the F-16, Airborne Laser, and HH-60. She holds a
NASA Astrophysics Data System (ADS)
Horst, Sarah; Yoon, Heidi; Li, Rui; deGouw, Joost; Tolbert, Margaret
2014-11-01
Prior to the arrival of the Cassini-Huygens spacecraft, aerosol production in Titan’s atmosphere was believed to begin in the stratosphere where chemical processes are predominantly initiated by far ultraviolet (FUV) radiation. However, the discovery of very heavy ions, coupled with Cassini Ultraviolet Imaging Spectrograph (UVIS) occultation measurements that show haze absorption up to 1000 km altitude (Liang et al., 2007), indicates that haze formation initiates in the thermosphere. The energy environment of the thermosphere is significantly different from the stratosphere; in particular there is a greater flux of extreme ultraviolet (EUV) photons and energetic particles available to initiate chemical reactions, including the destruction of N2, in the upper atmosphere. The discovery of previously unpredicted nitrogen species in measurements of Titan’s atmosphere by the Cassini Ion and Neutral Mass Spectrometer (INMS) indicates that nitrogen participates in the chemistry to a much greater extent than was appreciated before Cassini (Vuitton et al., 2007). Additionally, measurements obtained by the Aerosol Collector Pyrolyzer (ACP) carried by Huygens to Titan’s surface may indicate that Titan’s aerosols contain significant amounts of nitrogen (Israël et al., 2005, 2006). The degree of nitrogen incorporation in the haze particles is important for understanding the diversity of molecules that may be present in Titan’s atmosphere and on its surface. We have conducted a series of Titan atmosphere simulation experiments using either spark discharge (tesla coil) or FUV photons (deuterium lamp) to initiate chemistry in CH4/N2 gas mixtures ranging from 0.01% CH4/99.99% N2 to 10% CH4/90% N2. We obtained in situ measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) to measure the particle composition as a function of particle size and a proton-transfer ion-trap mass spectrometer (PIT-MS) to measure the composition of gas phase products. These two techniques allow us to investigate the effect of energy source and initial CH4 concentration on the degree of nitrogen incorporation in both the gas and solid phase products.
Short rendezvous missions for advanced Russian human spacecraft
NASA Astrophysics Data System (ADS)
Murtazin, Rafail F.; Budylov, Sergey G.
2010-10-01
The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.
Flight Simulator Fidelity Considerations for Total Airline Pilot Training and Evaluation.
DOT National Transportation Integrated Search
2001-04-01
This paper presents the FAA/Volpe Centers Flight Simulator Fidelity Research Program, which is part of the Federal Aviation Administration's effort to promote the effectiveness, availability and affordability of flight simulators. This initiative ...
Economic Justification for FAA's Flight 2000 Program
DOT National Transportation Integrated Search
1997-09-23
This paper summarizes the economic benefits that are anticipated to flow from : the FAA's Flight 2000 operational demonstration program. This quick assessment : is based on the Flight 2000 Initial Program Plan, dated July 16, 1997. The : analysis sho...
NASA Astrophysics Data System (ADS)
de Schrijver, E.; Chameleva, H.; Degroote, C.; D'Haese, Z.; Paice, C.; Plas, H.; Van den Bossche, A.; Vander Donckt, L.; Vander Vost, J.
2015-09-01
Flight opportunities on high-altitude ASGARD balloons offered to secondary schools worldwide since 20 1 1 have led to an ever more rapidly increasing number of project proposals. The introduction of beginners' and ‘advanced classes of experiments is hoped to draw in even larger numbers of interested school teams. Furthermore, and in cooperation with ESERO (European Space Education Resources Office), workshops and documentation are being prepared to introduce teachers and students alike to the world of microcontrollers and sensors. A student parabolic flight programme called BIFROST (Brussels' Initiative to provide Flight Research Opportunities to STudents) was initiated to meet the rising demand for hands-on space education projects and the desire to cover the widest possible range of scientific and/or technical domains, which essentially calls for a variety of flight platforms: cansats, balloons and parabolic flight.
Autonomous Flight Safety System Road Test
NASA Technical Reports Server (NTRS)
Simpson, James C.; Zoemer, Roger D.; Forney, Chris S.
2005-01-01
On February 3, 2005, Kennedy Space Center (KSC) conducted the first Autonomous Flight Safety System (AFSS) test on a moving vehicle -- a van driven around the KSC industrial area. A subset of the Phase III design was used consisting of a single computer, GPS receiver, and UPS antenna. The description and results of this road test are described in this report.AFSS is a joint KSC and Wallops Flight Facility project that is in its third phase of development. AFSS is an independent subsystem intended for use with Expendable Launch Vehicles that uses tracking data from redundant onboard sensors to autonomously make flight termination decisions using software-based rules implemented on redundant flight processors. The goals of this project are to increase capabilities by allowing launches from locations that do not have or cannot afford extensive ground-based range safety assets, to decrease range costs, and to decrease reaction time for special situations.
NASA Astrophysics Data System (ADS)
Nelson, Hunter Barton
A simplified second-order transfer function actuator model used in most flight dynamics applications cannot easily capture the effects of different actuator parameters. The present work integrates a nonlinear actuator model into a nonlinear state space rotorcraft model to determine the effect of actuator parameters on key flight dynamics. The completed actuator model was integrated with a swashplate kinematics where step responses were generated over a range of key hydraulic parameters. The actuator-swashplate system was then introduced into a nonlinear state space rotorcraft simulation where flight dynamics quantities such as bandwidth and phase delay analyzed. Frequency sweeps were simulated for unique actuator configurations using the coupled nonlinear actuator-rotorcraft system. The software package CIFER was used for system identification and compared directly to the linearized models. As the actuator became rate saturated, the effects on bandwidth and phase delay were apparent on the predicted handling qualities specifications.
Flight evaluation results for a digital electronic engine control in an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.
1983-01-01
A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.
Optodynamic characterization of shock waves after laser-induced breakdown in water.
Petkovsek, Rok; Mozina, Janez; Mocnik, Grisa
2005-05-30
Plasma and a cavitation bubble develop at the site of laser-induced breakdown in water. Their formation and the propagation of the shock wave were monitored by a beam-deflection probe and an arm-compensated interferometer. The interferometer part of the setup was used to determine the relative position of the laser-induced breakdown. The time-of-flight data from the breakdown site to the probe beam yielded the velocity, and from the velocity the shock-wave pressure amplitudes were calculated. Two regions were found where the pressure decays with different exponents, pointing to a strong attenuation mechanism in the initial phase of the shock-wave propagation.
NASA Technical Reports Server (NTRS)
Westerheide, D. E.; Carter, H. G.; Erickson, R. C.; Kerlin, E. E.
1972-01-01
The nuclear heating of the propellant in all of the four baseline RNS configurations studied was much lower than that of the nuclear flight module configuration with the 5000-MW NERVA analyzed previously. Although the nuclear heating has been reduced, the effect of nuclear heating on the propellant as well as the effect of nuclear heating on internal structures such as antivortex baffles, screens, and sump components cannot be neglected. In addition, it was found that the present analytical precedures were not able to predict boundary layer initiation and breakoff points with the accuracy necessary to predict propellant thermodynamic nonequilibrium (stratification) and/or mixing.
Technology base for microgravity horticulture
NASA Technical Reports Server (NTRS)
Sauer, R. L.; Magnuson, J. W.; Scruby, R. R.; Scheld, H. W.
1987-01-01
Advanced microgravity plant biology research and life support system development for the spacecraft environment are critically hampered by the lack of a technology base. This inadequacy stems primarily from the fact that microgravity results in a lack of convective currents and phase separation as compared to the one gravity environment. A program plan is being initiated to develop this technology base. This program will provide an iterative flight development effort that will be closely integrated with both basic science investigations and advanced life support system development efforts incorporating biological processes. The critical considerations include optimum illumination methods, root aeration, root and shoot support, and heat rejection and gas exchange in the plant canopy.
Low-energy particle experiments-ion mass analyzer (LEPi) onboard the ERG (Arase) satellite
NASA Astrophysics Data System (ADS)
Asamura, K.; Kazama, Y.; Yokota, S.; Kasahara, S.; Miyoshi, Y.
2018-05-01
Low-energy ion experiments-ion mass analyzer (LEPi) is one of the particle instruments onboard the ERG satellite. LEPi is an ion energy-mass spectrometer which covers the range of particle energies from < 0.01 to 25 keV/q. Species of incoming ions are discriminated by a combination of electrostatic energy-per-charge analysis and the time-of-flight technique. The sensor has a planar field-of-view, which provides 4π steradian coverage by using the spin motion of the satellite. LEPi started its nominal observation after the initial checkout and commissioning phase in space. [Figure not available: see fulltext.
Development of the Two Phase Flow Separator Experiment for a Reduced Gravity Aircraft Flight
NASA Technical Reports Server (NTRS)
Golliher, Eric; Gotti, Daniel; Owens, Jay; Gilkey, Kelly; Pham, Nang; Stehno, Philip
2016-01-01
The recent hardware development and testing of a reduced gravity aircraft flight experiment has provided valuable insights for the future design of the Two Phase Flow Separator Experiment (TPFSE). The TPFSE is scheduled to fly within the Fluids Integration Rack (FIR) aboard the International Space Station (ISS) in 2020. The TPFSE studies the operational limits of gas and liquid separation of passive cyclonic separators. A passive cyclonic separator utilizes only the inertia of the incoming flow to accomplish the liquid-gas separation. Efficient phase separation is critical for environmental control and life support systems, such as recovery of clean water from bioreactors, for long duration human spaceflight missions. The final low gravity aircraft flight took place in December 2015 aboard NASA's C9 airplane.
CEV Seat Attenuation System System Design Tasks
NASA Technical Reports Server (NTRS)
Goodman, Jerry R.; McMichael, James H.
2007-01-01
The Apollo crew / couch restraint system was designed to support and restrain three crew members during all phases of the mission from launch to landing. The crew couch used supported the crew for launch, landing and in-flight operations, and was foldable and removable for EVA ingress/egress through side hatch access and for in-flight access under the seat and in other areas of the crew compartment. The couch and the seat attenuation system was designed to control the impact loads imposed on the crew during landing and to remain non-functional during all other flight phases.
14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...
14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...
14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...
14 CFR Appendix C to Part 63 - Flight Engineer Training Course Requirements
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight Engineer Training Course... to Part 63—Flight Engineer Training Course Requirements (a) Training course outline—(1) Format. The... programmed coverage for the initial approval of a ground training course for flight engineers. Subsequent to...
Wellicome, Troy I.; Bayne, Erin M.
2017-01-01
The expansion of humans and their related infrastructure is increasing the likelihood that wildlife will interact with humans. When disturbed by humans, animals often change their behaviour, which can result in time and energetic costs to that animal. An animal's decision to change behaviour is likely related to the type of disturbance, the individual's past experience with disturbance, and the landscape in which the disturbance occurs. In southern Alberta and Saskatchewan, we quantified probability of flight initiation from the nest by Ferruginous Hawks (Buteo regalis) during approaches to nests by investigators. We tested if probability of flight was related to different disturbance types, previous experience, and the anthropogenic landscape in which individual Ferruginous Hawks nested. Probability of flight was related to the type of approach by the investigator, the number of previous visits by investigators, and the vehicular traffic around the nest. Approaches by humans on foot resulted in a greater probability of flight than those in a vehicle. Approaches in a vehicle via low traffic volume access roads were related to increased probability of flight relative to other road types. The number of previous investigator approaches to the nest increased the probability of flight. Overall, we found support that Ferruginous Hawks show habituation to vehicles and the positive reinforcement hypotheses as probability of flight was negatively related to an index of traffic activity near the nest. Our work emphasizes that complex, dynamic processes drive the decision to initiate flight from the nest, and contributes to the growing body of work explaining how responses to humans vary within species. PMID:28542334
Nordell, Cameron J; Wellicome, Troy I; Bayne, Erin M
2017-01-01
The expansion of humans and their related infrastructure is increasing the likelihood that wildlife will interact with humans. When disturbed by humans, animals often change their behaviour, which can result in time and energetic costs to that animal. An animal's decision to change behaviour is likely related to the type of disturbance, the individual's past experience with disturbance, and the landscape in which the disturbance occurs. In southern Alberta and Saskatchewan, we quantified probability of flight initiation from the nest by Ferruginous Hawks (Buteo regalis) during approaches to nests by investigators. We tested if probability of flight was related to different disturbance types, previous experience, and the anthropogenic landscape in which individual Ferruginous Hawks nested. Probability of flight was related to the type of approach by the investigator, the number of previous visits by investigators, and the vehicular traffic around the nest. Approaches by humans on foot resulted in a greater probability of flight than those in a vehicle. Approaches in a vehicle via low traffic volume access roads were related to increased probability of flight relative to other road types. The number of previous investigator approaches to the nest increased the probability of flight. Overall, we found support that Ferruginous Hawks show habituation to vehicles and the positive reinforcement hypotheses as probability of flight was negatively related to an index of traffic activity near the nest. Our work emphasizes that complex, dynamic processes drive the decision to initiate flight from the nest, and contributes to the growing body of work explaining how responses to humans vary within species.
EURECA 11 months in orbit: Initial post flight investigation results
NASA Technical Reports Server (NTRS)
Dover, Alan; Aceti, Roberto; Drolshagen, Gerhard
1995-01-01
This paper gives a brief overview of the European free flying spacecraft 'EURECA' and the initial post flight investigations following its retrieval in June 1993. EURECA was in low earth orbit for 11 months commencing in August 1992, and is the first spacecraft to be retrieved and returned to Earth since the recovery of LDEF. The primary mission objective of EURECA was the investigation of materials and fluids in a very low micro-gravity environment. In addition other experiments were conducted in space science, technology and space environment disciplines. The European Space Agency (ESA) has taken the initiative in conducting a detailed post-flight investigation to ensure the full exploitation of this unique opportunity.
14 CFR Appendix B to Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2013 CFR
2013-01-01
....0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and... Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety Plan 4.3.1Flight Safety Personnel 4... Safety (§ 415.117) 5.1Ground Safety Analysis Report 5.2Ground Safety Plan 6.0Launch Plans (§ 415.119 and...
14 CFR Appendix B to Part 415 - Safety Review Document Outline
Code of Federal Regulations, 2014 CFR
2014-01-01
....0Flight Safety (§ 415.115) 4.1Initial Flight Safety Analysis 4.1.1Flight Safety Sub-Analyses, Methods, and... Analysis Data 4.2Radionuclide Data (where applicable) 4.3Flight Safety Plan 4.3.1Flight Safety Personnel 4... Safety (§ 415.117) 5.1Ground Safety Analysis Report 5.2Ground Safety Plan 6.0Launch Plans (§ 415.119 and...
NASA Technical Reports Server (NTRS)
2002-01-01
The NASA/Navy Benchmarking Exchange (NNBE) was undertaken to identify practices and procedures and to share lessons learned in the Navy's submarine and NASA's human space flight programs. The NNBE focus is on safety and mission assurance policies, processes, accountability, and control measures. This report is an interim summary of activity conducted through October 2002, and it coincides with completion of the first phase of a two-phase fact-finding effort.In August 2002, a team was formed, co-chaired by senior representatives from the NASA Office of Safety and Mission Assurance and the NAVSEA 92Q Submarine Safety and Quality Assurance Division. The team closely examined the two elements of submarine safety (SUBSAFE) certification: (1) new design/construction (initial certification) and (2) maintenance and modernization (sustaining certification), with a focus on: (1) Management and Organization, (2) Safety Requirements (technical and administrative), (3) Implementation Processes, (4) Compliance Verification Processes, and (5) Certification Processes.
Fu, Yu; Qiao, Liping; Cao, Yuming; Zhou, Xiaozhou; Liu, Yu; Ye, Xingqian
2014-01-01
Proanthocyanidins in Chinese bayberry leaves (PCBLs) were qualitatively analyzed. NMR data suggest that PCBLs are mostly composed of (epi)gallocatechin gallate units. Matrix-assisted laser desorption time-of-flight MS data indicate 95 possible prodelphinidin structures, ranging from dimers to tridecamers. Preparative normal-phase HPLC and further analysis by reverse-phase HPLC together with electrospray ionization MS enabled detection of 20 compounds, including seven newly identified compounds in Chinese bayberry leaves. The antioxidant capacity of PCBLs was evaluated by (1,1-diphenyl-2-picryl-hydrazyl), ferric-reducing antioxidant power, and oxygen radical absorption capacity assays. The EC50 of DPPH radical scavenging activities (as 50% decrease in the initial DPPH concentration) were 7.60 µg. The FRAP and ORAC values were 8859.33±978.39 and 12991.61±1553.34 µmol Trolox equivalents per gram, respectively. The results indicate the high antioxidant potency of PCBLs. PMID:24805126
Flight contaminant trace analyser. Phase 1: Chromatographic input system
NASA Technical Reports Server (NTRS)
Zlatkis, A.
1976-01-01
The purpose of this investigation was to develop two chromatographic columns which would enable a mass spectral identification of 40 specified compounds. The columns are for use in a toxic gas analyzer, which incorporates an automated gas chromatograph-mass spectrometer. Different types of stationary phases were investigated. The columns used were of the open tubular capillary type and were made of nickel. Limitations of initial and final temperature of operation led to final development of a column which could resolve most of the compounds required. The few unresolved components are capable of resolution and identification by the mass spectrometer. The columns (182m Ni x 0.8m 0.D x 0.5mm I.D) coated with Witconal La 23, yielded in excess of 200,000 theoretical plates and completed the analysis in less than 90 minutes using a carrier gas flow rate of 4 cc/min hydrogen.
NASA Technical Reports Server (NTRS)
Vachon, R. I.; Obrien, J. F., Jr.; Lueg, R. E.; Cox, J. E.
1972-01-01
The 1972 Systems Engineering program at Marshall Space Flight Center where 15 participants representing 15 U.S. universities, 1 NASA/MSFC employee, and another specially assigned faculty member, participated in an 11-week program is discussed. The Fellows became acquainted with the philosophy of systems engineering, and as a training exercise, used this approach to produce a conceptional design for an Earth Resources Information Storage, Transformation, Analysis, and Retrieval System. The program was conducted in three phases; approximately 3 weeks were devoted to seminars, tours, and other presentations to subject the participants to technical and other aspects of the information management problem. The second phase, 5 weeks in length, consisted of evaluating alternative solutions to problems, effecting initial trade-offs and performing preliminary design studies and analyses. The last 3 weeks were occupied with final trade-off sessions, final design analyses and preparation of a final report and oral presentation.
Space transportation nodes assumptions and requirements: Lunar base systems study task 2.1
NASA Technical Reports Server (NTRS)
Kahn, Taher Ali; Simonds, Charles H.; Stump, William R.
1988-01-01
The Space Transportation Nodes Assumptions and Requirements task was performed as part of the Advanced Space Transportation Support Contract, a NASA Johnson Space Center (JSC) study intended to provide planning for a Lunar Base near the year 2000. The original task statement has been revised to satisfy the following queries: (1) What vehicles are to be processed at the transportation node; (2) What is the flow of activities involved in a vehicle passing through the node; and (3) What node support resources are necessary to support a lunar scenario traffic model composed of a mix of vehicles in an active flight schedule. The Lunar Base Systems Study is concentrating on the initial years of the Phase 2 Lunar Base Scenario. The study will develop the first five years of that phase in order to define the transportation and surface systems (including mass, volumes, power requirements, and designs).
Autonomous Flight Safety System - Phase III
NASA Technical Reports Server (NTRS)
2008-01-01
The Autonomous Flight Safety System (AFSS) is a joint KSC and Wallops Flight Facility project that uses tracking and attitude data from onboard Global Positioning System (GPS) and inertial measurement unit (IMU) sensors and configurable rule-based algorithms to make flight termination decisions. AFSS objectives are to increase launch capabilities by permitting launches from locations without range safety infrastructure, reduce costs by eliminating some downrange tracking and communication assets, and reduce the reaction time for flight termination decisions.
Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles
NASA Technical Reports Server (NTRS)
Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian
2016-01-01
An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.
Flight Deck Interval Management Flight Test Final Report
NASA Technical Reports Server (NTRS)
Tulder, Paul V.
2017-01-01
This document provides a summary of the avionics design, implementation, and evaluation activities conducted for the ATD-1 Avionics Phase 2. The flight test data collection and a subset of the analysis results are described. This report also documents lessons learned, conclusions, and recommendations to guide further development efforts.
14 CFR Appendix D to Part 417 - Flight Termination Systems, Components, Installation, and Monitoring
Code of Federal Regulations, 2010 CFR
2010-01-01
... the public. (c) Redundancy. A flight termination system must use redundant components that are... linear shaped charge need not be redundant if it initiates at both ends, and the initiation source for... period of heating or cooling. Paragraphs (c)(2) through (c)(6) of this section identify the required...
M. L. Gaylord; K. K. Williams; R. W. Hofstetter; J. D. McMillin; T. E. Degomez; M. R. Wagner
2008-01-01
Determination of temperature requirements for many economically important insects is a cornerstone of pest management. For bark beetles (Coleoptera: Curculionidae, Scolytinae), this information can facilitate timing of management strategies. Our goals were to determine temperature predictors for flight initiation of three species of Ips bark beetles...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... initiated a flight-test campaign including strain measurements as well as finite element modelling and... including strain measurements as well as finite element modelling and fatigue analyses to better understand..., the TC Holder also initiated a flight-test campaign including strain measurements as well as finite...
X-48B Phase 1 Flight Maneuver Database and ICP Airspace Constraint Analysis
NASA Technical Reports Server (NTRS)
Fast, Peter Alan
2010-01-01
The work preformed during the Summer 2010 by Peter Fast. The main tasks assigned were to update and improve the X-48 Flight Maneuver Database and conduct an Airspace Constraint Analysis for the Remotely Operated Aircraft Area used to flight test Unmanned Arial Vehicles. The final task was to develop and demonstrate a working knowledge of flight control theory.
NASA Technical Reports Server (NTRS)
Gordon, C. K.
1975-01-01
A preliminary design study was conducted to evaluate the suitability of the NASA 515 airplane as a flight demonstration vehicle, and to develop plans, schedules, and budget costs for fly-by-wire/active controls technology flight validation in the NASA 515 airplane. The preliminary design and planning were accomplished for two phases of flight validation.
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
49 CFR 1520.3 - Terms used in this part.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Statistics. Federal Flight Deck Officer means a pilot participating in the Federal Flight Deck Officer... conception, planning, design, construction, operation, or decommissioning phase. A vulnerability assessment...
NASA Technical Reports Server (NTRS)
Turek, Fred W. (Principal Investigator)
1994-01-01
In February 1994 a total of 10 hampsters flew on two separate KC-135 flights. On one flight, 25 animals experienced 31 parabolas, thus going through 31 cycles of hypergravity (up to about 1.8 G). On the other flight, the animals were exposed to 43 parabolas. fifty additional animals served as ground based controls and were treated in the same fashion as the experimental animals. The profiles of plasma GH, corisol and coricosterone from representative parabolic flight and ground control animals during pre-flight, in-flight, and post-flight conditions are depicted.
Sallinen, Mikael; Sihvola, Maria; Puttonen, Sampsa; Ketola, Kimmo; Tuori, Antti; Härmä, Mikko; Kecklund, Göran; Åkerstedt, Torbjörn
2017-01-01
Airline pilots' sleep and on-duty alertness are important focus areas in commercial aviation. Until now, studies pertaining to this topic have mainly focused on specific characteristics of flights and thus a comprehensive picture of the matter is not well established. In addition, research knowledge of what airline pilots actually do to maintain their alertness while being on duty is scarce. To address these gaps in research knowledge, we conducted a field study on a representative sample of the airline pilots of a medium-sized airline. The sample consisted of 90 pilots, of whom 30 flew long-haul (LH) routes, 30 short-haul (SH) routes, and 30 flew both. A total of 86 pilots completed the measurements that lasted for almost two months per pilot. The measurements resulted in a total of 965 flight duty periods (FDPs) including SH flights and 627 FDPs including LH flights. During the measurement periods, sleep was measured by a diary and actigraphs, on-duty alertness by the Karolinska Sleepiness Scale (KSS) in all flight phases, and on-duty alertness management strategies by the diary. Results showed that SH and LH FDPs covering the whole domicile night (00:00-06:00 at home base) were most consistently associated with reduced sleep-wake ratio and subjective alertness. Approximately every 3rd FDP falling into this category involved a reduced sleep-wake ratio (1:3 or lower) and every 2nd a reduced level of subjective alertness (KSS rating 8-9 in at least one flight phase). The corresponding frequencies for the SH and LH FDPs that partly covered the domicile night were every 10th and every 5th FDP and for the pure non-night FDPs every 30th and every 36th FDP, respectively. The results also showed that the pilots tended to increase the use of effective on-duty alertness management strategies (consuming alertness-promoting products and taking strategic naps) in connection with the FDPs that overlapped the domicile night. Finally, the results showed that the frequency of flights involving reduced subjective alertness depended on how alertness was assessed. If it was assessed solely in the flight phase just before starting the landing procedures (top of descent) the phenomenon was less frequent than if the preceding cruise phase was also taken into account. Our results suggest that FDPs covering the whole domicile night should be prioritised over the other FDPs in fatigue management, regardless of whether an FDP is a short-haul or a long-haul. In addition, the identification of fatigue in flight operations requires one to assess pilots' alertness across all flight phases, not only at ToD. Due to limitations in our data, these conclusions can, however, be generalise to only LH FDPs during which pilots can be expected to be well acclimatised to the local time at their home base and SH night FDPs that include at least 3h of flying in the cruise phase. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thermal Technology Development Activities at the Goddard Space Flight Center - 2001
NASA Technical Reports Server (NTRS)
Butler, Dan
2002-01-01
This presentation provides an overview of thermal technology development activities carried out at NASA's Goddard Space Flight Center during 2001. Specific topics covered include: two-phase systems (heat pipes, capillary pumped loops, vapor compression systems and phase change materials), variable emittance systems, advanced coatings, high conductivity materials and electrohydrodynamic (EHD) thermal coatings. The application of these activities to specific space missions is also discussed.
Vega roll and attitude control system algorithms trade-off study
NASA Astrophysics Data System (ADS)
Paulino, N.; Cuciniello, G.; Cruciani, I.; Corraro, F.; Spallotta, D.; Nebula, F.
2013-12-01
This paper describes the trade-off study for the selection of the most suitable algorithms for the Roll and Attitude Control System (RACS) within the FPS-A program, aimed at developing the new Flight Program Software of VEGA Launcher. Two algorithms were analyzed: Switching Lines (SL) and Quaternion Feedback Regulation. Using a development simulation tool that models two critical flight phases (Long Coasting Phase (LCP) and Payload Release (PLR) Phase), both algorithms were assessed with Monte Carlo batch simulations for both of the phases. The statistical outcomes of the results demonstrate a 100 percent success rate for Quaternion Feedback Regulation, and support the choice of this method.
Timeliness of contact tracing among flight passengers for influenza A/H1N1 2009
2011-01-01
Background During the initial containment phase of influenza A/H1N1 2009, close contacts of cases were traced to provide antiviral prophylaxis within 48 h after exposure and to alert them on signs of disease for early diagnosis and treatment. Passengers seated on the same row, two rows in front or behind a patient infectious for influenza, during a flight of ≥ 4 h were considered close contacts. This study evaluates the timeliness of flight-contact tracing (CT) as performed following national and international CT requests addressed to the Center of Infectious Disease Control (CIb/RIVM), and implemented by the Municipal Health Services of Schiphol Airport. Methods Elapsed days between date of flight arrival and the date passenger lists became available (contact details identified - CI) was used as proxy for timeliness of CT. In a retrospective study, dates of flight arrival, onset of illness, laboratory diagnosis, CT request and identification of contacts details through passenger lists, following CT requests to the RIVM for flights landed at Schiphol Airport were collected and analyzed. Results 24 requests for CT were identified. Three of these were declined as over 4 days had elapsed since flight arrival. In 17 out of 21 requests, contact details were obtained within 7 days after arrival (81%). The average delay between arrival and CI was 3,9 days (range 2-7), mainly caused by delay in diagnosis of the index patient after arrival (2,6 days). In four flights (19%), contacts were not identified or only after > 7 days. CI involving Dutch airlines was faster than non-Dutch airlines (P < 0,05). Passenger locator cards did not improve timeliness of CI. In only three flights contact details were identified within 2 days after arrival. Conclusion CT for influenza A/H1N1 2009 among flight passengers was not successful for timely provision of prophylaxis. CT had little additional value for alerting passengers for disease symptoms, as this information already was provided during and after the flight. Public health authorities should take into account patient delays in seeking medical advise and laboratory confirmation in relation to maximum time to provide postexposure prophylaxis when deciding to install contact tracing measures. International standardization of CT guidelines is recommended. PMID:22204494
In-Flight Stability Analysis of the X-48B Aircraft
NASA Technical Reports Server (NTRS)
Regan, Christopher D.
2008-01-01
This report presents the system description, methods, and sample results of the in-flight stability analysis for the X-48B, Blended Wing Body Low-Speed Vehicle. The X-48B vehicle is a dynamically scaled, remotely piloted vehicle developed to investigate the low-speed control characteristics of a full-scale blended wing body. Initial envelope clearance was conducted by analyzing the stability margin estimation resulting from the rigid aircraft response during flight and comparing it to simulation data. Short duration multisine signals were commanded onboard to simultaneously excite the primary rigid body axes. In-flight stability analysis has proven to be a critical component of the initial envelope expansion.
The response of single human cells to zero gravity
NASA Technical Reports Server (NTRS)
Montgomery, P. O., Jr.; Cook, J. E.; Reynolds, R. C.; Paul, J. S.; Hayflick, L.; Schulz, W. W.; Stock, D.; Kinzey, S.; Rogers, T.; Campbell, D.
1975-01-01
Twenty separate cultures of Wistar-38 human embryonic lung cells were exposed to a zero-gravity environment on Skylab for periods of time ranging from one to 59 days. Duplicate cultures were run concurrently as ground controls. Ten cultures were fixed on board the satellite during the first 12 days of flight. Growth curves, DNA microspectrophotometry, phase microscopy, and ultrastructural studies of the fixed cells revealed no effects of a zero-gravity environment on the ten cultures. Two cultures were photographed with phase time lapse cinematography during the first 27 days of flight. No differences were found in mitotic index, cell cycle, and migration between the flight and control cells. Eight cultures were returned to earth in an incubated state. Karyotyping and chromosome banding tests show no differences between the flight and control cells.
Investigating Cooperative Behavior in Ecological Settings: An EEG Hyperscanning Study.
Toppi, Jlenia; Borghini, Gianluca; Petti, Manuela; He, Eric J; De Giusti, Vittorio; He, Bin; Astolfi, Laura; Babiloni, Fabio
2016-01-01
The coordinated interactions between individuals are fundamental for the success of the activities in some professional categories. We reported on brain-to-brain cooperative interactions between civil pilots during a simulated flight. We demonstrated for the first time how the combination of neuroelectrical hyperscanning and intersubject connectivity could provide indicators sensitive to the humans' degree of synchronization under a highly demanding task performed in an ecological environment. Our results showed how intersubject connectivity was able to i) characterize the degree of cooperation between pilots in different phases of the flight, and ii) to highlight the role of specific brain macro areas in cooperative behavior. During the most cooperative flight phases pilots showed, in fact, dense patterns of interbrain connectivity, mainly linking frontal and parietal brain areas. On the contrary, the amount of interbrain connections went close to zero in the non-cooperative phase. The reliability of the interbrain connectivity patterns was verified by means of a baseline condition represented by formal couples, i.e. pilots paired offline for the connectivity analysis but not simultaneously recorded during the flight. Interbrain density was, in fact, significantly higher in real couples with respect to formal couples in the cooperative flight phases. All the achieved results demonstrated how the description of brain networks at the basis of cooperation could effectively benefit from a hyperscanning approach. Interbrain connectivity was, in fact, more informative in the investigation of cooperative behavior with respect to established EEG signal processing methodologies applied at a single subject level.
Helicopter synthetic vision based DVE processing for all phases of flight
NASA Astrophysics Data System (ADS)
O'Brien, Patrick; Baughman, David C.; Wallace, H. Bruce
2013-05-01
Helicopters experience nearly 10 times the accident rate of fixed wing platforms, due largely to the nature of their mission, frequently requiring operations in close proximity to terrain and obstacles. Degraded visual environments (DVE), including brownout or whiteout conditions generated by rotor downwash, result in loss of situational awareness during the most critical phase of flight, and contribute significantly to this accident rate. Considerable research into sensor and system solutions to address DVE has been conducted in recent years; however, the promise of a Synthetic Vision Avionics Backbone (SVAB) extends far beyond DVE, enabling improved situational awareness and mission effectiveness during all phases of flight and in all visibility conditions. The SVAB fuses sensor information with high resolution terrain databases and renders it in synthetic vision format for display to the crew. Honeywell was awarded the DARPA MFRF Technical Area 2 contract in 2011 to develop an SVAB1. This work includes creation of a common sensor interface, development of SVAB hardware and software, and flight demonstration on a Black Hawk helicopter. A "sensor agnostic" SVAB allows platform and mission diversity with efficient upgrade path, even while research continues into new and improved sensors for use in DVE conditions. Through careful integration of multiple sources of information such as sensors, terrain and obstacle databases, mission planning information, and aircraft state information, operations in all conditions and phases of flight can be enhanced. This paper describes the SVAB and its functionality resulting from the DARPA contract as well as Honeywell RD investment.
Investigating Cooperative Behavior in Ecological Settings: An EEG Hyperscanning Study
Petti, Manuela; He, Eric J.; De Giusti, Vittorio; He, Bin; Astolfi, Laura; Babiloni, Fabio
2016-01-01
The coordinated interactions between individuals are fundamental for the success of the activities in some professional categories. We reported on brain-to-brain cooperative interactions between civil pilots during a simulated flight. We demonstrated for the first time how the combination of neuroelectrical hyperscanning and intersubject connectivity could provide indicators sensitive to the humans’ degree of synchronization under a highly demanding task performed in an ecological environment. Our results showed how intersubject connectivity was able to i) characterize the degree of cooperation between pilots in different phases of the flight, and ii) to highlight the role of specific brain macro areas in cooperative behavior. During the most cooperative flight phases pilots showed, in fact, dense patterns of interbrain connectivity, mainly linking frontal and parietal brain areas. On the contrary, the amount of interbrain connections went close to zero in the non-cooperative phase. The reliability of the interbrain connectivity patterns was verified by means of a baseline condition represented by formal couples, i.e. pilots paired offline for the connectivity analysis but not simultaneously recorded during the flight. Interbrain density was, in fact, significantly higher in real couples with respect to formal couples in the cooperative flight phases. All the achieved results demonstrated how the description of brain networks at the basis of cooperation could effectively benefit from a hyperscanning approach. Interbrain connectivity was, in fact, more informative in the investigation of cooperative behavior with respect to established EEG signal processing methodologies applied at a single subject level. PMID:27124558
Active Aeroelastic Wing Aerodynamic Model Development and Validation for a Modified F/A-18A Airplane
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Diebler, Corey G.
2005-01-01
A new aerodynamic model has been developed and validated for a modified F/A-18A airplane used for the Active Aeroelastic Wing (AAW) research program. The goal of the program was to demonstrate the advantages of using the inherent flexibility of an aircraft to enhance its performance. The research airplane was an F/A-18A with wings modified to reduce stiffness and a new control system to increase control authority. There have been two flight phases. Data gathered from the first flight phase were used to create the new aerodynamic model. A maximum-likelihood output-error parameter estimation technique was used to obtain stability and control derivatives. The derivatives were incorporated into the National Aeronautics and Space Administration F-18 simulation, validated, and used to develop new AAW control laws. The second phase of flights was used to evaluate the handling qualities of the AAW airplane and the control law design process, and to further test the accuracy of the new model. The flight test envelope covered Mach numbers between 0.85 and 1.30 and dynamic pressures from 600 to 1250 pound-force per square foot. The results presented in this report demonstrate that a thorough parameter identification analysis can be used to improve upon models that were developed using other means. This report describes the parameter estimation technique used, details the validation techniques, discusses differences between previously existing F/A-18 models, and presents results from the second phase of research flights.
Flight controller alertness and performance during spaceflight shiftwork operations.
Kelly, S M; Rosekind, M R; Dinges, D F; Miller, D L; Gillen, K A; Gregory, K B; Aguilar, R D; Smith, R M
1998-09-01
Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations personnel. During Space Transportation System (STS) operations, Mission Operations Directorate (MOD) personnel provide 24-hr. coverage of critical tasks. A joint NASA Johnson Space Center and NASA Ames Research Center project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during the STS-53 mission in December 1992. The study measures included a Background Questionnaire, a subjective daily logbook completed on a 24-hour basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen flight controllers representing the 3 Orbit shifts participated. The initial results clearly support the need for further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. Countermeasure strategies specific to the MOD environment are being developed to minimize the adverse effects of fatigue, sleep loss, and circadian disruption engendered by shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further EDO (extended duration orbiters), and timelines and planning for 24-hour Space Station operations continue, alertness and performance issues related to sleep and circadian disruption will remain highly relevant in the MOD environment.
NASA Technical Reports Server (NTRS)
Dufrene, Warren R., Jr.
2004-01-01
This paper describes the development of a planned approach for Autonomous operation of an Unmanned Aerial Vehicle (UAV). A Hybrid approach will seek to provide Knowledge Generation thru the application of Artificial Intelligence (AI) and Intelligent Agents (IA) for UAV control. The application of many different types of AI techniques for flight will be explored during this research effort. The research concentration will be directed to the application of different AI methods within the UAV arena. By evaluating AI approaches, which will include Expert Systems, Neural Networks, Intelligent Agents, Fuzzy Logic, and Complex Adaptive Systems, a new insight may be gained into the benefits of AI techniques applied to achieving true autonomous operation of these systems thus providing new intellectual merit to this research field. The major area of discussion will be limited to the UAV. The systems of interest include small aircraft, insects, and miniature aircraft. Although flight systems will be explored, the benefits should apply to many Unmanned Vehicles such as: Rovers, Ocean Explorers, Robots, and autonomous operation systems. The flight system will be broken down into control agents that will represent the intelligent agent approach used in AI. After the completion of a successful approach, a framework of applying a Security Overseer will be added in an attempt to address errors, emergencies, failures, damage, or over dynamic environment. The chosen control problem was the landing phase of UAV operation. The initial results from simulation in FlightGear are presented.
Evolutionary flight and enabling smart actuator devices
NASA Astrophysics Data System (ADS)
Manzo, Justin; Garcia, Ephrahim
2007-04-01
Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.
Space Life-Support Engineering Program
NASA Technical Reports Server (NTRS)
Seagrave, Richard C. (Principal Investigator)
1995-01-01
This report covers the seventeen months of work performed under an extended one year NASA University Grant awarded to Iowa State University to perform research on topics relating to the development of closed-loop long-term life support systems with the initial principal focus on space water management. In the first phase of the program, investigators from chemistry and chemical engineering with demonstrated expertise in systems analysis, thermodynamics, analytical chemistry and instrumentation, performed research and development in two major related areas; the development of low-cost, accurate, and durable sensors for trace chemical and biological species, and the development of unsteady-state simulation packages for use in the development and optimization of control systems for life support systems. In the second year of the program, emphasis was redirected towards concentrating on the development of dynamic simulation techniques and software and on performing a thermodynamic systems analysis, centered on availability or energy analysis, in an effort to begin optimizing the systems needed for water purification. The third year of the program, the subject of this report, was devoted to the analysis of the water balance for the interaction between humans and the life support system during space flight and exercise, to analysis of the cardiopulmonary systems of humans during space flight, and to analysis of entropy production during operation of the air recovery system during space flight.
A study of two-phase flow in a reduced gravity environment
NASA Technical Reports Server (NTRS)
Hill, D.; Downing, Robert S.
1987-01-01
A test loop was designed and fabricated for observing and measuring pressure drops of two-phase flow in reduced gravity. The portable flow test loop was then tested aboard the NASA-JSC KC135 reduced gravity aircraft. The test loop employed the Sundstrand Two-Phase Thermal Management System (TPTMS) concept which was specially fitted with a clear two-phase return line and condenser cover for flow observation. A two-phase (liquid/vapor) mixture was produced by pumping nearly saturated liquid through an evaporator and adding heat via electric heaters. The quality of the two-phase flow was varied by changing the evaporator heat load. The test loop was operated on the ground before and after the KC135 flight tests to create a one-gravity data base. The ground testing included all the test points run during the reduced gravity testing. Two days of reduced gravity tests aboard the KC135 were performed. During the flight tests, reduced-gravity, one-gravity, and nearly two-gravity accelerations were experienced. Data was taken during the entire flight which provided flow regime and pressure drop data for the three operating conditions. The test results show that two-phase pressure drops and flow regimes can be accurately predicted in zero-gravity.
Saturn 5 launch vehicle flight evaluation report-AS-511 Apollo 16 mission
NASA Technical Reports Server (NTRS)
1972-01-01
A postflight analysis of the Apollo 16 mission is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are deet determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are provide in tabular form.
Saturn 5 Launch Vehicle Flight Evaluation Report-AS-512 Apollo 17 Mission
NASA Technical Reports Server (NTRS)
1973-01-01
An evaluation of the launch vehicle and lunar roving vehicle performance for the Apollo 17 flight is presented. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective action. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.; Topka, Kenneth P.
1992-01-01
The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.
NASA Technical Reports Server (NTRS)
Nataupsky, Mark; Crittenden, Lucille
1988-01-01
Stereo 3-D was researched as a means to present cockpit displays which enhance a pilot's situational awareness while maintaining a desirable level of mental workload. The initial study at the NASA Langley Research Center used two different pathways-in-the-sky to augment a computer-generated pictorial primary flight display. One pathway resembled the outline of signposts, while the other pathway resembled a monorail. That display was configured for a curved approach to a landing such as could be used in a Microwave Landing System (MLS) approach. It could also be used for military transports which would have to fly a precision curved pathway. Each trial was initialized with the pilot on the desired flight path. After 2 seconds, he suddenly was shifted to one of eight flight path offsets. The pilot was then required to make the initial pitch and/or roll input to correct back to the nominal flight path. As soon as the input was made, the trial was over. No input was required for control trials with no flight path offset. Pilots responded statistically significantly faster when the display was presented in the stereo version than when it was presented in the nonstereo version.
Reentry Motion and Aerodynamics of the MUSES-C Sample Return Capsule
NASA Astrophysics Data System (ADS)
Ishii, Nobuaki; Yamada, Tetsuya; Hiraki, Koju; Inatani, Yoshifumi
The Hayabusa spacecraft (MUSES-C) carries a small capsule for bringing asteroid samples back to the earth. The initial spin rate of the reentry capsule together with the flight path angle of the reentry trajectory is a key parameter for the aerodynamic motion during the reentry flight. The initial spin rate is given by the spin-release mechanism attached between the capsule and the mother spacecraft, and the flight path angle can be modified by adjusting the earth approach orbit. To determine the desired values of both parameters, the attitude motion during atmospheric flight must be clarified, and angles of attack at the maximum dynamic pressure and the parachute deployment must be assessed. In previous studies, to characterize the aerodynamic effects of the reentry capsule, several wind-tunnel tests were conducted using the ISAS high-speed flow test facilities. In addition to the ground test data, the aerodynamic properties in hypersonic flows were analyzed numerically. Moreover, these data were made more accurate using the results of balloon drop tests. This paper summarized the aerodynamic properties of the reentry capsule and simulates the attitude motion of the full-configuration capsule during atmospheric flight in three dimensions with six degrees of freedom. The results show the best conditions for the initial spin rates and flight path angles of the reentry trajectory.
On-Orbit Prospective Echocardiography on International Space Station Crew
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David S.; Garcia, Kathleen M.; Melton, Shannon L.; Feiveson, Alan; Dulchavsky, Scott A.
2010-01-01
Introduction A prospective trial of echocardiography was conducted on of six crewmembers onboard the International Space Station. The main objective was to determine the efficacy of remotely guided tele-echocardiography, including just-in-time e-training methods and determine what "space normal" echocardiographic data is. Methods Each crewmember operator (n=6) had 2-hour preflight training. Baseline echocardiographic data were collected 55 to 167days preflight. Similar equipment was used in each 60-minute in-flight session (mean microgravity exposure - 114 days (34 -- 190)). On Orbit ultrasound operators used an e-learning system within 24h of these sessions. Expert assistance was provided using ultrasound video downlink and two-way voice. Testing was repeated 5 to 16 days after landing. Separate ANOVA was used on each echocardiographic variable (n=33). Within each ANOVA, three tests were made: a) effect of mission phase (preflight, in-flight, post flight); b) effect of echo technician (two technicians independently analyzed the data); c) interaction between mission phase and technician. Results Nine rejections of the null hypothesis (mission phase or technician or both had no effect) were discovered and considered for follow up. Of these, six rejections were for significant technician effects, not as a result of space flight. Three rejections of the null hypothesis (Aortic Valve time velocity integral, Mitral E wave Velocity and heart rate) were attributable to space flight, however determined not to be clinically significant. No rejections were due to the interaction between technician and space flight. Conclusion No consistent clinically significant effects of long-duration space flight were seen in echocardiographic variables of the given group of subjects.
Optimal flight initiation distance.
Cooper, William E; Frederick, William G
2007-01-07
Decisions regarding flight initiation distance have received scant theoretical attention. A graphical model by Ydenberg and Dill (1986. The economics of fleeing from predators. Adv. Stud. Behav. 16, 229-249) that has guided research for the past 20 years specifies when escape begins. In the model, a prey detects a predator, monitors its approach until costs of escape and of remaining are equal, and then flees. The distance between predator and prey when escape is initiated (approach distance = flight initiation distance) occurs where decreasing cost of remaining and increasing cost of fleeing intersect. We argue that prey fleeing as predicted cannot maximize fitness because the best prey can do is break even during an encounter. We develop two optimality models, one applying when all expected future contribution to fitness (residual reproductive value) is lost if the prey dies, the other when any fitness gained (increase in expected RRV) during the encounter is retained after death. Both models predict optimal flight initiation distance from initial expected fitness, benefits obtainable during encounters, costs of escaping, and probability of being killed. Predictions match extensively verified predictions of Ydenberg and Dill's (1986) model. Our main conclusion is that optimality models are preferable to break-even models because they permit fitness maximization, offer many new testable predictions, and allow assessment of prey decisions in many naturally occurring situations through modification of benefit, escape cost, and risk functions.
Shen, Qing; Yang, Qi; Cheung, Hon-Yeung
2015-02-01
Salmon is a popular food but it is easily susceptible to spoilage by contamination with microorganisms. In this study, a method using hydrophilic interaction chromatography (HILIC)-based solid-phase extraction (SPE) and matrix-assisted laser desorption and ionization time-of-flight/time-of-flight mass spectrometry was developed and applied to reveal the effect of Pseudomonas fluorescens on salmon fillet during the shelf-life period by measuring the changes in the levels of phosphatidylcholine and phosphatidylethanolamine. Fresh samples were inoculated with P. fluorescens (10(6) cfu g(-1)) for 30 s, and lipids were extracted at 0, 24, 48, and 72 h. A homemade SPE cartridge packed with HILIC sorbent (silica derivatized with 1,2-dihydroxypropane) was used for matrix cleanup prior to analysis by mass spectrometry. In total, 30 phospholipids and 16 lysophospholipids were detected and elucidated. The results revealed that the content of phospholipids decreased significantly, whereas that of lysophospholipids increased initially, followed by a gradual reduction as the cold storage time increased. The contamination by P. fluorescens negatively affected the quality of fresh salmon without obvious physical changes, but it posed a potential threat to human health. This study suggests that the well-established method could be used for detecting phospholipids in salmon fillet and perhaps other foods as well.
NASA Astrophysics Data System (ADS)
Offi, D. L.; Lewis, W.; Lee, T.; Delamarche, A.
1980-08-01
A wind shear detection system developed by the Wave Propagation Laboratory (WPL) to operate with the Federal Aviation Administration (FAA) Airport Surveillance Radar (ASR)-8 was installed and is being tested at the FAA technical Center. Initial efforts, previously reported in Report NA-78-59-LR, were directed toward hardware and software shakedown and feasibility determination. Second phase tests compared radar with aircraft and tower winds, evaluated the wind shear measurement capability under various weather conditions, and investigated the effectiveness of a simple two-azimuth pointing strategy and system capabilities and limitations. Results showed the system to be compatible with and to operate satisfactorily with the ASR-8. The processing and spectral display of clear air and precipitation returns is feasible. The accuracy of agreement between radar-measured winds and components of the aircraft-measured winds in both radially oriented flights and runway offset flights, using a two-azimuth pointing technique, was examined. Radar versus tower wind agreement was also examined. Potentially dangerous wind shears associated with weather during these tests were detectable. Certain system limitations also have been defined and considered. It is recommended that tests continue to complete definition of and demonstrate capabilities in all weather situations, to optimize performance, and to provide information to specify system design for possible development of a prototype model.
Bütikofer, R; Flückiger, E O; Desorgher, L; Moser, M R
2008-03-01
In January 2005 toward the end of solar activity cycle 23 the Sun was very active. Between 15 and 20 January 2005, the solar active region NOAA AR 10720 produced five powerful solar flares. In association with this major solar activity several pronounced variations in the ground-level cosmic ray intensity were observed. The fifth of these flares (X7.1) produced energetic solar cosmic rays that caused a giant increase in the count rates of the ground-based cosmic ray detectors (neutron monitors). At southern polar neutron monitor stations the increase of the count rate reached several thousand percent. From the recordings of the worldwide network of neutron monitors, we determined the characteristics of the solar particle flux near Earth. In the initial phase of the event, the solar cosmic ray flux near Earth was extremely anisotropic. The energy spectrum of the solar cosmic rays was fairly soft during the main and the decay phase. We investigated also the flux of different secondary particle species in the atmosphere and the radiation dosage at flight altitude. Our analysis shows a maximum increment of the effective dose rate due to solar cosmic rays in the south polar region around 70 degrees S and 130 degrees E at flight altitude of almost three orders of magnitude.
NASA Technical Reports Server (NTRS)
Knighton, Donna L.
1992-01-01
A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.
The influence of total flight time, recent flight time and age on pilot accident rates
DOT National Transportation Integrated Search
1983-06-30
This paper presents initial finding from a research effort conducted for the Safety Analysis Dvision, Office of Aviation Safety, Federal Aviation Administration (FAA). The analysis considers the influence of recent pilot flight time, total pilot flig...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2011 CFR
2011-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2012 CFR
2012-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2013 CFR
2013-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2010 CFR
2010-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
14 CFR 121.422 - Aircraft dispatchers: Initial and transition ground training.
Code of Federal Regulations, 2014 CFR
2014-01-01
... computations; (iv) Basic airplane performance dispatch requirements and procedures; (v) Flight planning including track selection, flight time analysis, and fuel requirements; and (vi) Emergency procedures. (3... procedures, and other subjects having a bearing on dispatcher duties and responsibilities; (ii) Flight...
NASA Technical Reports Server (NTRS)
1990-01-01
The separation of fluid phases in microgravity environments is of importance to environmental control and life support systems (ECLSS) and materials processing in space. A successful fluid phase separation experiment will demonstrate a proof of concept for the separation technique and add to the knowledge base of material behavior. The phase separation experiment will contain a premixed fluid that will be exposed to a microgravity environment. After the phase separation of the compound has occurred, small samples of each of the species will be taken for analysis on Earth. By correlating the time of separation and the temperature history of the fluid, it will be possible to characterize the process. The phase separation experiment is totally self-contained, with three levels of containment on all fluids, and provides all necessary electrical power and control. The controller regulates the temperature of the fluid and controls data logging and sampling. An astronaut-activated switch will initiate the experiment and an unmaskable interrupt is provided for shutdown. The experiment has been integrated into space available on a manifested Get Away Special (GAS) experiment, CONCAP 2, part of the Consortium for Materials Complex Autonomous Payload (CAP) Program, scheduled for STS 42 in April 1991. Presented here are the design and the production of a fluid phase separation experiment for rapid implementation at low cost.
Deployable antenna phase A study
NASA Technical Reports Server (NTRS)
Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.
1979-01-01
Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.
A demonstrator for an incoherent Doppler wind lidar receiver
NASA Astrophysics Data System (ADS)
Fabre, F.; Marini, A.; Sidler, Thomas C.; Morancais, Didier; Fongy, G.; Vidal, Ph.
2018-04-01
The knowledge of wind fields for a global terrestrial coverage and accurate altitude sampling is one of the main keys for improvement of meteorological predictions and general understanding of atmosphere behaviour. The best way to recover this information is remote sensing from space using low Earth orbit satellites. The measurement principle is to analyse the Doppler shift of the flux emitted by the space instrument and backscattered by the atmosphere. One of the most promising principle for Doppler shift measurement is the direct detection which does not need local oscillators. what significantly simplifies the design of such a space-borne receiver. ESA-ESTEC initiated at early 95' a programme called "lncoherent Doppler Wind Lidar (IDWL) technologies" for the study and bread-boarding phase. MMS won this contract proposing an original concept based on the use of a Fizeau high resolution interferometer working in the UV band. coupled with an intensified CCD. This concept is patented by MMS, as well as the special CCD timing sequence that will be depicted below. The programme begun by a study of the space-borne instrument in order to identify main constraints and define the receiver as could be for a flight model. A detailed performance model was established and parametric analysis allowed to optimise the concept in order to reach required performances. This study phase finally provided the definition of a bread-board for expected performances demonstration. Moreover, the Laser Signal Simulator (LSS) which is used to simulate the Lidar echo in term of amplitude as well as frequency modulation was defined at this step. The performances of this test support equipment are of main importance for the validation of the demonstrator design and performances. The second part of the study aimed at defining the derailed design of the demonstrator and associated test support equipment as well as initiating preliminary validation experiments on most critical technologies, like Fizeau interferometer which needs particularly high thermal stability and spectral resolution. At the end of this design phase. the test bench equipment begun to be manufactured and equipment test results preliminary assessed the study phase results. After integration, the correct operation and control of the overall test bench were assessed and performance tests were undertaken . The final conclusion of this programme aimed at updating the performance simulation software in order to refine expected performances for the future flight instrument.
Measurements and performance prediction of an adaptive wing micro air vehicle
NASA Astrophysics Data System (ADS)
Shkarayev, Sergey V.; Jouse, Wayne C.; Null, William R.; Wagner, Matthew G.
2003-08-01
The mission space requirements imposed on the design of micro air vehicles (MAVs) typically consist of several distinct flight segments that generally conflict: the transit phases of flight require high speeds, while the loiter/surveillance phase requires lower flight velocities. Maximum efficiency must be sought in order to prolong battery life and aircraft endurance. The adaptive wing MAV developed at the University of Arizona features a thin, deformable flying wing with an efficient rudder-elevator control system. The wing camber is varied to accommodate different flight speeds while maintaining a constant total lift at a relatively low angle of attack. A new airfoil was developed from the Selig 5010 that features a small negative pitching moment for pitch stability. Wind tunnel tests were performed and stall angles and best lift-to-drag ratios were analyzed from the data. The wind tunnel data was used in a performance analysis in order to determine the flight speeds and throttle settings for maximum endurance at each camber, as well as the MAV's theoretical minimum and maximum flight speeds. The effectiveness of camber change on flight speed and endurance was examined with promising results; flight speed could be reduced by 25% by increasing the camber from 3 to 9% without any increase in power consumption.
Laboratory Studies Of Titan Haze: Simultaneous In Situ Detection Of Gas And Particle Species
NASA Astrophysics Data System (ADS)
Horst, Sarah; Li, R.; Yoon, H.; Hicks, R.; de Gouw, J.; Tolbert, M.
2012-10-01
Analyses of data obtained by multiple instruments carried by Cassini and Huygens have increased our knowledge of the composition of Titan’s atmosphere. While a wealth of new information about the aerosols in Titan’s atmosphere was obtained, their composition is still not well constrained. Laboratory experiments will therefore play a key role in furthering our understanding of the chemical processes resulting in the formation of haze in Titan’s atmosphere and its possible composition. We have obtained simultaneous in situ measurements of the gas- and particle-phase compositions produced by our Titan atmosphere simulation experiments (see e.g. [1]). The gas phase composition was measured using a Proton-Transfer Ion-Trap Mass Spectrometer (PIT-MS) and the aerosol composition was measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). This complementary set of measurements will allow us to address the partitioning of gas- and aerosol-phase species. Knowledge of the gas phase composition in which the particles in our experiments form allows both for better comparison to the chemistry that is occurring in Titan’s atmosphere and for enabling more accurate determination of the possible pathways involved in the transition from gas phase to aerosol. We will compare the results from experiments that used two different initial gas mixtures (98% N2/2% CH4 and 98%N2/2%CH4/50 ppm CO) and two different energy sources to initiate the chemical reactions that result in particle formation (spark discharge using a Tesla coil or FUV irradiation from a deuterium lamp (115-400 nm)). [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326. SMH is supported by NSF Astronomy and Astrophysics Postdoctoral Fellowship AST-1102827.
Product assurance policies and procedures for flight dynamics software development
NASA Technical Reports Server (NTRS)
Perry, Sandra; Jordan, Leon; Decker, William; Page, Gerald; Mcgarry, Frank E.; Valett, Jon
1987-01-01
The product assurance policies and procedures necessary to support flight dynamics software development projects for Goddard Space Flight Center are presented. The quality assurance and configuration management methods and tools for each phase of the software development life cycles are described, from requirements analysis through acceptance testing; maintenance and operation are not addressed.
14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means
Code of Federal Regulations, 2013 CFR
2013-01-01
..., ground testing, and flight testing, or any combination of these, that: (1) Validate the parameters used... either ground or takeoff/climb phases of flight during warm days. The analysis must consider the following conditions. (1) The analysis must use the subset of those flights that begin with a sea level...
14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means
Code of Federal Regulations, 2014 CFR
2014-01-01
..., ground testing, and flight testing, or any combination of these, that: (1) Validate the parameters used... either ground or takeoff/climb phases of flight during warm days. The analysis must consider the following conditions. (1) The analysis must use the subset of those flights that begin with a sea level...
14 CFR Appendix M to Part 25 - Fuel Tank System Flammability Reduction Means
Code of Federal Regulations, 2012 CFR
2012-01-01
..., ground testing, and flight testing, or any combination of these, that: (1) Validate the parameters used... either ground or takeoff/climb phases of flight during warm days. The analysis must consider the following conditions. (1) The analysis must use the subset of those flights that begin with a sea level...
Simulation Evaluation of Pilot Inputs for Real Time Modeling During Commercial Flight Operations
NASA Technical Reports Server (NTRS)
Martos, Borja; Ranaudo, Richard; Oltman, Ryan; Myhre, Nick
2017-01-01
Aircraft dynamics characteristics can only be identified from flight data when the aircraft dynamics are excited sufficiently. A preliminary study was conducted into what types and levels of manual piloted control excitation would be required for accurate Real-Time Parameter IDentification (RTPID) results by commercial airline pilots. This includes assessing the practicality for the pilot to provide this excitation when cued, and to further understand if pilot inputs during various phases of flight provide sufficient excitation naturally. An operationally representative task was evaluated by 5 commercial airline pilots using the NASA Ice Contamination Effects Flight Training Device (ICEFTD). Results showed that it is practical to use manual pilot inputs only as a means of achieving good RTPID in all phases of flight and in flight turbulence conditions. All pilots were effective in satisfying excitation requirements when cued. Much of the time, cueing was not even necessary, as just performing the required task provided enough excitation for accurate RTPID estimation. Pilot opinion surveys reported that the additional control inputs required when prompted by the excitation cueing were easy to make, quickly mastered, and required minimal training.
Integrated Digital Flight Control System for the Space Shuttle Orbiter
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives of the integrated digital flight control system (DFCS) is to provide rotational and translational control of the space shuttle orbiter in all phases of flight: from launch ascent through orbit to entry and touchdown, and during powered horizontal flights. The program provides a versatile control system structure while maintaining uniform communications with other programs, sensors, and control effectors by using an executive routine/functional subroutine format. The program reads all external variables at a single point, copies them into its dedicated storage, and then calls the required subroutines in the proper sequence. As a result, the flight control program is largely independent of other programs in the computer complex and is equally insensitive to characteristics of the processor configuration. The integrated structure is described of the control system and the DFCS executive routine which embodies that structure. The input and output, including jet selection are included. Specific estimation and control algorithm are shown for the various mission phases: cruise (including horizontal powered flight), entry, on-orbit, and boost. Attitude maneuver routines that interface with the DFCS are included.
Russian Tu-144LL SST Roll-Out for Joint NASA Research Program
NASA Technical Reports Server (NTRS)
1996-01-01
The modified Tu-144LL supersonic flying laboratory is rolled out of its hangar at the Zhukovsky Air Development Center near Moscow, Russia in March 1996 at the beginning of a joint U.S. - Russian high-speed flight research program. The 'LL' stands for Letayuschaya Laboratoriya, which means Flying Laboratory. NASA teamed with American and Russian aerospace industries for an extended period in a joint international research program featuring the Russian-built Tu-144LL supersonic aircraft. The object of the program was to develop technologies for a proposed future second-generation supersonic airliner to be developed in the 21st Century. The aircraft's initial flight phase began in June 1996 and concluded in February 1998 after 19 research flights. A shorter follow-on program involving seven flights began in September 1998 and concluded in April 1999. All flights were conducted in Russia from Tupolev's facility at the Zhukovsky Air Development Center near Moscow. The centerpiece of the research program was the Tu 144LL, a first-generation Russian supersonic jetliner that was modified by its developer/builder, Tupolev ANTK (aviatsionnyy nauchno-tekhnicheskiy kompleks-roughly, aviation technical complex), into a flying laboratory for supersonic research. Using the Tu-144LL to conduct flight research experiments, researchers compared full-scale supersonic aircraft flight data with results from models in wind tunnels, computer-aided techniques, and other flight tests. The experiments provided unique aerodynamic, structures, acoustics, and operating environment data on supersonic passenger aircraft. Data collected from the research program was being used to develop the technology base for a proposed future American-built supersonic jetliner. Although actual development of such an advanced supersonic transport (SST) is currently on hold, commercial aviation experts estimate that a market for up to 500 such aircraft could develop by the third decade of the 21st Century. The Tu-144LL used in the NASA-sponsored research program was a 'D' model with different engines than were used in production-model aircraft. Fifty experiments were proposed for the program and eight were selected, including six flight and two ground (engine) tests. The flight experiments included studies of the aircraft's exterior surface, internal structure, engine temperatures, boundary-layer airflow, the wing's ground-effect characteristics, interior and exterior noise, handling qualities in various flight profiles, and in-flight structural flexibility. The ground tests studied the effect of air inlet structures on airflow entering the engine and the effect on engine performance when supersonic shock waves rapidly change position in the engine air inlet. A second phase of testing further studied the original six in-flight experiments with additional instrumentation installed to assist in data acquisition and analysis. A new experiment aimed at measuring the in-flight deflections of the wing and fuselage was also conducted. American-supplied transducers and sensors were installed to measure nose boom pressures, angle of attack, and sideslip angles with increased accuracy. Two NASA pilots, Robert Rivers of Langley Research Center, Hampton, Virginia, and Gordon Fullerton from Dryden Flight Research Center, Edwards, California, assessed the aircraft's handling at subsonic and supersonic speeds during three flight tests in September 1998. The program concluded after four more data-collection flights in the spring of 1999. The Tu-144LL model had new Kuznetsov NK-321 turbofan engines rated at more than 55,000 pounds of thrust in full afterburner. The aircraft is 215 feet, 6 inches long and 42 feet, 2 inches high with a wingspan of 94 feet, 6 inches. The aircraft is constructed mostly of light aluminum alloy with titanium and stainless steel on the leading edges, elevons, rudder, and the under-surface of the rear fuselage.
NASA Technical Reports Server (NTRS)
Sallee, G. P.; Martin, R. L.
1980-01-01
The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airplane acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/JT9D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the most cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined.
Flight Synchrony among the Major Moth Pests of Cranberries in the Upper Midwest, USA.
Steffan, Shawn A; Singleton, Merritt E; Sojka, Jayne; Chasen, Elissa M; Deutsch, Annie E; Zalapa, Juan E; Guédot, Christelle
2017-02-26
The cranberry fruitworm ( Acrobasis vaccinii Riley), sparganothis fruitworm ( Sparganothis sulfureana Clemens), and blackheaded fireworm ( Rhopobota naevana Hübner) are historically significant pests of cranberries ( Vaccinium macrocarpon Aiton) in the Upper Midwest (Wisconsin), USA. Their respective natural histories are well documented but correlations between developmental benchmarks (e.g., larval eclosion) and degree-day accruals are not yet known. Treatment timings are critical to the optimization of any given control tactic, and degree-day accrual facilitates optimization by quantifying the developmental status of pest populations. When key developmental benchmarks in the pest life cycle are linked to degree-days, real-time weather data can be used to predict precise treatment timings. Here, we provide the degree-day accumulations associated with discrete biological events (i.e., initiation of flight and peak flight) for the three most consistent moth pests of cranberries in Wisconsin. Moths were trapped each spring and summer from 2003 to 2011. To characterize flight dynamics and average timing of flight initiation, pheromone-baited trap-catch data were tallied for all three pest species within each of seven growing seasons. These flight dynamics were then associated with the corresponding degree-day accumulations generated using the cranberry plant's developmental thresholds. Finally, models were fit to the data in order to determine the peak flight of each species. The initiation of the spring flight among all three moth species was highly synchronous, aiding in the timing of control tactics; however, there were substantial differences in the timing of peak flight among the moth species. Characterization of the relationship between temperature and pest development allows pest management professionals to target specific life stages, improving the efficacy of any given pest control tactic.
Evolution of Ada technology in the flight dynamics area: Implementation/testing phase analysis
NASA Technical Reports Server (NTRS)
Quimby, Kelvin L.; Esker, Linda; Miller, John; Smith, Laurie; Stark, Mike; Mcgarry, Frank
1989-01-01
An analysis is presented of the software engineering issues related to the use of Ada for the implementation and system testing phases of four Ada projects developed in the flight dynamics area. These projects reflect an evolving understanding of more effective use of Ada features. In addition, the testing methodology used on these projects has changed substantially from that used on previous FORTRAN projects.
Matsuta, Naohiro; Hiryu, Shizuko; Fujioka, Emyo; Yamada, Yasufumi; Riquimaroux, Hiroshi; Watanabe, Yoshiaki
2013-04-01
The echolocation sounds of Japanese CF-FM bats (Rhinolophus ferrumequinum nippon) were measured while the bats pursued a moth (Goniocraspidum pryeri) in a flight chamber. Using a 31-channel microphone array system, we investigated how CF-FM bats adjust pulse direction and beam width according to prey position. During the search and approach phases, the horizontal and vertical beam widths were ±22±5 and ±13±5 deg, respectively. When bats entered the terminal phase approximately 1 m from a moth, distinctive evasive flight by G. pryeri was sometimes observed. Simultaneously, the bats broadened the beam widths of some emissions in both the horizontal (44% of emitted echolocation pulses) and vertical planes (71%). The expanded beam widths were ±36±7 deg (horizontal) and ±30±9 deg (vertical). When moths began evasive flight, the tracking accuracy decreased compared with that during the approach phase. However, in 97% of emissions during the terminal phase, the beam width was wider than the misalignment (the angular difference between the pulse and target directions). These findings indicate that bats actively adjust their beam width to retain the moving target within a spatial echolocation window during the final capture stages.
Recent progress in the NASA-Goddard Space Flight Center atomic hydrogen standards program
NASA Technical Reports Server (NTRS)
Reinhardt, V. S.
1981-01-01
At NASA Goddard Space Flight Center and through associated contractors, a broad spectrum of work is being carried out to develop improved hydrogen maser frequency standards for field use, improved experimental hydrogen maser frequency standards, and improved frequency and time distribution and measurement systems for hydrogen maser use. Recent progress in the following areas is reported: results on the Nr masers built by the Applied Physics Laboratory of Johns Hopkins University, the development of a low cost hydrogen maser at Goddard Space Flight Center, and work on a low noise phase comparison system and digitally phase locked crystal oscillator called the distribution and measurement system.
Apollo experience report: Systems and flight procedures development
NASA Technical Reports Server (NTRS)
Kramer, P. C.
1973-01-01
This report describes the process of crew procedures development used in the Apollo Program. The two major categories, Systems Procedures and Flight Procedures, are defined, as are the forms of documentation required. A description is provided of the operation of the procedures change control process, which includes the roles of man-in-the-loop simulations and the Crew Procedures Change Board. Brief discussions of significant aspects of the attitude control, computer, electrical power, environmental control, and propulsion subsystems procedures development are presented. Flight procedures are subdivided by mission phase: launch and translunar injection, rendezvous, lunar descent and ascent, and entry. Procedures used for each mission phase are summarized.
Wing-wake interaction reduces power consumption in insect tandem wings
NASA Astrophysics Data System (ADS)
Lehmann, Fritz-Olaf
Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.
Wing-wake interaction reduces power consumption in insect tandem wings
NASA Astrophysics Data System (ADS)
Lehmann, Fritz-Olaf
2009-05-01
Insects are capable of a remarkable diversity of flight techniques. Dragonflies, in particular, are notable for their powerful aerial manoeuvres and endurance during prey catching or territory flights. While most insects such as flies, bees and wasps either reduced their hinds wings or mechanically coupled fore and hind wings, dragonflies have maintained two independent-controlled pairs of wings throughout their evolution. An extraordinary feature of dragonfly wing kinematics is wing phasing, the shift in flapping phase between the fore and hind wing periods. Wing phasing has previously been associated with an increase in thrust production, readiness for manoeuvrability and hunting performance. Recent studies have shown that wing phasing in tandem wings produces a twofold modulation in hind wing lift, but slightly reduces the maximum combined lift of fore and hind wings, compared to two wings flapping in isolation. Despite this disadvantage, however, wing phasing is effective in improving aerodynamic efficiency during flight by the removal of kinetic energy from the wake. Computational analyses demonstrate that this increase in flight efficiency may save up to 22% aerodynamic power expenditure compared to insects flapping only two wings. In terms of engineering, energetic benefits in four-wing flapping are of substantial interest in the field of biomimetic aircraft design, because the performance of man-made air vehicles is often limited by high-power expenditure rather than by lift production. This manuscript provides a summary on power expenditures and aerodynamic efficiency in flapping tandem wings by investigating wing phasing in a dynamically scaled robotic model of a hovering dragonfly.
Project of Ariane 5 LV family advancement by use of reusable fly-back boosters (named “Bargouzine”)
NASA Astrophysics Data System (ADS)
Sumin, Yu.; Bonnal, Ch.; Kostromin, S.; Panichkin, N.
2007-12-01
The paper concerns possible concept variants of a partially reusable Heavy-Lift Launch Vehicle derived from the advanced basic launcher (Ariane-2010) by means of substitution of the EAP Solid Rocket Boosters for a Reusable Starting Stage consisting two Liquid-propellant Reusable Fly-Back Boosters called "Bargouzin". This paper describes the status of the presently studied RFBB concepts during its three phases. The first project phase was dedicated to feasibility expertise of liquid-rocket reusable fly-back boosters ("Baikal" type) utilization for heavy-lift space launch vehicle. The design features and main conclusions are presented. The second phase has been performed with the purpose of selection of preferable concept among the alternative ones for the future Ariane LV modernization by using RFBB instead of EAP Boosters. The main requirements, logic of work, possible configuration and conclusion are presented. Initial aerodynamic, ballistic, thermoloading, dynamic loading, trade-off and comparison analysis have been performed on these concepts. The third phase consists in performing a more detailed expertise of the chosen LV concept. This part summarizes some of the more detailed results related to flight performance, system mass, thermoprotection system, aspects of technologies, ground complex modification, comparison analyses and conclusion.
Autonomous aircraft initiative study
NASA Technical Reports Server (NTRS)
Hewett, Marle D.
1991-01-01
The results of a consulting effort to aid NASA Ames-Dryden in defining a new initiative in aircraft automation are described. The initiative described is a multi-year, multi-center technology development and flight demonstration program. The initiative features the further development of technologies in aircraft automation already being pursued at multiple NASA centers and Department of Defense (DoD) research and Development (R and D) facilities. The proposed initiative involves the development of technologies in intelligent systems, guidance, control, software development, airborne computing, navigation, communications, sensors, unmanned vehicles, and air traffic control. It involves the integration and implementation of these technologies to the extent necessary to conduct selected and incremental flight demonstrations.
NASA Technical Reports Server (NTRS)
1979-01-01
The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.
14 CFR 135.327 - Training program: Curriculum.
Code of Federal Regulations, 2010 CFR
2010-01-01
... § 135.327 Training program: Curriculum. (a) Each certificate holder must prepare and keep current a..., procedures and functions that will be performed during each flight training phase or flight check, indicating...
14 CFR 135.327 - Training program: Curriculum.
Code of Federal Regulations, 2011 CFR
2011-01-01
... § 135.327 Training program: Curriculum. (a) Each certificate holder must prepare and keep current a..., procedures and functions that will be performed during each flight training phase or flight check, indicating...