NASA Astrophysics Data System (ADS)
Li, R.; Li, W. B.; Wang, X. M.; Li, W. B.
2018-03-01
The effects of the initiation diameter and synchronicity error on the formation of fins and stable-flight velocity of an explosively formed projectile (EFP) with three-point initiation are investigated. The pressure and area of the Mach wave acting on the metal liner at different initiation diameters are calculated employing the Whitham method. LS-DYNA software is used to investigate the asymmetric collision of detonation waves resulting from three-point initiation synchronicity error, the distortion characteristics of the liner resulting from the composite detonation waves, and the performance parameters of the EFP with fins. Results indicate that deviations of the Y-shaped high-pressure zone and central ultrahigh-pressure zone from the liner center can be attributed to the error of three-point initiation, which leads to the irregular formation of EFP fins. It is noted that the area of the Mach wave decreases, but the pressure of the Mach wave and the final speed and length-to-diameter ( L/ D) ratio of the EFP increase, benefiting the formation of the EFP fins, as the initiation diameter increases.
Shuck, Lowell Z.
1979-01-01
Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.
Explosive Model Tarantula V1/JWL++ Calibration of LX-17: #2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Souers, P C; Vitello, P
2009-05-01
Tarantula V1 is a kinetic package for reactive flow codes that seeks to describe initiation, failure, dead zones and detonation simultaneously. The most important parameter is P1, the pressure between the initiation and failure regions. Both dead zone formation and failure can be largely controlled with this knob. However, V1 does failure with low settings and dead zones with higher settings, so that it cannot fulfill its purpose in the current format. To this end, V2 is under test. The derivation of the initiation threshold P0 is discussed. The derivation of the initiation pressure-tau curve as an output of Tarantulamore » shows that the initiation package is sound. A desensitization package is also considered.« less
Initial reactive sticking coefficient of O 2 on Si(111)-7 × 7 at elevated temperatures
NASA Astrophysics Data System (ADS)
Shklyaev, A. A.; Suzuki, Takanori
1996-05-01
Kinetics of the initial stage of oxide growth in the reaction of oxygen with Si(111)-7 × 7 at temperatures from room temperature to Ttr, and pressures from 5 × 10 -9 to 2 × 10 -7 Torr are investigated with optical second-harmonic generation, here temperature from oxide growth to Si etching without oxide growth. At a fixed pressure, the initial reactive sticking coefficient ( S0), obtained from the rate of oxide growth, decreases with increasing temperature to S0=0 at Ttr. We have found that the initial reacti sticking coefficient depends on the O 2 pressure. At temperatures above 320°C, the whole temperature dependence of S0 is situated in the region of higher temperatures for higher O 2 pressures ( Pox). Moreover, an additional bend in the temperature dependence of S0 is observed for Pox>1 × 10 -8 Torr near Ttr. A precursor-mediated adsorption model involving the reaction of formation is considered. The parameters of this model, obtained from the best fits to the experimental data, show that oxide growth rate constant increases and volatile SiO formation rate constant decreases as a function of O 2 pressure. At zero oxide coverage, the pressure dependence of the reaction rate constants is suggested to originate from interaction in the layer of the chemisorbed precursor species, whose coverage depends on the O 2 pressure. The volatile SiO formation is described by a three-step sequential two-channel process through the chemisorbed O 2 precursor species, whereas one of the channels with a larger activation energy is suggested to induce the additional bend in S0( T) near Ttr at higher O 2 pressures.
Basler, J.A.
1983-01-01
Requirements for testing hydrologic test wells at the proposed Waste Isolation Pilot Plant near Carlsbad, New Mexico, necessitated the use of inflatable formation packers and pressure transducers. Observations during drilling and initial development indicated small formation yields which would require considerable test times by conventional open-casing methods. A pressure-monitoring system was assembled for performance evaluation utilizing commercially available components. Formation pressures were monitored with a down-hole strain-gage transducer. An inflatable packer equipped with a 1/4-inch-diameter steel tube extending through the inflation element permitted sensing formation pressures in isolated test zones. Surface components of the monitoring system provided AC transducer excitation, signal conditioning for recording directly in engineering units, and both analog and digital recording. Continuous surface monitoring of formation pressures provided a means of determining test status and projecting completion times during any phase of testing. Maximum portability was afforded by battery operation with all surface components mounted in a small self-contained trailer. (USGS)
Magma ocean formation due to giant impacts
NASA Technical Reports Server (NTRS)
Tonks, W. B.; Melosh, H. J.
1993-01-01
The thermal effects of giant impacts are studied by estimating the melt volume generated by the initial shock wave and corresponding magma ocean depths. Additionally, the effects of the planet's initial temperature on the generated melt volume are examined. The shock pressure required to completely melt the material is determined using the Hugoniot curve plotted in pressure-entropy space. Once the melting pressure is known, an impact melting model is used to estimate the radial distance melting occurred from the impact site. The melt region's geometry then determines the associated melt volume. The model is also used to estimate the partial melt volume. Magma ocean depths resulting from both excavated and retained melt are calculated, and the melt fraction not excavated during the formation of the crater is estimated. The fraction of a planet melted by the initial shock wave is also estimated using the model.
Numerical Modelling of Extended Leak-Off Test with a Pre-Existing Fracture
NASA Astrophysics Data System (ADS)
Lavrov, A.; Larsen, I.; Bauer, A.
2016-04-01
Extended leak-off test (XLOT) is one of the few techniques available for stress measurements in oil and gas wells. Interpretation of the test is often difficult since the results depend on a multitude of factors, including the presence of natural or drilling-induced fractures in the near-well area. Coupled numerical modelling of XLOT has been performed to investigate the pressure behaviour during the flowback phase as well as the effect of a pre-existing fracture on the test results in a low-permeability formation. Essential features of XLOT known from field measurements are captured by the model, including the saw-tooth shape of the pressure vs injected volume curve, and the change of slope in the pressure vs time curve during flowback used by operators as an indicator of the bottomhole pressure reaching the minimum in situ stress. Simulations with a pre-existing fracture running from the borehole wall in the radial direction have revealed that the results of XLOT are quite sensitive to the orientation of the pre-existing fracture. In particular, the fracture initiation pressure and the formation breakdown pressure increase steadily with decreasing angle between the fracture and the minimum in situ stress. Our findings seem to invalidate the use of the fracture initiation pressure and the formation breakdown pressure for stress measurements or rock strength evaluation purposes.
NASA Astrophysics Data System (ADS)
Cassibry, Jason; Dougherty, Jesse; Thompson, Seth; Hsu, Scott; Witherspoon, F. D.; University of AL in Huntsville Team; Los Alamos National Laboratory Team; HyperV Technologies Corp. Team
2014-10-01
Three-dimensional modeling of plasma liner formation and implosion is performed using the Smoothed Particle Hydrodynamics Code (SPHC) with radiation, thermal transport, and tabular equations of state (EOS), accounting for ionization, in support of a proposed 60-gun plasma liner formation experiment for plasma-jet driven magneto-inertial fusion (PJMIF). Previous SPHC modeling showed that ideal gas law scaling of peak stagnation pressure increased linearly with density and number of jets, quadratically with jet radius and velocity, and inversely with the initial jet length, while results with tabular EOS, thermal transport, and radiation have greater sensitivity to the initial jet distribution. A series of simulations are conducted to study the effects of initial jet conditions on peak ram pressure and liner non-uniformity during plasma liner implosion. The growth rate of large-amplitude density perturbations introduced by the discrete jets are computed and compared with predictions by the Bell-Plesset equation.
Cavitation clouds created by shock scattering from bubbles during histotripsy
Maxwell, Adam D.; Wang, Tzu-Yin; Cain, Charles A.; Fowlkes, J. Brian; Sapozhnikov, Oleg A.; Bailey, Michael R.; Xu, Zhen
2011-01-01
Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5−20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis. PMID:21973343
A Multi-Faceted Formative Assessment Approach: Better Recognising the Learning Needs of Students
ERIC Educational Resources Information Center
Jenkins, James O.
2010-01-01
Students are increasingly subject to a series of learning pressures that prevent effective engagement in assessment. Thus, the aim of this study was to create a multi-faceted formative assessment approach that better enabled students to engage in the assessment process. A formative assessment approach, consisting of six key initiatives, is…
Panda, Brajesh Kumar; Datta, Ashis Kumar
2016-04-01
This study describes major changes in phytochemical composition of orthodox tea (Camellia sinensis var. Assamica) oxidized under compressed air (CA). The experiments for oxidation were conducted under air pressure (101, 202, and 303 kPa) for 150 min. Relative change in the concentrations of caffeine, catechins, theaflavins (TF), and thearubigins (TR) were analyzed. Effect of CA pressure was found to be nonsignificant in regulating caffeine concentration during oxidation. But degradation in different catechins as well as formation of different TF was significantly affected by CA pressure. At high CA pressure, TF showed highest peak value. TR was found to have slower rate of formation during initial phase of oxidation than TF. Even though the rate of TR formation was significantly influenced by CA, a portion of catechins remained unoxidized at end of oxidation. Except caffeine, the percent change in rate of formation or degradation were more prominent at 202 kPa. © 2016 Institute of Food Technologists®
Yang, Zixuan; Kan, Bo; Li, Jinxu; Qiao, Lijie; Volinsky, Alex A; Su, Yanjing
2017-11-14
Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance.
Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.
2017-01-01
Hydrostatic pressure effects on pitting initiation and propagation in X70 steel are investigated by evaluating metastable pitting probability using electrochemical methods and immersion corrosion tests in containing chlorine ion solution. Potentiodynamic tests indicated that hydrostatic pressure can decrease the breakdown potential and lead to a reduced transpassivity region. Metastable test results revealed that hydrostatic pressure can increase metastable pitting formation frequency and promote stabilization of metastable pitting growth. Electrochemical impedance spectroscopy (EIS) results indicate that Hydrostatic pressure decreases the charge transfer resistance and increases the dissolution rate within the cavities. Corrosion test results also indicated that pitting initiation and propagation are accelerated by hydrostatic pressure. Result validity was verified by evaluating metastable pitting to predict pitting corrosion resistance. PMID:29135912
Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal
NASA Astrophysics Data System (ADS)
Kataoka, Keisuke; Katagiri, Toshimasa
2012-07-01
We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h
Xu, Lihua; Fang, Zhengping; Song, Ping'an; Peng, Mao
2010-03-01
Surface-initiated graft polymerization on multi-walled carbon nanotubes pretreated with a corona discharge at atmospheric pressure was explored. The mechanism of the corona-discharge-induced graft polymerization is discussed. The results indicate that MWCNTs were encapsulated by poly(glycidyl methacrylate) (PGMA), demonstrating the formation of PGMA-grafted MWCNTs (PGMA-g-MWCNTs), with a grafting ratio of about 22 wt%. The solubility of PGMA-g-MWCNTs in ethanol was dramatically improved compared to pristine MWCNTs, which could contribute to fabricating high-performance polymer/MWCNTs nanocomposites in the future. Compared with most plasma processes, which operate at low pressures, corona discharge has the merit of working at atmospheric pressure.
NASA Technical Reports Server (NTRS)
Grugel, R.N.; Lee, C.P.; Cox, M.C.; Blandford, B.T.; Anilkumar, A.V.
2008-01-01
Controlled directional solidification experiments were performed in capillary channels, using nitrogen-saturated succinonitrile, to examine the effect of an in-situ stepwise processing pressure increase on an isolated pore evolution. Two experiments were performed using different processing pressure input profiles. The results indicate that a processing pressure increase has a transient effect on pore growth geometry characterized by an initial phase of decreasing pore diameter, followed by a recovery phase of increasing pore diameter. The experimental results also show that processing pressure can be used as a control parameter to either increase or terminate porosity formation. A theoretical model is introduced which indicates that the pore formation process is limited by the diffusion of solute-gas through the melt, and that the observed response toa pressure increase is attributed to the re-equilibration of solute concentration in the melt associated with the increased melt pressure.
Effect of fluid penetration on tensile failure during fracturing of an open-hole wellbore
NASA Astrophysics Data System (ADS)
Zeng, Fanhui; Cheng, Xiaozhao; Guo, Jianchun; Chen, Zhangxin; Tao, Liang; Liu, Xiaohua; Jiang, Qifeng; Xiang, Jianhua
2018-06-01
It is widely accepted that a fracture can be induced at a wellbore surface when the fluid pressure overcomes the rock tensile strength. However, few models of this phenomenon account for the fluid penetration effect. A rock is a typical permeable, porous medium, and the transmission of pressure from a wellbore to the surrounding rock temporally and spatially perturbs the effective stresses. In addition, these induced stresses influence the fracture initiation pressure. To gain a better understanding of the penetration effect on the initiation pressure of a permeable formation, a comprehensive formula is presented to study the effects of the in situ stresses, rock mechanical properties, injection rate, rock permeability, fluid viscosity, fluid compressibility and wellbore size on the magnitude of the initiation pressure during fracturing of an open-hole wellbore. In this context, the penetration effect is treated as a consequence of the interaction among these parameters by using Darcy’s law of radial flow. A fully coupled analytical procedure is developed to show how the fracturing fluid infiltrates the rock around the wellbore and considerably reduces the magnitude of the initiation pressure. Moreover, the calculation results are validated by hydraulic fracturing experiments in hydrostone. An exhaustive sensitivity study is performed, indicating that the local fluid pressure induced from a seepage effect strongly influences the fracture evolution. For permeable reservoirs, a low injection rate and a low viscosity of the injected fluid have a significant impact on the fracture initiation pressure. In this case, the Hubbert and Haimson equations to predict the fracture initiation pressure are not valid. The open-hole fracture initiation pressure increases with the fracturing fluid viscosity and fluid compressibility, while it decreases as the rock permeability, injection rate and wellbore size increase.
Chondrule Crystallization Experiments
NASA Technical Reports Server (NTRS)
Hweins, R. H.; Connolly, H. C., Jr.; Lofgren, G. E.; Libourel, G.
2004-01-01
Given the great diversity of chondrules, laboratory experiments are invaluable in yielding information on chondrule formation process(es) and for deciphering their initial conditions of formation together with their thermal history. In addition, they provide some critical parameters for astrophysical models of the solar system and of nebular disk evolution in particular (partial pressures, temperature, time, opacity, etc). Most of the experiments simulating chondrules have assumed formation from an aggregate of solid grains, with total pressure of no importance and with virtually no gain or loss of elements from or to the ambient environment. They used pressed pellets attached to wires and suffered from some losses of alkalis and Fe.
Chemistry of fuel deposits and sediments and their predursors
NASA Technical Reports Server (NTRS)
Mayo, F. R.; Lan, B. Y.; Buttrill, S. E., Jr.; St.john, G. A.
1984-01-01
The mechanism of solid deposit formation on hot engine parts from turbine fuels is investigated. Deposit formation is associated with oxidation of the hydrocarbon fuel. Therefore, oxidation rates and soluble gum formation were measured for several jet turbine fuels and pure hydrocarbon mixtures. Experiments were performed at 130 C using thermal initiation and at 100 C using ditertiary butyl peroxide as a chemical initiator. Correlation of the data shows that the ratio of rate of oxidation to rate of gum formation for a single fuel is not much affected by experimental conditions, even though there are differences in the abilities of different hydrocarbons to initiate and continue the oxidation. This indicates a close association of gum formation with the oxidation process. Oxidations of n-dodecane, tetralin and the more unstable jet fuels are autocatalytic, while those of 2-ethylnaphthalene and a stable jet fuel are self-retarding. However, the ratio of oxidation rate to gum formation rate appear to be nearly constant for each substrate. The effect of oxygen pressure on gum and oxidation formation was also studied. Dependence of gum formation on the concentration of initiator at 100 C is discussed and problems for future study are suggested.
40 CFR 147.2912 - Operating requirements for wells authorized by rule.
Code of Federal Regulations, 2011 CFR
2011-07-01
... does not initiate new fractures or propagate existing fractures in the confining zone adjacent to any... initiate new fractures or propagate existing fractures in the confining zone adjacent to any USDW; and (B) Submit data acceptable to the Regional Administrator which defines the fracture pressure of the formation...
40 CFR 147.2912 - Operating requirements for wells authorized by rule.
Code of Federal Regulations, 2014 CFR
2014-07-01
... does not initiate new fractures or propagate existing fractures in the confining zone adjacent to any... initiate new fractures or propagate existing fractures in the confining zone adjacent to any USDW; and (B) Submit data acceptable to the Regional Administrator which defines the fracture pressure of the formation...
40 CFR 147.2912 - Operating requirements for wells authorized by rule.
Code of Federal Regulations, 2012 CFR
2012-07-01
... does not initiate new fractures or propagate existing fractures in the confining zone adjacent to any... initiate new fractures or propagate existing fractures in the confining zone adjacent to any USDW; and (B) Submit data acceptable to the Regional Administrator which defines the fracture pressure of the formation...
40 CFR 147.2912 - Operating requirements for wells authorized by rule.
Code of Federal Regulations, 2013 CFR
2013-07-01
... does not initiate new fractures or propagate existing fractures in the confining zone adjacent to any... initiate new fractures or propagate existing fractures in the confining zone adjacent to any USDW; and (B) Submit data acceptable to the Regional Administrator which defines the fracture pressure of the formation...
NASA Astrophysics Data System (ADS)
Akhbari, D.; Hesse, M. A.
2015-12-01
Carbon capture and storage allows reductions of the rapidly rising CO2 from fossil fuel-based power generation, if large storage rates and capacities can be achieved. The injection of large fluid volumes at high rates leads to a build-up of pore-pressure in the storage formation that may induce seismicity and compromise the storage security. Many natural CO2 fields in midcontinent US, in contrast, are under-pressured rather than over-pressured suggesting that natural processes reduce initial over-pressures and generate significant under-pressures. The question is therefore to understand the sequence of process(es) that allow the initial over-pressure to be eliminated and the under-pressure to be maintained over geological periods of time. We therefore look into pressure evolution in Bravo Dome, one of the largest natural CO2 accumulations in North America, which stores 1.3 Gt of CO2. Bravo Dome is only 580-900 m deep and is divided into several compartments with near gas-static pressure (see Figure). The pre-production gas pressures in the two main compartments that account for 70% of the mass of CO2 stored at Bravo Dome are more than 6 MPa below hydrostatic pressure. Here we show that the under-pressure in the Bravo Dome CO2 reservoir is maintained by hydrological compartmentalization over millennial timescales and generated by a combination of processes including cooling, erosional unloading, limited leakage into overlying formations, and CO2 dissolution into brine. Herein, we introduce CO2 dissolution into brine as a new process that reduce gas pressure in a compartmentalized reservoir and our results suggest that it may contribute significantly to reduce the initial pressure build-up due to injection. Bravo Dome is the first documented case of pressure drop due to CO2 dissolution. To have an accurate prediction of pressure evolution in Bravo Dome, our models must include geomechanics and thermodynamics for the reservoir while they account for the pressure changes due to the CO2 dissolution.
Method for the measurement of susceptibility to decubitus ulcer formation.
Meijer, J H; Schut, G L; Ribbe, M W; Goovaerts, H G; Nieuwenhuys, R; Reulen, J P; Schneider, H
1989-09-01
A method for measuring the susceptibility of a patient to develop decubitus ulcers is described and initially evaluated. It is based on an indirect, noninvasive measurement of the transient regional blood flow response after a test pressure load which simulates the external stimulus for pressure-sore formation. This method was developed to determine the individual risk of a patient and to study the subfactors which contribute to the susceptibility. This would also offer the possibility of evaluating the effect of preventive treatment aimed at reducing the susceptibility. The method was found to discriminate between preselected elderly patients at risk on the one hand, and non-risk patients and healthy young adults on the other hand. No differences in blood flow responses were found between the non-risk elderly patients and the healthy young adults. This suggests that age per se is not a factor in the formation of pressure sores. In the risk group the recovery time after pressure relief was found to be three times as long as the duration of the pressure exercise. This indicates that the recovery time after pressure exercise may be as important as the period of pressure exercise in deducing the risk of developing decubitus ulcers.
Experimental investigation on thermochemical sulfate reduction by H2S initiation
Zhang, T.; Amrani, A.; Ellis, G.S.; Ma, Q.; Tang, Y.
2008-01-01
Hydrogen sulfide (H2S) is known to catalyze thermochemical sulfate reduction (TSR) by hydrocarbons (HC), but the reaction mechanism remains unclear. To understand the mechanism of this catalytic reaction, a series of isothermal gold-tube hydrous pyrolysis experiments were conducted at 330 ??C for 24 h under a constant confining pressure of 24.1 MPa. The reactants used were saturated HC (sulfur-free) and CaSO4 in the presence of variable H2S partial pressures at three different pH conditions. The experimental results showed that the in-situ pH of the aqueous solution (herein, in-situ pH refers to the calculated pH of aqueous solution under the experimental conditions) can significantly affect the rate of the TSR reaction. A substantial increase in the TSR reaction rate was recorded with a decrease in the in-situ pH value of the aqueous solution involved. A positive correlation between the rate of TSR and the initial partial pressure of H2S occurred under acidic conditions (at pH ???3-3.5). However, sulfate reduction at pH ???5.0 was undetectable even at high initial H2S concentrations. To investigate whether the reaction of H2S(aq) and HSO4- occurs at pH ???3, an additional series of isothermal hydrous pyrolysis experiments was conducted with CaSO4 and variable H2S partial pressures in the absence of HC at the same experimental temperature and pressure conditions. CaSO4 reduction was not measurable in the absence of paraffin even with high H2S pressure and acidic conditions. These experimental observations indicate that the formation of organosulfur intermediates from H2S reacting with hydrocarbons may play a significant role in sulfate reduction under our experimental conditions rather than the formation of elemental sulfur from H2S reacting with sulfate as has been suggested previously (Toland W. G. (1960) Oxidation of organic compounds with aqueous sulphate. J. Am. Chem. Soc. 82, 1911-1916). Quantification of labile organosulfur compounds (LSC), such as thiols and sulfides, was performed on the products of the reaction of H2S and HC from a series of gold-tube non-isothermal hydrous pyrolysis experiments conducted at about pH 3 from 300 to 370 ??C and a 0.1-??C/h heating rate. Incorporation of sulfur into HC resulted in an appreciable amount of thiol and sulfide formation. The rate of LSC formation positively correlated with the initial H2S pressure. Thus, we propose that the LSC produced from H2S reaction with HC are most likely the reactive intermediates for H2S initiation of sulfate reduction. We further propose a three-step reaction scheme of sulfate reduction by HC under reservoir conditions, and discuss the geological implications of our experimental findings with regard to the effect of formation water and oil chemistry, in particular LSC content. ?? 2008 Elsevier Ltd. All rights reserved.
A Demands-Resources Model of Work Pressure in IT Student Task Groups
ERIC Educational Resources Information Center
Wilson, E. Vance; Sheetz, Steven D.
2010-01-01
This paper presents an initial test of the group task demands-resources (GTD-R) model of group task performance among IT students. We theorize that demands and resources in group work influence formation of perceived group work pressure (GWP) and that heightened levels of GWP inhibit group task performance. A prior study identified 11 factors…
NASA Astrophysics Data System (ADS)
Wang, Bo; Bauer, Sebastian
2017-04-01
With the rapid growth of energy production from intermittent renewable sources like wind and solar power plants, large-scale energy storage options are required to compensate for fluctuating power generation on different time scales. Compressed air energy storage (CAES) in porous formations is seen as a promising option for balancing short-term diurnal fluctuations. CAES is a power-to-power energy storage, which converts electricity to mechanical energy, i.e. highly pressurized air, and stores it in the subsurface. This study aims at designing the storage setup and quantifying the pressure response of a large-scale CAES operation in a porous sandstone formation, thus assessing the feasibility of this storage option. For this, numerical modelling of a synthetic site and a synthetic operational cycle is applied. A hypothetic CAES scenario using a typical anticline structure in northern Germany was investigated. The top of the storage formation is at 700 m depth and the thickness is 20 m. The porosity and permeability were assumed to have a homogenous distribution with a value of 0.35 and 500 mD, respectively. According to the specifications of the Huntorf CAES power plant, a gas turbine producing 321 MW power with a minimum inlet pressure of 43 bars at an air mass flowrate of 417 kg/s was assumed. Pressure loss in the gas wells was accounted for using an analytical solution, which defines a minimum bottom hole pressure of 47 bars. Two daily extraction cycles of 6 hours each were set to the early morning and the late afternoon in order to bypass the massive solar energy production around noon. A two-year initial filling of the reservoir with air and ten years of daily cyclic operation were numerically simulated using the Eclipse E300 reservoir simulator. The simulation results show that using 12 wells the storage formation with a permeability of 500 mD can support the required 6-hour continuous power output of 321MW, which corresponds an energy output of 3852 MWh per day. The average bottom hole pressure is 87 bars at the beginning of cyclic operation and reduces to 79 bars after 10 years. This pressure drop over time is caused by the open boundary conditions defined at the model edges and is not influenced by the cyclic operation. In the storage formation, the pressure response induced by the initial filling can be observed in the whole model domain, and a maximum pressure built-up of about 31 bars and 3 bars are observed near the wells and at a distance of 10 km from the wells, respectively. During the cyclic operation, however, pressure fluctuations of more than 1 bar can only be observed within the gas phase. Assuming formations with different permeabilities, a sensitivity analysis is carried out to find the number of wells required. Results show that the number of wells required does not linearly decrease with increasing permeability of the storage formation due to well interference during air extraction.
NASA Astrophysics Data System (ADS)
Sosnin, Eduard A.; Didenko, Maria V.; Panarin, Victor A.; Skakun, Victor S.; Tarasenko, Victor F.; Liu, Dongping P.; Song, Ying
2018-04-01
The decomposition products of atmospheric pressure plasma of repetitive pulsed discharge in apokamp and corona modes were determined by optical and chemical methods. It is shown, that the decomposition products contain mainly nitrogen oxides NOx. A brief review of the plasma- and thermochemical reactions in the pulsed discharges was made. The review and experimental data allow us to explain the reactive oxygen species formation mechanisms in a potential discharge channel with apokamp. The possible applications of this plasma source for treatment of seeds of agricultural crops are discussed.
Brine migration resulting from pressure increases in a layered subsurface system
NASA Astrophysics Data System (ADS)
Delfs, Jens-Olaf; Nordbeck, Johannes; Bauer, Sebastian
2016-04-01
Brine originating from the deep subsurface impairs parts of the freshwater resources in the North German Basin. Some of the deep porous formations (esp. Trias and Jurassic) exhibit considerable storage capacities for waste fluids (CO2, brine from oil production or cavern leaching), raising concerns among water providers that this type of deep subsurface utilization might impair drinking water supplies. On the one hand, overpressures induced by fluid injections and the geothermal gradient support brine migration from deep into shallow formations. On the other hand, the rising brine is denser than the surrounding less-saline formation waters and, therefore, tends to settle down. Aim of this work is to investigate the conditions under which pressurized formation brine from deep formations can reach shallow freshwater resources. Especially, the role of intermediate porous formations between the storage formation and the groundwater is studied. For this, complex thermohaline simulations using a coupled numerical process model are necessary and performed in this study, in which fluid density depends on fluid pressure, temperature and salt content and the governing partial differential equations are coupled. The model setup is 2D and contains a hypothetic series of aquifers and barriers, each with a thickness of 200 m. Formation pressure is increased at depths of about 2000 m in proximity to a salt wall and a permeable fault. The domain size reaches up to tens of kilometers horizontally to the salt wall. The fault connects the injection formation and the freshwater aquifer such that conditions can be considered as extremely favorable for induced brine migration (worst case scenarios). Brine, heat, and salt fluxes are quantified with reference to hydraulic permeabilities, storage capacities (in terms of domain size), initial salt and heat distribution, and operation pressures. The simulations reveal the development of a stagnation point in the fault region in each intermediate aquifer above the injection formation, where brine settles down and flows from the fault zone into the aquifer. This effect changes buoyancy so that lower density brine from the upper aquifers can rise higher and at larger fluxes compared to the case when no intermediary aquifers are present. In general, uplift of brine originating from the intermediary aquifers is mainly restricted to the next overlying two to three permeable aquifers (200m-1000m) or even only to the next aquifer if injection pressures are lower than about 10 bar. If injection induced over-pressures are high, brine from the injection reservoir can dominate inflow into the freshwater reservoir at late times (tens of years). An extensive parameter variation shows the effects of individual parameters. It is found, e.g., that no brine enters the freshwater aquifer if fault permeability is lower than about 10-14 m2. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".
Chondrocyte burst promotes space for mineral expansion.
Hara, Emilio Satoshi; Okada, Masahiro; Nagaoka, Noriyuki; Hattori, Takako; Iida, Letycia Mary; Kuboki, Takuo; Nakano, Takayoshi; Matsumoto, Takuya
2018-01-22
Analysis of tissue development from multidisciplinary approaches can result in more integrative biological findings, and can eventually allow the development of more effective bioengineering methods. In this study, we analyzed the initial steps of mineral formation during secondary ossification of mouse femur based on biological and bioengineering approaches. We first found that some chondrocytes burst near the mineralized area. External factors that could trigger chondrocyte burst were then investigated. Chondrocyte burst was shown to be modulated by mechanical and osmotic pressure. A hypotonic solution, as well as mechanical stress, significantly induced chondrocyte burst. We further hypothesized that chondrocyte burst could be associated with space-making for mineral expansion. In fact, ex vivo culture of femur epiphysis in hypotonic conditions, or under mechanical pressure, enhanced mineral formation, compared to normal culture conditions. Additionally, the effect of mechanical pressure on bone formation in vivo was investigated by immobilization of mouse lower limbs to decrease the body pressure onto the joints. The results showed that limb immobilization suppressed bone formation. Together, these results suggest chondrocyte burst as a novel fate of chondrocytes, and that manipulation of chondrocyte burst with external mechano-chemical stimuli could be an additional approach for cartilage and bone tissue engineering.
Method for directional hydraulic fracturing
Swanson, David E.; Daly, Daniel W.
1994-01-01
A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.
THE INFLUENCE OF PRESSURE-DEPENDENT VISCOSITY ON THE THERMAL EVOLUTION OF SUPER-EARTHS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stamenkovic, Vlada; Noack, Lena; Spohn, Tilman
2012-03-20
We study the thermal evolution of super-Earths with a one-dimensional (1D) parameterized convection model that has been adopted to account for a strong pressure dependence of the viscosity. A comparison with a 2D spherical convection model shows that the derived parameterization satisfactorily represents the main characteristics of the thermal evolution of massive rocky planets. We find that the pressure dependence of the viscosity strongly influences the thermal evolution of super-Earths-resulting in a highly sluggish convection regime in the lower mantles of those planets. Depending on the effective activation volume and for cooler initial conditions, we observe with growing planetary massmore » even the formation of a conductive lid above the core-mantle boundary (CMB), a so-called CMB-lid. For initially molten planets our results suggest no CMB-lids but instead a hot lower mantle and core as well as sluggish lower mantle convection. This implies that the initial interior temperatures, especially in the lower mantle, become crucial for the thermal evolution-the thermostat effect suggested to regulate the interior temperatures in terrestrial planets does not work for massive planets if the viscosity is strongly pressure dependent. The sluggish convection and the potential formation of the CMB-lid reduce the convective vigor throughout the mantle, thereby affecting convective stresses, lithospheric thicknesses, and heat fluxes. The pressure dependence of the viscosity may therefore also strongly affect the propensity of plate tectonics, volcanic activity, and the generation of a magnetic field of super-Earths.« less
Zhao, Jiafei; Lv, Qin; Li, Yanghui; Yang, Mingjun; Liu, Weiguo; Yao, Lei; Wang, Shenglong; Zhang, Yi; Song, Yongchen
2015-05-01
In this work, magnetic resonance imaging (MRI) was employed to observe the in-situ formation and dissociation of methane hydrates in porous media. Methane hydrate was formed in a high-pressure cell with controlled temperature, and then the hydrate was dissociated by thermal injection. The process was photographed by the MRI, and the pressure was recorded. The images confirmed that the direct visual observation was achieved; these were then employed to provide detailed information of the nucleation, growth, and decomposition of the hydrate. Moreover, the saturation of methane hydrate during the dissociation was obtained from the MRI intensity data. Our results showed that the hydrate saturation initially decreased rapidly, and then slowed down; this finding is in line with predictions based only on pressure. The study clearly showed that MRI is a useful technique to investigate the process of methane hydrate formation and dissociation in porous media. Copyright © 2015 Elsevier Inc. All rights reserved.
Kantzow, Christina; Weuster-Botz, Dirk
2016-08-01
Low aqueous solubility of the gases for autotrophic fermentations (e.g., hydrogen gas) results in low productivities in bioreactors. A frequently suggested approach to overcome mass transfer limitation is to increase the solubility of the limiting gas in the reaction medium by increasing the partial pressure in the gas phase. An increased inlet hydrogen partial pressure of up to 2.1 bar (total pressure of 3.5 bar) was applied for the autotrophic conversion of hydrogen and carbon dioxide with Acetobacterium woodii in a batch-operated stirred-tank bioreactor with continuous gas supply. Compared to the autotrophic batch process with an inlet hydrogen partial pressure of 0.4 bar (total pressure of 1.0 bar) the final acetate concentration after 3.1 days was reduced to 50 % (29.2 g L(-1) compared to 59.3 g L(-1)), but the final formate concentration was increased by a factor of 18 (7.3 g L(-1) compared to 0.4 g L(-1)). Applying recombinant A. woodii strains overexpressing either genes for enzymes in the methyl branch of the Wood-Ljungdahl pathway or the genes phosphotransacetylase and acetate kinase at an inlet hydrogen partial pressure of 1.4 bar reduced the final formate concentration by up to 40 % and increased the final dry cell mass and acetate concentrations compared to the wild type strain. Solely the overexpression of the two genes for ATP regeneration at the end of the Wood-Ljungdahl pathway resulted in an initial switch off of formate production at increased hydrogen partial pressure until the maximum of the hydrogen uptake rate was reached.
Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J
2005-02-14
Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.
NASA Astrophysics Data System (ADS)
Meyer, D.
2016-12-01
We generate methane hydrate in a coarse-grained, brine-saturated, vertically-oriented sample through gas injection. From 0 - 80 hours, we estimate a hydrate saturation of 0.56 behind the formation front, using mass balance, indicating that hydrate formation is limited by locally-elevated salinity creating three-phase equilibrium conditions. After 80 hours, the hydrate phase saturation drops to 0.50 and the magnitude of the pressure drop-rebound cycles increases, suggesting temporary reductions in permeability and the development of heterogeneous distributions of free gas in the sample. The sample consists of an industrial, fine sand mixed with a 0.5 wt% fraction of natural, smectitic clay from the Eugene Island region in the Gulf of Mexico (5.08cm diameter, 11.79cm length). The sample is initially saturated with a 7 wt% sodium chloride brine, pressurized to 12.24 MPa, and cooled to 1 degree Celsius, to bring the sample into the hydrate stability zone. Syringe pumps filled with methane gas and brine are connected to the top and bottom of the sample, respectively, to control fluid flow. We withdraw from the base of the sample at a rate of 0.0005 mL/min and inject methane to maintain a constant pressure, initiating hydrate formation. We analyze this experiment, as well as a gas flood experiment executed under the same conditions, using computed-tomography scans and an analytical solution to investigate the formation behavior and thermodynamic state of hydrate in gas-rich, coarse-grained reservoirs.
Amphibole and Phlogopite Formation on the R Chondrite Parent Body: An Experimental Investigation
NASA Astrophysics Data System (ADS)
Lunning, N. G.; Waters, L. E.; McCoy, T. J.
2017-07-01
High-temperature hydrated minerals can form at the pressures and the temperatures expected for the interiors of planetesimals. Under water-saturated conditions, minimum silicate melting can initiate at temperatures as low as 870°C at 40 MPa.
The Destructive Birth of Massive Stars and Massive Star Clusters
NASA Astrophysics Data System (ADS)
Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico
2017-01-01
Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is amplified. Our results suggest that the combined effect of turbulence, magnetic pressure, and radiative feedback from massive stars is responsible for the low star formation efficiencies observed in molecular clouds.
Role of vortices in growth of microbubbles at mitral mechanical heart valve closure.
Rambod, Edmond; Beizai, Masoud; Sahn, David J; Gharib, Morteza
2007-07-01
This study is aimed at refining our understanding of the role of vortex formation at mitral mechanical heart valve (MHV) closure and its association with the high intensity transient signals (HITS) seen in echocardiographic studies with MHV recipients. Previously reported numerical results described a twofold process leading to formation of gas-filled microbubbles in-vitro: (1) nucleation and (2) growth of micron size bubbles. The growth itself consists of two processes: (a) diffusion and (b) sudden pressure drop due to valve closure. The role of diffusion has already been shown to govern the initial growth of nuclei. Pressure drop at mitral MHV closure may be attributed to other phenomena such as squeezed flow, water hammer and primarily, vortex cavitation. Mathematical analysis of vortex formation at mitral MHV closure revealed that a closing velocity of approximately 12 m/s can induce a strong regurgitant vortex which in return can instigate a local pressure drop of about 0.9 atm. A 2D experimental model of regurgitant flows was used to substantiate the impact of vortices. At simulated flow and pressure conditions, a regurgitant vortex was observed to drastically enlarge micron size hydrogen bubbles at its core.
Bespalov, I.; Datler, M.; Buhr, S.; Drachsel, W.; Rupprechter, G.; Suchorski, Y.
2015-01-01
An improved methodology of the Zr specimen preparation was developed which allows fabrication of stable Zr nanotips suitable for FIM and AP applications. Initial oxidation of the Zr surface was studied on a Zr nanotip by FIM and on a polycrystalline Zr foil by XPS, both at low oxygen pressure (10−8–10−7 mbar). The XPS data reveal that in a first, fast stage of oxidation, a Zr suboxide interlayer is formed which contains three suboxide components (Zr+1, Zr+2 and Zr+3) and is located between the Zr surface and a stoichiometric ZrO2 overlayer that grows in a second, slow oxidation stage. The sole suboxide layer has been observed for the first time at very early states of the oxidation (oxygen exposure ≤4 L). The Ne+ FIM observations are in accord with a two stage process of Zr oxide formation. PMID:25766998
Method for forming pyrrone molding powders and products of said method
NASA Technical Reports Server (NTRS)
Hughes, C. T.; Mchenry, R. J. (Inventor)
1972-01-01
The formation of pyrrone resins of the ladder or semiladder structure is described. The technique involves initial formation of fully cyclized prepolymers having an average degree of polymerization of about 1.5, one with acidic terminal groups, another with amine terminal groups. Thereafter the prepolymers are intimately admixed on a 1:1 stoichiometric basis. The resulting powder mixture is molded at elevated pressures and temperatures to form a fully cyclized resin.
Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.
2010-01-01
Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.
NASA Astrophysics Data System (ADS)
Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin
2009-07-01
Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.
NASA Astrophysics Data System (ADS)
Wu, Cheng-Yueh; Chiu, Yung-Cheng; Huang, Yi-Jyun; Hsieh, Bieng-Zih
2017-04-01
The future energy police of Taiwan will heavily rely on the clean energy, including renewable energy and low-carbon energy, to meet the target of mitigating CO2 emission. In addition to developing the renewable energies like solar and wind resources, Taiwan will increase the natural gas consumption to obtain enough electrical power with low-carbon emission. The vast resources of gas hydrates recognized in southwestern offshore Taiwan makes a great opportunity for Taiwan to have own energy resources in the future. Therefore, Taiwan put significant efforts on the evaluation of gas hydrate reserves recently. Production behavior of natural gas dissociated from gas hydrate deposits is an important issue to the hydrate reserves evaluation. The depressurization method is a useful engineering recovery method for gas production from a class-3 type hydrate deposit. The dissociation efficiency will be affected by the pressure drawdown disturbance. However, when the pore pressure of hydrate deposits is depressurized for gas production, the rock matrix will surfer more stresses and the formation deformation might be occurred. The purpose of this study was to investigate the effects of geomechanical mechanism on the gas production from a class-3 hydrate deposit using depressurization method. The case of a class-3 type hydrate deposit of Four-Way-Closure Ridge was studied. In this study a reservoir simulator, STARS, was used. STARS is a multiphase flow, heat transfer, geo-chemical and geo-mechanical mechanisms coupling simulator which is capable to simulate the dissociation/reformation of gas hydrate and the deformation of hydrate reservoirs and overburdens. The simulating ability of STARTS simulator was validated by duplicating the hydrate comparison projects of National Energy Technology Lab. The study target, Four-Way-Closure (FWC) Ridge hydrate deposit, was discovered by the bottom simulating reflectors (BSRs). The geological parameters were collected from the geological and geophysical studies and the geo-mechanical data were analogized from Japan's hydrate production case. The first step for the geological modelling was to digitize the structure map of FWC Ridge and built a grid system for the reservoir. The formation parameters, such as formation thickness, porosity and permeability, the phase behavior parameters, rock-fluid parameters, initial conditions (including formation pressure, temperature and hydrate saturation), geo-mechanical parameters were assigned into each grid. In this case we used a horizontal well with specific operating conditions to produce water and dissociated gas from the reservoir. The sensitivity analyses on geological and geo-mechanical parameters were conducted in this study. The case of different pressure drop showed that the recovery factor (RF) was 2.50%, 13.50% and 20.47% when the pressure drop of 60%, 70% and 75% from the initial reservoir pressure was used respectively. Based on the case of pressure drop of 75% (from the initial reservoir pressure), the RF was 35.13%, 25.9%, 20.47% and 16.65% when the initial hydrate saturation of 30%, 40%, 50% and 60% was assumed respectively. The greater formation permeability, the better gas recovery. The capillary pressure had a minor affection on the gas production in this case study. The best well location was at the upper layer because of the gravity effect. For the effects of the geo-mechanics, we observed that the rock mechanisms had impacts on the final cumulative gas production. The larger the Young's Modulus and the smaller the Poisson's Ratio, the smaller the subsidence on the seabed. Our simulation results showed that the seabed subsidence in FWC Ridge was about 1 meter during the production period.
Mechanisms of Exhaust Pollutants and Plume Formation in Continuous Combustion.
1984-11-30
drop swirler. A swirled air inlet decreased flame length . Two modes of operation were observed. At higher fuel loadings, reaction could be initiated...and maintained in the recirculation zone in the shadow of the step. The net result was a shorter overall flame length . The low-pressure drop swirler...yielded a shorter flame length relative to the higher pressure drop devices. - • u mmm m -m~amkn Jm• ml AM mmmmm TABLE OF CONTENTS Section Title Page
NASA Astrophysics Data System (ADS)
Onishi, Isamu K.; Sekiya, Minoru
2017-04-01
We investigate the effect of a radial pressure bump in a protoplanetary disk on planetesimal formation. We performed the two-dimensional numerical simulation of the dynamical interaction of solid particles and gas with an initially defined pressure bump under the assumption of axisymmetry. The aim of this work is to elucidate the effects of the stellar vertical gravity that were omitted in a previous study. Our results are very different from the previous study, which omitted the vertical gravity. Because dust particles settle toward the midplane because of the vertical gravity to form a thin dust layer, the regions outside of the dust layer are scarcely affected by the back-reaction of the dust. Hence, the gas column density keeps its initial profile with a bump, and dust particles migrate toward the bump. In addition, the turbulence due to the Kelvin-Helmholtz instability caused by the difference of the azimuthal velocities between the inside and outside of the dust layer is suppressed where the radial pressure gradient is reduced by the pressure bump. The dust settling proceeds further where the turbulence is weak, and a number of dust clumps are formed. The dust density in some clumps exceeds the Roche density. Planetesimals are considered to be formed from these clumps owing to the self-gravity.[Figure not available: see fulltext.
Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures
NASA Astrophysics Data System (ADS)
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-11-01
We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.
Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures
NASA Astrophysics Data System (ADS)
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-10-01
We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.
Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Tsaplin, A. I.; Bochkarev, S. V.
2016-01-01
Results of an experimental investigation into the deformation and destruction of a metal composite vessel with a cryogenic gas are presented. Its structure is based on basalt, carbon, and organic fibers. The vessel proved to be serviceable at cryogenic temperatures up to a burst pressure of 45 MPa, and its destruction was without fragmentation. A mathematical model adequately describing the rise of pressure in the cryogenic vessel due to the formation of a gaseous phase upon boiling of the liquefied natural gas during its storage without drainage at the initial stage is proposed.
Observing RAM Pressure Stripping and Morphological Transformation in the Coma Cluster
NASA Astrophysics Data System (ADS)
Gregg, Michael; West, Michael
2017-07-01
The two largest spirals in the Coma cluster, NGC4911 and NGC4921, are being vigorously ram-pressure stripped by the hot intracluster medium. Our HST ACS and WFC3 images have revealed galactic scale shock fronts, giant "Pillars of Creation", rivulets of dust, and spatially coherent star formation in these grand design spirals. We have now obtained HST WFC3 imaging of five additional large Coma spirals to search for and investigate the effects of ram pressure stripping across the wider cluster environment. The results are equally spectacular as the first two examples. The geometry of the interactions in some cases allows an estimation of the various time scales involved, including gas flows out of the disk leading to creation of the ICM, and the attendant triggered star formation in the galaxy disks. The global star formation patterns yield insights into the spatial and temporal ISM-ICM interactions driving cluster galaxy evolution and ultimately transforming morphologies from spiral to S0. These processes were much more common in the early Universe when the intergalactic and intracluster components were initially created from stripping and destruction of member galaxies.
Pressure and shear sensing based on microstrip antennas
NASA Astrophysics Data System (ADS)
Mohammad, I.; Huang, H.
2012-04-01
A foot ulcer is the initiating factor in 85% of all diabetic amputations. Ulcer formation is believed to be contributed by both pressure and shear forces. There are commercially available instruments that can measure plantar pressure. However, instruments for plantar shear measurement are limited. In this paper, we investigate the application of antenna sensors for shear and pressure measurement. The principle of operation of both antenna sensors will be discussed first, followed by detailed descriptions on the antenna designs, sensor fabrication, experimental setup, procedure and results. Because the antenna sensors are small in size, can be wirelessly interrogated, and are frequency multiplexable, we plan to embed them in shoes for simultaneous mapping of plantar shear and pressure distributions in the future.
Formation of MgO-B{sub 4}C composite via a thermite-based combustion reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, L.L.; Munir, Z.A.; Holt, J.B.
1995-03-01
The combustion synthesis of MgO-B{sub 4}C composites was investigated by coupling a highly exothermic Mg-B{sub 2}O{sub 3} thermite reaction with a weakly exothermic B{sub 4}C formation reaction. Unlike the case of using Al as the reducing agent, the interaction between Mg and B{sub 2}O{sub 3} depends on the surrounding inert gas pressure due to the high vapor pressure of Mg. The interaction changes from one involving predominantly gaseous Mg and liquid B{sub 2}O{sub 3} to one involving liquid Mg and liquid B{sub 2}O{sub 3} as the pressure increases. At low inert gas pressure, the initiation temperature is found to bemore » just below the melting point of Mg (650 C). As the inert gas pressure increases, the vaporization loss of reactants is reduced, and this in turn increases the combustion temperature, which promotes greater grain growth of the product phases, MgO and B{sub 4}C. The particle size of B{sub 4}C increased from about 0.2 to 5 {mu}m as the pressure changed from 1 to 30 atm.« less
Damage Recovery in Carrara Marble
NASA Astrophysics Data System (ADS)
Meyer, G.; Brantut, N.; Mitchell, T. M.; Meredith, P. G.
2017-12-01
We investigate the effect of confining pressure on the recovery of elastic wave velocities following deformation episodes in Carrara Marble. Dry Carrara Marble cores were deformed in the ductile regime (Pc = 40 MPa) up to 3% axial strain. After deformation, samples were held at constant stress conditions for extended periods of time (5-8 days) whilst continuously recording volumetric strain and seismic wave velocities. The velocity data were used to invert for microcrack densities using an effective medium approach. Finally, thin sections were produced to characterise the microstructures after recovery. During deformation, elastic wave speeds decreased with increasing strain by more than 30% of the value for the intact rock due to the formation of distributed microcracks. Under constant hydrostatic pressure, wave speeds progressively recovered 12-90% of the initial drop, depending on the applied confining pressure. In contrast, the strain recovery (deformation towards the initial shape of the sample) during holding time is negligible (of the order of 10-4). Tests performed under nonhydrostatic (triaxial) stress conditions during recovery showed some time-dependent creep deformation together with very significant recovery of wave velocities. The recovery is interpreted as a progressive reduction in crack density within the sample. The process is highly dependent on confining pressure, which favours it. We propose that the driving process for wave speed recovery is the time-dependent increase of contact area between crack surfaces due to the formation and growth of asperity contacts. We develop a micromechanical model for crack closure driven by asperity creep, which shows a good fit to the experimental data. Most of the recovery is achieved in the initial few hours, implying it is the fastest recovery or healing process, and thus occurs prior to any chemical healing or mineral precipitation. Our data corroborate field observations of post-seismic fault behavior.
Study on statistical breakdown delay time in argon gas using a W-band millimeter-wave gyrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongsung; Yu, Dongho; Choe, MunSeok
2016-04-15
In this study, we investigated plasma initiation delay times for argon volume breakdown at the W-band frequency regime. The threshold electric field is defined as the minimum electric field amplitude needed for plasma breakdown at various pressures. The measured statistical delay time showed an excellent agreement with the theoretical Gaussian distribution and the theoretically estimated formative delay time. Also, we demonstrated that the normalized effective electric field as a function of the product of pressure and formative time shows an outstanding agreement to that of 1D particle-in-cell simulation coupled with a Monte Carlo collision model [H. C. Kim and J.more » P. Verboncoeur, Phys. Plasmas 13, 123506 (2006)].« less
Laser absorption waves in metallic capillaries
NASA Astrophysics Data System (ADS)
Anisimov, V. N.; Arutiunian, R. V.; Bol'Shov, L. A.; Kanevskii, M. F.; Kondrashov, V. V.
1987-07-01
The propagation of laser absorption waves in metallic capillaries was studied experimentally and numerically during pulsed exposure to CO2 laser radiation. The dependence of the plasma front propagation rate on the initial air pressure in the capillary is determined. In a broad range of parameters, the formation time of the optically opaque plasma layer is governed by the total laser pulse energy from the beginning of the exposure to the instant screening appears, and is weakly dependent on the pulse shape and gas pressure.
NASA Astrophysics Data System (ADS)
Hunter, Deidre A.; Adamo, Angela; Elmegreen, Bruce G.; Gallardo, Samavarti; Lee, Janice C.; Cook, David O.; Thilker, David; Kayitesi, Bridget; Kim, Hwihyun; Kahre, Lauren; Ubeda, Leonardo; Bright, Stacey N.; Ryon, Jenna E.; Calzetti, Daniela; Tosi, Monica; Grasha, Kathryn; Messa, Matteo; Fumagalli, Michele; Dale, Daniel A.; Sabbi, Elena; Cignoni, Michele; Smith, Linda J.; Gouliermis, Dimitrios M.; Grebel, Eva K.; Aloisi, Alessandra; Whitmore, Bradley C.; Chandar, Rupali; Johnson, Kelsey E.
2018-07-01
We have explored the role environmental factors play in determining characteristics of young stellar objects in nearby dwarf irregular and blue compact dwarf galaxies. Star clusters are characterized by concentrations, masses, and formation rates; OB associations by mass and mass surface density; O stars by their numbers and near-ultraviolet absolute magnitudes; and H II regions by Hα surface brightnesses. These characteristics are compared to surrounding galactic pressure, stellar mass density, H I surface density, and star formation rate (SFR) surface density. We find no trend of cluster characteristics with environmental properties, implying that larger-scale effects are more important in determining cluster characteristics or that rapid dynamical evolution erases any memory of the initial conditions. On the other hand, the most massive OB associations are found at higher pressure and H I surface density, and there is a trend of higher H II region Hα surface brightness with higher pressure, suggesting that a higher concentration of massive stars and gas is found preferentially in regions of higher pressure. At low pressures we find massive stars but not bound clusters and OB associations. We do not find evidence for an increase of cluster formation efficiency as a function of SFR density. However, there is an increase in the ratio of the number of clusters to the number of O stars with increasing pressure, perhaps reflecting an increase in clustering properties with SFR.
Stability analysis of a pressure-solution surface
NASA Astrophysics Data System (ADS)
Gal, Doron; Nur, Amos; Aharonov, Einat
We present a linear stability analysis of a dissolution surface subjected to non-hydrostatic stress. A sinusoidal perturbation is imposed on an initially flat solid/fluid interface, and the consequent changes in elastic strain energy and surface energy are calculated. Our results demonstrate that if the far-field lateral stresses are either greater, or much smaller than the fluid pressure, the perturbed configuration has a lower strain energy than the initial one. For wavelengths greater than a critical wavelength this energy decrease may be large enough to offset the increased surface energy. Under these conditions, the perturbation grows unstably. If these conditions are not met, the surface becomes flat. The growth rate and wavelength of the maximally unstable mode depend on the mechanism of matter transport. We conclude that the instability discussed in this paper may account for the formation of stylolites and other pressure-solution phenomena, such as roughening of grain contacts.
NASA Astrophysics Data System (ADS)
Talaghat, Mohammad Reza; Jokar, Seyyed Mohammad
2018-03-01
The induction time is a time interval to detect the initial hydrate formation, which is counted from the moment when the stirrer is turned on until the first detection of hydrate formation. The main objective of the present work is to predict and measure the induction time of methane hydrate formation in the presence or absence of tetrahydrofuran (THF) as promoter in the flow loop system. A laboratory flow mini-loop apparatus was set up to measure the induction time of methane hydrate formation. The induction time is predicted using developed Kashchiev and Firoozabadi model and modified model of Natarajan for a flow loop system. Furthermore, the effects of volumetric flow rate of the fluid on the induction time were investigated. The results of the models were compared with experimental data. They show that the induction time of hydrate formation in the presence of THF is very short at high pressure and high volumetric flow rate of the fluid. It decreases with increasing pressure and liquid volumetric flow rate. It is also shown that the modified Natarajan model is more accurate than the Kashchiev and Firoozabadi ones in prediction of the induction time.
NASA Astrophysics Data System (ADS)
Birkholzer, J. T.; Gonzalez-Nicolas, A.; Cihan, A.
2017-12-01
Industrial-scale injection of CO2 into the subsurface increases the fluid pressure in the reservoir, sometimes to the point that the resulting stress increases must be properly controlled to prevent potential damaging impacts such as fault activation, leakage through abandoned wells, or caprock fracturing. Brine extraction is one approach for managing formation pressure, effective stress, and plume movement in response to CO2 injection. However, the management of the extracted brine adds cost to the carbon capture and sequestration operations; therefore optimizing (minimizing) the extraction volume of brine is of great importance. In this study, we apply an adaptive management approach that optimizes extraction rates of brine for pressure control in an integrated optimization framework involving site monitoring, model calibration, and optimization. We investigate the optimization performance as affected by initial site characterization data and introduction of newly acquired data during the injection phase. More accurate initial reservoir characterization data reduce the risk of pressure buildup damage with better estimations of initial extraction rates, which results in better control of pressure during the overall injection time periods. Results also show that low frequencies of model calibration and optimization with the new data, especially at early injection periods, may lead to optimization problems, either that pressure buildup constraints are violated or excessively high extraction rates are proposed. These optimization problems can be eliminated if more frequent data collection and model calibration are conducted, especially at early injection time periods. Approaches such as adaptive pressure management may constitute an effective tool to manage pressure buildup under uncertain and unknown reservoir conditions by minimizing the brine extraction volumes while not exceeding critical pressure buildups of the reservoir.
Study on Flake Formation Behavior and Its Influence Factors in Cr5 Steel
Chen, Huitao; Zhao, Wu; Yan, Liang
2018-01-01
A flake is a crack that is induced by trapped hydrogen within steel. To study its formation mechanism, previous studies mostly focused on the formation process and magnitude of hydrogen pressure in hydrogen traps such as cavities and cracks. However, according to recent studies, the hydrogen leads to the decline of the mechanical properties of steel, which is known as hydrogen embrittlement, is another reason for flake formation. In addition, the phenomenon of stress induced hydrogen uphill diffusion should not be neglected. All of the three behaviors are at work simultaneously. In order to further explore the formation mechanism of flakes in steel, the process of flake initiation and growth were studied with the following three coupling factors: trap hydrogen pressure, hydrogen embrittlement, and stress induced hydrogen re-distribution. The analysis model was established using the finite element method, and a crack whose radius is 0.5 mm was set in its center. The cohesive method and Bilinear Traction Separate Law (BTSL) were used to address the coupling effect. The results show that trap hydrogen pressure is the main driving force for flake formation. After the high hydrogen pressure was generated around the trap, a stress field formed. In addition, the trap is the center of stress concentration. Then, hydrogen is concentrated in a distribution around this trap, and most of the steel mechanical properties are reduced. The trap size is a key factor for defining the critical hydrogen content for flake formation and propagation. However, when the trap size exceeds the specified value, the critical hydrogen content does not change any more. As for the crack whose radius is 0.5 mm, the critical hydrogen content of Cr5VMo steel is 2.2 ppm, which is much closer to the maximum safe hydrogen concentration of 2.0 ppm used in China. The work presented in this article increases our understanding of flake formation and propagation mechanisms in steel. PMID:29702610
NASA Astrophysics Data System (ADS)
Yu, H.; Gu, H.
2017-12-01
A novel multivariate seismic formation pressure prediction methodology is presented, which incorporates high-resolution seismic velocity data from prestack AVO inversion, and petrophysical data (porosity and shale volume) derived from poststack seismic motion inversion. In contrast to traditional seismic formation prediction methods, the proposed methodology is based on a multivariate pressure prediction model and utilizes a trace-by-trace multivariate regression analysis on seismic-derived petrophysical properties to calibrate model parameters in order to make accurate predictions with higher resolution in both vertical and lateral directions. With prestack time migration velocity as initial velocity model, an AVO inversion was first applied to prestack dataset to obtain high-resolution seismic velocity with higher frequency that is to be used as the velocity input for seismic pressure prediction, and the density dataset to calculate accurate Overburden Pressure (OBP). Seismic Motion Inversion (SMI) is an inversion technique based on Markov Chain Monte Carlo simulation. Both structural variability and similarity of seismic waveform are used to incorporate well log data to characterize the variability of the property to be obtained. In this research, porosity and shale volume are first interpreted on well logs, and then combined with poststack seismic data using SMI to build porosity and shale volume datasets for seismic pressure prediction. A multivariate effective stress model is used to convert velocity, porosity and shale volume datasets to effective stress. After a thorough study of the regional stratigraphic and sedimentary characteristics, a regional normally compacted interval model is built, and then the coefficients in the multivariate prediction model are determined in a trace-by-trace multivariate regression analysis on the petrophysical data. The coefficients are used to convert velocity, porosity and shale volume datasets to effective stress and then to calculate formation pressure with OBP. Application of the proposed methodology to a research area in East China Sea has proved that the method can bridge the gap between seismic and well log pressure prediction and give predicted pressure values close to pressure meassurements from well testing.
Liquid phase stabilization versus bubble formation at a nanoscale curved interface
NASA Astrophysics Data System (ADS)
Schiffbauer, Jarrod; Luo, Tengfei
2018-03-01
We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.
Laboratory formation of non-cementing, methane hydrate-bearing sands
Waite, William F.; Bratton, Peter M.; Mason, David H.
2011-01-01
Naturally occurring hydrate-bearing sands often behave as though methane hydrate is acting as a load-bearing member of the sediment. Mimicking this behavior in laboratory samples with methane hydrate likely requires forming hydrate from methane dissolved in water. To hasten this formation process, we initially form hydrate in a free-gas-limited system, then form additional hydrate by circulating methane-supersaturated water through the sample. Though the dissolved-phase formation process can theoretically be enhanced by increasing the pore pressure and flow rate and lowering the sample temperature, a more fundamental concern is preventing clogs resulting from inadvertent methane bubble formation in the circulation lines. Clog prevention requires careful temperature control throughout the circulation loop.
Fayalite Dissolution and Siderite Formation in Water-Saturated Supercritical CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qafoku, Odeta; Kovarik, Libor; Kukkadapu, Ravi K.
2012-11-25
Olivines, a significant constituent of basaltic rocks, have the potential to immobilize permanently CO2 after it is injected in the deep subsurface, due to carbonation reactions occurring between CO2 and the host rock. To investigate the reactions of fayalitic olivine with supercritical CO2 (scCO2) and formation of mineral carbonates, experiments were conducted at temperatures of 35 °C to 80 °C, 90 atm pressure and anoxic conditions. For every temperature, the dissolution of fayalite was examined both in the presence of liquid water and H2O-saturated scCO2. The experiments were conducted in a high pressure batch reactor at reaction time extending upmore » to 85 days. The newly formed products were characterized using a comprehensive suite of bulk and surface characterization techniques X-ray diffraction, Transmission/Emission Mössbauer Spectroscopy, Scanning Electron Microscopy coupled with Focused Ion Beam, and High Resolution Transmission Electron Microscopy. Siderite with rhombohedral morphology was formed at 35 °C, 50 °C, and 80 °C in the presence of liquid water and scCO2. In H2O-saturated scCO2, the formation of siderite was confirmed only at high temperature (80 °C). Characterization of reacted samples in H2O-saturated scCO2 with high resolution TEM indicated that siderite formation initiated inside voids created during the initial steps of fayalite dissolution. Later stages of fayalite dissolution result in the formation of siderite in layered vertical structures, columns or pyramids with a rhombus base morphology.« less
Quantitative investigation of the gassing behavior in cylindrical Li4Ti5O12 batteries
NASA Astrophysics Data System (ADS)
Wang, Qian; Zhang, Jian; Liu, Wei; Xie, Xiaohua; Xia, Baojia
2017-03-01
The Li4Ti5O12 gassing behavior is a critical limitation for applications in lithium-ion batteries. The impact of electrode/electrolyte interface, as well as the underlying mechanisms involved during the gassing process, are still debated. Herein, a quantitative evolution of the internal pressure in 18650-type cylindrical Li4Ti5O12 batteries is investigated using a self-designed pressure testing device. The results indicate that the internal pressure significantly increases during the formation cycle and continues growing during the following cycles. After several charge and discharge cycles, the pressure finally reaches constant. Simultaneously, the formation of the solid electrolyte interphase (SEI) film is also investigated. The results suggest that the initial formed SEI film has a thickness of 24 nm, and is observed to shrink during the following cycles. Furthermore, no apparent increase in thickness accompanying the pressure rising is noticed. These comparative investigations reveal a possible mechanism of the gassing behavior. We suggest that the gassing behavior is associated with side reactions which are determined by the potential of the Li4Ti5O12 electrode, where the active sites of the electrode/electrolyte interface manage the extent of the reaction.
Role of vortices in cavitation formation in the flow across a mechanical heart valve.
Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H
2008-07-01
Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous dissipation, with a less significant contribution from the occluder rebound effect. The maximum pressure drop was on the order of magnitude of 40 mmHg. Detailed PIV measurements and quantitative analysis of the BSM mechanical heart valve revealed large-scale vortex formation immediately after valve closure. Of note, the vortices were typical of a Rankine vortex and the maximum pressure change at the vortex center was only 40 mmHg. These data support the conclusion that vortex formation alone cannot generate the magnitude of pressure drop required for cavitation bubble formation.
Solid-particle jet formation under shock-wave acceleration.
Rodriguez, V; Saurel, R; Jourdan, G; Houas, L
2013-12-01
When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials.
Methods for enhancing P-type doping in III-V semiconductor films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Feng; Stringfellow, Gerald; Zhu, Junyi
2017-08-01
Methods of doping a semiconductor film are provided. The methods comprise epitaxially growing the III-V semiconductor film in the presence of a dopant, a surfactant capable of acting as an electron reservoir, and hydrogen, under conditions that promote the formation of a III-V semiconductor film doped with the p-type dopant. In some embodiments of the methods, the epitaxial growth of the doped III-V semiconductor film is initiated at a first hydrogen partial pressure which is increased to a second hydrogen partial pressure during the epitaxial growth process.
Interaction of lithotripter shockwaves with single inertial cavitation bubbles
Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K.; Khoo, Boo Cheong; Szeri, Andrew J.; Calvisi, Michael L.; Sankin, Georgy N.; Zhong, Pei
2008-01-01
The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed. PMID:19018296
Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K; Khoo, Boo Cheong; Szeri, Andrew J; Calvisi, Michael L; Sankin, Georgy N; Zhong, Pei
2007-01-01
The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.
Overpressure Prediction From Seismic Data: Implications on Drilling Safety
NASA Astrophysics Data System (ADS)
Osinowo, O. O.; Oladunjoye, M. A.; Olayinka, A. I.
2007-12-01
High rate of sediment influx into the Niger Delta via river Niger coupled with high rate of basin subsidence, very thick clayey members of Agbada and Akata Formations as well as prevailing presence of growth faults had been identified as the main factors responsible for overpressure generation and preservation in the Niger Delta basin. Analysis of porosity dependent parameters such as interval transit times and interval velocities derived from the seismic records of a field in the Western Niger Delta revealed the presence of overpressured formation at depth of 8670 feet, which is the top of the overpressured zone. The plot of interval transit times against depth gave a positive deflection from normal at the region of overpressure while interval velocity plot gave negative deflection; the ratio of this deviation in both cases is as high as 1.52. Pressure gradient in the upper, normally pressured part of the field was determined to be 0.465 psi/ft., which is within the established normal pressure gradient range in Niger Delta, while the abnormal formation pressure gradient in the overpressured region was determined to be 0.96 psi/ft., and this is also within the published abnormal pressure gradient range of 0.71 to 1.1 psi/ft. in Niger Delta. Formation fracture pressure gradients were determined from the formation pressure information to be 0.66psi/ft. in the upper part of the field and 1.2psi/ft. in the overpressured horizon. Mud weight window (MWW); mud density range necessary to prevent formation kick without initiating hydraulic fracturing was determined to be 10.2 to 12.5lbm/gal in the upper part of the field and 22.1 to 22.63lbm/gal in the overpressured horizon. MWW is indispensable for the selection of the mud pump type, capacity, pumping rate and mud densities at different formation pressure regimes. Overpressure prediction is also requisite for drilling program design, casing design as well as rig capacity choice before spudding. It is necessary to reduce well construction risk, save drilling hour as well as cut down drilling cost. If adequate predictions are not taken however, drilling hazards known as blowout may occur. Blowout, an uncontrollable flow of formation fluid into the well has made oil exploration and exploitation activities in Niger Delta, Southern Nigeria, a curse for the people rather than a blessing because considerable numbers of wells blew out during well construction activities, hence the characteristic oil spill which had degraded the environment, making fishing operation, a source of livelihood of the people difficult. Therefore the need for overpressure prediction as a guide for safe drilling, especially in unfamiliar exploration environments.
Radiative shocks produced from spherical cryogenic implosions at the National Ignition Facility
Pak, A.; Divol, L.; Gregori, G.; ...
2013-05-20
Spherically expanding radiative shock waves have been observed from inertially confined implosion experiments at the National Ignition Facility. In these experiments, a spherical fusion target, initially 2 mm in diameter, is compressed via the pressure induced from the ablation of the outer target surface. At the peak compression of the capsule, x-ray and nuclear diagnostics indicate the formation of a central core, with a radius and ion temperature of ~20 μm and ~ 2 keV, respectively. This central core is surrounded by a cooler compressed shell of deuterium-tritium fuel that has an outer radius of ~40 μm and a densitymore » of >500 g/cm 3. Using inputs from multiple diagnostics, the peak pressure of the compressed core has been inferred to be of order 100 Gbar for the implosions discussed here. Furthermore, the shock front, initially located at the interface between the high pressure compressed fuel shell and surrounding in-falling low pressure ablator plasma, begins to propagate outwards after peak compression has been reached.« less
Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling
NASA Astrophysics Data System (ADS)
Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting
2018-02-01
Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep-water drilling through hydrate formation, the drilling fluid with low temperatures should be given priority. The drilling process should be kept under balanced pressures, and the drilling time should be shortened.
High-pressure copolymerization of C 2H 4 and CO
NASA Astrophysics Data System (ADS)
Buback, M.; Tups, H.
1986-05-01
Kinetics of the free radical high-pressure copolymerization of ethylene and carbon monoxide using thermal, chemical, and laser-photochemical initiation have been investigated via quantitative infrared and near infrared spectroscopy up to 2300 bar and 513 K. The slow thermal copolymerization is influenced by the formation of metal carbonyls inside the stainless steel cell. With chemical initiation, using 120 ppm oxygen, ethylene and CO polymerize to polyketone without any indication of additional products. The photo-copolymerization induced by an exciplex laser working on the KrF line at 248 nm, has been studied between 486 K and 513 K up to 2300 bar and for CO mole fractions up to 3 percent. Overall quantum yields of about 2000 copolymerizing molecules per one absorbed laser photon are observed.
Surface spectroscopy studies of the oxidation behavior of uranium
NASA Astrophysics Data System (ADS)
Bloch, J.; Atzmony, U.; Dariel, M. P.; Mintz, M. H.; Shamir, N.
1982-02-01
Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) techniques were utilized to study the oxidation behavior of clean uranium surfaces, at very low pressures of various atmospheres (UHV, H 2, O 2, and CO 2), at room temperature. Both for O 2 and CO 2, a precursor chemisorbed oxygen species has been identified at the very initial stage of the oxidation reaction. This chemisorbed oxygen transforms to the oxide form at a rate which depends on the pressure of the oxidizing atmosphere. Residual gaseous carbon compounds which are present even under UHV conditions result in the simultaneous formation of surface carbide which accompanies the initial stage of oxidation. This carbide however decomposes later as oxidation proceeds. Adventitious hydrocarbon adsorption occurs on the formed oxide layer.
Star formation in a high-pressure environment: an SMA view of the Galactic Centre dust ridge
NASA Astrophysics Data System (ADS)
Walker, D. L.; Longmore, S. N.; Zhang, Q.; Battersby, C.; Keto, E.; Kruijssen, J. M. D.; Ginsburg, A.; Lu, X.; Henshaw, J. D.; Kauffmann, J.; Pillai, T.; Mills, E. A. C.; Walsh, A. J.; Bally, J.; Ho, L. C.; Immer, K.; Johnston, K. G.
2018-02-01
The star formation rate in the Central Molecular Zone (CMZ) is an order of magnitude lower than predicted according to star formation relations that have been calibrated in the disc of our own and nearby galaxies. Understanding how and why star formation appears to be different in this region is crucial if we are to understand the environmental dependence of the star formation process. Here, we present the detection of a sample of high-mass cores in the CMZ's `dust ridge' that have been discovered with the Submillimeter Array. These cores range in mass from ˜50-2150 M⊙ within radii of 0.1-0.25 pc. All appear to be young (pre-UCHII), meaning that they are prime candidates for representing the initial conditions of high-mass stars and sub-clusters. We report that at least two of these cores (`c1' and `e1') contain young, high-mass protostars. We compare all of the detected cores with high-mass cores and clouds in the Galactic disc and find that they are broadly similar in terms of their masses and sizes, despite being subjected to external pressures that are several orders of magnitude greater, ˜108 K cm-3, as opposed to ˜105 K cm-3. The fact that >80 per cent of these cores do not show any signs of star-forming activity in such a high-pressure environment leads us to conclude that this is further evidence for an increased critical density threshold for star formation in the CMZ due to turbulence.
Liu, Zhichao; Wu, Qiong; Zhu, Weihua; Xiao, Heming
2015-04-28
Density functional theory with dispersion-correction (DFT-D) was employed to study the effects of vacancy and pressure on the structure and initial decomposition of crystalline 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (β-NTO), a high-energy insensitive explosive. A comparative analysis of the chemical behaviors of NTO in the ideal bulk crystal and vacancy-containing crystals under applied hydrostatic compression was considered. Our calculated formation energy, vacancy interaction energy, electron density difference, and frontier orbitals reveal that the stability of NTO can be effectively manipulated by changing the molecular environment. Bimolecular hydrogen transfer is suggested to be a potential initial chemical reaction in the vacancy-containing NTO solid at 50 GPa, which is prior to the C-NO2 bond dissociation as its initiation decomposition in the gas phase. The vacancy defects introduced into the ideal bulk NTO crystal can produce a localized site, where the initiation decomposition is preferentially accelerated and then promotes further decompositions. Our results may shed some light on the influence of the molecular environments on the initial pathways in molecular explosives.
Anderson, B.; Hancock, S.; Wilson, S.; Enger, C.; Collett, T.; Boswell, R.; Hunter, R.
2011-01-01
In February 2007, the U.S. Department of Energy, BP Exploration (Alaska), and the U.S. Geological Survey, collected open-hole pressure-response data, as well as gas and water sample collection, in a gas hydrate reservoir (the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well) using Schlumberger's Modular Dynamics Formation Tester (MDT) wireline tool. Four such MDT tests, ranging from six to twelve hours duration, and including a series of flow, sampling, and shut-in periods of various durations, were conducted. Locations for the testing were selected based on NMR and other log data to assure sufficient isolation from reservoir boundaries and zones of excess free water. Test stages in which pressure was reduced sufficiently to mobilize free water in the formation (yet not cause gas hydrate dissociation) produced readily interpretable pressure build-up profiles. Build-ups following larger drawdowns consistently showed gas-hydrate dissociation and gas release (as confirmed by optical fluid analyzer data), as well as progressive dampening of reservoir pressure build-up during sequential tests at a given MDT test station.History matches of one multi-stage, 12-h test (the C2 test) were accomplished using five different reservoir simulators: CMG-STARS, HydrateResSim, MH21-HYDRES, STOMP-HYD, and TOUGH. +. HYDRATE. Simulations utilized detailed information collected across the reservoir either obtained or determined from geophysical well logs, including thickness (11.3. m, 37 ft.), porosity (35%), hydrate saturation (65%), both mobile and immobile water saturations, intrinsic permeability (1000 mD), pore water salinity (5 ppt), and formation temperature (3.3-3.9 ??C). This paper will present the approach and preliminary results of the history-matching efforts, including estimates of initial formation permeability and analyses of the various unique features exhibited by the MDT results. ?? 2010 Elsevier Ltd.
A thermodynamic prediction for microporosity formation in aluminum-rich Al-Cu alloys
NASA Technical Reports Server (NTRS)
Poirier, D. R.; Yeum, K.; Maples, A. L.
1987-01-01
A computer model is used to predict the formation and degree of microporosity in a directionally solidified Al-4.5 wt pct Cu alloy, considering the interplay between solidification shrinkage and gas porosity. Macrosegregation theory is used to determine the local pressure within the interdendritic liquid. Results show interdendritic porosity for initial hydrogen contents in the 0.03-1 ppm range, and none below contents of 0.03. An increase in either the thermal gradient or the solidification rate is show to decrease the amount of interdendritic porosity.
Facile NOx interconversion over preoxidized Ag(111)
NASA Astrophysics Data System (ADS)
Klacar, S.; Martin, N. M.; Gustafson, J.; Blomberg, S.; Liu, Z.; Axnanda, S.; Chang, R.; Lundgren, E.; Grönbeck, H.
2013-11-01
X-ray photoelectron spectroscopy and density functional theory calculations are used to investigate NO adsorption at low (100 K) and room temperature (RT) over preoxidized Ag(111). At 100 K, the data indicates presence of NO and N2O2, with little or no nitrite/nitrate formation. This is consistent with the calculated surface core level shifts and the pronounced barrier for nitrite formation. At RT, the recorded spectra indicate a complex interconversion between adsorbed species with an initial formation of a p(4 × 4) nitrate overlayer. With increasing NO pressure, the experimental results are best rationalized by partial nitrate decomposition into nitrites and subsequent NO physisorption, which leads to the formation of N2O3-like species.
INSIDE-OUT PLANET FORMATION. III. PLANET–DISK INTERACTION AT THE DEAD ZONE INNER BOUNDARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xiao; Tan, Jonathan C.; Chatterjee, Sourav
The Kepler mission has discovered more than 4000 exoplanet candidates. Many of them are in systems with tightly packed inner planets. Inside-out planet formation (IOPF) has been proposed as a scenario to explain these systems. It involves sequential in situ planet formation at the local pressure maximum of a retreating dead zone inner boundary (DZIB). Pebbles accumulate at this pressure trap, which builds up a pebble ring and then a planet. The planet is expected to grow in mass until it opens a gap, which helps to both truncate pebble accretion and also induce DZIB retreat that sets the location ofmore » formation of the next planet. This simple scenario may be modified if the planet undergoes significant migration from its formation location. Thus, planet–disk interactions play a crucial role in the IOPF scenario. Here we present numerical simulations that first assess the degree of migration for planets of various masses that are forming at the DZIB of an active accretion disk, where the effective viscosity is undergoing a rapid increase in the radially inward direction. We find that torques exerted on the planet by the disk tend to trap the planet at a location very close to the initial pressure maximum where it formed. We then study gap opening by these planets to assess at what mass a significant gap is created. Finally, we present a simple model for DZIB retreat due to penetration of X-rays from the star to the disk midplane. Overall, these simulations help to quantify both the mass scale of first (“Vulcan”) planet formation and the orbital separation to the location of second planet formation.« less
Inside-out Planet Formation. III. Planet-Disk Interaction at the Dead Zone Inner Boundary
NASA Astrophysics Data System (ADS)
Hu, Xiao; Zhu, Zhaohuan; Tan, Jonathan C.; Chatterjee, Sourav
2016-01-01
The Kepler mission has discovered more than 4000 exoplanet candidates. Many of them are in systems with tightly packed inner planets. Inside-out planet formation (IOPF) has been proposed as a scenario to explain these systems. It involves sequential in situ planet formation at the local pressure maximum of a retreating dead zone inner boundary (DZIB). Pebbles accumulate at this pressure trap, which builds up a pebble ring and then a planet. The planet is expected to grow in mass until it opens a gap, which helps to both truncate pebble accretion and also induce DZIB retreat that sets the location of formation of the next planet. This simple scenario may be modified if the planet undergoes significant migration from its formation location. Thus, planet-disk interactions play a crucial role in the IOPF scenario. Here we present numerical simulations that first assess the degree of migration for planets of various masses that are forming at the DZIB of an active accretion disk, where the effective viscosity is undergoing a rapid increase in the radially inward direction. We find that torques exerted on the planet by the disk tend to trap the planet at a location very close to the initial pressure maximum where it formed. We then study gap opening by these planets to assess at what mass a significant gap is created. Finally, we present a simple model for DZIB retreat due to penetration of X-rays from the star to the disk midplane. Overall, these simulations help to quantify both the mass scale of first (“Vulcan”) planet formation and the orbital separation to the location of second planet formation.
An experimental study of high-pressure droplet combustion
NASA Technical Reports Server (NTRS)
Norton, Chris M.; Litchford, Ron J.; Jeng, San-Mou
1990-01-01
The results are presented of an experimental study on suspended n-heptane droplet combustion in air for reduced pressures up to P(r) = 2.305. Transition to fully transient heat-up through the critical state is demonstrated above a threshold pressure corresponding to P(r) of roughly 1.4. A silhouette imaging technique resolves the droplet surface for reduced pressures up to about P(r) roughly 0.63, but soot formation conceals the surface at higher pressures. Images of the soot plumes do not show any sudden change in behavior indicative of critical transition. Mean burning rate constants are computed from the d-squared variation law using measured effective droplet diameters at ignition and measured burn times, and corrected burning times are computed for an effective initial droplet diameter. The results show that the burning rates increase as the fuel critical pressure is approached and decrease as the pressure exceeds the fuel critical pressure. Corrected burning times show inverse behavior.
Jet formation in cerium metal to examine material strength
Jensen, B. J.; Cherne, F. J.; Prime, M. B.; ...
2015-11-18
Examining the evolution of material properties at extreme conditions advances our understanding of numerous high-pressure phenomena from natural events like meteorite impacts to general solid mechanics and fluid flow behavior. Some recent advances in synchrotron diagnostics coupled with dynamic compression platforms have introduced new possibilities for examining in-situ, spatially resolved material response with nanosecond time resolution. In this work, we examined jet formation from a Richtmyer-Meshkov instability in cerium initially shocked into a transient, high-pressure phase, and then released to a low-pressure, higher-temperature state. Cerium's rich phase diagram allows us to study the yield stress following a shock induced solid-solidmore » phase transition. X-ray imaging was used to obtain images of jet formation and evolution with 2–3 μm spatial resolution. And from these images, an analytic method was used to estimate the post-shock yield stress, and these results were compared to continuum calculations that incorporated an experimentally validated equation-of-state (EOS) for cerium coupled with a deviatoric strength model. Reasonable agreement was observed between the calculations and the data illustrating the sensitivity of jet formation on the yield stress values. Finally, the data and analysis shown here provide insight into material strength during dynamic loading which is expected to aid in the development of strength aware multi-phase EOS required to predict the response of matter at extreme conditions.« less
Pressure-temperature dependence of nanowire formation in the arsenic-sulfur system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Johnson, Bradley R.; Sundaram, S. K.
2006-12-01
Nanowire Formation in Arsenic Trisulfide Brian J. Riley, S.K. Sundaram*, Bradley R. Johnson, Mark Engelhard Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 * Corresponding author: Phone: 509-373-6665; Fax: 509-376-3108, E-mail: sk.Sundaram@pnl.gov Abstract: Arsenic trisulfide (As2S3) nanowires, nano-droplets, and micro-islands were synthesized on fused silica substrates, using a sublimation-condensation process at reduced pressures (70 mtorr – 70 torr) in a sealed ampoule. Microstructural control of the deposited thin film was achieved by controlling initial pressure, substrate temperature and substrate surface treatment. Microstructures were characterized using scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS). Surface topography and chemistrymore » of the substrates were characterized using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Semi-quantitative image analysis and basic curve-fitting were used to develop empirical models to mathematically describe the variation of microstructure as a function of initial pressure and substrate temperature and map out the regions of different microstructures in P-T space. Thermodyamic properties (available from literature) of this system are also incorporated in this map. Nanowires of an amorphous, transparent in visible-LWIR region, semi-conducting material, like As2S3, provide new opportunities for the development of novel nano-photonic and electronic devices. Additionally, this system provides an excellent opportunity to model (and control) microstructure development from nanometer to micron scales in a physical vapor deposition process, which is of great value to nanoscience and nanotechnology in general.« less
Numerical Simulation of Atomization in Nozzle Injection Flow
NASA Astrophysics Data System (ADS)
Fan, Qinyin; Guo, Chenhai; Takagi, Tosimi; Narumiya, Kikuo; Hattori, Hiroshi
At the initial stage of injection, the injection flow has not yet broken up and in a range of small atmosphere pressure (16˜500KPa), the tip of the injection flow always forms a shape of mushroom. [1] [2] Moreover, the umbrella of the mushroom is always very big and its root is always very thin, especially when the atmosphere pressure is relatively low (88KPa, or 100mmHg). These phenomena are not known popularly and the reason of mushroom formation is not clear. In this paper, with the MARS method for simulating free surface, analysis of injection flow is practiced. The phenomena are reproduced and the reason is cleared that the formation of the mushroom is induced by the momentum exchange between the injection fuel flow with very high speed and the very complex flow of the air.
Energy deposition into heavy gas plasma via pulsed inductive theta-pinch
NASA Astrophysics Data System (ADS)
Pahl, Ryan Alan
The objective of this research is to study the formation processes of a pulsed inductive plasma using heavy gases, specifically the coupling of stored capacitive energy into plasma via formation in a theta pinch coil. To aid in this research, the Missouri Plasmoid Experiment Mk. I (and later Mk. II) was created. In the first paper, the construction of differential magnetic field probes are discussed. The effects of calibration setup on B-dot probes is studied using a Helmholtz coil driven by a vector network analyzer and a pulsed-power system. Calibration in a pulsed-power environment yielded calibration factors at least 9.7% less than the vector network analyzer. In the second paper, energy deposition into various gases using a pulsed inductive test article is investigated. Experimental data are combined with a series RLC model to quantify the energy loss associated with plasma formation in Argon, Hydrogen, and Xenon at pressures from 10-100 mTorr. Plasma resistance is found to vary from 25.8-51.6 mΩ and plasma inductance varies from 41.3--47.0 nH. The greatest amount of initial capacitively stored energy that could be transferred to the plasma was 6.4 J (8.1%) of the initial 79.2 +/- 0.1 J. In the third paper, the effects of a DC preionization source on plasma formation energy is studied. The preionization source radial location is found to have negligible impact on plasma formation repeatability while voltage is found to be critical at low pressures. Without preionization, plasma formation was not possible. At 20 mTorr, 0.20 W of power was sufficient to stabilize plasma formation about the first zero-crossing of the discharge current. Increasing power to 1.49 W increased inductively coupled energy by 39%. At 200 mTorr, 4.3 mW was sufficient to produce repeatable plasma properties.
Method of fracturing a geological formation
Johnson, James O.
1990-01-01
An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.
NASA Astrophysics Data System (ADS)
Rubtsov, N. M.; Seplyarskii, B. S.; Chernysh, V. I.; Tsvetkov, G. I.
2010-05-01
High-speed color filming was used to study laminar spherical flame propagation at the initial stage in preliminarily mixed stoichiometric mixtures of natural gas and isobutylene with oxygen containing krypton and carbon dioxide and in hydrogen-air mixtures at atmospheric pressure in a bomb with a constant volume. Under experimental conditions ( T 0 = 298 K, p 0 = 100 torr, spark discharge energy E 0 = 0.91 J), the dilution of mixtures with Kr and CO2 increased the time of formation of a stable flame front by more than 10 times. The introduction of a small chemically active admixture (1.2% isobutylene) into a stoichiometric mixture of hydrogen and air sharply increased the time of formation of a stable flame front, which was evidence of an important role played by the chemical mechanism of the reaction in the formation of the combustion field.
NASA Technical Reports Server (NTRS)
Schonberg, William P.; Mohamed, Essam
1997-01-01
This report presents the results of a study whose objective was to develop first-principles-based models of hole size and maximum tip-to-tip crack length for a spacecraft module pressure wall that has been perforated in an orbital debris particle impact. The hole size and crack length models are developed by sequentially characterizing the phenomena comprising the orbital debris impact event, including the initial impact, the creation and motion of a debris cloud within the dual-wall system, the impact of the debris cloud on the pressure wall, the deformation of the pressure wall due to debris cloud impact loading prior to crack formation, pressure wall crack initiation, propagation, and arrest, and finally pressure wall deformation following crack initiation and growth. The model development has been accomplished through the application of elementary shock physics and thermodynamic theory, as well as the principles of mass, momentum, and energy conservation. The predictions of the model developed herein are compared against the predictions of empirically-based equations for hole diameters and maximum tip-to-tip crack length for three International Space Station wall configurations. The ISS wall systems considered are the baseline U.S. Lab Cylinder, the enhanced U.S. Lab Cylinder, and the U.S. Lab Endcone. The empirical predictor equations were derived from experimentally obtained hole diameters and crack length data. The original model predictions did not compare favorably with the experimental data, especially for cases in which pressure wall petalling did not occur. Several modifications were made to the original model to bring its predictions closer in line with the experimental results. Following the adjustment of several empirical constants, the predictions of the modified analytical model were in much closer agreement with the experimental results.
Measurement and reduction of micro-bubble formation in high-viscosity fluids
NASA Astrophysics Data System (ADS)
Tom, Glenn; Liu, Wei
2012-03-01
Gases at high drive pressure can initially dissolve into the fluids used in lithography and other critical processes during the fabrication of integrated circuits. In the low pressure portion of the dispense train, the dissolved gases can revert to bubbles. These bubbles can: 1. Affect the compressibility of the working fluid and change the flow characteristics of the dispense heads which require frequent re-tuning of the coating tools. 2. Contribute to defect formation if the bubbles are trapped on the surface of the wafer. Photosensitive Polyimides (PI) have high viscosities (1000 to 20,000 cP). Because of the high viscosity, high-powered, expensive pumps are needed to effectively remove the fluid from its container. Suction from the pump filling cycle easily causes cavitation, which can create flow rate variability, and micro-bubble formation. It is a common practice to apply pressure to the PI resists to minimize cavitation in the pump. The trade-off to this practice is the entrainment (dissolution) of the drive gas into the resist and the risk of micro-bubbles forming later in the dispense train. In the current study, ATMI measured the effects of two methods of pressure dispense from the container on the amount of gas entrained in a viscous fluid: (1) indirect pressure dispense and (2) direct pressure dispense. The main analytical method employed to measure the amount of dissolved gases is a gas chromatograph (GC), which can measure the concentration of gases dissolved in a volatile fluid. It is not suitable to measure gases in low volatility fluids. The new test method developed, however, is capable of measuring dissolved gases in low volatility fluids.
Design of experimental system for supercritical CO2 fracturing under confining pressure conditions
NASA Astrophysics Data System (ADS)
Wang, H.; Lu, Q.; Li, X.; Yang, B.; Zheng, Y.; Shi, L.; Shi, X.
2018-03-01
Supercritical CO2 has the characteristics of low viscosity, high diffusion and zero surface tension, and it is considered as a new fluid for non-polluting and non-aqueous fracturing which can be used for shale gas development. Fracturing refers to a method of utilizing the high-pressure fluid to generate fractures in the rock formation so as to improve the oil and gas flow conditions and increase the oil and gas production. In this article, a new type of experimental system for supercritical CO2 fracturing under confining pressure conditions is designed, which is based on characteristics of supercritical CO2, shale reservoir and down-hole environment. The experimental system consists of three sub-systems, including supercritical CO2 generation system, supercritical CO2 fracturing system and data analysis system. It can be used to simulate supercritical CO2 fracturing under geo-stress conditions, thus to study the rock initiation pressure, the formation of the rock fractures, fractured surface morphology and so on. The experimental system has successfully carried out a series of supercritical CO2 fracturing experiments. The experimental results confirm the feasibility of the experimental system and the high efficiency of supercritical CO2 in fracturing tight rocks.
Controlling and assessing pressure conditions during treatment of tar sands formations
Zhang, Etuan; Beer, Gary Lee
2015-11-10
A method for treating a tar sands formation includes providing heat to at least part of a hydrocarbon layer in the tar sands formation from a plurality of heaters located in the formation. Heat is allowed to transfer from the heaters to at least a portion of the formation. A pressure in the portion of the formation is controlled such that the pressure remains below a fracture pressure of the formation overburden while allowing the portion of the formation to heat to a selected average temperature of at least about 280.degree. C. and at most about 300.degree. C. The pressure in the portion of the formation is reduced to a selected pressure after the portion of the formation reaches the selected average temperature.
Dynamic simulation of coronal mass ejections
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.; Wu, S. T.
1980-01-01
A model is developed for the formation and propagation through the lower corona of the loop-like coronal transients in which mass is ejected from near the solar surface to the outer corona. It is assumed that the initial state for the transient is a coronal streamer. The initial state for the streamer is a polytropic, hydrodynamic solution to the steady-state radial equation of motion coupled with a force-free dipole magnetic field. The numerical solution of the complete time-dependent equations then gradually approaches a stationary coronal streamer configuration. The streamer configuration becomes the initial state for the coronal transient. The streamer and transient simulations are performed completely independent of each other. The transient is created by a sudden increase in the pressure at the base of the closed-field region in the streamer configuration. Both coronal streamers and coronal transients are calculated for values of the plasma beta (the ratio of thermal to magnetic pressure) varying from 0.1 to 100.
Dynamics of explosively imploded pressurized tubes
NASA Astrophysics Data System (ADS)
Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent
2011-04-01
The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.
Oxidation of SiC/BN/SiC Composites in Reduced Oxygen Partial Pressures
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Boyd, Meredith
2010-01-01
SiC fiber-reinforced SiC composites with a BN interphase are proposed for use as leading edge structures of hypersonic vehicles. The durability of these materials under hypersonic flight conditions is therefore of interest. Thermogravimetric analysis was used to characterize the oxidation kinetics of both the constituent fibers and composite coupons at four temperatures: 816, 1149, 1343, and 1538 C (1500, 2100, 2450, and 2800 F) and in oxygen partial pressures between 5% and 0.1% (balance argon) at 1 atm total pressure. One edge of the coupons was ground off so the effects of oxygen ingress into the composite could be monitored by post-test SEM and EDS. Additional characterization of the oxidation products was conducted by XPS and TOF-SIMS. Under most conditions, the BN oxidized rapidly, leading to the formation of borosilicate glass. Rapid initial oxidation followed by volatilization of boria lead to protective oxide formation and further oxidation was slow. At 1538C in 5% oxygen, both the fibers and coupons exhibited borosilicate glass formation and bubbling. At 1538C in 0.1% oxygen, active oxidation of both the fibers and the composites was observed leading to rapid SiC degradation. BN oxidation at 1538C in 0.1% oxygen was not significant.
NASA Astrophysics Data System (ADS)
Nour, Abdoulshakour M.
Oil and gas exploration professionals have long recognized the importance of predicting pore pressure before drilling wells. Pre-drill pore pressure estimation not only helps with drilling wells safely but also aids in the determination of formation fluids migration and seal integrity. With respect to the hydrocarbon reservoirs, the appropriate drilling mud weight is directly related to the estimated pore pressure in the formation. If the mud weight is lower than the formation pressure, a blowout may occur, and conversely, if it is higher than the formation pressure, the formation may suffer irreparable damage due to the invasion of drilling fluids into the formation. A simple definition of pore pressure is the pressure of the pore fluids in excess of the hydrostatic pressure. In this thesis, I investigated the utility of advance computer algorithm called Support Vector Machine (SVM) to learn the pattern of high pore pressure regime, using seismic attributes such as Instantaneous phase, t*Attenuation, Cosine of Phase, Vp/Vs ratio, P-Impedance, Reflection Acoustic Impedance, Dominant frequency and one well attribute (Mud-Weigh) as the learning dataset. I applied this technique to the over pressured Qalibah formation of Northwest Saudi Arabia. The results of my research revealed that in the Qalibah formation of Northwest Saudi Arabia, the pore pressure trend can be predicted using SVM with seismic and well attributes as the learning dataset. I was able to show the pore pressure trend at any given point within the geographical extent of the 3D seismic data from which the seismic attributes were derived. In addition, my results surprisingly showed the subtle variation of pressure within the thick succession of shale units of the Qalibah formation.
NASA Astrophysics Data System (ADS)
Cutiongco, Eric C.; Chung, Yip-Wah
1994-07-01
A method for predicting scuffing failure based on the competitive kinetics of oxide formation and removal has been developed and applied to the sliding of AISI 52100 steel on steel with poly-alpha-olefin as the lubricant. Oxide formation rates were determining using static oxidation tests on coupons of 52100 steel covered with poly-alpha-olefin at temperatures of 140 C to 250 C. Oxide removal rates were determined at different combinations of initial average nominal contact pressures (950 MPa to 1578 MPa) and sliding velocities (0.4 m/s to 1.8 m/s) using a ball-on-disk vacuum tribotester. The nominal asperity flash temperatures generated during the wear tests were calculated and the temperatures corresponding to the intersection of the the Arrhenius plots of oxide formation and removal rates were determined and taken as the critical failure temperatures. The pressure-velocity failure transition diagram was constructed by plotting the critical failure temperatures along isotherms of average nominal asperity flash temperatures calculated at different combinations of contact stress and sliding speed. The predicted failure transition curve agreed well with experimental scuffing data.
NASA Astrophysics Data System (ADS)
Hebert, Philippe; Saint-Amans, Charles
2013-06-01
A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.
Kinetics of motility-induced phase separation and swim pressure
NASA Astrophysics Data System (ADS)
Patch, Adam; Yllanes, David; Marchetti, M. Cristina
Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. We correlate the time evolution of the mean pressure towards its steady state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems. NSF-DMR-1305184, NSF-DGE-1068780, ACI-1341006, FIS2015-65078-C02, BIFI-ZCAM.
NASA Astrophysics Data System (ADS)
Warsitzka, Michael; Kukowski, Nina; May, Franz
2017-04-01
Injection of CO2 in geological formations may cause excess pore fluid pressure by enhancing the fluid volume in the reservoir rock and by buoyancy-driven flow. If sediments in the reservoir and the caprock are undercompacted, pore fluid overpressure can lead to hydro-fractures in the caprock and fluidisation of sediments. Eventually, these processes trigger the formation of pipe structures, gas chimneys, gas domes or sand injections. Generally, such structures serve as high permeable pathways for fluid migration through a low-permeable seal layer and have to be considered in risk assessment or modelling of caprock integrity of CO2 storage sites. We applied scaled analogue experiments to characterise and quantify mechanisms determining the onset and migration of hydro-fractures in a low-permeable, cohesive caprock and fluidisation of unconsolidated sediments of the reservoir layer. The caprock is simulated by different types of cohesive powder. The reservoir layer consists of granulates with small particle density. Air injected through the base of the experiment and additionally through a single needle valve reaching into the analogue material is applied to generate fluid pressure within the materials. With this procedure, regional fluid pressure increase or a point-like local fluid pressure increase (e.g. injection well), respectively, can be simulated. The deformation in the analogue materials is analysed with a particle tracking imaging velocimetry technique. Pressure sensors at the base of the experiment and in the needle valve record the air pressure during an experimental run. The structural evolution observed in the experiments reveal that the cohesive cap rock first forms a dome-like anticline. Extensional fractures occur at the hinges of the anticline. A further increase of fluid pressure causes a migration of this fractures towards the surface, which is followed by intrusion of reservoir material into the fractures and the collapse of the anticline. The breakthrough of the fractures at the surface is accompanied by a significant drop of air pressure at the base of the analogue materials. The width of the dome shaped uplift is narrower and the initiating fluid pressure in the needle valve is lower, if the fluid pressure at the base of the experiment is larger. The experimental outcomes help to evaluate if the injection of CO2 into a reservoir potentially provokes initiation or reactivation of fractures and sediment mobilisation structures.
A model for the formation of the Local Group
NASA Technical Reports Server (NTRS)
Peebles, P. J. E.; Melott, A. L.; Holmes, M. R.; Jiang, L. R.
1989-01-01
Observational tests of a model for the formation of the Local Group are presented and analyzed in which the mass concentration grows by gravitational accretion of local-pressure matter onto two seed masses in an otherwise homogeneous initial mass distribution. The evolution of the mass distribution is studied in an analytic approximation and a numerical computation. The initial seed mass and separation are adjusted to produce the observed present separation and relative velocity of the Andromeda Nebula and the Galaxy. If H(0) is adjusted to about 80 km/s/Mpc with density parameter Omega = 1, then the model gives a good fit to the motions of the outer members of the Local Group. The same model gives particle orbits at radius of about 100 kpc that reasonably approximate the observed distribution of redshifts of the Galactic satellites.
Dynamic formation and magnetic support of loop or arcade prominences
NASA Technical Reports Server (NTRS)
Vanhoven, Gerard; Mok, Y.; Drake, J. F.
1992-01-01
The results of model dynamic simulations of the formation and support of a narrow prominence at the apex of a coronal magnetic loop or arcade are described. The condensation process proceeds via an initial radiative cooling and pressure drop, and a secondary siphon flow from the dense chromospheric ends. The antibuoyancy effect as the prominence forms causes a bending of a confining magnetic field, which propagates toward the semirigid ends of the magnetic loop. Thus, a wide magnetic 'hammock' or well (of a normal polarity Kippenhahn-Schlueter type) is formed, which supports the prominence at or near the field apex.
Barringerite Fe2P from Pyrometamorphic Rocks of the Hatrurim Formation, Israel
NASA Astrophysics Data System (ADS)
Britvin, S. N.; Murashko, M. N.; Vapnik, E.; Polekhovsky, Yu. S.; Krivovichev, S. V.
2017-12-01
The article provides a detailed mineralogical and crystallochemical description (including refinement of the crystal structure) of the first finding of the phosphide class mineral barringerite, Fe2P, from terrestrial pyrometamorphic rocks of the Hatrurim Formation in Israel. The mineral occurs in the association of the so-called paralavas—initially silicate—carbonate sedimentary rocks that remelted during pyrometamorphic processes at a temperature above 1000°C and at a low pressure. Questions on the genesis and crystal chemistry of barringerite are discussed in connection with another polymorphic iron phosphide, allabogdanite (Fe,Ni)2P.
NASA Astrophysics Data System (ADS)
Pakdaman, S. A.; Garcia, M.; Teh, E.; Lincoln, D.; Trivedi, M.; Alves, M.; Johansen, C.
2016-11-01
Shock wave formation and acceleration in a high-aspect ratio cross section shock tube were studied experimentally and numerically. The relative importance of geometric effects and diaphragm opening time on shock formation are assessed. The diaphragm opening time was controlled through the use of slit-type (fast opening time) and petal-type (slow opening time) diaphragms. A novel method of fabricating the petal-type diaphragms, which results in a consistent burst pressure and symmetric opening without fragmentation, is presented. High-speed schlieren photography was used to visualize the unsteady propagation of the lead shock wave and trailing gas dynamic structures. Surface-mounted pressure sensors were used to capture the spatial and temporal development of the pressure field. Unsteady Reynolds-Averaged Navier-Stokes simulation predictions using the shear-stress-transport turbulence model are compared to the experimental data. Simulation results are used to explain the presence of high-frequency pressure oscillations observed experimentally in the driver section as well as the cause of the initial acceleration and subsequent rapid decay of shock velocity measured along the top and bottom channel surfaces. A one-dimensional theoretical model predicting the effect of the finite opening time of the diaphragm on the rate of driver depressurization and shock acceleration is proposed. The model removes the large amount of empiricism that accompanies existing models published in the literature. Model accuracy is assessed through comparisons with experiments and simulations. Limitations of and potential improvements in the model are discussed.
Dispersal of Giant Molecular Clouds by Photoionization and Radiation Pressure
NASA Astrophysics Data System (ADS)
Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.
2018-01-01
UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by forming HII regions and driving their expansion. We present the results of radiation hydrodynamic simulations of star cluster formation in turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and lifetime of clouds. We find that the net SFE depends primarily on the initial gas surface density, $\\Sigma_0$, such that the net SFE increases from 4% to 50% as $\\Sigma_0$ increases from $20\\,M_{\\odot}\\,{\\rm pc}^{-2}$ to $1300\\,M_{\\odot}\\,{\\rm pc}^{-2}$. Cloud dispersal occurs within $10\\,{\\rm Myr}$ after the onset of radiation feedback, or within 0.7--4.0 free-fall times that increases with $\\Sigma_0$. Photoionization plays a dominant role in destroying molecular clouds typical of the Milky Way, while radiation pressure takes over in massive, dense clouds. Based on the analysis of mass loss processes by photoevaporation or momentum injection, we develop a semi-analytic model for cloud dispersal and compare it with the numerical results.
Compression-induced stacking fault tetrahedra around He bubbles in Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jian-Li, E-mail: shao-jianli@iapcm.ac.cn; Wang, Pei; He, An-Min
Classic molecular dynamics methods are used to simulate the uniform compression process of the fcc Al containing He bubbles. The formation of stacking fault tetrahedra (SFTs) during the collapse of He bubbles is found, and their dependence on the initial He bubble size (0.6–6 nm in diameter) is presented. Our simulations indicate only elastic deformation in the samples for the He bubble size not more than 2 nm. Instead, increasing the He bubble size, we detect several small SFTs forming on the surface of the He bubble (3 nm), as well as the two intercrossed SFTs around the He bubbles (4–6 nm). All thesemore » SFTs are observed to be stable under further compression, though there may appear some SF networks outside the SFTs (5–6 nm). Furthermore, the dynamic analysis on the SFTs shows that the yield pressure keeps a near-linear increase with the initial He bubble pressure, and the potential energy of Al atoms inside the SFTs is lower than outside because of their gliding inwards. In addition, the pressure increments of 2–6 nm He bubbles with strain are less than that of Al, which just provides the opportunity for the He bubble collapse and the SFTs formation. Note that the current work only focuses on the case that the number ratio between He atoms and Al vacancies is 1:1.« less
Boiling water jet outflow from a thin nozzle: spatial modeling
NASA Astrophysics Data System (ADS)
Bolotnova, R. Kh.; Korobchinskaya, V. A.
2017-09-01
This study presents dual-temperature two-phase model for liquid-vapor mixture with account for evaporation and inter-phase heat transfer (taken in single-velocity single-pressure approximation). Simulation was performed using the shock-capturing method and moving Lagrangian grids. Analysis was performed for simulated and experimental values of nucleation frequency (for refining the initial number and radius of microbubbles) which affect the evaporation rate. Validity of 2D and 1D simulation was examined through comparison with experimental data. The peculiarities of the water-steam formation at the initial stage of outflow through a thin nozzle were studied for different initial equilibrium states of water for the conditions close to chosen experimental conditions.
Microjet formation in a capillary by laser-induced cavitation
NASA Astrophysics Data System (ADS)
Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef
2010-11-01
A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.
Cometary impact and amino acid survival - Chemical kinetics and thermochemistry
Ross, D.S.
2006-01-01
The Arrhenius parameters for the initiating reactions in butane thermolysis and the formation of soot, reliable to at least 3000 K, have been applied to the question of the survival of amino acids in cometary impacts on early Earth. The pressure/temperature/time course employed here was that developed in hydrocode simulations for kilometer-sized comets (Pierazzo and Chyba, 1999), with attention to the track below 3000 K where it is shown that potential stabilizing effects of high pressure become unimportant kinetically. The question of survival can then be considered without the need for assignment of activation volumes and the related uncertainties in their application to extreme conditions. The exercise shows that the characteristic times for soot formation in the interval fall well below the cooling periods for impacts ranging from fully vertical down to about 9?? above horizontal. Decarboxylation, which emerges as more rapid than soot formation below 2000-3000 K, continues further down to extremely narrow impact angles, and accordingly cometa??ry delivery of amino acids to early Earth is highly unlikely. ?? 2006 American Chemical Society.
Pore Pressure Distribution and Flank Instability in Hydrothermally Altered Stratovolcanoes
NASA Astrophysics Data System (ADS)
Ball, J. L.; Taron, J.; Hurwitz, S.; Reid, M. E.
2015-12-01
Field and geophysical investigations of stratovolcanoes with long-lived hydrothermal systems commonly reveal that initially permeable regions (such as brecciated layers of pyroclastic material) can become both altered and water-bearing. Hydrothermal alteration in these regions, including clay formation, can turn them into low-permeability barriers to fluid flow, which could increase pore fluid pressures resulting in flank slope instability. We examined elevated pore pressure conditions using numerical models of hydrothermal flow in stratovolcanoes, informed by geophysical data about internal structures and deposits. Idealized radially symmetric meshes were developed based on cross-sectional profiles and alteration/permeability structures of Cascade Range stratovolcanoes. We used the OpenGeoSys model to simulate variably saturated conditions in volcanoes heated only by regional heat fluxes, as well as 650°C intrusions at two km depth below the surface. Meteoric recharge was estimated from precipitation rates in the Cascade Range. Preliminary results indicate zones of elevated pore pressures form: 1) where slopes are underlain by continuous low-permeability altered layers, or 2) when the edifice has an altered core with saturated, less permeable limbs. The first scenario might control shallow collapses on the slopes above the altered layers. The second could promote deeper flank collapses that are initially limited to the summit and upper slopes, but could progress to the core of an edifice. In both scenarios, pore pressures can be further elevated by shallow intrusions, or evolve over longer time scales under forcing from regional heat flux. Geometries without confining low-permeability layers do not show these pressure effects. Our initial scenarios use radially symmetric models, but we are also simulating hydrothermal flow under real 3D geometries with asymmetric subsurface structures (Mount Adams). Simulation results will be used to inform 3D slope-stability models.
Polymer-cement interactions towards improved wellbore cement fracture sealants
NASA Astrophysics Data System (ADS)
Beckingham, B. S.; Iloejesi, C.; Minkler, M. J.; Schindler, A. K.; Beckingham, L. E.
2017-12-01
Carbon capture, utilization, and storage (CCUS) in deep geologic formations is a promising means of reducing point source emissions of CO2. In these systems, CO2 is captured at the source and then injected to be utilized (eg. in enhanced oil recovery or as a working fluid in enhanced geothermal energy plants) or stored in geologic formations such as depleted oil and gas reservoirs or saline aquifers. While CCUS in subsurface systems could aid in reducing atmospheric CO2 emissions, the potential for CO2 leakage from these systems to overlying formations remains a major limitation and poses a significant risk to the security of injected CO2. Thus, improved materials for both initial wellbore isolation and repairing leakage pathways that develop over time are sought. One approach for the repair of cement fractures in wellbore (and other) systems is the injection of polymer materials into the fracture with a subsequent environmentally dependent (temperature, pressure, pH, etc.) densification or solidification. Here, we aim to investigate novel polymer materials for use to repair leaking wellbores in the context of CCUS. We synthesize and fully characterize a series of novel polymer materials and utilize a suite of analysis techniques to examine polymer-cement interactions at a range of conditions (namely temperature, pressure and pH). Initial findings will be leveraged to design novel polymer materials for further evaluation in polymer-cement composite cores, cement fracture healing, and the aging behavior of healed cements.
Formation and dissolution of bacterial colonies.
Weber, Christoph A; Lin, Yen Ting; Biais, Nicolas; Zaburdaev, Vasily
2015-09-01
Many organisms form colonies for a transient period of time to withstand environmental pressure. Bacterial biofilms are a prototypical example of such behavior. Despite significant interest across disciplines, physical mechanisms governing the formation and dissolution of bacterial colonies are still poorly understood. Starting from a kinetic description of motile and interacting cells we derive a hydrodynamic equation for their density on a surface, where most of the kinetic coefficients are estimated from experimental data for N. gonorrhoeae bacteria. We use it to describe the formation of multiple colonies with sizes consistent with experimental observations. Finally, we show how the changes in the cell-to-cell interactions lead to the dissolution of the bacterial colonies. The successful application of kinetic theory to a complex far from equilibrium system such as formation and dissolution of living bacterial colonies potentially paves the way for the physical quantification of the initial stages of biofilm formation.
iron phase control during pressure leaching at elevated temperature
NASA Astrophysics Data System (ADS)
Fleuriault, Camille
Iron is a common contaminant encountered in most metal recovery operations, and particularly hydrometallurgical processes. For example, the Hematite Process uses autoclaves to precipitate iron oxide out of the leaching solution, while other metals are solubilized for further hydrometallurgical processing. In some cases, Basic Iron Sulfate (BIS) forms in place of hematite. The presence of BIS is unwanted in the autoclave discharge because it diminishes recovery and causes environmental matters. The focus of this master thesis is on the various iron phases forming during the pressure oxidation of sulfates. Artificial leaching solutions were produced from CuSO4, FeSO4 and H2SO4 in an attempt to recreate the matrix composition and conditions used for copper sulfides autoclaving. The following factors were investigated in order to determine which conditions hinder the formation of BIS: initial free acidity (5 -- 98 g/L), initial copper concentration (12.7 -- 63.5 g/L), initial iron concentration (16.7 -- 30.7 g/L) and initial iron oxidation state. There were three solid species formed in the autoclave: hematite, BIS and hydronium jarosite. The results show that free acid is the main factor influencing the composition of the residue. At an initial concentration of 22.3 g/L iron and no copper added, the upper limit for iron oxide formation is 41 g/L H2SO4. The increase of BIS content in the residue is not gradual and occurs over a change of a few grams per liter around the aforementioned limit. Increasing copper sulfate concentration in the solution hinders the formation of BIS. At 63.5g/L copper, the upper free acidity limit is increased to 61g/L. This effect seems to be related to the buffering action of copper sulfate, decreasing the overall acid concentration and thus extending the stability range of hematite. The effect of varying iron concentration on the precipitate chemistry is unclear. At high iron levels, the only noticeable effect was the inhibition of jarosite. The results were reported within a Cu-Fe-S ternary system and modeled. The modeling confirmed the experimental observations with the exception that increasing iron concentrations seem to promote BIS stability.
Laser chirp effect on femtosecond laser filamentation generated for pulse compression.
Park, Juyun; Lee, Jae-Hwan; Nam, Chang H
2008-03-31
The influence of laser chirp on the formation of femtosecond laser filamentation in Ar was investigated for the generation of few-cycle high-power laser pulses. The condition for the formation of a single filament has been carefully examined using 28-fs laser pulses with energy over 3 mJ. The filament formation and output spectrum changed very sensitively to the initial laser chirp and gas pressure. Much larger spectral broadening was obtained with positively chirped pulses, compared to the case of negatively chirped pulses that generated much longer filament, and compressed pulses of 5.5 fs with energy of 0.5 mJ were obtained from the filamentation of positively chirped 30-fs laser pulses in a single Ar cell.
Microelectrode-assisted low-voltage atmospheric pressure glow discharge in air
NASA Astrophysics Data System (ADS)
Liu, Wenzheng; Zhao, Shuai; Niu, Jiangqi; Chai, Maolin
2017-09-01
During the process of discharge, appropriately changing the paths corresponding to electric field lines and the field strength distribution along these paths, as well as increasing the number of initial electrons, can effectively enhance the uniformity of discharge and inhibit the formation of filamentary discharge. A method is proposed that uses a microelectrode to initiate the macroscopic discharge phenomenon. An asymmetric structure was designed comprising a single electrode of carbon fiber; this electrode structure is of helical-contact type. Benefitting from the special electric field distribution and the microdischarge process, a three-dimensional atmospheric pressure glow discharge was achieved in air, characterized by low discharge voltage, low energy consumption, good diffusion performance, and less ozone generation. The plasma studied is uniform and stable with good diffusion characteristics and low levels of contaminants and hence has potential applications in the field of air purification.
Initiation of Martian Outflow Channels: Related to the Dissociation of Gas Hydrate?
NASA Technical Reports Server (NTRS)
Max, Michael D.; Clifford, Stephen M.
2001-01-01
We propose that the disruption of subpermafrost aquifers on Mars by the thermal- or pressure-induced dissociation of methane hydrate may have been a frequent trigger for initiating outflow channel activity. This possibility is raised by recent work that suggests that significant amounts of methane and gas hydrate may have been produced within and beneath the planet's cryosphere. On Earth, the build-up of overpressured water and gas by the decomposition of hydrate deposits has been implicated in the formation of large blowout features on the ocean floor. These features display a remarkable resemblance (in both morphology and scale) to the chaotic terrain found at the source of many Martian channels. The destabilization of hydrate can generate pressures sufficient to disrupt aquifers confined by up to 5 kilometers of frozen ground, while smaller discharges may result from the water produced by the decomposition of near-surface hydrate alone.
MHD thermal instabilities in cool inhomogeneous atmospheres
NASA Technical Reports Server (NTRS)
Bodo, G.; Ferrari, A.; Massaglia, S.; Rosner, R.
1983-01-01
The formation of a coronal state in a stellar atmosphere is investigated. A numerical code is used to study the effects of atmospheric gradients and finite loop dimension on the scale of unstable perturbations, solving for oscillatory perturbations as eigenfunctions of a boundary value problem. The atmosphere is considered as initially isothermal, with density and pressure having scale heights fixed by the hydrostatic equations. Joule mode instability is found to be an efficient mechanism for current filamentation and subsequent heating in initially cool atmospheres. This instability is mainly effective at the top of magnetic loops and is not suppressed by thermal conduction.
Kristensen, K; Jensen, L N; Glasius, M; Bilde, M
2017-10-18
This study presents a newly constructed temperature controlled cold-room smog chamber at Aarhus University, Denmark. The chamber is herein utilized to study the effect of sub-zero temperature on the formation and chemical composition of secondary organic aerosol (SOA) from ozone initiated oxidation of α-pinene. The chemical composition of α-pinene SOA formed from dark ozonolysis of α-pinene at 293 K and 258 K was investigated using High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS) and Ultra-High Performance Liquid Chromatography/Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry (UHPLC/ESI-qToF-MS). For comparison, an OH-initiated oxidation experiment was performed at 293 K. In ozonolysis experiments it was found that oxygen-to-carbon (O : C) ratios were higher in the particles formed at 293 K compared to 258 K. A total of 16 different organic acids and 30 dimers esters were quantified in the collected particles composing up to 34% of the total α-pinene SOA mass with increased mass fraction of carboxylic acids in particles from α-pinene ozonolysis at 258 K compared to 293 K. In contrast, dimer esters showed suppressed formation at the sub-zero reaction temperature, thus contributing 3% to SOA mass at 258 K while contributing 9% at 293 K. SOA formed in the OH-initiated oxidation of α-pinene at 293 K resulted in low concentrations of dimer esters supporting Criegee intermediates as a possible pathway to dimer ester formation. Vapour pressure estimates of the identified carboxylic acids and dimer esters are presented and show how otherwise semi-volatile carboxylic acids at sufficiently low temperatures may classify as low or even extremely low volatile organic compounds (ELVOC), thus may add to an enhanced particle formation observed at the sub-zero temperature through gas-to-particle conversion. The change in chemical composition of the SOA particles with temperature is ascribed to a combination of effects: the decreased vapour pressures and hence increased condensation of carboxylic acids from the gas phase to the particle phase along with suppressed formation of the high molecular weight dimer esters and different gas and particle phase chemistry results in particles of different chemical composition as a consequence of low reaction temperatures.
Heating tar sands formations while controlling pressure
Stegemeier, George Leo [Houston, TX; Beer, Gary Lee [Houston, TX; Zhang, Etuan [Houston, TX
2010-01-12
Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.
Investigation of hydrate formation in the system H2-CH4-H2O at a pressure up to 250 MPa.
Skiba, Sergei S; Larionov, Eduard G; Manakov, Andrey Y; Kolesov, Boris A; Kosyakov, Viktor I
2007-09-27
Phase equilibria in the system H2-CH4-H2O are investigated by means of differential thermal analysis within hydrogen concentration range 0-70 mol % and at a pressure up to 250 MPa. All the experiments were carried out under the conditions of gas excess. With an increase in hydrogen concentration in the initial gas mixture, decomposition temperature of the formed hydrates decreased. X-ray diffraction patterns and Raman spectra of the quenched hydrate samples obtained at a pressure of 20 MPA from a gas mixture containing 40 mol % hydrogen were recorded. It turned out that the hydrate has cubic structure I under these conditions. The Raman spectra showed that hydrogen molecules are not detected in the hydrate within the sensitivity of the method, that is, almost pure methane hydrate is formed. The general view of the phase diagram of the investigated system is proposed. A thermodynamic model was proposed to explain a decrease in hydrate decomposition temperature in the system with an increase in the concentration of hydrogen in the initial mixture.
Oscillation-Mark Formation and Liquid-Slag Consumption in Continuous Casting Mold
NASA Astrophysics Data System (ADS)
Yang, Jie; Meng, Xiangning; Wang, Ning; Zhu, Miaoyong
2017-04-01
Traditional understanding on the complex multiphysics phenomenon of the meniscus in the oscillating mold for continuously cast steel, including oscillation-mark formation and liquid-slag consumption, has never considered the shape influence of the flux channel between the mold wall and the solidifying shell surface. Based on the reciprocating oscillation of mold, this study was carried out to calculate theoretically the periodic pressure and the liquid-slag layer thickness in the flux channel for the upper and the lower meniscus that possess different shapes in combination with a transient equilibrium profile of the flux channel as well as the sinusoidal and the nonsinusoidal oscillation modes of mold. The effect of flux channel shape on the multiphysics phenomenon in the meniscus was determined by the physical oscillation simulation by using an experimental cold model mold. The results show that the shape difference between the upper and the lower meniscus leads to the opposite direction of pressure in the flux channel. The pressure in the opposite direction plays a respective role in oscillation-mark formation and liquid-slag consumption in an oscillation cycle of mold, and thus, it makes a new mechanism for explaining the multiphysics phenomenon in the meniscus. The oscillation mark is initially formed by the rapid increase of positive channel pressure in the upper meniscus, and most of the liquid slag is infiltrated into the flux channel by the negative channel pressure in the lower meniscus from the end of a positive strip time to the beginning of the next positive strip time, including the negative strip time in between. Furthermore, the physical characteristics of the lubrication behavior in the meniscus are summarized, including liquid-slag infiltration, solidifying shell deformation, and the thickness change of the liquid-slag layer.
Experimental and theoretical study of combustion jet ignition
NASA Technical Reports Server (NTRS)
Chen, D. Y.; Ghoniem, A. F.; Oppenheim, A. K.
1983-01-01
A combustion jet ignition system was developed to generate turbulent jets of combustion products containing free radicals and to discharge them as ignition sources into a combustible medium. In order to understand the ignition and the inflammation processes caused by combustion jets, the studies of the fluid mechanical properties of turbulent jets with and without combustion were conducted theoretically and experimentally. Experiments using a specially designed igniter, with a prechamber to build up and control the stagnation pressure upstream of the orifice, were conducted to investigate the formation processes of turbulent jets of combustion products. The penetration speed of combustion jets has been found to be constant initially and then decreases monotonically as turbulent jets of combustion products travel closer to the wall. This initial penetration speed to combustion jets is proportional to the initial stagnation pressure upstream of the orifice for the same stoichiometric mixture. Computer simulations by Chorin's Random Vortex Method implemented with the flame propagation algorithm for the theoretical model of turbulent jets with and without combustion were performed to study the turbulent jet flow field. In the formation processes of the turbulent jets, the large-scale eddy structure of turbulence, the so-called coherent structure, dominates the entrainment and mixing processes. The large-scale eddy structure of turbulent jets in this study is constructed by a series of vortex pairs, which are organized in the form of a staggered array of vortex clouds generating local recirculation flow patterns.
NASA Astrophysics Data System (ADS)
Becker, K.; Davis, E.; Heesemann, M.; McGuire, J. J.; Collins, J. A.; O'Brien, J. K.; von der Heydt, K.
2017-12-01
We report the configuration of and initial results from a 24-thermistor cable installed to 268 m below seafloor (mbsf) in IODP Hole U1364A in the frontal accretionary prism of the Cascadia subduction zone. The thermistor array spans the gas hydrate stability zone and a clear bottom-simulating reflector at 225-230 mbsf. The thermistor string was deployed in July 2016 along with a seismic-strain observatory into the cased section of a pressure-monitoring Advanced CORK (ACORK) that had been installed in 2010 during IODP Expedition 328. Formation pressures are monitored via permeable screens on the outside of solid steel casing that is sealed at the bottom by a bridge plug and cement up to 302 mbsf. All three observatory systems were connected to the Ocean Networks Canada NEPTUNE cabled observatory Clayoquot Slope node in June of 2017, with the thermistor temperatures being logged by ONC every minute. The thermistor array was designed with concentrated vertical spacing around the BSR and two pressure-monitoring screens at 203 and 244 mbsf, with wider thermistor spacing elsewhere to document the geothermal state up to seafloor. The initial six weeks of data logged via the ONC connection show a generally linear temperature gradient, with temperatures of about 15.8°C at the BSR depth, consistent with methane hydrate stability at that depth and pressure. Sensor temperatures at most depths are quite stable over this period, with the exceptions of two sensors at 76 and 256 mbsf that show slowly rising temperatures; these could be due to cellular convection of borehole fluids, sensor degradation, or formation processes, but this requires a longer time series to resolve. We will report updated results after four more months of data recording through November 2017, along with any correlations to the pressure records. The data are freely available to all registered ONC users via the ONC data management and archiving system.
Optodynamic characterization of shock waves after laser-induced breakdown in water.
Petkovsek, Rok; Mozina, Janez; Mocnik, Grisa
2005-05-30
Plasma and a cavitation bubble develop at the site of laser-induced breakdown in water. Their formation and the propagation of the shock wave were monitored by a beam-deflection probe and an arm-compensated interferometer. The interferometer part of the setup was used to determine the relative position of the laser-induced breakdown. The time-of-flight data from the breakdown site to the probe beam yielded the velocity, and from the velocity the shock-wave pressure amplitudes were calculated. Two regions were found where the pressure decays with different exponents, pointing to a strong attenuation mechanism in the initial phase of the shock-wave propagation.
NASA Astrophysics Data System (ADS)
Bilici, Mihai A.; Haase, John R.; Boyle, Calvin R.; Go, David B.; Sankaran, R. Mohan
2016-06-01
We report on the existence of a smooth transition from field emission to a self-sustained plasma in microscale electrode geometries at atmospheric pressure. This behavior, which is not found at macroscopic scales or low pressures, arises from the unique combination of large electric fields that are created in microscale dimensions to produce field-emitted electrons and the high pressures that lead to collisional ionization of the gas. Using a tip-to-plane electrode geometry, currents less than 10 μA are measured at onset voltages of ˜200 V for gaps less than 5 μm, and analysis of the current-voltage (I-V) relationship is found to follow Fowler-Nordheim behavior, confirming field emission. As the applied voltage is increased, gas breakdown occurs smoothly, initially resulting in the formation of a weak, partial-like glow and then a self-sustained glow discharge. Remarkably, this transition is essentially reversible, as no significant hysteresis is observed during forward and reverse voltage sweeps. In contrast, at larger electrode gaps, no field emission current is measured and gas breakdown occurs abruptly at higher voltages of ˜400 V, absent of any smooth transition from the pre-breakdown condition and is characterized only by glow discharge formation.
Kinetics of motility-induced phase separation and swim pressure
NASA Astrophysics Data System (ADS)
Patch, Adam; Yllanes, David; Marchetti, M. Cristina
2017-01-01
Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. Here we examine the pressure of ABPs in two dimensions in both closed boxes and systems with periodic boundary conditions and show that its nonmonotonic behavior with density is a general property of ABPs and is not the result of finite-size effects. We correlate the time evolution of the mean pressure towards its steady-state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase-separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady-state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems.
Experiments pertaining to the formation and equilibration of planetary cores
NASA Technical Reports Server (NTRS)
Jeanloz, Raymond; Knittle, Elise; Williams, Quentin
1987-01-01
The phase diagram of FeO was experimentally determined to pressures of 155 GPa and temperatures of 4000 K using shock wave and diamond-cell techniques. Researchers discovered a metallic phase of FeO at pressures greater than 70 GPa and temperatures exceeding 1000 K. The metallization of FeO at high pressures implies that oxygen can be present as the light alloying element of the Earth's outer core, in accord with the geochemical predictions of Ringwood. The high pressures necessry for this metallization suggest that the core has acquired its composition well after the initial stages of the Earth's accretion. The core forming alloy can react chemically with oxides such as those forming the mantle. The core and mantle may never have reached complete chemical equilibrium, however. If this is the case, the core-mantle boundary is likely to be a zone of active chemical reactions.
NASA Astrophysics Data System (ADS)
Watanabe, Noriaki; Egawa, Motoki; Sakaguchi, Kiyotoshi; Ishibashi, Takuya; Tsuchiya, Noriyoshi
2017-06-01
Hydraulic fracturing experiments were conducted at 200-450°C by injecting water into cylindrical granite samples containing a borehole at an initial effective confining pressure of 40 MPa. Intensive fracturing was observed at all temperatures, but the fracturing characteristics varied with temperature, perhaps due to differences in the water viscosity. At the lowest considered temperature (200°C), fewer fractures propagated linearly from the borehole, and the breakdown pressure was twice the confining pressure. However, these characteristics disappeared with increasing temperature; the fracture pattern shifted toward the formation of a greater number of shorter fractures over the entire body of the sample, and the breakdown pressure decreased greatly. Hydraulic fracturing significantly increased the permeability at all temperatures, and this permeability enhancement was likely to form a productive geothermal reservoir even at the highest considered temperature, which exceeded both the brittle-ductile transition temperature of granite and the critical temperature of water.
NASA Astrophysics Data System (ADS)
Elfaki, H.; Yousef, S.; Mawad, Ramy; Algafari, Y. H. O.; Amer, M.; Abdel-Sattar, W.
2017-12-01
Severe solar events manifested as highly energetic X-Ray events accompanied by coronal mass ejections ( CMEs) and proton flares caused flash floods in Makkah Al-Mukaramah, Al-Madinah Al-Munawarah and Jeddah. In the case of the 20 January 2005 CME that initiated severe flash on the 22 of January. it is shown that the CME lowered the pressure in the polar region and extended the low pressure regime to Saudi Arabia passing by the Mediterranean. Such passage accelerated evaporation and caused Cumulonimbus clouds to form and discharge flash floods over Makkah Al-Mukaramah. On the other hand, solar forcing due coronal holes have a different technique in initiating flash floods. The November 25 2009 and the 13-15 January 2011 Jeddah flash floods are attributed to prompt events due to fast solar streams emanated from two coronal holes that arrived the Earth on 24 November 2009 and 13 January 2011. We present evidences that those streams penetrated the Earth's magnetosphere and hit the troposphere at the western part of the Red Sea, dissipated their energy at 925mb geopotential height and left two hot spots. It follows that the air in the hot spots expanded and developed spots of low pressure air that spread over the Red Sea to its eastern coast. Accelerated evaporation due to reduced pressure caused quick formation of Cumulonimbus clouds that caused flash floods over Makkah Al-Mukaramah and Jeddah.
The excavation stage of basin formation - A qualitative model
NASA Technical Reports Server (NTRS)
Croft, S. K.
1981-01-01
One of the most complex problems in planetary geology and geophysics is the determination of the nature of the impact cratering processes at scales of tens to thousands of kilometers that produce the complex morphological structures of multiring basins. The cratering process is frequently considered to be divided into three stages, including a short high-pressure stage of initial contact between the projectile and the planetary crust, a longer excavation or cratering flow stage culminating in the formation of a transient crater, and a still longer modification stage during which the transient crater is modified into the observed final geologic form. The transient crater may be considered as the initial boundary condition of the modification stage. In the present investigation, the nature of the transient crater is indicated by the cratering flow field determined from numerical simulations of the excavation stage. Attention is given to empirical and theoretical scaling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.
Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble growth and superlattice formation are not well known. In this work, molecular dynamics is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the molecular dynamics simulations, the embedded-atom method (EAM) potential of U10Mo-Xe (Smirnova et al. 2013) is employed. Initial gas bubbles with low Xe concentration aremore » generated in a U10Mo single crystal. Then Xe atom atoms are continuously added into the bubbles, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that the gas bubble growth is accompanied by partial dislocation emission, which results in a star-shaped dislocation structure and an anisotropic stress field. The emitted partial dislocations have a Burgers vector along the <111> direction and a slip plane of (11-2). Dislocation loop punch-out was not observed. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in body-centered cubic U10Mo fuels.« less
NASA Astrophysics Data System (ADS)
Rissanen, M.; Kurten, T.; Mauldin, L.; Ehn, M.
2017-12-01
Secondary organic aerosol (SOA) constitutes the largest fraction of atmospheric submicron particulate matter. Despite its importance to the Earth's radiative balance, mainly by acting as a source of cloud condensation nuclei (CCN), the molecular details of the first-steps of atmospheric new particle formation keep eluding researchers. Recently a gas-phase autocatalytic oxidation mechanism (=autoxidation) was invoked to explain the very fast formation of highly-oxidized multifunctional organic compounds (HOMs), and it was shown to provide the needed prompt condensable matter that forms the smallest of the atmospheric particles. Of detailed autoxidation progressions, only cyclohexene ozonolysis initiated oxidation has been described by quantum chemical computations, and it was quickly recognized that further reaction steps are needed (such as endoperoxidation) to explain the formation of the observed HOM products from biogenic terpenes. Also it was realized that the simplest group additivity principles commonly applied to derive saturation vapor pressures do not suffice to determine the vapor pressures of multiple hydroperoxide and other oxidized functionalities containing HOM products. Thereby the fraction of the lowest volatility products is less than previously assumed, which could indicate reactive uptake of HOM products. In the AGU fall meeting I will present our most recent findings on resolving the (i) detailed molecular mechanisms generating HOMs, (ii) their actual vapor pressures, and (iii) their interaction with the environment.
Significant Enhancement of H2 Formation in Disk Galaxies under Strong Ram Pressure
NASA Astrophysics Data System (ADS)
Henderson, Benjamin; Bekki, Kenji
2016-05-01
We show for the first time that H2 formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H I and H2 components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H I caused by RP increases H2 formation in disk galaxies before RP rapidly strips H I, cutting off the fuel supply and causing a drop in H2 density. We also find that the level of this H2 formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H I and H2 mass in disk galaxies under strong RP. We discuss how the correlation between H2 fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H2 densities.
NASA Astrophysics Data System (ADS)
Dong, T.; Lin, J. F.; Gu, J. T.; Polito, P. J.; O'Connell, J.; Flemings, P. B.
2017-12-01
We used Raman spectroscopy to monitor methane hydrates transforming from structure II to structure I at the pore scale as a function of space and time. It is well documented that structure I hydrate is the thermodynamically stable phase for pure methane hydrate (<100 MPa, < 20 °C), but due to kinetic limitation, initial methane hydrate formation produces a mixture of structure I and structure II hydrates. We observed that the structure transformation originated around the porous medium grains and over time slowly migrated into the pore space. We synthesized methane hydrates in spherical glass beads (210-297 µm in diameter) in a pressure cell with a sapphire window to integrate optical observations with Raman measurements. We injected CH4 vapor into the cell and supplied only deionized water thereafter to maintain a constant pressure of 14.6 MPa at 3.5 °C, with 14.5 °C subcooling. We used Raman spectroscopy to map the methane hydrates in pore spaces at 5-25 µm resolution, in order to monitor the occupancy ratio of CH4 in large cages to CH4 in small cages, by their Raman peak intensity ratio, i.e., I( 2905 cm-1)/I( 2915 cm-1). We identified 3 stages of hydrate formation at the pore scale: (1) after the initial hydrate formation, Raman mapping revealed that the occupancy ratio ranged from 0.5 to 3, indicating a mixture of structure I and II hydrates; (2) within 1 week, we observed that all structure I hydrates occurred on the glass bead surfaces and structure II hydrates occupied the pore spaces; (3) over the following 2 weeks, structure II hydrates gradually recrystallized into structure I hydrates from glass bead surfaces towards the pore space. These results imply that (1) due to kinetics, the formation of methane hydrate in porous media is more complex than previously thought, and (2) the bulk physical and chemical properties of laboratory-synthesized methane hydrates in porous media may drift over time, as methane hydrates recrystallize from a metastable phase (structure II) to the thermodynamically stable phase (structure I).
Moghaddam, Maryam Kahali; Breede, Arne; Brauner, Christian; Lang, Walter
2015-03-27
The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy's law in porous media to control the resin flow during infusion.
NASA Astrophysics Data System (ADS)
Ma, Xiao; Li, Xinguo; Zheng, Xianxu; Li, Kewu; Hu, Qiushi; Li, Jianling
2017-11-01
In recent decades, the hot-spot theory of condensed-phase explosives has been a compelling focus of scientific investigation attracting many researchers. The defect in the polymeric binder of the polymer-bonded explosive is called the intergranular defect. In this study, the real polymeric binder was substituted by poly(methyl methacrylate) (PMMA) as it is transparent and has similar thermodynamic properties to some binders. A set of modified split Hopkinson pressure bars equipped with a time-resolved shadowgraph was used to study the process of crack initiation and potential hot-spot formation around a cylindrical defect in PMMA. The new and significant phenomenon that the opening-mode crack emerged earlier than the shearing-mode crack from the cylindrical defect has been published for the first time in this paper. Furthermore, a two-dimensional numerical simulation was performed to show the evolution of both the stress field and the temperature field. The simulation results were in good agreement with the experiment. Finally, the law of potential hot-spot formation is discussed in detail.
Decaying two-dimensional turbulence in a circular container.
Schneider, Kai; Farge, Marie
2005-12-09
We present direct numerical simulations of two-dimensional decaying turbulence at initial Reynolds number 5 x 10(4) in a circular container with no-slip boundary conditions. Starting with random initial conditions the flow rapidly exhibits self-organization into coherent vortices. We study their formation and the role of the viscous boundary layer on the production and decay of integral quantities. The no-slip wall produces vortices which are injected into the bulk flow and tend to compensate the enstrophy dissipation. The self-organization of the flow is reflected by the transition of the initially Gaussian vorticity probability density function (PDF) towards a distribution with exponential tails. Because of the presence of coherent vortices the pressure PDF become strongly skewed with exponential tails for negative values.
Pressure data gathered from drillstem tests (DSTs) and bottomhole pressure measurements provide critical information toward formation and can be used for an assessment of prevailing pressure regimes and their influence on the migration potential of formation fluids. Reliability o...
May, Eric F; Lim, Vincent W; Metaxas, Peter J; Du, Jianwei; Stanwix, Paul L; Rowland, Darren; Johns, Michael L; Haandrikman, Gert; Crosby, Daniel; Aman, Zachary M
2018-03-13
Gas hydrate formation is a stochastic phenomenon of considerable significance for any risk-based approach to flow assurance in the oil and gas industry. In principle, well-established results from nucleation theory offer the prospect of predictive models for hydrate formation probability in industrial production systems. In practice, however, heuristics are relied on when estimating formation risk for a given flowline subcooling or when quantifying kinetic hydrate inhibitor (KHI) performance. Here, we present statistically significant measurements of formation probability distributions for natural gas hydrate systems under shear, which are quantitatively compared with theoretical predictions. Distributions with over 100 points were generated using low-mass, Peltier-cooled pressure cells, cycled in temperature between 40 and -5 °C at up to 2 K·min -1 and analyzed with robust algorithms that automatically identify hydrate formation and initial growth rates from dynamic pressure data. The application of shear had a significant influence on the measured distributions: at 700 rpm mass-transfer limitations were minimal, as demonstrated by the kinetic growth rates observed. The formation probability distributions measured at this shear rate had mean subcoolings consistent with theoretical predictions and steel-hydrate-water contact angles of 14-26°. However, the experimental distributions were substantially wider than predicted, suggesting that phenomena acting on macroscopic length scales are responsible for much of the observed stochastic formation. Performance tests of a KHI provided new insights into how such chemicals can reduce the risk of hydrate blockage in flowlines. Our data demonstrate that the KHI not only reduces the probability of formation (by both shifting and sharpening the distribution) but also reduces hydrate growth rates by a factor of 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, Lothar; Zeng, Lei; Rhodes, Terry L.
2014-04-24
Here, we present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator–prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ω E×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H–L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field)more » $$\\beta_{\\theta} =2\\mu_{0} n{( {T_{{\\rm e}} +T_{{\\rm i}}})}/{B_{\\theta}^{2}}$$ in ITER.« less
NASA Astrophysics Data System (ADS)
Schmitz, L.; Zeng, L.; Rhodes, T. L.; Hillesheim, J. C.; Peebles, W. A.; Groebner, R. J.; Burrell, K. H.; McKee, G. R.; Yan, Z.; Tynan, G. R.; Diamond, P. H.; Boedo, J. A.; Doyle, E. J.; Grierson, B. A.; Chrystal, C.; Austin, M. E.; Solomon, W. M.; Wang, G.
2014-07-01
We present direct evidence of low frequency, radially sheared, turbulence-driven flows (zonal flows (ZFs)) triggering edge transport barrier formation preceding the L- to H-mode transition via periodic turbulence suppression in limit-cycle oscillations (LCOs), consistent with predator-prey dynamics. The final transition to edge-localized mode-free H-mode occurs after the equilibrium E × B flow shear increases due to ion pressure profile evolution. ZFs are also observed to initiate formation of an electron internal transport barrier (ITB) at the q = 2 rational surface via local suppression of electron-scale turbulence. Multi-channel Doppler backscattering (DBS) has revealed the radial structure of the ZF-induced shear layer and the E × B shearing rate, ωE×B, in both barrier types. During edge barrier formation, the shearing rate lags the turbulence envelope during the LCO by 90°, transitioning to anti-correlation (180°) when the equilibrium shear dominates the turbulence-driven flow shear due to the increasing edge pressure gradient. The time-dependent flow shear and the turbulence envelope are anti-correlated (180° out of phase) in the electron ITB. LCOs with time-reversed evolution dynamics (transitioning from an equilibrium-flow dominated to a ZF-dominated state) have also been observed during the H-L back-transition and are potentially of interest for controlled ramp-down of the plasma stored energy and pressure (normalized to the poloidal magnetic field) \\beta_{\\theta} =2\\mu_{0} n{( {T_{e} +T_{i}})}/{B_{\\theta}^{2}} in ITER.
Effect of alcohol addition on shock-initiated formation of soot from benzene
NASA Technical Reports Server (NTRS)
Frenklach, Michael; Yuan, Tony
1988-01-01
Soot formation in benzene-methanol and benzene-ethanol argon-diluted mixtures was studied behind reflected shock waves by monitoring the attenuation of an He-Ne laser beam. The experiments were performed at temperatures 1580-2250 K, pressures 2.0-3.0 bar, and total carbon atom concentrations (2.0-2.7) x 10 to the 17th atoms/cu cm. The results obtained indicate that the addition of alcohol suppresses the formation of soot from benzene at all temperatures, and that the reduction in soot yields is increased with the amount of alcohol added. The analysis of the results indicates that the suppression effect is probably due to the oxidation of soot and soot precursors by OH and the removal of hydrogen atoms by alcohol and water molecules.
Potential effects of deep-well waste disposal in western New York
Waller, Roger Milton; Turk, John T.; Dingman, Robert James
1978-01-01
Mathematical and laboratory models were used to observe, respectively, the hydraulic and chemical reactions that may take place during proposed injection of a highly acidic, iron-rich waste pickle liquor into a deep waste-disposal well in western New York. Field temperature and pressure conditions were simulated in the tests. Hydraulic pressure in the middle stages of the initial (1968) injection test had probably hydraulically fractured the Cambrian sandstone-dolomite formation adjacent to the borehole. Transmissivity of the formation is 13 feet squared per day. The proposed rate of injection (72,000 gallons per day) of waste pickle liquor would approach a wellhead pressure of 600 pounds per square inch in about a year. Hydraulic fracturing would reoccur at about 580 pounds per square inch. The measurable cone of influence would extend about 22 miles after injection for 1 year. Chemical reactions between acidic wastes and brine-saturated dolomite would create precipitates that would drastically reduce the permeability of the unfractured part of the dolomite. Nondolomitic sandstone permeability would not be affected by chemical reactions, but the pores might be plugged by the iron-bearing waste. The digital model can be used for qualitative predictions on a regional scale. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Singhania, Shalabh; Wang, Qiankun; Filippou, Dimitrios; Demopoulos, George P.
2005-06-01
Arsenic is a major contaminant in the nonferrous extractive metallurgy. In the past 20 years, many studies have shown that it can be precipitated as relatively stable crystalline scorodite (FeAsO4·2H2O) by precipitation under ambient or elevated pressures. In the present study, an extensive program of scorodite precipitation tests under ambient pressure has shown that the rate of scorodite formation increases dramatically by a small increase in temperature from 85 °C to 100 °C. The beneficial effects of temperature are attributed to the higher thermodynamic stability of scorodite at elevated temperatures, but also to higher rates of secondary nuclei formation and crystal growth. In any case, irrespective of the precipitation temperature, the leachability of all scorodite precipitates observed in toxicity characterization leaching procedure (TCLP) tests is below 5 mg/L As. Another parameter examined in this study was seeding. It was observed that the higher the initial concentration of seed, the faster the precipitation. Precipitation of well-crystallized scorodite can be effected equally well on heterogeneous seed such as hematite (Fe2O3) or gypsum (CaSO4·2H2O) added externally or formed in situ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohmi, Hiromasa, E-mail: ohmi@prec.eng.osaka-u.ac.jp; Yasutake, Kiyoshi; Research Center for Ultra-Precision Science and Technology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871
2015-07-28
The selective deposition of Si films was demonstrated using a chemical sputtering process induced by a high pressure hydrogen plasma at 52.6 kPa (400 Torr). In this chemical sputtering process, the initial deposition rate (R{sub d}) is dependent upon the substrate type. At the initial stage of Si film formation, R{sub d} on glass substrates increased with elapsed time and reached to a constant value. In contrast, R{sub d} on Si substrates remained constant during the deposition. The selective deposition of Si films can be achieved by adjusting the substrate temperature (T{sub sub}) and hydrogen concentration (C{sub H2}) in the process atmosphere.more » For any given deposition time, it was found that an optimum C{sub H2} exists for a given T{sub sub} to realize the selective deposition of a Si film, and the optimum T{sub sub} value tends to increase with decreasing C{sub H2}. According to electron diffraction patterns obtained from the samples, the selectively prepared Si films showed epitaxial-like growth, although the Si films contained many defects. It was revealed by Raman scattering spectroscopy that some of the defects in the Si films were platelet defects induced by excess hydrogen incorporated during Si film formation. Raman spectrum also suggested that Si related radicals (SiH{sub 2}, SiH, Si) with high reactivity contribute to the Si film formation. Simple model was derived as the guideline for achieving the selective growth.« less
3D modelling of the climatic impact of outflow channel formation events on early Mars
NASA Astrophysics Data System (ADS)
Turbet, Martin; Forget, Francois; Head, James W.; Wordsworth, Robin
2017-05-01
Mars was characterized by cataclysmic groundwater-sourced surface flooding that formed large outflow channels and that may have altered the climate for extensive periods during the Hesperian era. In particular, it has been speculated that such events could have induced significant rainfall and caused the formation of late-stage valley networks. We present the results of 3-D Global Climate Model simulations reproducing the short and long term climatic impact of a wide range of outflow channel formation events under cold ancient Mars conditions. We find that the most intense of these events (volumes of water up to 107 km3 and released at temperatures up to 320 K) cannot trigger long-term greenhouse global warming, regardless of how favorable are the external conditions (e.g. obliquity and seasons). Furthermore, the intensity of the response of the events is significantly affected by the atmospheric pressure, a parameter not well constrained for the Hesperian era. Thin atmospheres (P < 80 mbar) can be heated efficiently because of their low volumetric heat capacity, triggering the formation of a convective plume that is very efficient in transporting water vapor and ice at the global scale. Thick atmospheres (P > 0.5 bar) have difficulty in producing precipitation far from the water flow area, and are more efficient in generating snowmelt. In any case, outflow channel formation events at any atmospheric pressure are unable to produce rainfall or significant snowmelt at latitudes below 40°N. As an example, for an outflow channel event (under a 0.2 bar atmospheric pressure and 45° obliquity) releasing 106 km3 of water heated at 300 K and at a discharge rate of 109 m3 s-1 , the flow of water reaches the lowest point of the northern lowlands (around ∼70°N, 30°W) after ∼3 days and forms a 200 m deep lake of 4.2 × 106 km2 after ∼20 days; the lake becomes entirely covered by an ice layer after ∼500 days. Over the short term, such an event leaves 6.5 × 103 km3 of ice deposits by precipitation (0.65% of the initial outflow volume) and can be responsible for the melting of ∼80 km3 (0.008% of the initial outflow volume; 1% of the deposited precipitation). Furthermore, these quantities decrease drastically (faster than linearly) for lower volumes of released water. Over the long term, we find that the presence of the ice-covered lake has a climatic impact similar to a simple body of water ice located in the Northern Plains. For an obliquity of ∼45° and atmospheric pressures > 80 mbar, we find that the lake ice is transported progressively southward through the mechanisms of sublimation and adiabatic cooling. At the same time, and as long as the initial water reservoir is not entirely sublimated (a lifetime of 105 martian years for the outflow channel event described above), ice deposits remain in the West Echus Chasma Plateau region where hints of hydrological activity contemporaneous with outflow channel formation events have been observed. However, because the high albedo of ice drives Mars to even colder temperatures, snowmelt produced by seasonal solar forcing is difficult to attain.
Precipitation of anion inclusions and plasticity under hydrostatic pressure in II-VI crystals
NASA Astrophysics Data System (ADS)
Lindberg, G. P.; Weinstein, B. A.
2016-10-01
Precipitation of anion nanocrystals (NCs) in initially stoichiometric II-VI crystals under hydrostatic pressure and light exposure is explored by Raman spectroscopy, and the mechanism for this effect is analyzed by model calculations. ZnSe, ZnTe, and CdSe crystals are studied in bulk and/or epitaxial-film forms. Se and Te NCs in the trigonal (t) phase precipitate in ZnSe and ZnTe, but the effect is absent or minimal in CdSe. The precipitation is induced by pressure and assisted by sub-band-gap light. In ZnSe, t-Se NCs appear for pressure exceeding 4.8 GPa and light flux above 50 -70 W /m m2 . In ZnTe, the precipitation of t-Te NCs requires less pressure to initiate, and there is a clear upper-pressure limit for t-Te nuclei to form. We find also that ZnTe samples with cleavage damage or elevated zinc-vacancy content are more prone to form t-Te NCs at lower pressures (even 1 atm in some cases) and lower flux. The precipitation seen in ZnSe and ZnTe occurs at pressures far below their phase transitions, and cannot be due to those transitions. Rather, we propose that the NCs nucleate on dislocations that arise from hydrostatic-pressure induced plastic flow triggered by noncubic defect sites. Calculations of the kinetic barrier for growth of an optimally shaped nucleus are performed, including hydrostatic pressure in the energy minimization scheme. Using sensible values for the model parameters related to the cohesive energies of Se and Te, the calculations account for our main observations, including the existence of an upper pressure limit for precipitation, and the absence of precipitation in CdSe. We consider the effects of pressure-induced precipitate formation on the I-II phase transitions in a variety of binary semiconductors and make predictions of when this effect should be important.
Ten Eyck, Raymond P; Tews, Matthew; Ballester, John M; Hamilton, Glenn C
2010-06-01
To determine the impact of simulation-based instruction on student performance in the role of emergency department resuscitation team leader. A randomized, single-blinded, controlled study using an intention to treat analysis. Eighty-three fourth-year medical students enrolled in an emergency medicine clerkship were randomly allocated to two groups differing only by instructional format. Each student individually completed an initial simulation case, followed by a standardized curriculum of eight cases in either group simulation or case-based group discussion format before a second individual simulation case. A remote coinvestigator measured eight objective performance end points using digital recordings of all individual simulation cases. McNemar chi2, Pearson correlation, repeated measures multivariate analysis of variance, and follow-up analysis of variance were used for statistical evaluation. Sixty-eight students (82%) completed both initial and follow-up individual simulations. Eight students were lost from the simulation group and seven from the discussion group. The mean postintervention case performance was significantly better for the students allocated to simulation instruction compared with the group discussion students for four outcomes including a decrease in mean time to (1) order an intravenous line; (2) initiate cardiac monitoring; (3) order initial laboratory tests; and (4) initiate blood pressure monitoring. Paired comparisons of each student's initial and follow-up simulations demonstrated significant improvement in the same four areas, in mean time to order an abdominal radiograph and in obtaining an allergy history. A single simulation-based teaching session significantly improved student performance as a team leader. Additional simulation sessions provided further improvement compared with instruction provided in case-based group discussion format.
Electron core ionization in compressed alkali metal cesium
NASA Astrophysics Data System (ADS)
Degtyareva, V. F.
2018-01-01
Elements of groups I and II in the periodic table have valence electrons of s-type and are usually considered as simple metals. Crystal structures of these elements at ambient pressure are close-packed and high-symmetry of bcc and fcc-types, defined by electrostatic (Madelung) energy. Diverse structures were found under high pressure with decrease of the coordination number, packing fraction and symmetry. Formation of complex structures can be understood within the model of Fermi sphere-Brillouin zone interactions and supported by Hume-Rothery arguments. With the volume decrease there is a gain of band structure energy accompanied by a formation of many-faced Brillouin zone polyhedra. Under compression to less than a half of the initial volume the interatomic distances become close to or smaller than the ionic radius which should lead to the electron core ionization. At strong compression it is necessary to assume that for alkali metals the valence electron band overlaps with the upper core electrons, which increases the valence electron count under compression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khlystova, Anna; Toriumi, Shin, E-mail: hlystova@iszf.irk.ru, E-mail: shin.toriumi@nao.ac.jp
We study the plasma flows in the solar photosphere during the emergence of two small active regions, NOAA 9021 and 10768. Using Solar and Heliospheric Observatory /Michelson Doppler Imager data, we find that the strong plasma upflows appear at the initial stage of active region formation, with maximum upflow velocities of −1650 and −1320 m s{sup −1}. The structures with enhanced upflows have size ∼8 Mm in diameter, and they exist for 1–2 hr. The parameters of the enhanced upflows are consistent with those of the large active region NOAA 10488, which may suggest the possibility that the elementary emergingmore » magnetic loops that appear at the earliest phase of active region formation have similar properties, irrespective of scales of active regions. Comparison between the observations and a numerical simulation of magnetic flux emergence shows a striking consistency. We find that the driving force of the plasma upflow is at first the gas pressure gradient and later the magnetic pressure gradient.« less
Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, Dumitru
2010-02-15
An experimental study on pressure evolution during closed vessel explosions of propane-air mixtures was performed, for systems with various initial concentrations and pressures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.2 bar). The explosion pressures and explosion times were measured in a spherical vessel (Phi=10 cm), at various initial temperatures (T(0)=298-423 K) and in a cylindrical vessel (Phi=10 cm; h=15 cm), at ambient initial temperature. The experimental values of explosion pressures are examined against literature values and compared to adiabatic explosion pressures, computed by assuming chemical equilibrium within the flame front. The influence of initial pressure, initial temperature and fuel concentration on explosion pressures and explosion times are discussed. At constant temperature and fuel/oxygen ratio, the explosion pressures are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, both the measured and calculated (adiabatic) explosion pressures are linear functions of reciprocal value of initial temperature. Such correlations are extremely useful for predicting the explosion pressures of flammable mixtures at elevated temperatures and/or pressures, when direct measurements are not available.
NASA Astrophysics Data System (ADS)
Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.
2015-06-01
Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.
Mitropoulos, A. C.; Stefanopoulos, K. L.; Favvas, E. P.; Vansant, E.; Hankins, N. P.
2015-01-01
Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of ‘ink-bottle’ pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary. PMID:26047466
Mitropoulos, A C; Stefanopoulos, K L; Favvas, E P; Vansant, E; Hankins, N P
2015-06-05
Vycor porous glass has long served as a model mesoporous material. During the physical adsorption of halogenated hydrocarbon vapours, such as dibromomethane, the adsorption isotherm exhibits an hysteresis loop; a gradual ascent is observed at higher pressures during adsorption, and a sharp drop is observed at lower pressures during desorption. For fully wetting fluids, an early hypothesis attributed the hysteresis to mechanistic differences between capillary condensation (adsorption) and evaporation (desorption) processes occurring in the wide bodies and narrow necks, respectively, of 'ink-bottle' pores. This was later recognized as oversimplified when the role of network percolation was included. For the first time, we present in-situ small angle x-ray scattering measurements on the hysteresis effect which indicate nanobubble formation during desorption, and support an extended picture of network percolation. The desorption pattern can indeed result from network percolation; but this can sometimes be initiated by a local cavitation process without pore blocking, which is preceded by the temporary, heterogeneous formation of nanobubbles involving a change in wetting states. The capacity of the system to sustain such metastable states is governed by the steepness of the desorption boundary.
Pre-injection brine production for managing pressure in compartmentalized CO₂ storage reservoirs
Buscheck, Thomas A.; White, Joshua A.; Chen, Mingjie; ...
2014-12-31
We present a reservoir management approach for geologic CO₂ storage that combines CO₂ injection with brine extraction. In our approach, dual-mode wells are initially used to extract formation brine and subsequently used to inject CO₂. These wells can also be used to monitor the subsurface during pre-injection brine extraction so that key data is acquired and analyzed prior to CO₂ injection. The relationship between pressure drawdown during pre-injection brine extraction and pressure buildup during CO₂ injection directly informs reservoir managers about CO₂ storage capacity. These data facilitate proactive reservoir management, and thus reduce costs and risks. The brine may bemore » used directly as make-up brine for nearby reservoir operations; it can also be desalinated and/or treated for a variety of beneficial uses.« less
NASA Technical Reports Server (NTRS)
Neveu, M. C.; Stocker, D. P.
1985-01-01
High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.
NASA Astrophysics Data System (ADS)
Wilson, Lionel; Head, James W.
2018-05-01
Lunar floor-fractured craters (FFCs) represent the surface manifestation of a class of shallow crustal intrusions in which magma-filled cracks (dikes) rising to the surface from great depth encounter contrasts in host rock lithology (breccia lens, rigid solidified melt sheet) and intrude laterally to form a sill, laccolith or bysmalith, thereby uplifting and deforming the crater floor. Recent developments in the knowledge of lunar crustal thickness and density structure have enabled important revisions to models of the generation, ascent and eruption of magma, and new knowledge about the presence and behavior of magmatic volatiles has provided additional perspectives on shallow intrusion processes in FFCs. We use these new data to assess the processes that occur during dike and sill emplacement with particular emphasis on tracking the fate and migration of volatiles and their relation to candidate venting processes. FFCs result when dikes are capable of intruding close to the surface, but fail to erupt because of the substructure of their host impact craters, and instead intrude laterally after encountering a boundary where an increase in ductility (base of breccia lens) or rigidity (base of solidified melt sheet) occurs. Magma in dikes approaching the lunar surface experiences increasingly lower overburden pressures: this enhances CO gas formation and brings the magma into the realm of the low pressure release of H2O and sulfur compounds, both factors adding volatiles to those already collected in the rising low-pressure part of the dike tip. High magma rise velocity is driven by the positive buoyancy of the magma in the part of the dike remaining in the mantle. The dike tip overshoots the interface and the consequent excess pressure at the interface drives the horizontal flow of magma to form the intrusion and raise the crater floor. If sill intrusion were controlled by the physical properties at the base of the melt sheet, dikes would be required to approach to within ∼300 m of the surface, and thus eruptions, rather than intrusions, would be very likely to occur; instead, dynamical considerations strongly favor the sub-crustal breccia lens as the location of the physical property contrast localizing lateral intrusion, at a depth of several kilometers. The end of lateral and vertical sill growth occurs when the internal magma pressure equals the external pressure (the intrusion just supports the weight of the overlying crust). Dynamical considerations lead to the conclusion that dike magma volumes are up to ∼1100 km3, and are generally insufficient to form FFCs on the lunar farside; the estimated magma volumes available for injection into sills on the lunar nearside (up to ∼800 km3) are comparable to the observed floor uplift in many smaller FFCs, and thus consistent with these FFCs forming from a single dike emplacement event. In contrast, the thickest intrusions in the largest craters imply volumes requiring multiple dike contributions; these are likely to be events well-separated in time, rather than injection of new magma into a recently-formed and still-cooling intrusion. We present a temporal sequence of 1) dike emplacement, 2) sill formation and surface deformation, 3) bubble rise, foam layer formation and collapse, 4) intrusion cooling, and a synthesis of predicted deformation sequence and eruption styles. Initial lateral injection of the sill at a depth well below the upper dike tip initiates upbowing of the overburden, leveraging deformation of the crater floor melt sheet above. This is followed by lateral spreading of the sill toward the edges of the crater floor, where crater wall and rim deposit overburden inhibit further lateral growth, and the sill grows vertically into a laccolith or bysmalith, uplifting the entire floor above the intrusion. Subsidiary dikes can be emplaced in the fractures at the uplift margins and will rise to the isostatic level of the initial dike tip; if these contain sufficient volatiles to decrease magma density, eruptions can also occur. This initial phase of intrusion, sill lateral spreading and floor uplift occurs within a few hours after initial dike emplacement. During the subsequent cooling of the sill, bubbles can rise hundreds of meters to the top of the intrusion to create a foam layer; when drainage of gas bubble wall magma occurs in the foam layer, a continuous gas layer forms above the foam. Gas formation and upward migration produces an increase in sill thickness, while subsequent cooling and solidification cause a thickness decreases and subsidence. The total topographic evolution history, following an initial 2 km thick sill intrusion and floor uplift (hours), includes further floor uplift by gas formation and migration (decades; ∼30 m), followed by cooling, solidification and subsidence (∼a century; ∼350 m). An initial 2 km thick sill is predicted to have a final thickness of ∼1.7 km. This predicted sequence of events can be compared with the sequence of floor deformation and volcanism in FFCs in order to test and refine this model.
Jenab, Ehsan; Temelli, Feral; Curtis, Jonathan M
2013-12-01
The processing parameters in enzymatic reactions using CO2-expanded (CX) lipids have strong effects on the physical properties of liquid phase, degree of interesterification, and physicochemical properties of the final reaction products. CX-canola oil and fully hydrogenated canola oil (FHCO) were interesterified using Lipozyme TL IM in a high pressure stirred batch reactor. The effects of immobilised enzyme load, pressure, substrate ratio and reaction time on the formation of mixed triacylglycerols (TG) from trisaturated and triunsaturated TG were investigated. The optimal immobilised enzyme load, pressure, substrate ratio and time for the degree of interesterification to reach the highest equilibrium state were 6% (w/v) of initial substrates, 10 MPa, blend with 30% (w/w) of FHCO and 2h, respectively. The physicochemical properties of the initial blend and interesterified products with different FHCO ratios obtained at optimal reaction conditions were determined in terms of TG composition, thermal behaviour and solid fat content (SFC). The amounts of saturated and triunsaturated TG decreased while the amounts of mixed TG increased as a result of interesterification. Thus, the interesterified product had a lower melting point, and broader melting and plasticity ranges compared to the initial blends. These findings are important for better understanding of CX-lipid reactions and for optimal formulation of base-stocks of margarine and confectionary fats to meet industry demands. Copyright © 2013 Elsevier Ltd. All rights reserved.
HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefano Orsino
As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two seriesmore » of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.« less
Thermally-driven Coupled THM Processes in Shales
NASA Astrophysics Data System (ADS)
Rutqvist, J.
2017-12-01
Temperature changes can trigger strongly coupled thermal-hydrological-mechanical (THM) processes in shales that are important to a number of subsurface energy applications, including geologic nuclear waste disposal and hydrocarbon extraction. These coupled processes include (1) direct pore-volume couplings, by thermal expansion of trapped pore-fluid that triggers instantaneous two-way couplings between pore fluid pressure and mechanical deformation, and (2) indirect couplings in terms of property changes, such as changes in mechanical stiffness, strength, and permeability. Direct pore-volume couplings have been studied in situ during borehole heating experiments in shale (or clay stone) formations at Mont Terri and Bure underground research laboratories in Switzerland and France. Typically, the temperature changes are accompanied with a rapid increase in pore pressure followed by a slower decrease towards initial (pre-heating) pore pressure. Coupled THM modeling of these heater tests shows that the pore pressure increases because the thermal expansion coefficient of the fluid is much higher than that of the porous clay stone. Such thermal pressurization induces fluid flow away from the pressurized area towards areas of lower pressure. The rate of pressure increase and magnitude of peak pressure depends on the rate of heating, pore-compressibility, and permeability of the shale. Modeling as well as laboratory experiments have shown that if the pore pressure increase is sufficiently large it could lead to fracturing of the shale or shear slip along pre-existing bedding planes. Another set of data and observations have been collected associated with studies related to concentrated heating and cooling of oil-shales and shale-gas formations. Heating may be used to enhance production from tight oil-shale, whereas thermal stimulation has been attempted for enhanced shale-gas extraction. Laboratory experiments on shale have shown that strength and elastic deformation modulus decreases with temperature while the rate creep deformations increase with temperature. Such temperature dependency also affects the well stability and zonal sealing across shale layers.
Yuan, Jun; Zhang, Nan; Huang, Qiwei; Raza, Waseem; Li, Rong; Vivanco, Jorge M.; Shen, Qirong
2015-01-01
The successful colonization of plant growth promoting rhizobacteria (PGPR) in the rhizosphere is an initial and compulsory step in the protection of plants from soil-borne pathogens. Therefore, it is necessary to evaluate the role of root exudates in the colonization of PGPR. Banana root exudates were analyzed by high pressure liquid chromatography (HPLC) which revealed exudates contained several organic acids (OAs) including oxalic, malic and fumaric acid. The chemotactic response and biofilm formation of Bacillus amyloliquefaciens NJN-6 were investigated in response to OA’s found in banana root exudates. Furthermore, the transcriptional levels of genes involved in biofilm formation, yqxM and epsD, were evaluated in response to OAs via quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Results suggested that root exudates containing the OAs both induced the chemotaxis and biofilm formation in NJN-6. In fact, the strongest chemotactic and biofilm response was found when 50 μM of OAs were applied. More specifically, malic acid showed the greatest chemotactic response whereas fumaric acid significantly induced biofilm formation by a 20.7–27.3% increase and therefore biofilm formation genes expression. The results showed banana root exudates, in particular the OAs released, play a crucial role in attracting and initiating PGPR colonization on the host roots. PMID:26299781
NASA Astrophysics Data System (ADS)
Chung, Eun Jung; Kim, S.
2014-01-01
The ram pressure stripping is known as one of the most efficient mechanisms to deplete the ISM of a galaxy in the clusters of galaxies. As being affected continuously by ICM pressure, a galaxy may lose their gas that is the fuel of star formation, and consequently star formation rate would be changed. We select twelve Virgo spiral galaxies according to their stage of the ram pressure stripping event to probe possible consequences of star formation of spiral galaxies in the ram pressure and thus the evolution of galaxies in the Virgo cluster. We investigate the molecular gas properties, star formation activity, and gas depletion time along the time from the ram pressure peak. We also discussed the evolution of galaxies in the cluster.
Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl
A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturingmore » is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.« less
Burke, Lauri
2012-01-01
Additionally, this research establishes a methodology to calculate the injectivity of a target formation. Because injectivity describes the pressure increase due to the introduction of fluids into a formation, the relevant application of injectivity is to determine the pressure increase, due to an injection volume and flow rate, that will induce fractures in the reservoir rocks. This quantity is defined mathematically as the maximum pressure differential between the hydrostatic gradient and the fracture gradient of the target formation. Injectivity is mathematically related to the maximum pressure differential of the formation, and can be used to determine the upper limit for the pressure increase that an injection target can withstand before fracturing.
Pandey, Gaurav; Linga, Praveen; Sangwai, Jitendra S
2017-02-01
Conventional rheometers with concentric cylinder geometries do not enhance mixing in situ and thus are not suitable for rheological studies of multiphase systems under high pressure such as gas hydrates. In this study, we demonstrate the use of modified Couette concentric cylinder geometries for high pressure rheological studies during the formation and dissociation of methane hydrate formed from pure water and water-decane systems. Conventional concentric cylinder Couette geometry did not produce any hydrates in situ and thus failed to measure rheological properties during hydrate formation. The modified Couette geometries proposed in this work observed to provide enhanced mixing in situ, thus forming gas hydrate from the gas-water-decane system. This study also nullifies the use of separate external high pressure cell for such measurements. The modified geometry was observed to measure gas hydrate viscosity from an initial condition of 0.001 Pa s to about 25 Pa s. The proposed geometries also possess the capability to measure dynamic viscoelastic properties of hydrate slurries at the end of experiments. The modified geometries could also capture and mimic the viscosity profile during the hydrate dissociation as reported in the literature. The present study acts as a precursor for enhancing our understanding on the rheology of gas hydrate formed from various systems containing promoters and inhibitors in the context of flow assurance.
NASA Astrophysics Data System (ADS)
Pandey, Gaurav; Linga, Praveen; Sangwai, Jitendra S.
2017-02-01
Conventional rheometers with concentric cylinder geometries do not enhance mixing in situ and thus are not suitable for rheological studies of multiphase systems under high pressure such as gas hydrates. In this study, we demonstrate the use of modified Couette concentric cylinder geometries for high pressure rheological studies during the formation and dissociation of methane hydrate formed from pure water and water-decane systems. Conventional concentric cylinder Couette geometry did not produce any hydrates in situ and thus failed to measure rheological properties during hydrate formation. The modified Couette geometries proposed in this work observed to provide enhanced mixing in situ, thus forming gas hydrate from the gas-water-decane system. This study also nullifies the use of separate external high pressure cell for such measurements. The modified geometry was observed to measure gas hydrate viscosity from an initial condition of 0.001 Pa s to about 25 Pa s. The proposed geometries also possess the capability to measure dynamic viscoelastic properties of hydrate slurries at the end of experiments. The modified geometries could also capture and mimic the viscosity profile during the hydrate dissociation as reported in the literature. The present study acts as a precursor for enhancing our understanding on the rheology of gas hydrate formed from various systems containing promoters and inhibitors in the context of flow assurance.
NASA Astrophysics Data System (ADS)
Wang, Jian; Wexler, Anthony S.
2013-05-01
New particle formation consists of formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation) followed by growth of these clusters to a detectable size. Because of the large coagulation rate of clusters smaller than 3 nm with the preexisting aerosol population, for new particle formation to take place, these clusters need to grow sufficiently fast to escape removal by coagulation. Previous studies have indicated that condensation of low-volatility organic vapor may play an important role in the initial growth of the clusters. However, due to the relatively high vapor pressure and partial molar volume of even highly oxidized organic compounds, the strong Kelvin effect may prevent typical ambient organics from condensing on these small clusters. Earlier studies did not consider that adsorption of organic molecules on the cluster surface, due to the intermolecular forces between the organic molecule and cluster, may occur and substantially alter the growth process under sub-saturated conditions. Using the Brunauer-Emmett-Teller (BET) isotherm, we show that the adsorption of organic molecules onto the surface of clusters may significantly reduce the saturation ratio required for condensation of organics to occur, and therefore may provide a physico-chemical explanation for the enhanced initial growth by condensation of organics despite the strong Kelvin effect.
NASA Technical Reports Server (NTRS)
Boltz, Frederick W.; Kenyon, George C.; Allen, Clyde Q.
1960-01-01
An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure gradient, effects of sweep in causing premature transition are generally first encountered on the lower surfaces of wings operating at positive angles of attack.
NASA Astrophysics Data System (ADS)
Seel, Kevin; Reddemann, Manuel A.; Kneer, Reinhold
2018-03-01
Although the interaction of automotive sprays with thin films is of high technical relevance for IC engine applications, fundamental knowledge about underlying physical mechanisms is still limited. This work presents a systematic study of the influence of the film's initial thickness—homogeneously spread over a flat wall before the initial spray impingement—on film surface structures and thickness after the interaction. For this purpose, interferometric film thickness measurements and complementary high-speed visualizations are used. By gradually increasing the initial film thickness on a micrometer scale, a shift from a regime of liquid deposition (increasing film thickness with respect to initial film thickness) to a regime of liquid removal (decreasing film thickness with respect to initial film thickness) is observed at the stagnation zone of the impinging spray. This transition is accompanied by the formation of radially propagating surface waves, transporting liquid away from the stagnation zone. Wavelengths and amplitudes of the surface waves are increased with increasing initial film thickness.
SIGNIFICANT ENHANCEMENT OF H{sub 2} FORMATION IN DISK GALAXIES UNDER STRONG RAM PRESSURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Benjamin; Bekki, Kenji
We show for the first time that H{sub 2} formation on dust grains can be enhanced in disk galaxies under strong ram pressure (RP). We numerically investigate how the time evolution of H i and H{sub 2} components in disk galaxies orbiting a group/cluster of galaxies can be influenced by the hydrodynamical interaction between the gaseous components of the galaxies and the hot intracluster medium. We find that compression of H i caused by RP increases H{sub 2} formation in disk galaxies before RP rapidly strips H i, cutting off the fuel supply and causing a drop in H{sub 2}more » density. We also find that the level of this H{sub 2} formation enhancement in a disk galaxy under RP depends on the mass of its host cluster dark matter halo, the initial positions and velocities of the disk galaxy, and the disk inclination angle with respect to the orbital plane. We demonstrate that dust growth is a key factor in the evolution of the H i and H{sub 2} mass in disk galaxies under strong RP. We discuss how the correlation between H{sub 2} fractions and surface gas densities of disk galaxies evolves with time in the galaxies under RP. We also discuss whether galaxy-wide star formation rates (SFRs) in cluster disk galaxies can be enhanced by RP if the SFRs depend on H{sub 2} densities.« less
Observed formation of easterly waves over northeast Africa
NASA Astrophysics Data System (ADS)
Jury, Mark R.
2018-06-01
This study explores the thermodynamic and kinematic features of easterly waves over northeast Africa in July-September season 2005-2015. A daily African easterly wave (AEW) index is formulated from transient satellite rainfall and reanalysis vorticity, and the ten most intense cases are studied by composite analysis. Surface moisture is advected from central Africa towards the Red Sea during AEW formation. The anomalous 600 hPa wind circulation is comprized of a cyclonic-south anticyclonic-north rotor pair and accentuated easterly jet along 17N. Composite convection is initiated over Ethiopia and subsequently intensifies following interaction with a zonal circulation located downstream. Composite AEW temperature anomalies reveal a cool lower-warm upper layer heating profile. 2-8 day variance of satellite OLR reaches a maximum over the southern Arabian Peninsula, suggesting an upstream role for surface heating and the Somali Jet. The large scale environment is analyzed by regression of the AEW index onto daily fields of rainfall, surface air pressure and temperature in July-September season ( N = 1004). The rainfall regression reflects a westward propagating AEW wave-train of higher values on 13N and lower values on 7N with a longitude spacing of 25°. The air pressure and temperature regression features a N-S dipole indicating an anomalous northward ITCZ. A low pressure signal west of the Maritime Continent coupled with a warm zone across the South Indian Ocean coincides with AEW formation over the eastern Sahel.
Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Dateo, Christopher E.; Meyyappan, M.
2002-01-01
The high-pressure carbon monoxide (HiPco) process, developed at Rice University, has been reported to produce single-walled carbon nanotubes from gas-phase reactions of iron carbonyl in carbon monoxide at high pressures (10-100 atm). Computational modeling is used here to develop an understanding of the HiPco process. A detailed kinetic model of the HiPco process that includes of the precursor, decomposition metal cluster formation and growth, and carbon nanotube growth was developed in the previous article (Part I). Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. The diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by the Boudouard reaction with metal catalysts. Based on the detailed model simulations, a reduced kinetic model was also developed in Part I for use in reactor-scale flowfield calculations. Here this reduced kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance. Carbon nanotube growth is examined with respect to several process variables (peripheral jet temperature, reactor pressure, and Fe(CO)5 concentration) with the use of the axisymmetric model, and the computed results are compared with existing experimental data. The model yields most of the qualitative trends observed in the experiments and helps to understanding the fundamental processes in HiPco carbon nanotube production.
The Formation and Evolution of Star Clusters in Interacting Galaxies
NASA Astrophysics Data System (ADS)
Maji, Moupiya; Zhu, Qirong; Li, Yuexing; Charlton, Jane; Hernquist, Lars; Knebe, Alexander
2017-08-01
Observations of globular clusters show that they have universal lognormal mass functions with a characteristic peak at ˜ 2× {10}5 {M}⊙ , but the origin of this peaked distribution is highly debated. Here we investigate the formation and evolution of star clusters (SCs) in interacting galaxies using high-resolution hydrodynamical simulations performed with two different codes in order to mitigate numerical artifacts. We find that massive SCs in the range of ˜ {10}5.5{--}{10}7.5 {M}⊙ form preferentially in the highly shocked regions produced by galaxy interactions. The nascent cluster-forming clouds have high gas pressures in the range of P/k˜ {10}8{--}{10}12 {{K}} {{cm}}-3, which is ˜ {10}4{--}{10}8 times higher than the typical pressure of the interstellar medium but consistent with recent observations of a pre-super-SC cloud in the Antennae Galaxies. Furthermore, these massive SCs have quasi-lognormal initial mass functions with a peak around ˜ {10}6 {M}⊙ . The number of clusters declines with time due to destructive processes, but the shape and the peak of the mass functions do not change significantly during the course of galaxy collisions. Our results suggest that gas-rich galaxy mergers may provide a favorable environment for the formation of massive SCs such as globular clusters, and that the lognormal mass functions and the unique peak may originate from the extreme high-pressure conditions of the birth clouds and may survive the dynamical evolution.
Kahali Moghaddam, Maryam; Breede, Arne; Brauner, Christian; Lang, Walter
2015-01-01
The production of large and complex parts using fiber composite materials is costly due to the frequent formation of voids, porosity and waste products. By embedding different types of sensors and monitoring the process in real time, the amount of wastage can be significantly reduced. This work focuses on developing a knowledge-based method to improve and ensure complete impregnation of the fibers before initiation of the resin cure. Piezoresistive and capacitive pressure sensors were embedded in fiber composite laminates to measure the real-time the pressure values inside the laminate. A change of pressure indicates resin infusion. The sensors were placed in the laminate and the resin was infused by vacuum. The embedded piezoresistive pressure sensors were able to track the vacuum pressure in the fiber composite laminate setup, as well as the arrival of the resin at the sensor. The pressure increase due to closing the resin inlet was also measured. In contrast, the capacitive type of sensor was found to be inappropriate for measuring these quantities. The following study demonstrates real-time monitoring of pressure changes inside the fiber composite laminate, which validate the use of Darcy’s law in porous media to control the resin flow during infusion. PMID:25825973
HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chris Guenther; Bill Rogers
2001-09-15
The HPCCK project was initiated with a kickoff meeting held on June 12, 2001 in Morgantown, WV, which was attended by all project participants. SRI's existing g-RCFR reactor was reconfigured to a SRT-RCFR geometry (Task 1.1). This new design is suitable for performing the NBFZ experiments of Task 1.2. It was decided that the SRT-RCFR apparatus could be modified and used for the HPBO experiments. The purchase, assembly, and testing of required instrumentation and hardware is nearly complete (Task 1.1 and 1.2). Initial samples of PBR coal have been shipped from FWC to SRI (Task 1.1). The ECT device formore » coal flow measurements used at FWC will not be used in the SRI apparatus and a screw type feeder has been suggested instead (Task 5.1). NEA has completed a upgrade of an existing Fluent simulator for SRI's RCFR to a version that is suitable for interpreting results from tests in the NBFZ configuration (Task 1.3) this upgrade includes finite-rate submodels for devolatilization, secondary volatiles pyrolysis, volatiles combustion, and char oxidation. Plans for an enhanced version of CBK have been discussed and development of this enhanced version has begun (Task 2.5). A developmental framework for implementing pressure and oxygen effects on ash formation in an ash formation model (Task 3.3) has begun.« less
The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies
NASA Astrophysics Data System (ADS)
Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta
2016-06-01
We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to -3.2 ≲ log U ≲ -3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.
The Dynamics of Massive Starless Cores with ALMA
NASA Astrophysics Data System (ADS)
Tan, Jonathan C.; Kong, Shuo; Butler, Michael J.; Caselli, Paola; Fontani, Francesco
2013-12-01
How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (~100 M ⊙) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N2H+ in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N2D+ (3-2) line at 2.''3 resolution. We find six N2D+ cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number mA ~ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ~60 M ⊙, our results suggest that moderately enhanced magnetic fields (so that mA ~= 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.
The detection of distant cooling flows and the formation of dark matter
NASA Technical Reports Server (NTRS)
Fabian, A. C.; Arnaud, K. A.; Nulsen, P. E. J.; Mushotzky, R. F.
1986-01-01
Cooling flows involving substantial mass inflow rates appear to be common in many nearby rich and poor clusters and in isolated galaxies. The extensive optical and ultraviolet filaments produced by the thermal instability of large flows are detectable out to redshifts greater than 1. It is proposed that this may explain the extended optical line emission reported in, and around, many distant radio galaxies, narrow-line quasars, and even nearby normal and active galaxies. An important diagnostic to distinguish cooling flows from other possible origins of emission line filaments is the presence of extensive regions at high thermal pressure. Other evidence for distant cooling flows and the resultant star formation is further discussed, together with the implications of cooling flow initial-mass functions for galaxy formation and the nature of 'dark' matter.
Two innovative pore pressure calculation methods for shallow deep-water formations
NASA Astrophysics Data System (ADS)
Deng, Song; Fan, Honghai; Liu, Yuhan; He, Yanfeng; Zhang, Shifeng; Yang, Jing; Fu, Lipei
2017-11-01
There are many geological hazards in shallow formations associated with oil and gas exploration and development in deep-water settings. Abnormal pore pressure can lead to water flow and gas and gas hydrate accumulations, which may affect drilling safety. Therefore, it is of great importance to accurately predict pore pressure in shallow deep-water formations. Experience over previous decades has shown, however, that there are not appropriate pressure calculation methods for these shallow formations. Pore pressure change is reflected closely in log data, particularly for mudstone formations. In this paper, pore pressure calculations for shallow formations are highlighted, and two concrete methods using log data are presented. The first method is modified from an E. Philips test in which a linear-exponential overburden pressure model is used. The second method is a new pore pressure method based on P-wave velocity that accounts for the effect of shallow gas and shallow water flow. Afterwards, the two methods are validated using case studies from two wells in the Yingqiong basin. Calculated results are compared with those obtained by the Eaton method, which demonstrates that the multi-regression method is more suitable for quick prediction of geological hazards in shallow layers.
NASA Astrophysics Data System (ADS)
Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.
2015-09-01
The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.
Multiphysics Simulations of Hot-Spot Initiation in Shocked Insensitive High-Explosive
NASA Astrophysics Data System (ADS)
Najjar, Fady; Howard, W. M.; Fried, L. E.
2010-11-01
Solid plastic-bonded high-explosive materials consist of crystals with micron-sized pores embedded. Under mechanical or thermal insults, these voids increase the ease of shock initiation by generating high-temperature regions during their collapse that might lead to ignition. Understanding the mechanisms of hot-spot initiation has significant research interest due to safety, reliability and development of new insensitive munitions. Multi-dimensional high-resolution meso-scale simulations are performed using the multiphysics software, ALE3D, to understand the hot-spot initiation. The Cheetah code is coupled to ALE3D, creating multi-dimensional sparse tables for the HE properties. The reaction rates were obtained from MD Quantum computations. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a "secondary" jet. We will discuss the results obtained with hydro-thermo-chemical processes leading to ignition growth for various pore sizes and different shock pressures.
NASA Astrophysics Data System (ADS)
Soares, Caroline Cibele Vieira; Varajão, Angélica Fortes Drummond Chicarino; Varajão, César Augusto Chicarino; Boulangé, Bruno
2014-12-01
X-ray diffraction (XRD), X-ray Fluorescence (XRF), optical microscopy, Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe micro-analyser (EPMA) and Wavelength-Dispersive Spectroscopy (WDS) were conducted on charnockite from the Caparaó Suite and its alteration cortex to determine the mineralogical, micromorphological and geochemical transformations resulting from the weathering process. The hydrolysis of the charnockite occurred in different stages, in accordance with the order of stability of the minerals with respect to weathering: andesine/orthopyroxene, pargasite and alkali feldspar. The rock modifications had begun with the formation of a layer of incipient alteration due to the percolation of weathering solutions first in the pressure relief fractures and then in cleavage and mineral edges. The iron exuded from ferromagnesian minerals precipitated in the intermineral and intramineral discontinuities. The layer of incipient alteration evolves into an inner cortex where the plagioclase changes into gibbsite by direct alitisation, the ferromagnesian minerals initiate the formation of goethitic boxworks with kaolinitic cores, and the alkali feldspar initiates indirect transformation into gibbsite, forming an intermediate phase of illite and kaolinite. In the outer cortex, mostly traces of alkali feldspar remain, and they are surrounded by goethite and gibbsite as alteromorphics, characterising the formation of the isalteritic horizon that occurs along the slope and explains the bauxitization process at the Caparaó Range, SE Brazil.
Gal, Jean-Yves; Fovet, Yannick; Gache, Nathalie
2002-02-01
In the first part, we have designed a new model of evolution for the calco-carbonic system which includes the hydrated forms of CaCO3: CaCO3 amorphous, CaCO3 x 6H2O (ikaite) and CaCO3 x H2O (monohydrate) (J. Eur. Hydr. 30 (1999) 47). According to this model, it is the precipitation of one or other of these hydrated forms which could be responsible for the breakdown of the metastable state. After this first step, the precipitates evolve to dehydrated solid forms. Through the elaboration of computer programs in which the CaCO3(0) (aq) ion pair formation was considered, this model was compared to experimental data obtained by the critical pH method applied to synthetic solutions. In the present article, the same method was applied for four French mineral waters, at 25 degrees C under study. Three samples formed a precipitation during the sodium hydroxide addition. For these three cases, this precipitation began for the CaCO3 H2O saturation. The added volume of sodium hydroxide was more than what was required for neutralizing free CO2 initially in solution. These results indicate that during a spontaneous scaling phenomenon, the pH rises at the same time by loss of the initial free CO2 and of the one produced by the hydrogen carbonate ions decomposition. Then we calculated, at various temperatures for the three studied scaling waters: CO2 partial pressures and loss of total carbon corresponding to the solubility products of CaCO3 hydrated forms. The results show that the partial pressure monitoring of the carbon dioxide is important in managing the behavior of scaling waters.
Solovyev, Alexey; Mi, Qi; Tzen, Yi-Ting; Brienza, David; Vodovotz, Yoram
2013-01-01
Pressure ulcers are costly and life-threatening complications for people with spinal cord injury (SCI). People with SCI also exhibit differential blood flow properties in non-ulcerated skin. We hypothesized that a computer simulation of the pressure ulcer formation process, informed by data regarding skin blood flow and reactive hyperemia in response to pressure, could provide insights into the pathogenesis and effective treatment of post-SCI pressure ulcers. Agent-Based Models (ABM) are useful in settings such as pressure ulcers, in which spatial realism is important. Ordinary Differential Equation-based (ODE) models are useful when modeling physiological phenomena such as reactive hyperemia. Accordingly, we constructed a hybrid model that combines ODEs related to blood flow along with an ABM of skin injury, inflammation, and ulcer formation. The relationship between pressure and the course of ulcer formation, as well as several other important characteristic patterns of pressure ulcer formation, was demonstrated in this model. The ODE portion of this model was calibrated to data related to blood flow following experimental pressure responses in non-injured human subjects or to data from people with SCI. This model predicted a higher propensity to form ulcers in response to pressure in people with SCI vs. non-injured control subjects, and thus may serve as novel diagnostic platform for post-SCI ulcer formation. PMID:23696726
Early regimes of water capillary flow in slit silica nanochannels.
Oyarzua, Elton; Walther, Jens H; Mejía, Andrés; Zambrano, Harvey A
2015-06-14
Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes: an initial regime where the capillary force is balanced only by the inertial drag and characterized by a constant velocity and a plug flow profile. In this regime, the meniscus formation process plays a central role in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance has significant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscous forces dominate the capillary force balance is attained. Flow velocity profiles identify the passage from an inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicate a transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling rates computed for higher air pressures reveal a significant retarding effect of the gas displaced by the advancing meniscus.
Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu
2014-07-01
The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.
NASA Astrophysics Data System (ADS)
Youn, Dong Joon
This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach combining XFEM and random field is named as eXtended Random Finite Element Method (XRFEM). All the numerical analysis codes in this thesis are written in Fortran 2003, and these codes are applicable as a series of sub-modules within a suite of finite element codes developed by Smith and Griffiths (2004).
NASA Astrophysics Data System (ADS)
Rice, Amy K.; McCray, John E.; Singha, Kamini
2018-04-01
Methane leakage due to compromised hydrocarbon well integrity can lead to impaired groundwater quality. Here we use a three-dimensional, multiphase (vapor and aqueous), multicomponent (methane, water, salt), numerical model (TOUGH2 EOS7C) to investigate hydrogeological conditions that could result in groundwater contamination from natural gas wellbore leakage that migrates upward toward a freshwater aquifer. The conceptual model used for the simulations assumes methane leakage at 20-30 m below groundwater. We perform 180 simulations for a sensitivity analysis, examining (1) multiphase flow parameters related to storage, capillarity, and relative permeability, including porosity (ϕ), initial fluid-phase saturation (SL), and van Genuchten n and α, (2) geostatistical variations in intrinsic permeability (ki), and (3) methane source-zone pressure. Simulated mean ki values are 10-18 and 10-13 m2 with variances of 1 and 5 m4. Simulated source-zone pressures range from just over ambient hydrostatic pressure at the depth of leakage (100 kPa) to the maximum pressure that steel casings are commonly rated to withstand (20,340 kPa). ki, initial SL, ϕ, and van Genuchten's n and α were the most important parameters in determining the volume of methane reaching groundwater during a given time period. Multiphase parameterization of formations underlying freshwater aquifers and overlying hydrocarbon production zones is fundamental to assessing aquifer vulnerability to methane leakage.
Preliminary Assessment Of The Burning Dynamics Of Jp8 Droplets In Microgravity
NASA Technical Reports Server (NTRS)
Bae, J. H.; Avedisian, C. T.
2003-01-01
In this report we present new data for fuel droplet combustion in microgravity to examine the influence of ambient gas and fuel composition on flame structure and sooting dynamics for droplets with initial diameters in the range of 0.4mm to 0.5mm. The fuels are JP8 (a kerosene derivative) and nonane. The ambient gas is air and a mixture of 30% oxygen and 70% helium, the latter having been examined for burning under conditions where soot formation is minimal. Some data at elevated pressures are also reported. The burning process shows a nonlinear D2 progression which is independent of soot formation as burning in a helium inert showed the same nonlinear trend. Flames were proportionally farther from the droplet surface in helium than they were in air. A nondimensional parameter is presented that consolidates the three standoff distances for the droplet, flame and soot shell diameters within the initial diameter ranges examined.
Dynamical constraints on kimberlite volcanism
NASA Astrophysics Data System (ADS)
Sparks, R. S. J.; Baker, L.; Brown, R. J.; Field, M.; Schumacher, J.; Stripp, G.; Walters, A.
2006-07-01
Kimberlite volcanism involves the ascent of low viscosity (0.1 to 1 Pa s) and volatile-rich (CO 2 and H 2O) ultrabasic magmas from depths of 150 km or greater. Theoretical models and empirical evidence suggest ascent along narrow (˜1 m) dykes at speeds in the range > 4 to 20 m/s. With typical dyke breadths of 1 to 10 km, magma supply rates are estimated in the range 10 2 to 10 5 m 3/s with eruption durations of many hours to months. Based on observations, theory and experiments we propose a four-stage model for kimberlite eruptions to explain the main geological relationships of kimberlites. In stage I magma reaches the Earth's surface along fissures and erupts explosively due to their high volatile content. The early flow exit conditions are overpressured with choked flow conditions; an exit velocity of ˜200 m/s is estimated as representative. Explosive expansion and near surface overpressures initiate crater and pipe formation from the top downwards. In stage II under-pressures (the difference between the lithostatic pressure and pressure of the erupting mixture) develop within the evolving pipe causing rock bursting at depth, undermining overlying rocks and causing down-faulting and crater rim slumping. Rocks falling into the pipe interior are ejected by the strong explosive flows. Stage II is the erosive stage of pipe formation. As the pipe widens and deepens larger under-pressures develop enhancing pipe wall instability. A critical threshold is reached when the exit pressure falls to one atmosphere. As the pipe widens and deepens further the gas exit velocity declines and ejecta becomes trapped within the pipe, initiating stage III. A fluidised bed of pyroclasts develops within the pipe as the eruption wanes to form typical massive volcaniclastic kimberlite. Marginal breccias represent the transition between stages II and III. After the eruption stage IV is a period of hydrothermal metamorphism (principally serpentinisation) and alteration as the pipe cools and meteoric waters infiltrate the hot pipe fill. Following an eruption an open crater can be filled by kimberlite- and country-rock derived sediments, forming the crater-facies.
Application of MODFLOW for oil reservoir simulation during the Deepwater Horizon Crisis
Hsieh, Paul A.
2011-01-01
When the Macondo well was shut in on July 15, 2010, the shut-in pressure recovered to a level that indicated the possibility of oil leakage out of the well casing into the surrounding formation. Such a leak could initiate a hydraulic fracture that might eventually breach the seafloor, resulting in renewed and uncontrolled oil flow into the Gulf of Mexico. To help evaluate whether or not to reopen the well, a MODFLOW model was constructed within 24 h after shut in to analyze the shut-in pressure. The model showed that the shut-in pressure can be explained by a reasonable scenario in which the well did not leak after shut in. The rapid response provided a scientific analysis for the decision to keep the well shut, thus ending the oil spill resulting from the Deepwater Horizon blow out.
Tightness of Salt Rocks and Fluid Percolation
NASA Astrophysics Data System (ADS)
Lüdeling, C.; Minkley, W.; Brückner, D.
2016-12-01
Salt formations are used for storage of oil and gas and as waste repositiories because of their excellent barrier properties. We summarise the current knowledge regarding fluid tightness of saliferous rocks, in particular rock salt. Laboratory results, in-situ observations and natural analogues, as well as theoretical and numerical investigations, indicate that pressure-driven percolation is the most important mechanism for fluid transport: If the fluid pressure exceeds the percolation threshold, i.e. the minor principal stress, the fluid can open up grain boundaries, create connected flow paths and initiate directed migration in the direction of major principal stress. Hence, this mechanism provides the main failure mode for rock salt barriers, where integrity can be lost if the minor principal stress is lowered, e.g. due to excavations or thermomechanical uplift. We present new laboratory experiments showing that there is no fluid permeation below the percolation threshold also at high temperatures and pressures, contrary to recent claims in the literature.
Sorptivity of rocks and soils of the van Genuchten-Mualem type
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zimmerman, R.W.; Bodvarsson, G.S.
1991-06-01
One hydrological process that will have great relevance to the performance of the proposed underground radioactive waste repository at Yucca Mountain, Nevada, is that of the absorption of water from a water-filled fracture into the adjacent unsaturated rock formation. The rate at which water is imbibed by a rock depends on the hydrological properties of the rock and on the initial saturation (or initial capillary suction) of the formation. The hydrological properties that affect imbibition are the relative permeability function and the capillary pressure function. These functions are often collectively referred to as the `characteristic functions` of the porous medium.more » For one-dimensional absorption, it can be shown that, regardless of the details of the characteristic functions, the total amount of water imbibed by the formation, per unit surface area, will be proportional to the square root of the elapsed time. Hence the ability of a rock or soil to imbibe water can be quantified by a parameter known as the sorptivity S, which is defined such that the cumulative volumetric liquid influx per unit area is given by Q = S{radical}t. The paper discusses the simplification of these characteristic functions of porous medium.« less
NASA Astrophysics Data System (ADS)
Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.
2017-12-01
Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.
NASA Astrophysics Data System (ADS)
O'Rourke, J. G.; Stevenson, D. J.
2015-12-01
Abundances of siderophile elements in the primitive mantle constrain the conditions of Earth's core/mantle differentiation. Core growth occurred as Earth accreted from collisions between planetesimals and larger embryos of unknown original provenance, so geochemistry is directly related to the overall dynamics of Solar System formation. Recent studies claim that only certain conditions of equilibration (pressure, temperature, and oxygen fugacity) during core formation can reproduce the available data. Typical analyses, however, only consider the effects of varying a few out of tens of free parameters in continuous core formation models. Here we describe the Markov chain Monte Carlo method, which simultaneously incorporates the large uncertainties on Earth's composition and the parameterizations that describe elemental partitioning between metal and silicate. This Bayesian technique is vastly more computationally efficient than a simple grid search and is well suited to models of planetary accretion that involve a plethora of variables. In contrast to previous work, we find that analyses of siderophile elements alone cannot yield a unique scenario for Earth's accretion. Our models predict a wide range of possible light element contents for the core, encompassing all combinations permitted by seismology and mineral physics. Specifically, we are agnostic between silicon and oxygen as the dominant light element, and the addition of carbon or sulfur is also permissible but not well constrained. Redox conditions may have remained roughly constant during Earth's accretion or relatively oxygen-rich material could have been incorporated before reduced embryos. Pressures and temperatures of equilibration, likewise, may only increase slowly throughout accretion. Therefore, we do not necessarily expect a thick (>500 km), compositionally stratified layer that is stable against convection to develop at the top of the core of Earth (or, by analogy, Venus). A thinner stable layer might inhibit the initialization of the dynamo.
Endothelial protection: avoiding air bubble formation at the phacoemulsification tip.
Kim, Eung Kweon; Cristol, Stephen M; Kang, Shin J; Edelhauser, Henry F; Yeon, Dong-Soo; Lee, Jae Bum
2002-03-01
To investigate the conditions under which bubbles form during phacoemulsification. Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea. In the first part of the study, the partial pressure of oxygen (pO(2)) was used as a surrogate measure for the partial pressure of air. Irrigation solutions packaged in glass and plastic containers were studied. A directly vented glass bottle was also tested. The pO(2) of the various irrigation solutions was measured as the containers were emptied. In the second part, phacoemulsification procedures were performed in rabbit eyes with different power settings and different irrigation solutions. Intracameral bubble formation during the procedure was recorded. Following the phacoemulsification procedures, the corneas were stained for F-actin and examined for endothelial injury. The initial pO(2) in irrigation solutions packaged in glass bottles was about half that at atmospheric levels; in solutions packaged in plastic, it was at atmospheric levels. As irrigation solutions were drained from the container, the pO(2) of the solution tended to rise toward atmospheric levels. The rate of pO(2) increase was markedly reduced by using a directly vented glass bottle. In the phacoemulsification procedures, bubble formation was most likely to occur with higher pO(2) and higher power settings. Observation of bubbles by the surgeon was highly correlated with endothelial damage. Keeping the pO(2) low reduced the risk of endothelial damage, especially at higher phacoemulsification powers. The packaging of irrigation solutions was the most important factor in controlling the initial pO(2) of the solution. The pO(2) can be minimized throughout a phacoemulsification procedure by using a directly vented glass bottle.
Kinetic analysis of volatile formation in milk subjected to pressure-assisted thermal treatments.
Vazquez-Landaverde, P A; Qian, M C; Torres, J A
2007-09-01
Volatile formation in milk subjected to pressure-assisted thermal processing (PATP) was investigated from a reaction kinetic analysis point of view to illustrate the advantages of this technology. The concentration of 27 volatiles of different chemical class in milk subjected to pressure, temperature, and time treatments was fitted to zero-, 1st-, and 2nd-order chemical reaction models. Temperature and pressure effects on rate constants were analyzed to obtain activation energy (E(a)) and activation volume (deltaV*) values. Hexanal, heptanal, octanal, nonanal, and decanal followed 1st-order kinetics with rate constants characterized by E(a) values decreasing with pressure reflecting negative deltaV* values. Formation of 2-methylpropanal, 2,3-butanedione, and hydrogen sulfide followed zero-order kinetics with rate constants increasing with temperature but with unclear pressure effects. E(a) values for 2-methylpropanal and 2,3-butanedione increased with pressure, that is, deltaV* > 0, whereas values for hydrogen sulfide remained constant, that is, deltaV* = 0. The concentration of all other volatiles, including methanethiol, remained unchanged in pressure-treated samples, suggesting large negative deltaV* values. The concentration of methyl ketones, including 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, 2-decanone, and 2-undecanone, was independent of pressure and pressure-holding time. PATP promoted the formation of few compounds, had no effect on some, and inhibited the formation of volatiles reported to be factors of the consumer rejection of "cooked" milk flavor. The kinetic behavior observed suggested that new reaction formation mechanisms were not likely involved in volatile formation in PATP milk. The application of the Le Chatelier principle frequently used to explain the high quality of pressure-treated foods, often with no supporting experimental evidence, was not necessary.
NASA Technical Reports Server (NTRS)
Dietz, Nikolaus; Woods, Vincent; McCall, Sonya D.; Bachmann, Klaus J.
2003-01-01
Understanding the kinetics of nucleation and coalescence of heteroepitaxial thin films is a crucial step in controlling a chemical vapor deposition process, since it defines the perfection of the heteroepitaxial film both in terms of extended defect formation and chemical integrity of the interface. The initial nucleation process also defines the film quality during the later stages of film growth. The growth of emerging new materials heterostructures such as InN or In-rich Ga(x)In(1-x)N require deposition methods operating at higher vapor densities due to the high thermal decomposition pressure in these materials. High nitrogen pressure has been demonstrated to suppress thermal decomposition of InN, but has not been applied yet in chemical vapor deposition or etching experiments. Because of the difficulty with maintaining stochiometry at elevated temperature, current knowledge regarding thermodynamic data for InN, e.g., its melting point, temperature-dependent heat capacity, heat and entropy of formation are known with far less accuracy than for InP, InAs and InSb. Also, no information exists regarding the partial pressures of nitrogen and phosphorus along the liquidus surfaces of mixed-anion alloys of InN, of which the InN(x)P(1-x) system is the most interesting option. A miscibility gap is expected for InN(x)P(1-x) pseudobinary solidus compositions, but its extent is not established at this point by experimental studies under near equilibrium conditions. The extension of chemical vapor deposition to elevated pressure is also necessary for retaining stoichiometric single phase surface composition for materials that are characterized by large thermal decomposition pressures at optimum processing temperatures.
Microscopic Analysis of Bacterial Motility at High Pressure
Nishiyama, Masayoshi; Sowa, Yoshiyuki
2012-01-01
The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943
The Effect of Boron on the Low Cycle Fatigue Behavior of Disk Alloy KM4
NASA Technical Reports Server (NTRS)
Gabb, Timothy; Gayda, John; Sweeney, Joseph
2000-01-01
The durability of powder metallurgy nickel base superalloys employed as compressor and turbine disks is often limited by low cycle fatigue (LCF) crack initiation and crack growth from highly stressed surface locations (corners, holes, etc.). Crack growth induced by dwells at high stresses during aerospace engine operation can be particularly severe. Supersolvus solution heat treatments can be used to produce coarse grain sizes approaching ASTM 6 for improved resistance to dwell fatigue crack growth. However, the coarse grain sizes reduce yield strength, which can lower LCF initiation life. These high temperature heat treatments also can encourage pores to form. In the advanced General Electric disk superalloy KM4, such pores can initiate fatigue cracks that limit LCF initiation life. Hot isostatic pressing (HIP) during the supersolvus solution heat treatment has been shown to improve LCF initiation life in KM4, as the HIP pressure minimizes formation of the pores. Reduction of boron levels in KM4 has also been shown to increase LCF initiation life after a conventional supersolvus heat treatment, again possibly due to effects on the formation tendencies of these pores. However, the effects of reduced boron levels on microstructure, pore characteristics, and LCF failure modes in KM4 still need to be fully quantified. The objective of this study was to determine the effect of boron level on the microstructure, porosity, LCF behavior, and failure modes of supersolvus heat treated KM4.
Chan Hwang, Gil; Joo Shin, Tae; Blom, Douglas A.; Vogt, Thomas; Lee, Yongjae
2015-01-01
Systematic studies of pressure-induced amorphization of natrolites (PIA) containing monovalent extra-framework cations (EFC) Li+, Na+, K+, Rb+, Cs+ allow us to assess the role of two different EFC-H2O configurations within the pores of a zeolite: one arrangement has H2O molecules (NATI) and the other the EFC (NATII) in closer proximity to the aluminosilicate framework. We show that NATI materials have a lower onset pressure of PIA than the NATII materials containing Rb and Cs as EFC. The onset pressure of amorphization (PA) of NATII materials increases linearly with the size of the EFC, whereas their initial bulk moduli (P1 phase) decrease linearly. Only Cs- and Rb-NAT reveal a phase separation into a dense form (P2 phase) under pressure. High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging shows that after recovery from pressures near 25 and 20 GPa long-range ordered Rb-Rb and Cs-Cs correlations continue to be present over length scales up to 100 nm while short-range ordering of the aluminosilicate framework is significantly reduced—this opens a new way to form anti-glass structures. PMID:26455345
NASA Astrophysics Data System (ADS)
Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang
2018-06-01
Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.
Guan, Jiwen; Daljeet, Roshan; Kieran, Arielle; Song, Yang
2018-06-06
Conjugated polymers are prominent semiconductors that have unique electric conductivity and photoluminescence. Synthesis of conjugated polymers under high pressure is extremely appealing because it does not require a catalyst or solvent used in conventional chemical methods. Transformation of acetylene and many of its derivatives to conjugated polymers using high pressure has been successfully achieved, but not with dimethyl acetylene (DMA). In this work, we present a high-pressure study on solid DMA using a diamond anvil cell up to 24.4 GPa at room temperature characterized by in situ Fourier transform infrared and Raman spectroscopy. Our results show that solid DMA exists in a phase II crystal structure and is stable up to 12 GPa. Above this pressure, amorphization was initiated and the process was completed at 24.4 GPa. The expected polymeric transformation was not evident upon compression, but only observed upon decompression from a threshold compression pressure (e.g. 14.4 GPa). In situ florescence measurements suggest excimer formation via crystal defects, which induces the chemical reactions. The vibrational spectral analysis suggests the products contain the amorphous poly(DMA) and possibly additional amorphous hydrogenated carbon material.
Chan Hwang, Gil; Joo Shin, Tae; Blom, Douglas A; Vogt, Thomas; Lee, Yongjae
2015-10-12
Systematic studies of pressure-induced amorphization of natrolites (PIA) containing monovalent extra-framework cations (EFC) Li(+), Na(+), K(+), Rb(+), Cs(+) allow us to assess the role of two different EFC-H2O configurations within the pores of a zeolite: one arrangement has H2O molecules (NATI) and the other the EFC (NATII) in closer proximity to the aluminosilicate framework. We show that NATI materials have a lower onset pressure of PIA than the NATII materials containing Rb and Cs as EFC. The onset pressure of amorphization (PA) of NATII materials increases linearly with the size of the EFC, whereas their initial bulk moduli (P1 phase) decrease linearly. Only Cs- and Rb-NAT reveal a phase separation into a dense form (P2 phase) under pressure. High-Angle Annular Dark Field Scanning Transmission Electron Microscopy (HAADF-STEM) imaging shows that after recovery from pressures near 25 and 20 GPa long-range ordered Rb-Rb and Cs-Cs correlations continue to be present over length scales up to 100 nm while short-range ordering of the aluminosilicate framework is significantly reduced-this opens a new way to form anti-glass structures.
Solid-gas phase equilibria and thermodynamic properties of cadmium selenide.
NASA Technical Reports Server (NTRS)
Sigai, A. G.; Wiedemeier, H.
1972-01-01
Accurate vapor pressures are determined through direct weight loss measurements using the Knudsen effusion technique. The experimental data are evaluated by establishing the mode of vaporization and determining the heat capacity of cadmium selenide at elevated temperatures. Additional information is obtained through a second- and third-law evaluation of data, namely, the heat of formation and the absolute entropy of cadmium selenide. A preferential loss of selenium during the initial heating of CdSe is observed, which leads to a deviation in stoichiometry.
Initial Transient in Zn-doped InSb Grown in Microgravity
NASA Technical Reports Server (NTRS)
Ostrogorsky, A G.; Marin, C.; Volz, M.; Duffar, T.
2009-01-01
Three Zn-doped InSb crystals were directionally solidified under microgravity conditions at the International Space Station (ISS) Alpha. The distribution of the Zn was measured using SIMS. A short diffusion-controlled transient, typical for systems with k greater than 1 was demonstrated. Static pressure of approximately 4000 N/m2 was imposed on the melt, to prevent bubble formation and dewetting. Still, partial de-wetting has occurred in one experiment, and apparently has disturbed the diffusive transport of Zn in the melt.
Evidence for Central Venous Pressure Resetting During Initial Exposure to Microgravity
2001-12-01
to 10° HDT. During each experimental condition, water and food were provided ad libitum and intake amounts were recorded. A standard monkey diet ...biscuit (LabDiet) of ;3.5 g with a caloric density equal to 4 kcal/g (69% carbohy- drate, 13% fat, 18% protein) was used as the primary food source...effect of Dextran on water filtration from renal tubules to tubular capillar- ies, consequently reducing urine formation in a hypo - volemic state of HDT
Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M. Suleman; Krammer, Gernot
2011-01-01
Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93–106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100–200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and newly formed cake during filtration prevails. The patch size analysis and fractal analysis reveal that residual cake grow in size (latterly) following regeneration initially on the base with edges smearing out, however, the cake heights are not leveled off. Fractal dimension of cake patches boundary falls in the range of 1–1.4 and depends on vertical position as well as time of filtration. Cake height measurements with Polyimide (PI) needle felts were hampered on account of its photosensitive nature. PMID:24415801
Borgquist, Ola; Ingemansson, Richard; Malmsjö, Malin
2011-02-01
Negative-pressure wound therapy promotes healing by drainage of excessive fluid and debris and by mechanical deformation of the wound. The most commonly used negative pressure, -125 mmHg, may cause pain and ischemia, and the pressure often needs to be reduced. The aim of the present study was to examine wound contraction and fluid removal at different levels of negative pressure. Peripheral wounds were created in 70-kg pigs. The immediate effects of negative-pressure wound therapy (-10 to -175 mmHg) on wound contraction and fluid removal were studied in eight pigs. The long-term effects on wound contraction were studied in eight additional pigs during 72 hours of negative-pressure wound therapy at -75 mmHg. Wound contraction and fluid removal increased gradually with increasing levels of negative pressure until reaching a steady state. Maximum wound contraction was observed at -75 mmHg. When negative-pressure wound therapy was discontinued, after 72 hours of therapy, the wound surface area was smaller than before therapy. Maximum wound fluid removal was observed at -125 mmHg. Negative-pressure wound therapy facilitates drainage of wound fluid and exudates and results in mechanical deformation of the wound edge tissue, which is known to stimulate granulation tissue formation. Maximum wound contraction is achieved already at -75 mmHg, and this may be a suitable pressure for most wounds. In wounds with large volumes of exudate, higher pressure levels may be needed for the initial treatment period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baidakov, Vladimir G., E-mail: baidakov@itp.uran.ru; Tipeev, Azat O.
The method of molecular dynamics simulation has been used to investigate the phase decay of a metastable Lennard-Jones face-centered cubic crystal at positive and negative pressures. It is shown that at high degrees of metastability, crystal decay proceeds through the spontaneous formation and growth of new-phase nuclei. It has been found that there exists a certain boundary temperature. Below this temperature, the crystal phase disintegrates as the result of formation of voids, and above, as a result of formation of liquid droplets. The boundary temperature corresponds to the temperature of cessation of a crystal–liquid phase equilibrium when the melting linemore » comes in contact with the spinodal of the stretched liquid. The results of the simulations are interpreted in the framework of classical nucleation theory. The thermodynamics of phase transitions in solids has been examined with allowance for the elastic energy of stresses arising owing to the difference in the densities of the initial and the forming phases. As a result of the action of elastic forces, at negative pressures, the boundary of the limiting superheating (stretching) of a crystal approaches the spinodal, on which the isothermal bulk modulus of dilatation becomes equal to zero. At the boundary of the limiting superheating (stretching), the shape of liquid droplets and voids is close to the spherical one.« less
Restoration of the Potosi Dynamic Model 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adushita, Yasmin; Leetaru, Hannes
2014-09-30
In topical Report DOE/FE0002068-1 [2] technical performance evaluations on the Cambrian Potosi Formation were performed through reservoir modeling. The data included formation tops from mud logs, well logs from the VW1 and the CCS1 wells, structural and stratigraphic formation from three dimensional (3D) seismic data, and field data from several waste water injection wells for Potosi Formation. Intention was for two million tons per annum (MTPA) of CO2 to be injected for 20 years. In this Task the 2010 Potosi heterogeneous model (referred to as the "Potosi Dynamic Model 2010" in this report) was re-run using a new injection scenario;more » 3.2 MTPA for 30 years. The extent of the Potosi Dynamic Model 2010, however, appeared too small for the new injection target. It was not sufficiently large enough to accommodate the evolution of the plume. Also, it might have overestimated the injection capacity by enhancing too much the pressure relief due to the relatively close proximity between the injector and the infinite acting boundaries. The new model, Potosi Dynamic Model 2013a, was built by extending the Potosi Dynamic Model 2010 grid to 30 miles x 30 miles (48 km by 48 km), while preserving all property modeling workflows and layering. This model was retained as the base case. Potosi Dynamic Model 2013.a gives an average CO2 injection rate of 1.4 MTPA and cumulative injection of 43 Mt in 30 years, which corresponds to 45% of the injection target. This implies that according to this preliminary model, a minimum of three (3) wells could be required to achieve the injection target. The injectivity evaluation of the Potosi formation will be revisited in topical Report 15 during which more data will be integrated in the modeling exercise. A vertical flow performance evaluation could be considered for the succeeding task to determine the appropriate tubing size, the required injection tubing head pressure (THP) and to investigate whether the corresponding well injection rate falls within the tubing erosional velocity limit. After 30 years, the plume extends 15 miles (24 km) in E-W and 14 miles (22 km) in N-S directions. After injection is completed, the plume continues to migrate laterally, mainly driven by the remaining pressure gradient. After 100 years post-injection, the plume extends 17 miles (27 km) in E-W and 15 miles (24 km) in N-S directions. The increase of reservoir pressure at the end of injection is approximately 370 psia around the injector and gradually decreases away from the well. The reservoir pressure increase is less than 30 psia beyond 14 miles (22 km) away from injector. The initial reservoir pressure is restored after approximately 20 years post-injection. This result, however, is associated with uncertainties on the boundary conditions, and a sensitivity analysis could be considered for the succeeding tasks. It is important to remember that the respective plume extent and areal pressure increase corresponds to an injection of 43 Mt CO2. Should the targeted cumulative injection of 96 Mt be achieved; a much larger plume extent and areal pressure increase could be expected. Re-evaluating the permeability modeling, vugs and heterogeneity distributions, and relative permeability input could be considered for the succeeding Potosi formation evaluations. A simulation using several injectors could also be considered to determine the required number of wells to achieve the injection target while taking into account the pressure interference.« less
Phase development in the Bi 2Sr 2CaCu 2O y system . Effects of oxygen pressure
NASA Astrophysics Data System (ADS)
List, F. A.; Hsu, H.; Cavin, O. B.; Porter, W. D.; Hubbard, C. R.; Kroeger, D. M.
1992-11-01
Studies have been undertaken using thermal analysis, in conjunction with high-temperature and room temperature X-ray diffraction, fraction, to elucidate phase relationships during thermal processing of thick films of initially phase pure Bi 2Sr 2CaCu 2O y (2212) on silver substrates in various oxygen-containing atmospheres (0.001 to 100% O 2). Exothermic events on cooling at 10°C/min from a partially liquid state vary with oxygen partial pressure and can be grouped into three sets (I-III). Set I is prominent for 0.001% and 0.1% O 2 in the range of 740-775°C and is believed to be associated with the crystallization of a Cu-free ∼ Bi 5Sr 3Ca 1 oxide phase. Set II results from the crystallization of 2212; it is observed for p(O 2)≥1.0% in the temperature range 800-870°C. Set III appears for 21% and 100% O 2 in the temperature range 880-910°C, and its origin is not clear from the results of this study. Subsequent room temperature X-ray diffraction from these samples suggests that in general high oxygen partial pressures (100% O 2) tend to favor the formation of Bi 2Sr 2CuO 6 (2201), whereas low oxygen partial pressures (0.001-0.1% O 2) lead to the formation of a Cu-free, Bi-Sr-Ca oxide phase. The 2212 phase forms at this cooling rate predominantly for intermediate oxygen partial pressures (7.6-21% O 2). High-temperature X-ray diffraction during cooling (2°C/h) from the partially liquid state shows a pronounced dependence of the order of evolution of crystalline 2212 and 2201 phases on p(O 2). For an oxygen partial pressure of 1.0% the formation of 2212 precedes that of 2201, whereas for 0.01% O 2 2201 crystallizes at a higher temperature than 2212. The implications of these results pertaining to thermal processing of thick 2212 films are discussed.
A Local Laboratory for Studying Positive Feedback from Supermassive Black Holes
NASA Astrophysics Data System (ADS)
Croft, Steve
2016-10-01
AGN feedback is a critical regulator of galaxy growth. As well as curtailing star formation in diffuse, hot gas, it is increasingly understood to sometimes enhance star formation in the clumpy ISM through shock-induced collapse of clouds. Simulations have shown that such positive feedback may play a significant role in determining the stellar populations of galaxies. Minkowsi's Object (MO) provides an excellent local laboratory to probe this poorly-studied process in detail. The detection of a Type II supernova in MO (unexpected given the low mass of MO) suggests that jet-induced star formation may overproduce massive stars, and that models of the initial mass function in such systems may need to be revised. Recent results also suggest that star formation efficiency is enhanced in MO. Using WFC3, we will obtain morphologies, SEDs, H-a luminosities, equivalent widths, sizes, and population synthesis models of star forming regions across MO in order to address these questions, critical for understanding not just this single object, but the general process: 1. Does jet induced star formation change the luminosities and initial mass functions of star clusters? 2. What do the age gradients of the star clusters tell us about the process of conversion of gas (HI, CO) into stars as the radio jet progressed through the parent cloud? Does this match numerical simulations? 3. By using observations to refine simulations, what can we learn about intrinsic properties of these kinds of radio jets, such as propagation speed, age, pressure and jet energy flux?
NASA Astrophysics Data System (ADS)
Schneider, Jens; Holzer, Frank; Kraus, Markus; Kopinke, Frank-Dieter; Roland, Ulf
2013-02-01
A new type of water dissociation at ambient pressure initiated by the irradiation of aqueous electrolytes using an electromagnetic field with a frequency of 13.56 MHz is described in this study. A special reactor design allows the use of ex situ electrodes to form in situ electrical discharges in water vapour bubbles. The observed formation of molecular hydrogen (H2) and oxygen (O2) combined with the emission of light (‘burning water’ phenomenon) originates from a non-thermal plasma in water vapour bubbles. The influences of type of electrolyte, its concentration, pH value and external RF voltage on the gas formation rate as well as on the gas composition are presented.
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2002-04-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamic calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, despite ample evidence for the importance of magnetic support of precollapse clouds. We present here the first numerical hydrodynamic survey of the collapse and fragmentation of initially magnetically supported clouds that takes into account several magnetic field effects in an approximate manner. The models are calculated with a three-dimensional, finite differences code that solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of the order of 4) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars.
Stability of a horizontal well and hydraulic fracture initiation in rocks of the bazhenov formation
NASA Astrophysics Data System (ADS)
Stefanov, Yu. P.; Bakeev, R. A.; Myasnikov, A. V.; Akhtyamova, A. I.; Romanov, A. S.
2017-12-01
Three-dimensional numerical modeling of the formation of the stress-strain state in the vicinity of a horizontal well in weakened rocks of the Bazhenov formation is carried out. The influence of the well orientation and plastic deformation on the stress-strain state and the possibility of hydraulic fracturing are considered. It is shown that the deviation of the well from the direction of maximum compression leads to an increase in plastic deformation and a discrepancy between tangential stresses around the well bore and principle stresses in the surrounding medium. In an elastoplastic medium, an increase in the pressure in the well can lead to a large-scale development of plastic deformation, at which no tensile stresses necessary for hydraulic fracturing according to the classical scheme arise. In this case, there occur plastic expansion and fracture of the well.
Zimmermann, Kathryn; Jariyasopit, Narumol; Massey Simonich, Staci L.; Tao, Shu; Atkinson, Roger; Arey, Janet
2014-01-01
Reactions of ambient particles collected from four sites within the Los Angeles, CA air basin and Beijing, China with a mixture of N2O5, NO2, and NO3 radicals were studied in an environmental chamber at ambient pressure and temperature. Exposures in the chamber system resulted in the degradation of particle-bound PAHs and formation of molecular weight (mw) 247 nitropyrenes (NPYs) and nitrofluoranthenes (NFLs), mw 273 nitrotriphenylenes (NTPs), nitrobenz[a]anthracenes (NBaAs), and nitrochrysene (NCHR), and mw 297 nitrobenzo[a]pyrene (NBaP). The distinct isomer distributions resulting from exposure of filter-adsorbed deuterated fluoranthene to N2O5/NO3/NO2 and that collected from the chamber gas-phase suggest that formation of NFLs in ambient particles did not occur by NO3 radical-initiated reaction, but from reaction of N2O5, presumably subsequent to its surface adsorption. Accordingly, isomers known to result from gas-phase radical-initiated reactions of parent PAHs, such as 2-NFL and 2- and 4-NPY, were not enhanced from the exposure of ambient particulate matter to N2O5/NO3/NO2. The reactivity of ambient particles toward nitration by N2O5/NO3/NO2, defined by relative 1-NPY formation, varied significantly, with the relative amounts of freshly emitted particles versus aged particles (particles that had undergone atmospheric chemical processing) affecting the reactivity of particle-bound PAHs toward heterogeneous nitration. Analyses of unexposed ambient samples suggested that, in nighttime samples where NO3 radical-initiated chemistry had occurred, heterogeneous formation of 1-NPY on ambient particles may have contributed to the ambient 1-NPY concentrations at downwind receptor sites. These results, together with observations that 2-NFL is consistently the dominant particle-bound nitro-PAH measured in ambient atmospheres, suggest that for PAHs that exist in both the gas- and particle-phase, the heterogeneous formation of particle-bound nitro-PAHs is a minor formation route compared to gas-phase formation. PMID:23865889
High-Sensitivity, Broad-Range Vacuum Gauge Using Nanotubes for Micromachined Cavities
NASA Technical Reports Server (NTRS)
Manohara, Harish; Kaul, Anupama B.
2011-01-01
A broad-range vacuum gauge has been created by suspending a single-walled carbon nanotube (SWNT) (metallic or semiconducting) in a Schottky diode format or in a bridge conductor format, between two electrically charged mesas. SWNTs are highly sensitive to molecular collisions because of their extremely small diameters in the range of 1 to 3 nanometers. The measurement parameter will be the change in conductivity of SWNT due to decreasing rate of molecular collisions as the pressure inside a chamber decreases. The rate of heat removal approaches a saturation limit as the mean free path (m.f.p.) lengths of molecules increase due to decreasing pressure. Only those sensing elements that have a long relaxation time can produce a measureable response when m.f.p. of molecules increases (or time between two consecutive collisions increases). A suspended SWNT offers such a capability because of its one-dimensional nature and ultrasmall diameter. In the initial approach, similar architecture was used as that of a SWNT-Schottky diode that has been developed at JPL, and has its changing conductivity measured as the test chamber is pumped down from atmospheric pressure to high vacuum (10(exp -7) Torr). Continuous response of decreasing conductivity has been measured as a function of decreasing pressure (SWNT is a negative thermal coefficient material) from atmosphere to less than 10(exp -6) Torr. A measureable current change in the hundreds of nA range has been recorded in the 10(exp -6) Torr regime.
Factors that Influence RF Breakdown in Antenna Systems
NASA Astrophysics Data System (ADS)
Caughman, J. B. O.; Baity, F. W.; Rasmussen, D. A.; Aghazarian, M.; Castano Giraldo, C. H.; Ruzic, David
2007-11-01
One of the main power-limiting factors in antenna systems is the maximum voltage that the antenna or vacuum transmission line can sustain before breaking down. The factors that influence RF breakdown are being studied in a resonant 1/4-wavelength section of vacuum transmission line terminated with an open circuit electrode structure. Breakdown can be initiated via electron emission by high electric fields and by plasma formation in the structure, depending on the gas pressure. Recent experiments have shown that a 1 kG magnetic field can influence plasma formation at pressures as low as 8x10-5 Torr at moderate voltage levels (<5 kV). Ultraviolet light, with energies near the work function of the electrode material, can induce a multipactor discharge and limit power transmission. Details of these experimental results, including the effect of electrode materials (Ni and Cu), will be presented. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725. Work supported by USDOE with grant DE-FG02-04ER54765
Complex igneous processes and the formation of the primitive lunar crustal rocks
NASA Technical Reports Server (NTRS)
Longhi, J.; Boudreau, A. E.
1979-01-01
Crystallization of a magma ocean with initial chondritic Ca/Al and REE ratios such as proposed by Taylor and Bence (TB, 1975), is capable of producing the suite of primitive crustal rocks if the magma ocean underwent locally extensive assimilation and mixing in its upper layers as preliminary steps in formation of an anorthositic crust. Lunar anorthosites were the earliest permanent crustal rocks to form the result of multiple cycles of suspension and assimilation of plagioclase in liquids fractionating olivine and pyroxene. There may be two series of Mg-rich cumulate rocks: one which developed as a result of the equilibration of anorthositic crust with the magma ocean; the other which formed in the later stages of the magma ocean during an epoch of magma mixing and ilmenite crystallization. This second series may be related to KREEP genesis. It is noted that crystallization of the magma ocean had two components: a low pressure component which produced a highly fractionated and heterogeneous crust growing downward and a high pressure component which filled in the ocean from the bottom up, mostly with olivine and low-Ca pyroxene.
Numerical study of ambient pressure for laser-induced bubble near a rigid boundary
NASA Astrophysics Data System (ADS)
Li, BeiBei; Zhang, HongChao; Han, Bing; Lu, Jian
2012-07-01
The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.
High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
2017-01-24
In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A = Eu, Dy; B = Ti, Zr) up to ~50 GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B = Ti and ~16 GPa B = Zr. But, the A-site cation affected the kinetics of the phase transformation,more » with the transformation for compositions with the smaller ionic radii, i.e., A = Dy, proceeding faster than those with a larger ionic radii, i.e., A = Eu. Our results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B = Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A = Eu than A = Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less
High-pressure behavior of A 2 B 2 O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye
2017-01-28
In situ high-pressure X-ray diffraction and Raman spectroscopy were used to determine the influence of composition on the high-pressure behavior of A 2B 2O 7 pyrochlore (A=Eu, Dy; B=Ti, Zr) up to ~50GPa. Based on X-ray diffraction results, all compositions transformed to the high-pressure cotunnite structure. The B-site cation species had a larger effect on the transition pressure than the A-site cation species, with the onset of the phase transformation occurring at ~41 GPa for B=Ti and ~16 GPa B=Zr. However, the A-site cation affected the kinetics of the phase transformation, with the transformation for compositions with the smaller ionicmore » radii, i.e., A=Dy, proceeding faster than those with a larger ionic radii, i.e., A=Eu. These results were consistent with previous work in which the radius-ratio of the A- and B-site cations determined the energetics of disordering, and compositions with more similarly sized A- and B-site cations had a lower defect formation energy. Raman spectra revealed differences in the degree of short-range order of the different compositions. Due to the large phase fraction of cotunnite at high pressure for B=Zr compositions, Raman modes for cotunnite could be observed, with more modes recorded for A=Eu than A=Dy. These additional modes are attributed to increased short-to-medium range ordering in the initially pyrochlore structured Eu 2Zr 2O 7 as compared with the initially defect-fluorite structured Dy 2Zr 2O 7.« less
Visualization and measurement of CO2 flooding in an artificial porous structure using micromodels
NASA Astrophysics Data System (ADS)
Park, Bogyeong; Wang, Sookyun; Um, Jeong-Gi; Lee, Minhee; Kim, Seon-Ok
2015-04-01
Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 1 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.
Visualization of CO2 flooding in an artificial porous structure using micromodels
NASA Astrophysics Data System (ADS)
Park, B.; Wang, S.; Lee, M.; Um, J. G.
2014-12-01
Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 0.5 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.
NASA Astrophysics Data System (ADS)
Kluge, Tobias; John, Cédric M.; Jourdan, Anne-Lise; Davis, Simon; Crawshaw, John
2015-05-01
Many fields of Earth sciences benefit from the knowledge of mineral formation temperatures. For example, carbonates are extensively used for reconstruction of the Earth's past climatic variations by determining ocean, lake, and soil paleotemperatures. Furthermore, diagenetic minerals and their formation or alteration temperature may provide information about the burial history of important geological units and can have practical applications, for instance, for reconstructing the geochemical and thermal histories of hydrocarbon reservoirs. Carbonate clumped isotope thermometry is a relatively new technique that can provide the formation temperature of carbonate minerals without requiring a priori knowledge of the isotopic composition of the initial solution. It is based on the temperature-dependent abundance of the rare 13C-18O bonds in carbonate minerals, specified as a Δ47 value. The clumped isotope thermometer has been calibrated experimentally from 1 °C to 70 °C. However, higher temperatures that are relevant to geological processes have so far not been directly calibrated in the laboratory. In order to close this calibration gap and to provide a robust basis for the application of clumped isotopes to high-temperature geological processes we precipitated CaCO3 (mainly calcite) in the laboratory between 23 and 250 °C. We used two different precipitation techniques: first, minerals were precipitated from a CaCO3 supersaturated solution at atmospheric pressure (23-91 °C), and, second, from a solution resulting from the mixing of CaCl2 and NaHCO3 in a pressurized reaction vessel at a pressure of up to 80 bar (25-250 °C).
NASA Astrophysics Data System (ADS)
Gonzalez-Nicolas, A.; Cihan, A.; Birkholzer, J. T.; Petrusak, R.; Zhou, Q.; Riestenberg, D. E.; Trautz, R. C.; Godec, M.
2016-12-01
Industrial-scale injection of CO2 into the subsurface can cause reservoir pressure increases that must be properly controlled to prevent any potential environmental impact. Excessive pressure buildup in reservoir may result in ground water contamination stemming from leakage through conductive pathways, such as improperly plugged abandoned wells or distant faults, and the potential for fault reactivation and possibly seal breaching. Brine extraction is a viable approach for managing formation pressure, effective stress, and plume movement during industrial-scale CO2 injection projects. The main objectives of this study are to investigate suitable different pressure management strategies involving active brine extraction and passive pressure relief wells. Adaptive optimized management of CO2 storage projects utilizes the advanced automated optimization algorithms and suitable process models. The adaptive management integrates monitoring, forward modeling, inversion modeling and optimization through an iterative process. In this study, we employ an adaptive framework to understand primarily the effects of initial site characterization and frequency of the model update (calibration) and optimization calculations for controlling extraction rates based on the monitoring data on the accuracy and the success of the management without violating pressure buildup constraints in the subsurface reservoir system. We will present results of applying the adaptive framework to test appropriateness of different management strategies for a realistic field injection project.
The structure of MgO-SiO2 glasses at elevated pressure.
Wilding, Martin; Guthrie, Malcolm; Kohara, Shinji; Bull, Craig L; Akola, Jaakko; Tucker, Matt G
2012-06-06
The magnesium silicate system is an important geophysical analogue and neutron diffraction data from glasses formed in this system may also provide an initial framework for understanding the structure-dependent properties of related liquids that are important during planetary formation. Neutron diffraction data collected in situ for a single composition (38 mol% SiO(2)) magnesium silicate glass sample shows local changes in structure as pressure is increased from ambient conditions to 8.6 GPa at ambient temperature. A method for obtaining the fully corrected, total structure factor, S(Q), has been developed that allows accurate structural characterization as this weakly scattering glass sample is compressed. The measured S(Q) data indicate changes in chemical ordering with pressure and the real-space transforms show an increase in Mg-O coordination number and a distortion of the local environment around magnesium ions. We have used reverse Monte Carlo methods to compare the high pressure and ambient pressure structures and also compare the high pressure form with a more silica-poor glass (Mg(2)SiO(4)) that represents the approach to a more dense, void-free and topologically ordered structure. The Mg-O coordination number increases with pressure and we also find that the degree of continuous connectivity of Si-O bonds increases via a collapse of interstices.
Effect of initial conditions on combustion generated loads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tieszen, S.R.
1991-01-01
This analytical study examines the effect of initial thermodynamic conditions on the loads generated by the combustion of homogeneous hydrogen-air-steam mixtures. The effect of initial temperature, pressure, hydrogen concentration, and steam concentration is evaluated for two cases, (1) constant volume and (2) constant initial pressure. For each case, the Adiabatic, Isochoric, Complete Combustion (AICC), Chapman-Jouguet (CJ), and normally reflected CJ pressures are calculated for a range of hydrogen and steam concentrations representative of the entire flammable regime. For detonation loads, pressure profiles and time-histories are also evaluated in one-dimensional Cartesian geometry. The results show that to a first approximation, themore » AICC and CJ pressures are directly proportional to the initial density. Increasing the hydrogen concentration up to stoichiometric concentrations significantly increases the AICC, CJ, and reflected CJ pressures. For the constant volume case, the AICC, CJ, and reflected CJ pressures increase with increasing hydrogen concentration on the rich side of stoichiometric concentrations. For the constant initial pressure case, the AICC, CJ and reflected CJ pressures decrease with increasing hydrogen concentration on the rich side of stoichiometric values. The addition of steam decreases the AICC, CJ and reflected CJ pressures for the constant initial pressure case, but increases them for the constant volume case. For detonations, the pressure time-histories can be normalized with the AICC pressure and the reverberation time for Cartesian geometry. 35 refs., 16 figs.« less
Concentration-dependence of the explosion characteristics of chlorine dioxide gas.
Jin, Ri-ya; Hu, Shuang-qi; Zhang, Yin-ghao; Bo, Tao
2009-07-30
The explosion characteristics of chlorine dioxide gas have been studied for the first time in a cylindrical exploder with a shell capacity of 20 L. The experimental results have indicated that the lower concentration limit for the explosive decomposition of chlorine dioxide gas is 9.5% ([ClO(2)]/[air]), whereas there is no corresponding upper concentration limit. Under the experimental conditions, and within the explosion limits, the pressure of explosion increases with increasing concentration of chlorine dioxide gas; the maximum pressure of explosion relative to the initial pressure was measured as 0.024 MPa at 10% ClO(2) and 0.641 MPa at 90% ClO(2). The induction time (the time from the moment of sparking to explosion) has also been found to depend on the concentration of chlorine dioxide gas; thus, at 10% ClO(2) the induction time was 2195 ms, but at 90% ClO(2) the induction time was just 8 ms. The explosion reaction mechanism of ClO(2) is of a degenerate chain-branching type involving the formation of a stable intermediate (Cl(2)O(3)), from which the chain-branching occurs. Chain initiation takes place at the point of ignition and termination takes place at the inner walls of the exploder.
Organic colloids and their influence on low-pressure membrane filtration.
Laabs, C; Amy, G; Jekel, M
2004-01-01
Wastewater treatment by low-pressure membrane filtration (MF and UF) is affected to a large extent by macromolecules and colloids. In order to investigate the influence of organic colloids on the membrane filtration process, colloids were isolated from a wastewater treatment plant effluent using a rotary-evaporation pre-concentration step followed by dialysis. Stirred cell tests were carried out using redissolved colloids, with and without additional glass fiber filtration. After constant pressure membrane filtration of 190 L/m2, the initial flux had declined by 50% for colloids > 6-8 kD (glass fiber filtered) with a hydrophilic MF membrane and for colloids > 12-14 kD (glass fiber filtered) with a hydrophobic MF membrane. For the non-filtered colloidal solutions, the flux decline was even steeper with the flux being below 10% of the initial flux after 190 L/m2 were passed through the membranes. As with larger particles, colloids form a filtration cake layer on top of the membrane surface when used as isolates without prior filtration. This filtration cake is easily removed during backwashing. However, polysaccharides as a macromolecular component of the colloid isolate cause severe fouling by the formation of a gel layer on the membrane surface that is difficult to remove completely.
Apparatus for providing directional permeability measurements in subterranean earth formations
Shuck, Lowell Z.
1977-01-01
Directional permeability measurements are provided in a subterranean earth formation by injecting a high-pressure gas from a wellbore into the earth formation in various azimuthal directions with the direction having the largest pressure drop being indicative of the maximum permeability direction. These measurements are provided by employing an inflatable boot containing a plurality of conduits in registry with a like plurality of apertures penetrating the housing at circumferentially spaced-apart locations. These conduits are, in turn, coupled through a valved manifold to a source of pressurized gas so that the high-pressure gas may be selectively directed through any conduit into the earth formation defining the bore with the resulting difference in the pressure drop through the various conduits providing the permeability measurements.
NASA Astrophysics Data System (ADS)
Davis, Earl E.; Villinger, Heinrich W.
2006-05-01
Seafloor and formation-fluid pressure data from two Ocean Drilling Program (ODP) borehole hydrologic observatories installed at the toe of the subduction-zone prism off Costa Rica provide new information about the average and transient state of this non-accretionary prism. Data collected to date span a 16-month period from the time of installation during ODP Leg 205 in late 2002 to the most recent submersible site visit in March 2004. Pressure monitoring is part of a larger coordinated effort involving temperature monitoring and continuous fluid sampling within the formation and at the seafloor. The holes are positioned 800 m apart and monitoring points include two in igneous basement just seaward of the prism toe, one in the decollement that separates the underthrust sediments of the incoming Cocos plate from the Costa Rica prism, and one in the overthrust-prism sediments. Response of formation-fluid pressure to oceanographic loading at the seafloor constrains the framework compressibility of basement (ca . 1.1-1.3 × 10 - 10 Pa - 1) and the prism and decollement sediments (ca . 4-7 × 10 - 9 Pa - 1). Values are equivalent to ones determined elsewhere in similar sections. Once effects of seafloor loading are removed, pressures at both basement levels are seen to be steady, nearly identical, and less than but very close to hydrostatic (- 6 kPa). This state probably reflects the local hydrothermal regime of the oceanic crust, not the hydrologic regime of the consolidating subduction complex, and is consistent with basement being highly permeable and hydrologically well connected to distant igneous outcrops where free exchange of water between the crust and the ocean can occur. To what depth in the subduction zone high basement permeability persists is not known, but until permeability is reduced by alteration or mechanical fracture closure, basement must serve to provide a drainage path for water expelled from the consolidating underthrust sedimentary section. The decollement and overlying prism are observed to be superhydrostatic, although not highly so during this phase of observation. Pressures (expressed as the pore pressure ratio) range from λ* ≈ 0.25 at the decollement early in the monitoring period to ≈ 0.1 in the overlying prism at the end of the monitoring period. The cause of the initially elevated pressures is not known. If generated by contractional strain, elevated pressures appear not to be maintained for long periods of time at these lithologic/structural levels. The cause of the decline in pressure is also not known; it may be the consequence of strain relaxation or hydrologic drainage. No observations were made in the underthrust sediments, where greater hydrologic isolation may allow higher average pressures and transient pressures of greater amplitude and persistence. Two minor transients were observed at the decollement- and prism-monitoring levels that correlate with deformational events that occurred during a GPS monitoring experiment on the Nicoya Peninsula. One of these is inferred by Protti et al. [M. Protti, T. Gonzalez, T. Kato, T. Iinuma, S. Miyazaki, K. Obana, Y. Kaneda, P. LaFemina, T. Dixon, S. Schwartz, A creep event on the shallow interface of the Nicoya Peninsula, Costa Rica seismogenic zone, EOS, Trans. Am. Geophys. Union, Fall Meeting Program with Abstracts, 85 (2004) F1378; M. Protti, P. LaFemina, V. Gonzalez, T.H. Dixon, S.Y. Schwartz, T. Kato, T. Iinuma, S. Miyazaki, K. Obana, Y. Kaneda, A possible slow slip event within the seismogenic zone, Nicoya peninsula, Costa Rica, Geophys. Res. Lett. (submitted for publication)] to have propagated some 60 km to the northeast across the peninsula over the course of 2-3 weeks. The pressure transients at the ODP drill sites, located roughly 60 km offshore, began on May 24 and October 12, 2003, also 2-3 weeks after the initiation of the GPS-recorded Nicoya strain events at the coast. Propagation of dislocations updip (offshore) as well as downdip along the subduction thrust may be the cause of these transients.
NASA Astrophysics Data System (ADS)
Rohmer, J.; Tremosa, J.; Marty, N. C. M.; Audigane, P.
2017-10-01
In the present study, we assess the potential for initiating ductile failure in a fractured caprock due to the chemical alteration of its mechanical properties under pressure increase induced by CO2 leakage and fixed in situ boundary conditions. In this view, 2D numerically coupled reactive-transport simulations were set up by using the Opalinus Clay formation as an analogue for a caprock layer. The fractured system was viewed as a compartmentalised system that consists of a main highly permeable pathway, a moderately permeable damage zone and the intact rock. The outputs of the numerical simulations (mineral fraction, porosity changes, gas saturation, pore-fluid pressure) were converted into parameter changes of the yield surface by viewing the rock material of the three compartments (fault, damage zone and intact rock) as a composite system that consists of a clayey solid material, pores and mineral inclusions (such as carbonate and quartz). Three alteration processes were considered: (1) the effect of the mineral fraction and porosity evolution on the yield surface, (2) changes in the resulting poro-elastic properties and (3) the suction effect, i.e. the bounding effect induced by the presence of two phases, water and CO2. Our numerical investigations showed that the decrease in the friction coefficient remained negligible during leakage, while the pre-consolidation stress mainly decreased. Consequently, the damage zone of the fractured system became more collapsible over time, which was driven by low-to-moderate pressure build-up of the fluid penetrating the fault (1 MPa in our case). For the considered case, the initiation of ductile failure is likely under conditions of fixed vertical stress and zero lateral strain. This process could potentially limit the spatial spreading of CO2-induced alteration, although this remains very site specific. We recommend that characterisation efforts be intensified to obtain better insight into the properties of fracture systems in caprock-like formations (with special attention to their initial over consolidation ratio).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, D. P.; Revet, G.; Khiar, B.
We report that the collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure whenmore » the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M~20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (10 12–10 13 W/cm 2), target materials and orientations of the magnetic field. Lastly, plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.« less
Higginson, D. P.; Revet, G.; Khiar, B.; ...
2017-02-24
We report that the collimation of astrophysically-relevant plasma ejecta in the form of narrow jets via a poloidal magnetic field is studied experimentally by irradiating a target situated in a 20 T axial magnetic field with a 40 J, 0.6 ns, 0.7 mm diameter, high-power laser. The dynamics of the plasma shaping by the magnetic field are studied over 70 ns and up to 20 mm from the source by diagnosing the electron density, temperature and optical self-emission. These show that the initial expansion of the plasma is highly magnetized, which leads to the formation of a cavity structure whenmore » the kinetic plasma pressure compresses the magnetic field, resulting in an oblique shock [A. Ciardi et al., Phys. Rev. Lett. 110, 025002 (2013)]. The resulting poloidal magnetic nozzle collimates the plasma into a narrow jet [B. Albertazzi et al., Science 346, 325 (2014)]. At distances far from the target, the jet is only marginally magnetized and maintains a high aspect ratio due to its high Mach-number (M~20) and not due to external magnetic pressure. The formation of the jet is evaluated over a range of laser intensities (10 12–10 13 W/cm 2), target materials and orientations of the magnetic field. Lastly, plasma cavity formation is observed in all cases and the viability of long-range jet formation is found to be dependent on the orientation of the magnetic field.« less
NASA Astrophysics Data System (ADS)
Rose, D. V.; Welch, D. R.; Clark, R. E.; Thoma, C.; Zimmerman, W. R.; Bruner, N.; Rambo, P. K.; Atherton, B. W.
2011-09-01
Streamer and leader formation in high pressure devices is dynamic process involving a broad range of physical phenomena. These include elastic and inelastic particle collisions in the gas, radiation generation, transport and absorption, and electrode interactions. Accurate modeling of these physical processes is essential for a number of applications, including high-current, laser-triggered gas switches. Towards this end, we present a new 3D implicit particle-in-cell simulation model of gas breakdown leading to streamer formation in electronegative gases. The model uses a Monte Carlo treatment for all particle interactions and includes discrete photon generation, transport, and absorption for ultra-violet and soft x-ray radiation. Central to the realization of this fully kinetic particle treatment is an algorithm that manages the total particle count by species while preserving the local momentum distribution functions and conserving charge [D. R. Welch, T. C. Genoni, R. E. Clark, and D. V. Rose, J. Comput. Phys. 227, 143 (2007)]. The simulation model is fully electromagnetic, making it capable of following, for example, the evolution of a gas switch from the point of laser-induced localized breakdown of the gas between electrodes through the successive stages of streamer propagation, initial electrode current connection, and high-current conduction channel evolution, where self-magnetic field effects are likely to be important. We describe the model details and underlying assumptions used and present sample results from 3D simulations of streamer formation and propagation in SF6.
Zinder, S H; Anguish, T
1992-10-01
CO and H(2) have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H(2), CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H(2) to partial pressures of 40 to 70 Pa (1 Pa = 0.987 x 10 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H(2) to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N(2)-CO(2), accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H(2) (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 mumol of viologen reduced min mg of protein. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H(2) in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate.
Zinder, S. H.; Anguish, T.
1992-01-01
CO and H2 have been implicated in methanogenesis from acetate, but it is unclear whether they are directly involved in methanogenesis or electron transfer in acetotrophic methanogens. We compared metabolism of H2, CO, and formate by cultures of the thermophilic acetotrophic methanogens Methanosarcina thermophila TM-1 and Methanothrix sp. strain CALS-1. M. thermophila accumulated H2 to partial pressures of 40 to 70 Pa (1 Pa = 0.987 × 10-5 atm), as has been previously reported for this and other Methanosarcina cultures. In contrast, Methanothrix sp. strain CALS-1 accumulated H2 to maximum partial pressures near 1 Pa. Growing cultures of Methanothrix sp. strain CALS-1 initially accumulated CO, which reached partial pressures near 0.6 Pa (some CO came from the rubber stopper) during the middle of methanogenesis; this was followed by a decrease in CO partial pressures to less than 0.01 Pa by the end of methanogenesis. Accumulation or consumption of CO by cultures of M. thermophila growing on acetate was not detected. Late-exponential-phase cultures of Methanothrix sp. strain CALS-1, in which the CO partial pressure was decreased by flushing with N2-CO2, accumulated CO to 0.16 Pa, whereas cultures to which ca. 0.5 Pa of CO was added consumed CO until it reached this partial pressure. Cyanide (1 mM) blocked CO consumption but not production. High partial pressures of H2 (40 kPa) inhibited methanogenesis from acetate by M. thermophila but not by Methanothrix sp. strain CALS-1, and 2 kPa of CO was not inhibitory to M. thermophila but was inhibitory to Methanothrix sp. strain CALS-1. Levels of CO dehydrogenase, hydrogenase, and formate dehydrogenase in Methanothrix sp. strain CALS-1 were 9.1, 0.045, and 5.8 μmol of viologen reduced min-1 mg of protein-1. These results suggest that CO plays a role in Methanothrix sp. strain CALS-1 similar to that of H2 in M. thermophila and are consistent with the conclusion that CO is an intermediate in a catabolic or anabolic pathway in Methanothrix sp. strain CALS-1; however, they could also be explained by passive equilibration of CO with a metabolic intermediate. PMID:16348788
NASA Astrophysics Data System (ADS)
Amirov, Elnur
2016-04-01
A new technology to acquire wireline quality pressure tests using a Logging While Drilling approach has been successfully implemented few years ago in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic. The Formation Tester While Drilling tool (GeoTap) uses a testing sequence similar to wireline tools. A single probe is extended to the borehole wall and a small pretest volume withdrawn from the formation. The resulting pressure transient is then analyzed for formation pressure, formation permeability and mobility information. Up-link and down-link capabilities have been added to achieve test control and quality feedback. An efficient downlink algorithm is used downhole to analyze the data. The parameters and pressure data are transmitted to the surface in real-time for continuous monitoring of the test. More detailed pressure data is recorded and retrieved after returning to surface. Use of a quartz gauge allows excellent accuracy. Azeri, Chirag and Guneshli fields consist of layered sand reservoirs alternation with shale sequences and detailed pressure data is acquired on a high percentage of wells in order to understand lateral and vertical continuity of different flow units. The formation tester can be utilized with the 'triple combo' Logging While Drilling string which eliminates the need to rig up wireline on many wells. Wireline formation tester runs are time consuming - particularly if high deviation or high overbalance conditions are encountered requiring pipe conveyed techniques. Non-Productive Time is high when the wireline tools are stuck and fishing operations are required. The Sperry Drilling GeoTap formation pressure tester service provides real-time formation pressure measurements. It bridges the critical gap between drilling safety and optimization, by providing early and reliable measurements of key reservoir properties, while improving reservoir understanding and completion design in real time. The GeoTap tester obtains direct pore-pressure measurements as the well is being drilled, with accuracy and precision comparable to that of wireline testers. The GeoTap service can eliminate the time, risk, and cost associated with running pipe-conveyed wireline test tools. It also measures annular and bore pressure while drilling, providing accurate, continuous, real-time hydrostatic pressure, and equivalent circulating density (ECD) information. This aids in determining and maintaining optimal mud weight, reduces formation damage, increases the rate of penetration, and increases operational safety. GeoTap benefits can be improvement of formation evaluation, real-time fluid gradients and fluid mobility (permeability/viscosity indicator), identification of fluid contact points, determination of reservoir connectivity/compartmentalization and depletion, increase safety of operation, determination of optimal mud weight and manage of ECD. We can also continuously monitor wellbore stability for assessments in order to reduce formation damage which in turns will help to increase drilling effectiveness (determine precise overbalance for maximizing ROP and continuously monitor hole-cleaning effectiveness with pressure-while-drilling, while reducing formation damage due to swab/surge). Save time and money by reducing rig down time associated with wireline testing. GeoTap Tool capable of performing more than 150 pressure tests per run and optional orientation of pressure measurement is available (top, right, bottom or left). GeoTap testing has been completed with encouraging results in many wells up to circa 3000m deep. Data has been acquired successfully both in a "Drill-Test-Drill' mode and a "Post-Drill-Test" mode. GeoTap tests have spanned wide ranges of borehole temperature, pressure, mobility as well as formation permeability and overbalance conditions. GeoTap tests in Azeri, Chirag and Guneshli wells which were drilled in the Khazarian-Caspian Sea of the Azerbaijan Republic have proved that a logging while drilling approach can be successfully employed to acquire formation pressure data in open hole (which is also very useful for fluid gradient analysis, oil water and gas oil contacts delineation/identification).
Gravitational collapse of a turbulent vortex with application to star formation
NASA Technical Reports Server (NTRS)
Deissler, R. G.
1976-01-01
The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitational and rotational terms in the equations are of first order in the space variables, the pressure-gradient terms are of second order, and the turbulent-viscosity term is of third order. The presence of turbulent viscosity ensures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial flow is always inward and allows collapse to occur (axially) even when the rotation is large. An approximate solution of the governing partial differential equations is also given in order to study the spatial distributions of the density and velocity.
Gravitational collapse of a turbulent vortex with application to star formation
NASA Technical Reports Server (NTRS)
Deissler, R. G.
1975-01-01
The gravitational collapse of a rotating cloud or vortex is analyzed by expanding the dependent variables in the equations of motion in two-dimensional Taylor series in the space variables. It is shown that the gravitation and rotation terms in the equations are of first order in the space variables, the pressure gradient terms are of second order, and the turbulent viscosity term is of third order. The presence of a turbulent viscosity insures that the initial rotation is solid-body-like near the origin. The effect of pressure on the collapse process is found to depend on the shape of the initial density disturbance at the origin. Dimensionless collapse times, as well as the evolution of density and velocity, are calculated by solving numerically the system of nonlinear ordinary differential equations resulting from the series expansions. The axial inflow plays an important role and allows collapse to occur even when the rotation is large. An approximate solution of the governing partial differential equations is also given; the equations are used to study the spacial distributions of the density and velocity.
Droplet formation and scaling in dense suspensions
Miskin, Marc Z.; Jaeger, Heinrich M.
2012-01-01
When a dense suspension is squeezed from a nozzle, droplet detachment can occur similar to that of pure liquids. While in pure liquids the process of droplet detachment is well characterized through self-similar profiles and known scaling laws, we show here the simple presence of particles causes suspensions to break up in a new fashion. Using high-speed imaging, we find that detachment of a suspension drop is described by a power law; specifically we find the neck minimum radius, rm, scales like near breakup at time τ = 0. We demonstrate data collapse in a variety of particle/liquid combinations, packing fractions, solvent viscosities, and initial conditions. We argue that this scaling is a consequence of particles deforming the neck surface, thereby creating a pressure that is balanced by inertia, and show how it emerges from topological constraints that relate particle configurations with macroscopic Gaussian curvature. This new type of scaling, uniquely enforced by geometry and regulated by the particles, displays memory of its initial conditions, fails to be self-similar, and has implications for the pressure given at generic suspension interfaces. PMID:22392979
Liquid crystal films as on-demand, variable thickness (50–5000 nm) targets for intense lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poole, P. L., E-mail: poole.134@osu.edu; Andereck, C. D.; Schumacher, D. W.
2014-06-15
We have developed a new type of target for intense laser-matter experiments that offers significant advantages over those currently in use. The targets consist of a liquid crystal film freely suspended within a metal frame. They can be formed rapidly on-demand with thicknesses ranging from nanometers to micrometers, where the particular value is determined by the liquid crystal temperature and initial volume as well as by the frame geometry. The liquid crystal used for this work, 8CB (4′-octyl-4-cyanobiphenyl), has a vapor pressure below 10{sup −6} Torr, so films made at atmospheric pressure maintain their initial thickness after pumping to high vacuum.more » Additionally, the volume per film is such that each target costs significantly less than one cent to produce. The mechanism of film formation and relevant physics of liquid crystals are described, as well as ion acceleration data from the first shots on liquid crystal film targets at the Ohio State University Scarlet laser facility.« less
Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers
Carrigan, Charles R.; Nitao, John J.
2003-06-10
Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.
The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes.
Lemon, Katherine P; Freitag, Nancy E; Kolter, Roberto
2010-08-01
Listeria monocytogenes is a food-borne facultative intracellular pathogen. It is widespread in the environment and has several distinct life-styles. The key transcriptional activator PrfA positively regulates L. monocytogenes virulence genes to mediate the transition from extracellular, flagellum-propelled cell to intracellular pathogen. Here we report the first evidence that PrfA also has a significant positive impact on extracellular biofilm formation. Mutants lacking prfA were defective in surface-adhered biofilm formation. The DeltaprfA mutant exhibited wild-type flagellar motility, and its biofilm defect occurred after initial surface adhesion. We also observed that mutations that led to the constitutive expression of PrfA-dependent virulence genes had a minimal impact on biofilm formation. Furthermore, biofilm development was enhanced in a mutant encoding a PrfA protein variant unable to fully transition from the extracellular form to the virulent, intracellular activity conformation. These results indicate that PrfA positively regulates biofilm formation and suggest that PrfA has a global role in modulating the life-style of L. monocytogenes. The requirement of PrfA for optimal biofilm formation may provide selective pressure to maintain this critical virulence regulator when L. monocytogenes is outside host cells in the environment.
NASA Astrophysics Data System (ADS)
Jabbari, S.; Brandenburg, A.
2014-12-01
Recent studies have suggested a new mechanism that can be used to explain the formation of magnetic spots or bipolar regions in highly stratified turbulent plasmas. According to this model, a large-scale magnetic field suppresses the turbulent pressure, which leads to a negative contribution of turbulence to the effective magnetic pressure. Direct numerical simulations (DNS) have confirmed that the negative contribution is large enough so that the effective magnetic pressure becomes negative and leads to a large-scale instability, which we refer to as negative effective magnetic pressure Instability (NEMPI). NEMPI was used to explain the formation of active regions and sunspots on the solar surface. One step toward improving this model was to combine dynamo in- stability with NEMPI. The dynamo is known to be responsible for the solar large-scale magnetic field and to play a role in solar activity. In this context, we studied stratified turbulent plasmas in spherical geometry, where the background field was generated by alpha squared dynamo. For NEMPI to be excited, the initial magnetic field should be in a proper range, so we used quenching function for alpha. Using the Pencil Code and mean field simulations (MFS), we showed that in the presence of dynamo-generated magnetic fields, we deal with a coupled system, where both instabilities, dynamo and NEMPI, work together and lead to the formation of magnetic structures (Jabbari et al. 2013). We also studied a similar system in plane geometry in the presence of rotation and confirmed that for slow rotation NEMPI works, but as the Coriolis number increases, the rotation suppresses NEMPI. By increasing the Coriolis number even further, the combination of fast rotation and high stratification excites a dynamo, which leads again to a coupled system of dynamo and NEMPI (Jabbari et al. 2014). Another important finding concerning NEMPI is the case where the instability is excited by a vertical magnetic field (Brandenburg et al. 2013). When the field is vertical, the resulting magnetic flux concentrations lead to the magnetic spots and can be of equipartition field strength. DNS, MFS, and implicit large eddy simulations (ILES) confirm that in a proper parameter regime, vertical imposed fields lead to the formation of circular magnetic spots (Brandenburg et al. 2014).
Formation of superconducting platinum hydride under pressure: an ab initio approach
NASA Astrophysics Data System (ADS)
Kim, Duck Young; Scheicher, Ralph; Pickard, Chris; Needs, Richard; Ahuja, Rajeev
2012-02-01
Noble metals such as Pt, Au, or Re are commonly used for electrodes and gaskets in diamond anvil cells for high-pressure research because they are expected to rarely undergo structural transformation and possess simple equation of states. Specifically Pt has been used widely for high-pressure experiments and has been considered to resist hydride formation under pressure. Pressure-induced reactions of metals with hydrogen are in fact quite likely because hydrogen atoms can occupy interstitial positions in the metal lattice, which can lead to unexpected effects in experiments. In our study, PRL 107 117002 (2011), we investigated crystal structures using ab initio random structure searching (AIRSS) and predicted the formation of platinum mono-hydride above 22 GPa and superconductivity Tc was estimated to be 10 -- 25 K above around 80 GPa. Furthermore, we showed that the formation of fcc noble metal hydrides under pressure is common and examined the possibility of superconductivity in these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miloshevsky, Alexander; Harilal, Sivanandan S.; Miloshevsky, Gennady, E-mail: gennady@purdue.edu
2014-04-15
Plasma expansion with shockwave formation during laser ablation of materials in a background gasses is a complex process. The spatial and temporal evolution of pressure, temperature, density, and velocity fields is needed for its complete understanding. We have studied the expansion of femtosecond (fs) laser-ablated aluminum (Al) plumes in Argon (Ar) gas at 0.5 and 1 atmosphere (atm). The expansion of the plume is investigated experimentally using shadowgraphy and fast-gated imaging. The computational fluid dynamics (CFD) modeling is also carried out. The position of the shock front measured by shadowgraphy and fast-gated imaging is then compared to that obtained frommore » the CFD modeling. The results from the three methods are found to be in good agreement, especially during the initial stage of plasma expansion. The computed time- and space-resolved fields of gas-dynamic parameters have provided valuable insights into the dynamics of plasma expansion and shockwave formation in fs-pulse ablated Al plumes in Ar gas at 0.5 and 1 atm. These results are compared to our previous data on nanosecond (ns) laser ablation of Al [S. S. Harilal et al., Phys. Plasmas 19, 083504 (2012)]. It is observed that both fs and ns plumes acquire a nearly spherical shape at the end of expansion in Ar gas at 1 atm. However, due to significantly lower pulse energy of the fs laser (5 mJ) compared to pulse energy of the ns laser (100 mJ) used in our studies, the values of pressure, temperature, mass density, and velocity are found to be smaller in the fs laser plume, and their time evolution occurs much faster on the same time scale. The oscillatory shock waves clearly visible in the ns plume are not observed in the internal region of the fs plume. These experimental and computational results provide a quantitative understanding of plasma expansion and shockwave formation in fs-pulse and ns-pulse laser ablated Al plumes in an ambient gas at atmospheric pressures.« less
Soviet research on the transport of intense relativistic electron beams through high-pressure air
NASA Astrophysics Data System (ADS)
Wells, Nikita
1987-05-01
Soviet development of intense relativistic electron beams (IREB) through background air at pressures from 1/100 Torr to atmospheric is analyzed as reflected by Soviet open literature of the last 15 years. Important Soviet findings include: (1) the formation of a plasma channel created by an IREB propagating through background air and the effect of beam parameters upon the plasma channel parameters (and vice versa); (2) determination of the background air pressure for the optimum transport of IREB in two ranges, an ion focused regime at 0.06 to 0.09 Torr and a low pressure window at 1 Torr; (3) observation of current enhancement, whereby the IREB-induced current in plasma is higher than the initial beam current; and (4) the effect of resistive hose instability on IREB propagation. This research is characterized by absence of high energy experimentation. A conclusion of the research is that, for optimum beam transport through air, it is imperative to ensure conditions that allow full neutralization of the IREB's self-fields along the entire path of the beam's transport.
Preliminary Results Of A 600 Joules Small Plasma Focus Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, S. H.; Yap, S. L.; Wong, C. S.
Preliminary results of a 600 J (3.7 muF, 18 kV) Mather type plasma focus device operated at low pressure will be presented. The discharge is formed between a solid anode with length of 6 cm and six symmetrically and coaxially arranged cathode rods of same lengths. The cathode base is profiled in a knife-edge design and a set of coaxial plasma gun are attached to it in order to initiate the breakdown and enhance the current sheath formation. The experiments have been performed in argon gas under a low pressure condition of several microbars. The discharge current and the voltagemore » across the electrodes during the discharge are measured with high voltage probe and current coil. The current and voltage characteristics are used to determine the possible range of operating pressure that gives good focusing action. At a narrow pressure regime of 9.0+-0.5 mubar, focusing action is observed with good reproducibility. Preliminary result of ion beam energy is presented. More work will be carried out to investigate the radiation output.« less
Cooley, Maurice E.
1986-01-01
The major Paleozoic artesian aquifers, the aquifers most favorable for continued development, in the Ten Sleep area of the Bighorn Basin of Wyoming are the Tensleep Sandstone, the Madison Limestone and Bighorn Dolomite (Madison-Bighorn aquifer), and the Flathead Sandstone. The minor aquifers include the Goose Egg and Park City Formations (considered in the Ten Sleep area to be the lateral equivalent of the Phosphoria Formation) and the Amsden Formation. Most wells completed in the major and minor aquifers flow at the land surface. Wellhead pressures generally are less than 50 pounds per square inch for the Tensleep Sandstone, 150-250 pounds per square inch for the Madison-Bighorn aquifer, and more than 400 pounds per square inch for the Flathead Sandstone. Flowing wells completed in the Madison-Bighorn aquifer and the Flathead Sandstone yield more than 1,000 gallons per minute. The initial test of one well completed in the Madison-Bighorn aquifer indicated a flow rate of 14,000 gallons per minute. Transmissivities range from 500 to 1,900 feet squared per day for the Madison-Bighorn aquifer and from about 90 to 325 feet squared per day for the Tensleep and Flathead Sandstones. Significant secondary permeability from fracturing in the Paleozoic aquifers allows local upward interformational movement of water, and this affects the altitude of the potentiometric surfaces of the Tensleep Sandstone and the Madison-Bighorn aquifer. Water moves upward from the Tensleep and other formations, through the Goose Egg Formation, to discharge at the land surface as springs. Much of the spring flow is diverted for irrigation or is used for rearing fish. Decreases from original well pressures were not apparent in wells completed in the Tensleep Sandstone or in the Madison-Bighorn aquifer in the study area except for a few wells in or near the town of Ten Sleep. Most wells completed in the Flathead Sandstone, which also are open to the Madison-Bighorn aquifer, show a decrease of pressure from the time of completion to 1978. The decrease of pressure is partly the result of water moving from the Flathead Sandstone into the Madison-Bighorn aquifer, which has a lower potentiometric surface than does the Flathead Sandstone, even during the time the wells are not in operation. Pressure in some small-capacity wells completed in the Goose Egg Formation also has decreased near Ten Sleep. Most of the wells, particularly the irrigation wells, show a progressive decrease in pressure during the irrigation season but recover during periods of nonuse. Measurements of the pressure were made principally in 1953, 1962, 1970, and 1975-78. Well water from the Paleozoic aquifers generally contains minimal concentrations of dissolved solids and individual constituents but excessive hardness. Dissolved-solids concentrations of water are less than 300 milligrams per liter in the Tensleep Sandstone and the Madison-Bighorn aquifer, less than 200 milligrams per liter in the Flathead Sandstone, and as much as 450 milligrams per liter in the Goose Egg Formation. Bicarbonate is the major constituent, followed by calcium and magnesium. Relatively large concentrations of sulfate, as much as 490 milligrams per liter, were found, mainly in water from the Goose Egg Formation. The water has low sodium (alkali) and medium salinity; therefore, the water is satisfactory for irrigation and most other uses, if excessive hardness is not a detrimental factor. Wellhead temperatures range from 11 ? to 27.5 ? Celsius (51 ? to 81.5 ? Fahrenheit) within a range in depth of approximately 250 to 4,000 feet. This gives a geothermal gradient of about 0.44 ? Celsius per 100 feet (0.79 ? Fahrenheit per 100 feet).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chace, D.A.; Roberts, R.M.; Palmer, J.B.
WIPP Salado Hydrology Program Data Report {number_sign}3 presents hydrologic data collected during permeability testing, coupled permeability and hydrofracture testing, and gas-threshold-pressure testing of the Salado Formation performed from November 1991 through October 1995. Fluid-pressure monitoring data representing August 1989 through May 1995 are also included. The report presents data from the drilling and testing of three boreholes associated with the permeability testing program, nine boreholes associated with the coupled permeability and hydrofracture testing program, and three boreholes associated with the gas-threshold-pressure testing program. The purpose of the permeability testing program was to provide data with which to interpret the disturbedmore » and undisturbed permeability and pore pressure characteristics of the different Salado Formation lithologies. The purpose of the coupled permeability and hydrofracture testing program was to provide data with which to characterize the occurrence, propagation, and direction of pressure induced fractures in the Salado Formation lithologies, especially MB139. The purpose of the gas-threshold-pressure testing program was to provide data with which to characterize the conditions under which pressurized gas displaces fluid in the brine-saturated Salado Formation lithologies. All of the holes were drilled from the WIPP underground facility 655 m below ground surface in the Salado Formation.« less
Phase transformations in a Cu−Cr alloy induced by high pressure torsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korneva, Anna, E-mail: a.korniewa@imim.pl; Straumal, Boris; Institut für Nanotechnologie, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen
2016-04-15
Phase transformations induced by high pressure torsion (HPT) at room temperature in two samples of the Cu-0.86 at.% Cr alloy, pre-annealed at 550 °C and 1000 °C, were studied in order to obtain two different initial states for the HPT procedure. Observation of microstructure of the samples before HPT revealed that the sample annealed at 550 °C contained two types of Cr precipitates in the Cu matrix: large particles (size about 500 nm) and small ones (size about 70 nm). The sample annealed at 1000 °C showed only a little fraction of Cr precipitates (size about 2 μm). The subsequentmore » HPT process resulted in the partial dissolution of Cr precipitates in the first sample and dissolution of Cr precipitates with simultaneous decomposition of the supersaturated solid solution in another. However, the resulting microstructure of the samples after HPT was very similar from the standpoint of grain size, phase composition, texture analysis and hardness measurements. - Highlights: • Cu−Cr alloy with two different initial states was deformed by HPT. • Phase transformations in the deformed materials were studied. • SEM, TEM and X-ray diffraction techniques were used for microstructure analysis. • HPT leads to formation the same microstructure independent of the initial state.« less
Pressure dependence of the absolute rate constant for the reaction OH + C2H2 from 228 to 413K
NASA Technical Reports Server (NTRS)
Michael, J. V.; Nava, D. F.; Borokowski, R. P.; Payne, W. A.; Stief, L. J.
1980-01-01
The pressure dependence of absolute rate constants for the reaction of OH + C2H2 yields products has been examined at five temperatures ranging from 228 to 413 K. The experimental techniques which was used is flash photolysis-resonance fluoresence. OH was produced by water photolysis and hydroxyl resonance fluorescent photons were measured by multiscaling techniques. The results indicate that the low pressure bimolecular rate constant is 4 x 10 the the minus 13th power cu cm molecule (-1) s(-1) over the temperature range studied. A substantial increase in the bimolecular rate constant with an increase in pressure was observed at all temperatures except 228 K. This indicates the importance of initial adduct formation and subsequent stablization. The high pressure results are well represented by the Arrhenius expression (k sub bi) sub infinity = (6.83 + or - 1.19) x 10 to the minus 12th power exp(-646 + or - 47/T)cu cm molecule (-1) s(-1). The results are compared to previous investigated and are theoretically discussed. The implications of these results on modeling of terrestrial and planetary atmospheres and also in combustion chemistry are discussed.
Microparticle formation by platelets exposed to high gas pressures - An oxidative stress response.
Bhullar, Jasjeet; Bhopale, Veena M; Yang, Ming; Sethuraman, Kinjal; Thom, Stephen R
2016-12-01
This investigation explored the mechanism for microparticles (MPs) production by human and murine platelets exposed to high pressures of inert gases. Results demonstrate that MPs production occurs via an oxidative stress response in a dose-dependent manner and follows the potency series N 2 >Ar>He. Gases with higher van der Waals volumes or polarizability such as SF 6 and N 2 O, or hydrostatic pressure, do not cause MPs production. Singlet O 2 is generated by N 2 , Ar and He, which is linked to NADPH oxidase (NOX) activity. Progression of oxidative stress involves activation of nitric oxide synthase (NOS) leading to S-nitrosylation of cytosolic actin. Exposure to gases enhances actin filament turnover and associations between short actin filaments, NOS, vasodilator-stimulated phosphoprotein (VASP), focal adhesion kinase (FAK) and Rac1. Inhibition of NOS or NOX by chemical inhibitors or using platelets from mice lacking NOS2 or the gp91phox component of NOX diminish generation of reactive species, enhanced actin polymerization and MP generation by high pressure gases. We conclude that by initiating a sequence of progressive oxidative stress responses high pressure gases cause platelets to generate MPs. Copyright © 2016 Elsevier Inc. All rights reserved.
Numerical simulations of non-spherical bubble collapse.
Johnsen, Eric; Colonius, Tim
2009-06-01
A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.
Numerical simulations of non-spherical bubble collapse
JOHNSEN, ERIC; COLONIUS, TIM
2009-01-01
A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined. PMID:19756233
Wang, Juyong; Asou, Yoshinori; Sekiya, Ichiro; Sotome, Shinichi; Orii, Hisaya; Shinomiya, Kenichi
2006-05-01
To obtain more extensive bone formation in composites of porous ceramics and bone marrow stromal cells (BMSCs), we hypothesized that a low-pressure system would serve to facilitate the perfusion of larger number of BMSCs into the porous scaffold, enhancing bone formation within the composites. After culturing BMSCs in osteogenic medium, porous blocks of beta-tricalcium phosphate (beta-TCP) were soaked in the cell suspension. Composites of the block and BMSCs were put immediately into a vacuum desiccator. Low pressure was applied to the low pressure group, while controls were left at atmospheric pressure. Composites were incubated in vitro or subcutaneously implanted into syngeneic rats, then analyzed biologically and histologically. In the in vitro group, cell suspension volume, cell seeding efficiency, alkaline phosphatase (ALP) activity, and DNA content in the beta-TCP blocks were significantly higher in low pressure group than in the controls. Scanning electron microscopy (SEM) demonstrated that a greater number of cells covered the central parts of the composites in the low pressure group. ALP activity in the composites was increased at 3 and 6 weeks after implantation into rats. Histomorphometric analysis revealed more uniform and extensive bone formation in the low pressure group than in the controls. The application of low pressure during the seeding of BMSCs in perfusing medium into a porous scaffold is useful for tissue-engineered bone formation.
Magnetically Orchestrated Formation of Diamond at Lower Temperatures and Pressures
NASA Astrophysics Data System (ADS)
Little, Reginald B.; Lochner, Eric; Goddard, Robert
2005-01-01
Man's curiosity and fascination with diamonds date back to ancient times. The knowledge of the many properties of diamond is recorded during Biblical times. Antoine Lavoisier determined the composition of diamond by burning in O2 to form CO2. With the then existing awareness of graphite as carbon, the race began to convert graphite to diamond. The selective chemical synthesis of diamond has been pursued by Cagniard, Hannay, Moisson and Parson. On the basis of the thermodynamically predicted equilibrium line of diamond and graphite, P W Bridgman attempted extraordinary conditions of high temperature (>2200°C) and pressure (>100,000 atm) for the allotropic conversion of graphite to diamond. H T Hall was the first to successfully form bulk diamond by realizing the kinetic restrictions to Bridgman's (thermodynamic) high pressure high temperature direct allotropic conversion. Moreover, Hall identified catalysts for the faster kinetics of diamond formation. H M Strong determined the import of the liquid catalyst during Hall's catalytic synthesis. W G Eversole discovered the slow metastable low pressure diamond formation by pyrolytic chemical vapor deposition with the molecular hydrogen etching of the rapidly forming stable graphitic carbon. J C Angus determined the import of atomic hydrogen for faster etching for faster diamond growth at low pressure. S Matsumoto has developed plasma and hot filament technology for faster hydrogen and carbon radical generations at low pressure for faster diamond formation. However the metastable low pressure chemical vapor depositions by plasma and hot filament are prone to polycrystalline films. From Bridgman to Hall to Eversole, Angus and Matsumoto, much knowledge has developed of the importance of pressure, temperature, transition metal catalyst, liquid state of metal (metal radicals atoms) and the carbon radical intermediates for diamond synthesis. Here we advance this understanding of diamond formation by demonstrating the external magnetic organization of carbon, metal and hydrogen radicals for lower temperature and pressure synthesis. Here we show that strong static external magnetic field (>15 T) enhances the formation of single crystal diamond at lower pressure and even atmospheric pressure with implications for much better, faster high quality diamond formation by magnetization of current high pressure and temperature technology.
Formation of hexagonal and cubic ice during low-temperature growth
Thürmer, Konrad; Nie, Shu
2013-01-01
From our daily life we are familiar with hexagonal ice, but at very low temperature ice can exist in a different structure––that of cubic ice. Seeking to unravel the enigmatic relationship between these two low-pressure phases, we examined their formation on a Pt(111) substrate at low temperatures with scanning tunneling microscopy and atomic force microscopy. After completion of the one-molecule-thick wetting layer, 3D clusters of hexagonal ice grow via layer nucleation. The coalescence of these clusters creates a rich scenario of domain-boundary and screw-dislocation formation. We discovered that during subsequent growth, domain boundaries are replaced by growth spirals around screw dislocations, and that the nature of these spirals determines whether ice adopts the cubic or the hexagonal structure. Initially, most of these spirals are single, i.e., they host a screw dislocation with a Burgers vector connecting neighboring molecular planes, and produce cubic ice. Films thicker than ∼20 nm, however, are dominated by double spirals. Their abundance is surprising because they require a Burgers vector spanning two molecular-layer spacings, distorting the crystal lattice to a larger extent. We propose that these double spirals grow at the expense of the initially more common single spirals for an energetic reason: they produce hexagonal ice. PMID:23818592
Fresh Water Generation from Aquifer-Pressured Carbon Storage: Interim Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aines, R D; Wolery, T J; Hao, Y
2009-07-22
This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including nanofiltration (NF) and reverse osmosis (RO). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine would be reinjected into the formation at net volume reduction. This process provides additional storage space (capacity) in the aquifer, reduces operational risks by relieving overpressure in the aquifer, and provides a source of low-cost fresh watermore » to offset costs or operational water needs. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations for brines typical of CCS sites. Computer modeling is being used to evaluate processes in the aquifer, including the evolution of the pressure field. This progress report deals mainly with our geochemical modeling of high-salinity brines and covers the first six months of project execution (September, 2008 to March, 2009). Costs and implementation results will be presented in the annual report. The brines typical of sequestration sites can be several times more concentrated than seawater, requiring specialized modeling codes typical of those developed for nuclear waste disposal calculations. The osmotic pressure developed as the brines are concentrated is of particular concern, as are precipitates that can cause fouling of reverse osmosis membranes and other types of membranes (e.g., NF). We have now completed the development associated with tasks (1) and (2) of the work plan. We now have a contract with Perlorica, Inc., to provide support to the cost analysis and nanofiltration evaluation. We have also conducted several preliminary analyses of the pressure effect in the reservoir in order to confirm that reservoir pressure can indeed be used to drive the reverse osmosis process. Our initial conclusions from the work to date are encouraging: (1) The concept of aquifer-pressured RO to provide fresh water associated with carbon dioxide storage appears feasible. (2) Concentrated brines such as those found in Wyoming are amenable to RO treatment. We have looked at sodium chloride brines from the Nugget Formation in Sublette County. 20-25% removal with conventional methods is realistic; higher removal appears achievable with NF. The less concentrated sulfate-rich brines from the Tensleep Formation in Sublette County would support >80% removal with conventional RO. (3) Brines from other proposed sequestration sites can now be analyzed readily. An osmotic pressure curve appropriate to these brines can be used to evaluate cost and equipment specifications. (4) We have examined a range of subsurface brine compositions that is potentially pertinent to carbon sequestration and noted the principal compositional trends pertinent to evaluating the feasibility of freshwater extraction. We have proposed a general categorization for the feasibility of the process based on total dissolved solids (TDS). (5) Withdrawing pressurized brine can have a very beneficial effect on reservoir pressure and total available storage capacity. Brine must be extracted from a deeper location in the aquifer than the point of CO{sub 2} injection to prevent CO{sub 2} from migrating to the brine extraction well.« less
Examination of the accuracy of coding hospital-acquired pressure ulcer stages.
Coomer, Nicole M; McCall, Nancy T
2013-01-01
Pressure ulcers (PU) are considered harmful conditions that are reasonably prevented if accepted standards of care are followed. They became subject to the payment adjustment for hospitalacquired conditions (HACs) beginning October 1, 2008. We examined several aspects of the accuracy of coding for pressure ulcers under the Medicare Hospital-Acquired Condition Present on Admission (HAC-POA) Program. We used the "4010" claim format as a basis of reference to show some of the issues of the old format, such as the underreporting of pressure ulcer stages on pressure ulcer claims and how the underreporting varied by hospital characteristics. We then used the rate of Stage III and IV pressure ulcer HACs reported in the Hospital Cost and Utilization Project State Inpatient Databases data to look at the sensitivity of PU HAC-POA coding to the number of diagnosis fields. We examined Medicare claims data for FYs 2009 and 2010 to examine the degree that the presence of stage codes were underreported on pressure ulcer claims. We selected all claims with a secondary diagnosis code of pressure ulcer site (ICD-9 diagnosis codes 707.00-707.09) that were not reported as POA (POA of "N" or "U"). We then created a binary indicator for the presence of any pressure ulcer stage diagnosis code. We examine the percentage of claims with a diagnosis of a pressure ulcer site code with no accompanying pressure ulcer stage code. Our results point to underreporting of PU stages under the "4010" format and that the reporting of stage codes varied across hospital type and location. Further, our results indicate that under the "5010" format, a higher number of pressure ulcer HACs can be expected to be reported and we should expect to encounter a larger percentage of pressure ulcers incorrectly coded as POA under the new format. The combination of the capture of 25 diagnosis codes under the new "5010" format and the change from ICD-9 to ICD-10 will likely alleviate the observed underreporting of pressure ulcer HACs. However, as long as coding guidelines direct that Stage III and IV pressure ulcers be coded as POA, if a lower stage pressure ulcer was POA and progressed to a higher stage pressure ulcer during the admission, the acquisition of Stage III and IV pressure ulcers in the hospital will be underreported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.; Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049; Beeson, S.
Self-induced gaseous plasma is evaluated as active opening switch medium for pulsed high power microwave radiation. The self-induced plasma switch is investigated for N{sub 2} and Ar environments under pressure conditions ranging from 25 to 700 Torr. A multi-pass TE{sub 111} resonator is used to significantly reduce the delay time inherently associated with plasma generation. The plasma forms under the pulsed excitation of a 4 MW magnetron inside the central dielectric tube of the resonator, which isolates the inner atmospheric gas from the outer vacuum environment. The path from the power source to the load is designed such that the pulse passesmore » through the plasma twice with a 35 ns delay between these two passes. In the first pass, initial plasma density is generated, while the second affects the transition to a highly reflective state with as much as 30 dB attenuation. Experimental data revealed that virtually zero delay time may be achieved for N{sub 2} at 25 Torr. A two-dimensional fluid model was developed to study the plasma formation times for comparison with experimental data. The delay time predicted from this model agrees well with the experimental values in the lower pressure regime (error < 25%), however, due to filamentary plasma formation at higher pressures, simulated delay times may be underestimated by as much as 50%.« less
Experimental characterization of gasoline sprays under highly evaporating conditions
NASA Astrophysics Data System (ADS)
Khan, Muhammad Mahabat; Sheikh, Nadeem Ahmed; Khalid, Azfar; Lughmani, Waqas Akbar
2018-05-01
An experimental investigation of multistream gasoline sprays under highly evaporating conditions is carried out in this paper. Temperature increase of fuel and low engine pressure could lead to flash boiling. The spray shape is normally modified significantly under flash boiling conditions. The spray plumes expansion along with reduction in the axial momentum causes the jets to merge and creates a low-pressure area below the injector's nozzle. These effects initiate the collapse of spray cone and lead to the formation of a single jet plume or a big cluster like structure. The collapsing sprays reduces exposed surface and therefore they last longer and subsequently penetrate more. Spray plume momentum increase, jet plume reduction and spray target widening could delay or prevent the closure condition and limit the penetration (delayed formation of the cluster promotes evaporation). These spray characteristics are investigated experimentally using shadowgraphy, for five and six hole injectors, under various boundary conditions. Six hole injectors produce more collapsing sprays in comparison to five hole injector due to enhanced jet to jet interactions. The spray collapse tendency reduces with increase in injection pressure due high axial momentum of spray plumes. The spray evaporation rates of five hole injector are observed to be higher than six hole injectors. Larger spray cone angles of the six hole injectors promote less penetrating and less collapsing sprays.
The preplasma effect on the properties of the shock wave driven by a fast electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Llor Aisa, E.; Ribeyre, X.; Tikhonchuk, V. T.
2016-08-15
Strong shock wave generation by a mono-energetic fast electron beam in a plasma with an increasing density profile is studied theoretically. The proposed analytical model describes the shock wave characteristics for a homogeneous plasma preceded by a low density precursor. The shock pressure and the time of shock formation depend on the ratio of the electron stopping length to the preplasma areal density and on the initial energy of injected electrons. The conclusions of theoretical model are confirmed in numerical simulations.
Large-scale galaxy flow from a non-gravitational impulse
NASA Technical Reports Server (NTRS)
Hogan, Craig J.; Kaiser, Nick
1989-01-01
A theory is presented describing linear perturbations of an expanding universe containing multiple, independently perturbed, collisionless, gravitationally coupled constituents. Solutions are found in the limit where one initially unperturbed component dominates the total density. The theory is applied to perturbations generated by a nongravitational process in one or more of the light components, as would occur in explosive or radiation-pressure-instability theories of galaxy formation. The apparent dynamical density parameter and correlations between density and velocity amplitude for various populations, are evaluated as a function of cosmic scale factor.
Radiation Induced Incorporation of CO in Pure and Aqueous Methanol
NASA Astrophysics Data System (ADS)
Jung, Hak-Jin; Getoff, Nikola; Lorbeer, Eberhard
1994-05-01
Pure and aqueous methanol were used for radiation induced incorporation of CO at elevated pressure (up to 15 bar). The initial yields (Gi) of the main products in pure methanol under 15 bar CO and 1 bar N2O were found to be: Gi(formaldehyde) = 3.80 and Gi(glycolic aldehyde) = 2.0. For aqueous (10-2 mol · dm-3) methanol under 15 bar CO (dose: 0.557 kGy, pH = 2): the yields were G(formaldehyde) = 5.44, G(glycolic aldehyde) = 4.0 and G(oxalic acid) = 7.7. At pH = 7 the yields were essentially lower, namely: G(formaldehyde) = 3.2, G(glycolic aldehyde) = 2.0, G(formate) = 3.8 and G(oxalate) = 5.0. Probable reaction-mechanisms for the product formation are discussed.
A possible formation mechanism of rampart-like ejecta pattern in a laboratory
NASA Astrophysics Data System (ADS)
Suzuki, A.; Kadono, T.; Nakamura, A. M.; Arakawa, M.; Wada, K.; Yamamoto, S.
2011-12-01
The ejecta morphologies around impact craters represent highly diverse appearance on the surface of solid bodies in our Solar System. It is considered that the varied ejecta morphologies result from the environments such as the atmospheric pressure, the volatile content in the subsurface, because they affect the emplacement process of the ejecta. Clarifying the relationships between the ejecta morphologies and the formation processes and environments could constrain the ancient surface environment and the evolution of the planets. We have investigated the ejecta patterns around the impact craters which formed on a glass beads layer in a laboratory, and found that the patterns depend on impact velocity, atmospheric pressure, and initial state of packing of the target [Suzuki et al., 2010, JpGU abstract]. Now, we focus on one of the ejecta patterns which has a petal-like (or sometimes concentric) ridges on the distal edge of the continuous ejecta. This ejecta pattern looks very similar to the rampart ejecta morphology observed around Martian impact craters [e.g. Barlow et al., 2000]. The experiments are conducted with the small light gas gun placed in Kobe University, Japan. The projectile is a cylinder with a diameter of 10 mm and a height of 10 mm, and is made of aluminum, nylon, or stainless. The target is a layer of glass beads (nearly uniform diameter) in a tub with ~28 cm in diameter. The bulk density is about 1.7 g/cm^3. The following three parameters are varied: 1) the diameter of the target glass beads (50, 100, 420 microns), 2) the ambient atmospheric pressure in the chamber (from ~500 Pa to atmospheric pressure), 3) the impact velocity of the projectile (from a few to ~120 m/s). In our experiments, the rampart-like ridged patterns are observed within the following conditions: 1) the diameter of the target glass beads is 50 and 100 microns, 2) the ambient pressure in the chamber is higher than ~10^4 Pa, and 3) the impact velocity is higher than 16 m/s. Eventually, we have succeeded to capture the formation of the rampart-like ridges with high-speed video camera. Our experiments clarify that the rampart-like ridges are formed by the thin, radial ejecta flow that originates around the crater rim, other than the sedimentation of ejecta decelerated by the ambient atmosphere. A wake of the projectile going through the atmosphere might be responsible for the crater rim collapsed, which results in initiating the radial ejecta flow. Additionally, it is found that erodible surface (i.e. a particle layer in this case) is essential to produce the rampart-like ridges.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-09-01
Thermal and thermomechanical analyses of a conceptual radioactive waste repository containing commercial and defense high-level wastes and spent fuel have been performing using finite element models. The thermal and thermomechanical responses of the waste package, disposal room, and repository regions were evaluated. four bedded salt formations, in Davis and Lavender Canyons in the Paradox Basin of southeastern Utah and in Deaf Smith and Swisher counties in the Permian Basin of northwestern Texas, and three salt domes, Vacherie Dome in northwestern Louisiana and Richton and Cypress Creek Domes in southeastern Mississippi, located in the Gulf Coast Basin, were examined. In themore » Paradox Basin, the pressure exerted on the waste package overpack was much greater than the initial in situ stress. The disposal room closure was less than 10 percent after 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Permian Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. Surface uplift was nominal, and no significant thermomechanical perturbation of the aquitards was observed. In the Gulf Coast Basin, the pressure exerted on the waste package overpack was greater than the initial in situ stress. The disposal room closures were greater than 10 percent in less than 5 years. No significant thermomechanical perturbation of the overlying geology was observed. 40 refs., 153 figs., 32 tabs.« less
Pletincx, Sven; Trotochaud, Lena; Fockaert, Laura-Lynn; Mol, Johannes M. C.; Head, Ashley R.; Karslıoğlu, Osman; Bluhm, Hendrik; Terryn, Herman; Hauffman, Tom
2017-01-01
Probing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in the Kretschmann geometry (ATR-FTIR Kretschmann). When water is dosed in the APXPS chamber up to 5 Torr (~28% relative humidity), an increase in the amount of ionic bonds at the interface is observed. To confirm our APXPS interpretation, complementary ATR-FTIR Kretschmann experiments on a similar model system, which is exposed to an aqueous electrolyte, are conducted. These spectra demonstrate that water leads to an increased wet adhesion through increased ionic bond formation. PMID:28327587
Challenges to Standardization: A Case Study Using Coastal and Deep-Ocean Water Level Data
NASA Astrophysics Data System (ADS)
Sweeney, A. D.; Stroker, K. J.; Mungov, G.; McLean, S. J.
2015-12-01
Sea levels recorded at coastal stations and inferred from deep-ocean pressure observations at the seafloor are submitted for archive in multiple data and metadata formats. These formats include two forms of schema-less XML and a custom binary format accompanied by metadata in a spreadsheet. The authors report on efforts to use existing standards to make this data more discoverable and more useful beyond their initial use in detecting tsunamis. An initial review of data formats for sea level data around the globe revealed heterogeneity in presentation and content. In the absence of a widely-used domain-specific format, we adopted the general model for structuring data and metadata expressed by the Network Common Data Form (netCDF). netCDF has been endorsed by the Open Geospatial Consortium and has the advantages of small size when compared to equivalent plain text representation and provides a standard way of embedding metadata in the same file. We followed the orthogonal time-series profile of the Climate and Forecast discrete sampling geometries as the convention for structuring the data and describing metadata relevant for use. We adhered to the Attribute Convention for Data Discovery for capturing metadata to support user search. Beyond making it possible to structure data and metadata in a standard way, netCDF is supported by multiple software tools in providing programmatic cataloging, access, subsetting, and transformation to other formats. We will describe our successes and failures in adhering to existing standards and provide requirements for either augmenting existing conventions or developing new ones. Some of these enhancements are specific to sea level data, while others are applicable to time-series data in general.
Atmospheric Pressure Plasma Induced Sterilization and Chemical Neutralization
NASA Astrophysics Data System (ADS)
Garate, Eusebio; Evans, Kirk; Gornostaeva, Olga; Alexeff, Igor; Lock Kang, Weng; Wood, Thomas K.
1998-11-01
We are studying chemical neutralization and surface decontamination using atmospheric pressure plasma discharges. The plasma is produced by corona discharge from an array of pins and a ground plane. The array is constructed so that various gases, like argon or helium, can be flowed past the pins where the discharge is initiated. The pin array can be biased using either DC, AC or pulsed discharges. Results indicate that the atmospheric plasma is effective in sterilizing surfaces with biological contaminants like E-coli and bacillus subtilus cells. Exposure times of less than four minutes in an air plasma result in a decrease in live colony counts by six orders of magnitude. Greater exposure times result in a decrease of live colony counts of up to ten orders of magnitude. The atmospheric pressure discharge is also effective in decomposing organic phosphate compounds that are simulants for chemical warfare agents. Details of the decomposition chemistry, by-product formation, and electrical energy consumption of the system will be discussed.
Jet plume injection and combustion system for internal combustion engines
Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.
1993-12-21
An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.
Jet plume injection and combustion system for internal combustion engines
Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.
1993-01-01
An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.
Fabrication of stainless steel clad tubing. [gas pressure bonding
NASA Technical Reports Server (NTRS)
Kovach, C. W.
1978-01-01
The feasibility of producing stainless steel clad carbon steel tubing by a gas pressure bonding process was evaluated. Such a tube product could provide substantial chromium savings over monolithic stainless tubing in the event of a serious chromium shortage. The process consists of the initial assembly of three component tubesets from conventionally produced tubing, the formation of a strong metallurgical bond between the three components by gas pressure bonding, and conventional cold draw and anneal processing to final size. The quality of the tubes produced was excellent from the standpoint of bond strength, mechanical, and forming properties. The only significant quality problem encountered was carburization of the stainless clad by the carbon steel core which can be overcome by further refinement through at least three different approaches. The estimated cost of clad tubing produced by this process is greater than that for monolithic stainless tubing, but not so high as to make the process impractical as a chromium conservation method.
A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation
NASA Astrophysics Data System (ADS)
Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.
2012-07-01
A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.
Influence of temperature on methane hydrate formation.
Zhang, Peng; Wu, Qingbai; Mu, Cuicui
2017-08-11
During gas hydrate formation process, a phase transition of liquid water exists naturally, implying that temperature has an important influence on hydrate formation. In this study, methane hydrate was formed within the same media. The experimental system was kept at 1.45, 6.49, and 12.91 °C respectively, and then different pressurization modes were applied in steps. We proposed a new indicator, namely the slope of the gas flow rates against time (dν g /dt), to represent the intrinsic driving force for hydrate formation. The driving force was calculated as a fixed value at the different stages of formation, including initial nucleation/growth, secondary nucleation/growth, and decay. The amounts of gas consumed at each stage were also calculated. The results show that the driving force during each stage follows an inverse relation with temperature, whereas the amount of consumed gas is proportional to temperature. This opposite trend indicates that the influences of temperature on the specific formation processes and final amounts of gas contained in hydrate should be considered separately. Our results also suggest that the specific ambient temperature under which hydrate is formed should be taken into consideration, when explaining the formation of different configurations and saturations of gas hydrates in natural reservoirs.
Analytical and Numerical Models of Pressurization for CO2 Storage in Deep Saline Formations
NASA Astrophysics Data System (ADS)
Wildgust, N.; Cavanagh, A.
2010-12-01
Deep saline formations are expected to store gigatonnes of CO2 over the coming decades, making a significant contribution to greenhouse gas mitigation. At present, our experience of deep saline formation storage is limited to a small number of demonstration projects that have successfully injected megatonnes of captured CO2. However, concerns have been raised over pressurization, and related brine displacement, in deep saline formations, given the anticipated scale of future storage operations. Whilst industrial-scale demonstration projects such as Sleipner and In Salah have not experienced problems, generic flow models have indicated that, in some cases, pressure may be an issue. The problem of modeling deep saline formation pressurization has been approached in a number of different ways by researchers, with published analytical and numerical solutions showing a wide range of outcomes. The divergence of results (either supporting or negating the pressurization issue) principally reflects the a priori choice of boundary conditions. These approaches can be summed up as either 'open' or 'closed': a) open system models allow the formation pressure to dissipate laterally, resulting in reasonable storage scenarios; b) closed system models predict pressurization, resulting in a loss of injectivity and/or storage formation leakage. The latter scenario predicts that storage sites will commonly fail to accommodate injected CO2 at a rate sufficient to handle routine projects. Our models aim to demonstrate that pressurization, and the related brine displacement issue, need to be addressed at a regional scale with geologically accurate boundary conditions. Given that storage formations are unlikely to have zero-flow boundaries (closed system assumption), the boundary contribution to pressure relief from low permeability shales may be significant. At a field scale, these shales are effectively perfect seals with respect to multiphase flow, but are open with respect to single phase flow and pressure dissipation via brine displacement at a regional scale. This is sometimes characterized as a 'semi-closed' system. It follows that the rate at which pressure can be dissipated (and CO2 injected) is highly sensitive to the shale permeability. A common range from sub-millidarcy (10-17 m2) to sub-nanodarcy (10-22 m2) is considered, and the empirical relationships of permeability with respect to porosity and threshold pressure are reviewed in light of the regional scale of CO2 storage in deep saline formations. Our model indicates that a boundary permeability of about a microdarcy (10-18 m2) is likely to provide sufficient pressure dissipation via brine displacement to allow for routine geological storage. The models also suggest that nanodarcy shales (10-21 m2) will result in significant pressurization. There is regional evidence, from the North Sea, that typical shale permeabilities at depths associated with CO2 storage (1-3 km) are likely to favor storage, relegating pressurization to a manageable issue.
Patomchaiviwat, Vipaluk; Paeratakul, Ornlaksana; Kulvanich, Poj
2008-01-01
Formation of inhalable microparticles containing rifampicin and poly(L-lactide) (L-PLA) by using supercritical anti-solvent process (SAS) was investigated. The solutions of drug and polymer in methylene chloride were sprayed into supercritical carbon dioxide. The effect of polymer content and operating conditions, temperature, pressure, carbon dioxide molar fraction, and concentration of solution, on product characteristics were studied. The prepared microparticles were characterized with respect to their morphology, particle size and size distribution, drug content, drug loading efficiency, and drug release characteristic. Discrete, spherical microparticles were obtained at high polymer:drug ratios of 7:3, 8:2, and 9:1. The shape of L-PLA microparticles became more irregular and agglomerated with decreasing polymer content. Microparticles with polymer content higher than 60% exhibited volumetric mean diameter less than 5 microm, but percent drug loading efficiency was relatively low. Drug-loaded microparticles containing 70% and 80% L-PLA showed a sustainable drug release property without initial burst release. Operating temperature level influenced on mean size and size distribution of microparticles. The operating pressure and carbon dioxide molar fraction in the range investigated were unlikely to have an effect on microparticle formation. An increasing concentration of feed solution provided larger size microparticles. Rifampicin-loaded L-PLA microparticles could be produced by SAS in a size range suitable for dry powder inhaler formulation.
Sub 2 nm Particle Characterization in Systems with Aerosol Formation and Growth
NASA Astrophysics Data System (ADS)
Wang, Yang
Aerosol science and technology enable continual advances in material synthesis and atmospheric pollutant control. Among these advances, one important frontier is characterizing the initial stages of particle formation by real time measurement of particles below 2 nm in size. Sub 2 nm particles play important roles by acting as seeds for particle growth, ultimately determining the final properties of the generated particles. Tailoring nanoparticle properties requires a thorough understanding and precise control of the particle formation processes, which in turn requires characterizing nanoparticle formation from the initial stages. The knowledge on particle formation in early stages can also be applied in quantum dot synthesis and material doping. This dissertation pursued two approaches in investigating incipient particle characterization in systems with aerosol formation and growth: (1) using a high-resolution differential mobility analyzer (DMA) to measure the size distributions of sub 2 nm particles generated from high-temperature aerosol reactors, and (2) analyzing the physical and chemical pathways of aerosol formation during combustion. Part. 1. Particle size distributions reveal important information about particle formation dynamics. DMAs are widely utilized to measure particle size distributions. However, our knowledge of the initial stages of particle formation is incomplete, due to the Brownian broadening effects in conventional DMAs. The first part of this dissertation studied the applicability of high-resolution DMAs in characterizing sub 2 nm particles generated from high-temperature aerosol reactors, including a flame aerosol reactor (FLAR) and a furnace aerosol reactor (FUAR). Comparison against a conventional DMA (Nano DMA, Model 3085, TSI Inc.) demonstrated that the increased sheath flow rates and shortened residence time indeed greatly suppressed the diffusion broadening effect in a high-resolution DMA (half mini type). The incipient particle size distributions were discrete, suggesting the formation of stable clusters that may be intermediate phases between initial chemical reactions and downstream particle growth. The evolution of incipient cluster size distributions further provided information on the gaseous precursor reaction kinetics, which matched well with the data obtained through other techniques. Part 2. The size distributions and their evolution measured by the DMAs help explain the physical pathways of aerosol formation. The chemical analysis of the incipient particles is an important counterpart to the existing characterization method. The chemical compositions of charged species were measured online with an atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF). The tandem arrangement of the high-resolution DMA and the APi-TOF realized the simultaneous measurement of the mobility and the mass of combustion-generated natively charged particles, which enabled their chemical and physical formation pathways to be derived. The results showed that the initial stages of particle formation were strongly influenced by chemically ionized species during combustion, and that incipient particles composed of pure oxides did not exist. The effective densities of the incipient particles were much lower than those of bulk materials, due to their amorphous structures and different chemical compositions. Measuring incipient particles with high-resolution DMAs is limited because a DMA classifies charged particles only, while the charging characteristics of sub 2 nm particles are not well understood. The charge fraction of combustion-generated incipient particles was measured by coupling a charged particle remover and a condensation particle counter. A high charge fraction was observed, confirming the strong interaction among chemically ionized species and formed particles. The combustion system was modeled by using a unimodal aerosol dynamics model combined with Fuchs' charging theory, and showed that the charging process indeed affected particle formation dynamics during combustion.
Carver, S E; Heath, C A
1999-11-05
Equine articular chondrocytes, embedded within a polyglycolic acid nonwoven mesh, were cultured with various combinations of intermittent pressure, fluid flow, and mixing to examine the effects of different physical stimuli on neochondrogenesis from young cells. The cell/polymer constructs were cultured first in 125 ml spinner flasks for 1, 2, or 4 weeks and then in a perfusion system with intermittent pressure for a total of up to 6 weeks. Additional constructs were either cultured for all 6 weeks in the spinner flasks or for 1 week in spinners followed by 5 weeks in the perfusion system without intermittent pressure. Tissue constructs cultivated for 2 or 4 weeks in spinner flasks followed by perfusion with intermittent pressure had significantly higher concentrations of both sulfated glycosaminoglycan and collagen than constructs cultured entirely in spinners or almost entirely in the pressure/perfusion system. Initial cultivation in the spinner flasks, with turbulent mixing, enhanced both cell attachment and early development of the extracellular matrix. Subsequent culture with perfusion and intermittent pressure appeared to accelerate matrix formation. While the correlation was much stronger in the pressurized constructs, the compressive modulus was directly proportional to the concentration of sulfated glycosaminoglycan in all physically stressed constructs. Constructs that were not stressed beyond the 1-week seeding period lost mechanical integrity upon harvest, suggesting that physical stimulation, particularly with intermittent pressure, of immature tissue constructs during their development may contribute to their ultimate biomechanical functionality. Copyright 1999 John Wiley & Sons, Inc.
Ge, Ni-Na; Wei, Yong-Kai; Ji, Guang-Fu; Chen, Xiang-Rong; Zhao, Feng; Wei, Dong-Qing
2012-11-26
We have performed quantum-based multiscale simulations to study the initial chemical processes of condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock wave loading. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. The results show that the initial decomposition of shocked HMX is triggered by the N-NO(2) bond breaking under the low velocity impact (8 km/s). As the shock velocity increases (11 km/s), the homolytic cleavage of the N-NO(2) bond is suppressed under high pressure, the C-H bond dissociation becomes the primary pathway for HMX decomposition in its early stages. It is accompanied by a five-membered ring formation and hydrogen transfer from the CH(2) group to the -NO(2) group. Our simulations suggest that the initial chemical processes of shocked HMX are dependent on the impact velocity, which gain new insights into the initial decomposition mechanism of HMX upon shock loading at the atomistic level, and have important implications for understanding and development of energetic materials.
40 CFR 144.55 - Corrective action.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the case of Class II wells operating over the fracture pressure of the injection formation, all known wells within the area of review penetrating formations affected by the increase in pressure. For such... injection until all required corrective action has been taken. (3) Injection pressure limitation. The...
40 CFR 144.55 - Corrective action.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the case of Class II wells operating over the fracture pressure of the injection formation, all known wells within the area of review penetrating formations affected by the increase in pressure. For such... injection until all required corrective action has been taken. (3) Injection pressure limitation. The...
40 CFR 144.55 - Corrective action.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the case of Class II wells operating over the fracture pressure of the injection formation, all known wells within the area of review penetrating formations affected by the increase in pressure. For such... injection until all required corrective action has been taken. (3) Injection pressure limitation. The...
40 CFR 144.55 - Corrective action.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the case of Class II wells operating over the fracture pressure of the injection formation, all known wells within the area of review penetrating formations affected by the increase in pressure. For such... injection until all required corrective action has been taken. (3) Injection pressure limitation. The...
Pore Pressure and Stress Distributions Around a Hydraulic Fracture in Heterogeneous Rock
NASA Astrophysics Data System (ADS)
Gao, Qian; Ghassemi, Ahmad
2017-12-01
One of the most significant characteristics of unconventional petroleum bearing formations is their heterogeneity, which affects the stress distribution, hydraulic fracture propagation and also fluid flow. This study focuses on the stress and pore pressure redistributions during hydraulic stimulation in a heterogeneous poroelastic rock. Lognormal random distributions of Young's modulus and permeability are generated to simulate the heterogeneous distributions of material properties. A 3D fully coupled poroelastic model based on the finite element method is presented utilizing a displacement-pressure formulation. In order to verify the model, numerical results are compared with analytical solutions showing excellent agreements. The effects of heterogeneities on stress and pore pressure distributions around a penny-shaped fracture in poroelastic rock are then analyzed. Results indicate that the stress and pore pressure distributions are more complex in a heterogeneous reservoir than in a homogeneous one. The spatial extent of stress reorientation during hydraulic stimulations is a function of time and is continuously changing due to the diffusion of pore pressure in the heterogeneous system. In contrast to the stress distributions in homogeneous media, irregular distributions of stresses and pore pressure are observed. Due to the change of material properties, shear stresses and nonuniform deformations are generated. The induced shear stresses in heterogeneous rock cause the initial horizontal principal stresses to rotate out of horizontal planes.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.
2014-04-01
Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yujun, E-mail: shiy@ucalgary.ca; Tong, Ling; Mulmi, Suresh
Metal filament plays a key role in the technique of catalytic chemical vapor deposition (Cat-CVD) as it serves as a catalyst in dissociating the source gas to form reactive species. These reactive species initiate the gas-phase reaction chemistry and final thin film and nanostructure formation. At the same time, they also react with the metal itself, leading to the formation of metal alloys and other deposits. The deposits on the tungsten filaments when exposed to 1,1-dimethylsilacyclobutane (DMSCB), a single-source precursor for silicon carbide thin films, in the process of Cat-CVD were studied in this work. It has been demonstrated thatmore » a rich variety of deposits, including tungsten carbides (W{sub 2}C and WC), tungsten silicide (W{sub 5}Si{sub 3}), silicon carbide, amorphous carbon, and graphite, form on the W filament surfaces. The structural and morphological changes in the tungsten filaments depend strongly on the DMSCB pressure and filament temperature. At 1000 and 2000 °C, the formation of WC and W{sub 2}C dominates. In addition, a thin amorphous carbon layer has been found at 1500 °C with the 0.12 and 0.24 Torr of DMSCB and a lower temperature of 1200 °C with the 0.48 Torr of DMSCB. An increase in the DMSCB sample pressure gives rise to higher Si and C contents. As a result, the formation of SiC and W{sub 5}Si{sub 3} has been observed with the two high-pressure DMSCB samples (i.e., 0.24 and 0.48 Torr). The rich decomposition chemistry of DMSCB on the W surfaces is responsible for the extensive changes in the structure of the W filament, providing support for the close relationship between the gas-phase decomposition chemistry and the nature of alloy formation on the metal surface. The understanding of the structural changes obtained from this work will help guide the development of efficient methods to solve the filament aging problem in Cat-CVD and also to achieve a controllable deposition process.« less
Triggering active galactic nuclei in galaxy clusters
NASA Astrophysics Data System (ADS)
Marshall, Madeline A.; Shabala, Stanislav S.; Krause, Martin G. H.; Pimbblet, Kevin A.; Croton, Darren J.; Owers, Matt S.
2018-03-01
We model the triggering of active galactic nuclei (AGN) in galaxy clusters using the semi-analytic galaxy formation model SAGE. We prescribe triggering methods based on the ram pressure galaxies experience as they move throughout the intracluster medium, which is hypothesized to trigger star formation and AGN activity. The clustercentric radius and velocity distribution of the simulated active galaxies produced by these models are compared with those of AGN and galaxies with intense star formation from a sample of low-redshift relaxed clusters from the Sloan Digital Sky Survey. The ram pressure triggering model that best explains the clustercentric radius and velocity distribution of these observed galaxies has AGN and star formation triggered if 2.5 × 10-14 Pa < Pram < 2.5 × 10-13 Pa and Pram > 2Pinternal; this is consistent with expectations from hydrodynamical simulations of ram-pressure-induced star formation. Our results show that ram pressure is likely to be an important mechanism for triggering star formation and AGN activity in clusters.
Ozone formation in pulsed SDBD in a wide pressure range
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey; Nudnova, Maryia; mipt Team
2011-10-01
Ozone concentration in surface anode-directed DBD for wide pressure range (150 - 1300 torr) was experimentally measured. Voltage and pressure effect were investigated. Reduced electric field was measured for anode-directed and cathode-directed SDBD. E/n values in cathode-directed SDBD is higher than in cathode-directed on 50 percent at atmospheric pressure. E/n value increase leads to decrease the rate of oxygen dissociation and Ozone formation at lower pressures. Radiating region thickness of sliding discharge was measured. Typical thickness of radiating zone is 0.4-1.0 mm within pressure range 220-740 torr. It was shown that high-voltage pulsed nanosecond discharge due to high E/n value produces less Ozone with compare to other discharges. Kinetic model was proposed to describe Ozone formation in the pulsed nanosecond SDBD.
40 CFR 144.55 - Corrective action.
Code of Federal Regulations, 2010 CFR
2010-07-01
... injection zone does not exceed hydrostatic pressure at the site of any improperly completed or abandoned... the case of Class II wells operating over the fracture pressure of the injection formation, all known wells within the area of review penetrating formations affected by the increase in pressure. For such...
Kim, Steven; Heller, James; Iqbal, Zohora; Kant, Rishi; Kim, Eun Jung; Durack, Jeremy; Saeed, Maythem; Do, Loi; Hetts, Steven; Wilson, Mark; Brakeman, Paul; Fissell, William H.; Roy, Shuvo
2015-01-01
Silicon nanopore membranes (SNM) with compact geometry and uniform pore size distribution have demonstrated a remarkable capacity for hemofiltration. These advantages could potentially be used for hemodialysis. Here we present an initial evaluation of the SNM’s mechanical robustness, diffusive clearance, and hemocompatibility in a parallel plate configuration. Mechanical robustness of the SNM was demonstrated by exposing membranes to high flows (200ml/min) and pressures (1,448mmHg). Diffusive clearance was performed in an albumin solution and whole blood with blood and dialysate flow rates of 25ml/min. Hemocompatibility was evaluated using scanning electron microscopy and immunohistochemistry after 4-hours in an extra-corporeal porcine model. The pressure drop across the flow cell was 4.6mmHg at 200ml/min. Mechanical testing showed that SNM could withstand up to 775.7mmHg without fracture. Urea clearance did not show an appreciable decline in blood versus albumin solution. Extra-corporeal studies showed blood was successfully driven via the arterial-venous pressure differential without thrombus formation. Bare silicon showed increased cell adhesion with a 4.1 fold increase and 1.8 fold increase over polyethylene-glycol (PEG)-coated surfaces for tissue plasminogen factor (t-PA) and platelet adhesion (CD-41), respectively. These initial results warrant further design and development of a fully scaled SNM-based parallel plate dialyzer for renal replacement therapy. PMID:26692401
NASA Astrophysics Data System (ADS)
Rubie, D. C.; Gessmann, C. K.; Frost, D. J.
2003-04-01
Knowledge of the solubility of oxygen in liquid iron enables the partitioning of oxygen between metal and silicates and the oxidation state of residual silicates to be constrained during core formation in planetary bodies. We have determined oxygen solubility experimentally at 5--23 GPa, 2100--2700 K and oxygen fugacities 1--4 log units below the iron-wüstite buffer in samples of liquid Ni-Fe alloy contained in magnesiowüstite capsules using a multianvil apparatus. Results show that oxygen solubility increases with increasing temperature but decreases slightly with increasing pressure over the range of experimental conditions, at constant oxygen fugacity. Using an extrapolation of the results to higher pressures and temperatures, we have modeled the geochemical consequences of metal-silicate separation in magma oceans in order to explain the contrasting FeO contents of the mantles of Earth and Mars. We assume that both Earth and Mars accreted originally from material with a chondritic composition; because the initial oxidation state is uncertain, we vary this parameter by defining the initial oxygen content. Two metal-silicate fractionation models are considered: (1) Metal and silicate are allowed to equilibrate at fictive conditions that approximate the pressure and temperature at the base of a magma ocean. (2) The effect of settling Fe droplets in a magma ocean is determined using a simple polybaric metal-silicate fractionation model. We assume that the temperature at the base of a magma ocean is close to the peridotite liquidus. In the case of Earth, high temperatures in a magma ocean with a depth >1200 km would have resulted in significant quantities of oxygen dissolving in the liquid metal with the consequent extraction of FeO from the residual silicate. In contrast, on Mars, even if the magma ocean extended to the depth of the current core-mantle boundary, temperatures would not have been sufficiently high for oxygen solubility in liquid metal to be significant. The results show that Earth and Mars could have accreted from similar material, with an initial FeO content around 18 wt%. On Earth, oxygen was extracted from silicates by the segregating metal during core formation, leaving the mantle with its present FeO content of ˜8 wt%. On Mars, in contrast, the segregating metal extracted little or no oxygen and left the FeO content unaltered at ˜18 wt%. A consequence of this model is that oxygen should be an important light element in the Earth's core but not in the Martian core.
Thermodynamic Calculations of Hydrogen-Oxygen Detonation Parameters for Various Initial Pressures
NASA Technical Reports Server (NTRS)
Bollinger, Loren E.; Edse, Rudolph
1961-01-01
Composition, temperature, pressure and density behind a stable detonation wave and its propagation rate have been calculated for seven hydrogen-oxygen mixture at 1, 5, 25 and 100 atm initial pressure, and at an initial temperature of 40C. For stoichiometric mixtures that calculations also include an initial temperature of 200C. According to these calculations the detonation velocities of hydrogen-oxygen mixtures increase with increasing initial pressure, but decrease slightly when the initial temperature is raised from 40 to 200 C. The calculated detonation velocities agree satisfactorily with values determined experimentally. These values will be published in the near future.
Gamez-Garcia, Victoria G; Galano, Annia
2017-10-05
A massive search for chemical routes leading to methanol formation in gas phase has been conducted using computational chemistry, at the CBS-QB3 level of theory. The calculations were performed at five different temperatures (100, 80, 50, 20, and 10 K) and at three pressures (0.1, 0.01, and 0.001 atm) for each temperature. The search was focused on identifying reactions with the necessary features to be viable in the interstellar medium (ISM). A searching strategy was applied to that purpose, which allowed to reduce an initial set of 678 possible reactions to a subset of 11 chemical routes that are recommended, for the first time, as potential candidates for contributing to methanol formation in the gas phase of the ISM. They are all barrier-less, and thus they are expected to take place at collision rates. Hopefully, including these reactions in the currently available models, for the gas-phase methanol formation in the ISM, would help improving the predicted fractional abundance of this molecule in dark clouds. Further investigations, especially those dealing with grain chemistry and electronic excited states, would be crucial to get a complete picture of the methanol formation in the ISM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hawthorne, Steven B.; Miller, David J.; Jin, Lu
Here, we report a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2-4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO 2, methane, and ethane as well as 0-100% mole ratios of methane/CO 2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO 2, while methane MMPs were ca. double or triple those with CO 2. MMPs with mixed methane/CO 2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with mole percent methane in ethane, with a little increase in MMP until ca. 20 mol % methane in ethane.« less
Hawthorne, Steven B.; Miller, David J.; Jin, Lu; ...
2016-07-10
Here, we report a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2-4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO 2, methane, and ethane as well as 0-100% mole ratios of methane/CO 2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO 2, while methane MMPs were ca. double or triple those with CO 2. MMPs with mixed methane/CO 2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with mole percent methane in ethane, with a little increase in MMP until ca. 20 mol % methane in ethane.« less
Humidity influence on gas-particle phase partitioning of α-pinene + O3 secondary organic aerosol
NASA Astrophysics Data System (ADS)
Prisle, N. L.; Engelhart, G. J.; Bilde, M.; Donahue, N. M.
2010-01-01
Water vapor uptake to particles could potentially affect organic-aerosol mass in three ways: first, water in the organic phase could reduce organic (equilibrium) partial pressures according to Raoult's law; second, an aqueous phase could attract water soluble organics according to Henry's law; finally, deliquescence of inorganic particle cores could mix the organic and inorganic particle phases, significantly diluting the organics and again reducing organic partial pressures according to Raoult's law. We present experiments using initially dry α-pinene + ozone secondary organic aerosol (SOA) on ammonium sulfate (AS) seeds at atmospheric concentrations in a smog chamber. After SOA formation, the chamber relative humidity is increased steadily by addition of steam to near 100%. Little subsequent SOA mass growth is observed, suggesting that none of these potential effects play a strong role in this system.
Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction
2014-01-01
The dynamics of the graphene–catalyst interaction during chemical vapor deposition are investigated using in situ, time- and depth-resolved X-ray photoelectron spectroscopy, and complementary grand canonical Monte Carlo simulations coupled to a tight-binding model. We thereby reveal the interdependency of the distribution of carbon close to the catalyst surface and the strength of the graphene–catalyst interaction. The strong interaction of epitaxial graphene with Ni(111) causes a depletion of dissolved carbon close to the catalyst surface, which prevents additional layer formation leading to a self-limiting graphene growth behavior for low exposure pressures (10–6–10–3 mbar). A further hydrocarbon pressure increase (to ∼10–1 mbar) leads to weakening of the graphene–Ni(111) interaction accompanied by additional graphene layer formation, mediated by an increased concentration of near-surface dissolved carbon. We show that growth of more weakly adhered, rotated graphene on Ni(111) is linked to an initially higher level of near-surface carbon compared to the case of epitaxial graphene growth. The key implications of these results for graphene growth control and their relevance to carbon nanotube growth are highlighted in the context of existing literature. PMID:25188018
Laser-driven formation of a high-pressure phase in amorphous silica.
Salleo, Alberto; Taylor, Seth T; Martin, Michael C; Panero, Wendy R; Jeanloz, Raymond; Sands, Timothy; Génin, François Y
2003-12-01
Because of its simple composition, vast availability in pure form and ease of processing, vitreous silica is often used as a model to study the physics of amorphous solids. Research in amorphous silica is also motivated by its ubiquity in modern technology, a prominent example being as bulk material in transmissive and diffractive optics for high-power laser applications such as inertial confinement fusion (ICF). In these applications, stability under high-fluence laser irradiation is a key requirement, with optical breakdown occurring when the fluence of the beam is higher than the laser-induced damage threshold (LIDT) of the material. The optical strength of polished fused silica transmissive optics is limited by their surface LIDT. Surface optical breakdown is accompanied by densification, formation of point defects, cratering, material ejection, melting and cracking. Through a combination of electron diffraction and infrared reflectance measurements we show here that synthetic vitreous silica transforms partially into a defective form of the high-pressure stishovite phase under high-intensity (GW cm(-2)) laser irradiation. This phase transformation offers one suitable mechanism by which laser-induced damage grows catastrophically once initiated, thereby dramatically shortening the service lifetime of optics used for high-power photonics.
Chlorine-containing salts as water ice nucleating particles on Mars
NASA Astrophysics Data System (ADS)
Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.
2018-03-01
Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.
Plasma Properties of Microwave Produced Plasma in a Toroidal Device
NASA Astrophysics Data System (ADS)
Singh, Ajay; Edwards, W. F.; Held, Eric
2011-10-01
We have modified a small tokamak, STOR-1M, on loan from University of Saskatchewan, to operate as a low-temperature (~5 eV) toroidal plasma machine with externally induced toroidal magnetic fields ranging from zero to ~50 G. The plasma is produced using microwave discharges at relatively high pressures. Microwaves are produced by a kitchen microwave-oven magnetron operating at 2.45 GHz in continuous operating mode, resulting in pulses ~0.5 s in duration. Initial measurements of plasma formation in this device with and without applied magnetic fields are presented. Plasma density and temperature profiles have been measured using Langmuir probes and the magnetic field profile inside the plasma has been obtained using Hall probes. When the discharge is created with no applied toroidal magnetic field, the plasma does not fill the entire torus due to high background pressure. However, when a toroidal magnetic field is applied, the plasma flows along the applied field, filling the torus. Increasing the applied magnetic field seems to aid plasma formation - the peak density increases and the density gradient becomes steeper. Above a threshold magnetic field, the plasma develops low-frequency density oscillations due to probable excitation of flute modes in the plasma.
Razus, D; Brinzea, V; Mitu, M; Movileanu, C; Oancea, D
2011-06-15
The maximum rates of pressure rise during closed vessel explosions of propane-air mixtures are reported, for systems with various initial concentrations, pressures and temperatures ([C(3)H(8)]=2.50-6.20 vol.%, p(0)=0.3-1.3 bar; T(0)=298-423 K). Experiments were performed in a spherical vessel (Φ=10 cm) with central ignition. The deflagration (severity) index K(G), calculated from experimental values of maximum rates of pressure rise is examined against the adiabatic deflagration index, K(G, ad), computed from normal burning velocities and peak explosion pressures. At constant temperature and fuel/oxygen ratio, both the maximum rates of pressure rise and the deflagration indices are linear functions of total initial pressure, as reported for other fuel-air mixtures. At constant initial pressure and composition, the maximum rates of pressure rise and deflagration indices are slightly influenced by the initial temperature; some influence of the initial temperature on maximum rates of pressure rise is observed only for propane-air mixtures far from stoichiometric composition. The differentiated temperature influence on the normal burning velocities and the peak explosion pressures might explain this behaviour. Copyright © 2011 Elsevier B.V. All rights reserved.
Fang, Jingyun; Zhao, Quan; Fan, Chihhao; Shang, Chii; Fu, Yun; Zhang, Xiangru
2017-09-01
When a bromide-containing water is treated by the ultraviolet (UV)/chlorine process, hydroxyl radicals (HO) and halogen radicals such as Cl or Br are formed due to the UV photolysis of free halogens. These reactive species may induce the formation of bromate, which is a probable human carcinogen. Bromate formation in the UV/chlorine process using low pressure (LP) and medium pressure (MP) lamps in the presence of bromide was investigated in the present study. The UV/chlorine process significantly enhanced bromate formation as compared to dark chlorination. The bromate formation was elevated with increasing UV fluence, bromide concentration, and pH values under both LP and MP UV irradiations. It was significantly enhanced at pH 9 compared to those at pH 6 and 7 with MP UV irradiation, while it was slightly enhanced at pH 9 with LP UV. The formation by UV/chlorine process started with the formation of free bromine (HOBr/OBr - ) through the reaction of chlorine and bromide, followed by a subsequent oxidation of free bromine and formation of BrO and bromate by reacting with radicals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Recent experimental data may point to a greater role for osmotic pressures in the subsurface
Neuzil, C.E.; Provost, A.M.
2009-01-01
Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility, that osmotic pressures routinely escape detection or are attributed to other mechanisms, has important implications for understanding subsurface flow regimes.
Phase formation in selected surface-roughened plasma-nitrided 304 austenite stainless steel.
Singh, Gajendra Prasad; Joseph, Alphonsa; Raole, Prakash Manohar; Barhai, Prema Kanta; Mukherjee, Subroto
2008-04-01
Direct current (DC) glow discharge plasma nitriding was carried out on three selected surface-roughened AISI 304 stainless steel samples at 833 K under 4 mbar pressures for 24 h in the presence of N 2 :H 2 gas mixtures of 50 : 50 ratios. After plasma nitriding, the phase formation, case depth, surface roughness, and microhardness of a plasma-nitrided layer were evaluated by glancing angle x-ray diffractogram, optical microscope, stylus profilometer, and Vickers microhardness tester techniques. The case depth, surface hardness, and phase formation variations were observed with a variation in initial surface roughness. The diffraction patterns of the plasma-nitrided samples showed the modified intensities of the α and γ phases along with those of the CrN, Fe 4 N, and Fe 3 N phases. Hardness and case depth variations were observed with a variation in surface roughness. A maximum hardness of 1058 Hv and a case depth of 95 μm were achieved in least surface-roughened samples.
A Pressure-Based Analysis of Vortex Ring Pinch-Off
NASA Astrophysics Data System (ADS)
Schlueter, Kristy; Braun, Noah; Dabiri, John
2014-11-01
This study investigated the development of vortex rings over a range of maximum stroke ratios, and analyzed vorticity and pressure data for clues to the physical mechanisms underlying vortex pinch-off. An impulsive piston velocity profile and Reynolds number of 3000 were used for all cases. The formation number was consistently found to be 3.6 +/-0.3. A recently developed algorithm was used to generate pressure fields by integrating the pressure gradient along several paths through the velocity field and taking the median to get explicit values for pressure. The formation time at the occurrence of a local maximum in the pressure between the vortex ring and the lip of the nozzle, known as the trailing pressure maximum, was found to occur concurrently with the formation number for each case, within the error associated with the temporal resolution of the data. This suggests that the trailing pressure maximum is an indicator of vortex ring pinch-off. This is consistent with the results of Lawson and Dawson (2014), who found that the appearance of the trailing pressure maximum was coincident with the formation number. This pressure based approach to determining vortex ring pinch-off will be applied to a biological flow to examine the efficiency of such a flow. This research was partially supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
Variations of permeability and pore size distribution of porous media with pressure.
Chen, Quan; Kinzelbach, Wolfgang; Ye, Chaohui; Yue, Yong
2002-01-01
Porosity and permeability of porous and fractured geological media decrease with the exploitation of formation fluids such as petroleum, natural gas, or ground water. This may result in ground subsidence and a decrease of recovery of petroleum, natural gas, or ground water. Therefore, an evaluation of the behavior of permeability and porosity under formation fluid pressure changes is important to petroleum and ground water industries. This study for the first time establishes a method, which allows for the measurement of permeability, porosity, and pore size distribution of cores simultaneously. From the observation of the pore size distribution by low-field nuclear magnetic resonance (NMR) relaxation time spectrometry the mechanisms of pressure-dependent porosity and permeability change can be derived. This information cannot be obtained by traditional methods. As the large-size pores or fractures contribute significantly to the permeability, their change consequently leads to a large permeability change. The contribution of fractures to permeability is even larger than that of pores. Thus, the permeability of the cores with fractures decreased more than that of cores without fractures during formation pressure decrease. Furthermore, it did not recover during formation pressure increase. It can be concluded that in fractures, mainly plastic deformation takes place, while matrix pores mainly show elastic deformation. Therefore, it is very important to keep an appropriate formation fluid pressure during the exploitation of ground water and petroleum in a fractured formation.
Habitability constraints on water-rich exoplanets
NASA Astrophysics Data System (ADS)
Noack, Lena; Höning, Dennis; Rivoldini, Attilio; Heistracher, Clemens; Zimov, Nastasia; Journaux, Baptiste; Lammer, Helmut; Van Hoolst, Tim; Hendrik Bredehöft, Jan
2016-04-01
This research addresses the characterization, modelling, thermal evolution and possible habitability of water-rich exoplanets. Water is necessary for the origin and survival of life as we know it. In the search for habitable worlds, water-rich planets therefore seem obvious candidates. The water layer on such planets could be hundreds of kilometers deep. Depending on the temperature profile and the pressure gradient, it is likely that at great depths a significant part of the water layer is solid high pressure ice. Whether the solid ice layer extends to the bottom of the water layer, or if a shallow lower ocean forms above the silicate mantle, depends amongst others on the thermal state of the planet. We therefore model the thermal evolution of water-rich planets with a 1D parameterized model. Depth-dependent profiles for thermodynamic properties as well as pressure and gravity are obtained by solving the Poisson equation for the gravity and the hydrostatic pressure equation for pre-defined mass and composition (in terms of iron, silicates and water) [1]. For density, equations of state are applied. For the simulation of the thermal evolution of water-rich planets, several parameters (as initial temperatures or layer thicknesses) are unknown. We therefore employ a quantitatve study with more than 20'000 simulations, where we investigated which parameters have the largest influence on the appearance of a lower ocean, i.e. the possible melting of high-pressure ice by heat flowing out of the silicate mantle [2]. We find that the surface temperature has the largest influence on the thickness of water layers, for which a lower ocean can still form between the high-pressure ice layer and the silicate mantle. For higher surface temperatures, not only entirely liquid oceans are possible for deeper water shells, also a liquid ocean can form under high-pressure ice layers of hundreds of kilometer thickness (for a 1 Earth-mass planet). Deeper down, the lower ocean can still appear episodically at the water-mantle boundary (WMB). We also investigated the main paramters influencing the existence of volcanic activity and silicate crust formation. Under deep water layers, the high pressure from the overlying water layer can inhibit melting in the mantle. The main parameters influencing the maximal water layer depth, for which melting is still possible, are indeed the parameters influencing the mantle energy budget, which are the amount of radioactive heat sources and the initial upper mantle temperature. Plate tectonics also has a strong influence on the existence of volcanism. Crustal parameters (initial thickness or heat sources enrichment factor) as well as the ice rheology (i.e. the isolating effect of the ice shell on the mantle) have only a small influence on melting processes in the interior and the formation of crust. [1] L. Noack, A. Rivoldini and T. Van Hoolst 2015: CHIC - Coupling Habitability, Interior and Crust: A new Code for Modeling the Thermal Evolution of Planets and Moons. INFOCOMP 2015, ISSN 2308-3484, ISBN 978-1-61208-416-9, pp. 84-90, IARIA, 2015. [2] L. Noack, D. Höning, A. Rivoldini, C. Heistracher, N. Zimov, B. Journaux, H. Lammer, T. Van Hoolst and J.H. Bredehöft: Water-rich planets: how habitable is a water layer deeper than on Earth? Submitted to Icarus.
NASA Astrophysics Data System (ADS)
Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Pawar, R. J.; Komatsu, M.; Jensen, K. H.; Illangasekare, T. H.
2011-12-01
Geologic sequestration of CO2 has received significant attention as a potential method for reducing the release of greenhouse gases into the atmosphere. Potential risk of leakage of the stored CO2 to the shallow zones of the subsurface is one of the critical issues that is needed to be addressed to design effective field storage systems. If a leak occurs, gaseous CO2 reaching shallow zones of the subsurface can potentially impact the surface and groundwater sources and vegetation. With a goal of developing models that can predict these impacts, a research study is underway to improve our understanding of the fundamental processes of gas-phase formation and multi-phase flow dynamics during CO2 migration in shallow porous media. The approach involves conducting a series of highly controlled experiments in soil columns and tanks to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. This paper presents the results from a set of column studies. A 3.6m long column was instrumented with 16 soil moisture sensors, 15 of which were capable of measuring electrical conductivity (EC) and temperature, eight water pressure, and two gas pressure sensors. The column was filled with test sands with known hydraulic and retention characteristics with predetermined packing configurations. Deionized water saturated with CO2 under ~0.3 kPa (roughly the same as the hydrostatic pressure at the bottom of the column) was injected at the bottom of the column using a peristaltic pump. Water and gas outflow at the top of the column were monitored continuously. The results, in general, showed that 1) gas phase formation can be triggered by multiple factors such as water pressure drop, temperature rise, and heterogeneity, 2) transition to gas phase tends to occur rather within a short period of time, 3) gas phase fraction was as high as ~40% so that gas flow was not via individual bubble movement but two-phase flow, 4) water outflow that was initially equal to the inflow rate increased when gas-phase started to form (i.e., water gets displaced), and 5) gas starts to flow upward after gas phase fraction stabilizes (i.e., buoyant force overcomes). These results suggest that the generation and migration processes of gas phase CO2 can be modelled as a traditional two-phase flow with source (when CO2 gas exsolved due to complex factors) as well as sink (when gas dissolved) terms. The experimental data will be used to develop and test the conceptual models that will guide the development of numerical simulators for applications involving CO2 storage and leakage.
Species variation in biology and physiology of the ciliary epithelium: similarities and differences.
Do, Chi Wai; Civan, Mortimer M
2009-04-01
Glaucoma is a leading cause of irreversible blindness worldwide. Lowering intraocular pressure (IOP) is the only strategy documented to delay the appearance and retard the progression of vision loss. One major approach for lowering IOP is to slow the rate of aqueous humor formation by the ciliary epithelium. As discussed in the present review, the transport basis for this secretion is largely understood. However, several substantive issues are yet to be resolved, including the integrated regulation of secretion, the functional topography of the ciliary epithelium, and the degree and significance of species variation in aqueous humor inflow. This review discusses species differences in net secretion, particularly of Cl(-) and HCO(3)(-) secretion. Identifying animal models most accurately mimicking aqueous humor formation in the human will facilitate development of future novel initiatives to lower IOP.
NASA Astrophysics Data System (ADS)
Markus Schmalholz, Stefan; Jaquet, Yoann
2016-04-01
We study the formation of an orogenic wedge during lithospheric shortening with 2D numerical simulations. We consider a viscoelastoplastic rheology, thermo-mechanical coupling by shear heating and temperature-dependent viscosities, gravity and erosion. In the initial model configuration there is either a lateral temperature variation at the model base or a lateral variation in crustal thickness to generate slight stress variations during lithospheric shortening. These stress variations can trigger the formation of shear zones which are caused by thermal softening associated with shear heating. We do not apply any kind of strain softening, such as reduction of friction angle with progressive plastic strain. The first major shear zone that appears during shortening crosscuts the entire crust and initiates the asymmetric subduction/underthrusting of mainly the mechanically strong lower crust. After some deformation, the first shear zone in the upper crust is abandoned, the deformation propagates towards the foreland and a new shear zone forms only in the upper crust. The shear zone propagation occurs several times where new shear zones form in the upper crust and the mechanically strong top of the lower crust acts as detachment horizon. We calculate the magnitudes of the maximal and minimal principal stresses and of the mean stress (or dynamic pressure), and we record also the temperature for several marker points in the upper and lower crust. We analyse the evolution of stresses and temperature with burial depth and time. Deviatoric stresses (half the differential stress) in the upper crust are up to 200 MPa and associated shear heating in shear zones ranges between 40 - 80 °C. Lower crustal rocks remain either at the base of the orogenic wedge at depths of around 50 km or are subducted to depths of up to 120 km, depending on their position when the first shear zone formed. Largest deviatotric stresses in the strong part of the lower crust are about 1000 MPa and maximal shear heating in shear zones is approximately 200 °C. Marker points can migrate through the main shear zone in the lower crust which remains active throughout lithospheric shortening. Some pressure-temperature paths show an anti-clockwise evolution. The impact of various model parameters on the results is discussed as well as applications of the results to geological data.
AOFA- THREE-DIMENSIONAL SUPERSONIC VISCOUS FLOW
NASA Technical Reports Server (NTRS)
Rakich, J. V.
1994-01-01
This program, which is called 'AOFA', determines the complete viscous and inviscid flow around a body of revolution at a given angle of attack and traveling at supersonic speeds. The viscous calculations from this program agree with experimental values for surface and pitot pressures and with surface heating rates. At high speeds, lee-side flows are important because the local heating is difficult to correlate and because the shed vortices can interact with vehicle components such as a canopy or a vertical tail. This program should find application in the design analysis of any high speed vehicle. Lee-side flows are difficult to calculate because thin-boundary-layer theory is not applicable and the concept of matching inviscid and viscous flow is questionable. This program uses the parabolic approximation to the compressible Navier-Stokes equations and solves for the complete inviscid and viscous regions of flow, including the pressure. The parabolic approximation results from the assumption that the stress derivatives in the streamwise direction are small in comparison with derivatives in the normal and circumferential directions. This assumption permits the equation to be solved by an implicit finite difference marching technique which proceeds downstream from the initial data point, provided the inviscid portion of flow is supersonic. The viscous cross-flow separation is also determined as part of the solution. To use this method it is necessary to first determine an initial data point in a region where the inviscid portion of the flow is supersonic. Input to this program consists of two parts. Problem description is conveyed to the program by namelist input. Initial data is acquired by the program as formatted data. Because of the large amount of run time this program can consume the program includes a restart capability. Output is in printed format and magnetic tape for further processing. This program is written in FORTRAN IV and has been implemented on a CDC 7600 with a central memory requirement of approximately 35K (octal) of 60 bit words.
Magnetic Fields and Multiple Protostar Formation
NASA Astrophysics Data System (ADS)
Boss, A. P.
2001-12-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception, and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamical calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, in spite of ample evidence for the importance of magnetic support of pre-collapse clouds. We present here the first numerical hydrodynamical survey of the full effects of magnetic fields on the collapse and fragmentation of dense cloud cores. The models are calculated with a three dimensional, finite differences code which solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of order four) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically-supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars. This work was partially supported by NSF grants AST-9983530 and MRI-9976645.
Perez, Camilo; Chen, Hong; Matula, Thomas J; Karzova, Maria; Khokhlova, Vera A
2013-08-01
Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from -2 to -11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled.
Perez, Camilo; Chen, Hong; Matula, Thomas J.; Karzova, Maria; Khokhlova, Vera A.
2013-01-01
Extracorporeal shock wave therapy (ESWT) uses acoustic pulses to treat certain musculoskeletal disorders. In this paper the acoustic field of a clinical portable ESWT device (Duolith SD1) was characterized. Field mapping was performed in water for two different standoffs of the electromagnetic head (15 or 30 mm) using a fiber optic probe hydrophone. Peak positive pressures at the focus ranged from 2 to 45 MPa, while peak negative pressures ranged from −2 to −11 MPa. Pulse rise times ranged from 8 to 500 ns; shock formation did not occur for any machine settings. The maximum standard deviation in peak pressure at the focus was 1.2%, indicating that the Duolith SD1 generates stable pulses. The results compare qualitatively, but not quantitatively with manufacturer specifications. Simulations were carried out for the short standoff by matching a Khokhlov-Zabolotskaya-Kuznetzov equation to the measured field at a plane near the source, and then propagating the wave outward. The results of modeling agree well with experimental data. The model was used to analyze the spatial structure of the peak pressures. Predictions from the model suggest that a true shock wave could be obtained in water if the initial pressure output of the device were doubled. PMID:23927207
Radiation pressure in super star cluster formation
NASA Astrophysics Data System (ADS)
Tsang, Benny T.-H.; Milosavljević, Miloš
2018-05-01
The physics of star formation at its extreme, in the nuclei of the densest and the most massive star clusters in the universe—potential massive black hole nurseries—has for decades eluded scrutiny. Spectroscopy of these systems has been scarce, whereas theoretical arguments suggest that radiation pressure on dust grains somehow inhibits star formation. Here, we harness an accelerated Monte Carlo radiation transport scheme to report a radiation hydrodynamical simulation of super star cluster formation in turbulent clouds. We find that radiation pressure reduces the global star formation efficiency by 30-35%, and the star formation rate by 15-50%, both relative to a radiation-free control run. Overall, radiation pressure does not terminate the gas supply for star formation and the final stellar mass of the most massive cluster is ˜1.3 × 106 M⊙. The limited impact as compared to in idealized theoretical models is attributed to a radiation-matter anti-correlation in the supersonically turbulent, gravitationally collapsing medium. In isolated regions outside massive clusters, where the gas distribution is less disturbed, radiation pressure is more effective in limiting star formation. The resulting stellar density at the cluster core is ≥108 M⊙ pc-3, with stellar velocity dispersion ≳ 70 km s-1. We conclude that the super star cluster nucleus is propitious to the formation of very massive stars via dynamical core collapse and stellar merging. We speculate that the very massive star may avoid the claimed catastrophic mass loss by continuing to accrete dense gas condensing from a gravitationally-confined ionized phase.
NASA Astrophysics Data System (ADS)
Phillips, S. C.; You, K.; Borgfeldt, T.; Meyer, D.; Dong, T.; Flemings, P. B.
2016-12-01
We performed four dissociation experiments in which experimentally-formed methane hydrate was dissociated via slow, stepwise depressurization, revealing in situ salinity conditions. Overall, these results suggest the occurrence of local pore water freshening around dissociating hydrate in which bulk equilibrium behavior is limited by salt diffusion. Depressurization was performed at a constant confining temperature over 1 to 3 weeks by releasing small volumes of methane gas from the top of a vertically-oriented sample into an inverted graduated cylinder. We identify three distinct regimes of depressurization based on pressure drop behavior: (1) release of free gas down to initial hydrate dissociation at 3.3 MPa in NaBr or 4.64 MPa in NaCl, (2) dissociation of methane hydrate characterized by a slow, logarithmic increase in pressure after each gas release and (3) residual free gas release. Initial hydrate dissociation in NaCl brine at 4.64 MPa corresponds to the phase boundary for hydrate in 9.6 wt% NaCl. In the NaCl experiment, pressure increases of 0.16 MPa while the sample was shut in over 3 days likely correspond to a recovery in salinity of 0.7 wt. %. Salt ions likely diffuse from brine ahead of the hydrate front, based on a length scale for diffusion of NaCl of 6.3 cm for 3 days. In this experiment dissociation at bulk equilibrium is expected to decline from 4.54 to 4.04 MPa; however actual dissociation during 73 gas releases over 15 days, results in a pressure drop from 4.64 to 3.25 MPa. Hydrate samples were formed by injection of methane gas at 1 ºC and 12.24 MPa within a cylinder packed with medium-grained quartz sand and initially saturated in a 7 wt% NaBr or NaCl solution. In two experiments in which the system was thoroughly leak tested, total methane consumed during formation and recovered during depressurization match within 7% indicating this approach to be relatively accurate for determining total methane in experimental or pressure core samples.
NASA Astrophysics Data System (ADS)
Rhaodah Andsaler, Adiba; Khalid, Amir; Sharifhatul Adila Abdullah, Nor; Sapit, Azwan; Jaat, Norrizam
2017-04-01
Mixture formation of the ignition process is a key element in the diesel combustion as it influences the combustion process and exhaust emission. Aim of this study is to elucidate the effects of nozzle diameter, injection pressure and ambient temperature to the formation of spray. This study investigated diesel formation spray using Computational Fluid Dynamics. Multiphase volume of fluid (VOF) behaviour in the chamber are determined by means of transient simulation, Eulerian of two phases is used for implementation of mixing fuel and air. The detail behaviour of spray droplet diameter, spray penetration and spray breakup length was visualised using the ANSYS 16.1. This simulation was done in different nozzle diameter 0.12 mm and 0.2 mm performed at the ambient temperature 500 K and 700 K with different injection pressure 40 MPa, 70 MPa and 140 MPa. Results show that high pressure influence droplet diameter become smaller and the penetration length longer with the high injection pressure apply. Smaller nozzle diameter gives a shorter length of the breakup. It is necessary for nozzle diameter and ambient temperature condition to improve the formation of spray. High injection pressure is most effective in improvement of formation spray under higher ambient temperature and smaller nozzle diameter.
Atomistic Simulation of Initiation in Hexanitrostilbene
NASA Astrophysics Data System (ADS)
Shan, Tzu-Ray; Wixom, Ryan; Yarrington, Cole; Thompson, Aidan
2015-06-01
We report on the effect of cylindrical voids on hot spot formation, growth and chemical reaction initiation in hexanitrostilbene (HNS) crystals subjected to shock. Large-scale, reactive molecular dynamics simulations are performed using the reactive force field (ReaxFF) as implemented in the LAMMPS software. The ReaxFF force field description for HNS has been validated previously by comparing the isothermal equation of state to available diamond anvil cell (DAC) measurements and density function theory (DFT) calculations and by comparing the primary dissociation pathway to ab initio calculations. Micron-scale molecular dynamics simulations of a supported shockwave propagating through the HNS crystal along the [010] orientation are performed with an impact velocity (or particle velocity) of 1.25 km/s, resulting in shockwave propagation at 4.0 km/s in the bulk material and a bulk shock pressure of ~ 11GPa. The effect of cylindrical void sizes varying from 0.02 to 0.1 μm on hot spot formation and growth rate has been studied. Interaction between multiple voids in the HNS crystal and its effect on hot spot formation will also be addressed. Results from the micron-scale atomistic simulations are compared with hydrodynamics simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Hanna-Bull, Debbie
2016-01-01
The setting for this quality improvement initiative designed to reduce the prevalence of facility-acquired heel pressure ulcers was a regional, acute-care, 490-bed facility in Ontario, Canada, responsible for dialysis, vascular, and orthopedic surgery. An interdisciplinary skin and wound care team designed an evidence-based quality improvement initiative based on a systematic literature review and standardization of heel offloading methods. The prevalence of heel pressure ulcers was measured at baseline (immediately prior to implementation of initiative) and at 1 and 4 years following implementation. The prevalence of facility-acquired heel pressure ulcers was 5.8% when measured before project implementation. It was 4.2% at 1 year following implementation and 1.6% when measured at the end of the 4-year initiative. Outcomes demonstrate that the initiative resulted in a continuous and sustained reduction in facility-acquired heel pressure ulcer incidence over a 4-year period.
Initial condition effect on pressure waves in an axisymmetric jet
NASA Technical Reports Server (NTRS)
Miles, Jeffrey H.; Raman, Ganesh
1988-01-01
A pair of microphones (separated axially by 5.08 cm and laterally by 1.3 cm) are placed on either side of the jet centerline to investigate coherent pressure fluctuations in an axisymmetric jet at Strouhal numbers less than unity. Auto-spectra, transfer-function, and coherence measurements are made for a tripped and untripped boundary layer initial condition. It was found that coherent acoustic pressure waves originating in the upstream plenum chamber propagate a greater distance downstream for the tripped initial condition than for the untripped initial condition. In addition, for the untripped initial condition the development of the coherent hydrodynamic pressure waves shifts downstream.
NASA Astrophysics Data System (ADS)
Song, Keun Man; Kim, Jong Min; Kang, Bong Kyun; Shin, Chan Soo; Ko, Chul Gi; Kong, Bo Hyun; Cho, Hyung Koun; Yoon, Dae Ho; Kim, Hogyoung; Hwang, Sung Min
2012-02-01
Nonpolar a-plane GaN layers grown on r-plane sapphire substrates were examined by using a two-step growth process. The higher initial growth pressure for the nucleation layer resulted in the improved crystalline quality with lower density of both threading dislocations and basal stacking faults. This was attributed to the higher degree of initial roughening and recovery time via a growth mode transition from three-dimensional (3D) to quasi two-dimensional (2D) lateral growth. Using Hall-effect measurements, the overgrown Si doped GaN layers grown with higher initial growth pressure were found to have higher mobility. The scattering mechanism due to the dislocations was dominant especially at low temperature (<200 K) for the lower initial growth pressure, which was insignificant for the higher initial growth pressure. The temperature-dependent Hall-effect measurements for the Mg doped GaN with a higher initial growth pressure yielded the activation energy and the acceptor concentration to be 128 meV and 1.2 × 1019 cm-3, respectively, corresponding to about 3.6% of activation at room temperature. Two-step growth scheme with a higher initial growth pressure is suggested as a potential method to improve the performance of nonpolar a-plane GaN based devices.
The role of turbulence-flow interactions in L- to H-mode transition dynamics: recent progress
NASA Astrophysics Data System (ADS)
Schmitz, L.
2017-02-01
Recent experimental and simulation work has substantially advanced the understanding of L-mode plasma edge turbulence and plasma flows and their mutual interaction across the L-H transition. Flow acceleration and E × B shear flow amplification via the turbulent Reynolds stress have been directly observed in multiple devices, using multi-tip probe arrays, Doppler backscattering, beam emission spectroscopy, and gas puff imaging diagnostics. L-H transitions characterized by limit-cycle oscillations (LCO) allow probing of the trigger dynamics and the synergy of turbulence-driven and pressure-gradient-driven flows with high spatio-temporal resolution. L-mode turbulent structures exhibit characteristic changes in topology (tilting) and temporal and radial correlation preceding the L-H transition. Long-range toroidal flow correlations increase preceding edge-transport-barrier formation. The energy transfer from the turbulence spectrum to large-scale axisymmetric flows has been quantified in L-LCO and fast L-H transitions in several devices. After formation of a transient barrier, the increasing ion pressure gradient (via the E × B flow shear associated with diamagnetic flow) sustains fluctuation suppression and secures the transition to H-mode. Heuristic models of the L-H trigger dynamics have progressed from 0D predator-prey models to 1D extended models, including neoclassical ion flow-damping and pressure-gradient evolution. Initial results from 2D and 3D reduced fluid models have been obtained for high-collisionality regimes.
GRAVOTURBULENT PLANETESIMAL FORMATION: THE POSITIVE EFFECT OF LONG-LIVED ZONAL FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, K.; Klahr, H.; Johansen, A., E-mail: dittrich@mpia.de
2013-02-15
Recent numerical simulations have shown long-lived axisymmetric sub- and super-Keplerian flows in protoplanetary disks. These zonal flows are found in local as well as global simulations of disks unstable to the magnetorotational instability. This paper covers our study of the strength and lifetime of zonal flows and the resulting long-lived gas over- and underdensities as functions of the azimuthal and radial size of the local shearing box. We further investigate dust particle concentrations without feedback on the gas and without self-gravity. The strength and lifetime of zonal flows increase with the radial extent of the simulation box, but decrease withmore » the azimuthal box size. Our simulations support earlier results that zonal flows have a natural radial length scale of 5-7 gas pressure scale heights. This is the first study that combines three-dimensional MHD simulations of zonal flows and dust particles feeling the gas pressure. The pressure bumps trap particles with St = 1 very efficiently. We show that St = 0.1 particles (of some centimeters in size if at 5 AU in a minimum mass solar nebula) reach a hundred-fold higher density than initially. This opens the path for particles of St = 0.1 and dust-to-gas ratio of 0.01 or for particles of St {>=} 0.5 and dust-to-gas ratio 10{sup -4} to still reach densities that potentially trigger the streaming instability and thus gravoturbulent formation of planetesimals.« less
Formation mechanisms of Si3N4 and Si2N2O in silicon powder nitridation
NASA Astrophysics Data System (ADS)
Yao, Guisheng; Li, Yong; Jiang, Peng; Jin, Xiuming; Long, Menglong; Qin, Haixia; Kumar, R. Vasant
2017-04-01
Commercial silicon powders are nitrided at constant temperatures (1453 K; 1513 K; 1633 K; 1693 K). The X-ray diffraction results show that small amounts of Si3N4 and Si2N2O are formed as the nitridation products in the samples. Fibroid and short columnar Si3N4 are detected in the samples. The formation mechanisms of Si3N4 and Si2N2O are analyzed. During the initial stage of silicon powder nitridation, Si on the outside of sample captures slight amount of O2 in N2 atmosphere, forming a thin film of SiO2 on the surface which seals the residual silicon inside. And the oxygen partial pressure between the SiO2 film and free silicon is decreasing gradually, so passive oxidation transforms to active oxidation and metastable SiO(g) is produced. When the SiO(g) partial pressure is high enough, the SiO2 film will crack, and N2 is infiltrated into the central section of the sample through cracks, generating Si2N2O and short columnar Si3N4 in situ. At the same time, metastable SiO(g) reacts with N2 and form fibroid Si3N4. In the regions where the oxygen partial pressure is high, Si3N4 is oxidized into Si2N2O.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oliver, R.; Soler, R.; Terradas, J.
Observations of active regions and limb prominences often show cold, dense blobs descending with an acceleration smaller than that of free fall. The dynamics of these condensations falling in the solar corona is investigated in this paper using a simple fully ionized plasma model. We find that the presence of a heavy condensation gives rise to a dynamical rearrangement of the coronal pressure that results in the formation of a large pressure gradient that opposes gravity. Eventually this pressure gradient becomes so large that the blob acceleration vanishes or even points upward. Then, the blob descent is characterized by anmore » initial acceleration phase followed by an essentially constant velocity phase. These two stages can be identified in published time-distance diagrams of coronal rain events. Both the duration of the first stage and the velocity attained by the blob increase for larger values of the ratio of blob to coronal density, for larger blob mass, and for smaller coronal temperature. Dense blobs are characterized by a detectable density growth (up to 60% in our calculations) and by a steepening of the density in their lower part, that could lead to the formation of a shock. They also emit sound waves that could be detected as small intensity changes with periods of the order of 100 s and lasting between a few and about 10 periods. Finally, the curvature of falling paths with large radii is only relevant when a very dense blob falls along inclined magnetic field lines.« less
NASA Astrophysics Data System (ADS)
Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.
2018-05-01
UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.
Role of Salt, Pressure, and Water Activity on Homogeneous Ice Nucleation.
Espinosa, Jorge R; Soria, Guiomar D; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo
2017-09-21
Pure water can be substantially supercooled below the melting temperature without transforming into ice. The achievable supercooling can be enhanced by adding solutes or by applying hydrostatic pressure. Avoiding ice formation is of great importance in the cryopreservation of food or biological samples. In this Letter, we investigate the similarity between the effects of pressure and salt on ice formation using a combination of state-of-the-art simulation techniques. We find that both hinder ice formation by increasing the energetic cost of creating the ice-fluid interface. Moreover, we examine the widely accepted proposal that the ice nucleation rate for different pressures and solute concentrations can be mapped through the activity of water [ Koop , L. ; Tsias , P. Nature , 2000 , 406 , 611 ]. We show that such a proposal is not consistent with the nucleation rates predicted in our simulations because it does not include all parameters affecting ice nucleation. Therefore, even though salt and pressure have a qualitatively similar effect on ice formation, they cannot be quantitatively mapped onto one another.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van den Bergh, Sidney
It is widely believed that lenticular (S0) galaxies were initially spirals from which the gas has been removed by interactions with hot cluster gas, or by ram pressure stripping of cool gas from spirals that are orbiting within rich clusters of galaxies. However, problems with this interpretation are that (1) some lenticulars, such as NGC 3115, are isolated field galaxies rather than cluster members. (2) The distribution of flattening values of S0 galaxies in clusters, in groups, and in the field are statistically indistinguishable. This is surprising because one might have expected most of the progenitors of field S0 galaxiesmore » to have been flattened late-type galaxies, whereas lenticulars in clusters are thought to have mostly been derived from bulge-dominated early-type galaxies. (3) It should be hardest for ram pressure to strip massive luminous galaxies with deep potential wells. However, no statistically significant differences are seen between the luminosity distributions of early-type Shapley-Ames galaxies in clusters, groups, and in the field. (4) Finally both ram pressure stripping and evaporation by hot intracluster gas would be most efficient in rich clusters. However, the small number of available data in the Shapley-Ames sample appears to show no statistically significant differences between the relative frequencies of dust-poor S0{sub 1} and dust-rich S0{sub 3} galaxies in clusters, groups, and in the field. It is tentatively concluded that ram pressure stripping and heating by intracluster gas, may not be the only evolutionary channels that lead to the formation of lenticular galaxies. It is speculated that gas starvation, or gas ejection by active nuclei, may have played a major role in the formation of a significant fraction of all S0 galaxies.« less
The Onset of Channelling in a Fluidized Mud Layer
NASA Astrophysics Data System (ADS)
Papanicolaou, T.; Tsakiris, A. G.; Billing, B. M.
2012-12-01
Fluidization of a soil occurs when the drag force exerted on the soil grains by upwelling water equals the submerged weight of the soil grains, hence reducing the effective (or contact) stress between the soil grains to zero. In nature, fluidization is commonly encountered in localized portions of highly saturated mud layers found in tidal flats, estuaries and lakes, where upward flow is initiated by significant pore water pressure gradients triggered by wave or tidal action. The water propagates through the fluidized mud layer by forming channels (or vents), carrying the fluidized mud to the surface and forming mud volcano structures. The presence of these fluidization channels alters the mud layer structure with implications on its hydraulic and geotechnical properties, such as the hydraulic conductivity. Despite the importance of these channels, the conditions that lead to their formation and their effects on the mud layer structure still remain poorly documented. The present study couples experimental and theoretical methods aimed at quantifying the conditions, under which fluidization of a saturated mud layer is accompanied by the formation of channels, and assessing the effects of channeling on the mud layer structure. Fluidization and channel formation in a mud layer were reproduced in the laboratory using a carefully designed fluidization column attached to a pressurized vessel (plenum). To eliminate any effects of the material, the mud was produced from pure kaolin clay and deionized water. Local porosity measurements along the mud layer prior, during and after fluidization were conducted using an Americium-241 gamma source placed on a fully automated carriage. Different water inflow rates, q, were applied to the base of the mud layer and the plenum pressure was monitored throughout the experiment. These experiments revealed that for high q values, a single vertical channel formed and erupted at the center of the fluidization column. Instead for low q values, the experiments suggested that a channel network formed within the mud layer leading to the eruption of multiple channels on the mud layer surface. The gamma source measurements captured quantitatively the porosity increase as the channel formed. The experiments were complemented with a theoretical analysis using the two-phase, flow mass and momentum governing equations. This analysis aims to establish a relation between the applied pressure, the fluid velocity and the local porosity of mud during the formation of the channels.
Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow
NASA Technical Reports Server (NTRS)
Picone, J. Michael; Dahlburg, Russell B.
1991-01-01
A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.
Plethora of transitions during breakup of liquid filaments
Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Thete, Sumeet Suresh; ...
2015-03-30
Thinning and breakup of liquid filaments are central to dripping of leaky faucets, inkjet drop formation, and raindrop fragmentation. As the filament radius decreases, curvature and capillary pressure, both inversely proportional to radius, increase and fluid is expelled with increasing velocity from the neck. As the neck radius vanishes, the governing equations become singular and the filament breaks. In slightly viscous liquids, thinning initially occurs in an inertial regime where inertial and capillary forces balance. By contrast, in highly viscous liquids, initial thinning occurs in a viscous regime where viscous and capillary forces balance. As the filament thins, viscous forcesmore » in the former case and inertial forces in the latter become important, and theory shows that the filament approaches breakup in the final inertial–viscous regime where all three forces balance. However, previous simulations and experiments reveal that transition from an initial to the final regime either occurs at a value of filament radius well below that predicted by theory or is not observed. In this paper, we perform new simulations and experiments, and show that a thinning filament unexpectedly passes through a number of intermediate transient regimes, thereby delaying onset of the inertial–viscous regime. Finally, the new findings have practical implications regarding formation of undesirable satellite droplets and also raise the question as to whether similar dynamical transitions arise in other free-surface flows such as coalescence that also exhibit singularities.« less
Plethora of transitions during breakup of liquid filaments
Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Thete, Sumeet Suresh; Sambath, Krishnaraj; Hutchings, Ian M.; Hinch, John; Lister, John R.; Basaran, Osman A.
2015-01-01
Thinning and breakup of liquid filaments are central to dripping of leaky faucets, inkjet drop formation, and raindrop fragmentation. As the filament radius decreases, curvature and capillary pressure, both inversely proportional to radius, increase and fluid is expelled with increasing velocity from the neck. As the neck radius vanishes, the governing equations become singular and the filament breaks. In slightly viscous liquids, thinning initially occurs in an inertial regime where inertial and capillary forces balance. By contrast, in highly viscous liquids, initial thinning occurs in a viscous regime where viscous and capillary forces balance. As the filament thins, viscous forces in the former case and inertial forces in the latter become important, and theory shows that the filament approaches breakup in the final inertial–viscous regime where all three forces balance. However, previous simulations and experiments reveal that transition from an initial to the final regime either occurs at a value of filament radius well below that predicted by theory or is not observed. Here, we perform new simulations and experiments, and show that a thinning filament unexpectedly passes through a number of intermediate transient regimes, thereby delaying onset of the inertial–viscous regime. The new findings have practical implications regarding formation of undesirable satellite droplets and also raise the question as to whether similar dynamical transitions arise in other free-surface flows such as coalescence that also exhibit singularities. PMID:25825761
Effect of pulse pressure on borehole stability during shear swirling flow vibration cementing.
Cui, Zhihua; Ai, Chi; Lv, Lei; Yin, Fangxian
2017-01-01
The shear swirling flow vibration cementing (SSFVC) technique rotates the downhole eccentric cascade by circulating cementing fluid. It makes the casing eccentrically revolve at high speed around the borehole axis. It produces strong agitation action to the annulus fluid, makes it in the state of shear turbulent flow, and results in the formation of pulse pressure which affects the surrounding rock stress. This study was focused on 1) the calculation of the pulse pressure in an annular turbulent flow field based on the finite volume method, and 2) the analysis of the effect of pulse pressure on borehole stability. On the upside, the pulse pressure is conducive to enhancing the liquidity of the annulus fluid, reducing the fluid gel strength, and preventing the formation of fluid from channeling. But greater pulse pressure may cause lost circulation and even formation fracturing. Therefore, in order to ensure smooth cementing during SSFVC, the effect of pulse pressure should be considered when cementing design.
Wigle, E D; Auger, P; Marquis, Y
1966-10-15
Two types of intraventricular pressure differences within the left ventricle of man are described. The first is encountered in cases of muscular (or fibrous) subaortic stenosis, in which the outflow tract pressure distal to the stenosis (and proximal to the aortic valve) is low, whereas all pressures recorded in the left ventricle proximal to the stenosis, including that just inside the mitral valve (the initial inflow tract pressure) are high.The second type of intraventricular pressure difference may be recorded in patients without muscular subaortic stenosis when a heart catheter is advanced to the left ventricular wall in such a manner that it becomes imbedded or entrapped by cardiac muscle in systole. Such an entrapped catheter records a high intraventricular pressure that is believed to reflect intramyocardial tissue pressure, which normally exceeds intracavitary pressure. In such cases the initial inflow tract pressure is not high and is precisely equal to the outflow tract systolic pressure, i.e. both are recording intracavity pressure. This type of intramyocardial to intracavitary pressure difference may also be encountered in the left ventricle of dogs.The recent suggestion that intraventricular pressure differences in the left ventricle of cases of muscular subaortic stenosis are due to catheter entrapment by cardiac muscle is refuted by using the initial inflow tract pressure as the means of differentiation between the two types of intraventricular pressure differences outlined.
Coupled microwave ECR and radio-frequency plasma source for plasma processing
Tsai, Chin-Chi; Haselton, Halsey H.
1994-01-01
In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.
Coupled microwave ECR and radio-frequency plasma source for plasma processing
Tsai, C.C.; Haselton, H.H.
1994-03-08
In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.
Shock loading and release behavior of silicon nitride
NASA Astrophysics Data System (ADS)
Kawai, N.; Tsuru, T.; Hidaka, N.; Liu, X.; Mashimo, T.
2017-01-01
Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 and 34.5 GPa, respectively. Below the phase transition stress, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by rapid one. Above phase transition stress, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same shocked condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.
NASA Astrophysics Data System (ADS)
Rubtsov, N. M.; Seplyarskii, B. S.; Troshin, K. Ya.; Chernysh, V. I.; Tsvetkov, G. I.
2011-10-01
Using high-speed digital color cinematography, we studied the propagation of a laminar spherical flame in stoichiometric mixtures of hydrogen, methane, and pentane with air in the presence of additives at atmospheric pressure in constant-volume reactors, and derived quantitative data on the time of formation of a stable flame front. Cellular flames caused by gas-dynamic instability attributable to convective flows arising during the afterburning of gas were observed in hydrocarbon-air stoichiometric mixtures diluted with inert additives. It was found that the effect of additives of carbon dioxide and argon (>10%) and minor additives of CCl4 on the combustion of hydrocarbons, and of propylene on the combustion of hydrogen-rich mixtures, lead to periods of delay in the development of a laminar spherical flame; in addition, additives of propylene promote the combustion of hydrogen poor mixtures.
Primary radiation damage of an FeCr alloy under pressure: Atomistic simulation
NASA Astrophysics Data System (ADS)
Tikhonchev, M. Yu.; Svetukhin, V. V.
2017-05-01
The primary radiation damage of a binary FeCr alloy deformed by applied mechanical loading is studied by an atomistic molecular dynamics simulation. Loading is simulated by specifying an applied pressure of 0.25, 1.0, and 2.5 GPa of both signs. Hydrostatic and uniaxial loading is considered along the [001], [111], [112], and [210] directions. The influence of loading on the energy of point defect formation and the threshold atomic displacement energy in single-component bcc iron is investigated. The 10-keV atomic displacement cascades in a "random" binary Fe-9 at % Cr alloy are simulated at an initial temperature of 300 K. The number of the point defects generated in a cascade is estimated, and the clustering of point defects and the spatial orientation of interstitial configurations are analyzed. Our results agree with the results of other researchers and supplement them.
NASA Astrophysics Data System (ADS)
Liang, Xiao-Xuan; Freidank, Sebastian; Linz, Norbert; Paltauf, Günther; Zhang, Zhenxi; Vogel, Alfred
2017-03-01
We developed modeling tools for optical breakdown events in water that span various phases reaching from breakdown initiation via solvated electron generation, through laser induced-plasma formation and temperature evolution in the focal spot to the later phases of cavitation bubble dynamics and shock wave emission and applied them to a large parameter space of pulse durations, wavelengths, and pulse energies. The rate equation model considers the interplay of linear absorption, photoionization, avalanche ionization and recombination, traces thermalization and temperature evolution during the laser pulse, and portrays the role of thermal ionization that becomes relevant for T > 3000 K. Modeling of free-electron generation includes recent insights on breakdown initiation in water via multiphoton excitation of valence band electrons into a solvated state at Eini = 6.6 eV followed by up-conversion into the conduction band level that is located at 9.5 eV. The ability of tracing the temperature evolution enabled us to link the model of laser-induced plasma formation with a hydrodynamic model of plasma-induced pressure evolution and phase transitions that, in turn, traces bubble generation and dynamics as well as shock wave emission. This way, the amount of nonlinear energy deposition in transparent dielectrics and the resulting material modifications can be assessed as a function of incident laser energy. The unified model of plasma formation and bubble dynamics yields an excellent agreement with experimental results over the entire range of investigated pulse durations (femtosecond to nanosecond), wavelengths (UV to IR) and pulse energies.
Pletincx, Sven; Trotochaud, Lena; Fockaert, Laura-Lynn; ...
2017-03-22
Probing initial interactions at the interface of hybrid systems under humid conditions has the potential to reveal the local chemical environment at solid/solid interfaces under real-world, technologically relevant conditions. Here in this paper, we show that ambient pressure X-ray photoelectron spectroscopy (APXPS) with a conventional X-ray source can be used to study the effects of water exposure on the interaction of a nanometer-thin polyacrylic acid (PAA) layer with a native aluminum oxide surface. The formation of a carboxylate ionic bond at the interface is characterized both with APXPS and in situ attenuated total reflectance Fourier transform infrared spectroscopy in themore » Kretschmann geometry (ATR-FTIR Kretschmann). When water is dosed in the APXPS chamber up to 5 Torr (~28% relative humidity), an increase in the amount of ionic bonds at the interface is observed. To confirm our APXPS interpretation, complementary ATR-FTIR Kretschmann experiments on a similar model system, which is exposed to an aqueous electrolyte, are conducted. These spectra demonstrate that water leads to an increased wet adhesion through increased ionic bond formation.« less
Experimental study of Gas Phase Formation and Evolution in Low fO2 Planetary Basalts.
NASA Astrophysics Data System (ADS)
Rutherford, M. J.; Wetzel, D. T.; Saal, A. E.; Hauri, E. H.
2012-12-01
The existence of a gas phase in planetary basaltic magmas is demonstrated by the ubiquitous presence of vesicles in returned lunar samples and meteorites as well as basalts from Earth and Mars. Additionally, formation of the fine-grained glass bead deposits during eruption of lunar picritic glasses required a large gas-bubble volume (> 90%) at the time of eruption/fragmentation. Up to 100-200 ppm levels of H, S, Cl and F still remain as diffusion-loss profiles in individual lunar glass beads SIMS (1), and higher volatile concentrations occur in olivine melt inclusions (2). The composition and origin of such volcanic gases were investigated by experiments on a volatile (C-O-H-S-Cl-F)-bearing picritic glass composition as a function of fO2 near iron-wustite (IW). The C-O-H species dissolved in gas-saturated basaltic melt above IW-0.5 are carbonate, OH and H2O with 100 to 10,000 ppm H2O in the sample; below IW-0.5, the C-species present (Raman and FTIR) are Fe(CO)5 (iron pentacarbonyl) and lesser CH4 [3]. The change in melt speciation in part reflects a change in calculated speciation in the coexisting gas [4]. The carbon solubility in these experimental melts increases linearly with increasing pressure; the more oxidized glasses contain 32-620 ppm C for pressures of 98 to 980 MPa, the reduced glasses contain 8-240 ppm C for pressures between 36 and 900 MPa. Thus, the C solubility of the more reduced Fe-carbonyl and CH4 is about one-half that of carbonate at the same pressure, and indicates the carrying capacity for C in reduced (i.e., lunar) magmas is much lower than it is in present day terrestrial magmas. Varioles up to 200 um in diameter formed in some experiments with higher dissolved water contents (1%); they have radiating crystalline textures (olivine, glass and poorly crystallized graphite) initiated at a central nucleation site. A sharp peak in the variole Ramen spectra indicates methane as well as CO is released during variole formation and a reaction such as 2CO = C +CO2 formed the graphite. Several series of experiments on chips of low fO2 glass created at high pressure quantify S, Cl and F partitioning into the H2O-CO gas phase with decompression steps from 200 to 40 MPa. A gas formed with the first pressure drop, indicating melt supersaturation with CO and/or CH4; H2O and lesser amounts of S, Cl and F partitioned into the initial gas, and continued to do so with additional drops in pressure. The ubiquitous Fe-metal seen in lunar picritic glasses may form by graphite oxidation, but also may form by breakdown of Fe(CO)5 as the melt continues to saturate during ascent. [1] A. E. Saal et al.(2008) Nature 454, 192-195. [2] E. H. Hauri et al (2011) Science 333, 213 -215. [3] Wetzel, D., Rutherford, M.J. Jacobsen S.D., Hauri, E.H., and Saal, A.E., (submitted); Nature Geoscience Aug. 1, 2012. [4] Zhang, C. and Duan, Z. (2009) GCA, 73, 2089-2102.
NASA Astrophysics Data System (ADS)
Sun, Haijun; Hu, Chunbo; Zhu, Xiaofei
2017-10-01
A numerical study of powder propellant pickup progress at high pressure was presented in this paper by using two-fluid model with kinetic theory of granular flow in the computational fluid dynamics software package ANSYS/Fluent. Simulations were conducted to evaluate the effects of initial pressure, initial powder packing rate and mean particle diameter on the flow characteristics in terms of velocity vector distribution, granular temperature, pressure drop, particle velocity and volume. The numerical results of pressure drop were also compared with experiments to verify the TFM model. The simulated results show that the pressure drop value increases as the initial pressure increases, and the granular temperature under the conditions of different initial pressures and packing rates is almost the same in the area of throttling orifice plate. While there is an appropriate value for particle size and packing rate to form a ;core-annulus; structure in powder box, and the time-averaged velocity vector distribution of solid phase is inordinate.
Evidence for debris flow gully formation initiated by shallow subsurface water on Mars
Lanza, N.L.; Meyer, G.A.; Okubo, C.H.; Newsom, Horton E.; Wiens, R.C.
2010-01-01
The morphologies of some martian gullies appear similar to terrestrial features associated with debris flow initiation, erosion, and deposition. On Earth, debris flows are often triggered by shallow subsurface throughflow of liquid water in slope-mantling colluvium. This flow causes increased levels of pore pressure and thus decreased shear strength, which can lead to slide failure of slope materials and subsequent debris flow. The threshold for pore pressure-induced failure creates a distinct relationship between the contributing area supplying the subsurface flow and the slope gradient. To provide initial tests of a similar debris flow initiation hypothesis for martian gullies, measurements of the contributing areas and slope gradients were made at the channel heads of martian gullies seen in three HiRISE stereo pairs. These gullies exhibit morphologies suggestive of debris flows such as leveed channels and lobate debris fans, and have well-defined channel heads and limited evidence for multiple flows. Our results show an area-slope relationship for these martian gullies that is consistent with that observed for terrestrial gullies formed by debris flow, supporting the hypothesis that these gullies formed as the result of saturation of near-surface regolith by a liquid. This model favors a source of liquid that is broadly distributed within the source area and shallow; we suggest that such liquid could be generated by melting of broadly distributed icy materials such as snow or permafrost. This interpretation is strengthened by observations of polygonal and mantled terrain in the study areas, which are both suggestive of near-surface ice. ?? 2009 Elsevier Inc.
HOW GALACTIC ENVIRONMENT REGULATES STAR FORMATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meidt, Sharon E.
2016-02-10
In a new simple model I reconcile two contradictory views on the factors that determine the rate at which molecular clouds form stars—internal structure versus external, environmental influences—providing a unified picture for the regulation of star formation in galaxies. In the presence of external pressure, the pressure gradient set up within a self-gravitating turbulent (isothermal) cloud leads to a non-uniform density distribution. Thus the local environment of a cloud influences its internal structure. In the simple equilibrium model, the fraction of gas at high density in the cloud interior is determined simply by the cloud surface density, which is itselfmore » inherited from the pressure in the immediate surroundings. This idea is tested using measurements of the properties of local clouds, which are found to show remarkable agreement with the simple equilibrium model. The model also naturally predicts the star formation relation observed on cloud scales and at the same time provides a mapping between this relation and the closer-to-linear molecular star formation relation measured on larger scales in galaxies. The key is that pressure regulates not only the molecular content of the ISM but also the cloud surface density. I provide a straightforward prescription for the pressure regulation of star formation that can be directly implemented in numerical models. Predictions for the dense gas fraction and star formation efficiency measured on large-scales within galaxies are also presented, establishing the basis for a new picture of star formation regulated by galactic environment.« less
NASA Astrophysics Data System (ADS)
Hermann, J.; Boulmer-Leborgne, C.; Mihailescu, I. N.; Dubreuil, B.
1993-02-01
New experimental results are reported on plasma initiation in front of a titanium sample irradiated by ir (λ=10.6 μm) laser pulses in an ambient gas (He, Ar, and N2) at pressures ranging from several Torr up to the atmosphere. The plasma is studied by space- and time-resolved emission spectroscopy, while sample vaporization is probed by laser-induced fluorescence spectroscopy. Threshold laser intensities leading to the formation of a plasma in the vapor and in the ambient gases are determined. Experimental results support the model of a vaporization mechanism for the plasma initiation (vaporization-initiated plasma breakdown). The plasma initiation is described by simple numerical criteria based on a two-stage process. Theoretical predictions are found to be in a reasonable agreement with the experiment. This study provides also a clear explanation of the influence of the ambient gas on the laser beam-metal surface energy transfer. Laser irradiation always causes an important vaporization when performed in He, while in the case of Ar or N2, the interaction is reduced in heating and vaporization of some surface defects and impurities.
Yiou, Eric; Fourcade, Paul; Artico, Romain; Caderby, Teddy
2016-06-01
Many daily motor tasks have to be performed under a temporal pressure constraint. This study aimed to explore the influence of such constraint on motor performance and postural stability during gait initiation. Young healthy participants initiated gait at maximal velocity under two conditions of temporal pressure: in the low-pressure condition, gait was self-initiated (self-initiated condition, SI); in the high-pressure condition, it was initiated as soon as possible after an acoustic signal (reaction-time condition, RT). Gait was initiated with and without an environmental constraint in the form of an obstacle to be cleared placed in front of participants. Results showed that the duration of postural adjustments preceding swing heel-off ("anticipatory postural adjustments", APAs) was shorter, while their amplitude was larger in RT compared to SI. These larger APAs allowed the participants to reach equivalent postural stability and motor performance in both RT and SI. In addition, the duration of the execution phase of gait initiation increased greatly in the condition with an obstacle to be cleared (OBST) compared to the condition without an obstacle (NO OBST), thereby increasing lateral instability and thus involving larger mediolateral APA. Similar effects of temporal pressure were obtained in NO OBST and OBST. This study shows the adaptability of the postural system to temporal pressure in healthy young adults initiating gait. The outcome of this study may provide a basis for better understanding the aetiology of balance impairments with the risk of falling in frail populations while performing daily complex tasks involving a whole-body progression.
NASA Astrophysics Data System (ADS)
Tang, J.; Gu, Y. J.; Chen, Q. F.; Li, Z. G.; Zheng, J.; Li, C. J.; Li, J. T.
2018-04-01
Multiple shock reverberation compression experiments are designed and performed to determine the equation of state of neon ranging from the initial dense gas up to the warm dense regime where the pressure is from about 40 MPa to 120 GPa and the temperature is from about 297 K up to above 20 000 K. The wide region experimental data are used to evaluate the available theoretical models. It is found that, for neon below 1.1 g/cm 3 , within the framework of density functional theory molecular dynamics, a van der Waals correction is meaningful. Under high pressure and temperature, results from the self-consistent fluid variational theory model are sensitive to the potential parameter and could give successful predictions in the whole experimental regime if a set of proper parameters is employed. The new observations on neon under megabar (1 Mbar =1011Pa ) pressure and eV temperature (1 eV ≈104K ) enrich the understanding on properties of warm dense matter and have potential applications in revealing the formation and evolution of gaseous giants or mega-Earths.
Using second-sound shock waves to probe the intrinsic critical velocity of liquid helium II
NASA Technical Reports Server (NTRS)
Turner, T. N.
1983-01-01
A critical velocity truly intrinsic to liquid helium II is experimentally sought in the bulk fluid far from the apparatus walls. Termed the 'fundamental critical velocity,' it necessarily is caused by mutual interactions which operate between the two fluid components and which are activated at large relative velocities. It is argued that flow induced by second-sound shock waves provides the ideal means by which to activate and isolate the fundamental critical velocity from other extraneous fluid-wall interactions. Experimentally it is found that large-amplitude second-sound shock waves initiate a breakdown in the superfluidity of helium II, which is dramatically manifested as a limit to the maximum attainable shock strength. This breakdown is shown to be caused by a fundamental critical velocity. Secondary effects include boiling for ambient pressures near the saturated vapor pressure or the formation of helium I boundary layers at higher ambient pressures. When compared to the intrinsic critical velocity discovered in highly restricted geometries, the shock-induced critical velocity displays a similar temperature dependence and is the same order of magnitude.
Heat-Assisted Machining for Material Removal Improvement
NASA Astrophysics Data System (ADS)
Mohd Hadzley, A. B.; Hafiz, S. Muhammad; Azahar, W.; Izamshah, R.; Mohd Shahir, K.; Abu, A.
2015-09-01
Heat assisted machining (HAM) is a process where an intense heat source is used to locally soften the workpiece material before machined by high speed cutting tool. In this paper, an HAM machine is developed by modification of small CNC machine with the addition of special jig to hold the heat sources in front of the machine spindle. Preliminary experiment to evaluate the capability of HAM machine to produce groove formation for slotting process was conducted. A block AISI D2 tool steel with100mm (width) × 100mm (length) × 20mm (height) size has been cut by plasma heating with different setting of arc current, feed rate and air pressure. Their effect has been analyzed based on distance of cut (DOC).Experimental results demonstrated the most significant factor that contributed to the DOC is arc current, followed by the feed rate and air pressure. HAM improves the slotting process of AISI D2 by increasing distance of cut due to initial cutting groove that formed during thermal melting and pressurized air from the heat source.
NASA Astrophysics Data System (ADS)
Badal, Sunil P.; Ratcliff, Tyree D.; You, Yi; Breneman, Curt M.; Shelley, Jacob T.
2017-06-01
The effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone. Meanwhile, most other reagent ions (e.g., O2 +·, NO+, etc.) significantly decrease in abundance with even 0.1% v/v oxygen in the discharge gas. Interestingly, when analytes that contained aromatic constituents were subjected to a He:O2-FAPA, a unique (M + 3)+ ion resulted, while molecular or protonated molecular ions were rarely detected. Exact-mass measurements revealed that these (M + 3)+ ions correspond to (M - CH + O)+, with the most likely structure being pyrylium. Presence of pyrylium-based ions was further confirmed by tandem mass spectrometry of the (M + 3)+ ion compared with that of a commercially available salt. Lastly, rapid and efficient production of pyrylium in the gas phase was used to convert benzene into pyridine. Though this pyrylium-formation reaction has not been shown before, the reaction is rapid and efficient. Potential reactant species, which could lead to pyrylium formation, were determined from reagent-ion mass spectra. Thermodynamic evaluation of reaction pathways was aided by calculation of the formation enthalpy for pyrylium, which was found to be 689.8 kJ/mol. Based on these results, we propose that this reaction is initiated by ionized ozone (O3 +·), proceeds similarly to ozonolysis, and results in the neutral loss of the stable CHO2 · radical. [Figure not available: see fulltext.
Badal, Sunil P; Ratcliff, Tyree D; You, Yi; Breneman, Curt M; Shelley, Jacob T
2017-06-01
The effects of oxygen addition on a helium-based flowing atmospheric pressure afterglow (FAPA) ionization source are explored. Small amounts of oxygen doped into the helium discharge gas resulted in an increase in abundance of protonated water clusters by at least three times. A corresponding increase in protonated analyte signal was also observed for small polar analytes, such as methanol and acetone. Meanwhile, most other reagent ions (e.g., O 2 +· , NO + , etc.) significantly decrease in abundance with even 0.1% v/v oxygen in the discharge gas. Interestingly, when analytes that contained aromatic constituents were subjected to a He:O 2 -FAPA, a unique (M + 3) + ion resulted, while molecular or protonated molecular ions were rarely detected. Exact-mass measurements revealed that these (M + 3) + ions correspond to (M - CH + O) + , with the most likely structure being pyrylium. Presence of pyrylium-based ions was further confirmed by tandem mass spectrometry of the (M + 3) + ion compared with that of a commercially available salt. Lastly, rapid and efficient production of pyrylium in the gas phase was used to convert benzene into pyridine. Though this pyrylium-formation reaction has not been shown before, the reaction is rapid and efficient. Potential reactant species, which could lead to pyrylium formation, were determined from reagent-ion mass spectra. Thermodynamic evaluation of reaction pathways was aided by calculation of the formation enthalpy for pyrylium, which was found to be 689.8 kJ/mol. Based on these results, we propose that this reaction is initiated by ionized ozone (O 3 +· ), proceeds similarly to ozonolysis, and results in the neutral loss of the stable CHO 2 · radical. Graphical Abstract ᅟ.
Regional primitive equation modeling and analysis of the polymode data set
NASA Astrophysics Data System (ADS)
Spall, Michael A.
A regional, hybrid coordinate, primitive equation (PE) model is applied to a 60-day period of the POLYMODE data set. The initialization techniques and open boundary conditions introduced by Spall and Robinson are shown to produce stable, realistic, and reasonably accurate hindcasts for the 2-month data set. Comparisons with quasi-geostrophic (QG) modeling studies indicate that the PE model reproduced the jet formation that dominates the region more accurately than did the QG model. When the PE model used boundary conditions that were partially adjusted by the QG model, the resulting fields were very similar to the QG fields, indicating a rapid degradation of small-scale features near the boundaries in the QG calculation. A local term-by-term primitive equation energy and vorticity analysis package is also introduced. The full vorticity, horizontal divergence, kinetic energy, and available gravitational energy equations are solved diagnostically from the output of the regional PE model. Through the analysis of a time series of horizontal maps, the dominant processes in the flow are illustrated. The individual terms are also integrated over the region of jet formation to highlight the net balances as a function of time. The formation of the deep thermocline jet is shown to be due to horizontal advection through the boundary, baroclinic conversion in the deep thermocline and vertical pressure work, which exports the deep energy to the upper thermocline levels. It is concluded here that the PE model reproduces the observed jet formation better than the QG model because of the increased horizontal advection and stronger vertical pressure work. Although the PE model is shown to be superior to the QG model in this application, it is believed that both PE and QG models can play an important role in the regional study of mid-ocean mesoscale eddies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, H.Y.; Advani, S.H.; Lee, T.S.
1992-11-01
Hydraulic fracturing plays a pivotal role in the enhancement of oil and gas production recovery from low permeability reservoirs. The process of hydraulic fracturing entails the generation of a fracture by pumping fluids blended with special chemicals and proppants into the payzone at high injection rates and pressures to extend and wedge fractures. The mathematical modeling of hydraulically induced fractures generally incorporates coupling between the formation elasticity, fracture fluid flow, and fracture mechanics equations governing the formation structural responses, fluid pressure profile, and fracture growth. Two allied unsymmetric elliptic fracture models are developed for fracture configuration evolutions in three-layered rockmore » formations. The first approach is based on a Lagrangian formulation incorporating pertinent energy components associated with the formation structural responses and fracture fluid flow. The second model is based on a generalized variational principle, introducing an energy rate related functional. These models initially simulate a penny-shaped fracture, which becomes elliptic if the crack tips encounters (upper and/or lower) barriers with differential reservoir properties (in situ stresses, 16 elastic moduli, and fracture toughness-contrasts and fluid leak-off characteristics). The energy rate component magnitudes are determined to interpret the governing hydraulic fracture mechanisms during fracture evolution. The variational principle is extended to study the phenomenon and consequences of fluid lag in fractures. Finally, parametric sensitivity and energy rate investigations to evaluate the roles of controllable hydraulic treatment variables and uncontrollable reservoir property characterization parameters are performed. The presented field applications demonstrate the overall capabilities of the developed models. These studies provide stimulation treatment guidelines for fracture configuration design, control, and optimization.« less
Sour gas injection for use with in situ heat treatment
Fowler, Thomas David [Houston, TX
2009-11-03
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing acidic gas to a subsurface formation is described herein. The method may include providing heat from one or more heaters to a portion of a subsurface formation; producing fluids that include one or more acidic gases from the formation using a heat treatment process. At least a portion of one of the acidic gases may be introduced into the formation, or into another formation, through one or more wellbores at a pressure below a lithostatic pressure of the formation in which the acidic gas is introduced.
Early episodes of high-pressure core formation preserved in plume mantle
NASA Astrophysics Data System (ADS)
Jackson, Colin R. M.; Bennett, Neil R.; Du, Zhixue; Cottrell, Elizabeth; Fei, Yingwei
2018-01-01
The decay of short-lived iodine (I) and plutonium (Pu) results in xenon (Xe) isotopic anomalies in the mantle that record Earth’s earliest stages of formation. Xe isotopic anomalies have been linked to degassing during accretion, but degassing alone cannot account for the co-occurrence of Xe and tungsten (W) isotopic heterogeneity in plume-derived basalts and their long-term preservation in the mantle. Here we describe measurements of I partitioning between liquid Fe alloys and liquid silicates at high pressure and temperature and propose that Xe isotopic anomalies found in modern plume rocks (that is, rocks with elevated 3He/4He ratios) result from I/Pu fractionations during early, high-pressure episodes of core formation. Our measurements demonstrate that I becomes progressively more siderophile as pressure increases, so that portions of mantle that experienced high-pressure core formation will have large I/Pu depletions not related to volatility. These portions of mantle could be the source of Xe and W anomalies observed in modern plume-derived basalts. Portions of mantle involved in early high-pressure core formation would also be rich in FeO, and hence denser than ambient mantle. This would aid the long-term preservation of these mantle portions, and potentially points to their modern manifestation within seismically slow, deep mantle reservoirs with high 3He/4He ratios.
NASA Astrophysics Data System (ADS)
Hand, K. P.; Berisford, D. F.; Foster, J.; Furst, B.; Poston, M.; Kosberg, J.; Hofmann, A.; Lang, M.
2017-12-01
In cold, low-pressure, high-irradiance environments on Earth extraordinary formations of penitentes and suncups are observed. These morphologies emerge, in part, as a result of radiative feedback in ice and snow at temperatures and pressures near the vapor pressure sublimation curve of water. For ice covered ocean worlds of the outer solar system, such as Europa and Enceladus, the 100 K surfaces lack atmospheres (<1e-8 torr) and thus exist in a physical regime for water where the physics of penitente formation, as known from Earth, may not apply. Thus, we predict that those surfaces are unlikely to evolve to penitente and suncup morphologies, at least as they are known and formed on Earth. To investigate the range of possible morphologies and formation mechanisms under Earth and extraterrestrial conditions our team has constructed several temperature-, pressure-, and irradiance-controlled chambers. Results to date indicate that with even modest reduction in temperature and pressure toward Europa or Enceladus conditions leads to inhibition of penitente formation. Furthermore, addition of salts, as would be expected in ocean-derived waters of Europa and Enceladus, also inhibits penitente and suncup formation. During this talk we will present results from these experiments and discuss application of these results to the future exploration of ocean worlds.
Pressure effect on dissimilatory sulfate reduction
NASA Astrophysics Data System (ADS)
Williamson, A. J.; Carlson, H. K.; Coates, J. D.
2015-12-01
Biosouring is the production of H2S by sulfate reducing microorganisms (SRM) in-situ or in the produced fluids of oil reservoirs. Sulfide is explosive, toxic and corrosive which can trigger equipment and transportation failure, leading to environmental catastrophe. As oil exploration and reservoir development continue, subsequent enhanced recovery is occurring in progressively deeper formations and typical oil reservoir pressures range from 10-50 MPa. Therefore, an understanding of souring control effects will require an accurate understanding of the influence of pressure on SRM metabolism and the efficacy of souring control treatments at high pressure. Considerable work to date has focussed on souring control at ambient pressure; however, the influence of pressure on biogeochemical processes and souring treatments in oil reservoirs is poorly understood. To explore the impact of pressure on SRM, wild type Desulfovibrio alaskensis G20 (isolated from a producing oil well in Ventura County, California) was grown under a range of pressures (0.1-14 MPa) at 30 °C. Complete sulfate reduction occurred in all pressures tested within 3 days, but microbial growth was inhibited with increasing pressure. Bar-seq identified several genes associated with flagella biosynthesis (including FlhB) and assembly as important for survival at elevated pressure and fitness was confirmed using individual transposon mutants. Flagellar genes have previously been implicated with biofilm formation and confocal microscopy on glass slides incubated with wild type D. alaskensis G20 showed more biomass associated with surfaces under pressure, highlighting the link between pressure, flagellar and biofilm formation. To determine the effect of pressure on the efficacy of SRM inhibitors, IC50 experiments were conducted and D. alaskensis G20 showed a greater resistance to nitrate and the antibiotic chloramphenicol, but a lower resistance to perchlorate. These results will be discussed in the context of deep subsurface microbiology and oil reservoir biosouring. Overall, this work furthers our understanding of oil reservoir biogeochemistry and highlights the impact of pressure on biofilm formation and biosouring strategies.
NASA Astrophysics Data System (ADS)
Chen, Wen-Shiang
Ultrasound contrast agents (UCA) have shown great potential in both diagnostic and therapeutic applications recently. To fully explore the possible applications and the safety concerns of using UCA, a complete understanding of the UCA responses to various acoustic fields is necessary. Therefore, we performed a series of experiments and simulations to investigate the various acoustic properties of UCA with different gases and shells. We also investigated the mechanisms of some UCA-enhanced bioeffects including thrombolysis, hemolysis and high-intensity focused ultrasound (HIFU) tumor ablation. Two pressure thresholds were found: the fragmentation threshold and continuous inertial cavitation (IC) threshold. At the fragmentation threshold, bubbles were destroyed and the released gas dissolved in the surrounding solution at a rate which depended on the bubble's initial size and type of gas. The continuous IC threshold occurred at a higher pressure, where fragments of destroyed UCA (derivative bubbles) underwent violent inertial collapse; the period of activity depending on acoustic parameters such as frequency, pressure, pulse length, and pulse repetition frequency (PRF). Different UCA had different threshold pressures and demonstrated different magnitudes of IC activity after destruction. The amount of derivative bubbles generated by IC was determined by several acoustic parameters including pressure, pulse length and PRE For the same acoustic energy delivered, longer pulses generated more bubbles. More IC could be induced if the derivative bubbles could survive through the 'off' period of the pulsed ultrasound waves, and served as nuclei for the subsequent IC. In therapeutic applications, evidences of IC activity were recorded during the hemolysis, thrombolysis, and the lesion-formation processes with UCA. Hemolysis and thrombolysis were highly correlated to the presence of ultrasound and UCA, and correlated well with the amount of the IC activity. Finally, the 'tadpole-shaped' lesion formed during high-intensity, focused ultrasound treatment was the result of bubble formation by boiling.
Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell.
Haudin, Florence; Noblin, Xavier; Bouret, Yann; Argentina, Médéric; Raufaste, Christophe
2016-08-01
We report an experimental study of bubble dynamics in a non-Newtonian fluid subjected to a pressure decrease. The fluid is a hydrogel, composed of water and a synthetic clay, prepared and sandwiched between two glass plates in a Hele-Shaw geometry. The rheological properties of the material can be tuned by the clay concentration. As the imposed pressure decreases, the gas initially dissolved in the hydrogel triggers bubble formation. Different stages of the process are observed: bubble nucleation, growth, interaction, and creation of domains by bubble contact or coalescence. Initially bubble behave independently. They are trapped and advected by the mean deformation of the hydrogel, and the bubble growth is mainly driven by the diffusion of the dissolved gas through the hydrogel and its outgassing at the reactive-advected hydrogel-bubble interface. In this regime, the rheology of the fluid does not play a significant role on the bubble growth. A model is proposed and gives a simple scaling that relates the bubble growth rate and the imposed pressure. Carbon dioxide is shown to be the gas at play, and the hydrogel is degassing at the millimeter scale as a water solution does at a smaller scale. Later, bubbles are not independent anymore. The growth rate decreases, and the morphology becomes more anisotropic as bubbles interact because they are separated by a distance smaller than the individual stress field extension. Our measurements show that the interaction distance scales with the bubbles' size.
NASA Astrophysics Data System (ADS)
Lai, Shao-cong; Zhao, Shao-wei
2018-06-01
The Zheduoshan Miocene granitic pluton is exposed at the eastern margin of Tibet and along the strike-slip Xianshuihe Fault, and is the product of syn-tectonic magmatism closely related to this fault. This paper is focused on the petrogenesis of different granitic lithological units in the Zheduoshan composite intrusion, and the results of geochronology and lithology show that the Zheduoshan Miocene granitic pluton is incremental assembly by three stages of granitic magma influx and growth, represented by fine-grain biotite granite at 18.0 Ma, corase-grain and porphyraceous biotite monzogranite at 16.0 Ma and medium-grain two-mica monzogranite at 14.0 Ma. Combining with the geochemical signatures, these granitic rocks have high intial 87Sr/86Sr ratios, enriched Nd and Hf isotopic compositions, revealing that the sources of these granitic rocks are metabasatic rocks for fine-grain biotite granite, greywackes for coarse-grain biotite monzogranite and medium-grain monzogranite. These granites have high Sr/Y ratios, revealing that these granitic magma form at high pressure condition. The Sr/Y ratios and calculated crystallization pressure gradually decreased, implying the pressure gradually decreasing with the formation of these three stages of granites, which is probably caused by the tectonic mechanism transition from compression to strike-slip extension during the generation of these granites at 18.0-14.4 Ma. This tectonic mechanism change implied the initial activity of Xianshuihe Fault at least before 14.4 Ma.
Infrasonic wave accompanying a crack opening during the 2015 Hakone eruption
NASA Astrophysics Data System (ADS)
Yukutake, Yohei; Ichihara, Mie; Honda, Ryou
2018-03-01
To understand the initial process of the phreatic eruption of the Hakone volcano from June 29 to July 01, 2015, we analyzed infrasound data using the cross-correlation between infrasound and vertical ground velocity and compared the results of our analysis to the crustal deformation detected by tiltmeters and broadband seismometers. An infrasound signal and vertical ground motion due to an infrasound wave coupled to the ground were detected simultaneously with the opening of a crack source beneath the Owakudani geothermal region during the 2-min time period after 07:32 JST on June 29, 2015 (JST = UTC + 8 h). Given that the upper end of the open crack was approximately 150 m beneath the surface, the time for the direct emission of highly pressurized fluid from the upper end of the open crack to the surface should have exceeded the duration of the inflation owing to the hydraulic diffusivity in the porous media. Therefore, the infrasound signal coincident with the opening of the crack may reflect a sudden emission of volcanic gas resulting from the rapid vaporization of pre-existing groundwater beneath Owakudani because of the transfer of the volumetric strain change from the deformation source. We also noticed a correlation pattern corresponding to discrete impulsive infrasound signals during vent formation, which occurred several hours to 2 days after the opening of the crack. In particular, we noted that the sudden emission of vapor coincided with the inflation of the shallow pressure source, whereas the eruptive burst events accompanied by the largest vent formation were delayed by approximately 2 days. Furthermore, we demonstrated that the correlation method is a useful tool in detecting small infrasound signals and provides important information regarding the initial processes of the eruption.[Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, D.L.; Simonen, F.A.; Strosnider, J. Jr.
The VISA (Vessel Integrity Simulation Analysis) code was developed as part of the NRC staff evaluation of pressurized thermal shock. VISA uses Monte Carlo simulation to evaluate the failure probability of a pressurized water reactor (PWR) pressure vessel subjected to a pressure and thermal transient specified by the user. Linear elastic fracture mechanics are used to model crack initiation and propagation. parameters for initial crack size, copper content, initial RT/sub NDT/, fluence, crack-initiation fracture toughness, and arrest fracture toughness are treated as random variables. This report documents the version of VISA used in the NRC staff report (Policy Issue frommore » J.W. Dircks to NRC Commissioners, Enclosure A: NRC Staff Evaluation of Pressurized Thermal Shock, November 1982, SECY-82-465) and includes a user's guide for the code.« less
Reaction pathways towards the formation of dolomite-analogues at ambient conditions
NASA Astrophysics Data System (ADS)
Pimentel, Carlos; Pina, Carlos M.
2016-04-01
In this paper we present results of a study of the crystallisation behaviour of the dolomite-analogues norsethite and PbMg(CO3)2 at room temperature and atmospheric pressure. Whereas precipitation of norsethite was previously obtained by mixing solutions (Hood et al., 1974; Pimentel and Pina, 2014a,b), we report, for the first time, the synthesis of PbMg(CO3)2 by using the same method. The formation of both phases was promoted by ageing slurries for periods of time ranging from a few days (norsethite) up to 6 months (PbMg(CO3)2). The crystallisation of both norsethite and PbMg(CO3)2 occurs by sequences of dissolution-precipitation reactions involving several amorphous and crystalline precursor phases, which were identified and characterised by X-ray diffraction and scanning electron microscopy. Depending on the initial composition and Ba:Mg and Pb:Mg ratios in the slurries, different precursors and reaction kinetics were observed. This demonstrates the existence of different reaction pathways towards the formation of the investigated dolomite-analogues. Our experimental results provide new insights into the possible mechanisms of formation of dolomite and other double carbonates in nature.
Formation of Micro-Scale Gas Pockets From Underwater Wall Orifices
NASA Astrophysics Data System (ADS)
Pereira, Francisco A.; Gharib, Morteza
2012-11-01
Our experiments examine the formation of micro-scale gas pockets from orifices on walls with hydrophilic and hydrophobic wetting properties. Bubble injection is operated in a liquid at rest at constant flow rate and in a quasi-static regime, and the mechanism of bubble growth is investigated through high speed recordings. The growth dynamics is studied in terms of orifice size, surface wetting properties and buoyancy sign. The bubble formation is characterized by an explosive growth, with a pressure wave that causes the bubble to take highly transient shapes in its very initial stages, before stabilizing as a sphere and growing at a relatively slow rate. In case of positive buoyancy, the bubble elongates with the formation of a neck before detaching from the wall. When buoyancy acts towards the wall, the bubble attaches to the wall and expands laterally with a moving contact line. In presence of hydrophobic surfaces, the bubble attaches immediately to the wall irrespective of buoyancy direction and takes a hemispherical shape, expanding radially along the surface. A force balance is outlined to explain the different figures. The work was performed by FAP while on leave from CNR-INSEAN, and is supported by the Office of Naval Research (ONR).
Mechanisms of Laser-Induced Dissection and Transport of Histologic Specimens
Vogel, Alfred; Lorenz, Kathrin; Horneffer, Verena; Hüttmann, Gereon; von Smolinski, Dorthe; Gebert, Andreas
2007-01-01
Rapid contact- and contamination-free procurement of histologic material for proteomic and genomic analysis can be achieved by laser microdissection of the sample of interest followed by laser-induced transport (laser pressure catapulting). The dynamics of laser microdissection and laser pressure catapulting of histologic samples of 80 μm diameter was investigated by means of time-resolved photography. The working mechanism of microdissection was found to be plasma-mediated ablation initiated by linear absorption. Catapulting was driven by plasma formation when tightly focused pulses were used, and by photothermal ablation at the bottom of the sample when defocused pulses producing laser spot diameters larger than 35 μm were used. With focused pulses, driving pressures of several hundred MPa accelerated the specimen to initial velocities of 100–300 m/s before they were rapidly slowed down by air friction. When the laser spot was increased to a size comparable to or larger than the sample diameter, both driving pressure and flight velocity decreased considerably. Based on a characterization of the thermal and optical properties of the histologic specimens and supporting materials used, we calculated the evolution of the heat distribution in the sample. Selected catapulted samples were examined by scanning electron microscopy or analyzed by real-time reverse-transcriptase polymerase chain reaction. We found that catapulting of dissected samples results in little collateral damage when the laser pulses are either tightly focused or when the laser spot size is comparable to the specimen size. By contrast, moderate defocusing with spot sizes up to one-third of the specimen diameter may involve significant heat and ultraviolet exposure. Potential side effects are maximal when samples are catapulted directly from a glass slide without a supporting polymer foil. PMID:17766336
A New Approach for Simulating Galaxy Cluster Properties
NASA Astrophysics Data System (ADS)
Arieli, Y.; Rephaeli, Y.; Norman, M. L.
2008-08-01
We describe a subgrid model for including galaxies into hydrodynamical cosmological simulations of galaxy cluster evolution. Each galaxy construct—or galcon—is modeled as a physically extended object within which star formation, galactic winds, and ram pressure stripping of gas are modeled analytically. Galcons are initialized at high redshift (z ~ 3) after galaxy dark matter halos have formed but before the cluster has virialized. Each galcon moves self-consistently within the evolving cluster potential and injects mass, metals, and energy into intracluster (IC) gas through a well-resolved spherical interface layer. We have implemented galcons into the Enzo adaptive mesh refinement code and carried out a simulation of cluster formation in a ΛCDM universe. With our approach, we are able to economically follow the impact of a large number of galaxies on IC gas. We compare the results of the galcon simulation with a second, more standard simulation where star formation and feedback are treated using a popular heuristic prescription. One advantage of the galcon approach is explicit control over the star formation history of cluster galaxies. Using a galactic SFR derived from the cosmic star formation density, we find the galcon simulation produces a lower stellar fraction, a larger gas core radius, a more isothermal temperature profile, and a flatter metallicity gradient than the standard simulation, in better agreement with observations.
Crater Formation Above Salt Caverns: Piston vs Hour-glass
NASA Astrophysics Data System (ADS)
Berest, P.
2016-12-01
Conditions leading to crater formation above salt caverns are discussed. In most cases, at the end of leaching, the cavern roof had reached the top of the salt formation, allowing direct contact between brine and marl (or argillite) layers that compose the overburden of the salt formation. These layers are prone to weathering when in contact with saturated brine. Stoping takes place, and the cavern roof rises through the overburden. This process may be several years or dozens of years long. In Lorraine salt formations, stoping stops when the rising cavern top reaches a competent layer, the Beaumont Dolomite. Operators then lower cavern-brine pressure to trigger collapse. A rigid cylinder of rock (a "piston") drops into the cavern, and a crater whose initial edges are vertical is created. Cavern drop is more abrupt when the cavern top is filled partly with air. The contour of the piston is circular, as a circle is the shape such that the ratio between perimeter and area is minimal. In other cases, for instance in Kansas, the cavern rises until the uppermost keystone in the bedrock at shallow depth is breached, permitting loose materials to flow into the cavern through a relatively narrow hole at the bottom of the sink hole, as in an hour glass.
NASA Astrophysics Data System (ADS)
Nazarova, D. P.; Portnyagin, M. V.; Krasheninnikov, S. P.; Mironov, N. L.; Sobolev, A. V.
2017-01-01
The formation conditions of the parental magmas of Gorely volcano, which is located behind a volcanic front in Southern Kamchatka, have been evaluated using the modern methods of micro-element thermobarometry. These magmas contained 1.7 ± 0.8 (2σ) wt % of H2O, the majority (82%) of which has been lost from inclusions. They crystallized at 1121 ± 17°C and an oxygen fugacity of ΔQFM 1.2 ± 0.2, and could have been produced by about 11% melting of an enriched MORB source (E-DMM) at a temperature of about 1270°C, and a pressure of about 1.5 GPa. A distinctive feature of Gorely volcano, compared with frontal volcanoes of Kamchatka, is the unusually high temperature (925 ± 20°C) of formation of the subduction component corresponding to the region of existence of water-bearing melts.
NASA Technical Reports Server (NTRS)
Poosti, Sassaneh; Akopyan, Sirvard; Sakurai, Regina; Yun, Hyejung; Saha, Pranjit; Strickland, Irina; Croft, Kevin; Smith, Weldon; Hoffman, Rodney; Koffend, John;
2006-01-01
TES Level 2 Subsystem is a set of computer programs that performs functions complementary to those of the program summarized in the immediately preceding article. TES Level-2 data pertain to retrieved species (or temperature) profiles, and errors thereof. Geolocation, quality, and other data (e.g., surface characteristics for nadir observations) are also included. The subsystem processes gridded meteorological information and extracts parameters that can be interpolated to the appropriate latitude, longitude, and pressure level based on the date and time. Radiances are simulated using the aforementioned meteorological information for initial guesses, and spectroscopic-parameter tables are generated. At each step of the retrieval, a nonlinear-least-squares- solving routine is run over multiple iterations, retrieving a subset of atmospheric constituents, and error analysis is performed. Scientific TES Level-2 data products are written in a format known as Hierarchical Data Format Earth Observing System 5 (HDF-EOS 5) for public distribution.
Generation of cavitation luminescence by laser-induced exothermic chemical reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung Park, Han; Diebold, Gerald J.
2013-08-14
Absorption of high power laser radiation by aqueous carbon suspensions is known to result in the formation of highly compressed bubbles of hydrogen and carbon monoxide through the endothermic carbon-steam reaction. The bubbles expand rapidly, overreaching their equilibrium diameter, and then collapse tens to hundreds of microseconds after formation to give a flash of radiation. Here we report on the effects of laser-initiated exothermic chemical reaction on cavitation luminescence. Experiments with hydrogen peroxide added to colloidal carbon suspensions show that both the time of the light flash following the laser pulse and the intensity of luminescence increase with hydrogen peroxidemore » concentration, indicating that large, highly energetic gas bubbles are produced. Additional experiments with colloidal carbon suspensions show the effects of high pressure on the luminescent intensity and its time of appearance following firing of the laser.« less
Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)
NASA Astrophysics Data System (ADS)
Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.
2013-10-01
The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.
IN SITU INFRARED MEASUREMENTS OF FREE-FLYING SILICATE DURING CONDENSATION IN THE LABORATORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishizuka, Shinnosuke; Kimura, Yuki; Sakon, Itsuki
2015-04-20
We developed a new experimental system for infrared (IR) measurements on free-flying nucleating nanoparticles in situ and applied it to studies on silicate particles. We monitored the condensation of magnesium-bearing silicate nanoparticles from thermally evaporated magnesium and silicon monoxide vapor under an atmosphere of oxygen and argon. The IR spectrum of newly condensed particles showed a spectral feature for non-crystalline magnesium-bearing silicate that is remarkably consistent with the IR spectrum of astronomically observed non-crystalline silicate around oxygen-rich evolved stars. The silicate crystallized at <500 K and eventually developed a high crystallinity. Because of the size effects of nanoparticles, the silicatemore » would be expected to be like a liquid at least during the initial stages of nucleation and growth. Our experimental results therefore suggest decreasing the possible formation temperature of crystalline silicates in dust formation environments with relatively higher pressure.« less
Zuthi, Mst Fazana Rahman; Guo, Wenshan; Ngo, Huu Hao; Nghiem, Duc Long; Hai, Faisal I; Xia, Siqing; Li, Jianxin; Li, Jixiang; Liu, Yi
2017-08-01
This study aimed to develop a practical semi-empirical mathematical model of membrane fouling that accounts for cake formation on the membrane and its pore blocking as the major processes of membrane fouling. In the developed model, the concentration of mixed liquor suspended solid is used as a lumped parameter to describe the formation of cake layer including the biofilm. The new model considers the combined effect of aeration and backwash on the foulants' detachment from the membrane. New exponential coefficients are also included in the model to describe the exponential increase of transmembrane pressure that typically occurs after the initial stage of an MBR operation. The model was validated using experimental data obtained from a lab-scale aerobic sponge-submerged membrane bioreactor (MBR), and the simulation of the model agreed well with the experimental findings. Copyright © 2017 Elsevier Ltd. All rights reserved.
Model of heap formation in vibrated gravitational suspensions.
Ebata, Hiroyuki; Sano, Masaki
2015-11-01
In vertically vibrated dense suspensions, several localized structures have been discovered, such as heaps, stable holes, expanding holes, and replicating holes. Because an inclined free fluid surface is difficult to maintain because of gravitational pressure, the mechanism of those structures is not understood intuitively. In this paper, as a candidate for the driving mechanism, we focus on the boundary condition on a solid wall: the slip-nonslip switching boundary condition in synchronization with vertical vibration. By applying the lubrication approximation, we derived the time evolution equation of the fluid thickness from the Oldroyd-B fluid model. In our model we show that the initially flat fluid layer becomes unstable in a subcritical manner, and heaps and convectional flow appear. The obtained results are consistent with those observed experimentally. We also find that heaps climb a slope when the bottom is slightly inclined. We show that viscoelasticity enhances heap formation and climbing of a heap on the slope.
Turbulence and mechanism of resistance on spheres and cylinders
NASA Technical Reports Server (NTRS)
Ahlborn, FR
1932-01-01
The nature of turbulent flow through pipes and around obstacles is analyzed and illustrated by photographs of turbulence on screens and straighteners. It is shown that the reversal of flow and of the resistance law on spheres is not explainable by Prandtl's turbulence in the boundary layer. The investigation of the analogous phenomena on the cylinder yields a reversal of the total field of flow. The very pronounced changes in pressure distribution connected with it were affirmed by manometric measurements on spheres by Professor O. Krell. The reversal in a homogenous nonvortical flow is brought about by the advance of the stable arrangement of Karman's dead air vortices toward the test object and by the substitution of an alternatingly one-sided or rotating but stable vortex formation in place of the initially symmetrical formation. This also explains the marked variations of the models.
Semipermeability Evolution of Wakkanai Mudstones During Isotropic Compression
NASA Astrophysics Data System (ADS)
Takeda, M.; Manaka, M.
2015-12-01
Precise identification of major processes that influence groundwater flow system is of fundamental importance for the performance assessment of waste disposal in subsurface. In the characterization of groundwater flow system, gravity- and pressure-driven flows have been conventionally assumed as dominant processes. However, recent studies have suggested that argillites can act as semipermeable membranes and they can cause chemically driven flow, i.e., chemical osmosis, under salinity gradients, which may generate erratic pore pressures in argillaceous formations. In order to identify the possibility that chemical osmosis is involved in erratic pore pressure generations in argillaceous formations, it is essential to measure the semipermeability of formation media; however, in the measurements of semipermeability, little consideration has been given to the stresses that the formation media would have experienced in past geologic processes. This study investigates the influence of stress history on the semipermeability of an argillite by an experimental approach. A series of chemical osmosis experiments were performed on Wakkanai mudstones to measure the evolution of semipermeability during loading and unloading confining pressure cycles. The osmotic efficiency, which represents the semipermeability, was estimated at each confining pressure. The results show that the osmotic efficiency increases almost linearly with increasing confining pressure; however, the increased osmotic efficiency does not recover during unloading unless the confining pressure is almost relieved. The observed unrecoverable change in osmotic efficiency may have an important implication on the evaluation of chemical osmosis in argillaceous formations that have been exposed to large stresses in past geologic processes. If the osmotic efficiency increased by the past stress can remain unchanged to date, the osmotic efficiency should be measured at the past highest stress rather than the current in-situ stress. Otherwise, the effect of chemical osmosis on the pore pressure generation would be underestimated.
Fragmentation during primordial star formation
NASA Astrophysics Data System (ADS)
Dutta, Jayanta
Understanding the physics of the very first stars in the universe, the so-called Population III (or Pop III) stars, is crucial in determining how the universe evolved into what we observe today. In the standard model of Pop III star formation, the baryonic matter, mainly atomic hydrogen, collapses gravitationally into small Dark Matter (DM) minihalos. However, so far there is little understanding on how the thermal, dynamical and chemical evolution of the primordial gas depend on the initial configuration of the minihalos (for example, rotation of the unstable clumps inside minihalos, turbulence, formation of molecular hydrogen and cosmic variance of the minihalos). We use the modified version of the Gadget-2 code, a three-dimensional smoothed particle hydrodynamics (SPH) simulations, to follow the evolution of the collapsing gas in both idealized as well as more realistic minihalos. Unlike some earlier cosmological calculations, the implementation of sink particles allows us to follow the evolution of the accretion disk that builds up in the centre of each minihalo and fragments. We find that the fragmentation behavior depends on the adopted choice of three-body H2 formation rate coefficient. The increasing cooling rate during rapid conversion of the atomic to molecular hydrogen is offset by the heating due to gas contraction. We propose that the H2 cooling, the heating due to H2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation. We also find that the cloud's initial degree of rotation has a significant effect on the thermal and dynamical evolution of the collapsing gas. Clouds with higher rotation exhibit spiral-arm-like structures that become gravitationally unstable to fragmentation on several scales. These type of clouds tend to fragment more and have lower accretion rates compared to their slowly rotating counterparts. In addition, we find that the distribution of specific angular momentum (L) of the gas follows a power-law relation with the enclosed gas mass (M), L ∝ M1.125, which is controlled by the gravitational and pressure torque, and does not depend on the cloud's initial degree of rotation and turbulence.
NASA Astrophysics Data System (ADS)
Matthews, Thomas P.; Anastasio, Mark A.
2017-12-01
The initial pressure and speed of sound (SOS) distributions cannot both be stably recovered from photoacoustic computed tomography (PACT) measurements alone. Adjunct ultrasound computed tomography (USCT) measurements can be employed to estimate the SOS distribution. Under the conventional image reconstruction approach for combined PACT/USCT systems, the SOS is estimated from the USCT measurements alone and the initial pressure is estimated from the PACT measurements by use of the previously estimated SOS. This approach ignores the acoustic information in the PACT measurements and may require many USCT measurements to accurately reconstruct the SOS. In this work, a joint reconstruction method where the SOS and initial pressure distributions are simultaneously estimated from combined PACT/USCT measurements is proposed. This approach allows accurate estimation of both the initial pressure distribution and the SOS distribution while requiring few USCT measurements.
A Broad Continuum of Aeolian Impact Ripple Sizes on Mars is Allowed by Low Dynamic Wind Pressures
NASA Astrophysics Data System (ADS)
Sullivan, R. J., Jr.; Kok, J. F.; Yizhaq, H.
2017-12-01
Aeolian impact ripples are generated by impacts of wind-blown sand grains, and are common in environments with loose sand on Earth and Mars. Previous work has shown that, within a fully developed saltation cloud, impact ripple height grows upward into the boundary layer until limited by the effects of increasing wind dynamic pressure at the crest (e.g., lengthening of splash trajectories, or direct entrainment of grains by the wind). On Earth, this process limits ripples of well-sorted 250 µm dune sands to heights of millimeters, and strong winds can impose sufficient lateral dynamic pressure to flatten and erase these ripples. Rover observations show much larger ripple-like bedforms on Mars, raising questions about their formative mechanism. Here, we hypothesize that two factors allow impact ripples to grow much higher on Mars than on Earth: (1) previous work predicts a much larger difference between impact threshold and fluid threshold wind speeds on Mars than on Earth; and (2) recent analysis has revealed how low saltation flux can be initiated and sustained well below fluid threshold on Mars, allowing impact ripples to migrate entirely under prevailing conditions of relatively low wind speeds in the thin martian atmosphere. Under these circumstances, martian ripples would need to grow much larger than on Earth before reaching their maximum height limited by wind dynamic pressure effects. Because the initial size of impact ripples is similar on Mars and Earth, this should generate a much broader continuum of impact ripple sizes on Mars. Compared with Earth, far more time should be needed on Mars for impact ripples to achieve their maximum possible size. Consequently, in cases where wind azimuths are mixed but one azimuth is more dominant than others, martian impact ripples of all sizes can exist together in the same setting, with the largest examples reflecting the most common/formative wind azimuths. In cases where wind azimuth is not dominated by a single azimuth over others, ripple height should vary with orientation and the maximum possible height might never have the chance to be achieved. Our hypothesis could explain the wide range of observed ripple sizes on Mars having wavelengths from cm to several m, and suggests that the largest martian ripples are in fact large impact ripples.
NASA Astrophysics Data System (ADS)
Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate
2018-04-01
We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.
Liquid Nitrogen as Fast High Voltage Switching Medium
NASA Astrophysics Data System (ADS)
Dickens, J.; Neuber, A.; Haustein, M.; Krile, J.; Krompholz, H.
2002-12-01
Compact pulsed power systems require new switching technologies. For high voltages, liquid nitrogen seems to be a suitable switching medium, with high hold-off voltage, low dielectric constant, and no need for pressurized systems as in high pressure gas switches. The discharge behavior in liquid nitrogen, such as breakdown voltages, formative times, current rise as function of voltage, recovery, etc. are virtually unknown, however. The phenomenology of breakdown in liquid nitrogen is investigated with high speed (temporal resolution < 1 ns) electrical and optical diagnostics, in a coaxial system with 50-Ohm impedance. Discharge current and voltage are determined with transmission line type current sensors and capacitive voltage dividers. The discharge luminosity is measured with photomultiplier tubes. Preliminary results of self-breakdown investigations (gap 1 mm, breakdown voltage 44 kV, non-boiling supercooled nitrogen) show a fast (2 ns) transition from an unknown current level to several mA, a long-duration (100 ns) phase with constant current superimposed by ns-spikes, and a final fast transition to the impedance limited current during several nanoseconds. The optical measurements will be expanded toward spectroscopy and high speed photography with the aim of clarifying the overall breakdown mechanisms, including electronic initiation, bubble formation, bubble dynamics, and their role in breakdown, for different electrode geometries (different macroscopic field enhancements).
Rinehart, Alex J.; Dewers, Thomas A.; Broome, Scott T.; ...
2016-08-25
We characterize geomechanical constitutive behavior of reservoir sandstones at conditions simulating the “Cranfield” Southeast Regional Carbon Sequestration Partnership injection program. From two cores of Lower Tuscaloosa Formation, three sandstone lithofacies were identified for mechanical testing based on permeability and lithology. These include: chlorite-cemented conglomeratic sandstone (Facies A); quartz-cemented fine sandstone (Facies B); and quartz- and calcite-cemented very fine sandstone (Facies C). We performed a suite of compression tests for each lithofacies at 100 °C and pore pressure of 30 MPa, including hydrostatic compression and triaxial tests at several confining pressures. Plugs were saturated with supercritical CO 2-saturated brine. Chemical environmentmore » affected the mechanical response of all three lithofacies, which experience initial plastic yielding at stresses far below estimated in situ stress. Measured elastic moduli degradation defines a secondary yield surface coinciding with in situ stress for Facies B and C. Facies A shows measurable volumetric creep strain and a failure envelope below estimates of in situ stress, linked to damage of chlorite cements by acidic pore solutions. Furthermore, the substantial weakening of a particular lithofacies by CO 2 demonstrates a possible chemical-mechanical coupling during injection at Cranfield with implications for CO 2 injection, reservoir permeability stimulation, and enhanced oil recovery.« less
Skibitzki, Oliver; Capellini, Giovanni; Yamamoto, Yuji; Zaumseil, Peter; Schubert, Markus Andreas; Schroeder, Thomas; Ballabio, Andrea; Bergamaschini, Roberto; Salvalaglio, Marco; Miglio, Leo; Montalenti, Francesco
2016-10-05
In this work, we demonstrate the growth of Ge crystals and suspended continuous layers on Si(001) substrates deeply patterned in high aspect-ratio pillars. The material deposition was carried out in a commercial reduced-pressure chemical vapor deposition reactor, thus extending the "vertical-heteroepitaxy" technique developed by using the peculiar low-energy plasma-enhanced chemical vapor deposition reactor, to widely available epitaxial tools. The growth process was thoroughly analyzed, from the formation of small initial seeds to the final coalescence into a continuous suspended layer, by means of scanning and transmission electron microscopy, X-ray diffraction, and μ-Raman spectroscopy. The preoxidation of the Si pillar sidewalls and the addition of hydrochloric gas in the reactants proved to be key to achieve highly selective Ge growth on the pillars top only, which, in turn, is needed to promote the formation of a continuous Ge layer. Thanks to continuum growth models, we were able to single out the different roles played by thermodynamics and kinetics in the deposition dynamics. We believe that our findings will open the way to the low-cost realization of tens of micrometers thick heteroepitaxial layer (e.g., Ge, SiC, and GaAs) on Si having high crystal quality.
NASA Astrophysics Data System (ADS)
Yin, Z.; Moridis, G. J.; Chong, Z. R.; Linga, P.
2017-12-01
Methane hydrates (MH) are known to trap enormous amounts of CH4 in oceanic and permafrost-associated deposits, and are being considered as a potential future energy source. Several powerful numerical simulators were developed to describe the behavior of natural hydrate-bearing sediments (HBS). The complexity and strong nonlinearities in HBS do not allow analytical solutions for code validation. The only reliable method to develop confidence in these models is through comparisons to laboratory and/or field experiments. The objective of this study is to reproduce numerically the results from earlier experiments of MH formation and depressurization (and the corresponding fluid production) in 1.0L reactor involving unconsolidated sand, thus validating and calibrating the TOUGH+Hydrate v1.5 simulator. We faithfully describe the reactor geometry and the experimental process that involves both hydrate formation and dissociation. We demonstrate that the laboratory experiments can only be captured by a kinetic hydration model. There is an excellent agreement between observations and predictions (a) of the cumulative gas depletion (during formation) and production (during dissociation) and (b) of pressure over time. The temperature agreement is less satisfactory, and the deviations are attributed to the fixed locations of the limited number of sensors that cannot fully capture the hydrate heterogeneity. We also predict the spatial distributions over time of the various phase (gas, aqueous and hydrate) saturations. Thus, hydrates form preferentially along the outer boundary of the sand core, and the hydrate front moves inward leaving a significant portion of the sand at the center hydrate-free. During depressurization, dissociation advances again inward from the reactor boundary to the center of the reactor. As expected, methane gas accumulates initially at the locations of most intense dissociation, and then gradually migrates to the upper section of the reactor because of buoyancy and of the pressure gradient caused by the pressure outlet. Sensitivity analysis indicates that the composite thermal conductivity of the HBS and the kinetic parameters of the hydration reaction are the dominant factors. The absolute permeability of the sand does not play a significant role in this small reactor.
Wu, Qiong; Xiong, Guolin; Zhu, Weihua; Xiao, Heming
2015-09-21
We have performed ab initio molecular dynamics simulations to study coupling effects of temperature (534-873 K) and pressure (1-20 GPa) on the initiation mechanisms and subsequent chemical decompositions of nitramine explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). A new initiation decomposition mechanism of HMX was found to be the unimolecular C-H bond breaking, and this mechanism was independent of the coupling effects of different temperatures and pressures. The formed hydrogen radicals could promote subsequent decompositions of HMX. Subsequent decompositions were very sensitive to the pressure at low temperatures (534 and 608 K), while the temperature became the foremost factor that affected the decomposition at a high temperature (873 K) instead of the pressure. Our study may provide a new insight into understanding the coupling effects of the temperature and pressure on the initiation decomposition mechanisms of nitramine explosives.
Subsurface fluid pressures from drill-stem tests, Uinta Basin, Utah
Nelson, P.H.
2002-01-01
High fluid pressures are known to be associated with oil and gas fields in the Uinta Basin, Utah. Shut-in pressure measurements from drill-stem tests show how pressure varies with depth and by area within the basin. The data base used in this report incorporates over 2,000 pressure measurements from drill-stem tests in wells completed prior to 1985. However, the number of useful pressure measurements is considerably less, because many drill-stem tests fail to stabilize at the actual formation pressure if the permeability is low. By extracting the maximum pressure measurements recorded in a collection of wells within an area, the trend of formation pressure within that area can be approximated. Areal compilations of pressures from drill-stem tests show that overpressured rock formations occur throughout much of the northern and eastern areas of the Uinta Basin. In particular, significant overpressuring (0.5 < pressure gradient < 0.8 psi/ft) is found throughout much of the Altamont-Bluebell field at depths ranging from 10,000 to 13,000 ft, equivalent to 5,000 to 8,000 ft below sea level. Limited data indicate that the pressure gradient declines at depths greater than 13,000 ft. An underpressured zone appears to exist in the Altamont-Bluebell field at depths shallower than 5,000 ft. Throughout the eastern Uinta Basin, moderately overpressured zones (0.46 < pressure gradient < 0.5 psi/ft) are common, with local evidence of significantly overpressured zones, but pressure gradients greater than 0.6 psi/ft are rare.
Rongeat, Carine; Llamas-Jansa, Isabel; Doppiu, Stefania; Deledda, Stefano; Borgschulte, Andreas; Schultz, Ludwig; Gutfleisch, Oliver
2007-11-22
Among the thermodynamic properties of novel materials for solid-state hydrogen storage, the heat of formation/decomposition of hydrides is the most important parameter to evaluate the stability of the compound and its temperature and pressure of operation. In this work, the desorption and absorption behaviors of three different classes of hydrides are investigated under different hydrogen pressures using high-pressure differential scanning calorimetry (HP-DSC). The HP-DSC technique is used to estimate the equilibrium pressures as a function of temperature, from which the heat of formation is derived. The relevance of this procedure is demonstrated for (i) magnesium-based compounds (Ni-doped MgH2), (ii) Mg-Co-based ternary hydrides (Mg-CoHx) and (iii) Alanate complex hydrides (Ti-doped NaAlH4). From these results, it can be concluded that HP-DSC is a powerful tool to obtain a good approximation of the thermodynamic properties of hydride compounds by a simple and fast study of desorption and absorption properties under different pressures.
Hawthorne, Steven B.; Miller, David J.; Jin, Lu; ...
2016-07-20
We report here a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2−4 MMP values can be determined per day with only one experimental apparatus, and the methodmore » greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically <4% relative standard deviation (RSD)], and the method gave good agreement for a “live” Bakken oil with the results from a slim tube test of a commercial laboratory. Approximately 80 MMP values were measured using pure CO2, methane, and ethane as well as 0−100% mole ratios of methane/CO2 and methane/ethane. For both oil samples, ethane MMPs were ca. one-half those with CO2, while methane MMPs were ca. double or triple those with CO2. MMPs with mixed methane/CO2 showed a linear increase with mole percent methane for both crude oils, while both oils showed an exponential increase in MMP with mole percent methane in ethane, with a little increase in MMP until ca. 20 mol % methane in ethane.« less
Xiang, Y; Al, T; Mazurek, M
2016-12-01
The effect of confining pressure (CP) on the diffusion of tritiated-water (HTO) and iodide (I - ) tracers through Ordovician rocks from the Michigan Basin, southwestern Ontario, Canada, and Opalinus Clay from Schlattingen, Switzerland was investigated in laboratory experiments. Four samples representing different formations and lithologies in the Michigan Basin were studied: Queenston Formation shale, Georgian Bay Formation shale, Cobourg Formation limestone and Cobourg Formation argillaceous limestone. Estimated in situ vertical stresses at the depths from which the samples were retrieved range from 12.0 to 17.4MPa (Michigan Basin) and from 21 to 23MPa (Opalinus Clay). Effective diffusion coefficients (D e ) were determined in through-diffusion experiments. With HTO tracer, applying CP resulted in decreases in D e of 12.5% for the Queenston Formation shale (CP max =12MPa), 30% for the Georgian Bay Formation shale (15MPa), 34% for the Cobourg Formation limestone (17.4MPa), 31% for the Cobourg Formation argillaceous limestone (17.4MPa) and 43-46% for the Opalinus Clay (15MPa). Decreases in D e were larger for the I - tracer: 13.8% for the Queenston shale, 42% for the Georgian Bay shale, 50% for the Cobourg Formation limestone, 55% for the Cobourg Formation argillaceous limestone and 63-68% for the Opalinus Clay. The tracer-specific nature of the response is attributed to an increasing influence of anion exclusion as the pore size decreases at higher CP. Results from the shales (including Opalinus Clay) indicate that the pressure effect on D e can be represented by a linear relationship between D e and ln(CP), which provides valuable predictive capability. The nonlinearity results in a relatively small change in D e at high CP, suggesting that it is not necessary to apply the exact in situ pressure conditions in order to obtain a good estimate of the in situ diffusion coefficient. Most importantly, the CP effect on shale is reversible (±12%) suggesting that, for argillaceous rocks, it is possible to obtain D e values that are representative of the in-situ condition by conducting measurements on re-pressurized samples that were obtained with standard drilling practices. This may not be the case for brittle rock samples as the results from limestone suggest that irreversible damage occurred during the pressure cycling. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Coldwell, B.; Adam, J.; Rushmer, T.; MacPherson, C. G.
2011-10-01
Piston-cylinder experiments on a Pleistocene adakite from Mindanao in the Philippines have been used to establish near-liquidus and sub-liquidus phase relationships relevant to conditions in the East Philippines subduction zone. The experimental starting material belongs to a consanguineous suite of adakitic andesites. Experiments were conducted at pressures from 0.5 to 2 GPa and temperatures from 950 to 1,150°C. With 5 wt. % of dissolved H2O in the starting mix, garnet, clinopyroxene and orthopyroxene are liquidus phases at pressures above 1.5 GPa, whereas clinopyroxene and orthopyroxene are liquidus (or near-liquidus) phases at pressures <1.5 GPa. Although amphibole is not a liquidus phase under any of the conditions examined, it is stable under sub-liquidus conditions at temperature ≤1,050°C and pressures up to 1.5 GPa. When combined with petrographic observations and bulk rock chemical data for the Mindanao adakites, these findings are consistent with polybaric fractionation that initially involved garnet (at pressures >1.5 GPa) and subsequently involved the lower pressure fractionation of amphibole, plagioclase and subordinate clinopyroxene. Thus, the distinctive Y and HREE depletions of the andesitic adakites (which distinguish them from associated non-adakitic andesites) must be established relatively early in the fractionation process. Our experiments show that this early fractionation must have occurred at pressures >1.5 GPa and, thus, deeper than the Mindanao Moho. Published thermal models of the Philippine Sea Plate preclude a direct origin by melting of the subducting ocean crust. Thus, our results favour a model whereby basaltic arc melt underwent high-pressure crystal fractionation while stalled beneath immature arc lithosphere. This produced residual magma of adakitic character which underwent further fractionation at relatively low (i.e. crustal) pressures before being erupted.
Gabrienko, Anton A; Ewing, Andrew V; Chibiryaev, Andrey M; Agafontsev, Alexander M; Dubkov, Konstantin A; Kazarian, Sergei G
2016-03-07
This work reports new physical insights of the thermodynamic parameters and mechanisms of possible interactions occurring in polymers subjected to high-pressure CO2. ATR-FTIR spectroscopy has been used in situ to determine the thermodynamic parameters of the intermolecular interactions between CO2 and different functional groups of the polymers capable of specific interactions with sorbed CO2 molecules. Based on the measured ATR-FTIR spectra of the polymer samples subjected to high-pressure CO2 (30 bar) at different temperatures (300-340 K), it was possible to characterize polymer-polymer and CO2-polymer interactions. Particularly, the enthalpy and entropy of the formation of the specific non-covalent complexes between CO2 and the hydroxy (-OH), carbonyl (C[double bond, length as m-dash]O) and hydroxyimino ([double bond, length as m-dash]N-OH) functional groups of the polymer samples have been measured. Furthermore, the obtained spectroscopic results have provided an opportunity for the structure of these complexes to be proposed. An interesting phenomenon regarding the behavior of CO2/polymer systems has also been observed. It has been found that only for the polyketone, the value of enthalpy was negative indicating an exothermic process during the formation of the CO2-polymer non-covalent complexes. Conversely, for the polyoxime and polyalcohol samples there is a positive enthalpy determined. This is a result of the initial polymer-polymer interactions requiring more energy to break than is released during the formation of the CO2-polymer complex. The effect of increasing temperature to facilitate the breaking of the polymer-polymer interactions has also been observed. Hence, a mechanism for the formation of CO2-polymer complexes was suggested based on these results, which occurs via a two-step process: (1) the breaking of the existing polymer-polymer interactions followed by (2) the formation of new CO2-polymer non-covalent interactions.
Carbon Dioxide Clouds at High Altitude in the Tropics and in an Early Dense Martian Atmosphere
NASA Technical Reports Server (NTRS)
Colaprete, Anthony; Toon, Owen B.
2001-01-01
We use a time dependent, microphysical cloud model to study the formation of carbon dioxide clouds in the Martian atmosphere. Laboratory studies by Glandor et al. show that high critical supersaturations are required for cloud particle nucleation and that surface kinetic growth is not limited. These conditions, which are similar to those for cirrus clouds on Earth, lead to the formation of carbon dioxide ice particles with radii greater than 500 micrometers and concentrations of less than 0.1 cm(exp -3) for typical atmospheric conditions. Within the current Martian atmosphere, CO2 cloud formation is possible at the poles during winter and at high altitudes in the tropics during periods of increased atmospheric dust loading. In both cases, temperature perturbations of several degrees below the CO2 saturation temperature are required to nucleate new cloud particles suggesting that dynamical processes are the most common initiators of carbon dioxide clouds rather than diabatic cooling. The microphysical cloud model, coupled to a two-stream radiative transfer model, is used to reexamine the impact of CO2 clouds on the surface temperature within a dense CO2 atmosphere. The formation of carbon dioxide clouds leads to a warmer surface than what would be expected for clear sky conditions. The amount of warming is sensitive to the presence of dust and water vapor in the atmosphere, both of which act to dampen cloud effects. The radiative warming associated with cloud formation, as well as latent heating, work to dissipate the clouds when present. Thus, clouds never last for periods much longer than several days, limiting their overall effectiveness for warming the surface. The time average cloud optical depth is approximately unity leading to a 5-10 K warming, depending on the surface pressure. However, the surface temperature does not rise about the freezing point of liquid water even for pressures as high as 5 bars, at a solar luminosity of 75% the current value.
Partitioning of Oxygen During Core Formation on Earth and Mars
NASA Astrophysics Data System (ADS)
Rubie, D. C.; Gessmann, C. K.; Frost, D. J.
2003-12-01
Core formation on Earth and Mars involved the physical separation of Fe-Ni metal alloy from silicate, most likely in deep magma oceans. Although core-formation models explain many aspects of mantle geochemistry, they do not account for large differences between the compositions of the mantles of Earth ( ˜8 wt% FeO) and Mars ( ˜18 wt% FeO) or the much smaller mass fraction of the Martian core. Here we explain these differences using new experimental results on the solubility of oxygen in liquid Fe-Ni alloy, which we have determined at 5-23 GPa, 2100-2700 K and variable oxygen fugacities using a multianvil apparatus. Oxygen solubility increases with increasing temperature and oxygen fugacity and decreases with increasing pressure. Thus, along a high temperature adiabat (e.g. after formation of a deep magma ocean on Earth), oxygen solubility is high at depths up to about 2000 km but decreases strongly at greater depths where the effect of high pressure dominates. For modeling oxygen partitioning during core formation, we assume that Earth and Mars both accreted from oxidized chondritic material with a silicate fraction initially containing around 18 wt% FeO. In a terrestrial magma ocean, 1200-2000 km deep, high temperatures resulted in the extraction of FeO from the silicate magma ocean, due to the high solubility of oxygen in the segregating metal, leaving the mantle with its present FeO content of ˜8 wt%. Lower temperatures of a Martian magma ocean resulted in little or no extraction of FeO from the mantle, which thus remained unchanged at about 18 wt%. The mass fractions of segregated metal are consistent with the mass fraction of the Martian core being small relative to that of the Earth. FeO extracted from the Earth's magma ocean by segregating core-forming liquid may have contributed to chemical heterogeneities in the lowermost mantle, a FeO-rich D'' layer and the light element budget of the core.
Edema is a precursor to central nervous system peritumoral cyst formation.
Lonser, Russell R; Vortmeyer, Alexander O; Butman, John A; Glasker, Sven; Finn, Michael A; Ammerman, Joshua M; Merrill, Marsha J; Edwards, Nancy A; Zhuang, Zhengping; Oldfield, Edward H
2005-09-01
Despite the common occurrence and frequent clinical effects of peritumoral cysts in the central nervous system (CNS), the mechanism underlying their development and evolution is not understood. Because they commonly produce peritumoral cysts and because serial magnetic resonance imaging (MRI) is obtained in von Hippel-Lindau disease patients, hemangioblastomas provide an opportunity to examine the pathophysiology of CNS peritumoral cyst formation. Serial MRI was correlated with the clinical findings in 16 von Hippel-Lindau disease patients with 22 CNS hemangioblastomas (11 spinal cord; 11 cerebellar) that were associated with the appearance and evolution of peritumoral cysts. Hemangioblastoma-associated cyst wall histomorphological analysis was performed on postmortem tissues from three von Hippel-Lindau disease patients (not in the clinical series). Comparative proteomic profiling was performed on peritumoral cyst fluid and serum. Vascular endothelial growth factor levels were determined in peritumoral cysts. MRI clearly showed peritumoral edema that developed and slowly and progressively evolved into enlarging hemangioblastoma-associated cysts in all tumors (mean follow-up, 130 +/- 38 months; mean +/- standard deviation). Postcontrast MRI demonstrated convective leakage of gadolinium into cysts. Mean time required for edema to evolve into a cyst was 36 +/- 23 months (range, 8-72 months). Thirteen (59%) hemangioblastoma-cysts became symptomatic (mean time to symptom formation after cyst development, 35 +/- 32 months; range, 3-102 months) and required resection. Protein profiles of cyst fluid and serum were similar. Mean cyst fluid vascular endothelial growth factor concentration was 1.5 ng/ml (range, 0-5.4 ng/ml). Histology of the cyst walls was consistent with reactive gliosis. CNS peritumoral cyst formation is initiated by increased tumor vascular permeability, increased interstitial pressure in the tumor, and plasma extravasation with convective distribution into the surrounding tissue. When the delivery of plasma from the tumor exceeds the capacity of the surrounding tissue to absorb the extravasated fluid, edema (with its associated increased interstitial pressure) and subsequent cyst formation occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.
1997-05-01
The sandstones of the Molina Member of the Wasatch Formation in the Piceance basin of northwestern Colorado contain a suite of fractures that have a conjugate-pair geometry. The fractures are vertical and intersect at an acute angle of between 20 and 40 degrees. Although direct evidence of shear is rare, the fracture surfaces commonly display small steps. The fracture geometries suggest that the maximum compressive stress during fracturing was in the plane of the acute angle of the conjugate fractures: the steps are interpreted as broken-face manifestations of very low angle en echelon fractures, formed within exceptionally narrow zones ofmore » incipient shear. In contrast to the highly anisotropic permeability enhancement created by subparallel vertical extension fractures in the underlying Mesaverde Formation, the conjugate pairs in the Molina sandstones should create a well connected and relatively isotropic mesh of fracture conductivity. Increases in stress magnitudes and anisotropy during production drawdown of reservoir pressures should cause shear offsets along the fractures, initially enhancing permeability.« less
Multi-layer accretion disks around black holes and formation of a hot ion-torus
NASA Astrophysics Data System (ADS)
Hujeirat, A.; Camenzind, M.
2000-08-01
We present the first 2D steady-state numerical radiative hydrodynamical calculations showing the formation of a low-density hot torus in the very inner region of accretion disks around a black hole. The inner part of the disk is found to be thermally unstable when Bremsstrahlung is the dominant cooling mechanism. Within the parameter regime used and in the absence of magnetic fields, the torus-plasma is highly time-dependent with supersonic oscillating motion with respect to the electron temperature. When the soft photons from the disk comptonize the electrons efficiently, the ion-pressure supported torus shrinks in volume, but decelerates further the inward motion into the hole. We speculate that magnetic fields would stabilize the tori by lowering its energy package through initiating jets and/or outflows. In the outer region, we find that the scale height of the angular velocity HΩ largely exceeds the scale height of the density Hρ. This yields a multi-layer flow-structure in the vertical direction which slows the inwards motion into the BH significantly, enhancing further the formation of the hot torus.
Shake, Rupture And Flow: Hydraulic Constraints On The Formation Of Europa’s Chaos
NASA Astrophysics Data System (ADS)
Schmidt, Britney E.; Gooch, B. T.; Blankenship, D. D.; Soderlund, K. M.
2012-10-01
Europa’s chaos terrains may have formed above shallow water lenses formed by melting of the upper ice shell with ascending thermo-compositional plumes. A key factor in the creation of chaos terrain may be dramatic disruption and collapse of the ice lid above the forming melt lens along with potentially violent mixing upon its rupture; this is analogous to the collapse of terrestrial ice shelves in which massive ice bodies disintegrate in a few days. At Thera Macula, there is evidence for modification by water immediately external to the scarp that bounds the collapsed region. Since water runs either subaerially down hill or from high pressure to low when below or within ice, the swollen appearance of bands entering Thera Macula, which are uphill in terms of hydraulic and topographic gradients, raises the possibility that this steep scarp represents the place where the lens initially broke. As the ice lid ruptures, the overpressure within the lens may create sufficient pressure within the fracture to drive water through it, allowing water to escape into and modify surrounding terrain. Similar effects are seen when aquifers or subglacial water sources are tapped: water flows up the pipe until the pressure in the water body is relieved and the hydraulic “pressure head” in the pipe is lowered. We have modeled the hydraulic potential associated with a rupturing lens in order to investigate the range of parameters for overpressure, fracture width, and lid thickness that could produce such modification as is observed at Thera Macula. These place important constraints on the pressure within the lens and the energetics of a collapse event. These estimates may explain how ice masses within chaos are initially disrupted and provide a means for quantifying the vigor of surface-subsurface mixing that could be critical to Europa’s habitability.
NASA Astrophysics Data System (ADS)
Kinoshita, C.; Saffer, D.; Kopf, A.; Roesner, A.; Wallace, L. M.; Araki, E.; Kimura, T.; Machida, Y.; Kobayashi, R.; Davis, E.; Toczko, S.; Carr, S.
2018-02-01
One primary objective of Integrated Ocean Drilling Program Expedition 365, conducted as part of the Nankai Trough Seismogenic Zone Experiment, was to recover a temporary observatory emplaced to monitor formation pore fluid pressure and temperature within a splay fault in the Nankai subduction zone offshore SW Honshu, Japan. Here we use a 5.3 year time series of formation pore fluid pressure, and in particular the response to ocean tidal loading, to evaluate changes in pore pressure and formation and fluid elastic properties induced by earthquakes. Our analysis reveals 31 earthquake-induced perturbations. These are dominantly characterized by small transient increases in pressure (28 events) and decreases in ocean tidal loading efficiency (14 events) that reflect changes to formation or fluid compressibility. The observed perturbations follow a magnitude-distance threshold similar to that reported for earthquake-driven hydrological effects in other settings. To explore the mechanisms that cause these changes, we evaluate the expected static and dynamic strains from each earthquake. The expected static strains are too small to explain the observed pressure changes. In contrast, estimated dynamic strains correlate with the magnitude of changes in both pressure and loading efficiency. We propose potential mechanism for the changes and subsequent recovery, which is exsolution of dissolved gas in interstitial fluids in response to shaking.
NASA Astrophysics Data System (ADS)
Han, Inho; Vagaska, Barbora; Joo Park, Bong; Lee, Mi Hee; Jin Lee, Seung; Park, Jong-Chul
2011-06-01
Successful tissue integration of implanted medical devices depends on appropriate initial cellular response. In this study, the effect of helium atmospheric pressure glow discharge (He-APGD) treatment of titanium on selective protein adsorption and the initial attachment processes and focal adhesion formation of osteoprogenitor cells and stem cells were examined. Titanium disks were treated in a self-designed He-APGD system. Initial attachment of MC3T3-E1 mouse pre-osteoblasts and human mesenchymal stem cells (MSCs) was evaluated by MTT assay and plasma membrane staining followed by morphometric analysis. Fibronectin adsorption was investigated by Enzyme-Linked ImmunoSorbant Assay. MSCs cell attachment to treated and non-treated titanium disks coated with different proteins was verified also in serum-free culture. Organization of actin cytoskeleton and focal adhesions was evaluated microscopically. He-APGD treatment effectively modified the titanium surfaces by creating a super-hydrophilic surface, which promoted selectively higher adsorption of fibronectin, a protein of critical importance for cell/biomaterial interaction. In two different types of cells, the He-APGD treatment enhanced the number of attaching cells as well as their attachment area. Moreover, cells had higher organization of actin cytoskeleton and focal adhesions. Faster acceptance of the material by the progenitor cells in the early phases of tissue integration after the implantation may significantly reduce the overall healing time; therefore, titanium treatment with He-APGD seems to be an effective method of surface modification of titanium for improving its tissue inductive properties.
NASA Astrophysics Data System (ADS)
Zhang, Hai-Tao; Mo, Yun-Fei; Liu, Rang-Su; Tian, Ze-An; Liu, Hai-Rong; Hou, Zhao-Yang; Zhou, Li-Li; Liang, Yong-Chao; Peng, Ping
2018-03-01
To deeply understand the effects of high pressure on microstructural evolutions and crystallization mechanisms of liquid metal Ni during solidification process, MD simulation studies have been performed under 7 pressures of 0 ˜ 30 GPa, at cooling rate of 1.0 × 1011 K s-1. Adopting several microstructural analyzing methods, especially the cluster-type index method (CTIM-2) to analyze the local microstructures in the system. It is found that the pressure has important influence on the formation and evolution of microstructures, especially of the main basic clusters in the system. All the simulation systems are directly solidified into crystal structures, and the 1421, 1422, 1441 and 1661 bond-types, as well the FCC (12 0 0 0 12 0), HCP (12 0 0 0 6 6) and BCC (14 6 0 8 0 0) clusters play a key role in the microstructure transitions from liquid to crystal structures. The crystallization temperature T c is enhanced almost linearly with the increase of pressure. Highly interesting, it is found for the first time that there is an important phase transformation point from FCC to BCC structures between 20 ˜ 22.5 GPa during the solidification processes from the same initial liquid system at the same cooling rate. And the effect of increasing pressure is similar to that of decreasing cooling rate for the phase transformation of microstructures during solidification process of liquid metal Ni system, though they have different concrete effecting mechanisms.
NASA Astrophysics Data System (ADS)
Banwart, Steven; Menon, Manoj; Bernasconi, Stefano M.; Bloem, Jaap; Blum, Winfried E. H.; Souza, Danielle Maia de; Davidsdotir, Brynhildur; Duffy, Christopher; Lair, Georg J.; Kram, Pavel; Lamacova, Anna; Lundin, Lars; Nikolaidis, Nikolaos P.; Novak, Martin; Panagos, Panos; Ragnarsdottir, Kristin Vala; Reynolds, Brian; Robinson, David; Rousseva, Svetla; de Ruiter, Peter; van Gaans, Pauline; Weng, Liping; White, Tim; Zhang, Bin
2012-11-01
Growth in human population and demand for wealth creates ever-increasing pressure on global soils, leading to soil losses and degradation worldwide. Critical Zone science studies the impact linkages between these pressures, the resulting environmental state of soils, and potential interventions to protect soil and reverse degradation. New research on soil processes is being driven by the scientific hypothesis that soil processes can be described along a life cycle of soil development. This begins with formation of new soil from parent material, development of the soil profile, and potential loss of the developed soil functions and the soil itself under overly intensive anthropogenic land use, thus closing the cycle. Four Critical Zone Observatories in Europe have been selected focusing research at sites that represent key stages along the hypothetical soil life cycle; incipient soil formation, productive use of soil for farming and forestry, and decline of soil due to longstanding intensive agriculture. Initial results from the research show that soil develops important biogeochemical properties on the time scale of decades and that soil carbon and the development of favourable soil structure takes place over similar time scales. A new mathematical model of soil aggregate formation and degradation predicts that set-aside land at the most degraded site studied can develop substantially improved soil structure with the accumulation of soil carbon over a period of several years. Further results demonstrate the rapid dynamics of soil carbon; how quickly it can be lost, and also demonstrate how data from the CZOs can be used to determine parameter values for models at catchment scale. A structure for a new integrated Critical Zone model is proposed that combines process descriptions of carbon and nutrient flows, a simplified description of the soil food web, and reactive transport; all coupled with a dynamic model for soil structure and soil aggregation. This approach is proposed as a methodology to analyse data along the soil life cycle and test how soil processes and rates vary within, and between, the CZOs representing different life cycle stages. In addition, frameworks are discussed that will help to communicate the results of this science into a more policy relevant format using ecosystem service approaches.
Combustion of a Polymer (PMMA) Sphere in Microgravity
NASA Technical Reports Server (NTRS)
Yang, Jiann C.; Hamins, Anthony; Donnelly, Michelle K.
1999-01-01
A series of low gravity, aircraft-based, experiments was conducted to investigate the combustion of supported thermoplastic polymer spheres under varying ambient conditions. The three types of thermoplastic investigated were polymethylmethacrylate (PMMA), polypropylene (PP). and polystyrene (PS). Spheres with diameters ranging from 2 mm to 6.35 mm were tested. The total initial pressure varied from 0.05 MPa to 0. 15 MPa whereas the ambient oxygen concentration varied from 19 % to 30 % (by volume). The ignition system consisted of a pair of retractable energized coils. Two CCD cameras recorded the burning histories of the spheres. The video sequences revealed a number of dynamic events including bubbling and sputtering, as well as soot shell formation and break-up during combustion of the spheres at reduced gravity. The ejection of combusting material from the burning spheres represents a fire hazard that must be considered at reduced gravity. The ejection process was found to be sensitive to polymer type. All average burning rates were measured to increase with initial sphere diameter and oxygen concentration, whereas the initial pressure had little effect. The three thermoplastic types exhibited different burning characteristics. For the same initial conditions, the burning rate of PP was slower than PMMA, whereas the burning rate of PS was comparable to PMMA. The transient diameter of the burning thermoplastic exhibited two distinct periods: an initial period (enduring approximately half of the total burn duration) when the diameter remained approximately constant, and a final period when the square of the diameter linearly decreased with time. A simple homogeneous two-phase model was developed to understand the changing diameter of the burning sphere. Its value is based on a competition between diameter reduction due to mass loss from burning and sputtering, and diameter expansion due to the processes of swelling (density decrease with heating) and bubble growth. The model relies on empirical parameters for input, such as the burning rate and the duration of the initial and final burning periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jalan, Amrit; Allen, Joshua W.; Green, William H.
Reactions of the Criegee intermediate (CI, .CH2OO.) are important in atmospheric ozonolysis models. In this work, we compute the rates for reactions between .CH2OO. and HCHO, CH3CHO and CH3COCH3 leading to the formation of secondary ozonides (SOZ) and organic acids. Relative to infinitely separated reactants, the SOZ in all three cases is found to be 48–51 kcal mol-1 lower in energy, formed via 1,3- cycloaddition of .CH2OO. across the CQO bond. The lowest energy pathway found for SOZ decomposition is intramolecular disproportionation of the singlet biradical intermediate formed from cleavage of the O–O bond to form hydroxyalkyl esters. These hydroxyalkylmore » esters undergo concerted decomposition providing a low energy pathway from SOZ to acids. Geometries and frequencies of all stationary points were obtained using the B3LYP/MG3S DFT model chemistry, and energies were refined using RCCSD(T)-F12a/cc-pVTZ-F12 single-point calculations. RRKM calculations were used to obtain microcanonical rate coefficients (k(E)) and the reservoir state method was used to obtain temperature and pressure dependent rate coefficients (k(T, P)) and product branching ratios. At atmospheric pressure, the yield of collisionally stabilized SOZ was found to increase in the order HCHO o CH3CHO o CH3COCH3 (the highest yield being 10-4 times lower than the initial .CH2OO. concentration). At low pressures, chemically activated formation of organic acids (formic acid in the case of HCHO and CH3COCH3, formic and acetic acid in the case of CH3CHO) was found to be the major product channel in agreement with recent direct measurements. Collisional energy transfer parameters and the barrier heights for SOZ reactions were found to be the most sensitive parameters determining SOZ and organic acid yield.« less
Lu, Weijie; Steigerwalt, Eve S; Moore, Joshua T; Sullivan, Lisa M; Collins, W Eugene; Lukehart, C M
2004-09-01
Carbon nanofiber/silica aerogel composites are prepared by sol-gel processing of surface-enhanced herringbone graphitic carbon nanofibers (GCNF) and Si(OMe)4, followed by supercritical CO2 drying. Heating the resulting GCNF/silica aerogel composites to 1650 degrees C under a partial pressure of Ar gas initiates carbothermal reaction between the silica aerogel matrix and the carbon nanofiber component to form SiC/silica nanocomposites. The SiC phase is present as nearly spherical nanoparticles, having an average diameter of ca. 8 nm. Formation of SiC is confirmed by powder XRD and by Raman spectroscopy.
Interaction of gases with lunar materials. [analysis of lunar samples from Apollo 17 flight
NASA Technical Reports Server (NTRS)
Holmes, H. F.; Fuller, E. L., Jr.; Gammage, R. B.
1974-01-01
The surface chemistry of Apollo 17 lunar fines samples 74220 (the orange soil) and 74241 (the gray control soil) has been studied by measuring the adsorption of nitrogen, argon, and oxygen (all at 77 K) and also water vapor (at 20 or 22 C). In agreement with results for samples from other missions, both samples had low initial specific surface areas, consisted of nonporous particles, and were attacked by water vapor at high relative pressure to give an increased specific surface area and create a pore system which gave rise to a capillary condensation hysteresis loop in the adsorption isotherms. In contrast to previous samples, both of the Apollo 17 soils were partially hydrophobic in their initial interaction with water vapor (both samples were completely hydrophilic after the reaction with water). The results are consistent with formation at high temperatures without subsequent exposure to significant amounts of water.
Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles
2013-01-01
Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.
Numerical simulation of fire vortex
NASA Astrophysics Data System (ADS)
Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.
2018-05-01
The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.
Buckybomb: Reactive Molecular Dynamics Simulation
Chaban, Vitaly V.; Fileti, Eudes Eterno; Prezhdo, Oleg V.
2015-02-24
Energetic materials, such as explosives, propellants, and pyrotechnics, are widely used in civilian and military applications. Nanoscale explosives represent a special group because of the high density of energetic covalent bonds. The reactive molecular dynamics (ReaxFF) study of nitrofullerene decomposition reported here provides a detailed chemical mechanism of explosion of a nanoscale carbon material. Upon initial heating, C 60(NO 2) 12 disintegrates, increasing temperature and pressure by thousands of Kelvins and bars within tens of picoseconds. The explosion starts with NO 2 group isomerization into C-O-N-O, followed by emission of NO molecules and formation of CO groups on the buckyballmore » surface. NO oxidizes into NO 2, and C 60 falls apart, liberating CO 2. At the highest temperatures, CO 2 gives rise to diatomic carbon. Lastly, the study shows that the initiation temperature and released energy depend strongly on the chemical composition and density of the material.« less
Moulton, Anthony D.; Ned, Renée M.; Nicholson, Janet K.A.; Chu, May C.; Becker, Scott J.; Blank, Eric C.; Breckenridge, Karen J.; Waddell, Victor; Brokopp, Charles
2013-01-01
Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners. PMID:23997300
NASA Technical Reports Server (NTRS)
Olson, D. W.; Silk, J.
1979-01-01
This paper studies the density profile that forms around a spherically symmetric bound central core immersed in a homogeneous-background k = 0 or k = -1 Friedmann-Robertson-Walker cosmological model, with zero pressure. Although the density profile in the linearized regime is almost arbitrary, in the nonlinear regime certain universal features of the density profile are obtained that are independent of the details of the initial conditions. The formation of 'halos' ('holes') with densities greater than (less than) the average cosmological density is discussed. It is shown that in most regions 'halos' form, and universal values are obtained for the slope of the ln (density)-ln (radius) profile in those 'halos' at late times, independently of the shape of the initial density profile. Restrictions are derived on where it is possible for 'holes' to exist at late times and on how such 'holes' must have evolved.
Merkle, Wolfgang; Baer, Katharina; Haag, Nicola Leonard; Zielonka, Simon; Ortloff, Felix; Graf, Frank; Lemmer, Andreas
2017-02-01
To ensure an efficient use of biogas produced by anaerobic digestion, in some cases it would be advisable to upgrade the biogenic gases and inject them into the transnational gas grids. To investigate biogas production under high-pressure conditions up to 100 bar, new pressure batch methane reactors were developed for preliminary lab-scale experiments with a mixture of grass and maize silage hydrolysate. During this investigation, the effects of different initial pressures (1, 50 and 100 bar) on pressure increase, gas production and the specific methane yield using nitrogen as inert gas were determined. Based on the experimental findings increasing initial pressures alter neither significantly, further pressure increases nor pressure increase rates. All supplied organic acids were degraded and no measurable inhibition of the microorganisms was observed. The results show that methane reactors can be operated at operating pressures up to 100 bar without any negative effects on methane production.
Interpreting fluid pressure anomalies in shallow intraplate argillaceous formations
Neuzil, Christopher E.
2015-01-01
Investigations have revealed several instances of apparently isolated highs or lows in pore fluid potential in shallow (< ~ 1 km depth) argillaceous formations in intraplate settings. Formations with the pressure anomalies are distinguished by (1) smaller ratios of hydraulic conductivity to formation thickness and (2) smaller hydraulic (or pressure) diffusivities than those without anomalies. This is consistent with transient Darcian flow caused by strain at rates of ~ 10−17 to 10-16 s-1, by significant perturbing events in the past 104 to 106 annum or by some combination of the two. Plausible causes include erosional downwasting, tectonic strain, and glaciation. In this conceptualization the anomalies provide constraints on formation-scale flow properties, flow history, and local geological forcing in the last 106 annum and in particular indicate zones of low permeability (10−19–10−22 m2) that could be useful for isolation of nuclear waste.
NASA Astrophysics Data System (ADS)
Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.; Lomaev, M. I.
2017-11-01
The formation of a diffuse discharge plasma at a subnanosecond breakdown of a "cone-plane" gap filled with air, nitrogen, methane, hydrogen, argon, neon, and helium at various pressures has been studied. Nanosecond negative and positive voltage pulses have been applied to the conical electrode. The experimental data on the dynamics of plasma glow at the stage of formation and propagation of a streamer have been obtained with intensified charge-coupled device and streak cameras. It has been found that the formation of ball streamers is observed in all gases and at both polarities. A supershort avalanche electron beam has been detected behind the flat foil electrode in a wide range of pressures in the case of a negatively charged conical electrode. A mechanism of the formation of streamers at breakdown of various gases at high overvoltages has been discussed.
NASA Astrophysics Data System (ADS)
Ovcharenko, V. E.; Ivanov, K. V.; Boyangin, E. N.; Krylova, T. A.; Pshenichnikov, A. P.
2018-01-01
The impact of the preliminary load on 3Ni+Al powder mixture and the impact of the duration of the delay in application of compacting pressure to synthesis product under the conditions of continuous heating of the mixture up to its self-ignition on the grain size and strength properties of the synthesized Ni3Al intermetallide material have been studied. The grain structure of the intermetallide synthesized under pressure was studied by means of metallography, transmission electron microscopy and EBSD analysis, with the dependence of ultimate tensile strength on the grain size in the synthesized intermetallide having been investigated at room temperature and at temperatures up to 1000°C. It is shown that an increase in the pressure preliminarily applied to the initial mixture compact results in reduced grain size of the final intermetallide, whereas an increase in pre-compaction time makes the grain size increased. A decrease in the grain size increases the ultimate tensile strength of the intermetallide. The maximum value of the ultimate tensile strength in the observed anomalous temperature dependence of this strength exhibits a shift by 200°C toward higher temperatures, and the ultimate strength of the synthesized intermetallide at 1000°C increases roughly two-fold.
Three-Dimensional Multi-fluid Moment Simulation of Ganymede
NASA Astrophysics Data System (ADS)
Wang, L.; Germaschewski, K.; Hakim, A.; Bhattacharjee, A.; Dong, C.
2016-12-01
Plasmas in space environments, such as solar wind and Earth's magnetosphere, are often constituted of multiple species. Conventional MHD-based, single-fluid systems, have additional complications when multiple fluid species are introduced. We suggest space application of an alternative multi-fluid moment approach, treating each species on equal footing using exact evolution equations for moments of their distribution function, and electromagnetic fields through full Maxwell equations. Non-ideal effects like Hall effect, inertia, and even tensorial pressures, are self-consistently embedded without the need to explicitly solve a complicated Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. Recently, we performed three-dimensional two-fluid simulation of the magnetosphere of Ganymede, using both five-moment (scalar pressures) and ten-moment (tensorial pressures) models. In both models, the formation of Alfven wing structure due to subsonic inflow is correctly captured, and the magnetic field data agree well with in-situ measurements from the Galileo flyby G8. The ten-moment simulation also showed the contribution of pressure tensor divergence to the reconnecting electric field. Initial results of coupling to state-of-art global simulation codes like OpenGGCM will also be shown, which will in the future provide a rigorous way for integration of ionospheric physics.
Joining of alumina via copper/niobium/copper interlayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marks, Robert A.; Chapman, Daniel R.; Danielson, David T.
2000-03-15
Alumina has been joined at 1150 degrees C and 1400 degrees C using multilayer copper/niobium/copper interlayers. Four-point bend strengths are sensitive to processing temperature, bonding pressure, and furnace environment (ambient oxygen partial pressure). Under optimum conditions, joints with reproducibly high room temperature strengths (approximately equal 240 plus/minus 20 MPa) can be produced; most failures occur within the ceramic. Joints made with sapphire show that during bonding an initially continuous copper film undergoes a morphological instability, resulting in the formation of isolated copper-rich droplets/particles at the sapphire/interlayer interface, and extensive regions of direct bonding between sapphire and niobium. For optimized aluminamore » bonds, bend tests at 800 degrees C-1100 degrees C indicate significant strength is retained; even at the highest test temperature, ceramic failure is observed. Post-bonding anneals at 1000 degrees C in vacuum or in gettered argon were used to assess joint stability and to probe the effect of ambient oxygen partial pressure on joint characteristics. Annealing in vacuum for up to 200 h causes no significant decrease in room temperature bend strength or change in fracture path. With increasing anneal time in a lower oxygen partial pressure environment, the fracture strength decreases only slightly, but the fracture path shifts from the ceramic to the interface.« less
Quantitative analysis of a frequency-domain nonlinearity indicator.
Reichman, Brent O; Gee, Kent L; Neilsen, Tracianne B; Miller, Kyle G
2016-05-01
In this paper, quantitative understanding of a frequency-domain nonlinearity indicator is developed. The indicator is derived from an ensemble-averaged, frequency-domain version of the generalized Burgers equation, which can be rearranged in order to directly compare the effects of nonlinearity, absorption, and geometric spreading on the pressure spectrum level with frequency and distance. The nonlinear effect is calculated using pressure-squared-pressure quadspectrum. Further theoretical development has given an expression for the role of the normalized quadspectrum, referred to as Q/S by Morfey and Howell [AIAA J. 19, 986-992 (1981)], in the spatial rate of change of the pressure spectrum level. To explore this finding, an investigation of the change in level for initial sinusoids propagating as plane waves through inviscid and thermoviscous media has been conducted. The decibel change with distance, calculated through Q/S, captures the growth and decay of the harmonics and indicates that the most significant changes in level occur prior to sawtooth formation. At large distances, the inviscid case results in a spatial rate of change that is uniform across all harmonics. For thermoviscous media, large positive nonlinear gains are observed but offset by absorption, which leads to a greater overall negative spatial rate of change for higher harmonics.
Experimental demonstration of a semi-brittle origin for crustal strain transients
NASA Astrophysics Data System (ADS)
Reber, J. E.; Lavier, L. L.; Hayman, N. W.
2015-12-01
Tectonic motions that give rise to destructive earthquakes and enigmatic transient slip events are commonly explained by friction laws that describe slip on fault surfaces and gouge-filled zones. Friction laws with the added effects of pore fluid pressure, shear heating, and chemical reactions as currently applied do not take into account that over a wide range of pressure and temperature conditions rocks deform following a complex mixed brittle-ductile rheology. In semi-brittle materials, such as polymineralic rocks, elasto-plastic and visco-elastic defamation can be observed simultaneously in different phases of the material. Field observations of such semi-brittle rocks at the mesoscale have shown that for a given range of composition, temperature, and pressure, the formation of fluid-filled brittle fractures and veins can precede and accompany the development of localized ductile flow. We propose that the coexistence of brittle and viscous behavior controls some of the physical characteristics of strain transients and slow slip events. Here we present results from shear experiments on semi-brittle rock analogues investigating the effect of yield stress on fracture propagation and connection, and how this can lead to reoccurring strain transients. During the experiments we monitor the evolution of fractures and flow as well as the force development in the system. We show that the nature of localized slip and flow in semi-brittle materials depends on the initiation and formation of mode I and II fractures and does not involve frictional behavior, supporting an alternative mechanism for the development of tectonic strain transients.
Thompson, Katherine C; Rennie, Adrian R; King, Martin D; Hardman, Samantha J O; Lucas, Claire O M; Pfrang, Christian; Hughes, Brian R; Hughes, Arwel V
2010-11-16
The reaction between gas-phase ozone and monolayers of the unsaturated lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC, on aqueous solutions has been studied in real time using neutron reflection and surface pressure measurements. The reaction between ozone and lung surfactant, which contains POPC, leads to decreased pulmonary function, but little is known about the changes that occur to the interfacial material as a result of oxidation. The results reveal that the initial reaction of ozone with POPC leads to a rapid increase in surface pressure followed by a slow decrease to very low values. The neutron reflection measurements, performed on an isotopologue of POPC with a selectively deuterated palmitoyl strand, reveal that the reaction leads to loss of this strand from the air-water interface, suggesting either solubilization of the product lipid or degradation of the palmitoyl strand by a reactive species. Reactions of (1)H-POPC on D(2)O reveal that the headgroup region of the lipids in aqueous solution is not dramatically perturbed by the reaction of POPC monolayers with ozone supporting degradation of the palmitoyl strand rather than solubilization. The results are consistent with the reaction of ozone with the oleoyl strand of POPC at the air-water interface leading to the formation of OH radicals. The highly reactive OH radicals produced can then go on to react with the saturated palmitoyl strands leading to the formation of oxidized lipids with shorter alkyl tails.
Heiser, Brian; Okrasinski, E B; Murray, Rebecca; McCord, Kelly
The initial negative pressures of evacuated blood collection tubes (EBCT) and their in vitro performance as a rigid closed-suction surgical drain (CSSD) reservoir has not been evaluated in the scientific literature despite being described in both human and veterinary texts and journals. The initial negative pressures of EBCT sized 3, 6, 10, and 15 mL were measured and the stability of the system monitored. The pressure-to-volume curve as either air or water was added and maximal filling volumes were measured. Evacuated blood collection tubes beyond the manufacture's expiration date were evaluated for initial negative pressures and maximal filling volumes. Initial negative pressure ranged from -214 mm Hg to -528 mm Hg for EBCT within the manufacturer's expiration date. Different pressure-to-volume curves were found for air versus water. Optimal negative pressures of CSSD are debated in the literature. Drain purpose and type of exudates are factors that should be considered when deciding which EBCT size to implement. Evacuated blood collection tubes have a range of negative pressures and pressure-to-volume curves similar to previously evaluated CSSD rigid reservoirs. Proper drain management and using EBCT within labeled expiration date are important to ensure that expected negative pressures are generated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, J.T.; Nicot, J.-P.; Oldenburg, C.M.
Industrial-scale storage of CO{sub 2} in saline sedimentary basins will cause zones of elevated pressure, larger than the CO{sub 2} plume itself. If permeable conduits (e.g., leaking wells) exist between the injection reservoir and overlying shallow aquifers, brine could be pushed upwards along these conduits and mix with groundwater resources. This paper discusses the potential for such brine leakage to occur in temperature- and salinity-stratified systems. Using static mass-balance calculations as well as dynamic well flow simulations, we evaluate the minimum reservoir pressure that would generate continuous migration of brine up a leaking wellbore into a freshwater aquifer. Since themore » brine invading the well is denser than the initial fluid in the wellbore, continuous flow only occurs if the pressure perturbation in the reservoir is large enough to overcome the increased fluid column weight after full invasion of brine into the well. If the threshold pressure is exceeded, brine flow rates are dependent on various hydraulic (and other) properties, in particular the effective permeability of the wellbore and the magnitude of pressure increase. If brine flow occurs outside of the well casing, e.g., in a permeable fracture zone between the well cement and the formation, the fluid/solute transfer between the migrating fluid and the surrounding rock units can strongly retard brine flow. At the same time, the threshold pressure for continuous flow to occur decreases compared to a case with no fluid/solute transfer.« less
Collisional processes involving icy bodies in the solar system
NASA Astrophysics Data System (ADS)
Stewart-Mukhopadhyay, Sarah Toby
1. The shock Hugoniot of solid ice. We present a complete description of the solid ice Hugoniot based on new shock wave experiments conducted at an initial temperature of 100 K and previously published data obtained at 263 K. We identify five regions on the solid ice Hugoniot: (1)elastic shock waves, (2)ice Ih deformation shocks, transformation shocks to (3)ice VI, (4)ice VII, and (5)liquid water. In each region, data obtained at different initial temperatures are described by a single US - Δup shock equation of state. The dynamic strength of ice Ih is strongly dependent on temperature. The Hugoniot Elastic Limit varies from 0.05 to 0.62 GPa, as a function of temperature and peak shock stress. We estimate the entropy and temperature along the 100 and 263 K Hugoniots and derive the critical pressures for shock-induced incipient (IM) and complete (CM) melting upon release. On the 100 K Hugoniot, the critical pressures are about 4.5 and between 5 6 GPa for IM and CM, respectively. On the 263 K Hugoniot, the critical pressures are 0.6 and 3.7 GPa for IM and CM, lower than previously suggested. Shock-induced melting of ice will be widespread in impact events. 2. Rampart crater formation on Mars. A complete description for formation of lobate ejecta blankets around Martian craters by fluidization with liquid water is presented based on impact cratering simulations and shock wave data on H2O ice. Shock wave experiments show that ice at Martian temperatures, 150 to 275 K, will begin to melt when shocked above 2.2 to 0.6 GPa, respectively, lower than previously expected. We find that more than half the excavated ice is melted by the impact shock; therefore, debris flow modeling of fluidized ejecta morphologies may directly quantify the amount of ground ice. The estimated quantity of water required to form the observed fluidized ejecta blankets is equivalent to a global layer about 0.6 m thick and the implied global regolith ice content, within the upper ˜2 km sampled by rampart craters, is equivalent to a 120 m layer.
Increased likelihood of induced seismicity in highly overpressured shale formations
NASA Astrophysics Data System (ADS)
Eaton, David W.; Schultz, Ryan
2018-05-01
Fluid-injection processes such as disposal of saltwater or hydraulic fracturing can induce earthquakes by increasing pore pressure and/or shear stress on faults. Natural processes, including transformation of organic material (kerogen) into hydrocarbon and cracking to produce gas, can similarly cause fluid overpressure. Here we document two examples from the Western Canada Sedimentary Basin where earthquakes induced by hydraulic fracturing are strongly clustered within areas characterized by pore-pressure gradient in excess of 15 kPa/m. Despite extensive hydraulic-fracturing activity associated with resource development, induced earthquakes are virtually absent in the Montney and Duvernay Formations elsewhere. Statistical analysis suggests a negligible probability that this spatial correlation developed by chance. This implies that, in addition to known factors such as anthropogenic pore-pressure increase and proximity to critically stressed faults, high in-situ overpressure of shale formations may also represent a controlling factor for inducing earthquakes by hydraulic fracturing. On a geological timescale, natural pore-pressure generation may lead to fault-slip episodes that regulate magnitude of formation-overpressure.
Effect of wave action on near-well zone cleaning
NASA Astrophysics Data System (ADS)
Pen'kovskii, V. I.; Korsakova, N. K.
2017-10-01
Drilling filtrate invasion into the producing formation and native water accumulating of the near-well zone in well operation reduce the well productivity. As a result of that, depending on characteristic capillary pressure scale and differential pressure drawdown, oil production rate may become lower than expected one. In this paper, it is considered the hysteresis effects of capillary pressure after reversion of displacement. As applied to laboratory experiment conditions, the solution of problem of oil flow in formation model with a pressure drop on the model sides harmonically varied with time is presented. It was estimated a range of fluid vibration effective action on the near-well zone cleaning from capillary locking water. The plant simulating extraction of oil from formation using widely practised sucker-rod pump has been created. Formation model is presented as a slot filled with broken glass between two plates. In the process, natural oil and sodium chloride solution were used as working fluids. The experiments qualitatively confirm a positive effect of jack pumps on the near-well zone cleaning.
Conductivity affects nanosecond electrical pulse induced pressure transient formation
NASA Astrophysics Data System (ADS)
Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Glickman, Randolph D.
2016-03-01
Nanoporation occurs in cells exposed to high amplitude short duration (< 1μs) electrical pulses. The biophysical mechanism(s) responsible for nanoporation is unknown although several theories exist. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. Our group has shown that mechanical forces of substantial magnitude are also generated during nsEP exposures. We hypothesize that these mechanical forces may contribute to pore formation. In this paper, we report that alteration of the conductivity of the exposure solution also altered the level of mechanical forces generated during a nsEP exposure. By reducing the conductivity of the exposure solutions, we found that we could completely eliminate any pressure transients normally created by nsEP exposure. The data collected for this proceeding does not definitively show that the pressure transients previously identified contribute to nanoporation; however; it indicates that conductivity influences both survival and pressure transient formation.
Polytropic scaling of a flow Z-pinch
NASA Astrophysics Data System (ADS)
Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.; Weed, J. R.
2015-11-01
The ZaP Flow Z-Pinch project investigates the use of velocity shear to mitigate MHD instabilities. The ZaP-HD experiment produces 50 cm long pinches of varying radii. The power to the experiment is split between the plasma formation and acceleration process and the pinch assembly and compression process. Once the pinch is formed, low magnetic fluctuations indicate a quiescent, long-lived pinch. The split power supply allows more control of the pinch current than previous machine iterations, with a designed range from 50 to 150 kA. Radial force balance leads to the Bennett relation which indicates that as the pinch compresses due to increasing currents, the plasma pressure and/or linear density must change. Through ion spectroscopy and digital holographic interferometry coupled with magnetic measurements of the pinch current, the components of the Bennett relation can be fully measured. A scaling relation is then assumed to follow a polytrope as the pinch pressure, initially approximately 250 kPa, increases from an initially formed state to much higher values, approaching 100 MPa. A preliminary analysis of pinch scaling is shown corroborating with other diagnostics on the machine along with extrapolations to required currents for an HEDLP machine. This work is supported by grants from the U.S. Department of Energy and the U.S. National Nuclear Security Administration.
Effect of plasticity and atmospheric pressure on the formation of donut- and croissantlike buckles.
Hamade, S; Durinck, J; Parry, G; Coupeau, C; Cimetière, A; Grilhé, J; Colin, J
2015-01-01
The formation of donut- and croissantlike buckles has been observed onto the free surface of gold thin films deposited on silicon substrates. Numerical simulations clearly evidence that the coupling effect between the atmospheric pressure acting on the free surface and the plastic folding of the ductile film is responsible for the circular blister destabilization and the formation of the donut- and croissantlike buckling patterns.
Mechanism of organic aerosol formation and aging: Role of the precursor carbon skeleton
NASA Astrophysics Data System (ADS)
Hunter, J. F.; Carrasquillo, A. J.; Daumit, K. E.; Cross, E. S.; Worsnop, D. R.; Kroll, J. H.
2012-12-01
Oxidative aging of organic aerosol consists of a complex set of reactions coupled with gas-particle partitioning processes. Functionalization reactions involve adding oxygen containing functional groups onto a molecule, leading to reduced vapor pressures and promoting aerosol formation. In fragmentation reactions carbon-carbon bonds are broken as oxygen containing functional groups are added, which generally splits the parent molecule into two smaller and more volatile products. The initial structure of an aerosol-forming precursor molecule may influence what chemistry will occur both by changing the branching between fragmentation and functionalization processes as well as changing the effects of those processes. The fate of early generation oxidation products upon further aging is dependent on this initial chemistry, leading to a persistent effect of the precursor carbon skeleton. Aging experiments have been conducted using a high NOx smog chamber based aging technique. Long residence times and modestly elevated OH concentrations lead to typical maximum OH exposure of 3e11 molecule*seconds/cc, approaching several days equivalent exposure to ambient OH concentrations. A broad set of linear, branched and cyclic aliphatic hydrocarbons has been oxidized to determine the effects of carbon skeleton on the relative importance of fragmentation and functionalization and impacts on aerosol formation chemistry. Relative degree of fragmentation and functionalization is constrained by mass spectrometry of both the gas and particle phase. Measurements of the aerosol oxygen content and mass yield are reported, and structural effects on these properties are determined. Degree of unsaturation is hypothesized to have a significant impact on the effect of fragmentation reactions and to promote additional aerosol formation, extended aging and more oxygenated aerosol.
NASA Astrophysics Data System (ADS)
Zakharova, N. V.; Goldberg, D.
2017-12-01
Acoustic/sonic velocity (Vp) provides one of the best proxies for formation strength, which is essential for geomechanical modeling and formation evaluation. Vp-strength relations need to be built empirically for specific basins and/or rock types. Since velocity is stress- and frequency-dependent, such relations can be very sensitive to experimental conditions; therefore, it is important to quantify their effect on velocity values. In this study, we present confined velocity and strength measurements for over 70 samples from the Newark Rift basin, a candidate site for carbon sequestration, and one of the largest in a series of the Mesozoic rift basins on the eastern North-American coast. Acoustic velocity measurements were obtained for a range of confining pressures from 0 to 6,000 psi, roughly corresponding to in situ confining pressure range. Although, overall, Vp values tend to increase with increasing pressure, the degree of Vp response to stress varies dramatically from sample to sample, and does not appear to correlate directly to lithology or porosity. Select samples exhibit near-zero change in Vp with increasing confining pressure, while others are characterized by up to 15% Vp change with 3,000 psi increase in confining pressure. Compared to sonic logs, the low-stress Vp values usually underestimate sonic velocities, while high-stress values tend to overestimate them. Therefore, a systematic frequency-dependent core-log difference is not observed in these rift basin formations, but accounting for Vp dependence on confining pressure is important. We quantify the Vp-pressure dependence using laboratory acoustic measurements, and develop depth-dependent Vp-strength relation, which could be used with sonic logs for geomechanical analysis in similar Mesozoic rift basin formations.
Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks
NASA Technical Reports Server (NTRS)
Vandresar, Neil T.; Haberbusch, Mark S.
1994-01-01
Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.
The subsurface impact of hydraulic fracturing in shales- Perspectives from the well and reservoir
NASA Astrophysics Data System (ADS)
ter Heege, Jan; Coles, Rhys
2017-04-01
It has been identified that the main risks of subsurface shale gas operations in the U.S.A. and Canada are associated with (1) drilling and well integrity, (2) hydraulic fracturing, and (3) induced seismicity. Although it is unlikely that hydraulic fracturing operations result in direct pathways of enhanced migration between stimulated fracture disturbed rock volume and shallow aquifers, operations may jeopardize well integrity or induce seismicity. From the well perspective, it is often assumed that fluid injection leads to the initiation of tensile (mode I) fractures at different perforation intervals along the horizontal sections of shale gas wells if pore pressure exceeds the minimum principal stress. From the reservoir perspective, rise in pore pressure resulting from fluid injection may lead to initiation of tensile fractures, reactivation of shear (mode II) fractures if the criterion for failure in shear is exceeded, or combinations of different fracturing modes. In this study, we compare tensile fracturing simulations using conventional well-based models with shear fracturing simulations using a fractured shale model with characteristic fault populations. In the fractured shale model, stimulated permeability is described by an analytical model that incorporates populations of reactivated faults and that combines 3D permeability tensors for layered shale matrix, damage zone and fault core. Well-based models applied to wells crosscutting the Posidonia Shale Formation are compared to generic fractured shale models, and fractured shale models are compared to micro-seismic data from the Marcellus Shale. Focus is on comparing the spatial distribution of permeability, stimulated reservoir volume and seismicity, and on differences in fracture initiation pressure and fracture orientation for tensile and shear fracturing end-members. It is shown that incorporation of fault populations (for example resulting from analysis of 3D seismics or outcrops) in hydraulic fracturing models provides better constraints on well pressures, stimulated fracture disturbed volume and induced seismicity. Thereby, it helps assessing the subsurface impact of hydraulic fracturing in shales and mitigating risks associated with loss of loss of well integrity, loss of fracture containment, and induced seismicity.
Modeling the Buildup of Annular Pressure in Cased and Uncased Annuli of Faulty Wellbores
NASA Astrophysics Data System (ADS)
Lackey, G.; Rajaram, H.
2017-12-01
Structurally sound wellbores are essential to oil and gas production, natural gas storage, and carbon dioxide sequestration operations. Wellbore integrity is easily assessed at the wellhead by the presence of pressure or gas flow in the outer annuli of a well, as it indicates the uncontrolled vertical migration of fluids outside the production casing. This phenomenon is typically referred to as sustained casing pressure (SCP), sustained annular pressure, or surface casing vent flow. Of particular concern is the buildup of pressure in the surface casing annulus. If the surface casing is sealed at the wellhead and cement is not brought into the bottom of the casing, annular pressure that builds induces gas migration when the fluid and entry pressure of the formation at the bottom of the surface casing is exceeded. Multiple incidents of stray gas migration from oil and gas operations have contaminated water wells in Colorado, Pennsylvania, and Ohio through this mechanism. Natural gas escaping the #25 Standard Senson well at the Aliso Gas storage facility in California, the largest accidental release of greenhouse gases in US history, also followed this pathway. Previous studies have modeled the buildup of SCP in faulty wells with fully-cased annuli that are isolated from the surrounding formation. However, the majority of onshore oil and gas wells in the US are constructed with uncased outermost annuli that are hydraulically connected to the surrounding subsurface. In this study, we adapt current approaches of modeling SCP to include the regulation of annular liquid level by formation fluid pressure, dissolution of gas into the annular liquids, the transport of aqueous gas by crossflow into deep formations, and gas migration away from the well, when the entry pressure of the formations or fractures along the uncased annulus is exceeded, to compare the buildup behavior of SCP in both uncased and fully-cased annuli. We consider well construction and subsurface geology representative of the Wattenberg Field in Colorado and interpret observations of sustained casing pressure collected by the Colorado Oil and Gas Conservation Commission. We demonstrate that the potential negative consequences of integrity loss are much greater for an uncased well than for fully-cased well.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Saffer, D. M.
2013-12-01
Subsurface pore pressure as a sensitive measure of strain and formation properties has provided insights into the wide range of fault slip behaviors, contributing to the understanding of fault and earthquake mechanics. Pore pressures from off shore borehole observatory are especially important, as 1) they are the only detectable signals of small and slow events; 2) they provide our only access to the outer forearc, where the tsunami hazards are triggered by the fault slip. As part of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) a suite of borehole sensors were installed as part of a long-term borehole observatory at IODP Site C0002, during IODP Expedition # 332 in December of 2010. The observatory includes a broadband seismometer, short period geophones, a volumetric strainmeter, temperature sensors, an accelerometer, and formation pore pressure monitoring at two depths: one in the mudstones of the Kumano Basin in an interval spanning 757-780 meters below seafloor (mbsf), and a second in the uppermost accretionary wedge in an interval from 937 - 980 mbsf. Here, we report on pore pressure records acquired at a sampling frequency of 1/60 Hz, spanning the period from December 2010 to January 2013, which were recovered in early 2013. We observe a clear hydraulic signal from March 11, 2011 Tohoku earthquake and aftershocks, including both dynamic pore pressure changes during passage of surface waves and shifts in formation pressure following the event. Pressure exhibit an increase of ~3 kPa in the upper sediment screened interval following the earthquake, and decrease by ~5 kPa in the accretionary prism interval. Both of the offset changes persist through the end of the data recording. These pore pressure changes may reflect static stress changes from the earthquake, or local site effects related to shaking. We also observe a clear increase in formation pore pressures associated with drilling operations at nearby holes in November and December 2012. These inadvertent two-well tests provide information about formation hydraulic properties at the ~20-50 m scale.
Porting Inition and Failure to Linked Cheetah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vitello, P; Souers, P C
2007-07-18
Linked CHEETAH is a thermo-chemical code coupled to a 2-D hydrocode. Initially, a quadratic-pressure dependent kinetic rate was used, which worked well in modeling prompt detonation of explosives of large size, but does not work on other aspects of explosive behavior. The variable-pressure Tarantula reactive flow rate model was developed with JWL++ in order to also describe failure and initiation, and we have moved this model into Linked CHEETAH. The model works by turning on only above a pressure threshold, where a slow turn-on creates initiation. At a higher pressure, the rate suddenly leaps to a large value over amore » small pressure range. A slowly failing cylinder will see a rapidly declining rate, which pushes it quickly into failure. At a high pressure, the detonation rate is constant. A sequential validation procedure is used, which includes metal-confined cylinders, rate-sticks, corner-turning, initiation and threshold, gap tests and air gaps. The size (diameter) effect is central to the calibration.« less
Self-pressurization of a flightweight liquid hydrogen storage tank subjected to low heat flux
NASA Technical Reports Server (NTRS)
Hasan, M. M.; Lin, C. S.; Vandresar, N. T.
1991-01-01
Results are presented for an experimental investigation of self-pressurization and thermal stratification of a 4.89 cu m liquid hydrogen (LH2) storage tank subjected to low heat flux (0.35, 2.0, and 3.5 W/sq m) under normal gravity conditions. Tests were performed at fill levels of 83 to 84 percent (by volume). The LH2 tank was representative of future spacecraft tankage, having a low mass-to-volume ratio and high performance multilayer thermal insulation. Results show that the pressure rise rate and thermal stratification increase with increasing heat flux. At the lowest heat flux, the pressure rise rate is comparable to the homogenous rate, while at the highest heat flux, the rate is more than three times the homogeneous rate. It was found that initial conditions have a significant impact on the initial pressure rise rate. The quasi-steady pressure rise rates are nearly independent of the initial condition after an initial transient period has passed.
Exact solution of the Lifshitz equations governing the growth of fluctuations in cosmology
NASA Technical Reports Server (NTRS)
Adams, P. J.; Canuto, V.
1975-01-01
The exact solution of the Lifshitz equations governing the cosmological evolution of an initial fluctuation is presented. Lifshitz results valid for squares of the sound velocity equal to zero and 1/3 are extended in closed form to any equation of state where the pressure equals the total energy density times the square of the sound velocity. The solutions embody all the results found previously for special cases of the square of the sound velocity. It is found that the growth of any initial fluctuation is only an exponential function of time with an exponent of not more than 4/3 and is insufficient to produce galaxies unless the initial fluctuation is very large. A possible way to produce very large initial fluctuations by modifying the equation of state by including gravitational interactions is also examined. It is found that a phase transition can occur at baryonic density of 1 nucleon per cubic Planck length or equivalently, at a time of about 10 to the -43rd power sec. At those early times, the masses allowed by causality requirements are too small to be of interest in galaxy formation.
Yang, Mingjun; Song, Yongchen; Jiang, Lanlan; Zhu, Ningjun; Liu, Yu; Zhao, Yuechao; Dou, Binlin; Li, Qingping
2013-09-03
The purpose of this study was to investigate the hydrate formation and dissociation with CO2 flowing through cooled porous media at different flow rates, pressures, temperatures, and flow directions. CO2 hydrate saturation was quantified using the mean intensity of water. The experimental results showed that the hydrate block appeared frequently, and it could be avoided by stopping CO2 flooding early. Hydrate formed rapidly as the temperature was set to 274.15 or 275.15 K, but the hydrate formation delayed when it was 276.15 K. The flow rate was an important parameter for hydrate formation; a too high or too low rate was not suitable for CO2 hydration formation. A low operating pressure was also unacceptable. The gravity made hydrate form easily in the vertically upward flow direction. The pore water of the second cycle converted to hydrate more completely than that of the first cycle, which was a proof of the hydrate "memory effect". When the pressure was equal to atmospheric pressure, hydrate did not dissociate rapidly and abundantly, and a long time or reduplicate depressurization should be used in industrial application.
Explosion characteristics of LPG-air mixtures in closed vessels.
Razus, Domnina; Brinzea, Venera; Mitu, Maria; Oancea, D
2009-06-15
The experimental study of explosive combustion of LPG (liquefied petroleum gas)-air mixtures at ambient initial temperature was performed in two closed vessels with central ignition, at various total initial pressures within 0.3-1.3bar and various fuel/air ratios, within the flammability limits. The transient pressure-time records were used to determine several explosion characteristics of LPG-air: the peak explosion pressure, the explosion time (the time necessary to reach the peak pressure), the maximum rate of pressure rise and the severity factor. All explosion parameters are strongly dependent on initial pressure of fuel-air mixture and on fuel/air ratio. The explosion characteristics of LPG-air mixtures are discussed in comparison with data referring to the main components of LPG: propane and butane, obtained in identical conditions.
Saalfeld, Daniel; Riegel, Ina; Kulozik, Ulrich; Gebhardt, Ronald
2015-01-01
Stability, aggregation and gelation of β-Lactoglobulin are affected by high pressure and salts of the Hofmeister series. Little is known about their combined effects on structure formation processes of β-Lactoglobulin, mainly because many salts of the series are not suitable for use in food. Here, we investigate the effect of calcium salts on the strength of pressure-induced gels, inspired by the fact that high pressure and salts change the water structure in a similar way. We find that the larger the applied pressures, the higher the strength of the gels. In addition to pressure, there is a significant influence by the type of anions and the amount of added calcium salts. Gel strength increases in the order CaCl2 < Ca (NO3)2 < CaI2. This trend correlates with the position of the salts in the Hofmeister series. The results are explained by analogy with the thermal aggregate formation by taking reaction rates for unfolding and aggregation, as well as specific/non-specific salts effect into consideration. PMID:28231200
Synthesis of Organic Matter of Prebiotic Chemistry at the Protoplanetary Disc
NASA Astrophysics Data System (ADS)
Snytnikov, Valeriy; Stoynovskaya, Olga; Rudina, Nina
We have carried out scanning electron microscopic examination of CM carbonaceous chondrites meteorites Migey, Murchison, Staroe Boriskino aged more than 4.56 billion years (about 50 million years from the beginning of the formation of the Solar system). Our study confirmed the conclusion of Rozanov, Hoover and other researchers about the presence of microfossils of bacterial origin in the matrix of all these meteorites. Since the time of the Solar system formation is 60 - 100 million years, the primary biocenosis emerged in the protoplanetary disc of the Solar system before meteorites or simultaneously with them. It means that prebiological processes and RNA world appeared even earlier in the circumsolar protoplanetary disc. Most likely, this appearance of prebiotic chemistry takes place nowday in massive and medium-massive discs of the observed young stellar objects (YSO) class 0 and I. The timescale of the transition from chemical to biological evolution took less than 50 million years for the Solar system. Further evolution of individual biocenosis in a protoplanetary disc associated with varying physico-chemical conditions during the formation of the Solar system bodies. Biocenosis on these bodies could remove or develop under the influence of many cosmic factors and geological processes in the case of Earth. To complete the primary biosphere formation in short evolution time - millions of years - requires highly efficient chemical syntheses. In industrial chemistry for the efficient synthesis of ammonia, hydrogen cyanide, methanol and other organic species, that are the precursors to obtain prebiotic compounds, catalytic reactors of high pressure are used. Thus (1) necessary amount of the proper catalyst in (2) high pressure areas of the disc can trigger these intense syntheses. The disc contains the solids with the size from nanoparticle to pebble. Iron and magnesium is catalytically active ingredient for such solids. The puzzle is a way to provide hydrogen pressure inside the disc from tens to hundred atmospheres. We simulated unsteady processes in massive circumstellar discs around YSO class O and I. In the computational experiments, we have shown that at a certain stage of its evolution the circumstellar discs of gas and solids produces local areas of high pressure. According to the classical heterogeneous catalysis, a wide range of organic and prebiotic compounds could have been synthesized in these areas. Can we capture these areas of high pressure synthesis in observation of circumstellar discs? Due to the small sizes of such areas they can be hardly ever resolved even with the modern telescopes such as ALMA. However, we can try to detect their signatures in the disc, since the gas of the disc keep the set of organic synthesis products. The idea is to define the signature of the process using laboratory experiments. Varying gas temperature and pressure in laboratory setup we can carry out the catalytic high pressure syntheses and specify the set of gaseous products. These sets of organic compounds observed in the discs may serve as indicators of the emergence of high-pressure areas of prebiotic chemistry. Thus, there is a special interest to the study of YSO class 0 and I by means of observational astronomy. For these objects, first data on the presence of individual organic compounds in massive hydrogen-helium component of the discs appear. The origin of the organic compounds that are associated with chemical reactions in the discs should be separated from the set of organic compounds of the initial molecular cloud.
Porting Initiation and Failure into Linked CHEETAH
NASA Astrophysics Data System (ADS)
Souers, Clark; Vitello, Peter
2007-06-01
Linked CHEETAH is a thermo-chemical code coupled to a 2-D hydrocode. Initially, a quadratic-pressure dependent kinetic rate was used, which worked well in modeling prompt detonation of explosives of large size, but does not work on other aspects of explosive behavior. The variable-pressure Tarantula reactive flow rate model was developed with JWL++ in order to also describe failure and initiation, and we have moved this model into Linked CHEETAH. The model works by turning on only above a pressure threshold, where a slow turn-on creates initiation. At a higher pressure, the rate suddenly leaps to a large value over a small pressure range. A slowly failing cylinder will see a rapidly declining rate, which pushes it quickly into failure. At a high pressure, the detonation rate is constant. A sequential validation procedure is used, which includes metal-confined cylinders, rate-sticks, corner-turning, initiation and threshold, gap tests and air gaps. The size (diameter) effect is central to the calibration. This work was performed under the auspices of the U.S. Department of Energy by the University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Improving Weather Research and Forecasting Model Initial Conditions via Surface Pressure Analysis
2015-09-01
Obsgrid) that creates input data for the Advanced Research version of the Weather Research and Forecasting model ( WRF -ARW) is modified to perform a...surface pressure objective analysis to allow surface analyses of other fields to be more fully utilized in the WRF -ARW initial conditions. Nested 27-, 9...of surface pressure unnecessarily limits the application of other surface analyses into the WRF initial conditions and contributes to the creation of
Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong
2015-01-01
Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing.
Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong
2015-01-01
Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration in the US Department of Energy Class III Program. Advanced reservoir characterization techniques are being used at the Nash Draw project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir description was too simplistic to capture the critical features of this complex formation. As a result of the analysis, a proposed pilot area was reconsidered. Comparison of seismic data and engineering data have shownmore » evidence of discontinuities in the area surrounding the proposed injector. Analysis of the 3-D seismic has shown that wells in the proposed pilot are in an area of poor quality amplitude development. The implication is that since amplitude attenuation is a function of porosity, then this is not the best area to be attempting a pilot pressure maintenance project. Because the original pilot area appears to be compartmentalized, the lateral continuity between the pilot wells could be reduced. The 3-D seismic interpretation indicates other areas may be better suited for the initial pilot area. Therefore, the current focus has shifted more to targeted drilling, and the pilot injection will be considered in a more continuous area of the NDP in the future. Results of reservoir simulation studies indicate that pressure maintenance should be started early when reservoir pressure is still high.« less
A novel scaling approach for sooting laminar coflow flames at elevated pressures
NASA Astrophysics Data System (ADS)
Abdelgadir, Ahmed; Steinmetz, Scott A.; Attili, Antonio; Bisetti, Fabrizio; Roberts, William L.
2016-11-01
Laminar coflow diffusion flames are often used to study soot formation at elevated pressures due to their well-characterized configuration. In these expriments, these flames are operated at constant mass flow rate (constant Reynolds number) at increasing pressures. Due to the effect of gravity, the flame shape changes and as a results, the mixing field changes, which in return has a great effect on soot formation. In this study, a novel scaling approach of the flame at different pressures is proposed. In this approach, both the Reynolds and Grashof's numbers are kept constant so that the effect of gravity is the same at all pressures. In order to keep the Grashof number constant, the diameter of the nozzle is modified as pressure varies. We report both numerical and experimental data proving that this approach guarantees the same nondimensional flow fields over a broad range of pressures. In the range of conditions studied, the Damkoehler number, which varies when both Reynolds and Grashof numbers are kept constant, is shown to play a minor role. Hence, a set of suitable flames for investigating soot formation at pressure is identified. This research made use of the resources of IT Research Computing at King Abdullah University of Science & Technology (KAUST), Saudi Arabia.
Effects of pressure rise on cw laser ablation of tissue
NASA Astrophysics Data System (ADS)
LeCarpentier, Gerald L.; Motamedi, Massoud; Welch, Ashley J.
1991-06-01
The objectives of this research were to identify mechanisms responsible for the initiation of continuous wave (cw) laser ablation of tissue and investigate the role of pressure in the ablation process. Porcine aorta samples were irradiated in a chamber pressurized from 1 X 10-4 to 12 atmospheres absolute pressure. Acrylic and Zn-Se windows in the experimental pressure chamber allowed video and infrared cameras to simultaneously record mechanical and thermal events associated with cw argon laser ablation of these samples. Video and thermal images of tissue slabs documented the explosive nature of cw laser ablation of soft biological media and revealed similar ablation threshold temperatures and ablation onset times under different environmental pressures; however, more violent initiation explosions with decreasing environmental pressures were observed. These results suggest that ablation initiates with thermal alterations in the mechanical strength of the tissue and proceeds with an explosion induced by the presence superheated liquid within the tissue.
NASA Technical Reports Server (NTRS)
Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.
2009-01-01
Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.
The Thermal Pressure in Low Metallicity Galaxies
NASA Astrophysics Data System (ADS)
Wolfire, Mark; McKee, Christopher; Ostriker, Eve C.; Bolatto, Alberto; Jenkins, Edward
2015-08-01
The thermal pressure in the diffuse interstellar medium (ISM) is a relatively small fraction of the total ISM pressure yet it is extremely important for the evolution of the ISM phases. A multi-phase medium can exist between a range of thermal pressures Pmin < Pth < Pmax. The phase separation is driven by thermal instability and produces a cold (T ˜ 100 K) neutral atomic gas and a warm (T ˜ 8000 K) neutral atomic gas separated by thermally unstable gas. At thermal pressures greater than Pmax only the cold phase can exist and at thermal pressures less than Pmin only the warm phase can exist. The ISM is also highly turbulent and turbulence can both initiate the thermal phase transition and be produced in a rapid phase transition. Hydrodynamic modeling also points to a strong two-phase distribution (.e.g., Kim et al. 2011; Audit & Hennebelle 2010) with a median thermal pressure in the cold gas very near the expected two-phase pressure. Global, theoretical models including star-formation feedback have been developed for the molecular fraction in galactic disks using, at their core, the paradigm that thermal pressure determines the phase transitions to warm, cold, or multiphase medium (e.g., Krumholz et al. 2009; Ostriker et al. 2010).Here we present a phase diagram for a low metallicity galaxy using the Small Magellanic Clouds as an example. We find that although the heating rates and metallicities can differ by factors of 5 to 10 from the Milky Way, the resulting two-phase pressure and physical conditions of the phases are not very different from Galactic. We also confirm that a widely used fitting function for Pmin presented in Wolfire et al. 2003 provides an accurate prediction for the new results. We demonstrate how the variation in input parameters determine the final pressures and physical conditions.
Acoustic Effects in Classical Nucleation Theory
NASA Technical Reports Server (NTRS)
Baird, J. K.; Su, C.-H.
2017-01-01
The effect of sound wave oscillations on the rate of nucleation in a parent phase can be calculated by expanding the free energy of formation of a nucleus of the second phase in powers of the acoustic pressure. Since the period of sound wave oscillation is much shorter than the time scale for nucleation, the acoustic effect can be calculated as a time average of the free energy of formation of the nucleus. The leading non-zero term in the time average of the free energy is proportional to the square of the acoustic pressure. The Young-Laplace equation for the surface tension of the nucleus can be used to link the time average of the square of the pressure in the parent phase to its time average in the nucleus of the second phase. Due to the surface tension, the pressure in the nuclear phase is higher than the pressure in the parent phase. The effect is to lower the free energy of formation of the nucleus and increase the rate of nucleation.
Shock loading and release behavior of silicon nitride
NASA Astrophysics Data System (ADS)
Kawai, Nobuaki; Tsuru, Taiki; Hidaka, Naoto; Liu, Xun; Mashimo, Tsutomu
2015-06-01
Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 GPa and 34.5 GPa, respectively. Below the phase transition point, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by more rapid one. Above the phase transition point, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.
Fast Hydrogen-Air Flames for Turbulence Driven Deflagration to Detonation Transition
NASA Astrophysics Data System (ADS)
Chambers, Jessica; Ahmed, Kareem
2016-11-01
Flame acceleration to Detonation produces several combustion modes as the Deflagration-to-Detonation Transition (DDT) is initiated, including fast deflagration, auto-ignition, and quasi-detonation. Shock flame interactions and turbulence levels in the reactant mixture drive rapid flame expansion, formation of a leading shockwave and post-shock conditions. An experimental study to characterize the developing shock and flame front behavior of propagating premixed hydrogen-air flames in a square channel is presented. To produce each flame regime, turbulence levels and flame propagation velocity are controlled using perforated plates in several configurations within the experimental facility. High speed optical diagnostics including Schlieren and Particle Image Velocimetry are used to capture the flow field. In-flow pressure measurements acquired post-shock, detail the dynamic changes that occur in the compressed gas directly ahead of the propagating flame. Emphasis on characterizing the turbulent post-shock environment of the various flame regimes helps identify the optimum conditions to initiate the DDT process. The study aims to further the understanding of complex physical mechanisms that drive transient flame conditions for detonation initiation. American Chemical Society.
Fargali, Samira; Garcia, Angelo L; Sadahiro, Masato; Jiang, Cheng; Janssen, William G; Lin, Wei-Jye; Cogliani, Valeria; Elste, Alice; Mortillo, Steven; Cero, Cheryl; Veitenheimer, Britta; Graiani, Gallia; Pasinetti, Giulio M; Mahata, Sushil K; Osborn, John W; Huntley, George W; Phillips, Greg R; Benson, Deanna L; Bartolomucci, Alessandro; Salton, Stephen R
2014-05-01
Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1-615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1-524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1-615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.
Krishnan, Shilpa; Karg, Patricia E; Boninger, Michael L; Brienza, David M
2017-07-01
To determine if the presence of pneumonia and pressure ulcers are associated in individuals with an acute spinal cord injury during acute care and rehabilitation hospitalizations. Retrospective, secondary analyses of data obtained from the Spinal Cord Injury Model Systems enrolled from 1993 until 2006 Setting: Acute care hospitalization and inpatient rehabilitation facilities Participants: A cohort of individuals hospitalized in acute care (n = 3,098) and inpatient rehabilitation (n = 1,768) was included in the analysis. Frequencies of pressure ulcer formation and episodes of pneumonia were noted in both settings. Not applicable. Pressure ulcer formation and diagnosis of pneumonia Results: The development of pressure ulcers, including stage I, was 20.3% acute care and 21.1% during in inpatient rehabilitation. Multivariate logistic regression analyses revealed a significant association of pneumonia with occurrence of pressure ulcers (P ≤ 0.001, OR = 2.3 and 2.2 respectively), the American Spinal Injury Association Impairment Scale grades (P < 0.001), and utilization of mechanical ventilation (P < 0.01) in both settings. A higher presence of pressure ulcers was found in individuals with pneumonia, after adjusting for injury severity, age, sex, and utilization of mechanical ventilation. Impaired inflammatory response and decreased mobility in individuals with pneumonia may predispose these individuals to develop pressure ulcers. Surveillance and preventive measures for pressure ulcers should be rigorous in individuals with SCI and pneumonia.
Competition between Bending and Internal Pressure Governs the Mechanics of Fluid Nanovesicles.
Vorselen, Daan; MacKintosh, Fred C; Roos, Wouter H; Wuite, Gijs J L
2017-03-28
Nanovesicles (∼100 nm) are ubiquitous in cell biology and an important vector for drug delivery. Mechanical properties of vesicles are known to influence cellular uptake, but the mechanism by which deformation dynamics affect internalization is poorly understood. This is partly due to the fact that experimental studies of the mechanics of such vesicles remain challenging, particularly at the nanometer scale where appropriate theoretical models have also been lacking. Here, we probe the mechanical properties of nanoscale liposomes using atomic force microscopy (AFM) indentation. The mechanical response of the nanovesicles shows initial linear behavior and subsequent flattening corresponding to inward tether formation. We derive a quantitative model, including the competing effects of internal pressure and membrane bending, that corresponds well to these experimental observations. Our results are consistent with a bending modulus of the lipid bilayer of ∼14k b T. Surprisingly, we find that vesicle stiffness is pressure dominated for adherent vesicles under physiological conditions. Our experimental method and quantitative theory represents a robust approach to study the mechanics of nanoscale vesicles, which are abundant in biology, as well as being of interest for the rational design of liposomal vectors for drug delivery.
Oxidation of SiC Fiber-Reinforced SiC Matrix Composites with a BN Interphase
NASA Technical Reports Server (NTRS)
Opila, Elizabeth; Boyd, Meredith K.
2010-01-01
SiC-fiber reinforced SiC matrix composites with a BN interphase were oxidized in reduced oxygen partial pressures of oxygen to simulate the environment for hypersonic vehicle leading edge applications. The constituent fibers as well as composite coupons were oxidized in oxygen partial pressures ranging from 1000 ppm O2 to 5% O2 balance argon. Exposure temperatures ranged from 816 C to 1353 C (1500 F to 2450 F). The oxidation kinetics of the coated fibers were monitored by thermogravimetric analysis (TGA). An initial rapid transient weight gain was observed followed by parabolic kinetics. Possible mechanisms for the transient oxidation are discussed. One edge of the composite coupon seal coat was ground off to simulate damage to the composite which allowed oxygen ingress to the interior of the composite. Oxidation kinetics of the coupons were characterized by scanning electron microscopy since the weight changes were minimal. It was found that sealing of the coupon edge by silica formation occurred. Differences in the amount and morphology of the sealing silica as a function of time, temperature and oxygen partial pressure are discussed. Implications for use of these materials for hypersonic vehicle leading edge materials are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shephard, Jacob J.; Vickers, Martin; Salzmann, Christoph G., E-mail: c.salzmann@ucl.ac.uk
Low-density amorphous (LDA) ice is involved in critical cosmological processes and has gained prominence as one of the at least two distinct amorphous forms of ice. Despite these accolades, we still have an incomplete understanding of the structural diversity that is encompassed within the LDA state and the dynamic processes that take place upon heating LDA. Heating the high-pressure ice VIII phase at ambient pressure is a remarkable example of temperature-induced amorphisation yielding LDA. We investigate this process in detail using X-ray diffraction and Raman spectroscopy and show that the LDA obtained from ice VIII is structurally different from themore » more “traditional” states of LDA which are approached upon thermal annealing. This new structural relaxation pathway involves an increase of structural order on the intermediate range length scale. In contrast with other LDA materials the local structure is more ordered initially and becomes slightly more disordered upon annealing. We also show that the cascade of phase transitions upon heating ice VIII at ambient pressure includes the formation of ice IX which may be connected with the structural peculiarities of LDA from ice VIII. Overall, this study shows that LDA is a structurally more diverse material than previously appreciated.« less
NASA Astrophysics Data System (ADS)
Yousefian, Pedram; Tiryakioğlu, Murat
2018-02-01
An in-depth discussion of pore formation is presented in this paper by first reinterpreting in situ observations reported in the literature as well as assumptions commonly made to model pore formation in aluminum castings. The physics of pore formation is reviewed through theoretical fracture pressure calculations based on classical nucleation theory for homogeneous and heterogeneous nucleation, with and without dissolved gas, i.e., hydrogen. Based on the fracture pressure for aluminum, critical pore size and the corresponding probability of vacancies clustering to form that size have been calculated using thermodynamic data reported in the literature. Calculations show that it is impossible for a pore to nucleate either homogeneously or heterogeneously in aluminum, even with dissolved hydrogen. The formation of pores in aluminum castings can only be explained by inflation of entrained surface oxide films (bifilms) under reduced pressure and/or with dissolved gas, which involves only growth, avoiding any nucleation problem. This mechanism is consistent with the reinterpretations of in situ observations as well as the assumptions made in the literature to model pore formation.
NASA Astrophysics Data System (ADS)
Anderson, B. J.; Gaddipati, M.; Nyayapathi, L.
2008-12-01
This paper presents a parametric study on production rates of natural gas from gas hydrates by the method of depressurization, using CMG STARS. Seven factors/parameters were considered as perturbations from a base-case hydrate reservoir description based on Problem 7 of the International Methane Hydrate Reservoir Simulator Code Comparison Study led by the Department of Energy and the USGS. This reservoir is modeled after the inferred properties of the hydrate deposit at the Prudhoe Bay L-106 site. The included sensitivity variables were hydrate saturation, pressure (depth), temperature, bottom-hole pressure of the production well, free water saturation, intrinsic rock permeability, and porosity. A two-level (L=2) Plackett-Burman experimental design was used to study the relative effects of these factors. The measured variable was the discounted cumulative gas production. The discount rate chosen was 15%, resulting in the gas contribution to the net present value of a reservoir. Eight different designs were developed for conducting sensitivity analysis and the effects of the parameters on the real and discounted production rates will be discussed. The breakeven price in various cases and the dependence of the breakeven price on the production parameters is given in the paper. As expected, initial reservoir temperature has the strongest positive effect on the productivity of a hydrate deposit and the bottom-hole pressure in the production well has the strongest negative dependence. Also resulting in a positive correlation is the intrinsic permeability and the initial free water of the formation. Negative effects were found for initial hydrate saturation (at saturations greater than 50% of the pore space) and the reservoir porosity. These negative effects are related to the available sensible heat of the reservoir, with decreasing productivity due to decreasing available sensible heat. Finally, we conclude that for the base case reservoir, the break-even price (BEP) for natural gas is approximately 7/mcf and for warmer and deeper reservoirs the BEP can approach 5.33/mcf.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgardner, R.W. Jr.
1988-01-01
The Wink Sink formed on June 3, l980. Inferred precursor of the sinkhole was a solution cavity in the Permian Salado Formation formed either by natural dissolution or by water flow in an abandoned oil well. Correlation of well logs in the area indicates that the Salado Formation contains several dissolution zones. Dissolution in the middle of the Salado evaporite sequence may have resulted from ground-water flow along fractured anhydrite interbeds. The Wink Sink lies directly above the Permian Capitan reef on the margin of a natural salt dissolution trough. Other natural collapse features overlie the reef to the north.more » Hydraulic head of water in the reef is higher than the elevation of the Salado Formation but lower than the head in the Triassic Santa Rosa Sandstone, a near-surface freshwater aquifer. Fracture or cavernous permeability occurs above, within, and below the Salado Formation. Consequently, a brine-density flow may be operating: relatively fresh water moves upward through fractures under artesian pressure and dissolves salt; the denser brine moves downward under gravity flow. Alternatively, downward flow of water from freshwater aquifers above the salt may have caused dissolution. An oil well drilled into the Permian Yates Formation (with the aid of nitroglycerine) in 1928 was located within the sinkhole. The well initially produced about 80% saline water from the Permian Tansill Formation, which directly underlies the Salado. About 600 ft of casing was removed from the well when it was plugged and abandoned in 1964.« less
Method for laser drilling subterranean earth formations
Shuck, Lowell Z.
1976-08-31
Laser drilling of subterranean earth formations is efficiently accomplished by directing a collimated laser beam into a bore hole in registry with the earth formation and transversely directing the laser beam into the earth formation with a suitable reflector. In accordance with the present invention, the bore hole is highly pressurized with a gas so that as the laser beam penetrates the earth formation the high pressure gas forces the fluids resulting from the drilling operation into fissures and pores surrounding the laser-drilled bore so as to inhibit deleterious occlusion of the laser beam. Also, the laser beam may be dynamically programmed with some time dependent wave form, e.g., pulsed, to thermally shock the earth formation for forming or enlarging fluid-receiving fissures in the bore.
NASA Astrophysics Data System (ADS)
Marlinda, L.; Al-Muttaqii, M.; Roesyadi, A.; Prajitno, D. H.
2017-05-01
The hierarchical Co-Ni/HZSM-5 catalyst with hierarchical pore structure was prepared by desilication and incipient wetness impregnation. Hydrocracking of non-edible vegetable oils at temperature of 400 °C, 20±5 bar for 2 h was performed in the presence of this type of catalyst under hydrogen initial pressure in pressured batch reactor. Non-edible vegetable oils, such as Reutealis trisperma (Blanco) airy shaw (sunan candlenut) and Hevea brasiliensis (rubber seed) were chosen to study the effect of the degree of saturation and lateral chain length on hydrocarbon compounds obtained through hydrocracking. Cerbera manghas oil was also tested for comparison because the composition of fatty acid was different with the other oils The hydrocracking test indicated that liquid product produced has a similar hydrocarbon compounds with petroleum diesel. The most abundant hydrocarbon is pentadecane (n-C15) and heptadecane (n-C17). The high aromatic compounds were found in liquid product produced in hydrocracking of Sunan candlenut oil.
Recent advances in capillary ultrahigh pressure liquid chromatography.
Blue, Laura E; Franklin, Edward G; Godinho, Justin M; Grinias, James P; Grinias, Kaitlin M; Lunn, Daniel B; Moore, Stephanie M
2017-11-10
In the twenty years since its initial demonstration, capillary ultrahigh pressure liquid chromatography (UHPLC) has proven to be one of most powerful separation techniques for the analysis of complex mixtures. This review focuses on the most recent advances made since 2010 towards increasing the performance of such separations. Improvements in capillary column preparation techniques that have led to columns with unprecedented performance are described. New stationary phases and phase supports that have been reported over the past decade are detailed, with a focus on their use in capillary formats. A discussion on the instrument developments that have been required to ensure that extra-column effects do not diminish the intrinsic efficiency of these columns during analysis is also included. Finally, the impact of these capillary UHPLC topics on the field of proteomics and ways in which capillary UHPLC may continue to be applied to the separation of complex samples are addressed. Copyright © 2017 Elsevier B.V. All rights reserved.
Gugliotti, M; Chaimovich, H; Politi, M J
2000-02-15
Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.
NASA Astrophysics Data System (ADS)
Yin, Shu-Min
Atmospheric pressure capillary non-thermal plasma (AP-CNTP) has been investigated as a potential technology far the removal of volatile organic compounds (VOCs) in Advanced Life Support Systems (ALS). AP-CNTP is a destructive technology far the removal of VOCs from air streams by active plasma species, such as electrons, ions, and excited molecules. Complete VOC destruction ideally results in the formation of water, carbon dioxide (CO2), and other by-product's may also form, including ozone (O3), nitrous oxide (N2O), nitrogen dioxide (NO2), and decomposed hydrocarbons. Several organic compounds, such as BTEX, ethylene, n-heptane, isooctane, methanol and NH3, were tested in an AP-CNTP system. Parametric experiments were carried out by varying plasma discharge power, flowrates, and initial concentrations. The degradation efficiency varied depending on the chemical nature of the compounds. A plasmochemical kinetic model was derived for toluene, ethylbenzene, and m-xylene and n-heptane.
Globular cluster formation - The fossil record
NASA Technical Reports Server (NTRS)
Murray, Stephen D.; Lin, Douglas N. C.
1992-01-01
Properties of globular clusters which have remained unchanged since their formation are used to infer the internal pressures, cooling times, and dynamical times of the protocluster clouds immediately prior to the onset of star formation. For all globular clusters examined, it is found that the cooling times are much less than the dynamical times, implying that the protoclusters must have been maintained in thermal equilibrium by external heat sources, with fluxes consistent with those found in previous work, and giving the observed rho-T relation. Self-gravitating clouds cannot be stably heated, so that the Jeans mass forms an upper limit to the cluster masses. The observed dependence of protocluster pressure upon galactocentric position implies that the protocluster clouds were in hydrostatic equilibrium after their formation. The pressure dependence is well fitted by that expected for a quasi-statically evolving background hot gas, shock heated to its virial temperature. The observations and inferences are combined with previous theoretical work to construct a picture of globular cluster formation.
Noguchi, Hiroshi; Takehara, Kimie; Ohashi, Yumiko; Suzuki, Ryo; Yamauchi, Toshimasa; Kadowaki, Takashi; Sanada, Hiromi
2016-01-01
Aim. Callus is a risk factor, leading to severe diabetic foot ulcer; thus, prevention of callus formation is important. However, normal stress (pressure) and shear stress associated with callus have not been clarified. Additionally, as new valuables, a shear stress-normal stress (pressure) ratio (SPR) was examined. The purpose was to clarify the external force associated with callus formation in patients with diabetic neuropathy. Methods. The external force of the 1st, 2nd, and 5th metatarsal head (MTH) as callus predilection regions was measured. The SPR was calculated by dividing shear stress by normal stress (pressure), concretely, peak values (SPR-p) and time integral values (SPR-i). The optimal cut-off point was determined. Results. Callus formation region of the 1st and 2nd MTH had high SPR-i rather than noncallus formation region. The cut-off value of the 1st MTH was 0.60 and the 2nd MTH was 0.50. For the 5th MTH, variables pertaining to the external forces could not be determined to be indicators of callus formation because of low accuracy. Conclusions. The callus formation cut-off values of the 1st and 2nd MTH were clarified. In the future, it will be necessary to confirm the effect of using appropriate footwear and gait training on lowering SPR-i. PMID:28050567
The effect of initial pressure on growth of FeNPs in amorphous carbon films
NASA Astrophysics Data System (ADS)
Mashayekhi, Fatemeh; Shafiekhani, Azizollah; Sebt, S. Ali; Darabi, Elham
2018-04-01
Iron nanoparticles in amorphous hydrogenated carbon films (FeNPs@a-C:H) were prepared with RF-sputtering and RFPECVD methods by acetylene gas and Fe target. In this paper, deposition and sputtering process were carried out under influence of different initial pressure gas. The morphology and roughness of surface of samples were studied by AFM technique and also TEM images show the exact size of FeNPs and encapsulated FeNPs@a-C:H. The localized surface plasmon resonance peak (LSPR) of FeNPs was studied using UV-vis absorption spectrum. The results show that the intensity and position of LSPR peak are increased by increasing initial pressure. Also, direct energy gap of samples obtained by Tauc law is decreased with respect to increasing initial pressure.
Solar Power Satellite system in formation on a common geostationary orbit
NASA Astrophysics Data System (ADS)
Salazar, F. J. T.; Winter, O. C.
2017-10-01
The diurnal day-night cycle severely limits the Terrestrial solar power. To overcome this limitation, a Solar Power Satellite (SPS) system, consisting of a sunlight reflector and a microwave energy generator-transmitter in formation, is presented in this work. The microwave transmitting satellite (MTS) is placed on a common geostationary orbit (GEO) in the Earth’s equatorial plane, and the sunlight reflector uses the solar radiation pressure to achieve quasi-periodic orbits about the MTS, so that the sunlight is always redirected to the MTS, which converts the solar energy in electromagnetic power and transmits it by microwaves to an Earth-receiving antenna. Assuming the sun line direction constant at dierent seasons (i.e. autumn/spring equinoxes and winter and summer solstices), previous studies have shown the existence of a family of displaced ecliptic orbits above or below the equatorial plane of the Earth around a GEO. In this study, the position of the Sun is assumed on the ecliptic plane with a mean obliquity (inclination of Earth’s equator with respect to the ecliptic) of 23.5◦. A linear solution as an initial condition for the full equations of motions about a GEO, which yields bounded orbit for the sunlight reflector about the MTS in the Earth-satellite two-body problem with solar radiation pressure. To redirect the sunlight to the MTS, the law of reflection is satisfied by the space mirror attitude.
Numerical simulations of katabatic jumps in coats land, Antartica
NASA Astrophysics Data System (ADS)
Yu, Ye; Cai, Xiaoming; King, John C.; Renfrew, Ian A.
A non-hydrostatic numerical model, the Regional Atmospheric Modeling System (RAMS), has been used to investigate the development of katabatic jumps in Coats Land, Antarctica. In the control run with a 5 m s-1downslope directed initial wind, a katabatic jump develops near the foot of the idealized slope. The jump is manifested as a rapid deceleration of the downslope flow and a change from supercritical to subcritical flow, in a hydraulic sense, i.e., the Froude number (Fr) of the flow changes from Fr > 1 to Fr> 1. Results from sensitivity experiments show that an increase in the upstream flow rate strengthens the jump, while an increase in the downstream inversion-layer depth results in a retreat of the jump. Hydraulic theory and Bernoulli''s theorem have been used to explain the surface pressure change across the jump. It is found that hydraulic theory always underestimates the surface pressure change, while Bernoulli''s theorem provides a satisfactory estimation. An analysis of the downs balance for the katabatic jump indicates that the important forces are those related to the pressure gradient, advection and, to a lesser extent, the turbulent momentum divergence. The development of katabatic jumps can be divided into two phases. In phase I, the t gradient force is nearly balanced by advection, while in phase II, the pressure gradient force is counterbalanced by turbulent momentum divergence. The upslope pressure gradient force associated with a pool of cold air over the ice shelf facilitates the formation of the katabatic jump.
NASA Astrophysics Data System (ADS)
Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang
2016-09-01
The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).
High-pressure minerals in shocked meteorites
NASA Astrophysics Data System (ADS)
Tomioka, Naotaka; Miyahara, Masaaki
2017-09-01
Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.
Geomechanical Characterization and Modeling of the Newark Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Daniel; Goldberg, Dave; Zakharova, Natalia
Many effective techniques for evaluation if in-situ stress and geomechanical formation properties have been developed over the years but detailed understanding of these parameters in-situ, and standard characterization and monitoring protocols for carbon dioxide storage sites are lacking. A case study is performed in the northern Newark Basin, a candidate carbon dioxide-storage site located near the New York Metropolitan area. Possible impacts of seismic hazard and carbon dioxide leakage are particularly important due to a high population density across the basin. As one of the best-studied Mesozoic rift basins, the Newark Basin represents a great type locality for similar basinsmore » along the east coast and the results established in this project provide a robust tool for comparison to other Mesozoic basin data sets and locations (e.g., Georgia Rift Basin), where similar comprehensive core data sets and well testing results are not available. The project leveraged existing core samples to characterize and measure the strength of a series of differing lithologies and formations in the basin, with 28 samples fully tested. The orientation and magnitude of in-situ stresses were measured in an existing test well using a novel wireline tool set-up. This new methodology employed a “pre-stress” packer module to attempt to create an initial formation break using the force of the packer itself against the borehole wall. This enhancement in the testing methodology can be used in places where traditional methods are insufficient to break down a formation. Following the pre-stress packer sets, the improved Schlumberger Modular Formation Dynamics Tester tool-string was then used to perform traditional straddled formation breakdown testing of selected intervals. Testing indicated that formation breakdown was successfully achieved at two of the six test intervals, with an additional two tests sets indicating re-opening and propagation of pre-existing breaks out into the formation. New laboratory strength data acquired by this project, coupled with an updated basin-specific compressional acoustic velocity to unconfined compressional strength (Vp-UCS) relationship, was used for evaluation of the state of stress in the northern Newark Basin. Formation breakdown testing in the Lamont-Doherty Earth Observatory Test Well No. 3 allows for the determination of the full stress field at this location. The evaluation indicates that the natural fractures in the depth range of 244 to 457 meters (800 to 1,500 feet) are not critically stressed, however, they are close to their failure limit. Therefore, they likely could not withstand significant pore pressure increases anticipated with industrial scale geologic carbon sequestration. Failure modeling with the updated formation strength data shows that in-situ stresses must be at the frictional failure limit in the reverse-faulting stress regime at all depths in the northern portion of the basin, where borehole breakouts are observed. The disappearance of breakouts below a depth of 1,372 meters (4,500 feet) in the northern portion of the basin coincides with a significant increase in formation strength. In this deeper section, the apparent higher stress gradient would place existing fractures further away from their failure limit, making them more suitable for injection. Forward modeling of the effective stresses under increased pore pressure conditions suggest that a mere 2,758 kPa (400 psi) change in pore pressure could bring select fractures to failure. This is a fairly small-change in expected pore pressure increases at industrial scale injection operations. Therefore, given the presence of nearly critically stressed fractures located just a few hundred meters above these depths, large-volume fluid injections appear to increase geological risk in the northern portion of the Newark Basin.« less
Intracellular pressure is a motive force for cell motion in Amoeba proteus.
Yanai, M; Kenyon, C M; Butler, J P; Macklem, P T; Kelly, S M
1996-01-01
The cortical filament layer of free-living amoebae contains concentrated actomyosin, suggesting that it can contract and produce an internal hydrostatic pressure. We report here on direct and dynamic intracellular pressure (P(ic)) measurements in Amoeba proteus made using the servo-null technique. In resting apolar A. proteus, P(ic) increased while the cells remained immobile and at apparently constant volume. P(ic) then decreased approximately coincident with pseudopod formation. There was a positive correlation between P(ic) at the onset of movement and the rate of pseudopod formation. These results are the first direct evidence that hydrostatic pressure may be a motive force for cell motion. We postulate that contractile elements in the amoeba's cortical layer contract and increase P(ic) and that this P(ic) is utilized to overcome the viscous flow resistance of the intracellular contents during pseudopod formation.
Wigle, E. Douglas; Auger, Pierre; Marquis, Yves
1966-01-01
Two types of intraventricular pressure differences within the left ventricle of man are described. The first is encountered in cases of muscular (or fibrous) subaortic stenosis, in which the outflow tract pressure distal to the stenosis (and proximal to the aortic valve) is low, whereas all pressures recorded in the left ventricle proximal to the stenosis, including that just inside the mitral valve (the initial inflow tract pressure) are high. The second type of intraventricular pressure difference may be recorded in patients without muscular subaortic stenosis when a heart catheter is advanced to the left ventricular wall in such a manner that it becomes imbedded or entrapped by cardiac muscle in systole. Such an entrapped catheter records a high intraventricular pressure that is believed to reflect intramyocardial tissue pressure, which normally exceeds intracavitary pressure. In such cases the initial inflow tract pressure is not high and is precisely equal to the outflow tract systolic pressure, i.e. both are recording intracavity pressure. This type of intramyocardial to intracavitary pressure difference may also be encountered in the left ventricle of dogs. The recent suggestion that intraventricular pressure differences in the left ventricle of cases of muscular subaortic stenosis are due to catheter entrapment by cardiac muscle is refuted by using the initial inflow tract pressure as the means of differentiation between the two types of intraventricular pressure differences outlined. PMID:5951625
40 CFR 146.88 - Injection well operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...
40 CFR 146.88 - Injection well operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...
40 CFR 146.88 - Injection well operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...
40 CFR 146.88 - Injection well operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...
NASA Astrophysics Data System (ADS)
Rita, Novia; Mursyidah, Syahindra, Michael
2018-03-01
When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.
Star Formation in Nearby Galaxies
NASA Astrophysics Data System (ADS)
O'Connell, Robert
2009-07-01
Star formation is a fundamental astrophysical process; it controls phenomena ranging from the evolution of galaxies and nucleosynthesis to the origins of planetary systems and abodes for life. The WFC3, optimized at both UV and IR wavelengths and equipped with an extensive array of narrow-band filters, brings unique capabilities to this area of study. The WFC3 Scientific Oversight Committee {SOC} proposes an integrated program on star formation in the nearby universe which will fully exploit these new abilities. Our targets range from the well-resolved R136 in 30 Dor in the LMC {the nearest super star cluster} and M82 {the nearest starbursting galaxy} to about half a dozen other nearby galaxies that sample a wide range of star-formation rates and environments. Our program consists of broad-band multiwavelength imaging over the entire range from the UV to the near-IR, aimed at studying the ages and metallicities of stellar populations, revealing young stars that are still hidden by dust at optical wavelengths, and showing the integrated properties of star clusters. Narrow-band imaging of the same environments will allow us to measure star-formation rates, gas pressure, chemical abundances, extinction, and shock morphologies. The primary scientific issues to be addressed are: {1} What triggers star formation? {2} How do the properties of star-forming regions vary among different types of galaxies and environments of different gas densities and compositions? {3} How do these different environments affect the history of star formation? {4} Is the stellar initial mass function universal or determined by local conditions?
NASA Astrophysics Data System (ADS)
Vollmer, B.; Wong, O. I.; Braine, J.; Chung, A.; Kenney, J. D. P.
2012-07-01
The influence of the environment on gas surface density and star formation efficiency of cluster spiral galaxies is investigated. We extend previous work on radial profiles by a pixel-to pixel analysis looking for asymmetries due to environmental interactions. The star formation rate is derived from GALEX UV and Spitzer total infrared data based on the 8, 24, 70, and 160 μm data. As in field galaxies, the star formation rate for most Virgo galaxies is approximately proportional to the molecular gas mass. Except for NGC 4438, the cluster environment does not affect the star formation efficiency with respect to the molecular gas. Gas truncation is not associated with major changes in the total gas surface density distribution of the inner disk of Virgo spiral galaxies. In three galaxies (NGC 4430, NGC 4501, and NGC 4522), possible increases in the molecular fraction and the star formation efficiency with respect to the total gas, of factors of 1.5 to 2, are observed on the windward side of the galactic disk. A significant increase of the star formation efficiency with respect to the molecular gas content on the windward side of ram pressure-stripped galaxies is not observed. The ram-pressure stripped extraplanar gas of 3 highly inclined spiral galaxies (NGC 4330, NGC 4438, and NGC 4522) shows a depressed star formation efficiency with respect to the total gas, and one of them (NGC 4438) shows a depressed rate even with respect to the molecular gas. The interpretation is that stripped gas loses the gravitational confinement and associated pressure of the galactic disk, and the gas flow is diverging, so the gas density decreases and the star formation rate drops. We found two such regions of low star formation efficiency in the more face-on galaxies NGC 4501 and NGC 4654 which are both undergoing ram pressure stripping. These regions show low radio continuum emission or unusually steep radio spectral index. However, the stripped extraplanar gas in one highly inclined galaxy (NGC 4569) shows a normal star formation efficiency with respect to the total gas. We propose this galaxy is different because it is observed long after peak pressure, and its extraplanar gas is now in a converging flow as it resettles back into the disk. Appendices are available in electronic form http://www.aanda.org
Ren, Kun; Jiang, Ting; Zheng, Xi-Long; Zhao, Guo-Jun
2017-07-01
Furin, a member of the mammalian proprotein convertases family, can promote the proteolytic maturation of proproteins. It is known that furin is predominantly present in certain cell types of human atherosclerotic lesions and neointima in animal models, including vascular smooth muscle cells, endothelial cells and mononuclear inflammatory cells. Evidence suggests that furin participates in the initiation and progression of atherosclerosis through regulation of lipid and cholesterol metabolism, inflammatory response, blood pressure and the formation of atherosclerotic lesions. This review provides a panorama of the roles of furin in atherosclerosis and the insights into the prevention and treatment of atherosclerosis and cardiovascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, James; Webb, Graham; Shortland, Adam P; Edwards, Rebecca; Wilce, Charlotte; Jones, Gareth D
2018-05-12
In the original publication, the article title was incorrectly published as 'Reliability and feasibility of gait initiation centre-of-pressure excursions using a Wii® Balance Board in older adults at risk of failing'. The correct title should read as 'Reliability and feasibility of gait initiation centre-of-pressure excursions using a Wii® Balance Board in older adults at risk of falling'.
Detailed Numerical Simulations on the Formation of Pillars Around H II Regions
NASA Astrophysics Data System (ADS)
Gritschneder, Matthias; Burkert, Andreas; Naab, Thorsten; Walch, Stefanie
2010-11-01
We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100 cm-3 or 300 cm-3. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of the mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation driven implosion of pre-existing clumps.
DETAILED NUMERICAL SIMULATIONS ON THE FORMATION OF PILLARS AROUND H II REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritschneder, Matthias; Burkert, Andreas; Naab, Thorsten
2010-11-10
We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100 cm{sup -3} or 300 cm{sup -3}. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of themore » mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation driven implosion of pre-existing clumps.« less
NASA Astrophysics Data System (ADS)
Vandersall, Kevin S.; Tarver, Craig M.; Garcia, Frank; Chidester, Steven K.
2010-05-01
In large explosive and propellant charges, relatively low shock pressures on the order of 1-2 GPa impacting large volumes and lasting tens of microseconds can cause shock initiation of detonation. The pressure buildup process requires several centimeters of shock propagation before shock to detonation transition occurs. In this paper, experimentally measured run distances to detonation for lower input shock pressures are shown to be much longer than predicted by extrapolation of high shock pressure data. Run distance to detonation and embedded manganin gauge pressure histories are measured using large diameter charges of six octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic bonded explosives (PBX's): PBX 9404; LX-04; LX-07; LX-10; PBX 9501; and EDC37. The embedded gauge records show that the lower shock pressures create fewer and less energetic "hot spot" reaction sites, which consume the surrounding explosive particles at reduced reaction rates and cause longer distances to detonation. The experimental data is analyzed using the ignition and growth reactive flow model of shock initiation in solid explosives. Using minimum values of the degrees of compression required to ignite hot spot reactions, the previously determined high shock pressure ignition and growth model parameters for the six explosives accurately simulate the much longer run distances to detonation and much slower growths of pressure behind the shock fronts measured during the shock initiation of HMX PBX's at several low shock pressures.
NASA Astrophysics Data System (ADS)
Reddy, Vanteru M.; Rahman, Mustafa M.; Gandi, Appala N.; Elbaz, Ayman M.; Schrecengost, Robert A.; Roberts, William L.
2016-01-01
Heavy fuel oil (HFO) as a fuel in industrial and power generation plants ensures the availability of energy at economy. Coke and cenosphere emissions from HFO combustion need to be controlled by particulate control equipment such as electrostatic precipitators, and collection effectiveness is impacted by the properties of these particulates. The cenosphere formation is a function of HFO composition, which varies depending on the source of the HFO. Numerical modelling of the cenosphere formation mechanism presented in this paper is an economical method of characterising cenosphere formation potential for HFO in comparison to experimental analysis of individual HFO samples, leading to better control and collection. In the present work, a novel numerical model is developed for understanding the global cenosphere formation mechanism. The critical diameter of the cenosphere is modelled based on the balance between two pressures developed in an HFO droplet. First is the pressure (Prpf) developed at the interface of the liquid surface and the inner surface of the accumulated coke due to the flow restriction of volatile components from the interior of the droplet. Second is the pressure due to the outer shell strength (PrC) gained from van der Walls energy of the coke layers and surface energy. In this present study it is considered that when PrC ≥ Prpf the outer shell starts to harden. The internal motion in the shell layer ceases and the outer diameter (DSOut) of the shell is then fixed. The entire process of cenosphere formation in this study is analysed in three phases: regression, shell formation and hardening, and post shell hardening. Variations in pressures during shell formation are analysed. Shell (cenosphere) dimensions are evaluated at the completion of droplet evaporation. The rate of fuel evaporation, rate of coke formation and coke accumulation are analysed. The model predicts shell outer diameters of 650, 860 and 1040 µm, and inner diameters are 360, 410 and 430 µm respectively, for 700, 900 and 1100 µm HFO droplets. The present numerical model is validated with experimental results available from the literature. Total variation between computational and experimental results is in the range of 3-7%.
Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors.
Ullrich, Timo; Lindner, Jonas; Bär, Katharina; Mörs, Friedemann; Graf, Frank; Lemmer, Andreas
2018-01-01
In order to investigate the influence of pressures up to 9bar absolute on the productivity of trickle-bed reactors for biological methanation of hydrogen and carbon dioxide, experiments were carried out in a continuously operated experimental plant with three identical reactors. The pressure increase promises a longer residence time and improved mass transfer of H 2 due to higher gas partial pressures. The study covers effects of different pressures on important parameters like gas hourly space velocity, methane formation rate, conversion rates and product gas quality. The methane content of 64.13±3.81vol-% at 1.5bar could be increased up to 86.51±0.49vol-% by raising the pressure to 9bar. Methane formation rates of up to 4.28±0.26m 3 m -3 d -1 were achieved. Thus, pressure increase could significantly improve reactor performance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Review on pressure swirl injector in liquid rocket engine
NASA Astrophysics Data System (ADS)
Kang, Zhongtao; Wang, Zhen-guo; Li, Qinglian; Cheng, Peng
2018-04-01
The pressure swirl injector with tangential inlet ports is widely used in liquid rocket engine. Commonly, this type of pressure swirl injector consists of tangential inlet ports, a swirl chamber, a converging spin chamber, and a discharge orifice. The atomization of the liquid propellants includes the formation of liquid film, primary breakup and secondary atomization. And the back pressure and temperature in the combustion chamber could have great influence on the atomization of the injector. What's more, when the combustion instability occurs, the pressure oscillation could further affects the atomization process. This paper reviewed the primary atomization and the performance of the pressure swirl injector, which include the formation of the conical liquid film, the breakup and atomization characteristics of the conical liquid film, the effects of the rocket engine environment, and the response of the injector and atomization on the pressure oscillation.
NASA Technical Reports Server (NTRS)
Frenklach, M.
1983-01-01
Soot formation in toluene-, benzene-, and acetylene-oxygen-argon mixtures was investigated to study soot formation in a combustion environment. High concentrations of oxygen completely suppress soot formation. The addition of oxygen at relatively low concentrations uniformly suppresses soot formation at high pressures, while at relatively lower pressures it suppresses soot formation at higher temperatures while promoting soot production at lower temperatures. The observed behavior indicates that oxidation reactions compete with ring fragmentation. The main conclusion to be drawn from the results is that the soot formation mechanism is probably the same for the pyrolysis and oxidation of hydrocarbons. That is, the addition of oxygen does not alter the soot route but rather promotes or inhibits this route by means of competitive reactions. An approach to empirical modeling of soot formation during pyrolysis of aromatic hydrocarbons is also presented.
Recording pressure ulcer risk assessment and incidence.
Plaskitt, Anne; Heywood, Nicola; Arrowsmith, Michaela
2015-07-15
This article reports on the introduction of an innovative computer-based system developed to record and report pressure ulcer risk and incidence at an acute NHS trust. The system was introduced to ensure that all patients have an early pressure ulcer risk assessment, which prompts staff to initiate appropriate management if a pressure ulcer is detected, thereby preventing further patient harm. Initial findings suggest that this electronic process has helped to improve the timeliness and accuracy of data on pressure ulcer risk and incidence. In addition, it has resulted in a reduced number of reported hospital-acquired pressure ulcers.
The Field-Laboratory for CO2 Storage 'CO2SINK
NASA Astrophysics Data System (ADS)
Würdemann, Hilke; Möller, Fabian; Kühn, Michael; Borm, Günter; Schilling, Frank R.
2010-05-01
The first European onshore geological CO2 storage project in a saline aquifer CO2SINK is designed as a field size experiment to better understand in situ storage processes and to test various monitoring techniques. This EU project is run by 18 partners from universities, research institutes and industry out of 9 European countries (www.co2sink.org). The CO2 is injected into Upper Triassic sandstones (Stuttgart Formation) of a double-anticline at a depth of 650 m. The Stuttgart Formation represents a flu vial environment comprised of sandstone channels and silty to muddy deposits. The anticline forms a classical multibarrier system: The first caprock is a playa type mudstone of the Weser and Arnstadt formations directly overlying the Stuttgart formation. Laboratory tests revealed permeabilities in a µDarcy-range. The second main caprock is a tertiary clay, the so-called Rupelton. To determine the maximum injection pressure modified leak-off tests (without fracturing the caprock) were performed resulting in values around 120 bar. Due to safety standards the pressure threshold is set to 82 bar until more experience on the reservoir behaviour is available. The sealing property of the secondary cap rock is well known from decades of natural gas storage operations at the testing site and was the basis for the permission to operate the CO2 storage by the mining authority. Undisturbed, initial reservoir conditions are 35 °C and 62 bar. The initial reservoir fluid is highly saline with about 235 g/l total dissolved solids primarily composed of sodium chloride with notable amounts of calcium chloride. The initial pH value is 6.6. Hydraulic tests as well as laboratory tests revealed a permeability between 50 and 100 mDarcy for the sand channels of the storage formation. Within twenty months of storage operation, about 30,000 t of CO2 have been injected. Spreading of the CO2 plume is monitored by a broad range of geophysical techniques. The injection well and the two observation wells are equipped with 'smart casing technology' containing a Distributed Temperature Sensing (DTS) and electrodes for Electrical Resistivity Tomography (ERT) behind casing, facing the rocks. The geophysical monitoring includes crosshole seismic experiments, Vertical Seismic Profiling (VSP) and Moving Source Profiling (MSP), star seismic experiments and 4-D seismics. Gas membrane sensors (GMS) monitored the arrival of CO2 at the observation wells: CO2 arrived after injection of about 500 t of CO2.at the first well. Arrival in the second well was 9 months after start of injection, having injected an amount of about 11,000 t. Prior to CO2, the arrival of the gas tracers nitrogen and krypton was observed. Pressure and temperature logs showed a supercritical state of the CO2 in all three wells at depth of the storage formation after arrival of CO2. Downhole samples of the brine showed changes in the fluid composition and the activity of biocenosis due CO2 exposure (Morozova et al., EGU General Assembly 2010). Numerical models are benchmarked via the monitoring results indicating a sufficient match for the arrival at the first observation well. First results of ERT measurements indicate an anisotopic flow of CO2 coinciding with the 'on-time' arrival of CO2 at the first well and the late arrival at the second well. Time lapse crosshole seismics showed no considerable change in seismic velocity between the two observation wells within the first two repeats after injection of 660 t and 1,700 t of CO2, respectively. However, after injection of 18,000 t CO2 all time-lapse surveys showed a clearly observable signature of the CO2 propagating in the Stuttgart formation. In May 2010 results from twenty months of operation and monitoring the storage operation will be presented. Morozova, D., Zettlitzer, M.., Vieth A., Würdemann, H., (2010). Microbial community response to the CO2 injection and storage in the saline aquifer, Ketzin, Germany. European Geosciences Union (EGU) General Assembly. Vienna.