Effect of initial densities in the lattice Boltzmann model for non-ideal fluid with curved interface
NASA Astrophysics Data System (ADS)
Gong, Jiaming; Oshima, Nobuyuki
2017-06-01
The effect of initial densities in a free energy based two-phase-flow lattice Boltzmann method for non-ideal fluids with a curved interface was investigated in the present work. To investigate this effect, the initial densities in the liquid and gas phases coming from the saturation points and the equilibrium state were adopted in the simulation of a static droplet in an open and a closed system. For the purpose of simplicity and easier comparison, the closed system is fabricated by the implementation of the periodic boundary condition at the inlet and outlet of a gas channel, and the open system is fabricated by the implementation of a constant flux boundary condition at the inlet and a free-out boundary condition at the outlet of the same gas channel. By comparing the simulation results from the two types of initial densities in the open and closed systems, it is proven that the commonly used saturation initial densities setting is the reason for droplet mass and volume variation which occurred in the simulation, particularly in the open system with a constant flux boundary condition. Such problems are believed to come from the curvature effect of the surface tension and can be greatly reduced by adopting the initial densities in the two phases from equilibrium state.
Star formation in a hierarchical model for Cloud Complexes
NASA Astrophysics Data System (ADS)
Sanchez, N.; Parravano, A.
The effects of the external and initial conditions on the star formation processes in Molecular Cloud Complexes are examined in the context of a schematic model. The model considers a hierarchical system with five predefined phases: warm gas, neutral gas, low density molecular gas, high density molecular gas and protostars. The model follows the mass evolution of each substructure by computing its mass exchange with their parent and children. The parent-child mass exchange depends on the radiation density at the interphase, which is produced by the radiation coming from the stars that form at the end of the hierarchical structure, and by the external radiation field. The system is chaotic in the sense that its temporal evolution is very sensitive to small changes in the initial or external conditions. However, global features such as the star formation efficience and the Initial Mass Function are less affected by those variations.
Shock Initiation and Equation of State of Ammonium Nitrate
NASA Astrophysics Data System (ADS)
Robbins, David; Sheffield, Steve; Dattelbaum, Dana; Chellappa, Raja; Velisavljevic, Nenad
2013-06-01
Ammonium nitrate (AN) is a widely used fertilizer and mining explosive commonly found in ammonium nitrate-fuel oil. Neat AN is a non-ideal explosive with measured detonation velocities approaching 4 km/s. Previously, we reported a thermodynamically-complete equation of state for AN based on its maximum density, and showed that near-full density AN did not initiate when subjected to shock input conditions up to 22 GPa. In this work, we extend these initial results, by presenting new Hugoniot data for intermediate density neat AN obtained from gas gun-driven plate impact experiments. AN at densities from 1.8 to 1.5 g/cm3 were impacted into LiF windows using a two-stage light gas gun. Dual VISARs were used to measure the interfacial particle velocity wave profile as a function of time following impact. The new Hugoniot data, in addition to updates to thermodynamic parameters derived from structural analysis and vibrational spectroscopy measurements in high pressure diamond anvil cell experiments, are used to refine the unreacted EOS for AN. Furthermore, shock initiation of neat AN was observed as the initial porosity increased (density decreased). Insights into the relationship(s) between initial density and shock initiation sensitivity are also presented, from evidence of shock initiation in the particle velocity profiles obtained for the lower density AN samples.
Use of Genetic Algorithms to solve Inverse Problems in Relativistic Hydrodynamics
NASA Astrophysics Data System (ADS)
Guzmán, F. S.; González, J. A.
2018-04-01
We present the use of Genetic Algorithms (GAs) as a strategy to solve inverse problems associated with models of relativistic hydrodynamics. The signal we consider to emulate an observation is the density of a relativistic gas, measured at a point where a shock is traveling. This shock is generated numerically out of a Riemann problem with mildly relativistic conditions. The inverse problem we propose is the prediction of the initial conditions of density, velocity and pressure of the Riemann problem that gave origin to that signal. For this we use the density, velocity and pressure of the gas at both sides of the discontinuity, as the six genes of an organism, initially with random values within a tolerance. We then prepare an initial population of N of these organisms and evolve them using methods based on GAs. In the end, the organism with the best fitness of each generation is compared to the signal and the process ends when the set of initial conditions of the organisms of a later generation fit the Signal within a tolerance.
High-current discharge channel contraction in high density gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.
Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of {approx}10{sup 10} A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 {mu}s. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where themore » channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.« less
NASA Astrophysics Data System (ADS)
Zhu, Guangtun Ben; Barrera-Ballesteros, Jorge K.; Heckman, Timothy M.; Zakamska, Nadia L.; Sánchez, Sebastian F.; Yan, Renbin; Brinkmann, Jonathan
2017-07-01
We revisit the relation between the stellar surface density, the gas surface density and the gas-phase metallicity of typical disc galaxies in the local Universe with the SDSS-IV/MaNGA survey, using the star formation rate surface density as an indicator for the gas surface density. We show that these three local parameters form a tight relationship, confirming previous works (e.g. by the PINGS and CALIFA surveys), but with a larger sample. We present a new local leaky-box model, assuming star-formation history and chemical evolution is localized except for outflowing materials. We derive closed-form solutions for the evolution of stellar surface density, gas surface density and gas-phase metallicity, and show that these parameters form a tight relation independent of initial gas density and time. We show that, with canonical values of model parameters, this predicted relation match the observed one well. In addition, we briefly describe a pathway to improving the current semi-analytic models of galaxy formation by incorporating the local leaky-box model in the cosmological context, which can potentially explain simultaneously multiple properties of Milky Way-type disc galaxies, such as the size growth and the global stellar mass-gas metallicity relation.
Equation of state of fluid helium at high temperatures and densities
NASA Astrophysics Data System (ADS)
Cai, Lingcang; Chen, Qifeng; Gu, Yunjun; Zhang, Ying; Zhou, Xianming; Jing, Fuqian
2005-03-01
Hugoniot curves and shock temperatures of gas helium with initial temperature 293 K and three initial pressures 0.6, 1.2, and 5.0 MPa were measured up to 15000 K using a two-stage light-gas gun and transient radiation pyrometer. It was found that the calculated Hugoniot EOS of gas helium at the same initial pressure using Saha equation with Debye-Hückel correction was in good agreement with the experimental data. The curve of the calculated shock wave velocity with the particle velocity of gas helium which is shocked from the initial pressure 5 MPa and temperature 293 K, i.e., the D ≈ u relation, D= C 0+λ u ( u<10 km/s, λ=1.32) in a low pressure region, is approximately parallel with the fitted D ≈ u (λ=1.36) of liquid helium from the experimental data of Nellis et al. Our calculations show that the Hugoniot parameter λ is independent of the initial density p{in0}. The D≈ u curves of gas helium will transfer to another one and approach a limiting value of compression when their temperature elevates to about 18000 K and the ionization degree of the shocked gas helium reaches 10-3.
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the relativistic electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region of the high-density plasma target.
Shockwave compression of Ar gas at several initial densities
NASA Astrophysics Data System (ADS)
Dattelbaum, Dana M.; Goodwin, Peter M.; Garcia, Daniel B.; Gustavsen, Richard L.; Lang, John M.; Aslam, Tariq D.; Sheffield, Stephen A.; Gibson, Lloyd L.; Morris, John S.
2017-01-01
Experimental data of the principal Hugoniot locus of variable density gas-phase noble and molecular gases are rare. The majority of shock Hugoniot data is either from shock tube experiments on low-pressure gases or from plate impact experiments on cryogenic, liquefied gases. In both cases, physics regarding shock compressibility, thresholds for the on-set of shock-driven ionization, and even dissociation chemistry are difficult to infer for gases at intermediate densities. We have developed an experimental target design for gas gun-driven plate impact experiments on noble gases at initial pressures between 200-1000 psi. Using optical velocimetry, we are able to directly determine both the shock and particle velocities of the gas on the principal Hugoniot locus, as well as clearly differentiate ionization thresholds. The target design also results in multiply shocking the gas in a quasi-isentropic fashion yielding off-Hugoniot compression data. We describe the results of a series of plate impact experiments on Ar with starting densities between 0.02-0.05 g/cm3 at room temperature. Furthermore, by coupling optical fibers to the targets, we have measured the time-resolved optical emission from the shocked gas using a spectrometer coupled to an optical streak camera to spectrally-resolve the emission, and with a 5-color optical pyrometer for temperature determination.
Evolution from Rydberg gas to ultracold plasma in a supersonic atomic beam of Xe
NASA Astrophysics Data System (ADS)
Hung, J.; Sadeghi, H.; Schulz-Weiling, M.; Grant, E. R.
2014-08-01
A Rydberg gas of xenon, entrained in a supersonic atomic beam, evolves slowly to form an ultracold plasma. In the early stages of this evolution, when the free-electron density is low, Rydberg atoms undergo long-range \\ell -mixing collisions, yielding states of high orbital angular momentum. The development of high-\\ell states promotes dipole-dipole interactions that help to drive Penning ionization. The electron density increases until it reaches the threshold for avalanche. Ninety μs after the production of a Rydberg gas with the initial state, {{n}_{0}}{{\\ell }_{0}}=42d, a 432 V cm-1 electrostatic pulse fails to separate charge in the excited volume, an effect which is ascribed to screening by free electrons. Photoexcitation cross sections, observed rates of \\ell -mixing, and a coupled-rate-equation model simulating the onset of the electron-impact avalanche point consistently to an initial Rydberg gas density of 5\\times {{10}^{8}}\\;c{{m}^{-3}}.
NASA Astrophysics Data System (ADS)
Ohta, M.; Mattei, S.; Yasumoto, M.; Hatayama, A.; Lettry, J.
2014-02-01
In the Linac4 H- ion source, the plasma is generated by an RF antenna operated at 2 MHz. In order to investigate the conditions necessary for ramping up the plasma density of the Linac4 H- ion source in the low plasma density, a numerical study has been performed for a wide range of parameter space of RF coil current and initial pressure from H2 gas injection. We have employed an Electromagnetic Particle in Cell model, in which the collision processes have been calculated by a Monte Carlo method. The results have shown that the range of initial gas pressure from 2 to 3 Pa is suitable for ramping up plasma density via inductive coupling.
Electron density and gas density measurements in a millimeter-wave discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.
2016-08-15
Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal tomore » the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.« less
Nath, G; Sahu, P K
2016-01-01
A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.
Three-dimensional imaging of the ultracold plasma formed in a supersonic molecular beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz-Weiling, Markus; Grant, Edward
Double-resonant excitation of nitric oxide in a seeded supersonic molecular beam forms a state-selected Rydberg gas that evolves to form an ultracold plasma. This plasma travels with the propagation of the molecular beam in z over a variable distance as great as 600 mm to strike an imaging detector, which records the charge distribution in the dimensions, x and y. The ω{sub 1} + ω{sub 2} laser crossed molecular beam excitation geometry convolutes the axial Gaussian distribution of NO in the molecular beam with the Gaussian intensity distribution of the perpendicularly aligned laser beam to create an ellipsoidal volume of Rydbergmore » gas. Detected images describe the evolution of this initial density as a function of selected Rydberg gas initial principal quantum number, n{sub 0}, ω{sub 1} laser pulse energy (linearly related to Rydberg gas density, ρ{sub 0}) and flight time. Low-density Rydberg gases of lower principal quantum number produce uniformly expanding, ellipsoidal charge-density distributions. Increase either of n{sub 0} or ρ{sub 0} breaks the ellipsoidal symmetry of plasma expansion. The volume bifurcates to form repelling plasma volumes. The velocity of separation depends on n{sub 0} and ρ{sub 0} in a way that scales uniformly with ρ{sub e}, the density of electrons formed in the core of the Rydberg gas by prompt Penning ionization. Conditions under which this electron gas drives expansion in the long axis dimension of the ellipsoid favours the formation of counter-propagating shock waves.« less
Three-dimensional simulation of microwave-induced helium plasma under atmospheric pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, G. L.; Hua, W., E-mail: huaw@scu.edu.cn; Guo, S. Y.
2016-07-15
A three-dimensional model is presented to investigate helium plasma generated by microwave under atmospheric pressure in this paper, which includes the physical processes of electromagnetic wave propagation, electron and heavy species transport, gas flow, and heat transfer. The model is based on the fluid approximation calculation and local thermodynamic equilibrium assumption. The simulation results demonstrate that the maxima of the electron density and gas temperature are 4.79 × 10{sup 17 }m{sup −3} and 1667 K, respectively, for the operating conditions with microwave power of 500 W, gas flow rate of 20 l/min, and initial gas temperature of 500 K. The electromagnetic field distribution in the plasma sourcemore » is obtained by solving Helmholtz equation. Electric field strength of 2.97 × 10{sup 4 }V/m is obtained. There is a broad variation on microwave power, gas flow rate, and initial gas temperature to obtain deeper information about the changes of the electron density and gas temperature.« less
Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.
Kolvin, Itamar; Livne, Eli; Meerson, Baruch
2010-08-01
We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.
Device and method for electron beam heating of a high density plasma
Thode, L.E.
A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.
NASA Astrophysics Data System (ADS)
Daisaka, Junko K.; Tanaka, Hidekazu; Ida, Shigeru
2006-12-01
This paper investigates the surface density evolution of a planetesimal disk due to the effect of type-I migration by carrying out N-body simulation and through analytical method, focusing on terrestrial planet formation. The coagulation and the growth of the planetesimals take place in the abundant gas disk except for a final stage. A protoplanet excites density waves in the gas disk, which causes the torque on the protoplanet. The torque imbalance makes the protoplanet suffer radial migration, which is known as type-I migration. Type-I migration time scale derived by the linear theory may be too short for the terrestrial planets to survive, which is one of the major problems in the planet formation scenario. Although the linear theory assumes a protoplanet being in a gas disk alone, Kominami et al. [Kominami, J., Tanaka, H., Ida, S., 2005. Icarus 167, 231-243] showed that the effect of the interaction with the planetesimal disk and the neighboring protoplanets on type-I migration is negligible. The migration becomes pronounced before the planet's mass reaches the isolation mass, and decreases the solid component in the disk. Runaway protoplanets form again in the planetesimal disk with decreased surface density. In this paper, we present the analytical formulas that describe the evolution of the solid surface density of the disk as a function of gas-to-dust ratio, gas depletion time scale and semimajor axis, which agree well with our results of N-body simulations. In general, significant depletion of solid material is likely to take place in inner regions of disks. This might be responsible for the fact that there is no planet inside Mercury's orbit in our Solar System. Our most important result is that the final surface density of solid components ( Σ) and mass of surviving planets depend on gas surface density ( Σ) and its depletion time scale ( τ) but not on initial Σ; they decrease with increase in Σ and τ. For a fixed gas-to-dust ratio and τ, larger initial Σ results in smaller final Σ and smaller surviving planets, because of larger Σ. To retain a specific amount of Σ, the efficient disk condition is not an initially large Σ but the initial Σ as small as the specified final one and a smaller gas-to-dust ratio. To retain Σ comparable to that of the minimum mass solar nebula (MMSN), a disk must have the same Σ and a gas-to-dust ratio that is smaller than that of MMSN by a factor of 1.3×(τ/1 Myr) at ˜1 AU. (Equivalently, type-I migration speed is slower than that predicted by the linear theory by the same factor.) The surviving planets are Mars-sized ones in this case; in order to form Earth-sized planets, their eccentricities must be pumped up to start orbit crossing and coagulation among them. At ˜5 AU, Σ of MMSN is retained under the same condition, but to form a core massive enough to start runaway gas accretion, a gas-to-dust ratio must be smaller than that of MMSN by a factor of 3×τ/1 Myr.
Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime
NASA Astrophysics Data System (ADS)
Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.
2010-12-01
Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.
EFFECTS OF DUST FEEDBACK ON VORTICES IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Wen; Liang, Edison; Li, Hui
2014-11-10
We carried out two-dimensional, high-resolution simulations to study the effect of dust feedback on the evolution of vortices induced by massive planets in protoplanetary disks. Various initial dust to gas disk surface density ratios (0.001-0.01) and dust particle sizes (Stokes number 4 × 10{sup –4}-0.16) are considered. We found that while dust particles migrate inward, vortices are very effective at collecting them. When dust density becomes comparable to gas density within the vortex, a dynamical instability is excited and it alters the coherent vorticity pattern and destroys the vortex. This dust feedback effect is stronger with a higher initial dust/gasmore » density ratio and larger dust grain. Consequently, we found that the disk vortex lifetime can be reduced up to a factor of 10. We discuss the implications of our findings on the survivability of vortices in protoplanetary disks and planet formation.« less
A galaxy formation cookbook: Recipes and utensils
NASA Astrophysics Data System (ADS)
Katz, Neal Steven
Numerical simulations of hierarchial galaxy formation including gas dynamics are presented. These simulations are conducted using a general-purpose program for evolving self-gravitating systems in three dimensions. The gravitational forces are calculated using a hierarchial tree algorithm while the gas dynamic properties are determined using smoothed particle hydrodynamics. Since in this method the complete thermodynamic state of the gas is known everywhere, dissipational effects can be included by allowing the gas to cool radiatively, using standard cooling curves, and star formation can be prescribed in a physical manner. The simulations model the collapse of isolated constant density perturbations, made of dark and baryonic matter in a 10 to 1 ratio, initially in solid rotation and in Hubble flow. Small scale power is added using the Zel'dovich approximation assuming a power law slope of either -2.5 or 0. The simulations are successful in making systems that resemble spirals and ellipticals. Of the parameters that are investigated - the small scale power amplitude, the initial angular momentum, and the star formation rate - it is the amplitude of the small scale power that is most important in determining the final Hubble type. Systems form through the merger of sub-clumps. The systems with larger small scale power have clumps with higher central densities. Higher density clumps retain their identities longer than lower density clumps and are able to lose more angular momentum. These systems form ellipticals. Spirals form when these clumps are not very distinct and little angular momentum transport occurs. Since the Hubble type is determined by how much small scale power is present when compared to the height of the galaxy-sized peak, the density-morphology relation is easily explained. The formation and equilibrium characteristics of systems formed through dissipationless collapse using similar initial conditions are also studied.
NASA Astrophysics Data System (ADS)
Tu, Shao-yong; Yuan, Yong-teng; Hu, Guang-yue; Miao, Wen-yong; Zhao, Bin; Zheng, Jian; Jiang, Shao-en; Ding, Yong-kun
2016-01-01
Efficient multi-keV x-ray sources can be produced using nanosecond laser pulse-heated middle-Z underdense plasmas generated using gas or foam. Previous experimental results show that an optimal initial target density exists for efficient multi-keV x-ray emission at which the laser ionization wave is supersonic. Here we explore the influence of the laser intensity and the pulse duration on this optimal initial target density via a one-dimensional radiation hydrodynamic simulation. The simulation shows that the optimal initial density is sensitive to both the laser intensity and the pulse duration. However, the speed of the supersonic ionization wave at the end of the laser irradiation is always maintained at 1.5 to 1.7 times that of the ion acoustic wave under the optimal initial density conditions.
Impact of a star formation efficiency profile on the evolution of open clusters
NASA Astrophysics Data System (ADS)
Shukirgaliyev, B.; Parmentier, G.; Berczik, P.; Just, A.
2017-09-01
Aims: We study the effect of the instantaneous expulsion of residual star-forming gas on star clusters in which the residual gas has a density profile that is shallower than that of the embedded cluster. This configuration is expected if star formation proceeds with a given star-formation efficiency per free-fall time in a centrally concentrated molecular gas clump. Methods: We performed direct N-body simulations whose initial conditions were generated by the program "mkhalo" from the package "falcON", adapted for our models. Our model clusters initially had a Plummer profile and are in virial equilibrium with the gravitational potential of the cluster-forming clump. The residual gas contribution was computed based on a local-density driven clustered star formation model. Our simulations included mass loss by stellar evolution and the tidal field of a host galaxy. Results: We find that a star cluster with a minimum global star formation efficiency (SFE) of 15 percent is able to survive instantaneous gas expulsion and to produce a bound cluster. Its violent relaxation lasts no longer than 20 Myr, independently of its global SFE and initial stellar mass. At the end of violent relaxation, the bound fractions of the surviving clusters with the same global SFEs are similar, regardless of their initial stellar mass. Their subsequent lifetime in the gravitational field of the Galaxy depends on their bound stellar masses. Conclusions: We therefore conclude that the critical SFE needed to produce a bound cluster is 15 percent, which is roughly half the earlier estimates of 33 percent. Thus we have improved the survival likelihood of young clusters after instantaneous gas expulsion. Young clusters can now survive instantaneous gas expulsion with a global SFEs as low as the SFEs observed for embedded clusters in the solar neighborhood (15-30 percent). The reason is that the star cluster density profile is steeper than that of the residual gas. However, in terms of the effective SFE, measured by the virial ratio of the cluster at gas expulsion, our results are in agreement with previous studies.
NASA Astrophysics Data System (ADS)
Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.
2017-12-01
Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.
NASA Astrophysics Data System (ADS)
Boumaza, R.; Bencheikh, K.
2017-12-01
Using the so-called operator product expansion to lowest order, we extend the work in Campbell et al (2015 Phys. Rev. Lett 114 125302) by deriving a simple analytical expression for the long-time asymptotic one-body reduced density matrix during free expansion for a one-dimensional system of bosons with large atom number interacting through a repulsive delta potential initially confined by a potential well. This density matrix allows direct access to the momentum distribution and also to the mass current density. For initially confining power-law potentials we give explicit expressions, in the limits of very weak and very strong interaction, for the current density distributions during the free expansion. In the second part of the work we consider the expansion of ultracold gas from a confining harmonic trap to another harmonic trap with a different frequency. For the case of a quantum impenetrable gas of bosons (a Tonks-Girardeau gas) with a given atom number, we present an exact analytical expression for the mass current distribution (mass transport) after release from one harmonic trap to another harmonic trap. It is shown that, for a harmonically quenched Tonks-Girardeau gas, the current distribution is a suitable collective observable and under the weak quench regime, it exhibits oscillations at the same frequencies as those recently predicted for the peak momentum distribution in the breathing mode. The analysis is extended to other possible quenched systems.
STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp
2015-03-10
Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence ismore » weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.« less
Device and method for electron beam heating of a high density plasma
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.
NASA Astrophysics Data System (ADS)
Harris, Andrew J. L.; Ripepe, Maurizio; Hughes, Elizabeth A.
2012-06-01
Using high frame rate (33 Hz) thermal video data we describe and parameterize the emission and ascent dynamics of a mixed plume of gas and particles emitted during a normal explosion at Stromboli (Aeolian Islands, Italy). Analysis of 34 events showed that 31 of them were characterized by a first phase characterized by an initial diffuse spray of relatively small (lapilli-sized) particles moving at high velocities (up to 213 m s- 1; average 66-82 m s- 1). This was followed, typically within 0.1 s, by a burst comprising a mixture of ash and lapilli, but dominated by larger bomb-sized particles, moving at lower exit velocities of up to 129 m s- 1, but typically 46 m s- 1. We interpret these results as revealing initial emission of a previously unrecorded high velocity gas-jet phase, to which the lapilli are coupled. This is followed by emission of slower moving larger particles that are decoupled from the faster moving gas-phase. Diameters for particles carried by the gas phase are typically around 4 cm, but can be up to 9 cm, with the diameter of the particles carried by the gas jet (D) decreasing with increased density and velocity of the erupted gas cloud (ρgas and Ugas). Data for 101 particles identified as moving with the gas jet during 32 eruptions allow us to define a new relation, whereby Ugas = Uparticle + a [ρgas√{D}]b. Here, Uparticle is the velocity of bombs whose motion is decoupled from that of the gas cloud, and a and b are two empirically-derived coefficients. This replaces the old relation, whereby Ugas = Uparticle + k √{D}; a relation that requires a constant gas density for each eruption. This is an assumption that we show to be invalid, with gas density potentially varying between 0.04 kg m- 3 and 9 kg m- 3 for the 32 cases considered, so that k varies between 54 m1/2 s- 1 and 828 m1/2 s- 1, compared with the traditionally used constant of 150 m1/2 s- 1.
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke
2018-04-01
The surface density of protoplanetary disks is a fundamental parameter that still remains largely unconstrained due to uncertainties in the dust-to-gas ratio and CO abundance. In this talk I will present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. I will provide an initial proof of concept of our model through an application to the disk TW Hya where we are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. Using this method we derive disks that may be much more massive than previously thought, often approaching the limit of gravitational stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.
We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gasmore » bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tie, W., E-mail: twh.110.666@163.com, E-mail: 84470220@qq.com; Xi'an Jiaotong University, Xi'an 710049; Liu, S.
The temporal and spatial evolution of a plasma jet generated by a spark discharge was observed. The electron temperature and density were obtained under different time and gas pressures by optical emission spectroscopy. Moreover, the discharge process of the plasma-jet triggered gas switch was recorded and analyzed at the lowest working coefficient. The results showed that the plasma jet moved forward in a bullet mode, and the advancing velocity increased with the decrease of pressure, and decreased with time growing. At initial time, the maximum velocity of a plasma jet could reach 3.68 × 10{sup 6 }cm/s. The electron temperature decreased from 2.0 eVmore » to 1.3 eV, and the electron density increased from 3.1 × 10{sup 15}/cm{sup 3} to 6.3 × 10{sup 15}/cm{sup 3} at the initial moment as the gas pressure increases from 0.1 MPa to 0.32 MPa. For a two-gap gas switch, the discharge performances were more depended on the second discharge spark gap (gap 2). Because plasma jet promoted the discharge in Gap 2, the gas switch operating in mode II had better triggered discharge characteristics. In the discharge process, the plasma-jet triggering had the effect of non-penetrating inducing, which not only provided initial electrons for reducing statistical lag but also enhanced the local electric field. The discharge was initiated and accelerated from electron avalanche to streamer. Therefore, a fast discharge was occurred in the gas switch.« less
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.
Ideal gas behavior of a strongly coupled complex (dusty) plasma.
Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry
2013-07-05
In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.
NASA Astrophysics Data System (ADS)
Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron
2017-12-01
Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.
On the effect of Lyman α trapping during the initial collapse of massive black hole seeds
NASA Astrophysics Data System (ADS)
Ge, Qi; Wise, John H.
2017-12-01
One viable seeding mechanism for supermassive black holes is the direct gaseous collapse route in pre-galactic dark matter haloes, producing objects on the order of 104-106 M⊙. These events occur when the gas is prevented from cooling below 104 K that requires a metal-free and relatively H2-free medium. The initial collapse cools through atomic hydrogen transitions, but the gas becomes optically thick to the cooling radiation at high densities. We explore the effects of Lyman α trapping in such a collapsing system with a suite of Monte Carlo radiation transport calculations in uniform density and isotropic cases that are based from a cosmological simulation. Our method includes both non-coherent scattering and two-photon line cooling. We find that Lyman α radiation is marginally trapped in the parsec-scale gravitationally unstable central cloud, allowing the temperature to increase to 50 000 K at a number density of 3 × 104 cm-3 and increasing the Jeans mass by a factor of 5. The effective equation of state changes from isothermal at low densities to have an adiabatic index of 4/3 around the temperature maximum and then slowly retreats back to isothermal at higher densities. Our results suggest that Lyman α trapping delays the initial collapse by raising the Jeans mass. Afterward the high-density core cools back to 104 K that is surrounded by a warm envelope whose inward pressure may alter the fragmentation scales at high densities.
High precision Hugoniot measurements on statically pre-compressed fluid helium
NASA Astrophysics Data System (ADS)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; Hickman, Randy J.; Thornhill, Tom F.
2016-09-01
The capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modest (0.27-0.38 GPa) initial pressures. The dynamic response of pre-compressed helium in the initial density range of 0.21-0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (up) relationship: us = C0 + sup, with C0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.
Highly-ionized metals as probes of the circumburst gas in the natal regions of gamma-ray bursts
NASA Astrophysics Data System (ADS)
Heintz, K. E.; Watson, D.; Jakobsson, P.; Fynbo, J. P. U.; Bolmer, J.; Arabsalmani, M.; Cano, Z.; Covino, S.; D'Elia, V.; Gomboc, A.; Japelj, J.; Kaper, L.; Krogager, J.-K.; Pugliese, G.; Sánchez-Ramírez, R.; Selsing, J.; Sparre, M.; Tanvir, N. R.; Thöne, C. C.; de Ugarte Postigo, A.; Vergani, S. D.
2018-06-01
We present here a survey of high-ionization absorption lines in the afterglow spectra of long-duration gamma-ray bursts (GRBs) obtained with the VLT/X-shooter spectrograph. Our main goal is to investigate the circumburst medium in the natal regions of GRBs. Our primary focus is on the N V λλ 1238,1242 line transitions, but we also discuss other high-ionization lines such as O VI, C IV and Si IV. We find no correlation between the column density of N V and the neutral gas properties such as metallicity, H I column density and dust depletion, however the relative velocity of N V, typically a blueshift with respect to the neutral gas, is found to be correlated with the column density of H I. This may be explained if the N V gas is part of an H II region hosting the GRB, where the region's expansion is confined by dense, neutral gas in the GRB's host galaxy. We find tentative evidence (at 2σ significance) that the X-ray derived column density, NH, X, may be correlated with the column density of N V, which would indicate that both measurements are sensitive to the column density of the gas located in the vicinity of the GRB. We investigate the scenario where N V (and also O VI) is produced by recombination after the corresponding atoms have been stripped entirely of their electrons by the initial prompt emission, in contrast to previous models where highly-ionized gas is produced by photoionization from the GRB afterglow.
Device and method for imploding a microsphere with a fast liner
Thode, Lester E.
1981-01-01
A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner to drive the fast liner to implode a microsphere.
Time-Dependent Photodissociation Regions
NASA Technical Reports Server (NTRS)
Hollenbach, David; Natta, Antonella
1995-01-01
We present theoretical models of the time-dependent thermal and chemical structure of molecular gas suddenly exposed to far-ultraviolet (FUV) (6 eV less than hv less than 13.6 eV) radiation fields and the consequent time- dependent infrared emission of the gas. We focus on the response of molecular hydrogen for cloud densities ranging from n = 10(exp 3) to 10(exp 6)/cu cm and FUV fluxes G(sub 0) = 10(exp 3)-10(exp 6) times the local FUV interstellar flux. For G(sub 0)/n greater than 10(exp -2) cu cm, the emergent H(sub 2) vibrational line intensities are initially larger than the final equilibrium values. The H(sub 2) lines are excited by FUV fluorescence and by collisional excitation in warm gas. Most of the H(sub 2) intensity is generated at a characteristic hydrogen column density of N approximately 10(exp 21)/sq cm, which corresponds to an FUV optical depth of unity caused by dust opacity. The time dependence of the H(sub 2) intensities arises because the initial abundances of H(sub 2) at these depths is much higher than the equilibrium values, so that H(sub 2) initially competes more effectively with dust in absorbing FUV photons. Considerable column densities of warm (T approximately 1000) K H(sub 2) gas can be produced by the FUV pumping of H(sub 2) vibrational levels followed by collisional de-excitation, which transfers the energy to heat. In dense (n greater than or approximately 10(exp 5)/cu cm) gas exposed to high (G(sub 0) greater than or approximately 10(exp 4)) fluxes, this warm gas produces a 2-1 S(1)/1-0 S(l) H(sub 2) line ratio of approximately 0.1, which mimics the ratio found in shocked gas. In lower density regions, the FUV pumping produces a pure-fluorescent ratio of approximately 0.5. We also present calculations of the time dependence of the atomic hydrogen column densities and of the intensities of 0 I 6300 A, S II 6730 A, Fe II 1.64 microns, and rotational OH and H20 emission. Potential applications include star-forming regions, clouds near active galactic nuclei, and planetary nebulae. We apply our models to five planetary nebulae and conclude that only BD +30deg3639 shows evidence of enhanced H(sub 2) emission due to (high) nonequilibrium H(sub 2) abundances.
Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.
Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energymore » depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. Finally, by performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.« less
Fluid dynamics analysis of a gas attenuator for X-ray FELs under high-repetition-rate operation
Yang, Bo; Wu, Juhao; Raubenheimer, Tor O.; ...
2017-05-01
Newtonian fluid dynamics simulations were performed using the Navier–Stokes–Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser–gas interaction region, where large pressure and temperature gradients have been built upon the initial energymore » depositionviaX-ray photoelectric absorption and subsequent thermalization. Concurrent outward heat conduction tends to reduce the pressure in the filament core region, generating a counter gas flow to backfill the filament, but on an initially slower time scale. If the inter-pulse separation is sufficiently short so the filament cannot recover, the depth of the filament progressively increases as the trailing pulses remove additional gas particles. Since the rate of hydrodynamic removal decreases while the rate of heat conduction back flow increases as time elapses, the two competing mechanisms ultimately reach a dynamic balance, establishing a repeating pattern for each pulse cycle. Finally, by performing simulations at higher repetition rates but lower per pulse energies while maintaining a constant time-averaged power, the amplitude of the hydrodynamic motion per pulse becomes smaller, and the evolution of the temperature and density distributions approach asymptotically towards, as expected, those calculated for a continuous-wave input of the equivalent power.« less
NASA Astrophysics Data System (ADS)
Parmentier, Geneviève; Baumgardt, Holger
2012-12-01
We highlight the impact of cluster-mass-dependent evolutionary rates upon the evolution of the cluster mass function during violent relaxation, that is, while clusters dynamically respond to the expulsion of their residual star-forming gas. Mass-dependent evolutionary rates arise when the mean volume density of cluster-forming regions is mass-dependent. In that case, even if the initial conditions are such that the cluster mass function at the end of violent relaxation has the same shape as the embedded-cluster mass function (i.e. infant weight-loss is mass-independent), the shape of the cluster mass function does change transiently during violent relaxation. In contrast, for cluster-forming regions of constant mean volume density, the cluster mass function shape is preserved all through violent relaxation since all clusters then evolve at the same mass-independent rate. On the scale of individual clusters, we model the evolution of the ratio of the dynamical mass to luminous mass of a cluster after gas expulsion. Specifically, we map the radial dependence of the time-scale for a star cluster to return to equilibrium. We stress that fields of view a few pc in size only, typical of compact clusters with rapid evolutionary rates, are likely to reveal cluster regions which have returned to equilibrium even if the cluster experienced a major gas expulsion episode a few Myr earlier. We provide models with the aperture and time expressed in units of the initial half-mass radius and initial crossing-time, respectively, so that our results can be applied to clusters with initial densities, sizes, and apertures different from ours.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, S.; Ohno, N.; Shibata, Y.
2013-11-15
According to an early work [Y. Shibata et al., Nucl. Fusion 50, 025015 (2010)] on the behavior of the plasma current decay in the JT-60U disruptive discharges caused by the radiative collapse with a massive neon-gas-puff, the increase of the internal inductance mainly determined the current decay time of plasma current during the initial phase of current quench. To investigate what determines the increase of the internal inductance, we focus attention on the relationship between the electron temperature (or the resistivity) profile and the time evolution of the current density profile and carry out numerical calculations. As a result, wemore » find the reason of the increase of the internal inductance: The current density profile at the start of the current quench is broader than an expected current density profile in the steady state, which is determined by the temperature (or resistivity) profile. The current density profile evolves into peaked one and the internal inductance is increasing.« less
Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas
NASA Astrophysics Data System (ADS)
Eigen, Christoph; Glidden, Jake A. P.; Lopes, Raphael; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P.
2017-12-01
We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking the particle-loss rate to the total atom number N . In the degenerate and thermal regimes, the per-particle loss rate is ∝N2 /3 and N26 /9, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.
Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas.
Eigen, Christoph; Glidden, Jake A P; Lopes, Raphael; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P
2017-12-22
We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking the particle-loss rate to the total atom number N. In the degenerate and thermal regimes, the per-particle loss rate is ∝N^{2/3} and N^{26/9}, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.
Effects of initial condition spectral content on shock-driven turbulent mixing.
Nelson, Nicholas J; Grinstein, Fernando F
2015-07-01
The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the rage code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band of high density gas (SF(6)) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF(6) bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF(6) band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.
Effects of Initial Condition Spectral Content on Shock Driven-Turbulent Mixing
Nelson, Nicholas James; Grinstein, Fernando F.
2015-07-15
The mixing of materials due to the Richtmyer-Meshkov instability and the ensuing turbulent behavior is of intense interest in a variety of physical systems including inertial confinement fusion, combustion, and the final stages of stellar evolution. Extensive numerical and laboratory studies of shock-driven mixing have demonstrated the rich behavior associated with the onset of turbulence due to the shocks. Here we report on progress in understanding shock-driven mixing at interfaces between fluids of differing densities through three-dimensional (3D) numerical simulations using the RAGE code in the implicit large eddy simulation context. We consider a shock-tube configuration with a band ofmore » high density gas (SF 6) embedded in low density gas (air). Shocks with a Mach number of 1.26 are passed through SF 6 bands, resulting in transition to turbulence driven by the Richtmyer-Meshkov instability. The system is followed as a rarefaction wave and a reflected secondary shock from the back wall pass through the SF 6 band. We apply a variety of initial perturbations to the interfaces between the two fluids in which the physical standard deviation, wave number range, and the spectral slope of the perturbations are held constant, but the number of modes initially present is varied. By thus decreasing the density of initial spectral modes of the interface, we find that we can achieve as much as 25% less total mixing at late times. This has potential direct implications for the treatment of initial conditions applied to material interfaces in both 3D and reduced dimensionality simulation models.« less
NASA Astrophysics Data System (ADS)
Onishi, Isamu K.; Sekiya, Minoru
2017-04-01
We investigate the effect of a radial pressure bump in a protoplanetary disk on planetesimal formation. We performed the two-dimensional numerical simulation of the dynamical interaction of solid particles and gas with an initially defined pressure bump under the assumption of axisymmetry. The aim of this work is to elucidate the effects of the stellar vertical gravity that were omitted in a previous study. Our results are very different from the previous study, which omitted the vertical gravity. Because dust particles settle toward the midplane because of the vertical gravity to form a thin dust layer, the regions outside of the dust layer are scarcely affected by the back-reaction of the dust. Hence, the gas column density keeps its initial profile with a bump, and dust particles migrate toward the bump. In addition, the turbulence due to the Kelvin-Helmholtz instability caused by the difference of the azimuthal velocities between the inside and outside of the dust layer is suppressed where the radial pressure gradient is reduced by the pressure bump. The dust settling proceeds further where the turbulence is weak, and a number of dust clumps are formed. The dust density in some clumps exceeds the Roche density. Planetesimals are considered to be formed from these clumps owing to the self-gravity.[Figure not available: see fulltext.
Effects of Planetesimal Accretion on the Structural Evolution of Sub-Neptunes
NASA Astrophysics Data System (ADS)
Chatterjee, Sourav; Chen, Howard
2018-01-01
A remarkable discovery of NASA's Kepler mission is the wide diversity in the average densities of planets even when they are of similar mass. After gas disk dissipation, fully formed planets could accrete nearby planetesimals from a remnant planetesimal disk. We present calculations using the open-source stellar evolution toolkit Modules for Experiments in Stellar Astrophysics (MESA) modified to include the deposition of planetesimals into the H/He envelopes of sub-Neptunes. We show that planetesimal accretion can alter the mass-radius isochrones for these planets. The additional energy deposited via planetesimal accretion puffs up the envelopes leading to enhanced gas loss during the phase of rapid accretion. As a result, the same initial planet can evolve to contain very different final envelope-mass fractions. This manifest as differences in the average planet densities long after accretion stops. Differences in the accretion history, total accreted mass, and the inherent stochasticity of the accretion process can bring wide diversity in final average densities even when the initial planets are very similar. These effects are particularly important for planets initially less massive than ~10 MEarth and with envelope mass fraction less than ~10%, thought to be the most common type of planets discovered by Kepler.
Time-dependent Cooling in Photoionized Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gnat, Orly, E-mail: orlyg@phys.huji.ac.il
I explore the thermal evolution and ionization states in gas cooling from an initially hot state in the presence of external photoionizing radiation. I compute the equilibrium and nonequilibrium cooling efficiencies, heating rates, and ion fractions for low-density gas cooling while exposed to the ionizing metagalactic background radiation at various redshifts ( z = 0 − 3), for a range of temperatures (10{sup 8}–10{sup 4} K), densities (10{sup −7}–10{sup 3} cm{sup −3}), and metallicities (10{sup −3}–2 times solar). The results indicate the existence of a threshold ionization parameter, above which the cooling efficiencies are very close to those in photoionization equilibriummore » (so that departures from equilibrium may be neglected), and below which the cooling efficiencies resemble those in collisional time-dependent gas cooling with no external radiation (and are thus independent of density).« less
High precision Hugoniot measurements on statically pre-compressed fluid helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
High precision Hugoniot measurements on statically pre-compressed fluid helium
Seagle, Christopher T.; Reinhart, William D.; Lopez, Andrew J.; ...
2016-09-27
Here we describe how the capability for statically pre-compressing fluid targets for Hugoniot measurements utilizing gas gun driven flyer plates has been developed. Pre-compression expands the capability for initial condition control, allowing access to thermodynamic states off the principal Hugoniot. Absolute Hugoniot measurements with an uncertainty less than 3% on density and pressure were obtained on statically pre-compressed fluid helium utilizing a two stage light gas gun. Helium is highly compressible; the locus of shock states resulting from dynamic loading of an initially compressed sample at room temperature is significantly denser than the cryogenic fluid Hugoniot even for relatively modestmore » (0.27–0.38 GPa) initial pressures. Lastly, the dynamic response of pre-compressed helium in the initial density range of 0.21–0.25 g/cm3 at ambient temperature may be described by a linear shock velocity (us) and particle velocity (u p) relationship: u s = C 0 + su p, with C 0 = 1.44 ± 0.14 km/s and s = 1.344 ± 0.025.« less
[Treatment of carbonization effluent by the ultrasonic radiation and activated sludge process].
Ning, Ping; Xu, Jinqiu; Huang, Dongbin; Ma, Xiaoli; Xu, Xiaojun; Li, Ziyan
2003-05-01
The paper deals with the degradation of organic pollutants by the ultrasonic irradiation-activated sludge process. The treatment of the real coking wastewater of Kunming coke making-gas plant was studied with the water quality model. Using the ultrasonic irradiation-activated sludge process the organic pollutants in the real coking wastewater can be degraded effectively. The influence factors of the ultrasonic degradation effect such as initial concentration, aerated gas and ultrasonic density were investigated and mechanism was explored. The result shows that the ultrasonic degradation effect was high with the decrease of initial concentration of the CODCr, the presence of aerated gas and the increase of ultrasonic density. At the initial CODCr concentration of 807 mg/L, when air acted as aerated gas and only air itself (no ultrasound) was exerted on the wastewater, the degradation rate of the CODCr will be 4.5%. However, when the ultrasound of the intensity of 119.4 kW/m2 was exerted on the wastewater, the degradation rate of the CODCr will be 65%. Compared with the activated sludge process alone, the combination of the ultrasonic irradiation and activated sludge process can increase the degradation rate of the CODCr from 45% to 81%. The oxygen consumption rate of the carbonization effluent obviously decreased in the presence of the activated sludge. This shows the carbonization effluent is not biotoxic behind the ultrasonic irradiation.
Glow plasma trigger for electron cyclotron resonance ion sources.
Vodopianov, A V; Golubev, S V; Izotov, I V; Nikolaev, A G; Oks, E M; Savkin, K P; Yushkov, G Yu
2010-02-01
Electron cyclotron resonance ion sources (ECRISs) are particularly useful for nuclear, atomic, and high energy physics, as unique high current generators of multicharged ion beams. Plasmas of gas discharges in an open magnetic trap heated by pulsed (100 micros and longer) high power (100 kW and higher) high-frequency (greater than 37.5 GHz) microwaves of gyrotrons is promising in the field of research in the development of electron cyclotron resonance sources for high charge state ion beams. Reaching high ion charge states requires a decrease in gas pressure in the magnetic trap, but this method leads to increases in time, in which the microwave discharge develops. The gas breakdown and microwave discharge duration becomes greater than or equal to the microwave pulse duration when the pressure is decreased. This makes reaching the critical plasma density initiate an electron cyclotron resonance (ECR) discharge during pulse of microwave gyrotron radiation with gas pressure lower than a certain threshold. In order to reduce losses of microwave power, it is necessary to shorten the time of development of the ECR discharge. For fast triggering of ECR discharge under low pressure in an ECRIS, we initially propose to fill the magnetic trap with the plasmas of auxiliary pulsed discharges in crossed ExB fields. The glow plasma trigger of ECR based on a Penning or magnetron discharge has made it possible not only to fill the trap with plasma with density of 10(12) cm(-3), required for a rapid increase in plasma density and finally for ECR discharge ignition, but also to initially heat the plasma electrons to T(e) approximately = 20 eV.
Detailed Numerical Simulations on the Formation of Pillars Around H II Regions
NASA Astrophysics Data System (ADS)
Gritschneder, Matthias; Burkert, Andreas; Naab, Thorsten; Walch, Stefanie
2010-11-01
We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100 cm-3 or 300 cm-3. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of the mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation driven implosion of pre-existing clumps.
DETAILED NUMERICAL SIMULATIONS ON THE FORMATION OF PILLARS AROUND H II REGIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gritschneder, Matthias; Burkert, Andreas; Naab, Thorsten
2010-11-10
We study the structural evolution of turbulent molecular clouds under the influence of ionizing radiation emitted from a nearby massive star by performing a high-resolution parameter study with the iVINE code. The temperature is taken to be 10 K or 100 K, the mean number density is either 100 cm{sup -3} or 300 cm{sup -3}. Furthermore, the turbulence is varied between Mach 1.5 and Mach 12.5, the main driving scale of the turbulence is varied between 1 pc and 8 pc. We vary the ionizing flux by an order of magnitude, corresponding to allowing between 0.5% and 5% of themore » mass in the domain to be ionized immediately. In our simulations, the ionizing radiation enhances the initial turbulent density distribution and thus leads to the formation of pillar-like structures observed adjacent to H II regions in a natural way. Gravitational collapse occurs regularly at the tips of the structures. We find a clear correlation between the initial state of the turbulent cold cloud and the final morphology and physical properties of the structures formed. The most favorable regime for the formation of pillars is Mach 4-10. Structures and therefore stars only form if the initial density contrast between the high-density unionized gas and the gas that is going to be ionized is lower than the temperature contrast between the hot and the cold gas. The density of the resulting pillars is determined by a pressure equilibrium between the hot and the cold gas. A thorough analysis of the simulations shows that the complex kinematical and geometrical structure of the formed elongated filaments reflects that of observed pillars to an impressive level of detail. In addition, we find that the observed line-of-sight velocities allow for a distinct determination of different formation mechanisms. Comparing the current simulations to previous results and recent observations, we conclude that, e.g., the pillars of creation in M16 formed by the mechanism proposed here and not by the radiation driven implosion of pre-existing clumps.« less
Shock Initiation Experiments with Ignition and Growth Modeling on the HMX-Based Explosive LX-14
NASA Astrophysics Data System (ADS)
Vandersall, Kevin S.; Dehaven, Martin R.; Strickland, Shawn L.; Tarver, Craig M.; Springer, H. Keo; Cowan, Matt R.
2017-06-01
Shock initiation experiments on the HMX-based explosive LX-14 were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between sample disks pressed to different densities ( 1.57 or 1.83 g/cm3 that corresponds to 85 or 99% of theoretical maximum density (TMD), respectively). The shock sensitivity was found to increase with decreasing density as expected. Ignition and Growth model parameters were derived that yielded reasonable agreement with the experimental data at both initial densities. The shock sensitivity at the tested densities will be compared to prior work published on other HMX-based formulations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded in part by the Joint DoD-DOE Munitions Program.
Quench dynamics of the interacting Bose gas in one dimension.
Iyer, Deepak; Andrei, Natan
2012-09-14
We obtain an exact expression for the time evolution of the interacting Bose gas following a quench from a generic initial state using the Yudson representation for integrable systems. We study the time evolution of the density and noise correlation for a small number of bosons and their asymptotic behavior for any number. We show that for any value of the coupling, as long as it is repulsive, the system asymptotes towards a strongly repulsive gas, while for any value of an attractive coupling the long time behavior is dominated by the maximal bound state. This occurs independently of the initial state and can be viewed as an emerging "dynamic universality."
Proton cooling in ultracold low-density electron gas
NASA Astrophysics Data System (ADS)
Bobrov, A. A.; Bronin, S. Y.; Manykin, E. A.; Zelener, B. B.; Zelener, B. V.; Khikhlukha, D. R.
2015-11-01
A sole proton energy loss processes in an electron gas and the dependence of these processes on temperature and magnetic field are studied using molecular dynamics techniques in present work. It appears that for electron temperatures less than 100 K many body collisions affect the proton energy loss and these collisions must be taken into account. The influence of a strong magnetic field on the relaxation processes is also considered in this work. Calculations were performed for electron densities 10 cm-3, magnetic field 1-3 Tesla, electron temperatures 10-50 K, initial proton energies 100-10000 K.
Development And Characterization Of A Liner-On-Target Injector For Staged Z-Pinch Experiments
NASA Astrophysics Data System (ADS)
Valenzuela, J. C.; Conti, F.; Krasheninnikov, I.; Narkis, J.; Beg, F.; Wessel, F. J.; Rahman, H. U.
2016-10-01
We present the design and optimization of a liner-on-target injector for Staged Z-pinch experiments. The injector is composed of an annular high atomic number (e.g. Ar, Kr) gas-puff and an on-axis plasma gun that delivers the ionized deuterium target. The liner nozzle injector has been carefully studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated 1 cm radius gas profile that satisfies the theoretical requirement for best performance on the 1 MA Zebra current driver. The CFD simulations produce density profiles as a function of the nozzle shape and gas. These profiles are initialized in the MHD MACH2 code to find the optimal liner density for a stable, uniform implosion. We use a simple Snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector. We have performed line-integrated density measurements using a CW He-Ne laser to characterize the liner gas and the plasma gun density as a function of time. The measurements are compared with models and calculations and benchmarked accordingly. Advanced Research Projects Agency - Energy, DE-AR0000569.
Simulation and scaling analysis of a spherical particle-laden blast wave
NASA Astrophysics Data System (ADS)
Ling, Y.; Balachandar, S.
2018-02-01
A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.
Simulation and scaling analysis of a spherical particle-laden blast wave
NASA Astrophysics Data System (ADS)
Ling, Y.; Balachandar, S.
2018-05-01
A spherical particle-laden blast wave, generated by a sudden release of a sphere of compressed gas-particle mixture, is investigated by numerical simulation. The present problem is a multiphase extension of the classic finite-source spherical blast-wave problem. The gas-particle flow can be fully determined by the initial radius of the spherical mixture and the properties of gas and particles. In many applications, the key dimensionless parameters, such as the initial pressure and density ratios between the compressed gas and the ambient air, can vary over a wide range. Parametric studies are thus performed to investigate the effects of these parameters on the characteristic time and spatial scales of the particle-laden blast wave, such as the maximum radius the contact discontinuity can reach and the time when the particle front crosses the contact discontinuity. A scaling analysis is conducted to establish a scaling relation between the characteristic scales and the controlling parameters. A length scale that incorporates the initial pressure ratio is proposed, which is able to approximately collapse the simulation results for the gas flow for a wide range of initial pressure ratios. This indicates that an approximate similarity solution for a spherical blast wave exists, which is independent of the initial pressure ratio. The approximate scaling is also valid for the particle front if the particles are small and closely follow the surrounding gas.
The Initial Conditions and Evolution of Isolated Galaxy Models: Effects of the Hot Gas Halo
NASA Astrophysics Data System (ADS)
Hwang, Jeong-Sun; Park, Changbom; Choi, Jun-Hwan
2013-02-01
We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 N-body/hydrodynamic simulation code, paying particular attention to the effects of the gaseous halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component, particularly in the gas dissipation and the star formation activity in the disk. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. Whereas the SFRs in the models with a gas halo, depending on the density profile and the total mass of the gas halo, emerge to be either relatively flat throughout the simulations or increasing until the middle of the run (over a gigayear) and then decreasing to the end. The models with the more centrally concentrated NFW gas halo show overall higher SFRs than those with the isothermal gas halo of the equal mass. The gas accretion from the halo onto the disk also occurs more in the models with the NFW gas halo, however, this is shown to take place mostly in the inner part of the disk and not to contribute significantly to the star formation unless the gas halo has very high density at the central part. The rotation of a gas halo is found to make SFR lower in the model. The SFRs in the runs including galactic winds are found to be lower than those in the same runs but without winds. We conclude that the effects of a hot gaseous halo on the evolution of galaxies are generally too significant to be simply ignored. We also expect that more hydrodynamical processes in galaxies could be understood through numerical simulations employing both gas disk and gas halo components.
Thermodynamic DFT analysis of natural gas.
Neto, Abel F G; Huda, Muhammad N; Marques, Francisco C; Borges, Rosivaldo S; Neto, Antonio M J C
2017-08-01
Density functional theory was performed for thermodynamic predictions on natural gas, whose B3LYP/6-311++G(d,p), B3LYP/6-31+G(d), CBS-QB3, G3, and G4 methods were applied. Additionally, we carried out thermodynamic predictions using G3/G4 averaged. The calculations were performed for each major component of seven kinds of natural gas and to their respective air + natural gas mixtures at a thermal equilibrium between room temperature and the initial temperature of a combustion chamber during the injection stage. The following thermodynamic properties were obtained: internal energy, enthalpy, Gibbs free energy and entropy, which enabled us to investigate the thermal resistance of fuels. Also, we estimated an important parameter, namely, the specific heat ratio of each natural gas; this allowed us to compare the results with the empirical functions of these parameters, where the B3LYP/6-311++G(d,p) and G3/G4 methods showed better agreements. In addition, relevant information on the thermal and mechanic resistance of natural gases were investigated, as well as the standard thermodynamic properties for the combustion of natural gas. Thus, we show that density functional theory can be useful for predicting the thermodynamic properties of natural gas, enabling the production of more efficient compositions for the investigated fuels. Graphical abstract Investigation of the thermodynamic properties of natural gas through the canonical ensemble model and the density functional theory.
Radio and X-Ray Observations of SN 2006jd: Another Strongly Interacting Type IIn Supernova
NASA Technical Reports Server (NTRS)
Chandra, Poonam; Chevalier, Roger A.; Chugai, Nikolai; Fransson, Claes; Irwin, Christopher M.; Soderberg, Alicia M.; Chakraborti, Sayan; Immler, Stefan
2012-01-01
We report four years of radio and X-ray monitoring of the Type IIn supernova SN 2006jd at radio wavelengths with the Very Large Array, Giant Metrewave Radio Telescope and Expanded Very Large Array at X-ray wavelengths with Chandra, XMM-Newton and Swift-XRT. We assume that the radio and X-ray emitting particles are produced by shock interaction with a dense circumstellar medium. The radio emission shows an initial rise that can be attributed to free-free absorption by cool gas mixed into the nonthermal emitting region external free-free absorption is disfavored because of the shape of the rising light curves and the low gas column density inferred along the line of sight to the emission region. The X-ray luminosity implies a preshock circumstellar density approximately 10(exp 6) per cubic meter at a radius r approximately 2 x 10(exp 16) centimeter, but the column density inferred from the photoabsorption of X-rays along the line of sight suggests a significantly lower density. The implication may be an asymmetry in the interaction. The X-ray spectrum shows Fe line emission at 6.9 keV that is stronger than is expected for the conditions in the X-ray emitting gas. We suggest that cool gas mixed into the hot gas plays a role in the line emission. Our radio and X-ray data both suggest the density profile is flatter than r2 because of the slow evolution of the unabsorbed emission.
Effect of Population III Multiplicity on Dark Star Formation
NASA Technical Reports Server (NTRS)
Stacy, Athena; Pawlik, Andreas H.; Bromm, Volker; Loeb, Abraham
2012-01-01
We numerically study the mutual interaction between dark matter (DM) and Population III (Pop III) stellar systems in order to explore the possibility of Pop III dark stars within this physical scenario. We perform a cosmological simulation, initialized at z approx. 100, which follows the evolution of gas and DM. We analyze the formation of the first mini halo at z approx. 20 and the subsequent collapse of the gas to densities of 10(exp 12)/cu cm. We then use this simulation to initialize a set of smaller-scale 'cut-out' simulations in which we further refine the DM to have spatial resolution similar to that of the gas. We test multiple DM density profiles, and we employ the sink particle method to represent the accreting star-forming region. We find that, for a range of DM configurations, the motion of the Pop III star-disk system serves to separate the positions of the protostars with respect to the DM density peak, such that there is insufficient DM to influence the formation and evolution of the protostars for more than approx. 5000 years. In addition, the star-disk system causes gravitational scattering of the central DM to lower densities, further decreasing the influence of DM over time. Any DM-powered phase of Pop III stars will thus be very short-lived for the typical multiple system, and DM will not serve to significantly prolong the life of Pop III stars.
Collapsing Radiative Shocks in Xenon Gas on the Omega Laser
NASA Astrophysics Data System (ADS)
Reighard, A. B.; Glendinning, S. G.; Knauer, J.; Bouquet, S.; Koenig, M.
2005-10-01
A number of astrophysical systems involve radiative shocks that collapse spatially in response to energy lost through radiation, producing thin shells believed to be Vishniac unstable. We report experiments intended to study such collapsing shocks. The Omega laser drives a thin slab of material at >100 km/s through Xe gas. Simulations predict a collapsed layer in which the density reaches 45 times initial density. X-ray backlighting techniques have yielded images of a collapsed shock compressed to <1/25 its initial thickness (45 μm) at a speed of ˜100 km/s when the shock has traveled 1.3 mm. Optical depth before and behind the shock is important for comparison to astrophysical systems. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.
Non-equilibrium scale invariance and shortcuts to adiabaticity in a one-dimensional Bose gas
Rohringer, W.; Fischer, D.; Steiner, F.; Mazets, I. E.; Schmiedmayer, J.; Trupke, M.
2015-01-01
We present experimental evidence for scale invariant behaviour of the excitation spectrum in phase-fluctuating quasi-1d Bose gases after a rapid change of the external trapping potential. Probing density correlations in free expansion, we find that the temperature of an initial thermal state scales with the spatial extension of the cloud as predicted by a model based on adiabatic rescaling of initial eigenmodes with conserved quasiparticle occupation numbers. Based on this result, we demonstrate that shortcuts to adiabaticity for the rapid expansion or compression of the gas do not induce additional heating. PMID:25867640
Unified Description of Dynamics of a Repulsive Two-Component Fermi Gas
NASA Astrophysics Data System (ADS)
Grochowski, Piotr T.; Karpiuk, Tomasz; Brewczyk, Mirosław; Rzążewski, Kazimierz
2017-11-01
We study a binary spin mixture of a zero-temperature repulsively interacting
Process feasibility study in support of silicon material, task 1
NASA Technical Reports Server (NTRS)
Li, K. Y.; Hansen, K. C.; Yaws, C. L.
1979-01-01
Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon.
NASA Astrophysics Data System (ADS)
Kheruntsyan, Karen; Atas, Yasar; Bouchoule, Isabelle; Gangardt, Dimitri
2017-04-01
We analyse the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability-a collective many-body bounce effect. The effect, while being invisible in the evolution of the in situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency of oscillations of the density profile. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial equilibrium temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas, wherein the many-body bounce is explained by an increased thermodynamic pressure during the isentropic compression cycle, which acts as a potential barrier for the particles to bounce off.
Dynamical models for the formation of elephant trunks in HII regions
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Lim, Andrew J.
2010-04-01
The formation of pillars of dense gas at the boundaries of HII regions is investigated with hydrodynamical numerical simulations including ionizing radiation from a point source. We show that shadowing of ionizing radiation by an inhomogeneous density field is capable of forming so-called elephant trunks (pillars of dense gas as in e.g. M16) without the assistance of self-gravity or of ionization front and cooling instabilities. A large simulation of a density field containing randomly generated clumps of gas is shown to naturally generate elephant trunks with certain clump configurations. These configurations are simulated in isolation and analysed in detail to show the formation mechanism and determine possible observational signatures. Pillars formed by the shadowing mechanism are shown to have rather different velocity profiles depending on the initial gas configuration, but asymmetries mean that the profiles also vary significantly with perspective, limiting their ability to discriminate between formation scenarios. Neutral and molecular gas cooling are shown to have a strong effect on these results.
NASA Astrophysics Data System (ADS)
Nguyen-Lu'o'ng, Q.; Motte, F.; Carlhoff, P.; Louvet, F.; Lesaffre, P.; Schilke, P.; Hill, T.; Hennemann, M.; Gusdorf, A.; Didelon, P.; Schneider, N.; Bontemps, S.; Duarte-Cabral, A.; Menten, K. M.; Martin, P. G.; Wyrowski, F.; Bendo, G.; Roussel, H.; Bernard, J.-P.; Bronfman, L.; Henning, T.; Kramer, C.; Heitsch, F.
2013-10-01
The formation of high-mass stars is tightly linked to that of their parental clouds. Here, we focus on the high-density parts of W43, a molecular cloud undergoing an efficient event of star formation. Using a column density image derived from Herschel continuum maps, we identify two high-density filamentary clouds, called the W43-MM1 and W43-MM2 ridges. Both have gas masses of 2.1 × 104 M ⊙ and 3.5 × 104 M ⊙ above >10^{23}\\, {{cm}^{-2}} and within areas of ~6 and ~14 pc2, respectively. The W43-MM1 and W43-MM2 ridges are structures that are coherent in velocity and gravitationally bound, despite their large velocity dispersion measured by the N2H+ (1-0) lines of the W43-HERO IRAM large program. Another intriguing result is that these ridges harbor widespread (~10 pc2) bright SiO (2-1) emission, which we interpret to be the result of low-velocity shocks (<=10 km s-1). We measure a significant relationship between the SiO (2-1) luminosity and velocity extent and show that it distinguishes our observations from the high-velocity shocks associated with outflows. We use state-of-the-art shock models to demonstrate that a small percentage (10%) of Si atoms in low-velocity shocks, observed initially in gas phase or in grain mantles, can explain the observed SiO column density in the W43 ridges. The spatial and velocity overlaps between the ridges of high-density gas and the shocked SiO gas suggest that ridges could be forming via colliding flows driven by gravity and accompanied by low-velocity shocks. This mechanism may be the initial conditions for the formation of young massive clusters.
Gravitational Instability of Small Particles in Stratified Dusty Disks
NASA Astrophysics Data System (ADS)
Shi, J.; Chiang, E.
2012-12-01
Self-gravity is an attractive means of forming the building blocks of planets, a.k.a. the first-generation planetesimals. For ensembles of dust particles to aggregate into self-gravitating, bound structures, they must first collect into regions of extraordinarily high density in circumstellar gas disks. We have modified the ATHENA code to simulate dusty, compressible, self-gravitating flows in a 3D shearing box configuration, working in the limit that dust particles are small enough to be perfectly entrained in gas. We have used our code to determine the critical density thresholds required for disk gas to undergo gravitational collapse. In the strict limit that the stopping times of particles in gas are infinitesimally small, our numerical simulations and analytic calculations reveal that the critical density threshold for gravitational collapse is orders of magnitude above what has been commonly assumed. We discuss how finite but still short stopping times under realistic conditions can lower the threshold to a level that may be attainable. Nonlinear development of gravitational instability in a stratified dusty disk. Shown are volume renderings of dust density for the bottom half of a disk at t=0, 6, 8, and 9 Omega^{-1}. The initial disk first develops shearing density waves. These waves then steep and form long extending filament along the azimuth. These filaments eventually break and form very dense dust clumps. The time evolution of the maximum dust density within the simulation box. Run std32 stands for a standard run which has averaged Toomre's Q=0.5. Qgtrsim 1.0 for the rest runs in the plot (Z1 has twice metallicity than the standard; Q1 has twice Q_g, the Toomre's Q for the gas disk alone; M1 has twice the dust-to-gas ratio than the standard at the midplane; R1 is constructed so that the midplane density exceeds the Roche criterion however the Toomre's Q is above unity.)
Anderson localization of a Tonks-Girardeau gas in potentials with controlled disorder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radic, J.; Bacic, V.; Jukic, D.
We theoretically demonstrate features of Anderson localization in a Tonks-Girardeau gas confined in one-dimensional potentials with controlled disorder. That is, we investigate the evolution of the single-particle density and correlations of a Tonks-Girardeau wave packet in such disordered potentials. The wave packet is initially trapped, the trap is suddenly turned off, and after some time the system evolves into a localized steady state due to Anderson localization. The density tails of the steady state decay exponentially, while the coherence in these tails increases. The latter phenomenon corresponds to the same effect found in incoherent optical solitons.
NASA Astrophysics Data System (ADS)
Huo, Chunqing; Lundin, Daniel; Raadu, Michael A.; Anders, André; Tomas Gudmundsson, Jon; Brenning, Nils
2014-04-01
The onset and development of self-sputtering (SS) in a high power impulse magnetron sputtering (HiPIMS) discharge have been studied using a plasma chemical model and a set of experimental data, taken with an aluminum target and argon gas. The model is tailored to duplicate the discharge in which the data are taken. The pulses are long enough to include both an initial transient and a following steady state. The model is used to unravel how the internal discharge physics evolves with pulse power and time, and how it is related to features in the discharge current-voltage-time characteristics such as current densities, maxima, kinks and slopes. The connection between the self-sputter process and the discharge characteristics is quantified and discussed in terms of three parameters: a critical target current density Jcrit based on the maximum refill rate of process (argon) gas above the target, an SS recycling factor ΠSS-recycle, and an approximation \\tilde{\\alpha} of the probabilities of ionization of species that come from the target (both sputtered metal and embedded argon atoms). For low power pulses, discharge voltages UD ⩽ 380 V with peak current densities below ≈ 0.2 A cm-2, the discharge is found to be dominated by process gas sputtering. In these pulses there is an initial current peak in time, associated with partial gas rarefaction, which is followed by a steady-state-like plateau in all parameters similar to direct current magnetron sputtering. In contrast, high power pulses, with UD ⩾ 500 V and peak current densities above JD ≈ 1.6 A cm-2, make a transition to a discharge mode where SS dominates. The transition is found not to be driven by process gas rarefaction which is only about 10% at this time. Maximum gas rarefaction is found later in time and always after the initial peak in the discharge current. With increasing voltage, and pulse power, the discharge can be described as following a route where the role of SS increases in four steps: process gas sputtering, gas-sustained SS, self-sustained SS and SS runaway. At the highest voltage, 1000 V, the discharge is very close to, but does not go into, the SS runaway mode. This absence of runaway is proposed to be connected to an unexpected finding: that twice ionized ions of the target species play almost no role in this discharge, not even at the highest powers. This reduces ionization by secondary-emitted energetic electrons almost to zero in the highest power range of the discharge.
Fluid modeling of a high-voltage nanosecond pulsed xenon microdischarge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levko, Dmitry; Raja, Laxminarayan L.
2016-07-15
A computational modeling study of high-voltage nanosecond pulsed microdischarge in xenon gas at 10 atm is presented. The discharge is observed to develop as two streamers originating from the cathode and the anode, and propagating toward each other until they merge to form a single continuous discharge channel. The peak plasma density obtained in the simulations is ∼10{sup 24 }m{sup −3}, i.e., the ionization degree of plasma does not exceed 1%. The influence of the initial gas pre-ionization is established. It is seen that an increase in the seeded plasma density results in an increase in the streamer propagation velocity andmore » an increase in the plasma density obtained after the merging of two streamers.« less
NASA Astrophysics Data System (ADS)
Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.
2016-04-01
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.
Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.
2016-04-07
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath
NASA Astrophysics Data System (ADS)
Rivera-Rivera, Luis A.; Wagner, Albert F.; Sewell, Thomas D.; Thompson, Donald L.
2015-01-01
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ˜100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Rivera, Luis A.; Wagner, Albert F.; Sewell, Thomas D.
2015-01-07
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is similar to 100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit withmore » the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities. (C) 2015 AIP Publishing LLC.« less
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath.
Rivera-Rivera, Luis A; Wagner, Albert F; Sewell, Thomas D; Thompson, Donald L
2015-01-07
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatz function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane "simultaneously" colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.
Pressure effects on the relaxation of an excited nitromethane molecule in an argon bath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivera-Rivera, Luis A.; Sewell, Thomas D.; Thompson, Donald L.
2015-01-07
Classical molecular dynamics simulations were performed to study the relaxation of nitromethane in an Ar bath (of 1000 atoms) at 300 K and pressures 10, 50, 75, 100, 125, 150, 300, and 400 atm. The molecule was instantaneously excited by statistically distributing 50 kcal/mol among the internal degrees of freedom. At each pressure, 1000 trajectories were integrated for 1000 ps, except for 10 atm, for which the integration time was 5000 ps. The computed ensemble-averaged rotational energy decay is ∼100 times faster than the vibrational energy decay. Both rotational and vibrational decay curves can be satisfactorily fit with the Lendvay-Schatzmore » function, which involves two parameters: one for the initial rate and one for the curvature of the decay curve. The decay curves for all pressures exhibit positive curvature implying the rate slows as the molecule loses energy. The initial rotational relaxation rate is directly proportional to density over the interval of simulated densities, but the initial vibrational relaxation rate decreases with increasing density relative to the extrapolation of the limiting low-pressure proportionality to density. The initial vibrational relaxation rate and curvature are fit as functions of density. For the initial vibrational relaxation rate, the functional form of the fit arises from a combinatorial model for the frequency of nitromethane “simultaneously” colliding with multiple Ar atoms. Roll-off of the initial rate from its low-density extrapolation occurs because the cross section for collision events with L Ar atoms increases with L more slowly than L times the cross section for collision events with one Ar atom. The resulting density-dependent functions of the initial rate and curvature represent, reasonably well, all the vibrational decay curves except at the lowest density for which the functions overestimate the rate of decay. The decay over all gas phase densities is predicted by extrapolating the fits to condensed-phase densities.« less
Metastability and avalanche dynamics in strongly correlated gases with long-range interactions
NASA Astrophysics Data System (ADS)
Hruby, Lorenz; Dogra, Nishant; Landini, Manuele; Donner, Tobias; Esslinger, Tilman
2018-03-01
We experimentally study the stability of a bosonic Mott insulator against the formation of a density wave induced by long-range interactions and characterize the intrinsic dynamics between these two states. The Mott insulator is created in a quantum degenerate gas of 87-Rubidium atoms, trapped in a 3D optical lattice. The gas is located inside and globally coupled to an optical cavity. This causes interactions of global range, mediated by photons dispersively scattered between a transverse lattice and the cavity. The scattering comes with an atomic density modulation, which is measured by the photon flux leaking from the cavity. We initialize the system in a Mott-insulating state and then rapidly increase the global coupling strength. We observe that the system falls into either of two distinct final states. One is characterized by a low photon flux, signaling a Mott insulator, and the other is characterized by a high photon flux, which we associate with a density wave. Ramping the global coupling slowly, we observe a hysteresis loop between the two states—a further signature of metastability. A comparison with a theoretical model confirms that the metastability originates in the competition between short- and global-range interactions. From the increasing photon flux monitored during the switching process, we find that several thousand atoms tunnel to a neighboring site on the timescale of the single-particle dynamics. We argue that a density modulation, initially forming in the compressible surface of the trapped gas, triggers an avalanche tunneling process in the Mott-insulating region.
Simulations of supersonic highly under-expanded hydrogen jets
NASA Astrophysics Data System (ADS)
Miarnau Marin, Ana; Xiao, Cheng-Nian; Denner, Fabian; van Wachem, Berend
2017-11-01
The pressure drop across choke valves required to transport natural gas can be in the order of several hundred bars, leading to the development of supersonic under-expanded jets. When considering a real gas, the gas can cool upon expansion, a phenomenon which can be explained by the Joule-Thomson effect. This study compares the effects of using ideal and real gas equations of state, using a computational model in which hydrogen is released from a high-pressure tank, through a converging nozzle, into a chamber containing hydrogen at near-atmospheric conditions. The initial studies were carried out using an ideal gas assumption and nozzle pressure ratios of 10, 30 and 70 and the results were validated against existing literature. To account for the Joule-Thomson effect, ideal and real gas simulations were then carried out with a pressure ratio of 70. For the real gas model, the Peng-Robinson equation of state was chosen. At the nozzle exit, the ideal gas model underestimates the velocity and overestimates the temperature and density; as the flow expands, the flow properties are the same up to the Mach disk, at which point the ideal gas underestimates the Mach number and predicts a higher temperature and density than the Peng-Robinson model due to the absence of cooling.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Schneider, N.; Minier, V.; Didelon, P.; Hill, T.; Anderson, L. D.; Motte, F.; Zavagno, A.; André, Ph.; Arzoumanian, D.; Audit, E.; Benedettini, M.; Bontemps, S.; Csengeri, T.; Di Francesco, J.; Giannini, T.; Hennemann, M.; Nguyen Luong, Q.; Marston, A. P.; Peretto, N.; Rivera-Ingraham, A.; Russeil, D.; Rygl, K. L. J.; Spinoglio, L.; White, G. J.
2014-04-01
Aims: Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF). Methods: We used Herschel column density maps of several regions observed within the HOBYS key program in a systematic way: M 16, the Rosette and Vela C molecular clouds, and the RCW 120 H ii region. We computed the PDFs in concentric disks around the main ionizing sources, determined their properties, and discuss the effect of ionization pressure on the distribution of the column density. Results: We fitted the column density PDFs of all clouds with two lognormal distributions, since they present a "double-peak" or an enlarged shape in the PDF. Our interpretation is that the lowest part of the column density distribution describes the turbulent molecular gas, while the second peak corresponds to a compression zone induced by the expansion of the ionized gas into the turbulent molecular cloud. Such a double peak is not visible for all clouds associated with ionization fronts, but it depends on the relative importance of ionization pressure and turbulent ram pressure. A power-law tail is present for higher column densities, which are generally ascribed to the effect of gravity. The condensations at the edge of the ionized gas have a steep compressed radial profile, sometimes recognizable in the flattening of the power-law tail. This could lead to an unambiguous criterion that is able to disentangle triggered star formation from pre-existing star formation. Conclusions: In the context of the gravo-turbulent scenario for the origin of the CMF/IMF, the double-peaked or enlarged shape of the PDF may affect the formation of objects at both the low-mass and the high-mass ends of the CMF/IMF. In particular, a broader PDF is required by the gravo-turbulent scenario to fit the IMF properly with a reasonable initial Mach number for the molecular cloud. Since other physical processes (e.g., the equation of state and the variations among the core properties) have already been said to broaden the PDF, the relative importance of the different effects remains an open question. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Tao, John C.
1983-01-01
A pumpable slurry of pulverized coal in a coal-derived hydrocarbon oil carrier which slurry is useful as a low-ash, low-sulfur clean fuel, is produced from a high sulfur-containing coal. The initial pulverized coal is separated by gravity differentiation into (1) a high density refuse fraction containing the major portion of non-coal mineral products and sulfur, (2) a lowest density fraction of low sulfur content and (3) a middlings fraction of intermediate sulfur and ash content. The refuse fraction (1) is gasified by partial combustion producing a crude gas product from which a hydrogen stream is separated for use in hydrogenative liquefaction of the middlings fraction (3). The lowest density fraction (2) is mixed with the liquefied coal product to provide the desired fuel slurry. Preferably there is also separately recovered from the coal liquefaction LPG and pipeline gas.
Microstructure Filled Hohlraums
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, A. S.; Thomas, C. A.; Reese, T. M.
2017-02-24
We propose replacing the gas fill in a hohlraum with a low average density, variable uniformity 3D printed structure. This creates a bimodal hohlraum which acts like a vacuum hohlraum initially during the picket, but could protect the capsule from glint or direct illumination, and then once expanded, homogenizes to behave like a variable z gas-fill during peak portion of the drive. This is motivated by a two main aims: 1) reduction of the Au bubble velocity to improve inner beam propagation, and 2) the introduction of a low density, high-Z, x-ray converter to improve x-ray production in the hohlraummore » and uniformity of the radiation field seen by the capsule.« less
A one-dimensional model for gas-solid heat transfer in pneumatic conveying
NASA Astrophysics Data System (ADS)
Smajstrla, Kody Wayne
A one-dimensional ODE model reduced from a two-fluid model of a higher dimensional order is developed to study dilute, two-phase (air and solid particles) flows with heat transfer in a horizontal pneumatic conveying pipe. Instead of using constant air properties (e.g., density, viscosity, thermal conductivity) evaluated at the initial flow temperature and pressure, this model uses an iteration approach to couple the air properties with flow pressure and temperature. Multiple studies comparing the use of constant or variable air density, viscosity, and thermal conductivity are conducted to study the impact of the changing properties to system performance. The results show that the fully constant property calculation will overestimate the results of the fully variable calculation by 11.4%, while the constant density with variable viscosity and thermal conductivity calculation resulted in an 8.7% overestimation, the constant viscosity with variable density and thermal conductivity overestimated by 2.7%, and the constant thermal conductivity with variable density and viscosity calculation resulted in a 1.2% underestimation. These results demonstrate that gas properties varying with gas temperature can have a significant impact on a conveying system and that the varying density accounts for the majority of that impact. The accuracy of the model is also validated by comparing the simulation results to the experimental values found in the literature.
An Equation of State for Foamed Divinylbenzene (DVB) Based on Multi-Shock Response
NASA Astrophysics Data System (ADS)
Aslam, Tariq; Schroen, Diana; Gustavsen, Richard; Bartram, Brian
2013-06-01
The methodology for making foamed Divinylbenzene (DVB) is described. For a variety of initial densities, foamed DVB is examined through multi-shock compression and release experiments. Results from multi-shock experiments on LANL's 2-stage gas gun will be presented. A simple conservative Lagrangian numerical scheme, utilizing total-variation-diminishing interpolation and an approximate Riemann solver, will be presented as well as the methodology of calibration. It has been previously demonstrated that a single Mie-Gruneisen fitting form can replicate foam multi-shock compression response at a variety of initial densities; such a methodology will be presented for foamed DVB.
Application of cosmic-ray shock theories to the Cygnus Loop - an alternative model
NASA Astrophysics Data System (ADS)
Boulares, Ahmed; Cox, Donald P.
1988-10-01
Steady state cosmic-ray shock models are investigated in light of observations of the Cygnus Loop supernova remnant. In this work the authors find that the model of Völk, Drury, and McKenzie, in which the plasma waves are generated by the streaming instability of the cosmic rays and are dissipated into the gas, can be made consistent with some observed characteristics of Cygnus Loop shocks. The waves heat the gas substantially in the cosmic-ray precursor, in addition to the usual heating in the (possibly weak) gas shock. The model is used to deduce upstream densities and shock velocities using known quantities for Cygnus Loop shocks. Compared to the usual pure gas shock interpretation, it is found that lower densities and approximately 3 times higher velocities are required. If the cosmic-ray models are valid, this could significantly alter our understanding of the Cygnus Loop's distance and age and of the energy released during the initial explosion.
Treatment of oily wastewater of a gas refinery by electrocoagulation using aluminum electrodes.
Saeedi, Mohesn; Khalvati-Fahlyani, Amin
2011-03-01
Oily wastewaters are the most important discharges of gas refineries from an environmental point-of-view. In the present study, treatment of gas refinery oily wastewater by electrocoagulation using aluminum electrodes was investigated. The effects of electrode distance, initial pH, sodium sulfate (Na2SO4) as a supporting electrolyte, polyaluminum chloride dosage as a coagulant aid, and current density on the efficiency of chemical oxygen demand (COD) removal were examined. The results revealed that the COD removal rate increases by applying more current density and polyaluminum chloride and, to a lesser extent, Na2SO4 dosage. The results also showed that 97% COD can be removed at optimum operational conditions. Specific electrical energy consumption could be reduced from 19.48 kWh (kg COD removal)(-1) to 11.057 kWh (kg COD removal)(-1) using Na2SO4 as a supporting electrolyte. Gas chromatographic analysis of raw and treated wastewater also revealed that most normal hydrocarbons (nearly 99%) were removed during the electrocoagulation process.
Vacuum packing: a model system for laboratory-scale silage fermentations.
Johnson, H E; Merry, R J; Davies, D R; Kell, D B; Theodorou, M K; Griffith, G W
2005-01-01
To determine the utility of vacuum-packed polythene bags as a convenient, flexible and cost-effective alternative to fixed volume glass vessels for lab-scale silage studies. Using perennial ryegrass or red clover forage, similar fermentations (as assessed by pH measurement) occurred in glass tube and vacuum-packed silos over a 35-day period. As vacuum-packing devices allow modification of initial packing density, the effect of four different settings (initial packing densities of 0.397, 0.435, 0.492 and 0.534 g cm(-3)) on the silage fermentation over 16 days was examined. Significant differences in pH decline and lactate accumulation were observed at different vacuum settings. Gas accumulation was apparent within all bags and changes in bag volume with time was observed to vary according to initial packing density. Vacuum-packed silos do provide a realistic model system for lab-scale silage fermentations. Use of vacuum-packed silos holds potential for lab-scale evaluations of silage fermentations, allowing higher throughput of samples, more consistent packing as well as the possibility of investigating the effects of different initial packing densities and use of different wrapping materials.
Watcharapong Tachajapong; Jesse Lozano; Shankar Mahalingam; Xiangyang Zhou; David R. Weise
2008-01-01
Crown fire initiation is studied by using a simple experimental and detailed physical modeling based on Large Eddy Simulation (LES). Experiments conducted thus far reveal that crown fuel ignition via surface fire occurs when the crown base is within the continuous flame region and does not occur when the crown base is located in the hot plume gas region of the surface...
Laser ablation in an ambient gas: Modelling and experiment
NASA Astrophysics Data System (ADS)
Moscicki, Tomasz; Hoffman, Jacek; Szymanski, Zygmunt
2018-02-01
The laser ablation of graphite in ambient argon is studied both experimentally and theoretically in conditions corresponding to the initial conditions of carbon nanotube synthesis by the laser vaporization method. The results of the experiment show that the maximum plasma temperature of 24 000 K is reached 25 ns after the beginning of the laser pulse and decreases to about 4000-4500 K after 10 μs. The maximum electron density of 8 × 1025 m-3 is reached 15 ns from the beginning of the laser pulse. The hydrodynamic model applied shows comparable plasma temperatures and electron densities. The model also replicates well a shock wave and plume confinement—intrinsic features of supersonic flow of the ablated plume in an ambient gas. The results show that the theoretical model can be used to simulate nanosecond laser ablation in an ambient gas from the beginning of the process up to several microseconds.
NASA Astrophysics Data System (ADS)
Barai, Paramita; Proga, D.; Nagamine, K.
2011-01-01
Our motivation is to numerically test the assumption of Black Hole (BH) accretion (that the central massive BH of a galaxy accretes mass at the Bondi-Hoyle accretion rate, with ad-hoc choice of parameters), made in many previous galaxy formation studies including AGN feedback. We perform simulations of a spherical distribution of gas, within the radius range 0.1 - 200 pc, accreting onto a central supermassive black hole (the Bondi problem), using the 3D Smoothed Particle Hydrodynamics code Gadget. In our simulations we study the radial distribution of various gas properties (density, velocity, temperature, Mach number). We compute the central mass inflow rate at the inner boundary (0.1 pc), and investigate how different gas properties (initial density and velocity profiles) and computational parameters (simulation outer boundary, particle number) affect the central inflow. Radiative processes (namely heating by a central X-ray corona and gas cooling) have been included in our simulations. We study the thermal history of accreting gas, and identify the contribution of radiative and adiabatic terms in shaping the gas properties. We find that the current implementation of artificial viscosity in the Gadget code causes unwanted extra heating near the inner radius.
Behavior of dusty real gas on adiabatic propagation of cylindrical imploding strong shock waves
NASA Astrophysics Data System (ADS)
Gangwar, P. K.
2018-05-01
In this paper, CCW method has been used to study the behavior of dusty real gas on adiabatic propagation of cylindrical imploding strong shock waves. The strength of overtaking waves is estimated under the assumption that both C+ and C- disturbances propagate in non-uniform region of same density distribution. It is assumed that the dusty gas is the mixture of a real gas and a large number of small spherical solid particles of uniform size. The solid particles are uniformly distributed in the medium. Maintaining equilibrium flow conditions, the expressions for shock strength has been derived both for freely propagation as well as under the effect of overtaking disturbances. The variation of all flow variables with propagation distance, mass concentration of solid particles in the mixture and the ratio of solid particles to the initial density of gas have been computed and discussed through graphs. It is found that the presence of dust particles in the gases medium has significant effects on the variation of flow variables and the shock is strengthened under the influence of overtaking disturbances. The results accomplished here been compared with those for ideal gas.
Laser Beat-Wave Magnetization of a Dense Plasma
NASA Astrophysics Data System (ADS)
Yates, Kevin; Hsu, Scott; Montgomery, David; Dunn, John; Langendorf, Samuel; Pollock, Bradley; Johnson, Timothy; Welch, Dale; Thoma, Carsten
2017-10-01
We present results from the first of a series of experiments to demonstrate and characterize laser beat-wave magnetization of a dense plasma, motivated by the desire to create high-beta targets with standoff for magneto-inertial fusion. The experiments are being conducted at the Jupiter Laser Facility (JLF) at LLNL. The experiment uses the JLF Janus 1 ω (1053 nm) beam and a standalone Nd:YAG (1064 nm) to drive the beat wave, and the Janus 2 ω (526.5 nm) beam to ionize/heat a gas-jet target as well as to provide Thomson-scattering (TS) measurements of the target density/temperature and scattered light from the beat wave. Streaked TS data captured electron-plasma-wave and ion-acoustic-wave features utilizing either nitrogen or helium gas jets. Effects of initial gas density as well as laser intensity on target have been measured, with electron densities ranging from 1E18 to 1E19 cm-3 with temperatures of tens to hundreds of eV, near the desired range for optimal field generation. LSP simulations were run to aid experimental design and data interpretation. LANL LDRD Program.
Fibers in the NGC 1333 proto-cluster
NASA Astrophysics Data System (ADS)
Hacar, A.; Tafalla, M.; Alves, J.
2017-10-01
Are the initial conditions for clustered star formation the same as for non-clustered star formation? To investigate the initial gas properties in young proto-clusters we carried out a comprehensive and high-sensitivity study of the internal structure, density, temperature, and kinematics of the dense gas content of the NGC 1333 region in Perseus, one of the nearest and best studied embedded clusters. The analysis of the gas velocities in the position-position-velocity space reveals an intricate underlying gas organization both in space and velocity. We identified a total of 14 velocity-coherent, (tran-)sonic structures within NGC 1333, with similar physical and kinematic properties than those quiescent, star-forming (aka fertile) fibers previously identified in low-mass star-forming clouds. These fibers are arranged in a complex spatial network, build-up the observed total column density, and contain the dense cores and protostars in this cloud. Our results demonstrate that the presence of fibers is not restricted to low-mass clouds but can be extended to regions of increasing mass and complexity. We propose that the observational dichotomy between clustered and non-clustered star-forming regions might be naturally explained by the distinct spatial density of fertile fibers in these environments. Based on observations carried out under project number 169-11 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Based on observations with the 100-m telescope of the MPIfR (Max-Planck-Institut für Radioastronomie) at Effelsberg.Molecular line observations (spectral cubes) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A123
On star formation in stellar systems. II - Photoionization in protodwarf galaxies
NASA Technical Reports Server (NTRS)
Noriega-Crespo, A.; Bodenheimer, P.; Lin, D. N. C.; Tenorio-Tagle, G.
1989-01-01
Numerical hydrodynamical calculations are used to study the effects of the onset of star formation on the residual gas in a primordial low-mass Local-Group dwarf spheroidal galaxy in the size range 0.3-1.0 kpc. It is demonstrated that photoionization in the presence of a moderate gas-density gradient can be responsible for gas ejection on a time-scale of a few times 10 to the 7th yr. The results indicate that, given a normal initial mass function, many protodwarf galaxies may have been dispersed by the onset of star formation.
OT2_dlis_3: Ammonia as a Tracer of the Earliest Stages of Star Formation
NASA Astrophysics Data System (ADS)
Lis, D.
2011-09-01
Stars form in molecular cloud cores, cold and dense regions enshrouded by dust. The initiation of this process is among the least understood steps of star formation. High!resolution heterodyne spectroscopy provides invaluable information about the physical conditions (density, temperature), kinematics (infall, outflows), and chemistry of these regions. Classical molecular tracers, such CO, CS, and many other abundant gas!phase species, have been shown to freeze out onto dust grain mantles in pre!stellar cores. However, N!bearing species, in particular ammonia, are much less affected by depletion and are observed to stay in the gas phase at densities in excess of 1e6 cm!3. The molecular freeze!out has important consequences for the chemistry of dense gas. In particular, the depletion of abundant gas!phase species with heavy atoms drives up abundances of deuterated H3+ isotopologues, which in turn results in spectacular deuteration levels of molecules that do remain in the gas phase. Consequently, lines of deuterated N!bearing species, in particular the fundamental lines of ammonia isotopologues, having very high critical densities, are optimum tracers of innermost regions of dense cores. We propose to study the morphology, density structure and kinematics of cold and dense cloud cores, by mapping the spatial distribution of ammonia isotopologues in isolated dense pre!stellar cores using Herschel/HIFI. These observations provide optimum probes of the onset of star formation, as well as the physical processes that control gas!grain interaction, freeze!out, mantle ejection and deuteration. The sensitive, high!resolution spectra acquired within this program will be analyzed using sophisticated radiative transfer models and compared with outputs of state!of!the!art 3D MHD simulations and chemical models developed by the members of our team.
Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas
NASA Astrophysics Data System (ADS)
Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.
2018-02-01
We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.
The density structure and star formation rate of non-isothermal polytropic turbulence
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Banerjee, Supratik
2015-04-01
The interstellar medium of galaxies is governed by supersonic turbulence, which likely controls the star formation rate (SFR) and the initial mass function (IMF). Interstellar turbulence is non-universal, with a wide range of Mach numbers, magnetic fields strengths and driving mechanisms. Although some of these parameters were explored, most previous works assumed that the gas is isothermal. However, we know that cold molecular clouds form out of the warm atomic medium, with the gas passing through chemical and thermodynamic phases that are not isothermal. Here we determine the role of temperature variations by modelling non-isothermal turbulence with a polytropic equation of state (EOS), where pressure and temperature are functions of gas density, P˜ ρ ^Γ, T ˜ ρΓ - 1. We use grid resolutions of 20483 cells and compare polytropic exponents Γ = 0.7 (soft EOS), Γ = 1 (isothermal EOS) and Γ = 5/3 (stiff EOS). We find a complex network of non-isothermal filaments with more small-scale fragmentation occurring for Γ < 1, while Γ > 1 smoothes out density contrasts. The density probability distribution function (PDF) is significantly affected by temperature variations, with a power-law tail developing at low densities for Γ > 1. In contrast, the PDF becomes closer to a lognormal distribution for Γ ≲ 1. We derive and test a new density variance-Mach number relation that takes Γ into account. This new relation is relevant for theoretical models of the SFR and IMF, because it determines the dense gas mass fraction of a cloud, from which stars form. We derive the SFR as a function of Γ and find that it decreases by a factor of ˜5 from Γ = 0.7 to 5/3.
Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field
NASA Astrophysics Data System (ADS)
Chen, Hsiao-Wen; Johnson, Sean D.; Zahedy, Fakhri S.; Rauch, Michael; Mulchaey, John S.
2017-06-01
Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition to gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.
Gauging Metallicity of Diffuse Gas under an Uncertain Ionizing Radiation Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hsiao-Wen; Zahedy, Fakhri S.; Johnson, Sean D.
Gas metallicity is a key quantity used to determine the physical conditions of gaseous clouds in a wide range of astronomical environments, including interstellar and intergalactic space. In particular, considerable effort in circumgalactic medium (CGM) studies focuses on metallicity measurements because gas metallicity serves as a critical discriminator for whether the observed heavy ions in the CGM originate in chemically enriched outflows or in more chemically pristine gas accreted from the intergalactic medium. However, because the gas is ionized, a necessary first step in determining CGM metallicity is to constrain the ionization state of the gas which, in addition tomore » gas density, depends on the ultraviolet background radiation field (UVB). While it is generally acknowledged that both the intensity and spectral slope of the UVB are uncertain, the impact of an uncertain spectral slope has not been properly addressed in the literature. This Letter shows that adopting a different spectral slope can result in an order of magnitude difference in the inferred CGM metallicity. Specifically, a harder UVB spectrum leads to a higher estimated gas metallicity for a given set of observed ionic column densities. Therefore, such systematic uncertainties must be folded into the error budget for metallicity estimates of ionized gas. An initial study shows that empirical diagnostics are available for discriminating between hard and soft ionizing spectra. Applying these diagnostics helps reduce the systematic uncertainties in CGM metallicity estimates.« less
Electrical impedance imaging in two-phase, gas-liquid flows: 1. Initial investigation
NASA Technical Reports Server (NTRS)
Lin, J. T.; Ovacik, L.; Jones, O. C.
1991-01-01
The determination of interfacial area density in two-phase, gas-liquid flows is one of the major elements impeding significant development of predictive tools based on the two-fluid model. Currently, these models require coupling of liquid and vapor at interfaces using constitutive equations which do not exist in any but the most rudimentary form. Work described herein represents the first step towards the development of Electrical Impedance Computed Tomography (EICT) for nonintrusive determination of interfacial structure and evolution in such flows.
Numerical simulation of fire vortex
NASA Astrophysics Data System (ADS)
Barannikova, D. D.; Borzykh, V. E.; Obukhov, A. G.
2018-05-01
The article considers the numerical simulation of the swirling flow of air around the smoothly heated vertical cylindrical domain in the conditions of gravity and Coriolis forces action. The solutions of the complete system of Navie-Stocks equations are numerically solved at constant viscosity and heat conductivity factors. Along with the proposed initial and boundary conditions, these solutions describe the complex non-stationary 3D flows of viscous compressible heat conducting gas. For various instants of time of the initial flow formation stage using the explicit finite-difference scheme the calculations of all gas dynamics parameters, that is density, temperature, pressure and three velocity components of gas particles, have been run. The current instant lines corresponding to the trajectories of the particles movement in the emerging flow have been constructed. A negative direction of the air flow swirling occurred in the vertical cylindrical domain heating has been defined.
Improved Density Control in the Pegasus Toroidal Experiment using Internal Fueling
NASA Astrophysics Data System (ADS)
Thome, K. E.; Bongard, M. W.; Cole, J. A.; Fonck, R. J.; Redd, A. J.; Winz, G. R.
2012-10-01
Routine density control up to and exceeding the Greenwald limit is critical to key Pegasus operational scenarios, including non-solenoidal startup plasmas created using single-point helicity injection and high β Ohmic plasmas. Confinement scalings suggest it is possible to achieve very high β plasmas in Pegasus by lowering the toroidal field and increasing ne/ng. In the past, Pegasus achieved β ˜ 20% in high recycling Ohmic plasmas without running into any operational boundaries.footnotetext Garstka, G.D. et al., Phys. Plasmas 10, 1705 (2003) However, recent Ohmic experiments have demonstrated that Pegasus currently operates in an extremely low-recycling regime with R < 0.8 and Zeff ˜ 1 using improved vacuum conditioning techniques, such as Ti gettering and cryogenic pumping. Hence, it is difficult to achieve ne/ng> 0.3 with these improved wall conditions. Presently, gas is injected using low-field side (LFS) modified PV-10 valves. To attain high ne/ng operation and coincidentally separate core plasma and local current source fueling two new gas fueling capabilities are under development. A centerstack capillary injection system has been commissioned and is undergoing initial tests. A LFS movable midplane needle gas injection system is currently under design and will reach r/a ˜ 0.25. Initial results from both systems will be presented.
2009-10-01
detonation and expansion of the TNT explosive materials was described using the JWL (Jones-Wilkins-Lee) equation of state (EOS) along with a high...explosive material definition (Dobratz 1981). The JWL equation is described as: Where V= ρ0 (initial density of an explosive)/ρ (density of detonation...gas). E is specific internal energy. A, B, R1, R2, ω are JWL fitting parameters (Table 2). ρ0 Detonation velocity CJ pressure Material
Lunar ash flow with heat transfer.
NASA Technical Reports Server (NTRS)
Pai, S. I.; Hsieh, T.; O'Keefe, J. A.
1972-01-01
The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.
Simulations of Hall reconnection in partially ionized plasmas
NASA Astrophysics Data System (ADS)
Innocenti, Maria Elena; Jiang, Wei; Lapenta, Giovanni
2017-04-01
Magnetic reconnection occurs in the Hall, partially ionized regime in environments as diverse as molecular clouds, protostellar disks and regions of the solar chromosphere. While much is known about Hall reconnection in fully ionized plasmas, Hall reconnection in partially ionized plasmas is, in comparison, still relatively unexplored. This notwithstanding the fact that partial ionization is expected to affect fundamental processes in reconnection such as the transition from the slow, fluid to the fast, kinetic regime, the value of the reconnection rate and the dimensions of the diffusion regions [Malyshkin and Zweibel 2011 , Zweibel et al. 2011]. We present here the first, to our knowledge, fully kinetic simulations of Hall reconnection in partially ionized plasmas. The interaction of electrons and ions with the neutral background is realistically modelled via a Monte Carlo plug-in coded into the semi-implicit, fully kinetic code iPic3D [Markidis 2010]. We simulate a plasma with parameters compatible with the MRX experiments illustrated in Zweibel et al. 2011 and Lawrence et al. 2013, to be able to compare our simulation results with actual experiments. The gas and ion temperature is T=3 eV, the ion to electron temperature ratio is Tr=0.44, ion and electron thermal velocities are calculated accordingly resorting to a reduced mass ratio and a reduced value of the speed of light to reduce the computational costs of the simulations. The initial density of the plasma is set at n= 1.1 1014 cm-3 and is then left free to change during the simulation as a result of gas-plasma interaction. A set of simulations with initial ionisation percentage IP= 0.01, 0.1, 0.2, 0.6 is presented and compared with a reference simulation where no background gas is present (full ionization). In this first set of simulations, we assume to be able to externally control the initial relative densities of gas and plasma. Within this parameter range, the ion but not the electron population is heavily affected by collisions with the neutrals. In line with experimental results, we observe reduction of the reconnection rate and no variation of the half-thickness of the ion diffusion region with decreasing IP (increasing gas density). Contrarily to the experiments, we can confidently state that these effects are not influenced by boundary constraints. We then provide an explanation for the behaviour observed.
On the Structure of the Mixing Zone at an Unstable Contact Boundary
NASA Astrophysics Data System (ADS)
Meshkov, E. E.
2018-01-01
The interface between two media of different densities (contact boundary) moving with an acceleration directed from the less dense medium to the more dense one is unstable (Rayleigh-Taylor instability) [1, 2]. The initial perturbations of the interface grow indefinitely and, as a result, a medium mixing zone growing with time is formed at the interface. The structure of such a mixing zone at gas-gas and gas-liquid interfaces is discussed on the basis of laboratory experiments on shock tubes of various types. It is concluded that the regions of turbulent and laminar flows are combined in the mixing zone.
Using Ice and Dust Lines to Constrain the Surface Densities of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Powell, Diana; Murray-Clay, Ruth; Schlichting, Hilke E.
2017-05-01
We present a novel method for determining the surface density of protoplanetary disks through consideration of disk “dust lines,” which indicate the observed disk radial scale at different observational wavelengths. This method relies on the assumption that the processes of particle growth and drift control the radial scale of the disk at late stages of disk evolution such that the lifetime of the disk is equal to both the drift timescale and growth timescale of the maximum particle size at a given dust line. We provide an initial proof of concept of our model through an application to the disk TW Hya and are able to estimate the disk dust-to-gas ratio, CO abundance, and accretion rate in addition to the total disk surface density. We find that our derived surface density profile and dust-to-gas ratio are consistent with the lower limits found through measurements of HD gas. The CO ice line also depends on surface density through grain adsorption rates and drift and we find that our theoretical CO ice line estimates have clear observational analogues. We further apply our model to a large parameter space of theoretical disks and find three observational diagnostics that may be used to test its validity. First, we predict that the dust lines of disks other than TW Hya will be consistent with the normalized CO surface density profile shape for those disks. Second, surface density profiles that we derive from disk ice lines should match those derived from disk dust lines. Finally, we predict that disk dust and ice lines will scale oppositely, as a function of surface density, across a large sample of disks.
Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface.
McFarland, Jacob A; Greenough, Jeffrey A; Ranjan, Devesh
2011-08-01
A computational study of the Richtmyer-Meshkov instability for an inclined interface is presented. The study covers experiments to be performed in the Texas A&M University inclined shock tube facility. Incident shock wave Mach numbers from 1.2 to 2.5, inclination angles from 30° to 60°, and gas pair Atwood numbers of ∼0.67 and ∼0.95 are used in this parametric study containing 15 unique combinations of these parameters. Qualitative results are examined through a time series of density plots for multiple combinations of these parameters, and the qualitative effects of each of the parameters are discussed. Pressure, density, and vorticity fields are presented in animations available online to supplement the discussion of the qualitative results. These density plots show the evolution of two main regions in the flow field: a mixing region containing driver and test gas that is dominated by large vortical structures, and a more homogeneous region of unmixed fluid which can separate away from the mixing region in some cases. The interface mixing width is determined for various combinations of the parameters listed at the beginning of the Abstract. A scaling method for the mixing width is proposed using the interface geometry and wave velocities calculated using one-dimensional gas dynamic equations. This model uses the transmitted wave velocity for the characteristic velocity and an initial offset time based on the travel time of strong reflected waves. It is compared to an adapted Richtmyer impulsive model scaling and shown to scale the initial mixing width growth rate more effectively for fixed Atwood number.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gokaltun, Seckin; McDaniel, Dwayne; Roelant, David
2012-07-01
Multiphase flows involving gas and liquid phases can be observed in engineering operations at various Department of Energy sites, such as mixing of slurries using pulsed-air mixers and hydrogen gas generation in liquid waste tanks etc. The dynamics of the gas phase in the liquid domain play an important role in the mixing effectiveness of the pulsed-air mixers or in the level of gas pressure build-up in waste tanks. To understand such effects, computational fluid dynamics methods (CFD) can be utilized by developing a three-dimensional computerized multiphase flow model that can predict accurately the behavior of gas motion inside liquid-filledmore » tanks by solving the governing mathematical equations that represent the physics of the phenomena. In this paper, such a CFD method, lattice Boltzmann method (LBM), is presented that can model multiphase flows accurately and efficiently. LBM is favored over traditional Navier-Stokes based computational models since interfacial forces are handled more effectively in LBM. The LBM is easier to program, more efficient to solve on parallel computers, and has the ability to capture the interface between different fluid phases intrinsically. The LBM used in this paper can solve for the incompressible and viscous flow field in three dimensions, while at the same time, solve the Cahn-Hillard equation to track the position of the gas-liquid interface specifically when the density and viscosity ratios between the two fluids are high. This feature is of primary importance since the previous LBM models proposed for multiphase flows become unstable when the density ratio is larger than 10. The ability to provide stable and accurate simulations at large density ratios becomes important when the simulation case involves fluids such as air and water with a density ratio around 1000 that are common to many engineering problems. In order to demonstrate the capability of the 3D LBM method at high density ratios, a static bubble simulation is conducted to solve for the pressure difference between the inside and outside of a gas bubble in a liquid domain. Once the results show that the method is in agreement with the Laplace law, buoyant bubble simulations are conducted. The initial results obtained for bubble shape during the rising process was found to be in agreement with the theoretical expectations. (authors)« less
A Single-Phase Analytic Equation of State for Solid Polyurea and Polyurea Aerogels
NASA Astrophysics Data System (ADS)
Whitworth, Nicholas; Lambourn, Brian
2017-06-01
Commercially available polymers are commonly used as impactors in high explosive gas-gun experiments. This paper presents a relatively simple, single-phase, analytic equation of state (EoS) for solid polyurea and polyurea aerogels suitable for use in hydrocode simulations. An exponential shock velocity-particle velocity relation is initially fit to available Hugoniot data on the solid material, which has a density of 1.13 g/cm3. This relation is then converted to a finite strain relation along the principal isentrope, which is used as the reference curve for a Mie-Gruneisen form of EoS with an assumed form for the variation of Gruneisen Γ with specific volume. Using the solid EoS in conjunction with the Snowplough model for porosity, experimental data on the shock response of solid polyurea and polyurea aerogels with initial densities of 0.20 and 0.35 g/cm3 can be reproduced to a reasonable degree of accuracy. A companion paper at this conference describes the application of this and other EoS in modelling shock-release-reshock gas-gun experiments on the insensitive high explosive PBX 9502.
A new method to quantify the effects of baryons on the matter power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Aurel; Teyssier, Romain, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch
2015-12-01
Future large-scale galaxy surveys have the potential to become leading probes for cosmology provided the influence of baryons on the total mass distribution is understood well enough. As hydrodynamical simulations strongly depend on details in the feedback implementations, no unique and robust predictions for baryonic effects currently exist. In this paper we propose a baryonic correction model that modifies the density field of dark-matter-only N-body simulations to mimic the effects of baryons from any underlying adopted feedback recipe. The model assumes haloes to consist of 4 components: 1- hot gas in hydrostatical equilibrium, 2- ejected gas from feedback processes, 3-more » central galaxy stars, and 4- adiabatically relaxed dark matter, which all modify the initial dark-matter-only density profiles. These altered profiles allow to define a displacement field for particles in N-body simulations and to modify the total density field accordingly. The main advantage of the baryonic correction model is to connect the total matter density field to the observable distribution of gas and stars in haloes, making it possible to parametrise baryonic effects on the matter power spectrum. We show that the most crucial quantities are the mass fraction of ejected gas and its corresponding ejection radius. The former controls how strongly baryons suppress the power spectrum, while the latter provides a measure of the scale where baryonic effects become important. A comparison with X-ray and Sunyaev-Zel'dovich cluster observations suggests that baryons suppress wave modes above k∼0.5 h/Mpc with a maximum suppression of 10-25 percent around k∼ 2 h/Mpc. More detailed observations of the gas in the outskirts of groups and clusters are required to decrease the large uncertainties of these numbers.« less
Rajasimman, M; Karthikeyan, C
2007-05-08
A solid-liquid-gas, multiphase, fluidized bed bioreactor with low density particles was used in this study to treat the high organic content starch industry wastewater. The characteristics of starch wastewater were studied. It shows high organic content and acidic nature. The performance of a three phase fluidized bed bioreactor with low density biomass support was studied under various average initial substrate concentrations, by varying COD values (2250, 4475, 6730 and 8910 mg/L) and for various hydraulic retention times (8, 16, 24, 32 and 40 h) based on COD removal efficiency. The optimum bed height for the maximum COD reduction was found to be 80 cm. Experiments were carried out in the bioreactor at an optimized bed height, after the formation of biofilm on the surface of low-density particles (density=870 kg/m(3)). Mixed culture obtained from the sludge, taken from starch industry effluent treatment plant, was used as the source for microorganisms. From the results it was observed that increase in initial substrate concentration leads to decrease in COD reduction and COD reduction increases with increase in hydraulic retention time. The optimum COD removal of 93.8% occurs at an initial substrate concentration of 2250 mg/L and for the hydraulic retention time of 24h.
Laboratory studies of volcanic jets
NASA Astrophysics Data System (ADS)
Kieffer, Susan Werner; Sturtevant, Bradford
1984-09-01
The study of the fluid dynamics of violent volcanic eruptions by laboratory experiment is described, and the important fluid-dynamic processes that can be examined in laboratory models are discussed in detail. In preliminary experiments, pure gases are erupted from small reservoirs. The gases used are Freon 12 and Freon 22, two gases of high molecular weight and high density that are good analogs of heavy and particulate-laden volcanic gases; nitrogen, a moderate molecular weight, moderate density gas for which the thermodynamic properties are well known; and helium, a low molecular weight, lowdensity gas that is used as a basis for comparison with the behavior of the heavier gases and as an analog of steam, the gas that dominates many volcanic eruptions. Transient jets erupt from the reservoir into the laboratory upon rupture of a thin diaphragm at the exit of a convergent nozzle. The gas accelerates from rest in the reservoir to high velocity in the jet. Reservoir pressures and geometries are such that the fluid velocity in the jets is initially supersonic and later decays to subsonic. The measured reservoir pressure decreases as the fluid expands through repetitively reflecting rarefaction waves, but for the conditions of these experiments, a simple steady-discharge model is sufficient to explain the pressure decay and to predict the duration of the flow. Density variations in the flow field have been visualized with schlieren and shadowgraph photography. The observed structure of the jet is correlated with the measured pressure history. The starting vortex generated when the diaphragm ruptures becomes the head of the jet. Though the exit velocity is sonic, the flow head in the helium jet decelerates to about one-third of sonic velocity in the first few nozzle diameters, the nitrogen head decelerates to about three-fourths of sonic velocity, while Freon maintains nearly sonic velocity. The impulsive acceleration of reservoir fluid into the surrounding atmosphere produces a compression wave. The strength of this wave depends primarily on the sound speed of the fluid in the reservoir but also, secondarily with opposite effect, on the density: helium produces a relatively strong atmospheric shock while the Freons do not produce any optically observable wave front. Well-formed N waves are detected with a microphone far from the reservoir. Barrel shocks, Mach disks, and other familiar features of steady underexpanded supersonic jets form inside the jet almost immediately after passage of the flow head. These features are maintained until the pressure in the reservoir decays to sonic conditions. At low pressures the jets are relatively structureless. Gas-particle jets from volcanic eruptions may behave as pseudogases if particle concentrations and mass and momentum exchange between the components are sufficiently small. The sound speed of volcanic pseudogases can be as large as 1000 m s-1 or as small as a few tens of meters per second depending on the mass loading and initial temperature. Fluids of high sound speed produce stronger atmospheric shock waves than do those of low sound speed. Therefore eruption of a hot gas lightly laden with particulates should produce a stronger shock than eruption of a cooler or heavily laden fluid. An empirical expression suggests that the initial velocity of the head of supersonic volcanic jets is controlled by the sound speed and the ratio of the density of the erupting fluid to that of the atmosphere. The duration of gas or pseudogas eruptions is controlled by the sound speed of the fluid and the ratio of reservoir volume to vent area.
Origin of the moon - Capture by gas drag of the earth's primordial atmosphere
NASA Astrophysics Data System (ADS)
Nakazawa, K.; Komuro, T.; Hayashi, C.
1983-06-01
The novel lunar formation scenario proposed is an extension of planetary formation process studies suggesting that the earth originated in a gaseous solar nebula. Attention is given to a series of dynamical processes in which a low energy planetesimal is trapped within the terrestrial Hill sphere under circumstances in which the primordial atmosphere's gas density gradually decreases. An unbound planetesimal entering the Hill sphere would have had to dissipate its kinetic energy and then come into a bound orbit, before escaping from the Hill sphere, without falling onto the earth's surface. The kinetic energy dissipation condition is considered through the calculation of the solar gravity and atmospheric gas drag effects on the planetesimal's orbital motion. The result obtained shows that a low energy planetesimal of less than lunar mass can be trapped in the Hill sphere with a high probability, if it enters at those stages before atmospheric density has decreased to about 1/50th of the initial value.
Modeling carbonaceous particle formation in an argon graphite cathode dc discharge
NASA Astrophysics Data System (ADS)
Michau, A.; Lombardi, G.; Colina Delacqua, L.; Redolfi, M.; Arnas, C.; Bonnin, X.; Hassouni, K.
2010-12-01
We develop a model for the nucleation, growth and transport of carbonaceous dust particles in a non-reactive gas dc discharge where the carbon source is provided by cathode sputtering. We consider only the initial phase of the discharge when the dust charge density remains small with respect to the electron density. We find that an electric field reversal at the entrance of the negative glow region promotes trapping of negatively charged clusters and dust particles, confining them for long times in the plasma and favoring molecular growth. An essential ingredient for this process is electron attachment, which negatively charges the initially neutral clusters. We perform sensitivity studies on several number parameters: size of the largest molecular edifice, sticking coefficient, etc.
Diffusion of magnetic field via turbulent reconnection
NASA Astrophysics Data System (ADS)
Santos de Lima, Reinaldo; Lazarian, Alexander; de Gouveia Dal Pino, Elisabete M.; Cho, Jungyeon
2010-05-01
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e. without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our 3D simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar.
Hypersonic shock structure with Burnett terms in the viscous stress and heat flux
NASA Technical Reports Server (NTRS)
Chapman, Dean R.; Fiscko, Kurt A.
1988-01-01
The continuum Navier-Stokes and Burnett equations are solved for one-dimensional shock structure in various monatomic gases. A new numerical method is employed which utilizes the complete time-dependent continuum equations and obtains the steady-state shock structure by allowing the system to relax from arbitrary initial conditions. Included is discussion of numerical difficulties encountered when solving the Burnett equations. Continuum solutions are compared to those obtained utilizing the Direct Simulation Monte Carlo method. Shock solutions are obtained for a hard sphere gas and for argon from Mach 1.3 to Mach 50. Solutions for a Maxwellian gas are obtained from Mach 1.3 to Mach 3.8. It is shown that the Burnett equations yield shock structure solutions in much closer agreement to both Monte Carlo and experimental results than do the Navier-Stokes equations. Shock density thickness, density asymmetry, and density-temperature separation are all more accurately predicted by the Burnett equations than by the Navier-Stokes equations.
Discharge dynamics and plasma density recovery by on/off switches of additional gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyo-Chang, E-mail: lhc@kriss.re.kr; Department of Electrical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763; Kwon, Deuk-Chul
2016-06-15
Measurement of the plasma density is investigated to study plasma dynamics by adding reactive gas (O{sub 2}) or rare gas (He) in Ar plasmas. When the O{sub 2} or He gas is added, plasma density is suddenly decreased, while the plasma density recovers slowly with gas off. It is found that the recovery time is strongly dependent on the gas flow rate, and it can be explained by effect of gas residence time. When the He gas is off in the Ar plasma, the plasma density is overshot compared to the case of the O{sub 2} gas pulsing due tomore » enhanced ionizations by metastable atoms. Analysis and calculation for correlation between the plasma density dynamics and the gas pulsing are also presented in detail.« less
Investigation of heavy current discharges with high initial gas density
NASA Astrophysics Data System (ADS)
Budin, A.; Bogomaz, A.; Kolikov, V.; Kuprin, A.; Leontiev, V.; Rutberg, Ph.; Shirokov, N.
1996-05-01
Piezoelectric pressure transducers, with noise immunity and time resolution of 0,5 μs were used to measure pulse pressures of 430 MPa along the axis of an electrical discharge channel. Initial concentration of He was 2,7ṡ1021cm-3, dI/dt=6ṡ1011 A/s, and Imax=560 kA. Shock waves with amplitudes exceeding the pressure along the axis, were detected by a pressure transducer on the wall of the discharge chamber. Typical shock velocities were 2ṡ4 km/s. Average pressure measurements along the discharge axis at different radii were used to estimate the current density distribution along the canal radius. The presence of the shock waves, promoting the additional hydrogen heating in the discharge chamber, has been registered during the discharge in hydrogen for Imax˜1 MA and an initial concentration of 1021cm-3.
Star-formation and stellar feedback recipes in galaxy evolution models
NASA Astrophysics Data System (ADS)
Hensler, Gerhard; Recchi, Simone; Ploeckinger, Sylvia; Kuehtreiber, Matthias; Steyrleithner, Patrick; Liu, Lei
2015-08-01
Modeling galaxy formation and evolution is critically depending on star formation (SF). Since cosmological and galaxy-scale simulations cannot resolve the spatial and density scales on which SF acts, a large variety of methods are developed and applied over the last decades. Nonetheless, we are still in the test phase how the choice of parameters affects the models and how they agree with observations.As a simple ansatz, recipes are based on power-law SF dependences on gas density as justified by gas cooling and collapse timescales. In order to prevent SF spread throughout the gas, temperature and density thresholds are also used, although gas dynamical effects, like e.g. gas infall, seem to trigger SF significantly.The formed stars influence their environment immediately by energetic and materialistic feedback. It has been experienced in numerical models that supernova typeII explosions act with a too long time delay to regulate the SF, but that winds and ionizing radiation by massive stars must be included. The implementation of feedback processes, their efficiencies and timescales, is still in an experimental state, because they depend also on the physical state of the surrounding interstellar medium (ISM).Combining a SF-gas density relation with stellar heating vs. gas cooling and taking the temperature dependence into account, we have derived an analytical expression of self-regulated SF which is free of arbitrary parameters. We have performed numerical models to study this recipe and different widely used SF criteria in both, particle and grid codes. Moreover, we compare the SF behavior between single-gas phase and multi-phase treatments of the ISM.Since dwarf galaxies (DGs) are most sensitive to environmental influences and contain only low SF rates, we explore two main affects on their models: 1. For external effects we compare SF rates of isolated and ram-pressure suffering DGs. Moreover, we find a SF enhancement in tidal-tail DGs by the compressive tidal field. 2. Because of locally low SF rates we compare the stellar feedback of a mostly assumed but only fractionally occupied stellar initial mass function with a bottom-heavy one.
The Physics of the Dense Z-Pinch in Theory and in Experiment With Application to Fusion Reactor
NASA Astrophysics Data System (ADS)
Haines, M. G.
1982-01-01
A new generation of Z-pinches employing high voltage, high current pulsed lines as power sources produce dense hot plasmas with enhanced stability properties. Three methods of Z-pinch formation are currently in use: (1) cylindrical collapse and compression of a pre-ionised gas; (2) laser initiation and Joule heating of a gas embedded pinch, and (3) hollow gas puff and subsequent collapse to the axis. The first method shows no dynamic bounce and no instability over about ten radial Alfvén transit times. The laser initiated Z-pinch shows benign helical structures, whilst the gas puff experiments are known for their high X-ray energy conversion associated with m = 0 instabilities. The first two experimental conditions are relevant for fusion. A calculation of energy balance for satisfying Lawson conditions with axial and radial energy losses and radiation loss shows that a current I of ~ 106 A and a line density N of 6 × 1018m-1 are required. This leads to two coincidences of physical quantities that are very favourable for controlled fusion. The first is that at this line density and under pressure balance the ratio of the ion Larmor radius to pinch radius is of order 1 so that a marked stabilisation of the configuration is expected. The second coincidence is that the current is only just below the Pease-Braginskii limit; this will permit the possibility of radiative collapse to attain the high density (~ 4 × 1027 m-3) and small radius (~ 20 μm) required for a compact (0.1 m long) discharge. The confining self-magnetic field is 104 T, the confinement time ~ 100 ns, and a matrix of pulsed discharges is envisaged in a moderator and breeding medium which does not have the wall-loading limitations of tokamaks.
NASA Astrophysics Data System (ADS)
Nakano, Tomoyuki; Tanaka, Yasunori; Murai, K.; Uesugi, Y.; Ishijima, T.; Tomita, K.; Suzuki, K.; Shinkai, T.
2018-05-01
This paper focuses on a fundamental experimental approach to thermal arc re-ignition processes in a variety of gas flows in a nozzle. Using power semiconductor switches in the experimental system, the arc current and the voltage applied to the arc were controlled with precise timing. With this system, residual arcs were created in decaying phase under free recovery conditions; arc re-ignition was then intentionally instigated by application of artificial voltage—i.e. quasi-transient recovery voltage—to study the arc behaviour in both decaying and re-ignition phases. In this study, SF6, CO2, N2, O2, air and Ar arcs were intentionally re-ignited by quasi-TRV application at 20 μs delay time from initiation of free recovery condition. Through these experiments, the electron density at the nozzle throat was measured using a laser Thomson scattering method together with high speed video camera observation during the re-ignition process. Temporal variations in the electron density from the arc decaying to re-ignition phases were successfully obtained for each gas-blast arc at the nozzle throat. In addition, initial dielectric recovery properties of SF6, CO2, air and Ar arcs were measured under the same conditions. These data will be useful in the fundamental elucidation of thermal arc re-ignition processes.
NASA Astrophysics Data System (ADS)
Yamaguchi, T.; Kimura, Y.; Hirota, N.
1999-09-01
We have performed molecular dynamics (MD) simulations of the nonpolar solvation dynamics in simple fluids composed of particles interacting through the Lennard-Jones (LJ) 12-6 potential or its repulsive part. The attractive or the repulsive part of the solute-solvent interaction is assumed to change on the excitation of a solute. We have followed the transition energy fluctuation of the solute by the equilibrium simulation. The division of the LJ potential followed the method of WCA [J. W. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54, 5237 (1971)]. We have surveyed over a wide solvent density region from gas-like to liquid-like densities at the constant temperature. When the attractive part changes, the relaxation becomes faster with an increase of the solvent density. This result contradicts with previous theories that treat the nonpolar solvation dynamics in terms of the diffusion of solvent particles. The time scale of the initial part of the relaxation is well correlated with the static fluctuation divided by the static average, which suggests the importance of the curvature of the free energy surface in the initial part of the solvation. When the repulsive part changes, the initial part of the relaxation is almost density independent, determined by the binary motion between solute and solvent. It is consistent with the result that the static fluctuation is almost proportional to the static average, which indicates the absence of the static correlation between solvent particles. On the other hand, the solvation correlation function shows rather complicated density dependence at the longer time scale. In the case of the binary mixture solvent, the relaxation time is inversely proportional to the diffusion coefficient. On the basis of the nonpolar solvation dynamics, the validity of the isolated binary collision model for the vibrational energy relaxation is also discussed, and the recent hydrodynamic theory on the vibrational energy relaxation [B. J. Cherayil and M. D. Feyer, J. Chem. Phys. 107, 7642 (1997)] is critically examined.
Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Disks
NASA Astrophysics Data System (ADS)
Kim, Chang-Goo; Kim, W.; Ostriker, E. C.
2010-01-01
Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation of spiral arms in disk galaxies. They can also provide a large amount of kinetic energy for the interstellar gas by tapping the rotational energy. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability in vertically stratified galactic disks. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve under interstellar cooling and heating. Due to cooling and heating, the disk rapidly turns to a dense slab near the midplane surrounded by rarefied gas at high-altitude regions. The imposed stellar spiral potential develops a vertically curved shock that exhibits strong flapping motions along the direction perpendicular to the arm. The flows across the spiral shock are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases at the postshock expansion zone. The shock flapping motions stirs the disk, supplying the gas with random kinetic energy. For a model resembling the galactic disk near the solar neighborhood, the density-weighted vertical velocity dispersions are 2 km/s for the rarefied gas and 1 km/s for the dense gas. The shock compression in this model reduces an amount of the rarefied gas from 29% to 19% by mass. Despite the flapping motions, the time-averaged profiles of surface density are similar to those of the one-dimensional counterparts, and the vertical density distribution is overall consistent with effective hydrostatic equilibrium. When self-gravity is included, the shock compression forms large gravitationally bound condensations with virial ratio of about 2 and typical masses of 0.5 to one million solar masses, comparable to the Jeans mass.
NASA Astrophysics Data System (ADS)
Bajargaan, Ruchi; Patel, Arvind
2018-04-01
One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.
Collective many-body bounce in the breathing-mode oscillations of a Tonks-Girardeau gas
NASA Astrophysics Data System (ADS)
Atas, Y. Y.; Bouchoule, I.; Gangardt, D. M.; Kheruntsyan, K. V.
2017-10-01
We analyze the breathing-mode oscillations of a harmonically quenched Tonks-Giradeau (TG) gas using an exact finite-temperature dynamical theory. We predict a striking collective manifestation of impenetrability—a collective many-body bounce effect. The effect, although being invisible in the evolution of the in situ density profile of the gas, can be revealed through a nontrivial periodic narrowing of its momentum distribution, taking place at twice the rate of the fundamental breathing-mode frequency. We identify physical regimes for observing the many-body bounce and construct the respective nonequilibrium phase diagram as a function of the quench strength and the initial temperature of the gas. We also develop a finite-temperature hydrodynamic theory of the TG gas wherein the many-body bounce is explained by an increased thermodynamic pressure during the isentropic compression cycle, which acts as a potential barrier for the particles to bounce off.
The energy density distribution of an ideal gas and Bernoulli’s equations
NASA Astrophysics Data System (ADS)
Santos, Leonardo S. F.
2018-05-01
This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the null pressure only if the gas was compressible. Only the last situation describes an intuitive behaviour for an ideal gas.
Artem'ev, K. V.; Berezhetskaya, N. K.; Kazantsev, S. Yu.; Kononov, N. G.; Kossyi, I. A.; Popov, N. A.; Tarasova, N. M.; Filimonova, E. A.; Firsov, K. N.
2015-01-01
Results are presented from experimental studies of the initiation of combustion in a stoichiometric methane–oxygen mixture by a freely localized laser spark and by a high-current multispark discharge in a closed chamber. It is shown that, preceding the stage of ‘explosive’ inflammation of a gas mixture, there appear two luminous objects moving away from the initiator along an axis: a relatively fast and uniform wave of ‘incomplete combustion’ under laser spark ignition and a wave with a brightly glowing plasmoid behind under ignition from high-current slipping surface discharge. The gas mixtures in both the ‘preflame’ and developed-flame states are characterized by a high degree of ionization as the result of chemical ionization (plasma density ne≈1012 cm−3) and a high frequency of electron–neutral collisions (νen≈1012 s−1). The role of chemical ionization in constructing an adequate theory for the ignition of a gas mixture is discussed. The feasibility of the microwave heating of both the preflame and developed-flame plasma, supplementary to a chemical energy source, is also discussed. PMID:26170426
Observational Tracers of Hot and Cold Gas in Isolated Galaxy Simulations
NASA Astrophysics Data System (ADS)
Brzycki, Bryan; Silvia, Devin
2018-01-01
We present results from an analysis comparing simulations of isolated spiral galaxies with recent observations of the circumgalactic medium (CGM). As the interface containing inflows and outflows between the interstellar and intergalactic media, the CGM plays an important role in the composition and evolution of galaxies. Using a set of isolated galaxy simulations over different initial conditions and star formation and feedback parameters, we investigate the evolution of CGM gas. Specifically, in light of recent observational studies, we compute the radial column density profiles and covering fractions of various observable ion species (H I, C IV, O VI, Mg II, Si III) for each simulated galaxy. Taking uniformly random sightlines through the CGM of each simulated galaxy, we find the abundance of gas absorbers and analyze their contribution to the overall column density along each sightline. By identifying the prevalence of high column density absorbers, we seek to characterize the distribution and evolution of observable ion species in the CGM. We also highlight a subset of our isolated galaxy simulations that produce and maintain a stable precipitating CGM that fuels high rates of sustained star formation. This project was supported in part by the NSF REU grant AST-1358980 and by the Nantucket Maria Mitchell Association.
Does laser-driven heat front propagation depend on material microstructure?
NASA Astrophysics Data System (ADS)
Colvin, J. D.; Matsukuma, H.; Fournier, K. B.; Yoga, A.; Kemp, G. E.; Tanaka, N.; Zhang, Z.; Kota, K.; Tosaki, S.; Ikenouchi, T.; Nishimura, H.
2016-10-01
We showed earlier that the laser-driven heat front propagation velocity in low-density Ti-silica aerogel and TiO2 foam targets was slower than that simulated with a 2D radiation-hydrodynamics code incorporating an atomic kinetics model in non-LTE and assuming initially homogeneous material. Some theoretical models suggest that the heat front is slowed over what it would be in a homogeneous medium by the microstructure of the foam. In order to test this hypothesis we designed and conducted a comparison experiment on the GEKKO laser to measure heat front propagation velocity in two targets, one an Ar/CO2 gas mixture and the other a TiO2 foam, that had identical initial densities and average ionization states. We found that the heat front traveled about ten times faster in the gas than in the foam. We present the details of the experiment design and a comparison of the data with the simulations. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract No. DE-AC52-07NA27344, and the joint research project of ILE Osaka U. (contract Nos. 2014A1-04 and 2015A1-02).
Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?
Leitzinger, M.; Odert, P.; Kulikov, Yu.N.; Lammer, H.; Wuchterl, G.; Penz, T.; Guarcello, M.G.; Micela, G.; Khodachenko, M.L.; Weingrill, J.; Hanslmeier, A.; Biernat, H.K.; Schneider, J.
2011-01-01
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects. PMID:21969736
Interaction of air shock waves and porous compressible materials
NASA Astrophysics Data System (ADS)
Gvozdeva, L. G.; Faresov, Yu. M.; Fokeyev, V. P.
1986-05-01
Interaction of air shock waves and porous compressible materials was studied in an experiment with two foam-plastic materials: PPU-3M-1 polyurethane (density 33 kg/cu m) and much more rigid PKhV-1 polyvinyl chloride (density 50 kg/cu m). Tests were performed in a shock tube with 0.1x0.1 m square cross-section, a single diaphragm separating its 8 m long low-pressure segment with inspection zone and 1.5 m long high-pressure segment. The instrumentation included an array of piezoelectric pressure transducers and a digital frequency meter for velocity measurements, a Tectronix 451A oscillograph, and IAB-451 shadowgraph, and a ZhFR camera with slit scanning. Air was used as compressing gas, its initial pressure being varied from 10(3) Pa to 10(5) Pa, helium and nitrogen were used as propelling gas. The impact velocity of shock waves was varied over the N(M) = 2-5 range of the Mach number. The maximum amplitude of the pressure pulse increased as the thickness of the foam layer was increased up to 80 mm and then remained constant with further increases of that thickness, at a level depending on the material and on the intitial conditions. A maximum pressure rise by a factor of approximately 10 was attained, with 1.3 x 10(3) Pa initial pressure and an impact velocity N(M) = 5. Reducing the initial pressure to below (0.1-0.3) x 10(3) Pa, with the impact velocity maintained at N(M) = 5, reduced the pressure rise to a factor below 3. The results are interpreted taking into account elasticity forces in the solid skeleton phase and gas filtration through the pores.
Could CoRoT-7b and Kepler-10b be remnants of evaporated gas or ice giants?
Leitzinger, M; Odert, P; Kulikov, Yu N; Lammer, H; Wuchterl, G; Penz, T; Guarcello, M G; Micela, G; Khodachenko, M L; Weingrill, J; Hanslmeier, A; Biernat, H K; Schneider, J
2011-10-01
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a "Hot Neptune" nor a "Hot Uranus"-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.
Liu, Zhichao; Wu, Qiong; Zhu, Weihua; Xiao, Heming
2015-04-28
Density functional theory with dispersion-correction (DFT-D) was employed to study the effects of vacancy and pressure on the structure and initial decomposition of crystalline 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (β-NTO), a high-energy insensitive explosive. A comparative analysis of the chemical behaviors of NTO in the ideal bulk crystal and vacancy-containing crystals under applied hydrostatic compression was considered. Our calculated formation energy, vacancy interaction energy, electron density difference, and frontier orbitals reveal that the stability of NTO can be effectively manipulated by changing the molecular environment. Bimolecular hydrogen transfer is suggested to be a potential initial chemical reaction in the vacancy-containing NTO solid at 50 GPa, which is prior to the C-NO2 bond dissociation as its initiation decomposition in the gas phase. The vacancy defects introduced into the ideal bulk NTO crystal can produce a localized site, where the initiation decomposition is preferentially accelerated and then promotes further decompositions. Our results may shed some light on the influence of the molecular environments on the initial pathways in molecular explosives.
Improvements to the ICRH antenna time-domain 3D plasma simulation model
NASA Astrophysics Data System (ADS)
Smithe, David N.; Jenkins, Thomas G.; King, J. R.
2015-12-01
We present a summary of ongoing improvements to the 3D time-domain plasma modeling software that has been used to look at ICRH antennas on Alcator C-Mod, NSTX, and ITER [1]. Our past investigations have shown that in low density cases where the slow wave is propagating, strong amplitude lower hybrid resonant fields can occur. Such a scenario could result in significant parasitic power loss in the SOL. The primary resonance broadening in this case is likely collisions with neutral gas, and thus we are upgrading the model to include realistic neutral gas in the SOL, in order to provide a better understanding of energy balance in these situations. Related to this, we are adding a temporal variation capability to the local plasma density in front of the antenna in order to investigate whether the near fields of the antenna could modify the local density sufficiently to initiate a low density situation. We will start with a simple scalar ponderomotive potential density expulsion model [2] for the density evolution, but are also looking to eventually couple to a more complex fluid treatment that would include tensor pressures and convective physics and sources of neutrals and ionization. We also review continued benchmarking efforts, and ongoing and planned improvements to the computational algorithms, resulting from experience gained during our recent supercomputing runs on the Titan supercomputer, including GPU operations.
Strangeness Suppression and Color Deconfinement
NASA Astrophysics Data System (ADS)
Satz, Helmut
2018-02-01
The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.
NASA Astrophysics Data System (ADS)
Lian, Jianhui; Thomas, Daniel; Maraston, Claudia; Goddard, Daniel; Parikh, Taniya; Fernández-Trincado, J. G.; Roman-Lopes, Alexandre; Rong, Yu; Tang, Baitian; Yan, Renbin
2018-05-01
In our previous work, we found that only two scenarios are capable of reproducing the observed integrated mass-metallicity relations for the gas and stellar components of local star-forming galaxies simultaneously. One scenario invokes a time-dependent metal outflow loading factor with stronger outflows at early times. The other scenario uses a time-dependent initial mass function (IMF) slope with a steeper IMF at early times. In this work, we extend our study to investigate the radial profile of gas and stellar metallicity in local star-forming galaxies using spatially resolved spectroscopic data from the SDSS-IV MaNGA survey. We find that most galaxies show negative gradients in both gas and stellar metallicity with steeper gradients in stellar metallicity. The stellar metallicity gradients tend to be mass dependent with steeper gradients in more massive galaxies while no clear mass dependence is found for the gas metallicity gradient. Then we compare the observations with the predictions from a chemical evolution model of the radial profiles of gas and stellar metallicities. We confirm that the two scenarios proposed in our previous work are also required to explain the metallicity gradients. Based on these two scenarios, we successfully reproduce the radial profiles of gas metallicity, stellar metallicity, stellar mass surface density, and star formation rate surface density simultaneously. The origin of the negative gradient in stellar metallicity turns out to be driven by either radially dependent metal outflow or IMF slope. In contrast, the radial dependence of the gas metallicity is less constrained because of the degeneracy in model parameters.
Laser spectroscopy of a halocarbocation in the gas phase: CH2I+.
Tao, Chong; Mukarakate, Calvin; Reid, Scott A
2006-07-26
We report the first gas-phase observation of the electronic spectrum of a simple halocarbocation, CH2I+. The ion was generated rotationally cold (Trot approximately 20 K) using pulsed discharge methods and was detected via laser spectroscopy. The identity of the spectral carrier was confirmed by modeling the rotational contour observed in the excitation spectra and by comparison of ground state vibrational frequencies determined by single vibronic level emission spectroscopy with Density Functional Theory (DFT) predictions. The transition was assigned as 3A1 <-- X1A1. This initial detection of the electronic spectrum of a halocarbocation in the gas phase should open new avenues for study of the structure and reactivity of these important ions.
Shock Initiation of Thermally Expanded TATB
NASA Astrophysics Data System (ADS)
Mulford, Roberta; Swift, Damian
2011-06-01
The plastic-bonded explosive PBX-9502 undergoes unusual hysteretic thermal expansion, or ``ratchet growth'' as a consequence of the uniaxial thermal expansion of the graphitic structure of the major component, TATB explosive. Upon thermal cycling, the density of the material can be reduced by as much as 9%, resulting in a distinct increase in the shock sensitivity of the solid. Run distances to detonation have been measured in thermally expanded samples of PBX-9502, using embedded particle velocity gauges and shock tracker gauges. Uniaxial shocks were generated using a light gas gun, to provide a repeatable stimulus for initiation of detonation. We have applied a porosity model to adjust standard Pop plot data to the reduced density of our samples, to investigate whether the sensitivity of the PBX 9502 increases ideally with the decreasing density, or whether the microscopically non-uniform expansion that occurs during ``ratchet growth'' leads to abnormal sensitivity, possibly as a result of cracking or debonding from the binder, as observed in micrographs of the sample.
A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution.
de Boer, Hugo Jan; Eppinga, Maarten B; Wassen, Martin J; Dekker, Stefan C
2012-01-01
The revolutionary rise of broad-leaved (flowering) angiosperm plant species during the Cretaceous initiated a global ecological transformation towards modern biodiversity. Still, the mechanisms involved in this angiosperm radiation remain enigmatic. Here we show that the period of rapid angiosperm evolution initiated after the leaf interior (post venous) transport path length for water was reduced beyond the leaf interior transport path length for CO2 at a critical leaf vein density of 2.5-5 mm mm(-2). Data and our modelling approaches indicate that surpassing this critical vein density was a pivotal moment in leaf evolution that enabled evolving angiosperms to profit from developing leaves with more and smaller stomata in terms of higher carbon returns from equal water loss. Surpassing the critical vein density may therefore have facilitated evolving angiosperms to develop leaves with higher gas exchange capacities required to adapt to the Cretaceous CO2 decline and outcompete previously dominant coniferous species in the upper canopy.
Bose-Einstein condensation in an ultra-hot gas of pumped magnons.
Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard
2014-03-11
Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.
NASA Astrophysics Data System (ADS)
Tan, Jonathan
We describe a research plan to develop and extend the mid-infrared (MIR) extinction mapping technique presented by Butler & Tan (2009), who studied Infrared Dark Clouds (IRDCs) using Spitzer Space Telescope Infrared Array Camera (IRAC) 8 micron images. This method has the ability to probe the detailed spatial structure of very high column density regions, i.e. the gas clouds thought to represent the initial conditions for massive star and star cluster formation. We will analyze the data Spitzer obtained at other wavelengths, i.e. the IRAC bands at 3.6, 4.5 and 5.8 microns, and the Multiband Imaging Photometer (MIPS) bands, especially at 24 microns. This will allow us to measure the dust extinction law across the MIR and search for evidence of dust grain evolution, e.g. grain growth and ice mantle formation, as a function of gas density and column density. We will also study the detailed structure of the extinction features, including individual cores that may form single stars or close binaries, especially focusing on those cores that may form massive stars. By studying independent dark cores in a given IRDC, we will be able to test if they have a common minimum observed intensity, which we will then attribute to the foreground. This is a new method that should allow us to more accurately map distant, high column density IRDCs, probing more extreme regimes of star formation. We will combine MIR extinction mapping, which works best at high column densities, with near- IR mapping based on 2MASS images of star fields, which is most useful at lower columns that probe the extended giant molecular cloud structure. This information is crucial to help understand the formation process of IRDCs, which may be the rate limiting step for global galactic star formation rates. We will use our new extinction mapping methods to analyze large samples of IRDCs and thus search the Galaxy for the most extreme examples of high column density cores and assess the global star formation efficiency in dense gas. We will estimate the ability of future NASA missions, such as JWST, to carry out MIR extinction mapping science. We will develop the results of this research into an E/PO presentation to be included in the various public outreach events organized and courses taught by the PI.
Transport properties of initially neutral gas disturbed by intense electron beam
NASA Astrophysics Data System (ADS)
Angus, Justin; Swanekamp, Steve; Schumer, Joseph; Mosher, Dave; Ottinger, Paul
2013-10-01
The behavior of intense electron beams (those with current densities on the order of hundreds of kA/cm2 and beam rise times on the order of 100 ns) traveling through gaseous mediums depends strongly on the transport properties of the medium. For example, the conductivity of the medium, which is very sensitive to the ionization state and temperature of the gas, has a strong influence on the beam behavior through the plasma return current. Since the beam is responsible for ionizing and heating the gas, self-consistently solving for the gas transport properties and the beam propagation is essential for an accurate description of the system. An advanced gas chemistry model to describe the transport properties of a strongly disturbed gaseous system is presented in this work. A focal point of this work is an accurate description of the medium's conductivity as the gas progresses from its weakly ionized state, where swarm models are valid, to a strongly ionized state where the Spitzer-Harm model applies. NRL Karle Fellowship
NASA Astrophysics Data System (ADS)
Bagherzadeh-Nobari, S.; Hosseini-Istadeh, K.; Kalantarinejad, R.; Elahi, S. M.; Shokri, A. A.
2018-03-01
Our aim is to study theoretically, the sensitivity of a hydrogen sulfide gas sensor, with regard to electrical conductance behavior. Our senor consists of a semiconductor single-wall carbon nanotube (SWCNT), functionalized with palladium nanoclusters, sandwiched between two gold electrodes. Initially, we have computed the optimized structure of the sensor, via molecular dynamic simulations. Then by using non-equilibrium Green's function method, combined with density functional theory, the electronic and transport properties of the sensor were calculated, and compared before and after adsorption of H2S gas, at different bias voltages. The highest sensitivity is achieved at 40 mV bias voltage. In this bias voltage, H2S gas adsorption causes a significant decrease of current, because as a result of charge transfer from the CNT and palladium nanoclusters, to H2S gas, majority carriers (electrons) decrease. The results show that CNT decorated with palladium nanoclusters can be a promising candidate in gas-sensorics.
Galaxy dynamics and the mass density of the universe.
Rubin, V C
1993-06-01
Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density.
Galaxy dynamics and the mass density of the universe.
Rubin, V C
1993-01-01
Dynamical evidence accumulated over the past 20 years has convinced astronomers that luminous matter in a spiral galaxy constitutes no more than 10% of the mass of a galaxy. An additional 90% is inferred by its gravitational effect on luminous material. Here I review recent observations concerning the distribution of luminous and nonluminous matter in the Milky Way, in galaxies, and in galaxy clusters. Observations of neutral hydrogen disks, some extending in radius several times the optical disk, confirm that a massive dark halo is a major component of virtually every spiral. A recent surprise has been the discovery that stellar and gas motions in ellipticals are enormously complex. To date, only for a few spheroidal galaxies do the velocities extend far enough to probe the outer mass distribution. But the diverse kinematics of inner cores, peripheral to deducing the overall mass distribution, offer additional evidence that ellipticals have acquired gas-rich systems after initial formation. Dynamical results are consistent with a low-density universe, in which the required dark matter could be baryonic. On smallest scales of galaxies [10 kiloparsec (kpc); Ho = 50 km.sec-1.megaparsec-1] the luminous matter constitutes only 1% of the closure density. On scales greater than binary galaxies (i.e., >/=100 kpc) all systems indicate a density approximately 10% of the closure density, a density consistent with the low baryon density in the universe. If large-scale motions in the universe require a higher mass density, these motions would constitute the first dynamical evidence for nonbaryonic matter in a universe of higher density. Images Fig. 3 Fig. 5 PMID:11607393
R{sub AA} of J/psi near midrapidity in heavy ion collisions at sq root(s{sub NN})=200 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Taesoo; Park, Woosung; Lee, Su Houng
2010-03-15
We build up a model to reproduce the experimentally measured R{sub AA} of J/psi near midrapidty in an Au+Au collision at sq root(s{sub NN})=200 GeV. The model takes into account the J/psi suppression from the quark-gluon plasma and hadron gas as well as the nuclear absorption of primordial charmonia and the regeneration effects at the hadronization stage and hence is a generalization of the two-component model introduced by Grandchamp and Rapp. The improvements in this work are twofold; the addition of the initial local temperature profile and a consistent use of QCD next-to-leading order (NLO) formula for both the dissociationmore » cross section in the hadron gas and the thermal decay widths in the quark-gluon plasma for the charmonium states. The initial local temperature profile is determined from the assumption that the local entropy density is proportional to a formula involving the number densities of the number of participants and of the binary collisions that reproduces the multiplicities of charged particles at chemical freeze-out. The initial local temperature profile brings about a kink in the R{sub AA} curve due to the initial melting of J/psi. The initially formed fireball, composed of weakly interacting quarks and gluons with thermal masses that are extracted from lattice QCD, follows an isentropic expansion with cylindrical symmetry. The fit reproduces well the Au+Au as well as the Cu+Cu data. The same method is applied to predict the R{sub AA} expected from the Pb+Pb collision at Large Hadron Collider (LHC) energy.« less
Imprints of feedback in young gasless clusters?
NASA Astrophysics Data System (ADS)
Parker, Richard J.; Dale, James E.
2013-06-01
We present the results of N-body simulations in which we take the masses, positions and velocities of sink particles from five pairs of hydrodynamical simulations of star formation by Dale et al. and evolve them for further 10 Myr. We compare the dynamical evolution of star clusters that formed under the influence of mass-loss driven by photoionization feedback to the evolution of clusters that formed without feedback. We remove any remaining gas and follow the evolution of structure in the clusters (measured by the Q-parameter), half-mass radius, central density, surface density and the fraction of bound stars. There is little discernible difference in the evolution of clusters that formed with feedback compared to those that formed without. The only clear trend is that all clusters which form without feedback in the hydrodynamical simulations lose any initial structure over 10 Myr, whereas some of the clusters which form with feedback retain structure for the duration of the subsequent N-body simulation. This is due to lower initial densities (and hence longer relaxation times) in the clusters from Dale et al. which formed with feedback, which prevents dynamical mixing from erasing substructure. However, several other conditions (such as supervirial initial velocities) also preserve substructure, so at a given epoch one would require knowledge of the initial density and virial state of the cluster in order to determine whether star formation in a cluster has been strongly influenced by feedback.
Effects of core retrieval, handling, and preservation on hydrate-bearing samples
NASA Astrophysics Data System (ADS)
Kneafsey, T. J.; Lu, H.; Winters, W. J.; Hunter, R. B.
2009-12-01
Recovery, preservation, storage, and transport of samples containing natural gas hydrate cause changes in the stress conditions, temperature, pressure, and hydrate saturation of samples. Sample handling at the ground surface and sample preservation, either by freezing in liquid nitrogen (LN) or repressurization using methane, provides additional time and driving forces for sample alteration. The extent to which these disturbances alter the properties of the hydrate bearing sediments (HBS) depend on specific sample handling techniques, as well as on the sample itself. HBS recovered during India’s National Gas Hydrate Program (NGHP) Expedition 01 and the 2007 BP Exploration Alaska - Department of Energy - U.S. Geological Survey (BP-DOE-USGS) Mount Elbert (ME) gas hydrate well on the Alaskan North Slope provide comparisons of sample alterations induced by multiple handling techniques. HBS samples from the NGHP and the ME projects were examined using x-ray computed tomography. Mount Elbert sand samples initially preserved in LN have non-uniform short “crack-like” low-density zones in the center that probably do not extend to the outside perimeter. Samples initially preserved by repressurization show fewer “crack-like” features and higher densities. Two samples were analyzed in detail by Lu and coworkers showing reduced hydrate saturations approaching the outer surface, while substantial hydrate remained in the central region. Non-pressure cored NGHP samples show relatively large altered regions approaching the core surface, while pressure-cored-liquid-nitrogen preserved samples have much less alteration.
SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyaev, Mikhail A.; Rafikov, Roman R., E-mail: rrr@astro.princeton.edu
Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonicmore » vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.« less
NASA Astrophysics Data System (ADS)
Cassibry, Jason; Dougherty, Jesse; Thompson, Seth; Hsu, Scott; Witherspoon, F. D.; University of AL in Huntsville Team; Los Alamos National Laboratory Team; HyperV Technologies Corp. Team
2014-10-01
Three-dimensional modeling of plasma liner formation and implosion is performed using the Smoothed Particle Hydrodynamics Code (SPHC) with radiation, thermal transport, and tabular equations of state (EOS), accounting for ionization, in support of a proposed 60-gun plasma liner formation experiment for plasma-jet driven magneto-inertial fusion (PJMIF). Previous SPHC modeling showed that ideal gas law scaling of peak stagnation pressure increased linearly with density and number of jets, quadratically with jet radius and velocity, and inversely with the initial jet length, while results with tabular EOS, thermal transport, and radiation have greater sensitivity to the initial jet distribution. A series of simulations are conducted to study the effects of initial jet conditions on peak ram pressure and liner non-uniformity during plasma liner implosion. The growth rate of large-amplitude density perturbations introduced by the discrete jets are computed and compared with predictions by the Bell-Plesset equation.
Supersonic beams at high particle densities: model description beyond the ideal gas approximation.
Christen, Wolfgang; Rademann, Klaus; Even, Uzi
2010-10-28
Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.
CLUSTER DYNAMICS LARGELY SHAPES PROTOPLANETARY DISK SIZES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincke, Kirsten; Pfalzner, Susanne, E-mail: kvincke@mpifr-bonn.mpg.de
2016-09-01
To what degree the cluster environment influences the sizes of protoplanetary disks surrounding young stars is still an open question. This is particularly true for the short-lived clusters typical for the solar neighborhood, in which the stellar density and therefore the influence of the cluster environment change considerably over the first 10 Myr. In previous studies, the effect of the gas on the cluster dynamics has often been neglected; this is remedied here. Using the code NBody6++, we study the stellar dynamics in different developmental phases—embedded, expulsion, and expansion—including the gas, and quantify the effect of fly-bys on the diskmore » size. We concentrate on massive clusters (M {sub cl} ≥ 10{sup 3}–6 ∗ 10{sup 4} M {sub Sun}), which are representative for clusters like the Orion Nebula Cluster (ONC) or NGC 6611. We find that not only the stellar density but also the duration of the embedded phase matters. The densest clusters react fastest to the gas expulsion and drop quickly in density, here 98% of relevant encounters happen before gas expulsion. By contrast, disks in sparser clusters are initially less affected, but because these clusters expand more slowly, 13% of disks are truncated after gas expulsion. For ONC-like clusters, we find that disks larger than 500 au are usually affected by the environment, which corresponds to the observation that 200 au-sized disks are common. For NGC 6611-like clusters, disk sizes are cut-down on average to roughly 100 au. A testable hypothesis would be that the disks in the center of NGC 6611 should be on average ≈20 au and therefore considerably smaller than those in the ONC.« less
NASA Astrophysics Data System (ADS)
HSU, J.; Lai, I.; Ip, W.; Teolis, B. D.; Perryman, R.; Waite, J. H.
2013-12-01
A very interesting finding by the Ion Neutral Mass Spectrometer on Cassini is about the detection of tiny icy grains embedded in the Enceladus gas plume during close encounters of the Cassini spacecraft with this active icy satellite of Saturn. Entering of an icy grain into the antechamber of INMS would lead to the generation of a sharp spike superimposed on the countrate profile of the gas molecules in the mass channel under measurement. Employing Monte Carlo simulations and data analysis of the INMS instrument performance, Teolis et al. (2010) investigated the time histories of the 'dust spikes' and the associated icy grain density distributions along the paths of the E3 and E5 encounters, respectively. Following similar method, we have studied the corresponding dust measurements from the E7, E14, E17 and E18 flybys. The different encounter geometries allow us to have a better understanding of the relation between the source regions of the 'dust spikes' from INMS and the jet locations and directions identified by Spitale and Porco (2007). In addition, fitting of the gas plume density profiles provide constraints on the initial conditions of the gas outflow from which the trajectories of dust particles of different sizes could be computed and compared with the INMS measurements.
Density probability distribution functions of diffuse gas in the Milky Way
NASA Astrophysics Data System (ADS)
Berkhuijsen, E. M.; Fletcher, A.
2008-10-01
In a search for the signature of turbulence in the diffuse interstellar medium (ISM) in gas density distributions, we determined the probability distribution functions (PDFs) of the average volume densities of the diffuse gas. The densities were derived from dispersion measures and HI column densities towards pulsars and stars at known distances. The PDFs of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5° and |b| >= 5° are considered separately. The PDF of
NASA Astrophysics Data System (ADS)
Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne
2017-07-01
This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non-uniform distributions of radical densities and gas temperature obtained after the nanosecond voltage pulse provide accurate initial conditions for 2D reactive flow codes to study the combustion ignition on longer timescales and compare with experiments.
Diffusion of Magnetic Field and Removal of Magnetic Flux from Clouds Via Turbulent Reconnection
NASA Astrophysics Data System (ADS)
Santos-Lima, R.; Lazarian, A.; de Gouveia Dal Pino, E. M.; Cho, J.
2010-05-01
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.
GRAVOTURBULENT PLANETESIMAL FORMATION: THE POSITIVE EFFECT OF LONG-LIVED ZONAL FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, K.; Klahr, H.; Johansen, A., E-mail: dittrich@mpia.de
2013-02-15
Recent numerical simulations have shown long-lived axisymmetric sub- and super-Keplerian flows in protoplanetary disks. These zonal flows are found in local as well as global simulations of disks unstable to the magnetorotational instability. This paper covers our study of the strength and lifetime of zonal flows and the resulting long-lived gas over- and underdensities as functions of the azimuthal and radial size of the local shearing box. We further investigate dust particle concentrations without feedback on the gas and without self-gravity. The strength and lifetime of zonal flows increase with the radial extent of the simulation box, but decrease withmore » the azimuthal box size. Our simulations support earlier results that zonal flows have a natural radial length scale of 5-7 gas pressure scale heights. This is the first study that combines three-dimensional MHD simulations of zonal flows and dust particles feeling the gas pressure. The pressure bumps trap particles with St = 1 very efficiently. We show that St = 0.1 particles (of some centimeters in size if at 5 AU in a minimum mass solar nebula) reach a hundred-fold higher density than initially. This opens the path for particles of St = 0.1 and dust-to-gas ratio of 0.01 or for particles of St {>=} 0.5 and dust-to-gas ratio 10{sup -4} to still reach densities that potentially trigger the streaming instability and thus gravoturbulent formation of planetesimals.« less
NASA Astrophysics Data System (ADS)
Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.
2018-04-01
We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.
Analysis of hydrogen plasma in MPCVD reactor
NASA Astrophysics Data System (ADS)
Shivkumar, Gayathri
The aim of this work is to build a numerical model that can predict the plasma properties of hydrogen plasmas inside a Seki Technotron Corp. AX5200S MPCVD system so that it may be used to understand and optimize the conditions for the growth of carbon nanostructures. A 2D model of the system is used in the finite element high frequency Maxwell solver and heat trasfer solver in COMSOL Multiphysics, where the solvers are coupled with user defined functions to analyze the plasma. A simplified chemistry model is formulated in order to determine the electron temperature in the plasma. This is used in the UDFs which calculate the electron number density as well as electron temperature. A Boltzmann equation solver for electrons in weakly ionized gases under uniform electric fields, called BOLSIG+, is used to obtain certain input parameters required for these UDFs. The system is modeled for several reactor geometries at pressures of 10 Torr and 30 Torr and powers ranging from 300 W to 700 W. The variation of plasma characteristics with changes in input conditions is studied and the electric field, electron number density, electron temperature and gas temperature are seen to increase with increasing power. Electric field, electron number density and electron temperature decrease and gas temperature increases with increasing pressure. The modeling results are compared with experimental measurements and a good agreement is found after calibrating the parameter gamma in Funer's model to match experimental electron number densities. The gas temperature is seen to have a weak dependence on power and a strong dependence on gas pressure. On an average, the gas temperature at a point 5 mm above the center of the puck increases from about 1000 K at a pressure of 10 Torr to about 1500 K at 30 Torr. The inclusion of the pillar produces an increase in the maximum electron number density of approximately 50%; it is higher under some conditions. It increases the maximum electron temperature by about 70% and at 500 W and 30 Torr, the maximum gas temperature is seen to increase by 50%. The effect of susceptor position is studied and it is seen that the only condition favorable to growth would be to raise it by less than 25 mm from the initial reference position or to maintain it at the same level.
Urban Futures - Innovation Engines or Slums? A Stellar Evolution Model of Urban Growth
NASA Astrophysics Data System (ADS)
Shutters, S. T.; Timmes, F.; Desouza, K.
2015-12-01
Why, as cities grow in size and density, do some "ignite" into global engines of innovation and prosperity while others grow into dense slums? This is our overarching question as we explore a novel framework for thinking about the evolution of cities and, more specifically, the divergent trajectories they may take. We develop a speculative framework by examining the analogies between the evolution of cities and the evolution of stars. Like cities, stellar gas clouds can grow in mass, eventually reaching temperature and density thresholds at which they ignite the hydrogen fuel in their cores to become full-fledged stars. But not all gas and dust clouds share this fate. Some never achieve the critical conditions and do not unleash the energy we witness emanating from our own star. Some stars, after exhaustion of their initial fuel, evolve to incredible density but lack the temperature to ignite the next fuel needed to maintain the critical interactions that release so much energy. Instead they fade away to an object of intense density, but without the vibrant emission of light and energy associated with non-degenerate stars. The fate of cities, too, depends on the density of interactions - not of gas molecules, but of people. This elevated rate of face-to-face interactions in an urban core is critical for the transition to an innovative and creative economy. Yet, density is not enough, as evidenced both by many megacities in the developing world and degenerate stars. What is this missing element that, along with density, ignites a city and turns it into an innovation engine? With these analogies in mind, we explore whether they are useful for framing future research on cities, what questions they may help pose, and, more broadly, how physical, social, and natural scientists can all contribute to an interdisciplinary endeavor to understand cities more deeply.
THE MOLECULAR GAS DENSITY IN GALAXY CENTERS AND HOW IT CONNECTS TO BULGES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, David B.; Bolatto, Alberto; Drory, Niv
2013-02-20
In this paper we present gas density, star formation rate (SFR), stellar masses, and bulge-disk decompositions for a sample of 60 galaxies. Our sample is the combined sample of the BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the effect of using CO-to-H{sub 2} conversion factors that depend on the CO surface brightness, and also that of correcting SFRs for diffuse emission from old stellar populations. We estimate that SFRs in bulges are typically lower by 20% when correcting for diffuse emission. Using the surface brightness dependent conversion factor, we find that over half of the galaxies inmore » our sample have {Sigma}{sub mol} > 100 M {sub Sun} pc{sup -2}. Though our sample is not complete in any sense, our results are enough to rule out the assumption that bulges are uniformly gas-poor systems. We find a trend between gas density of bulges and bulge Sersic index; bulges with lower Sersic index have higher gas density. Those bulges with low Sersic index (pseudobulges) have gas fractions that are similar to that of disks. Conversely, the typical molecular gas fraction in classical bulges is more similar to that of an elliptical galaxy. We also find that there is a strong correlation between bulges with the highest gas surface density and the galaxy being barred. However, we also find that classical bulges with low gas surface density can be barred as well. Our results suggest that understanding the connection between the central surface density of gas in disk galaxies and the presence of bars should also take into account the total gas content of the galaxy. Finally, we show that when using the corrected SFRs and gas densities, the correlation between SFR surface density and gas surface density of bulges is similar to that of disks. This implies that at the scale of the bulges the timescale for converting gas into stars is comparable to those results found in disks.« less
The scaling of contact rates with population density for the infectious disease models.
Hu, Hao; Nigmatulina, Karima; Eckhoff, Philip
2013-08-01
Contact rates and patterns among individuals in a geographic area drive transmission of directly-transmitted pathogens, making it essential to understand and estimate contacts for simulation of disease dynamics. Under the uniform mixing assumption, one of two mechanisms is typically used to describe the relation between contact rate and population density: density-dependent or frequency-dependent. Based on existing evidence of population threshold and human mobility patterns, we formulated a spatial contact model to describe the appropriate form of transmission with initial growth at low density and saturation at higher density. We show that the two mechanisms are extreme cases that do not capture real population movement across all scales. Empirical data of human and wildlife diseases indicate that a nonlinear function may work better when looking at the full spectrum of densities. This estimation can be applied to large areas with population mixing in general activities. For crowds with unusually large densities (e.g., transportation terminals, stadiums, or mass gatherings), the lack of organized social contact structure deviates the physical contacts towards a special case of the spatial contact model - the dynamics of kinetic gas molecule collision. In this case, an ideal gas model with van der Waals correction fits well; existing movement observation data and the contact rate between individuals is estimated using kinetic theory. A complete picture of contact rate scaling with population density may help clarify the definition of transmission rates in heterogeneous, large-scale spatial systems. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Baryons Matter: Why Luminous Satellite Galaxies have Reduced Central Masses
NASA Astrophysics Data System (ADS)
Zolotov, Adi; Brooks, Alyson M.; Willman, Beth; Governato, Fabio; Pontzen, Andrew; Christensen, Charlotte; Dekel, Avishai; Quinn, Tom; Shen, Sijing; Wadsley, James
2012-12-01
Using high-resolution cosmological hydrodynamical simulations of Milky Way-massed disk galaxies, we demonstrate that supernovae feedback and tidal stripping lower the central masses of bright (-15 < MV < -8) satellite galaxies. These simulations resolve high-density regions, comparable to giant molecular clouds, where stars form. This resolution allows us to adopt a prescription for H2 formation and destruction that ties star formation to the presence of shielded, molecular gas. Before infall, supernova feedback from the clumpy, bursty star formation captured by this physically motivated model leads to reduced dark matter (DM) densities and shallower inner density profiles in the massive satellite progenitors (M vir >= 109 M ⊙, M * >= 107 M ⊙) compared with DM-only simulations. The progenitors of the lower mass satellites are unable to maintain bursty star formation histories, due to both heating at reionization and gas loss from initial star-forming events, preserving the steep inner density profile predicted by DM-only simulations. After infall, gas stripping from satellites reduces the total central masses of satellites simulated with DM+baryons relative to DM-only satellites. Additionally, enhanced tidal stripping after infall due to the baryonic disk acts to further reduce the central DM densities of the luminous satellites. Satellites that enter with cored DM halos are particularly vulnerable to the tidal effects of the disk, exacerbating the discrepancy in the central masses predicted by baryon+DM and DM-only simulations. We show that DM-only simulations, which neglect the highly non-adiabatic evolution of baryons described in this work, produce denser satellites with larger central velocities. We provide a simple correction to the central DM mass predicted for satellites by DM-only simulations. We conclude that DM-only simulations should be used with great caution when interpreting kinematic observations of the Milky Way's dwarf satellites.
Density PDFs of diffuse gas in the Milky Way
NASA Astrophysics Data System (ADS)
Berkhuijsen, E. M.; Fletcher, A.
2012-09-01
The probability distribution functions (PDFs) of the average densities of the diffuse ionized gas (DIG) and the diffuse atomic gas are close to lognormal, especially when lines of sight at |b| < 5∘ and |b|≥ 5∘ are considered separately. Our results provide strong support for the existence of a lognormal density PDF in the diffuse ISM, consistent with a turbulent origin of density structure in the diffuse gas.
Direct Measure of the Dense Methane Phase in Gas Shale Organic Porosity by Neutron Scattering
Eberle, Aaron P. R.; King, Hubert E.; Ravikovitch, Peter I.; ...
2016-08-30
Here, we report the first direct measurements of methane density in shale gas using small-angle neutron scattering. At a constant pressure, the density of methane in the inorganic pores is similar to the gas bulk density of the system conditions. Conversely, the methane density is 2.1 ± 0.2 times greater in the organic mesopores. Furthermore, classical density functional theory calculations show that this excess density in the organic pores persists to elevated temperatures, typical of shale gas reservoir conditions, providing new insight into the hydrocarbon storage mechanisms within these reservoirs.
NASA Astrophysics Data System (ADS)
Pfeffer, Joel; Kruijssen, J. M. Diederik; Crain, Robert A.; Bastian, Nate
2018-04-01
We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population's initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ˜L⋆ galaxies with disc-like morphologies at z = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z ≳ 1-2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.
Clustering impact regime with shocks in freely evolving granular gas
NASA Astrophysics Data System (ADS)
Isobe, Masaharu
2017-06-01
A freely cooling granular gas without any external force evolves from the initial homogeneous state to the inhomogeneous clustering state, at which the energy decay deviates from the Haff's law. The asymptotic behavior of energy in the inelastic hard sphere model have been predicted by several theories, which are based on the mode coupling theory or extension of inelastic hard rods gas. In this study, we revisited the clustering regime of freely evolving granular gas via large-scale molecular dynamics simulation with up to 16.7 million inelastic hard disks. We found novel regime regarding on collisions between "clusters" spontaneously appearing after clustering regime, which can only be identified more than a few million particles system. The volumetric dilatation pattern of semicircular shape originated from density shock propagation are well characterized on the appearing of "cluster impact" during the aggregation process of clusters.
The Marble Experiment: Overview and Simulations
NASA Astrophysics Data System (ADS)
Douglas, M. R.; Murphy, T. J.; Cobble, J. A.; Fincke, J. R.; Haines, B. M.; Hamilton, C. E.; Lee, M. N.; Oertel, J. A.; Olson, R. E.; Randolph, R. B.; Schmidt, D. W.; Shah, R. C.; Smidt, J. M.; Tregillis, I. L.
2015-11-01
The Marble ICF platform has recently been launched on both OMEGA and NIF with the goal to investigate the influence of heterogeneous mix on fusion burn. The unique separated reactant capsule design consists of an ``engineered'' CH capsule filled with deuterated plastic foam that contains pores or voids that are filled with tritium gas. Initially the deuterium and tritium are separated, but as the implosion proceeds, the D and T mix, producing a DT signature. The results of these experiments will be used to inform a probability density function (PDF) burn modelling approach for un-resolved cell morphology. Initial targets for platform development have consisted of either fine-pore foams or gas mixtures, with the goal to field the engineered foams in 2016. An overview of the Marble experimental campaign will be presented and simulations will be discussed. This work is supported by US DOE/NNSA, performed at LANL, operated by LANS LLC under contract DE-AC52-06NA25396.
NASA Technical Reports Server (NTRS)
Yule, A. J.; Seng, C. A.; Boulderstone, R.; Ungut, A.; Felton, P. G.; Chigier, N. A.
1980-01-01
A laser tomographic light scattering technique provides rapid and accurate high resolution measurements of droplet sizes, concentrations, and vaporization. Measurements using a computer interfaced thermocouple are presented and it is found that the potential exists for separating gas and liquid temperature measurements and diagnosing local spray density by in situ analysis of the response characteristics of the thermocouple. The thermocouple technique provides a convenient means for measuring mean gas velocity in both hot and cold two phase flows. The experimental spray is axisymmetric and has carefully controlled initial and boundary conditions. The flow is designed to give relatively insignificant transfer of momentum and mass from spray to air flow. The effects of (1) size-dependent droplet dispersion by the turbulence, (2) the initial spatial segregation of droplet sizes during atomization, and (3) the interaction between droplets and coherent large eddies are diagnosed.
High-speed digital holography for neutral gas and electron density imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granstedt, E. M., E-mail: egranstedt@gmail.com; Thomas, C. E.; Kaita, R.
2016-05-15
An instrument was developed using digital holographic reconstruction of the wavefront from a CO{sub 2} laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1–25 μs pulses from a continuous-wave CO{sub 2} laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfullymore » reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations.« less
Ablation from High Velocity Clouds: A Source for Low Velocity Ionized Gas
NASA Astrophysics Data System (ADS)
Shelton, Robin L.; Henley, D. B.; Kwak, K.
2012-05-01
High velocity clouds shed material as they move through the Galaxy. This material mixes with the Galactic interstellar medium, resulting in plasma whose temperature and ionization levels are intermediate between those of the cloud and those of the Galaxy. As time passes, the mixed material slows to the velocity of the ambient gas. This raises the possibility that initially warm (T 10^3 K), poorly ionized clouds moving through hot (T 10^6 K), very highly ionized ambient gas could lead to mixed gas that harbors significant numbers of high ions (O+5, N+4, and C+3) and thus helps to explain the large numbers of low-velocity high ions seen on high latitude lines of sight through the Galactic halo. We have used a series of detailed FLASH simulations in order to track the hydrodynamics of warm clouds embedded in hot Galactic halo gas. These simulations tracked the ablated material as it mixed and slowed to low velocities. By following the ionization levels of the gas in a time-dependent fashion, we determined that the mixed material is rich in O+5, N+4, and C+3 ions and continues to contain these ions for some time after slowing to low velocities. Combining our simulational results with estimates of the high velocity cloud infall rate leads to the finding that the mixed gas can account for 1/3 of the normal-velocity O+5 column density found on high latitude lines of sight. It accounts for lesser fractions of the N+4 and C+3 column densities. We will discuss our high velocity cloud results as part of a composite halo model that also includes cooling Galactic fountain gas, isolated supernova remnants, and ionizing photons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guanglong; Xu, Yi; Cao, Yunjiu
The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized d{sub eq} inmore » scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.« less
The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites
NASA Technical Reports Server (NTRS)
Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.
1997-01-01
Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different density are produced at or ahead of the propagating combustion front settling of the higher density phase will occur resulting in a non-uniform product microstructure and properties.
Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I
2006-04-07
We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.
Film stability in a vertical rotating tube with a core-gas flow.
NASA Technical Reports Server (NTRS)
Sarma, G. S. R.; Lu, P. C.; Ostrach, S.
1971-01-01
The linear hydrodynamic stability of a thin-liquid layer flowing along the inside wall of a vertical tube rotating about its axis in the presence of a core-gas flow is examined. The stability problem is formulated under the conditions that the liquid film is thin, the density and viscosity ratios of gas to liquid are small and the relative (axial) pressure gradient in the gas is of the same order as gravity. The resulting eigenvalue problem is first solved by a perturbation method appropriate to axisymmetric long-wave disturbances. The damped nature (to within the thin-film and other approximations made) of the nonaxisymmetric and short-wave disturbances is noted. In view of the limitations on a truncated perturbation solution when the disturbance wavenumber is not small, an initial value method using digital computer is presented. Stability characteristics of neutral, growing, and damped modes are presented showing the influences of rotation, surface tension, and the core-gas flow. Energy balance in a neutral mode is also illustrated.
Wang, Fang; Du, Hongchen; Zhang, Jianying; Gong, Xuedong
2011-10-27
Studies have suggested that octanitrocubane (ONC) is one of the most powerful non-nuclear high energy density material (HEDM) currently known. 2,4,6,8-Tetranitro-1,3,5,7-tetraazacubane (TNTAC) studied in this work may also be a novel HEDM due to its high nitrogen content and crystal density. Density functional theory and molecular mechanics methods have been employed to study the crystal structure, IR spectrum, electronic structure, thermodynamic properties, gas-phase and condensed-phase heat of formation, detonation performance, and pyrolysis mechanism of TNTAC. The TNTAC has a predicted density of about 2.12 g/cm(3), and its detonation velocity (10.42 km/s) and detonation pressure (52.82 GPa) are higher than that of ONC. The crystalline packing is P2(1)2(1)2(1), and the corresponding cell parameters are Z = 4, a = 8.87 Å, b = 8.87 Å, and c = 11.47 Å. Both the density of states of the predicted crystal and the bond dissociation energy of the molecule in gas phase show that the cage C-N bond is the trigger bond during thermolysis. The activation energy of the pyrolysis initiation reaction obtained from the B3LYP/6-311++G(2df,2p) level is 125.98 kJ/mol, which indicates that TNTAC meets the thermal stability request as an exploitable HEDM.
Meng, Qingshi; Qin, Kaiqiang; Ma, Liying; He, Chunnian; Liu, Enzuo; He, Fang; Shi, Chunsheng; Li, Qunying; Li, Jiajun; Zhao, Naiqin
2017-09-13
A three-dimensional cross-linked porous silver network (PSN) is fabricated by silver mirror reaction using polymer foam as the template. The N-doped porous carbon nanofibers (N-PCNFs) are further prepared on PSN by chemical vapor deposition and treated by ammonia gas subsequently. The PSN substrate serving as the inner current collector will improve the electron transport efficiency significantly. The ammonia gas can not only introduce nitrogen doping into PCNFs but also increase the specific surface area of PCNFs at the same time. Because of its large surface area (801 m 2 /g), high electrical conductivity (211 S/cm), and robust structure, the as-constructed N-PCNFs/PSN demonstrates a specific capacitance of 222 F/g at the current density of 100 A/g with a superior rate capability of 90.8% of its initial capacitance ranging from 1 to 100 A/g while applied as the supercapacitor electrode. The symmetric supercapacitor device based on N-PCNFs/PSN displays an energy density of 8.5 W h/kg with power density of 250 W/kg and excellent cycling stability, which attains 103% capacitance retention after 10 000 charge-discharge cycles at a high current density of 20 A/g, which indicates that N-PCNFs/PSN is a promising candidate for supercapacitor electrode materials.
Gas Flux and Density Surrounding a Cylindrical Aperture in the Free Molecular Flow Regime
NASA Technical Reports Server (NTRS)
Soulas, George C.
2011-01-01
The equations for rigorously calculating the particle flux and density surrounding a cylindrical aperture in the free molecular flow regime are developed and presented. The fundamental equations for particle flux and density from a reservoir and a diffusely reflecting surface will initially be developed. Assumptions will include a Maxwell-Boltzmann speed distribution, equal particle and wall temperatures, and a linear flux distribution along the cylindrical aperture walls. With this information, the equations for axial flux and density surrounding a cylindrical aperture will be developed. The cylindrical aperture will be divided into multiple volumes and regions to rigorously determine the surrounding axial flux and density, and appropriate limits of integration will be determined. The results of these equations will then be evaluated. The linear wall flux distribution assumption will be assessed. The axial flux and density surrounding a cylindrical aperture with a thickness-to-radius ratio of 1.25 will be presented. Finally, the equations determined in this study will be verified using multiple methods.
NASA Astrophysics Data System (ADS)
Watson, Linda C.; Martini, Paul; Lisenfeld, Ute; Böker, Torsten; Schinnerer, Eva
2016-01-01
Studying star formation beyond the optical radius of galaxies allows us to test empirical relations in extreme conditions with low average gas density and low molecular fraction. Previous studies discovered galaxies with extended ultraviolet (XUV) discs, which often contain star-forming regions with lower Hα-to-far-UV (FUV) flux ratios compared to inner disc star-forming regions. However, most previous studies lack measurements of molecular gas, which is presumably the component of the interstellar medium out of which stars form. We analysed published CO measurements and upper limits for 15 star-forming regions in the XUV or outer disc of three nearby spiral galaxies and a new CO upper limit from the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope in one star-forming region at r = 3.4r25 in the XUV disc of NGC 4625. We found that the star-forming regions are in general consistent with the same molecular-hydrogen Kennicutt-Schmidt law that applies within the optical radius, independent of whether we used Hα or FUV as the star formation rate (SFR) tracer. However, a number of the CO detections are significantly offset towards higher SFR surface density for their molecular-hydrogen surface density. Deeper CO data may enable us to use the presence or absence of molecular gas as an evolutionary probe to break the degeneracy between age and stochastic sampling of the initial mass function as the explanation for the low Hα-to-FUV flux ratios in XUV discs.
Focusing of noncircular self-similar shock waves.
Betelu, S I; Aronson, D G
2001-08-13
We study the focusing of noncircular shock waves in a perfect gas. We construct an explicit self-similar solution by combining three convergent plane waves with regular shock reflections between them. We then show, with a numerical Riemann solver, that there are initial conditions with smooth shocks whose intermediate asymptotic stage is described by the exact solution. Unlike the focusing of circular shocks, our self-similar shocks have bounded energy density.
NASA Astrophysics Data System (ADS)
Stutz, Amelia M.
2018-02-01
We characterize the stellar and gas volume density, potential, and gravitational field profiles in the central ∼0.5 pc of the Orion Nebula Cluster (ONC), the nearest embedded star cluster (or rather, protocluster) hosting massive star formation available for detailed observational scrutiny. We find that the stellar volume density is well characterized by a Plummer profile ρstars(r) = 5755 M⊙ pc- 3 (1 + (r/a)2)- 5/2, where a = 0.36 pc. The gas density follows a cylindrical power law ρgas(R) = 25.9 M⊙ pc- 3 (R/pc)- 1.775. The stellar density profile dominates over the gas density profile inside r ∼ 1 pc. The gravitational field is gas-dominated at all radii, but the contribution to the total field by the stars is nearly equal to that of the gas at r ∼ a. This fact alone demonstrates that the protocluster cannot be considered a gas-free system or a virialized system dominated by its own gravity. The stellar protocluster core is dynamically young, with an age of ∼2-3 Myr, a 1D velocity dispersion of σobs = 2.6 km s-1, and a crossing time of ∼0.55 Myr. This time-scale is almost identical to the gas filament oscillation time-scale estimated recently by Stutz & Gould. This provides strong evidence that the protocluster structure is regulated by the gas filament. The protocluster structure may be set by tidal forces due to the oscillating filamentary gas potential. Such forces could naturally suppress low density stellar structures on scales ≳ a. The analysis presented here leads to a new suggestion that clusters form by an analogue of the 'slingshot mechanism' previously proposed for stars.
An experimental investigation of gas jets in confined swirling air flow
NASA Technical Reports Server (NTRS)
Mongia, H.; Ahmed, S. A.; Mongia, H. C.
1984-01-01
The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.
NASA Astrophysics Data System (ADS)
Mackay, D. Scott
Hydrologic equilibrium theory has been used to describe both short-term regulation of gas exchange and long-term adjustment of forest canopy density. However, by focusing on water and atmospheric conditions alone a hydrologic equilibrium may impose an oversimplification of the growth of forests adjusted to hydrology. In this study nitrogen is incorporated as a third regulation of catchment level forest dynamics and gas exchange. This was examined with an integrated distributed hydrology and forest growth model in a central Sierra Nevada watershed covered primarily by old-growth coniferous forest. Water and atmospheric conditions reasonably reproduced daily latent heat flux, and predicted the expected catenary trend of leaf area index (LAI). However, it was not until the model was provided a spatially detailed description of initial soil carbon and nitrogen pools that spatial patterns of LAI were generated. This latter problem was attributed to a lack of soil history or memory in the initialization of the simulations. Finally, by reducing stomatal sensitivity to vapor pressure deficit (VPD) the canopy density increased when water and nitrogen limitations were not present. The results support a three-control hydrologic equilibrium in the Sierra Nevada watershed. This has implications for modeling catchment level soil-vegetation-atmospheric interactions over interannual, decade, and century time-scales.
Density-driven transport of gas phase chemicals in unsaturated soils
NASA Astrophysics Data System (ADS)
Fen, Chiu-Shia; Sun, Yong-tai; Cheng, Yuen; Chen, Yuanchin; Yang, Whaiwan; Pan, Changtai
2018-01-01
Variations of gas phase density are responsible for advective and diffusive transports of organic vapors in unsaturated soils. Laboratory experiments were conducted to explore dense gas transport (sulfur hexafluoride, SF6) from different source densities through a nitrogen gas-dry soil column. Gas pressures and SF6 densities at transient state were measured along the soil column for three transport configurations (horizontal, vertically upward and vertically downward transport). These measurements and others reported in the literature were compared with simulation results obtained from two models based on different diffusion approaches: the dusty gas model (DGM) equations and a Fickian-type molar fraction-based diffusion expression. The results show that the DGM and Fickian-based models predicted similar dense gas density profiles which matched the measured data well for horizontal transport of dense gas at low to high source densities, despite the pressure variations predicted in the soil column were opposite to the measurements. The pressure evolutions predicted by both models were in trend similar to the measured ones for vertical transport of dense gas. However, differences between the dense gas densities predicted by the DGM and Fickian-based models were discernible for vertically upward transport of dense gas even at low source densities, as the DGM-based predictions matched the measured data better than the Fickian results did. For vertically downward transport, the dense gas densities predicted by both models were not greatly different from our experimental measurements, but substantially greater than the observations obtained from the literature, especially at high source densities. Further research will be necessary for exploring factors affecting downward transport of dense gas in soil columns. Use of the measured data to compute flux components of SF6 showed that the magnitudes of diffusive flux component based on the Fickian-type diffusion expressions in terms of molar concentration, molar fraction and mass density fraction gradient were almost the same. However, they were greater than the result computed with the mass fraction gradient for > 24% and the DGM-based result for more than one time. As a consequence, the DGM-based total flux of SF6 was in magnitude greatly less than the Fickian result not only for horizontal transport (diffusion-dominating) but also for vertical transport (advection and diffusion) of dense gas. Particularly, the Fickian-based total flux was more than two times in magnitude as much as the DGM result for vertically upward transport of dense gas.
Implementing an Inexpensive and Accurate Introductory Gas Density Activity with High School Students
ERIC Educational Resources Information Center
Cunningham, W. Patrick; Joseph, Christopher; Morey, Samantha; Santos Romo, Ana; Shope, Cullen; Strang, Jonathan; Yang, Kevin
2015-01-01
A simplified activity examined gas density while employing cost-efficient syringes in place of traditional glass bulbs. The exercise measured the density of methane, with very good accuracy and precision, in both first-year high school and AP chemistry settings. The participating students were tasked with finding the density of a gas. The…
NASA Astrophysics Data System (ADS)
Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.
2018-02-01
We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of the magnetic pinch. The pinch width and number density distribution are compared to experimentally obtained data to calibrate the inlet boundary conditions used to set up the plasma acceleration problem.
Development of the Los Alamos continuous high average-power microsecond pulser ion accelerator
NASA Astrophysics Data System (ADS)
Bitteker, L. J.; Wood, B. P.; Davis, H. A.; Waganaar, W. J.; Boyd, I. D.; Lovberg, R. H.
2000-10-01
The continuous high average-power microsecond pulser (CHAMP) ion accelerator is being constructed at Los Alamos National Laboratory. Progress on the testing of the CHAMP diode is discussed. A direct simulation Monte Carlo computer code is used to investigate the puffed gas fill of the CHAMP anode. High plenum pressures and low plenum volumes are found to be desirable for effective gas puffs. The typical gas fill time is 150-180 μs from initiation of valve operation to end of fill. Results of anode plasma production at three stages of development are discussed. Plasma properties are monitored with electric and magnetic field probes. From this data, the near coil plasma density under nominal conditions is found to be on the order of 1×1016 cm-3. Large error is associated with this calculation due to inconsistencies between tests and the limitations of the instrumentation used. The diode insulating magnetic field is observed to result in lower density plasma with a more diffuse structure than for the cases when the insulating field is not applied. The importance of these differences in plasma quality on the beam production is yet to be determined.
Three regimes of extrasolar planet radius inferred from host star metallicities.
Buchhave, Lars A; Bizzarro, Martin; Latham, David W; Sasselov, Dimitar; Cochran, William D; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W
2014-05-29
Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (∼4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.
Three regimes of extrasolar planet radius inferred from host star metallicities
Buchhave, Lars A.; Bizzarro, Martin; Latham, David W.; Sasselov, Dimitar; Cochran, William D.; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W.
2014-01-01
Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods1. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (~4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates2,3, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems. PMID:24870544
NASA Astrophysics Data System (ADS)
Sun, Guang-Yu; Guo, Bao-Hong; Song, Bai-Peng; Su, Guo-Qiang; Mu, Hai-Bao; Zhang, Guan-Jun
2018-06-01
A 2D simulation based on particle-in-cell and Monte Carlo collision algorithm is implemented to investigate the accumulation and dissipation of surface charges on an insulator during flashover with outgassing in vacuum. A layer of positive charges is formed on the insulator after the secondary electrons emission (SEE) reaches saturation. With the build-up of local pressure resulting from gas desorption, the incident energy of electrons is affected by electron-neutral collisions and field distortion, remarkably decreasing the charge density on the insulator. Gas desorption ionization initiates near the anode, culminating, and then abates, followed by a steady and gradual augmentation as the negatively charged surface spreads towards the cathode and halts the SEE nearby. The initiation of flashover development is discussed in detail, and a subdivision of flashover development is proposed, including an anode-initiated desorption ionization avalanche, establishment of a plasma sheath, and plasma expansion. The transform from saturation to explosion of space charges and dissipation of the surface charge are revealed, which can be explained by the competition between multipactor electrons and ionized electrons.
DUST COAGULATION IN THE VICINITY OF A GAP-OPENING JUPITER-MASS PLANET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carballido, Augusto; Matthews, Lorin S.; Hyde, Truell W., E-mail: Augusto_Carballido@baylor.edu
We analyze the coagulation of dust in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magnetorotational instability. From the MHD simulation, we obtain values of the gas velocities, densities, and turbulent stresses (a) close to the gap edge, (b) in one of the two gas streams that accrete onto the planet, (c) inside the low-density gap, and (d) outside the gap. The MHD values are then input into a Monte Carlo dust-coagulation algorithm which models grain sticking andmore » compaction. We also introduce a simple implementation for bouncing, for comparison purposes. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 μ m, and another one whose initial size distribution follows the Mathis–Rumpl–Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 μ m. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (m-w) average porosity of the initially monodisperse population reaches extremely high final values of 98%. The final m-w porosities in all other cases without bouncing range between 30% and 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap. Future studies will need to explore the effect of different planet masses and electric charge on grains.« less
Star formation in M 33: the radial and local relations with the gas
NASA Astrophysics Data System (ADS)
Verley, S.; Corbelli, E.; Giovanardi, C.; Hunt, L. K.
2010-02-01
Aims: In the Local Group spiral galaxy M 33, we investigate the correlation between the star formation rate (SFR) surface density, Σ_SFR, and the gas density Σ_gas (molecular, atomic, and total). We also explore whether there are other physical quantities, such as the hydrostatic pressure and dust optical depth, which establish a good correlation with Σ_SFR. Methods: We use the Hα, far-ultraviolet (FUV), and bolometric emission maps to infer the SFR locally at different spatial scales, and in radial bins using azimuthally averaged values. Most of the local analysis is done using the highest spatial resolution allowed by gas surveys, 180 pc. The Kennicutt-Schmidt (KS) law, Σ_SFR ∝ Σ_gas^n is analyzed by three statistical methods. Results: At all spatial scales, with Hα emission as a SFR tracer, the KS indices n are always steeper than those derived with the FUV and bolometric emissions. We attribute this to the lack of Hα emission in low luminosity regions where most stars form in small clusters with an incomplete initial mass function at their high mass end. For azimuthally averaged values the depletion timescale for the molecular gas is constant, and the KS index is n_H_2=1.1 ±0.1. Locally, at a spatial resolution of 180 pc, the correlation between Σ_SFR and Σ_gas is generally poor, even though it is tighter with the molecular and total gas than with the atomic gas alone. Considering only positions where the CO J=1-0 line is above the 2-σ detection threshold and taking into account uncertainties in Σ_H_2 and Σ_SFR, we obtain a steeper KS index than obtained with radial averages: n_H_2=2.22 ±0.07 (for FUV and bolometric SFR tracers), flatter than that relative to the total gas (n_Htot=2.59 ±0.05). The gas depletion timescale is therefore larger in regions of lower Σ_SFR. Lower KS indices (n_H_2=1.46 ±0.34 and n_H_2=1.12) are found using different fitting techniques, which do not account for individual position uncertainties. At coarser spatial resolutions these indices get slightly steeper, and the correlation improves. We find an almost linear relation and a better correlation coefficient between the local Σ_SFR and the ISM hydrostatic pressure or the gas volume density. This suggests that the stellar disk, gravitationally dominant with respect to the gaseous disk in M 33, has a non-marginal role in driving the SFR. However, the tight local correlation that exists between the dust optical depth and the SFR sheds light on the alternative hypothesis that the dust column density is a good tracer of the gas that is prone to star formation.
The CO Transition from Diffuse Molecular Gas to Dense Clouds
NASA Astrophysics Data System (ADS)
Rice, Johnathan S.; Federman, Steven
2017-06-01
The atomic to molecular transitions occurring in diffuse interstellar gas surrounding molecular clouds are affected by the local physical conditions (density and temperature) and the radiation field penetrating the material. Our optical observations of CH, CH^{+}, and CN absorption from McDonald Observatory and the European Southern Observatory are useful tracers of this gas and provide the velocity structure needed for analyzing lower resolution ultraviolet observations of CO and H_{2} absorption from Far Ultraviolet Spectroscopic Explorer. We explore the changing environment between diffuse and dense gas by using the column densities and excitation temperatures from CO and H_{2} to determine the gas density. The resulting gas densities from this method are compared to densities inferred from other methods such as C_{2} and CN chemistry. The densities allow us to interpret the trends from the combined set of tracers. Groupings of sight lines, such as those toward h and χ Persei or Chameleon provide a chance for further characterization of the environment. The Chameleon region in particular helps illuminate CO-dark gas, which is not associated with emission from H I at 21 cm or from CO at 2.6 mm. Expanding this analysis to include emission data from the GOT C+ survey allows the further characterization of neutral diffuse gas, including CO-dark gas.
Hot spot formation and stagnation properties in simulations of direct-drive NIF implosions
NASA Astrophysics Data System (ADS)
Schmitt, Andrew J.; Obenschain, Stephen P.
2016-05-01
We investigate different proposed methods of increasing the hot spot energy and radius in inertial confinement fusion implosions. In particular, shock mistiming (preferentially heating the inner edge of the target's fuel) and increasing the initial vapor gas density are investigated as possible control mechanisms. We find that only the latter is effective in substantially increasing the hot spot energy and dimensions while achieving ignition. In all cases an increase in the hot spot energy is accompanied by a decrease in the hot spot energy density (pressure) and both the yield and the gain of the target drop substantially. 2D simulations of increased vapor density targets predict an increase in the robustness of the target with respect to surface perturbations but are accompanied by significant yield degradation.
Viscosity and thermal conductivity of moderately dense gas mixtures.
NASA Technical Reports Server (NTRS)
Wakeham, W. A.; Kestin, J.; Mason, E. A.; Sandler, S. I.
1972-01-01
Derivation of a simple, semitheoretical expression for the initial density dependence of the viscosity and thermal conductivity of gaseous mixtures in terms of the appropriate properties of the pure components and of their interaction quantities. The derivation is based on Enskog's theory of dense gases and yields an equation in which the composition dependence of the linear factor in the density expansion is explicit. The interaction quantities are directly related to those of the mixture extrapolated to zero density and to a universal function valid for all gases. The reliability of the formulation is assessed with respect to the viscosity of several binary mixtures. It is found that the calculated viscosities of binary mixtures agree with the experimental data with a precision which is comparable to that of the most precise measurements.
Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole
NASA Astrophysics Data System (ADS)
Rioseco, Paola; Sarbach, Olivier
2017-05-01
We provide a systematic study for the accretion of a collisionless, relativistic kinetic gas into a nonrotating black hole. To this end, we first solve the relativistic Liouville equation on a Schwarzschild background spacetime. The most general solution for the distribution function is given in terms of appropriate symplectic coordinates on the cotangent bundle, and the associated observables, including the particle current density and stress energy-momentum tensor, are determined. Next, we explore the case where the flow is steady-state and spherically symmetric. Assuming that in the asymptotic region the gas is described by an equilibrium distribution function, we determine the relevant parameters of the accretion flow as a function of the particle density and the temperature of the gas at infinity. In particular, we find that in the low temperature limit the tangential pressure at the horizon is about an order of magnitude larger than the radial one, showing explicitly that a collisionless gas, despite exerting kinetic pressure, behaves very differently than an isotropic perfect fluid, and providing a partial explanation for the known fact that the accretion rate is much lower than in the hydrodynamic case of Bondi-Michel accretion. Finally, we establish the asymptotic stability of the steady-state spherical flows by proving pointwise convergence results which show that a large class of (possibly nonstationary and nonspherical) initial conditions for the distribution function lead to solutions of the Liouville equation which relax in time to a steady-state, spherically symmetric configuration.
Dusty Gas Accretion onto Massive Black Holes and Infrared Diagnosis of the Eddington Ratio
NASA Astrophysics Data System (ADS)
Yajima, Hidenobu; Ricotti, Massimo; Park, KwangHo; Sugimura, Kazuyuki
2017-09-01
Evidence for dust around supermassive black holes (SMBHs) in the early universe is strongly suggested by recent observations. However, the accretion mechanism of SMBHs in dusty gas is not well understood yet. We investigate the growth of intermediate-mass black holes (IMBHs) of ˜ {10}4{--}{10}6 {M}⊙ in dusty clouds by using one-dimensional radiative-hydrodynamics simulations. We find that the accretion of dusty gas onto IMBHs proceeds gently with small fluctuations of the accretion rate, whereas that of pristine gas causes more violent periodic bursts. At dust-to-gas mass ratios similar to the solar neighborhood, the time-averaged luminosity becomes smaller than that for primordial gas by one order of magnitude and the time-averaged Eddington ratio ranges from ˜ {10}-4 to ˜ {10}-2 in clouds with initial gas densities of {n}{{H}}=10{--}1000 {{cm}}-3. Our calculations show that the effect of dust opacity alone is secondary compared to the radiation pressure on dust in regulating the BH growth. We also derive spectral energy distributions at IR bands by calculating dust thermal emission and show that the flux ratio between λ ≲ 20 μ {{m}} and ≳ 100 μ {{m}} is closely related to the Eddington ratio. Thermal emission from hot dust near the BH dominates only during the phase of high accretion, producing higher flux density at ≲ 20 μ {{m}}. Therefore, we suggest that a combination of mid-IR observations by the James Webb Space Telescope and far-IR observations by ALMA or Spitzer can be used to estimate the Eddington ratio of massive BHs. We also extend our simple modeling to SMBHs of {10}8{--}{10}9 {M}⊙ and show that ALMA can detect SMBHs of ˜ {10}9 {M}⊙ at z≳ 5.
Structure analysis of simulated molecular clouds with the Δ-variance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertram, Erik; Klessen, Ralf S.; Glover, Simon C. O.
Here, we employ the Δ-variance analysis and study the turbulent gas dynamics of simulated molecular clouds (MCs). Our models account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas. We investigate simulations using three different initial mean number densities of n 0 = 30, 100 and 300 cm -3 that span the range of values typical for MCs in the solar neighbourhood. Furthermore, we model the CO line emission in a post-processing step using a radiative transfer code. We evaluate Δ-variance spectra for centroid velocity (CV) maps as well as for integrated intensity and columnmore » density maps for various chemical components: the total, H 2 and 12CO number density and the integrated intensity of both the 12CO and 13CO (J = 1 → 0) lines. The spectral slopes of the Δ-variance computed on the CV maps for the total and H 2 number density are significantly steeper compared to the different CO tracers. We find slopes for the linewidth–size relation ranging from 0.4 to 0.7 for the total and H 2 density models, while the slopes for the various CO tracers range from 0.2 to 0.4 and underestimate the values for the total and H 2 density by a factor of 1.5–3.0. We demonstrate that optical depth effects can significantly alter the Δ-variance spectra. Furthermore, we report a critical density threshold of 100 cm -3 at which the Δ-variance slopes of the various CO tracers change sign. We thus conclude that carbon monoxide traces the total cloud structure well only if the average cloud density lies above this limit.« less
Structure analysis of simulated molecular clouds with the Δ-variance
Bertram, Erik; Klessen, Ralf S.; Glover, Simon C. O.
2015-05-27
Here, we employ the Δ-variance analysis and study the turbulent gas dynamics of simulated molecular clouds (MCs). Our models account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of the gas. We investigate simulations using three different initial mean number densities of n 0 = 30, 100 and 300 cm -3 that span the range of values typical for MCs in the solar neighbourhood. Furthermore, we model the CO line emission in a post-processing step using a radiative transfer code. We evaluate Δ-variance spectra for centroid velocity (CV) maps as well as for integrated intensity and columnmore » density maps for various chemical components: the total, H 2 and 12CO number density and the integrated intensity of both the 12CO and 13CO (J = 1 → 0) lines. The spectral slopes of the Δ-variance computed on the CV maps for the total and H 2 number density are significantly steeper compared to the different CO tracers. We find slopes for the linewidth–size relation ranging from 0.4 to 0.7 for the total and H 2 density models, while the slopes for the various CO tracers range from 0.2 to 0.4 and underestimate the values for the total and H 2 density by a factor of 1.5–3.0. We demonstrate that optical depth effects can significantly alter the Δ-variance spectra. Furthermore, we report a critical density threshold of 100 cm -3 at which the Δ-variance slopes of the various CO tracers change sign. We thus conclude that carbon monoxide traces the total cloud structure well only if the average cloud density lies above this limit.« less
Polymer amide as an early topology.
McGeoch, Julie E M; McGeoch, Malcolm W
2014-01-01
Hydrophobic polymer amide (HPA) could have been one of the first normal density materials to accrete in space. We present ab initio calculations of the energetics of amino acid polymerization via gas phase collisions. The initial hydrogen-bonded di-peptide is sufficiently stable to proceed in many cases via a transition state into a di-peptide with an associated bound water molecule of condensation. The energetics of polymerization are only favorable when the water remains bound. Further polymerization leads to a hydrophobic surface that is phase-separated from, but hydrogen bonded to, a small bulk water complex. The kinetics of the collision and subsequent polymerization are discussed for the low-density conditions of a molecular cloud. This polymer in the gas phase has the properties to make a topology, viz. hydrophobicity allowing phase separation from bulk water, capability to withstand large temperature ranges, versatility of form and charge separation. Its flexible tetrahedral carbon atoms that alternate with more rigid amide groups allow it to deform and reform in hazardous conditions and its density of hydrogen bonds provides adhesion that would support accretion to it of silicon and metal elements to form a stellar dust material.
NASA Astrophysics Data System (ADS)
Puranik, Bhalchandra; Watvisave, Deepak; Bhandarkar, Upendra
2016-11-01
The interaction of a shock with a density interface is observed in several technological applications such as supersonic combustion, inertial confinement fusion, and shock-induced fragmentation of kidney and gall-stones. The central physical process in this interaction is the mechanism of the Richtmyer-Meshkov Instability (RMI). The specific situation where the density interface is initially an isolated spherical or cylindrical gas bubble presents a relatively simple geometry that exhibits all the essential RMI processes such as reflected and refracted shocks, secondary instabilities, turbulence and mixing of the species. If the incident shocks are strong, the calorically imperfect nature needs to be modelled. In the present work, we have carried out simulations of the shock-bubble interaction using the DSMC method for such situations. Specifically, an investigation of the shock-bubble interaction with diatomic gases involving rotational and vibrational excitations at high temperatures is performed, and the effects of such high temperature phenomena will be presented.
Susceptibility Measurements Near the He-3 Liquid-Gas Critical Point
NASA Technical Reports Server (NTRS)
Barmatz, Martin; Zhong, Fang; Hahn, Inseob
2000-01-01
An experiment is now being developed to measure both the linear susceptibility and specific heat at constant volume near the liquid-gas critical point of He-3 in a microgravity environment. An electrostriction technique for measuring susceptibility will be described. Initial electrostriction measurements were performed on the ground along the critical isochore in a 0.5 mm high measurement cell filled to within 0.1 % of the critical density. These measurements agreed with the susceptibility determined from pressure-density measurements along isotherms. The critical temperature, T(sub c), determined separately from specific heat and susceptibility measurements was self-consistent. Susceptibility measurements in the range t = T/T(sub c) - 1 > 10(exp -4)were fit to Chi(sup *)(sub T) = Gamma(sup +)t(exp -lambda)(1 + Gamma(sup +)(sub 1)t(sup delta). Best fit parameters for the asymptotic amplitude Gamma(sup +) and the first Wegner amplitude Gamma(sup +)(sub 1) will be presented and compared to previous measurements.
Influence of Hot SPOT Features on the Shock Initiation of Heterogeneous Nitromethane
NASA Astrophysics Data System (ADS)
Dattelbaum, D. M.; Sheffield, S. A.; Stahl, D. B.; Dattelbaum, A. M.
2009-12-01
"Hot spots," or regions of localized high temperature and pressure that arise during the shock compression of heterogeneous materials, are known to highly influence the initiation characteristics of explosives. By introducing controlled-size particles at known number densities into otherwise homogeneous explosives, details about hot spot criticality can be mapped for a given material. Here, we describe a series of gas gun-driven plate impact experiments on nitromethane loaded with 40 μm silica beads at 6 wt%. Through the use of embedded electromagnetic gauges, we have gained insight into the initiation mechanisms as a function of the input shock pressure, and present a Pop-plot for the mixture, which is further compared to neat nitromethane.
Semiphenomenological model for gas-liquid phase transitions.
Benilov, E S; Benilov, M S
2016-03-01
We examine a rarefied gas with inter-molecular attraction. It is argued that the attraction force amplifies random density fluctuations by pulling molecules from lower-density regions into high-density regions and thus may give rise to an instability. To describe this effect, we use a kinetic equation where the attraction force is taken into account in a way similar to how electromagnetic forces in plasma are treated in the Vlasov model. It is demonstrated that the instability occurs when the temperature T is lower than a certain threshold value T(s) depending on the gas density. It is further shown that, even if T is only marginally lower than T(s), the instability generates clusters with density much higher than that of the gas. These results suggest that the instability should be interpreted as a gas-liquid phase transition, with T(s) being the temperature of saturated vapor and the high-density clusters representing liquid droplets.
Thermodynamic Properties of Low-Density {}^{132}Xe Gas in the Temperature Range 165-275 K
NASA Astrophysics Data System (ADS)
Akour, Abdulrahman
2018-01-01
The method of static fluctuation approximation was used to calculate selected thermodynamic properties (internal energy, entropy, energy capacity, and pressure) for xenon in a particularly low-temperature range (165-270 K) under different conditions. This integrated microscopic study started from an initial basic assumption as the main input. The basic assumption in this method was to replace the local field operator with its mean value, then numerically solve a closed set of nonlinear equations using an iterative method, considering the Hartree-Fock B2-type dispersion potential as the most appropriate potential for xenon. The results are in very good agreement with those of an ideal gas.
Gas Chromatographic Presumptive Test for Coliform Bacteria in Water
Newman, Judith S.; O'Brien, R. T.
1975-01-01
A gas chromatographic procedure which shows promise as a presumptive test for coliform bacteria in water is described. Total coliform bacteria concentrations were determined from the incubation times at 37 C required for ethanol to be produced. Fecal coliform densities were determined in a similar manner at 44.5 C. The culture medium was filter sterilized M-9 salts supplemented with 1% lactose, 0.1% Casamino Acids, and 0.1% yeast extract. Best results were obtained when the initial total coliform concentrations were 5 per ml or higher and when fecal coliform concentrations were 50 per ml or higher. Minimum detection times at these concentrations were 9 and 12 h, respectively. PMID:1103731
NASA Astrophysics Data System (ADS)
McElroy, Kenneth L., Jr.
1992-12-01
A method is presented for the determination of neutral gas densities in the ionosphere from rocket-borne measurements of UV atmospheric emissions. Computer models were used to calculate an initial guess for the neutral atmosphere. Using this neutral atmosphere, intensity profiles for the N2 (0,5) Vegard-Kaplan band, the N2 Lyman-Birge-Hopfield band system, and the OI2972 A line were calculated and compared with the March 1990 NPS MUSTANG data. The neutral atmospheric model was modified and the intensity profiles recalculated until a fit with the data was obtained. The neutral atmosphere corresponding to the intensity profile that fit the data was assumed to be the atmospheric composition prevailing at the time of the observation. The ion densities were then calculated from the neutral atmosphere using a photochemical model. The electron density profile calculated by this model was compared with the electron density profile measured by the U.S. Air Force Geophysics Laboratory at a nearby site.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R.; Torczynski, John R.; Brady, Patrick V.; Gallis, Michail; Brooks, Carlton F.
2014-06-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-09-17
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
Process and apparatus for separation of components of a gas stream
Bryan, Charles R; Torczynski, John R; Brady, Patrick V; Gallis, Michail; Brooks, Carlton F
2013-11-19
A process and apparatus for separating a gas mixture comprising providing a slot in a gas separation channel (conceptualized as a laterally elongated Clusius-Dickel column), having a length through which a net cross-flow of the gas mixture may be established; applying a higher temperature to one side of the channel and a lower temperature on an opposite side of the channel thereby causing thermal-diffusion and buoyant-convection flow to occur in the slot; and establishing a net cross-flow of a gas mixture comprising at least one higher density gas component and at least one lower density gas component along the length of the slot, wherein the cross-flow causes, in combination with the convection flow, a spiraling flow in the slot; and wherein the spiral flow causes an increasing amount of separation of the higher density gas from the lower density gas along the length of the channel. The process may use one or more slots and/or channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E., E-mail: koepferl@usm.lmu.de
We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densitiesmore » can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect techniques.« less
Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas
NASA Astrophysics Data System (ADS)
Nath, G.
2016-09-01
One-dimensional unsteady isothermal and adiabatic flow behind a strong exponential shock wave propagating in a rotational axisymmetric mixture of non-ideal gas and small solid particles, which has variable azimuthal and axial fluid velocities, is analyzed. The shock wave is driven out by a piston moving with time according to exponential law. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to be varying and obeying exponential laws. In the present work, small solid particles are considered as pseudo-fluid with the assumption that the equilibrium flow-conditions are maintained in the flow-field, and the viscous-stress and heat conduction of the mixture are negligible. Solutions are obtained in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector and compressibility. It is found that the assumption of zero temperature gradient brings a profound change in the density, axial component of vorticity vector and compressibility distributions as compared to that of the adiabatic case. To investigate the behavior of the flow variables and the influence on the shock wave propagation by the parameter of non-idealness of the gas overline{b} in the mixture as well as by the mass concentration of solid particles in the mixture Kp and by the ratio of the density of solid particles to the initial density of the gas G1 are worked out in detail. It is interesting to note that the shock strength increases with an increase in G1 ; whereas it decreases with an increase in overline{b} . Also, a comparison between the solutions in the cases of isothermal and adiabatic flows is made.
A metallicity recipe for rocky planets
NASA Astrophysics Data System (ADS)
Dawson, Rebekah I.; Chiang, Eugene; Lee, Eve J.
2015-10-01
Planets with sizes between those of Earth and Neptune divide into two populations: purely rocky bodies whose atmospheres contribute negligibly to their sizes, and larger gas-enveloped planets possessing voluminous and optically thick atmospheres. We show that whether a planet forms rocky or gas-enveloped depends on the solid surface density of its parent disc. Assembly times for rocky cores are sensitive to disc solid surface density. Lower surface densities spawn smaller planetary embryos; to assemble a core of given mass, smaller embryos require more mergers between bodies farther apart and therefore exponentially longer formation times. Gas accretion simulations yield a rule of thumb that a rocky core must be at least 2M⊕ before it can acquire a volumetrically significant atmosphere from its parent nebula. In discs of low solid surface density, cores of such mass appear only after the gas disc has dissipated, and so remain purely rocky. Higher surface density discs breed massive cores more quickly, within the gas disc lifetime, and so produce gas-enveloped planets. We test model predictions against observations, using planet radius as an observational proxy for gas-to-rock content and host star metallicity as a proxy for disc solid surface density. Theory can explain the observation that metal-rich stars host predominantly gas-enveloped planets.
Multiple Point Dynamic Gas Density Measurements Using Molecular Rayleigh Scattering
NASA Technical Reports Server (NTRS)
Seasholtz, Richard; Panda, Jayanta
1999-01-01
A nonintrusive technique for measuring dynamic gas density properties is described. Molecular Rayleigh scattering is used to measure the time-history of gas density simultaneously at eight spatial locations at a 50 kHz sampling rate. The data are analyzed using the Welch method of modified periodograms to reduce measurement uncertainty. Cross-correlations, power spectral density functions, cross-spectral density functions, and coherence functions may be obtained from the data. The technique is demonstrated using low speed co-flowing jets with a heated inner jet.
The effect of skin moisture on the density distribution of OH and O close to the skin surface
NASA Astrophysics Data System (ADS)
Wu, F.; Li, J.; Liu, F.; Zhou, X.; Lu, X.
2018-03-01
OH radicals and O atoms are believed to be two of the most important reactive species in various biomedical applications of atmospheric pressure plasma jets. In this study, the effect of the skin moisture on the density distribution of OH and O close to the surface of the ex vivo pig skin is investigated by using laser-induced fluorescence technology. The skin moistures used in this study are 20%, 40%, 60%, and 80%, respectively. The experiment results indicate that, at a gas flow rate of 0.5 L/min, when the skin moisture is increased, the OH density close to the skin surface increases, while the O density decreases. On the other hand, when the gas flow rate is increased to 1 L/min, the OH density close to the skin surface is less sensitive with the moisture of the skin surface. Besides, when the skin moisture is 80%, the OH density increases with the increase in the concentration of H2O in the working gas and it reaches its maximum 7.9 × 1013 cm-3 when the concentration of H2O in the working gas is about 500 ppm. The OH density starts to decrease while the H2O concentration in the working gas keeps increasing. On the order hand, the O density shows a maximum 7.4 × 1014 cm-3 when the gas flow rate is 0.5 L/min with no O2 added and the skin moisture is 20%. But, when the gas flow rate is increased to about 1 to 2 L/min, the O density achieves its maximum when 0.5% of O2 is added to the working gas. The possible reasons for these observations are discussed.
Gravitational Collapse of Spherical Interstellar Clouds
NASA Astrophysics Data System (ADS)
Ogino, Shinya; Tomisaka, Kohji; Nakamura, Fumitaka
1999-10-01
In this paper, the gravitational collapse of spherical interstellar clouds is discussed based on hydro\\-dynamical simulations. The evolution is divided into two phases: former runaway collapse phase, in which the central density increases greatly on a finite time scale, and later contraction, associated with accretion onto a newborn star. The initial density distribution is expressed using a ratio of the gravitational force to the pressure force alpha . The equation of state for a polytropic gas is used. The central, high-density part of the solution converges on a self-similar solution, which was first derived for the runaway collapse by Larson and Penston (LP). In the later accretion phase, gas behaves like a particle, and the infall speed is accelerated by the gravity of the central object. The solution at this stage is qualitatively similar to the inside-out similarity solutions first found by Shu. However, it is shown that the gas-inflow (accretion) rate is time-dependent, in contrast to the constant rate of the inside-out similarity solutions. For isothermal models in which the pressure is important, 1 <~ alpha <~ 3.35, the accretion rate reaches its maximum when the central part, which obeys the LP solution, contracts and accretes. On the other hand, in isothermal models in which gravity is dominant, alpha >~ 3.35, the accretion becomes most active at the epoch when the outer part of the cloud falls onto the center. The effect of the non-isothermal equation of state is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shlapakovski, A. S.; Beilin, L.; Krasik, Ya. E.
Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasingmore » ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.« less
NASA Astrophysics Data System (ADS)
Kim, Jeong-Gyu; Kim, Woong-Tae; Ostriker, Eve C.
2018-05-01
UV radiation feedback from young massive stars plays a key role in the evolution of giant molecular clouds (GMCs) by photoevaporating and ejecting the surrounding gas. We conduct a suite of radiation hydrodynamic simulations of star cluster formation in marginally bound, turbulent GMCs, focusing on the effects of photoionization and radiation pressure on regulating the net star formation efficiency (SFE) and cloud lifetime. We find that the net SFE depends primarily on the initial gas surface density, Σ0, such that the SFE increases from 4% to 51% as Σ0 increases from 13 to 1300 {M}ȯ {pc}}-2. Cloud destruction occurs within 2–10 Myr after the onset of radiation feedback, or within 0.6–4.1 freefall times (increasing with Σ0). Photoevaporation dominates the mass loss in massive, low surface density clouds, but because most photons are absorbed in an ionization-bounded Strömgren volume, the photoevaporated gas fraction is proportional to the square root of the SFE. The measured momentum injection due to thermal and radiation pressure forces is proportional to {{{Σ }}}0-0.74, and the ejection of neutrals substantially contributes to the disruption of low mass and/or high surface density clouds. We present semi-analytic models for cloud dispersal mediated by photoevaporation and by dynamical mass ejection, and show that the predicted net SFE and mass loss efficiencies are consistent with the results of our numerical simulations.
OT1_dlis_2: Ammonia as a Tracer of the Earliest Stages of Star Formation
NASA Astrophysics Data System (ADS)
Lis, D.
2010-07-01
Stars form in molecular cloud cores, cold and dense regions enshrouded by dust. The initiation of this process is among the least understood steps of star formation. Highresolution heterodyne spectroscopy provides invaluable information about the physical conditions (density, temperature), kinematics (infall, outflows), and chemistry of these regions. Classical molecular tracers, such CO, CS, and many other abundant gasphase species, have been shown to freeze out onto dust grain mantles in prestellar cores. However, Nbearing species, in particular ammonia, are much less affected by depletion and are observed to stay in the gas phase at densities in excess of 1e6 cm3. The molecular freezeout has important consequences for the chemistry of dense gas. In particular, the depletion of abundant gasphase species with heavy atoms drives up abundances of deuterated H3+ isotopologues, which in turn results in spectacular deuteration levels of molecules that do remain in the gas phase. Consequently, lines of deuterated Nbearing species, in particular the fundamental lines of ammonia isotopologues, having very high critical densities, are optimum tracers of innermost regions of dense cores. We propose to study the morphology, density structure and kinematics of cold and dense cloud cores, by mapping the spatial distribution of ammonia isotopologues in isolated dense prestellar cores using Herschel/HIFI. These observations provide optimum probes of the onset of star formation, as well as the physical processes that control gasgrain interaction, freezeout, mantle ejection and deuteration. The sensitive, highresolution spectra acquired within this program will be analyzed using sophisticated radiative transfer models and compared with outputs of stateoftheart 3D MHD simulations and chemical models developed by the members of our team.
NASA Astrophysics Data System (ADS)
Tachibana, Kunihide; Nakamura, Toshihiro; Kawasaki, Mitsuo; Morita, Tatsuo; Umekawa, Toyofumi; Kawasaki, Masahiro
2018-01-01
We measured water molecule (H2O) density by tunable diode-laser absorption spectroscopy (TDLAS) for applications in dielectric barrier discharges (DBDs) with a gas-water interface. First, the effects of water temperature and presence of gas flow were tested using a Petri dish filled with water and a gas injection nozzle. Second, the TDLAS system was applied to the measurements of H2O density in two types of DBDs; one was a normal (non-inverted) type with a dielectric-covered electrode above a water-filled counter electrode and the other was an inverted type with a water-suspending mesh electrode above a dielectric-covered counter electrode. The H2O density in the normal DBD was close to the density estimated from the saturated vapor pressure, whereas the density in the inverted DBD was about half of that in the former type. The difference is attributed to the upward gas flow in the latter type, that pushes the water molecules up towards the gas-water interface.
15N fractionation in infrared-dark cloud cores
NASA Astrophysics Data System (ADS)
Zeng, S.; Jiménez-Serra, I.; Cosentino, G.; Viti, S.; Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Fontani, F.; Hily-Blant, P.
2017-07-01
Context. Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the solar system may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. Aims: We seek to determine the 14N/15N ratio towards a sample of cold and dense cores at the initial stages in their evolution. Methods: We observed the J = 1 → 0 transitions of HCN, H13CN, HC15N, HN13C, and H15NC towards a sample of 22 cores in four infrared-dark clouds (IRDCs) which are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15 K, the column densities of HCN, H13CN, HC15N, HN13C, and H15NC are calculated and their 14N/15N ratio is determined for each core. Results: The 14N/15N ratios measured in our sample of IRDC cores range between 70 and ≥763 in HCN and between 161 and 541 in HNC. These ratios are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass prestellar cores. However, the 14N/15N ratios measured in cores C1, C3, F1, F2, and G2 do not agree with the results from similar studies towards the same cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Conclusions: Relatively low 14N/15N ratios amongst the four-IRDCs were measured in IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A22
NASA Technical Reports Server (NTRS)
Vedantam, Nanda Kishore
2003-01-01
The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.
Solid-particle jet formation under shock-wave acceleration.
Rodriguez, V; Saurel, R; Jourdan, G; Houas, L
2013-12-01
When solid particles are impulsively dispersed by a shock wave, they develop a spatial distribution which takes the form of particle jets whose selection mechanism is still unidentified. The aim of the present experimental work is to study particle dispersal with fingering effects in an original quasi-two-dimensional experiment facility in order to accurately extract information. Shock and blast waves are generated in the carrier gas at the center of a granular medium ring initially confined inside a Hele-Shaw cell and impulsively accelerated. With the present experimental setup, the particle jet formation is clearly observed. From fast flow visualizations, we notice, in all instances, that the jets are initially generated inside the particle ring and thereafter expelled outward. This point has not been observed in three-dimensional experiments. We highlight that the number of jets is unsteady and decreases with time. For a fixed configuration, considering the very early times following the initial acceleration, the jet size selection is independent of the particle diameter. Moreover, the influence of the initial overpressure and the material density on the particle jet formation have been studied. It is shown that the wave number of particle jets increases with the overpressure and with the decrease of the material density. The normalized number of jets as a function of the initial ring acceleration shows a power law valid for all studied configurations involving various initial pressure ratios, particle sizes, and particle materials.
Inferential determination of various properties of a gas mixture
Morrow, Thomas B.; Behring, II, Kendricks A.
2007-03-27
Methods for inferentially determining various properties of a gas mixture, when the speed of sound in the gas is known at an arbitrary temperature and pressure. The method can be applied to natural gas mixtures, where the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for heating value calculations. The method may also be applied to inferentially determine density and molecular weight for gas mixtures other than natural gases.
NASA Astrophysics Data System (ADS)
Angelis, S. De; Lamb, O. D.; Lamur, A.; Hornby, A. J.; von Aulock, F. W.; Chigna, G.; Lavallée, Y.; Rietbrock, A.
2016-06-01
The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas-and-ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum-driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small-to-moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.
Angelis, S De; Lamb, O D; Lamur, A; Hornby, A J; von Aulock, F W; Chigna, G; Lavallée, Y; Rietbrock, A
2016-06-28
The rapid discharge of gas and rock fragments during volcanic eruptions generates acoustic infrasound. Here we present results from the inversion of infrasound signals associated with small and moderate gas-and-ash explosions at Santiaguito volcano, Guatemala, to retrieve the time history of mass eruption rate at the vent. Acoustic waveform inversion is complemented by analyses of thermal infrared imagery to constrain the volume and rise dynamics of the eruption plume. Finally, we combine results from the two methods in order to assess the bulk density of the erupted mixture, constrain the timing of the transition from a momentum-driven jet to a buoyant plume, and to evaluate the relative volume fractions of ash and gas during the initial thrust phase. Our results demonstrate that eruptive plumes associated with small-to-moderate size explosions at Santiaguito only carry minor fractions of ash, suggesting that these events may not involve extensive magma fragmentation in the conduit.
NASA Astrophysics Data System (ADS)
Bourne, S. J.; Oates, S. J.
2017-12-01
Measurements of the strains and earthquakes induced by fluid extraction from a subsurface reservoir reveal a transient, exponential-like increase in seismicity relative to the volume of fluids extracted. If the frictional strength of these reactivating faults is heterogeneously and randomly distributed, then progressive failures of the weakest fault patches account in a general manner for this initial exponential-like trend. Allowing for the observable elastic and geometric heterogeneity of the reservoir, the spatiotemporal evolution of induced seismicity over 5 years is predictable without significant bias using a statistical physics model of poroelastic reservoir deformations inducing extreme threshold frictional failures of previously inactive faults. This model is used to forecast the temporal and spatial probability density of earthquakes within the Groningen natural gas reservoir, conditional on future gas production plans. Probabilistic seismic hazard and risk assessments based on these forecasts inform the current gas production policy and building strengthening plans.
Physical conditions in star-forming regions around S235
NASA Astrophysics Data System (ADS)
Kirsanova, M. S.; Wiebe, D. S.; Sobolev, A. M.; Henkel, C.; Tsivilev, A. P.
2014-01-01
Gas density and temperature in star-forming regions around Sh2-235 are derived from ammonia line observations. This information is used to evaluate formation scenarios and to determine evolutionary stages of the young embedded clusters S235 East 1, S235 East 2 and S235 Central. We also estimate the gas mass in the embedded clusters and its ratio to the stellar mass. S235 East 1 appears to be less evolved than S235 East 2 and S235 Central. In S235 East 1 the molecular gas mass exceeds that in the other clusters. Also, this cluster is more embedded in the parent gas cloud than the other two. Comparison with a theoretical model shows that the formation of these three clusters could have been stimulated by the expansion of the Sh2-235 H II region (hereafter S235) via a collect-and-collapse process, provided the density in the surrounding gas exceeds 3 × 103 cm-3, or via collapse of pre-existing clumps. The expansion of S235 cannot be responsible for star formation in the southern S235 A-B region. However, formation of the massive stars in this region might have been triggered by a large-scale supernova shock. Thus, triggered star formation in the studied region may come in three varieties, namely collect-and-collapse and collapse of pre-existing clumps, both initiated by expansion of the local H II regions, and triggered by an external large-scale shock. We argue that the S235 A H II region expands into a highly non-uniform medium with increasing density. It is too young to trigger star formation in its vicinity by a collect-and-collapse process. There is an age spread inside the S235 A-B region. Massive stars in the S235 A-B region are considerably younger than lower mass stars in the same area. This follows from the estimates of their ages and the ages of associated H II regions.
Numerical analysis of wellbore instability in gas hydrate formation during deep-water drilling
NASA Astrophysics Data System (ADS)
Zhang, Huaiwen; Cheng, Yuanfang; Li, Qingchao; Yan, Chuanliang; Han, Xiuting
2018-02-01
Gas hydrate formation may be encountered during deep-water drilling because of the large amount and wide distribution of gas hydrates under the shallow seabed of the South China Sea. Hydrates are extremely sensitive to temperature and pressure changes, and drilling through gas hydrate formation may cause dissociation of hydrates, accompanied by changes in wellbore temperatures, pore pressures, and stress states, thereby leading to wellbore plastic yield and wellbore instability. Considering the coupling effect of seepage of drilling fluid into gas hydrate formation, heat conduction between drilling fluid and formation, hydrate dissociation, and transformation of the formation framework, this study established a multi-field coupling mathematical model of the wellbore in the hydrate formation. Furthermore, the influences of drilling fluid temperatures, densities, and soaking time on the instability of hydrate formation were calculated and analyzed. Results show that the greater the temperature difference between the drilling fluid and hydrate formation is, the faster the hydrate dissociates, the wider the plastic dissociation range is, and the greater the failure width becomes. When the temperature difference is greater than 7°C, the maximum rate of plastic deformation around the wellbore is more than 10%, which is along the direction of the minimum horizontal in-situ stress and associated with instability and damage on the surrounding rock. The hydrate dissociation is insensitive to the variation of drilling fluid density, thereby implying that the change of the density of drilling fluids has a minimal effect on the hydrate dissociation. Drilling fluids that are absorbed into the hydrate formation result in fast dissociation at the initial stage. As time elapses, the hydrate dissociation slows down, but the risk of wellbore instability is aggravated due to the prolonged submersion in drilling fluids. For the sake of the stability of the wellbore in deep-water drilling through hydrate formation, the drilling fluid with low temperatures should be given priority. The drilling process should be kept under balanced pressures, and the drilling time should be shortened.
Shapes of star-gas waves in spiral galaxies
NASA Technical Reports Server (NTRS)
Lubow, Stephen H.
1988-01-01
Density-wave profile shapes are influenced by several effects. By solving viscous fluid equations, the nonlinear effects of the gas and its gravitational interaction with the stars can be analyzed. The stars are treated through a linear theory developed by Lin and coworkers. Short wavelength gravitational forces are important in determining the gas density profile shape. With the inclusion of disk finite thickness effects, the gas gravitational field remains important, but is significantly reduced at short wavelengths. Softening of the gas equation of state results in an enhanced response and a smoothing of the gas density profile. A Newtonian stress relation is marginally acceptable for HI gas clouds, but not acceptable for giant molecular clouds.
A grid of one-dimensional low-mass star formation collapse models
NASA Astrophysics Data System (ADS)
Vaytet, N.; Haugbølle, T.
2017-02-01
Context. Numerical simulations of star formation are becoming ever more sophisticated, incorporating new physical processes in increasingly realistic set-ups. These models are being compared to the latest observations through state-of-the-art synthetic renderings that trace the different chemical species present in the protostellar systems. The chemical evolution of the interstellar and protostellar matter is very topical, with more and more chemical databases and reaction solvers available online to the community. Aims: The current study was developed to provide a database of relatively simple numerical simulations of protostellar collapse as a template library for observations of cores and very young protostars, and for researchers who wish to test their chemical modelling under dynamic astrophysical conditions. It was also designed to identify statistical trends that may appear when running many models of the formation of low-mass stars by varying the initial conditions. Methods: A large set of 143 calculations of the gravitational collapse of an isolated sphere of gas with uniform temperature and a Bonnor-Ebert-like density profile was undertaken using a 1D fully implicit Lagrangian radiation hydrodynamics code. The parameter space covered initial masses from 0.2 to 8 M⊙, temperatures of 5-30 K, and radii 3000 ≤ R0 ≤ 30 000 AU. Results: A spread due to differing initial conditions and optical depths, was found in the thermal evolutionary tracks of the runs. Within less than an order of magnitude, all first and second Larson cores had masses and radii essentially independent of the initial conditions. Radial profiles of the gas density, velocity, and temperature were found to vary much more outside of the first core than inside. The time elapsed between the formation of the first and second cores was found to strongly depend on the first core mass accretion rate, and no first core in our grid of models lived for longer than 2000 years before the onset of the second collapse. Conclusions: The end product of a protostellar cloud collapse, the second Larson core, is at birth a canonical object with a mass and radius of about 3 MJ and 8 RJ, independent of its initial conditions. The evolution sequence which brings the gas to stellar densities can, however, proceed in a variety of scenarios, on different timescales or along different isentropes, but each story line can largely be predicted by the initial conditions. All the data from the simulations are publicly available. The figures and raw data for every simulation output can be found at this address: http://starformation.hpc.ku.dk/grid-of-protostars. Copies of the outputs, as well as Table C.1, are also available in the form of static electronic tables at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A116
NASA Astrophysics Data System (ADS)
Edo, Takahiro; Asai, T.; Tanaka, F.; Yamada, S.; Hosozawa, A.; Gota, H.; Roche, T.; Allfrey, I.; Matsumoto, T.
2017-10-01
A magnetized coaxial plasma gun (MCPG) is a device used to generate a compact toroid (CT), which has a spheromak-like configuration. A typical MCPG consists of a set of axisymmetric cylindrical electrodes, bias coil, and gas-puff valves. In order to expand the CT operating range, the distributions of the bias magnetic field and neutral gas have been investigated. We have developed a new means of generating stuffing flux. By inserting an iron core into the bias coil, the magnetic field increases dramatically; even a small current of a few Amps produces a sufficient bias field. According to a simulation result, it was also suggested that the radial distribution of the bias field is easily controlled. The ejected CT and the target FRC are cooled by excess neutral gas that typical MCPGs require to initiate a breakdown; therefore, we have adopted a miniature gun as a new pre-ionization (PI) system. By introducing this PI system, the breakdown occurs at lower neutral gas density so that the amount of excess neutral gas can be reduced.
Forming the First Stars in the Universe: The Fragmentation of Primordial Gas.
Bromm; Coppi; Larson
1999-12-10
In order to constrain the initial mass function of the first generation of stars (Population III), we investigate the fragmentation properties of metal-free gas in the context of a hierarchical model of structure formation. We investigate the evolution of an isolated 3 sigma peak of mass 2x106 M middle dot in circle that collapses at zcoll approximately 30 using smoothed particle hydrodynamics. We find that the gas dissipatively settles into a rotationally supported disk that has a very filamentary morphology. The gas in these filaments is Jeans unstable with MJ approximately 103 M middle dot in circle. Fragmentation leads to the formation of high-density (n>108 cm-3) clumps that subsequently grow in mass by accreting the surrounding gas and by merging with other clumps up to masses of approximately 104 M middle dot in circle. This suggests that the very first stars were rather massive. We explore the complex dynamics of the merging and tidal disruption of these clumps by following their evolution over a few dynamical times.
clustep: Initial conditions for galaxy cluster halo simulations
NASA Astrophysics Data System (ADS)
Ruggiero, Rafael
2017-11-01
clustep generates a snapshot in GADGET-2 (ascl:0003.001) format containing a galaxy cluster halo in equilibrium; this snapshot can also be read in RAMSES (ascl:1011.007) using the DICE patch. The halo is made of a dark matter component and a gas component, with the latter representing the ICM. Each of these components follows a Dehnen density profile, with gamma=0 or gamma=1. If gamma=1, then the profile corresponds to a Hernquist profile.
Grant M. Domke; Christopher W. Woodall; James E. Smith
2011-01-01
Standing dead trees are one component of forest ecosystem dead wood carbon (C) pools, whose national stock is estimated by the U.S. as required by the United Nations Framework Convention on Climate Change. Historically, standing dead tree C has been estimated as a function of live tree growing stock volume in the U.S.'s National Greenhouse Gas Inventory. Initiated...
Circumstellar chlorine chemistry and a search for AlCl
NASA Astrophysics Data System (ADS)
Clegg, R. E. S.; Wootten, H. A.
1980-09-01
The J = 7-6 transition of AlCl has been sought in carbon-rich circumstellar shells, Orion A, and Sgr B-2. The upper limit for IRC + 10216 is 20 times less than the predicted value for fully associated AlCl. It is suggested that either the initial density in the circumstellar gas flow (not greater than 10 to the 10th per cu cm) or the gaseous Al and Cl are depleted by grains in this object.
A mathematical model of the passage of an asteroid-comet body through the Earth’s atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaydurov, V., E-mail: shaidurov04@mail.ru; Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk; Shchepanovskaya, G.
In the paper, a mathematical model and a numerical algorithm are proposed for modeling the complex of phenomena which accompany the passage of a friable asteroid-comet body through the Earth’s atmosphere: the material ablation, the dissociation of molecules, and the radiation. The proposed model is constructed on the basis of the Navier-Stokes equations for viscous heat-conducting gas with an additional equation for the motion and propagation of a friable lumpy-dust material in air. The energy equation is modified for the relation between two its kinds: the usual energy of the translation of molecules (which defines the temperature and pressure) andmore » the combined energy of their rotation, oscillation, electronic excitation, dissociation, and radiation. For the mathematical model of atmosphere, the distribution of density, pressure, and temperature in height is taken as for the standard atmosphere. An asteroid-comet body is taken initially as a round body consisting of a friable lumpy-dust material with corresponding density and significant viscosity which far exceed those for the atmosphere gas. A numerical algorithm is proposed for solving the initial-boundary problem for the extended system of Navier-Stokes equations. The algorithm is the combination of the semi-Lagrangian approximation for Lagrange transport derivatives and the conforming finite element method for other terms. The implementation of these approaches is illustrated by a numerical example.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnedermann, E.; Heinz, U.
We are analyzing the hydrodynamics of 200[ital A] GeV S+S collisions using a new approach which tries to quantify the uncertainties arising from the specific implementation of the hydrodynamical model. Based on a previous phenomenological analysis we use the global hydrodynamics model to show that the amount of initial flow, or initial energy density, cannot be determined from the hadronic momentum spectra. We additionally find that almost always a sizable transverse flow develops, which causes the system to freeze out, thereby limiting the flow velocity in itself. This freeze-out dominance in turn makes a distinction between a plasma and amore » hadron resonance gas equation of state very difficult, whereas a pure pion gas can easily be ruled out from present data. To complete the picture we also analyze particle multiplicity data, which suggest that chemical equilibrium is not reached with respect to the strange particles. However, the overpopulation of pions seems to be at most moderate, with a pion chemical potential far away from the Bose divergence.« less
Ceres: Its Origin and Predicted Bulk Chemical Composition
NASA Astrophysics Data System (ADS)
Prentice, Andrew
2014-11-01
I explore the formation of Ceres in the framework of the Modern Laplacian theory of Solar System origin (MLT; Prentice 2006 PASA 23 1; 2008 LPSC, abs.1945.pdf). I suggest that all MB asteroids condensed within a gas ring cast off from the equator of the contracting protosolar cloud (PSC) near to the mean present orbit of Ceres. According to the MLT, the shedding of gas rings started at the orbit of Quaoar and comes about through supersonic turbulent stress due to powerful convective motions in the cloud. If the PSC contracts uniformly, the gas ring mean orbital radii Rn (n = 0, 1, 2...) form a geometric sequence and their temperatures Tn scale nearly as Tn ~ A/Rn. The values of the mean ratio Rn/Rn+1 and the constant A depend on the controlling parameters of the PSC. These are chosen so that the mean ratio
NASA Astrophysics Data System (ADS)
Jappsen, A.-K.; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.-M.
2005-12-01
We study the influence of low levels of metal enrichment on the cooling and collapse of ionized gas in small protogalactic halos. We use three-dimensional, smoothed particle hydrodynamics simulations, run with the publicly available parallel code GADGET (Springel et al. 2001). We implement a sink particle algorithm. This allows us to safely represent gas that has collapsed beyond the resolution limit without causing numerical errors within the resolved regions of the simulation. We also include the necessary framework for following the non-equilibrium chemistry of H2 in the protogalactic gas, and a treatment of radiative heating and cooling. Our initial conditions represent protogalaxies forming within a fossil H ii region---a previously ionized H ii region that has not yet had time to cool and recombine. Prior to cosmological reionization, such regions should be relatively common, since the characteristic lifetimes of the likely ionizing sources are significantly shorter than a Hubble time. We show that in these regions, H2 is the dominant and most effective coolant, even in the presence of small amounts of metals. It is the amount of H2 which forms that controls whether or not the gas can collapse and form stars. For metallicities Z ≤ 10-3 Z⊙, we find that metal line cooling alters the density and temperature evolution of the gas by less than 1% compared to the metal-free case at densities below 1 cm-3 and temperatures above 2000 K. However, at higher densities and lower temperatures, metal line cooling does become rather more important, and will affect the ability of the gas to fragment. We also show that an external ultraviolet background delays or suppresses the cooling and collapse of the gas regardless of whether or not it is metal-enriched. RSK and A-KJ acknowledge support from the Emmy Noether Program of the Deutsche Forschungsgemeinschaft (grant no. KL1358/1). M-MML acknowledges support from NSF grants AST99-85392 and AST03-07854, and NASA grant NAG5-10103. SCOG acknowledges support from NSF grant AST03-07793, and NASA grant NAG5-13028. The simulations were performed on the cluster "sanssouci" at Astrophysikalisches Institut Potsdam.
Hydrodynamics of a cold one-dimensional fluid: the problem of strong shock waves
NASA Astrophysics Data System (ADS)
Hurtado, Pablo I.
2005-03-01
We study a shock wave induced by an infinitely massive piston propagating into a one-dimensional cold gas. The cold gas is modelled as a collection of hard rods which are initially at rest, so the temperature is zero. Most of our results are based on simulations of a gas of rods with binary mass distribution, and we partcularly focus on the case of spatially alternating masses. We find that the properties of the resulting shock wave are in striking contrast with those predicted by hydrodynamic and kinetic approaches, e.g., the flow-field profiles relax algebraically toward their equilibrium values. In addition, most relevant observables characterizing local thermodynamic equilibrium and equipartition decay as a power law of the distance to the shock layer. The exponents of these power laws depend non-monotonously on the mass ratio. Similar interesting dependences on the mass ratio also characterize the shock width, density and temperature overshoots, etc.
Ecton processes in the generation of pulsed runaway electron beams in a gas discharge
NASA Astrophysics Data System (ADS)
Mesyats, G. A.
2017-09-01
As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.
NASA Technical Reports Server (NTRS)
Keller, C. W.; Cunnington, G. R.; Glassford, A. P.
1974-01-01
Experimental and analytical studies were conducted in order to extend previous knowledge of the thermal performance and gas evacuation characteristics of three selected multilayer insulation (MLI) composites. Flat plate calorimeter heat flux measurements were obtained for 20- and 80- shield specimens using three representative layer densities over boundary temperatures ranging from 39 K (70 R) to 389 K (700 R). Laboratory gas evacuation tests were performed on representative specimens of each MLI composite after initially purging them with helium, nitrogen, or argon gases. In these tests, the specimens were maintained at temperatures between 128 K (230 R) and 300 K (540 R). Based on the results of the laboratory-scale tests, a composite MLI system consisting of 112 unperforated, double-aluminized Mylar reflective shields and 113 water preconditioned silk net spacer pairs was fabricated and installed on a 1.22-m-(4-ft-) diameter calorimeter tank.
CFD Analyses of Air-Ingress Accident for VHTRs
NASA Astrophysics Data System (ADS)
Ham, Tae Kyu
The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air-ingress mechanism and to utilize the CFD simulation in the analysis of the phenomenon. Previous air-ingress studies simulated the depressurization process using simple assumptions or 1-D system code results. However, recent studies found flow oscillations near the end of the depressurization which could influence the next stage of the air-ingress accident. Therefore, CFD simulations were performed to examine the air-ingress mechanisms from the depressurization through the establishment of local natural circulation initiate. In addition to the double-guillotine break scenario, there are other scenarios that can lead to an air-ingress event such as a partial break were in the cross vessel with various break locations, orientations, and shapes. These additional situations were also investigated. The simulation results for the OSU test facility showed that the discharged helium coolant from a reactor vessel during the depressurization process will be mixed with the air in the containment. This process makes the density of the gas mixture in the containment lower and the density-driven air-ingress flow slower because the density-driven flow is established by the density difference of the gas species between the reactor vessel and the containment. In addition, for the simulations with various initial and boundary conditions, the simulation results showed that the total accumulated air in the containment collapsed within 10% standard deviation by: 1. multiplying the density ratio and viscosity ratio of the gas species between the containment and the reactor vessel and 2. multiplying the ratio of the air mole fraction and gas temperature to the reference value. By replacing the gas mixture in the reactor cavity with a gas heavier than the air, the air-ingress speed slowed down. Based on the understanding of the air-ingress phenomena for the GT-MHR air-ingress scenario, several mitigation measures of air-ingress accident are proposed. The CFD results are utilized to plan experimental strategy and apparatus installation to obtain the best results when conducting an experiment. The validation of the generated CFD solutions will be performed with the OSU air-ingress experimental results. (Abstract shortened by UMI.).
NASA Astrophysics Data System (ADS)
Marschall, R.; Su, C. C.; Liao, Y.; Thomas, N.; Altwegg, K.; Sierks, H.; Ip, W.-H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Lai, I. L.; Rubin, M.; Skorov, Y.; Wu, J. S.; Jorda, L.; Preusker, F.; Scholten, F.; Gracia-Berná, A.; Gicquel, A.; Naletto, G.; Shi, X.; Vincent, J.-B.
2016-05-01
Context. This paper describes the initial modelling of gas and dust data acquired in August and September 2014 from the European Space Agency's Rosetta spacecraft when it was in close proximity to the nucleus of comet 67P/Churyumov-Gerasimenko. Aims: This work is an attempt to provide a self-consistent model of the innermost gas and dust coma of the comet, as constrained by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) data set for the gas and by the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS) data set for the dust. Methods: The model uses a previously developed shape model for the nucleus, and from this the water sublimation rate and gas temperatures at the surface are computed with a simple thermal model. The gas expansion is modelled with a 3D parallel implementation of a Direct Simulation Monte Carlo algorithm. A dust drag algorithm is then used to produce dust densities in the coma, which are then converted to brightnesses using Mie theory and a line-of-sight integration. Results: We show that a purely insolation-driven model for surface outgassing does not produce a reasonable fit to ROSINA/COPS data. A stronger source in the "neck" region of the nucleus (region Hapi) is needed to match the observed modulation of the gas density in detail. This agrees with OSIRIS data, which shows that the dust emission from the "neck" was dominant in the August-September 2014 time frame. The current model matches this observation reasonably if a power index of 2-3 for the dust size distribution is used. A better match to the OSIRIS data is seen by using a single large particle size for the coma. Conclusions: We have shown possible solutions to the gas and dust distributions in the inner coma, which are consistent with ROSINA and OSIRIS data.
Experimental level densities of atomic nuclei
Guttormsen, M.; Aiche, M.; Bello Garrote, F. L.; ...
2015-12-23
It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least upmore » to the neutron threshold.« less
A model for collisionally induced disturbed structure in disk galaxies
NASA Technical Reports Server (NTRS)
Gerber, Richard A.; Lamb, Susan A.
1994-01-01
We derive analytic expressions, using the impulse and epicycle approximations, which describe the kinematic response of a disk galaxy following a collision with a second spherical galaxy which collides perpendicular to, but not through the center of, the disk. This model can reporduce the morphologies found in n-body experiments in which distant encounters produce two-armed spiral patterns and more central collisions produce rings in the disk galaxy, thereby confirming that simple kinematics can be used to describe the early evolution of these systems. Application of this procedure provides a convenient method with which to conduct parameter studies of these collisions. Comparison of the kinematic description with a fully self-gravitating, three-dimensional n-body/gasdynamics computer model shows that the disk galaxy's response is initially well represented by the kinematic model but that the self-gravity of the disk becomes important at longer times after the collision. The flows of gas and stars decouple from one another where stellar orbits cross, leaving regions of elevated gas density behind as the stars move freely past each other. If star formation rates are enhanced in these regions of high gas density, active star formation could be taking place where there is no corresponding dense feature in the old stellar population.
NASA Astrophysics Data System (ADS)
Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.
2013-10-01
The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.
Gravitational star formation thresholds and gas density in three galaxies
NASA Technical Reports Server (NTRS)
Oey, M. S.; Kennicutt, R. C., Jr.
1990-01-01
It has long been held that the star formation rate (SFR) may be described as a power law of the gas density, p(exp n), as given by Schmidt (1959). However, this relation has as yet remained poorly defined and is likewise poorly understood. In particular, most studies have been investigations of global gas and star formation properties of galaxies, due to lack of adequate high-resolution data for detailed studies of individual galaxies. The three spiral galaxies in this study have published maps of both H2 (as traced by CO), and HI, thereby enabling the authors to investigate the relationship between total gas surface density and SFR. The purpose of the present investigation is the comparison of spatially-resolved total surface gas density in three galaxies (NGC 6946, M51, and M83) to sigma sub c as given by the above model. CO, HI and H alpha data for NGC 6946 were taken from Tacconi-Garman (1988), and for M51 and M83 from Lord (1987). The authors used a CO-H2 conversion of N(H2)/I sub CO(exp cos i = 2.8 x 10(exp 20) atoms cm(-2)/(K kms(-1), and summed the H2 and HI data for each galaxy to obtain the total hydrogen gas density. This total was then multiplied by a factor of 1.36 to include the contribution of helium to the total surface gas density. The authors assumed distances to NGC 6946, M51, and M83 to be 6.0, 9.6, and 8.9 Mpc respectively, with inclination angles of 30, 20, and 26 degrees. H alpha flux was used as the measure of SFR for NGC 6946, and SFR for the remaining two galaxies was taken directly from Lord as computed from H alpha measurements. The results of these full-disk studies thus show a remarkable correlation between the total gas density and the threshold densities given by the gravitational stability criterion. In particular, the threshold density appears to mark a lower boundary to the range of gas densities in these galaxies, which may have consequence in determining appropriate models for star formation and gas dynamics. More evidence is required to verify this result, and the authors are currently undertaking a high-resolution study of the nearby spiral M33 and other galaxies to further investigate this problem.
NASA Astrophysics Data System (ADS)
Keller, Thomas; Colombi, Tino; Ruiz, Siul; Grahm, Lina; Reiser, René; Rek, Jan; Oberholzer, Hans-Rudolf; Schymanski, Stanislaus; Walter, Achim; Or, Dani
2016-04-01
Soil compaction due to agricultural vehicular traffic alters the geometrical arrangement of soil constituents, thereby modifying mechanical properties and pore spaces that affect a range of soil hydro-ecological functions. The ecological and economic costs of soil compaction are dependent on the immediate impact on soil functions during the compaction event, and a function of the recovery time. In contrast to a wealth of soil compaction information, mechanisms and rates of soil structure recovery remain largely unknown. A long-term (>10-yr) soil structure observatory (SSO) was established in 2014 on a loamy soil in Zurich, Switzerland, to quantify rates and mechanisms of structure recovery of compacted arable soil under different post-compaction management treatments. We implemented three initial compaction treatments (using a two-axle agricultural vehicle with 8 Mg wheel load): compaction of the entire plot area (i.e. track-by-track), compaction in wheel tracks, and no compaction. After compaction, we implemented four post-compaction soil management systems: bare soil (BS), permanent grass (PG), crop rotation without mechanical loosening (NT), and crop rotation under conventional tillage (CT). BS and PG provide insights into uninterrupted natural processes of soil structure regeneration under reduced (BS) and normal biological activity (PG). The two cropping systems (NT and CT) enable insights into soil structure recovery under common agricultural practices with minimal (NT) and conventional mechanical soil disturbance (CT). Observations include periodic sampling and measurements of soil physical properties, earthworm abundance, crop measures, electrical resistivity and ground penetrating radar imaging, and continuous monitoring of state variables - soil moisture, temperature, CO2 and O2 concentrations, redox potential and oxygen diffusion rates - for which a network of sensors was installed at various depths (0-1 m). Initial compaction increased soil bulk density to about half a metre, decreased gas and water transport functions (air permeability, gas diffusivity, saturated hydraulic conductivity), and increased mechanical impedance. Water infiltration at the soil surface was initially reduced by three orders of magnitude, but significantly recovered within a year. However, within the soil profile, recovery of transport properties is much smaller. Air permeability tended to recover more than gas diffusivity, suggesting that initial post-compaction recovery is initiated by new macropores (e.g. biopores). Tillage recovered topsoil bulk density but not topsoil transport functions. Compaction changed grass species composition in PG, and significantly reduced grass biomass in PG and crop yields in NT and CT.
Potential for Waste Stratification from Back-Dilution in Tank 241-SY-101
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoniak, Z.I.; Meyer, P.A.
Since late 1997, the floating crust layer in Hanford Tank 241-SY-101 (SY-101) has grown about two meters by gas accumulation. To reverse crust growth and reduce its retained gas volume, the waste in SY-101 will be diluted by transferring at least 300,000 gal of waste out of the tank and replacing it with water. In the fall of 1999, approximately 100,000 gal of this waste will be transferred into Tank SY-102; within a few days of that initial transfer, approximately 100,000 gal of water will be added to SY-101. This initial back-dilution is being planned to ensure that the basemore » of the floating crust layer will be lifted away from the mixer pump inlet with minimal effect on the crust itself. The concern is that the added water will pool under the crust, so the resulting fluid mixture will be too light to lift the crust away from the mixer pump and dissolution at the crust base could cause unwanted gas release. To ensure sufficient mixing to prevent such stratification, water will be added near the tank bottom either through an existing sparge ring on the base of the mixer pump or through the dilution line at the inlet of the transfer pump. A number of simulations using the TEMPEST code showed that the mixing of the water and waste by this method is rapid, and the water does not pool under the crust. Although a density gradient is present, its magnitude is small compared with the difference between the slurry and water density. The result is essentially the same whether water is introduced at the base of the mixer pump or at the transfer pump. There is little effect of water flowrate up to the 500 gpm studied. In all cases, the minimum density remained above that required to float the crust and well above the density of saturated liquid. This indicates that the base of the crust will rise during back-dilution and there will be little or no dissolution of the crust base because the water will be close to saturation from the dissolution of solids in the mixed slurry.« less
Early regimes of water capillary flow in slit silica nanochannels.
Oyarzua, Elton; Walther, Jens H; Mejía, Andrés; Zambrano, Harvey A
2015-06-14
Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes: an initial regime where the capillary force is balanced only by the inertial drag and characterized by a constant velocity and a plug flow profile. In this regime, the meniscus formation process plays a central role in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance has significant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscous forces dominate the capillary force balance is attained. Flow velocity profiles identify the passage from an inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicate a transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling rates computed for higher air pressures reveal a significant retarding effect of the gas displaced by the advancing meniscus.
Rapid ionization of the environment of SN 1987A
NASA Technical Reports Server (NTRS)
Raga, A. C.
1987-01-01
It has been suggested by some authors that IUE observations of the supernova SN 1987A show the presence of a strong component of the interstellar C IV 1550 and Si IV 1393 absorption lines at a velocity that approximately corresponds to the velocity of the LMC. It is possible that this component might come from originally neutral (or at least not very highly ionized) gas which has been photoionized by the initially very strong ionizing radiation field of the supernova. Theoretical considerations of this scenario lead to the study of fast (with velocities of about c) ionization fronts. It is shown that for reasonable model parameters it is possible to obtain considerably large C IV column densities, in agreement with the IUE observations. On the other hand, the models do not so easily predict the large Si IV column densities that are also obtained from the IUE observations. It is found that only models in which the interstellar medium surrounding SN 1987A is initially composed of already ionized hydrogen and helium predict substantial Si IV column densities. This result provides an interesting prediction of the ionization state of the environment of the presupernova star.
NASA Astrophysics Data System (ADS)
Schultz, Kimberly Ann
The goal of this dissertation is to study the basic physics and X-ray emission (1-10 keV) of two X-ray sources: X-pinch plasmas and a clustered gas-puff irradiated by an ultrashort laser pulse. X-pinches and other typical X-ray sources using solid targets create hot debris that can damage sensitive equipment. Therefore, to perform sensitive backlighting or X-ray effects testing, debris-free sources of radiation must be investigated. In this work, the author presents a broad study of clustered noble gas puffs including characterization measurements and laser heating experiments using several gas nozzles and multiple gases. Ultimately, the goal is to compare the laser-irradiated gas-puff and X-pinch plasmas as X-ray sources. Characterization of the gas puffs is performed at the Radiation Physics Laboratory at the University of Nevada, Reno (UNR) Physics Department using optical interferometry and Rayleigh scattering to determine density and cluster radius. By changing the gas-puff variables control of both the density and cluster size of the gas jets is obtained. Two laser systems provide the high intensities desired for the laser-irradiated gas puff experiments: the UNR Leopard Laser (1-2x1019 W/cm2) and the Lawrence Livermore National Laboratory's Titan Laser (7x1019 W/cm2). X-ray emission is studied as a function of laser pulse parameters, gas target type, gas puff density, and the gas-delay timing between puff initiation and laser interaction with the puff. The tested gases are Ar, Kr, Xe, and four mixtures of the noble gases. Time-resolved X-ray measurements are captured with Silicon diodes and photoconducting diamond detectors. Electron beam detectors include Faraday cups and a high-energy (> 1 MeV) electron spectrometer. Modeling of spectra from X-ray crystal spectrometers provides plasma density and temperature measurement and a molecular dynamics (MD) code describes cluster interactions with the laser pulse. The conversion of laser energy into X rays is also measured. Laser beam transmission through and absorption by the gas puff reveal the complexity of using laser-irradiated gas puffs as X-ray sources. A strong anisotropy of X-ray and electron emissions were observed at both laser facilities. X-pinch plasmas can provide intense hard X rays and strong electron beams originating from small sources with many applications. Recent research has been conducted into four-wire X-pinches at the UNR Zebra machine, a 1-MA pulsed power generator. Two different wire materials are considered in this study, Ag and Mo. We observe a relatively linear correlation between load mass and implosion time for Mo X-pinches; in fact, this relationship also extends to include Ag. Interestingly, X-ray burst features drastically change in shape when the load mass is varied. Advantages of laser-irradiated gas puffs include a lack of damaging debris, high repetition rate, and ease of control. Its disadvantages include its inefficiency at converting electrical energy to X-rays, which is mostly limited by laser efficiency, and relatively low total energy yield. X-pinches, on the other hand, produced kJ of energy in a broad spectral region. However, they create a large amount of debris, have a low repetition rate, and, at 1-MA, have hard-to-predict implosion times.
Shock initiation and detonation properties of bisfluorodinitroethyl formal (FEFO)
NASA Astrophysics Data System (ADS)
Gibson, L. L.; Sheffield, S. A.; Dattelbaum, Dana M.; Stahl, David B.
2012-03-01
FEFO is a liquid explosive with a density of 1.60 g/cm3 and an energy output similar to that of trinitrotoluene (TNT), making it one of the more energetic liquid explosives. Here we describe shock initiation experiments that were conducted using a two-stage gas gun using magnetic gauges to measure the wave profiles during a shock-to-detonation transition. Unreacted Hugoniot data, time-to detonation (overtake) measurements, and reactive wave profiles were obtained from each experiment. FEFO was found to initiate by the homogeneous initiation model, similar to all other liquid explosives we have studied (nitromethane, isopropyl nitrate, hydrogen peroxide). The new unreacted Hugoniot points agree well with other published data. A universal liquid Hugoniot estimation slightly under predicts the measured Hugoniot data. FEFO is very insensitive, with about the same shock sensitivity as the triamino-trinitro-benzene (TATB)-based explosive PBX9502 and cast TNT.
On the Appearance of Thresholds in the Dynamical Model of Star Formation
NASA Astrophysics Data System (ADS)
Elmegreen, Bruce G.
2018-02-01
The Kennicutt–Schmidt (KS) relationship between the surface density of the star formation rate (SFR) and the gas surface density has three distinct power laws that may result from one model in which gas collapses at a fixed fraction of the dynamical rate. The power-law slope is 1 when the observed gas has a characteristic density for detection, 1.5 for total gas when the thickness is about constant as in the main disks of galaxies, and 2 for total gas when the thickness is regulated by self-gravity and the velocity dispersion is about constant, as in the outer parts of spirals, dwarf irregulars, and giant molecular clouds. The observed scaling of the star formation efficiency (SFR per unit CO) with the dense gas fraction (HCN/CO) is derived from the KS relationship when one tracer (HCN) is on the linear part and the other (CO) is on the 1.5 part. Observations of a threshold density or column density with a constant SFR per unit gas mass above the threshold are proposed to be selection effects, as are observations of star formation in only the dense parts of clouds. The model allows a derivation of all three KS relations using the probability distribution function of density with no thresholds for star formation. Failed galaxies and systems with sub-KS SFRs are predicted to have gas that is dominated by an equilibrium warm phase where the thermal Jeans length exceeds the Toomre length. A squared relation is predicted for molecular gas-dominated young galaxies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agertz, Oscar; Kravtsov, Andrey V., E-mail: o.agertz@surrey.ac.uk
We use cosmological zoom-in simulations of galaxy formation in a Milky-Way-sized halo started from identical initial conditions to investigate the evolution of galaxy sizes, baryon fractions, morphologies, and angular momenta in runs with different parameters of the star formation–feedback cycle. Our fiducial model with a high local star formation efficiency, which results in efficient feedback, produces a realistic late-type galaxy that matches the evolution of basic properties of late-type galaxies: stellar mass, disk size, morphology dominated by a kinematically cold disk, stellar and gas surface density profiles, and specific angular momentum. We argue that feedback’s role in this success ismore » twofold: (1) removal of low angular momentum gas, and (2) maintaining a low disk-to-halo mass fraction, which suppresses disk instabilities that lead to angular momentum redistribution and a central concentration of baryons. However, our model with a low local star formation efficiency, but large energy input per supernova, chosen to produce a galaxy with a similar star formation history as our fiducial model, leads to a highly irregular galaxy with no kinematically cold component, overly extended stellar distribution, and low angular momentum. This indicates that only when feedback is allowed to become vigorous via locally efficient star formation in dense cold gas do resulting galaxy sizes, gas/stellar surface density profiles, and stellar disk angular momenta agree with observed z = 0 galaxies.« less
The Gas Distribution in the Outer Regions of Galaxy Clusters
NASA Technical Reports Server (NTRS)
Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E. T.; Roncarelli, M.; Rossetti, M.; Snowden, L.; Gastaldello, F.
2012-01-01
Aims. We present our analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We have exploited the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius, We stacked the density profiles to detect a signal beyond T200 and measured the typical density and scatter in cluster outskirts. We also computed the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compared our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond approximately r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict density profiles that are too steep, whereas runs including additional physics and/ or treating gas clumping agree better with the observed gas distribution. We report high-confidence detection of a systematic difference between cool-core and non cool-core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only small differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the ENZO simulations. Conclusions. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Although their general behavior agrees more closely with the observations, simulations including cooling and star formation convert a large amount of gas into stars, which results in a low gas fraction with respect to the observations. Consequently, a detailed treatment of gas cooling, star formation, AGN feedback, and consideration of gas clumping is required to construct realistic models of the outer regions of clusters.
The Gas Distribution in Galaxy Cluster Outer Regions
NASA Technical Reports Server (NTRS)
Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Laue, E. T.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.
2012-01-01
Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r200 and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to some recent Suzaku results, and confirming previous evidence from ROSAT and Chandra, we observe a steepening of the density profiles beyond approximately r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or treating gas clumping are in better agreement with the observed gas distribution. We report for the first time the high-confidence detection of a systematic difference between cool-core and non-cool core clusters beyond 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Although their general behavior is in better agreement with the observations, simulations including cooling and star formation convert a large amount of gas into stars, which results in a low gas fraction with respect to the observations. Consequently, a detailed treatment of gas cooling, star formation, AGN feedback, and taking into account gas clumping is required to construct realistic models of cluster outer regions.
Fhaner, Mathew; Zhao, Hong; Bian, Xiaochun; Galligan, James J.; Swain, Greg M.
2010-01-01
In order to increase the initial nucleation density for the growth of boron-doped diamond on platinum wires, we employed the novel nucleation process (NNP) originally developed by Rotter et al. and discussed by others [1–3]. This pretreatment method involves (i) the initial formation of a thin carbon layer over the substrate followed by (ii) ultrasonic seeding of this “soft” carbon layer with nanoscale particles of diamond. This two-step pretreatment is followed by the deposition of boron-doped diamond by microwave plasma-assisted CVD. Both the diamond seed particles and sites on the carbon layer itself function as the initial nucleation zones for diamond growth from an H2-rich source gas mixture. We report herein on the characterization of the pre-growth carbon layer formed on Pt as well as boron-doped films grown for 2, 4 and 6 h post NNP pretreatment. Results from scanning electron microscopy, Raman spectroscopy and electrochemical studies are reported. The NNP method increases the initial nucleation density on Pt and leads to the formation of a continuous diamond film in a shorter deposition time than is typical for wires pretreated by conventional ultrasonic seeding. The results indicate that the pregrowth layer itself consists of nanoscopic domains of diamond and functions well to enhance the initial nucleation of diamond without any diamond powder seeding. PMID:21617759
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlis, N. H., E-mail: nmatlis@gmail.com; Gonsalves, A. J.; Steinke, S.
We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function ofmore » the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.« less
NASA Astrophysics Data System (ADS)
Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.
2015-07-01
Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
Advanced ceramic material for high temperature turbine tip seals
NASA Technical Reports Server (NTRS)
Solomon, N. G.; Vogan, J. W.
1978-01-01
Ceramic material systems are being considered for potential use as turbine blade tip gas path seals at temperatures up to 1370 1/4 C. Silicon carbide and silicon nitride structures were selected for study since an initial analysis of the problem gave these materials the greatest potential for development into a successful materials system. Segments of silicon nitride and silicon carbide materials over a range of densities, processed by various methods, a honeycomb structure of silicon nitride and ceramic blade tip inserts fabricated from both materials by hot pressing were tested singly and in combination. The evaluations included wear under simulated engine blade tip rub conditions, thermal stability, impact resistance, machinability, hot gas erosion and feasibility of fabrication into engine components. The silicon nitride honeycomb and low-density silicon carbide using a selected grain size distribution gave the most promising results as rub-tolerant shroud liners. Ceramic blade tip inserts made from hot-pressed silicon nitride gave excellent test results. Their behavior closely simulated metal tips. Wear was similar to that of metals but reduced by a factor of six.
Dynamics of the baryonic component in hierarchical clustering universes
NASA Technical Reports Server (NTRS)
Navarro, Julio
1993-01-01
I present self-consistent 3-D simulations of the formation of virialized systems containing both gas and dark matter in a flat universe. A fully Lagrangian code based on the Smoothed Particle Hydrodynamics technique and a tree data structure has been used to evolve regions of comoving radius 2-3 Mpc. Tidal effects are included by coarse-sampling the density of the outer regions up to a radius approx. 20 Mpc. Initial conditions are set at high redshift (z greater than 7) using a standard Cold Dark Matter perturbation spectrum and a baryon mass fraction of 10 percent (omega(sub b) = 0.1). Simulations in which the gas evolves either adiabatically or radiates energy at a rate determined locally by its cooling function were performed. This allows us to investigate with the same set of simulations the importance of radiative losses in the formation of galaxies and the equilibrium structure of virialized systems where cooling is very inefficient. In the absence of radiative losses, the simulations can be rescaled to the density and radius typical of galaxy clusters. A summary of the main results is presented.
Production of ZrC Matrix for Use in Gas Fast Reactor Composite Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevamurthy, Gokul; Knight, Travis W.; Roberts, Elwyn
2007-07-01
Zirconium carbide is being considered as a candidate for inert matrix material in composite nuclear fuel for Gas fast reactors due to its favorable characteristics. ZrC can be produced by the direct reaction of pure zirconium and graphite powders. Such a reaction is exothermic in nature. The reaction is self sustaining once initial ignition has been achieved. The heat released during the reaction is high enough to complete the reaction and achieve partial sintering without any external pressure applied. External heat source is required to achieve ignition of the reactants and maintain the temperature close to the adiabatic temperature tomore » achieve higher levels of sintering. External pressure is also a driving force for sintering. In the experiments described, cylindrical compacts of ZrC were produced by direct combustion reaction. External induction heating combined with varying amounts of external applied pressure was employed to achieve varying degrees of density/porosity. The effect of reactant particle size on the product characteristics was also studied. The samples were characterized for density/porosity, composition and microstructure. (authors)« less
An updated Lagrangian discontinuous Galerkin hydrodynamic method for gas dynamics
Wu, Tong; Shashkov, Mikhail Jurievich; Morgan, Nathaniel Ray; ...
2018-04-09
Here, we present a new Lagrangian discontinuous Galerkin (DG) hydrodynamic method for gas dynamics. The new method evolves conserved unknowns in the current configuration, which obviates the Jacobi matrix that maps the element in a reference coordinate system or the initial coordinate system to the current configuration. The density, momentum, and total energy (ρ, ρu, E) are approximated with conservative higher-order Taylor expansions over the element and are limited toward a piecewise constant field near discontinuities using a limiter. Two new limiting methods are presented for enforcing the bounds on the primitive variables of density, velocity, and specific internal energymore » (ρ, u, e). The nodal velocity, and the corresponding forces, are calculated by solving an approximate Riemann problem at the element nodes. An explicit second-order method is used to temporally advance the solution. This new Lagrangian DG hydrodynamic method conserves mass, momentum, and total energy. 1D Cartesian coordinates test problem results are presented to demonstrate the accuracy and convergence order of the new DG method with the new limiters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preynas, M.; Laqua, H. P.; Otte, M.
Although both 1st harmonic ordinary mode (O1) and 2nd harmonic extra-ordinary mode (X2) have been successfully used to initiate pre-ionization and breakdown in many devices, a complete theoretical model is still missing to explain the success of this method. Moreover, some experimental observations are not completely understood, such as what occurs during the delay time between the turn-on of ECRH power and first signals of density or light measurements. Since during this free period the ECRH power has to be absorbed by in-vessel components, it is of prime importance to know what governs this delay time. Recently, dedicated start-up experimentsmore » have been performed on WEGA, using a 28 GHz ECRH system in X2-mode. This machine has the interesting capability to be run also as a tokamak allowing comparative experiments between stellarator (ι/2π > 0) and tokamak (ι/2π = 0) configurations. Different scans in heating power, neutral gas pressure, and rotational transform (ι) show clearly that the start-up is a two step process. A first step following the turn-on of the ECRH power during which no measurable electron density (or just above the noise level in some cases), ECE and radiated power is detected. Its duration depends strongly on the level of injected power. The second step corresponds to the gas ionization and plasma expansion phase, with a velocity of density build-up and filling-up of the vessel volume depending mainly on pressure, gas and rotational transform. Moreover, an interesting scenario of ECRH pre-ionization without loop voltage in tokamak configuration by applying a small optimal vertical field is relevant for start-up assistance on future experiments like ITER. The results from this experimental parametric study are useful for the modeling of the start-up assisted by the second harmonic electron cyclotron resonance heating. The aim of this work is to establish predictive scenarios for both ITER and W7-X operation.« less
Critical density of a soliton gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
El, G. A., E-mail: g.el@lboro.ac.uk
We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrödinger operator associated with the Korteweg–de Vries soliton gas dynamics. As a by-product of our derivation, we find the speed of sound in the soliton gas with Gaussian spectral distribution function.
Critical density of a soliton gas
NASA Astrophysics Data System (ADS)
El, G. A.
2016-02-01
We quantify the notion of a dense soliton gas by establishing an upper bound for the integrated density of states of the quantum-mechanical Schrödinger operator associated with the Korteweg-de Vries soliton gas dynamics. As a by-product of our derivation, we find the speed of sound in the soliton gas with Gaussian spectral distribution function.
Impact of Gas Heating in Inductively Coupled Plasmas
NASA Technical Reports Server (NTRS)
Hash, D. B.; Bose, D.; Rao, M. V. V. S.; Cruden, B. A.; Meyyappan, M.; Sharma, S. P.; Biegel, Bryan (Technical Monitor)
2001-01-01
Recently it has been recognized that the neutral gas in inductively coupled plasma reactors heats up significantly during processing. The resulting gas density variations across the reactor affect reaction rates, radical densities, plasma characteristics, and uniformity within the reactor. A self-consistent model that couples the plasma generation and transport to the gas flow and heating has been developed and used to study CF4 discharges. A Langmuir probe has been used to measure radial profiles of electron density and temperature. The model predictions agree well with the experimental results. As a result of these comparisons along with the poorer performance of the model without the gas-plasma coupling, the importance of gas heating in plasma processing has been verified.
Ionization and current growth in N/sub 2/ at very high electric field to gas density ratios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gylys, V.T.; Jelenkovic, B.M.; Phelps, A.V.
1989-05-01
Measurements and analyses have been made of electron impact ionization and of current growth in pulsed, low-current, prebreakdown discharges in parallel-plane geometry in N/sub 2/ at very high electric field to gas density ratios E/n and low products of the gas density n and electrode separation d. The E/n range and nd ranges were 1
NASA Astrophysics Data System (ADS)
Carmona, A.; Thi, W. F.; Kamp, I.; Baruteau, C.; Matter, A.; van den Ancker, M.; Pinte, C.; Kóspál, A.; Audard, M.; Liebhart, A.; Sicilia-Aguilar, A.; Pinilla, P.; Regály, Zs.; Güdel, M.; Henning, Th.; Cieza, L. A.; Baldovin-Saavedra, C.; Meeus, G.; Eiroa, C.
2017-02-01
Context. Quantifying the gas surface density inside the dust cavities and gaps of transition disks is important to establish their origin. Aims: We seek to constrain the surface density of warm gas in the inner disk of HD 139614, an accreting 9 Myr Herbig Ae star with a (pre-)transition disk exhibiting a dust gap from 2.3 ± 0.1 to 5.3 ± 0.3 AU. Methods: We observed HD 139614 with ESO/VLT CRIRES and obtained high-resolution (R 90 000) spectra of CO ro-vibrational emission at 4.7 μm. We derived constraints on the disk's structure by modeling the CO isotopolog line-profiles, the spectroastrometric signal, and the rotational diagrams using grids of flat Keplerian disk models. Results: We detected υ = 1 → 0 12CO, 2→1 12CO, 1→0 13CO, 1→0 C18O, and 1→0 C17O ro-vibrational lines. Lines are consistent with disk emission and thermal excitation. 12CO υ = 1 → 0 lines have an average width of 14 km s-1, Tgas of 450 K and an emitting region from 1 to 15 AU. 13CO and C18O lines are on average 70 and 100 K colder, 1 and 4 km s-1 narrower than 12CO υ = 1 → 0, and are dominated by emission at R ≥ 6 AU. The 12CO υ = 1 → 0 composite line-profile indicates that if there is a gap devoid of gas it must have a width narrower than 2 AU. We find that a drop in the gas surface density (δgas) at R < 5-6 AU is required to be able to simultaneously reproduce the line-profiles and rotational diagrams of the three CO isotopologs. Models without a gas density drop generate 13CO and C18O emission lines that are too broad and warm. The value of δgas can range from 10-2 to 10-4 depending on the gas-to-dust ratio of the outer disk. We find that the gas surface density profile at 1 < R < 6 AU is flat or increases with radius. We derive a gas column density at 1 < R < 6 AU of NH = 3 × 1019-1021 cm-2 (7 × 10-5-2.4 × 10-3 g cm-2) assuming NCO = 10-4NH. We find a 5σ upper limit on the CO column density NCO at R ≤ 1 AU of 5 × 1015 cm-2 (NH ≤ 5 × 1019 cm-2). Conclusions: The dust gap in the disk of HD 139614 has molecular gas. The distribution and amount of gas at R ≤ 6 AU in HD 139614 is very different from that of a primordial disk. The gas surface density in the disk at R ≤ 1 AU and at 1 < R < 6 AU is significantly lower than the surface density that would be expected from the accretion rate of HD 139614 (10-8 M⊙ yr-1) assuming a standard viscous α-disk model. The gas density drop, the non-negative density gradient in the gas inside 6 AU, and the absence of a wide (>2 AU) gas gap, suggest the presence of an embedded <2 MJ planet at around 4 AU. Based on CRIRES observations collected at the VLTI and VLT (European Southern Observatory, Paranal, Chile) with program 091.C-0671(B).
NASA Technical Reports Server (NTRS)
Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.
1976-01-01
Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.
Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas
NASA Technical Reports Server (NTRS)
Lawson, Anthony Layiwola
2001-01-01
The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the jet s absolute instability were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be. Experiments were carried out to observe the qualitative differences between a round low-density gas jet injected into a high-density gas (helium jet injected into air) and a round constant density jet (air jet injected into air). Flow visualizations and velocity measurements in the near-injector region of the helium jet show more mixing and spreading of the helium jet than the air jet. The vortex structures develop and contribute to the jet spreading causing the helium jet to oscillate.
Self-tuning method for monitoring the density of a gas vapor component using a tunable laser
Hagans, Karla; Berzins, Leon; Galkowski, Joseph; Seng, Rita
1996-01-01
The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer's law.
Self-tuning method for monitoring the density of a gas vapor component using a tunable laser
Hagans, K.; Berzins, L.; Galkowski, J.; Seng, R.
1996-08-27
The present invention relates to a vapor density monitor and laser atomic absorption spectroscopy method for highly accurate, continuous monitoring of vapor densities, composition, flow velocity, internal and kinetic temperatures and constituent distributions. The vapor density monitor employs a diode laser, preferably of an external cavity design. By using a diode laser, the vapor density monitor is significantly less expensive and more reliable than prior art vapor density monitoring devices. In addition, the compact size of diode lasers enables the vapor density monitor to be portable. According to the method of the present invention, the density of a component of a gas vapor is calculated by tuning the diode laser to a frequency at which the amount of light absorbed by the component is at a minimum or a maximum within about 50 MHz of that frequency. Laser light from the diode laser is then transmitted at the determined frequency across a predetermined pathlength of the gas vapor. By comparing the amount of light transmitted by the diode laser to the amount of light transmitted after the laser light passes through the gas vapor, the density of the component can be determined using Beer`s law. 6 figs.
C+/H2 gas in star-forming clouds and galaxies
NASA Astrophysics Data System (ADS)
Nordon, Raanan; Sternberg, Amiel
2016-11-01
We present analytic theory for the total column density of singly ionized carbon (C+) in the optically thick photon dominated regions (PDRs) of far-UV irradiated (star-forming) molecular clouds. We derive a simple formula for the C+ column as a function of the cloud (hydrogen) density, the far-UV field intensity, and metallicity, encompassing the wide range of galaxy conditions. When assuming the typical relation between UV and density in the cold neutral medium, the C+ column becomes a function of the metallicity alone. We verify our analysis with detailed numerical PDR models. For optically thick gas, most of the C+ column is mixed with hydrogen that is primarily molecular (H2), and this `C+/H2' gas layer accounts for almost all of the `CO-dark' molecular gas in PDRs. The C+/H2 column density is limited by dust shielding and is inversely proportional to the metallicity down to ˜0.1 solar. At lower metallicities, H2 line blocking dominates and the C+/H2 column saturates. Applying our theory to CO surveys in low-redshift spirals, we estimate the fraction of C+/H2 gas out of the total molecular gas to be typically ˜0.4. At redshifts 1 < z < 3 in massive disc galaxies the C+/H2 gas represents a very small fraction of the total molecular gas (≲ 0.16). This small fraction at high redshifts is due to the high gas surface densities when compared to local galaxies.
NASA Astrophysics Data System (ADS)
Jóhannesson, Guđlaugur; Porter, Troy A.; Moskalenko, Igor V.
2018-03-01
Direct measurements of cosmic ray (CR) species combined with observations of their associated γ-ray emissions can be used to constrain models of CR propagation, trace the structure of the Galaxy, and search for signatures of new physics. The spatial density distribution of interstellar gas is a vital element for all these studies. So far, models have employed the 2D cylindrically symmetric geometry, but their accuracy is well behind that of the available data. In this paper, 3D spatial density models for neutral and molecular hydrogen are constructed based on empirical model fitting to gas line-survey data. The developed density models incorporate spiral arms and account for the warping of the disk, and the increasing gas scale height with radial distance from the Galactic center. They are employed together with the GALPROP CR propagation code to investigate how the new 3D gas models affect calculations of CR propagation and high-energy γ-ray intensity maps. The calculations reveal non-trivial features that are directly related to the new gas models. The best-fit values for propagation model parameters employing 3D gas models are presented and they differ significantly from those derived with the 2D gas density models that have been widely used. The combination of 3D CR and gas density models provide a more realistic basis for the interpretation of non-thermal emissions from the Galaxy.
The Growth of Instabilities in Annular Liquid Sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Daniel J.; Honnery, Damon R; Soria, Julio
An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed imagemore » correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating sawtooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses.« less
UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Good, Morris S.; Smith, Leon E.; Warren, Glen A.
A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using amore » surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.« less
Chouet, Bernard A.; Dawson, Phillip B.; Nakano, Masaru
2006-01-01
We present a model of gas exsolution and bubble expansion in a melt supersaturated in response to a sudden pressure drop. In our model, the melt contains a suspension of gas bubbles of identical sizes and is encased in a penny-shaped crack embedded in an elastic solid. The suspension is modeled as a three-dimensional lattice of spherical cells with slight overlap, where each elementary cell consists of a gas bubble surrounded by a shell of volatile-rich melt. The melt is then subjected to a step drop in pressure, which induces gas exsolution and bubble expansion, resulting in the compression of the melt and volumetric expansion of the crack. The dynamics of diffusion-driven bubble growth and volumetric crack expansion span 9 decades in time. The model demonstrates that the speed of the crack response depends strongly on volatile diffusivity in the melt and bubble number density and is markedly sensitive to the ratio of crack thickness to crack radius and initial bubble radius but is relatively insensitive to melt viscosity. The net drop in gas concentration in the melt after pressure recovery represents only a small fraction of the initial concentration prior to the drop, suggesting the melt may undergo numerous pressure transients before becoming significantly depleted of gases. The magnitude of pressure and volume recovery in the crack depends sensitively on the size of the input-pressure transient, becoming relatively larger for smaller-size transients in a melt containing bubbles with initial radii less than 10-5 m. Amplification of the input transient may be large enough to disrupt the crack wall and induce brittle failure in the rock matrix surrounding the crack. Our results provide additional basis for the interpretation of volume changes in the magma conduit under Popocatépetl Volcano during Vulcanian degassing bursts in its eruptive activity in April–May 2000.
Observations of the eruptions of July 22 and August 7, 1980, at Mount St. Helens, Washington
Hoblitt, Richard P.
1986-01-01
The explosive eruptions of July 22 and August 7, 1980, at Mount St. Helens, Wash., both included multiple eruptive pulses. The beginnings of three of the pulses-two on July 22 and one on August 7-were witnessed and photographed. Each of these three began with a fountain of gases and pyroclasts that collapsed around the vent and generated a pyroclastic density flow. Significant vertical-eruption columns developed only after the density flows were generated. This behavior is attributable to either an increase in the gas content of the eruption jet or a decrease in vent radius with time. An increase in the gas content may have occurred as the vent was cleared (by expulsion of a plug of pyroclasts) or as the eruption began to tap deeper, gas-rich magma after first expelling the upper, gas-depleted part of the magma body. An effective decrease of the vent radius with time may have occurred as the eruption originated from progressively deeper levels in the vent. All of these processes-vent clearing; tapping of deeper, gas-rich magma; and effective decrease in vent radius-probably operated to some extent. A 'relief-valve' mechanism is proposed here to account for the occurrence of multiple eruptive pulses. This mechanism requires that the conduit above the magma body be filled with a bed of pyroclasts, and that the vesiculation rate in the magma body be inadequate to sustain continuous eruption. During a repose interval, vesiculation of the magma body would cause gas to flow upward through the bed of pyroclasts. If the rate at which the magma produced gas exceeded the rate at which gas escaped to the atmosphere, the vertical pressure difference across the bed of pyroclastic debris would increase, as would the gas-flow rate. Eventually a gas-flow rate would be achieved that would suddenly diminish the ability of the bed to maintain a pressure difference between the magma body and the atmosphere. The bed of pyroclasts would then be expelled (that is, the relief valve would open) and an eruption would commence. During the eruption, gas would be lost faster than it could be replaced by vesiculation, so the gas-flow rate in the conduit would decrease. Eventually the gas-flow rate would decrease to a value that would be inadequate to expel pyroclasts, so the conduit would again become choked with pyroclasts (that is, the relief valve would close). Another period of repose would commence. The eruption/repose sequence would be repeated until gas-production rates were inadequate to reopen the valve, either because the depth of the pyroclast bed had become too great, the volatile content of the magma had become too low, or the magma had been expended. A timed sequence of photographs of a pyroclastic density flow on August 7 indicates that, in general, the velocity of the flow front was determined by the underlying topography. Observations and details of the velocity/topography relationship suggest that both pyroclastic flows and pyroclastic surges formed. The following mechanism is consistent with the data. During initial fountain collapse and when the flow passed over steep, irregular terrain, a highly inflated suspension of gases and pyroclasts formed. In this suspension, the pyroclasts underwent rapid differential settling according to size and density; a relatively low-concentration, fine-grained upper phase formed over a relatively high-concentration coarse-grained phase. The low-particle-concentration phase (the pyroclastic surge) was subject to lower internal friction than the basal high-concentration phase (the pyroclastic flow), and so accelerated away from it. The surge advanced until it had deposited so much of its solid fraction that its net density became less than that of the ambient air. At this point it rose convectively off the ground, quickly decelerated, and was overtaken by the pyroclastic flow. The behavior of the flow of August 7 suggests that a pyroclastic density flow probably expands through the ingestion of ai
Brandi, F; Giammanco, F; Conti, F; Sylla, F; Lambert, G; Gizzi, L A
2016-08-01
The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10(19) cm(-3) range well suited for LWFA.
NASA Astrophysics Data System (ADS)
Brandi, F.; Giammanco, F.; Conti, F.; Sylla, F.; Lambert, G.; Gizzi, L. A.
2016-08-01
The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm-3 range well suited for LWFA.
Gas Cavities inside Dust Cavities in Disks Inferred from ALMA Observations
NASA Astrophysics Data System (ADS)
van der Marel, Nienke; van Dishoeck, Ewine F.; Bruderer, Simon; Pinilla, Paola; van Kempen, Tim; Perez, Laura; Isella, Andrea
2016-01-01
Protoplanetary disks with cavities in their dust distribution, also named transitional disks, are expected to be in the middle of active evolution and possibly planet formation. In recent years, millimeter-dust rings observed by ALMA have been suggested to have their origin in dust traps, caused by pressure bumps. One of the ways to generate these is by the presence of planets, which lower the gas density along their orbit and create pressure bumps at the edge. We present spatially resolved ALMA Cycle 0 and Cycle 1 observations of CO and CO isotopologues of several famous transitional disks. Gas is found to be present inside the dust cavities, but at a reduced level compared with the gas surface density profile of the outer disk. The dust and gas emission are quantified using the physical-chemical modeling code DALI. In the majority of these disks we find clear evidence for a drop in gas density of at least a factor of 10 inside the cavity, whereas the dust density drops by at least a factor 1000. The CO isotopologue observations reveal that the gas cavities are significantly smaller than the dust cavities. These gas structures suggest clearing by one or more planetary-mass companions.
Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, Adam K.; Gallagher, Molly; Usero, Antonio
We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less
NASA Technical Reports Server (NTRS)
Lawson, Anthony L.; Parthasarathy, Ramkumar N.
2005-01-01
The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The Briggs-Bers criterion was combined with the spatio-temporal stability analysis to determine the nature of the absolute instability of the jet whether absolutely or convectively unstable. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the absolute instability of the jet were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be.
DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinte, C.; Ménard, F.; Dent, W. R. F.
The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulatedmore » into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.« less
The Herschel Virgo Cluster Survey - XVI. A cluster inventory
NASA Astrophysics Data System (ADS)
Davies, J. I.; Bianchi, S.; Baes, M.; Bendo, G. J.; Clemens, M.; De Looze, I.; di Serego Alighieri, S.; Fritz, J.; Fuller, C.; Pappalardo, C.; Hughes, T. M.; Madden, S.; Smith, M. W. L.; Verstappen, J.; Vlahakis, C.
2014-03-01
Herschel far-infrared (FIR) observations are used to construct Virgo cluster galaxy luminosity functions and to show that the cluster lacks the very bright and the numerous faint sources detected in field galaxy surveys. The FIR spectral energy distributions are fitted to obtain dust masses and temperatures and the dust mass function. The cluster is overdense in dust by about a factor of 100 compared to the field. The same emissivity (β)-temperature relation applies for different galaxies as that found for different regions of M31. We use optical and H I data to show that Virgo is overdense in stars and atomic gas by about a factor of 100 and 20, respectively. Metallicity values are used to measure the mass of metals in the gas phase. The mean metallicity is ˜0.7 solar, and ˜50 per cent of the metals are in the dust. For the cluster as a whole, the mass density of stars in galaxies is eight times that of the gas and the gas mass density is 130 times that of the metals. We use our data to consider the chemical evolution of the individual galaxies, inferring that the measured variations in the effective yield are due to galaxies having different ages, being affected to varying degrees by gas loss. Four galaxy scaling relations are considered: mass-metallicity, mass-velocity, mass-star formation rate and mass-radius - we suggest that initial galaxy mass is the prime driver of a galaxy's ultimate destiny. Finally, we use X-ray observations and galaxy dynamics to assess the dark and baryonic matter content compared to the cosmological model.
Toward a Deterministic Model of Planetary Formation. IV. Effects of Type I Migration
NASA Astrophysics Data System (ADS)
Ida, S.; Lin, D. N. C.
2008-01-01
In a further development of a deterministic planet formation model (Ida & Lin), we consider the effect of type I migration of protoplanetary embryos due to their tidal interaction with their nascent disks. During the early phase of protostellar disks, although embryos rapidly emerge in regions interior to the ice line, uninhibited type I migration leads to their efficient self-clearing. But embryos continue to form from residual planetesimals, repeatedly migrate inward, and provide a main channel of heavy-element accretion onto their host stars. During the advanced stages of disk evolution (a few Myr), the gas surface density declines to values comparable to or smaller than that of the minimum mass nebula model, and type I migration is no longer effective for Mars-mass embryos. Over wide ranges of initial disk surface densities and type I migration efficiencies, the surviving population of embryos interior to the ice line has a total mass of several M⊕. With this reservoir, there is an adequate inventory of residual embryos to subsequently assemble into rocky planets similar to those around the Sun. However, the onset of efficient gas accretion requires the emergence and retention of cores more massive than a few M⊕ prior to the severe depletion of the disk gas. The formation probability of gas giant planets and hence the predicted mass and semimajor axis distributions of extrasolar gas giants are sensitively determined by the strength of type I migration. We suggest that the distributions consistent with observations can be reproduced only if the actual type I migration timescale is at least an order of magnitude longer than that deduced from linear theories.
Carbon-dioxide flow measurement in geodynamically active area of West Bohemia
NASA Astrophysics Data System (ADS)
Vlcek, Josef; Fischer, Tomas; Heinicke, Jens
2016-04-01
Geodynamically active area of West Bohemia is interesting not only due to its earthquake swarms occurrence but also due to degassing flux of magmatic origin occurring in natural moffettes and mineral springs. While monitoring of earthquakes is done by a standard local seismic network, monitoring of amount of CO2 is at its initial stage. Despite lack of data, the 2014 earthquake swarm showed also very interesting increase in CO2 flow. This correlation with seismicity motivated us to develop robust and reliable methods of CO2 flow measurement, which would be sufficient to create denser monitoring network. Standard usage of gas-flowmeter for the purpose of gas flow measurement is dependent on the weather and device conditions, which makes the measurement instable in time and unreliable. Although gas-flowmeter is also accompanied with measurement of the gas pressure in the well to check flow rate value, reliability of this method is still low. This problematic behavior of the flow measurement was the reason to test new methods to measure CO2 amount - the first is based on measuring the density water with bubbles in the well by differential pressure gauge. The second one utilizes electric conductivity measurement to determine the density of bubbles in the water-gas mixture. Advantage of these methods is that their probes are directly in the well or moffette, where the concentration is measured. This approach is free of the influence of moving parts and assures the independence of measurements of environmental conditions. In this paper we show examples of obtained data series from selected sites and compare the trend of the curves, the mutual relations of the measured quantities and the influence of environmental conditions.
NASA Astrophysics Data System (ADS)
Chaouachi, Marwen; Falenty, Andrzej; Sell, Kathleen; Enzmann, Frieder; Kersten, Michael; Haberthür, David; Kuhs, Werner F.
2015-06-01
The formation process of gas hydrates in sedimentary matrices is of crucial importance for the physical and transport properties of the resulting aggregates. This process has never been observed in situ at submicron resolution. Here we report on synchrotron-based microtomographic studies by which the nucleation and growth processes of gas hydrate were observed at 276 K in various sedimentary matrices such as natural quartz (with and without admixtures of montmorillonite type clay) or glass beads with different surface properties, at varying water saturation. Both juvenile water and metastably gas-enriched water obtained from gas hydrate decomposition was used. Xenon gas was employed to enhance the density contrast between gas hydrate and the fluid phases involved. The nucleation sites can be easily identified and the various growth patterns are clearly established. In sediments under-saturated with juvenile water, nucleation starts at the water-gas interface resulting in an initially several micrometer thick gas hydrate film; further growth proceeds to form isometric single crystals of 10-20 µm size. The growth of gas hydrate from gas-enriched water follows a different pattern, via the nucleation in the bulk of liquid producing polyhedral single crystals. A striking feature in both cases is the systematic appearance of a fluid phase film of up to several micron thickness between gas hydrates and the surface of the quartz grains. These microstructural findings are relevant for future efforts of quantitative rock physics modeling of gas hydrates in sedimentary matrices and explain the anomalous attenuation of seismic/sonic waves.
Topics in QCD at Nonzero Temperature and Density
NASA Astrophysics Data System (ADS)
Pangeni, Kamal
Understanding the behavior of matter at ultra-high density such as neutron stars require the knowledge of ground state properties of Quantum chromodynamics (QCD) at finite chemical potential. However, this task has turned out to be very difficult because of two main reasons: 1) QCD may still be strongly coupled at those regimes making perturbative calculations unreliable and 2) QCD at finite density suffers from the sign problem that makes the use of lattice simulation problematic and it even affects phenomenological models. In the first part of this thesis, we show that the sign problem in analytical calculations of finite density models can be solved by considering the CK-symmetric, where C is charge conjugation and K is complex conjugation, complex saddle points of the effective action. We then explore the properties and consequences of such complex saddle points at non-zero temperature and density. Due to CK symmetry, the mass matrix eigenvalues in these models are not always real but can be complex, which results in damped oscillation of the density-density correlation function, a new feature of finite density models. To address the generality of such behavior, we next consider a lattice model of QCD with static quarks at strong-coupling. Computation of the mass spectrum confirms the existence of complex eigenvalues in much of temperature-chemical potential plane. This provides an independent confirmation of our results obtained using phenomenological models of QCD. The existence of regions in parameter space where density-density correlation function exhibit damped oscillation is one of the hallmarks of typical liquid-gas system. The formalism developed to tackle the sign problem in QCD models actually gives a simple understanding for the existence of such behavior in liquid-gas system. To this end, we develop a generic field theoretic model for the treatment of liquid-gas phase transition. An effective field theory at finite density derived from a fundamental four dimensional field theory turns out to be complex but CK symmetric. The existence of CK symmetry results in complex mass eigenvalues, which in turn leads to damped oscillatory behavior of the density-density correlation function. In the last part of this thesis, we study the effect of large amplitude density oscillations on the transport properties of superfluid nuclear matter. In nuclear matter at neutron-star densities and temperature, Cooper pairing leads to the formations of a gap in the nucleon excitation spectra resulting in exponentially strong Boltzmann suppression of many transport coefficients. Previous calculations have shown evidence that density oscillations of sufficiently large amplitude can overcome this suppression for flavor-changing beta processes via the mechanism of "gap-bridging". We address the simplifications made in that initial work, and show that gap bridging can counteract Boltzmann suppression of neutrino emissivity for the realistic case of modified Urca processes in matter with 3 P2 neutron pairing.
The Cold Gas History of the Universe as seen by the ngVLA
NASA Astrophysics Data System (ADS)
Riechers, Dominik A.; Carilli, Chris Luke; Casey, Caitlin; da Cunha, Elisabete; Hodge, Jacqueline; Ivison, Rob; Murphy, Eric J.; Narayanan, Desika; Sargent, Mark T.; Scoville, Nicholas; Walter, Fabian
2017-01-01
The Next Generation Very Large Array (ngVLA) will fundamentally advance our understanding of the formation processes that lead to the assembly of galaxies throughout cosmic history. The combination of large bandwidth with unprecedented sensitivity to the critical low-level CO lines over virtually the entire redshift range will open up the opportunity to conduct large-scale, deep cold molecular gas surveys, mapping the fuel for star formation in galaxies over substantial cosmic volumes. Informed by the first efforts with the Karl G. Jansky Very Large Array (COLDz survey) and the Atacama Large (sub)Millimeter Array (ASPECS survey), we here present initial predictions and possible survey strategies for such "molecular deep field" observations with the ngVLA. These investigations will provide a detailed measurement of the volume density of molecular gas in galaxies as a function of redshift, the "cold gas history of the universe". This will crucially complement studies of the neutral gas, star formation and stellar mass histories with large low-frequency arrays, the Large UV/Optical/Infrared Surveyor, and the Origins Space Telescope, providing the means to obtain a comprehensive picture of galaxy evolution through cosmic times.
Transport of particulate matter from a shocked interface
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Hammerberg, J. E.; Oro, D.; Morris, C.; Mariam, F.; Rousculp, C.
2011-03-01
We have performed a series of shock experiments to measure the evolution and transport of micron and sub-micron Tungsten particles from a 40 micron thick layer deposited on an Aluminum substrate. Densities and velocity distributions were measured using proton radiography at the Los Alamos Neutron Science Center for vacuum conditions and with contained Argon and Xenon gas atmospheres at initial pressures of 9.5 bar and room temperature. A common shock drive resulted in free surface velocities of 1.25 km/s. An analysis of the time dependence of Lithium Niobate piezo-electric pin pressure profiles is given in terms of solutions to the particulate drag equations and the evolution equation for the particulate distribution function. The spatial and temporal fore-shortening in the shocked gas can be accounted for using reasonable values for the compressed gas shear viscosities and the vacuum distributions. The detailed form of the pin pressure data for Xenon indicates particulate breakup in the hot compressed gas. This work supported by the U.S. Department of Energy under contract DE-AC52-06NA25396.
Transport of Particulate Matter from a Shocked Interface
NASA Astrophysics Data System (ADS)
Buttler, W. T.; Hammerberg, J. E.; Oro, D.; Mariam, F.; Rousculp, C.
2011-06-01
We have performed a series of shock experiments to measure the evolution and transport of micron and sub-micron Tungsten particles from a 40 μm thick layer deposited on an Aluminum substrate. Densities and velocity distributions were measured using proton radiography at the Los Alamos Neutron Science Center for vacuum conditions and with contained Argon and Xenon gas atmospheres at initial pressures of 9.5 bar and room temperature. A common shock drive resulted in free surface velocities of 1.25 km/s. An analysis of the time dependence of Lithium Niobate piezo-electric pin pressure profiles is given in terms of solutions to the particulate drag equations and the evolution equation for the particulate distribution function. The spatial and temporal fore-shortening in the shocked gas can be accounted for using reasonable values for the compressed gas shear viscosities and the vacuum distributions. The detailed form of the pin pressure data for Xenon indicates particulate breakup in the hot compressed gas. This work supported by the U.S. Department of Energy under contract DE-AC52-06NA25396.
Gas Heating, Chemistry and Photoevaporation in Protostellar Disks
NASA Technical Reports Server (NTRS)
Hollenbach, David
2004-01-01
We model the thermal balance, the chemistry, and the radiative transfer in dusty disks orbiting young, low mass stars. These models are motivated by observations of infrared and ultraviolet transitions of H2 from protoplanetary disks, as well as millimeter and submillimeter observations of other molecules such as CO, and infrared continuum observations of the dust. The dust grains are heated primarily by the stellar radiation and the infrared radiation field produced by the dust itself. The gas is heated by collisions with warmer dust grains, X-rays from the region close to the stellar surface, UV pumping of hydrogen molecules, and the grain photoelectric heating mechanism initiated by UV photons from the central star. We treat cases where the gas to dust ratio is high, because the dust has settled to the midplane and coagulated into relatively large objects. We discuss situations in which the infrared emission from H2 can be detected, and how the comparison of the observations with our models can deduce physical parameters such as the mass and the density and temperature distribution of the gas.
The rapid formation of a large rotating disk galaxy three billion years after the Big Bang.
Genzel, R; Tacconi, L J; Eisenhauer, F; Schreiber, N M Förster; Cimatti, A; Daddi, E; Bouché, N; Davies, R; Lehnert, M D; Lutz, D; Nesvadba, N; Verma, A; Abuter, R; Shapiro, K; Sternberg, A; Renzini, A; Kong, X; Arimoto, N; Mignoli, M
2006-08-17
Observations and theoretical simulations have established a framework for galaxy formation and evolution in the young Universe. Galaxies formed as baryonic gas cooled at the centres of collapsing dark-matter haloes; mergers of haloes and galaxies then led to the hierarchical build-up of galaxy mass. It remains unclear, however, over what timescales galaxies were assembled and when and how bulges and disks--the primary components of present-day galaxies--were formed. It is also puzzling that the most massive galaxies were more abundant and were forming stars more rapidly at early epochs than expected from models. Here we report high-angular-resolution observations of a representative luminous star-forming galaxy when the Universe was only 20% of its current age. A large and massive rotating protodisk is channelling gas towards a growing central stellar bulge hosting an accreting massive black hole. The high surface densities of gas, the high rate of star formation and the moderately young stellar ages suggest rapid assembly, fragmentation and conversion to stars of an initially very gas-rich protodisk, with no obvious evidence for a major merger.
Simulation of gas phase transport of carbon-14 at Yucca Mountain, Nevada, USA
Lu, N.; Ross, B.
1994-01-01
We have simulated gas phase transport of Carbon-14 at Yucca Mountain, Nevada. Three models were established to calculate travel time of Carbon-14 from the potential repository to the mountain surface: a geochemical model for retardation factors, a coupled gas-flow and heat transfer model for temperature and gas flow fields, and a particle tracker for travel time calculation. The simulations used three parallel, east-west cross-sections that were taken from the Sandia National Laboratories Interactive Graphics Information System (IGIS). Assuming that the repository is filled with 30- year-old waste at an initial areal power density of 57 kw/acre, we found that repository temperatures remain above 60??C for more than 10,000 years. For a tuff permeability of 10-7 cm2, Carbon-14 travel times to the surface are mostly less than 1,000 years, for particles starting at any time within the first 10,000 years. If the tuff permeability is 10-8 cm2, however, Carbon- 14 travel times to the surface range from 3,000 to 12,000 years, for particle starting within the 10,000 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E; Marie Kane, M
2008-12-12
Four formulations of EPDM (ethylene-propylene diene monomer) elastomer were exposed to tritium gas initially at one atmosphere and ambient temperature for between three and four months in closed containers. Material properties that were characterized include density, volume, mass, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. EPDM samples released significant amounts of gas when exposed to tritium, and the glass transition temperature increased by about 3 C. during the exposure. Effects of ultraviolet and gamma irradiation on the surface electrical conductivity of two types ofmore » polyaniline films are also documented as complementary results to planned tritium exposures. Future work will determine the effects of tritium gas exposure on the electrical conductivity of polyaniline films, to demonstrate whether such films can be used as a sensor to detect tritium. Surface conductivity was significantly reduced by irradiation with both gamma rays and ultraviolet light. The results of the gamma and UV experiments will be correlated with the tritium exposure results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmegreen, Bruce G.; Kaufman, Michele; Bournaud, Frédéric
CO observations of the interacting galaxies IC 2163 and NGC 2207 are combined with HI, H α , and 24 μ m observations to study the star formation rate (SFR) surface density as a function of the gas surface density. More than half of the high-SFR regions are HI dominated. When compared to other galaxies, these HI-dominated regions have excess SFRs relative to their molecular gas surface densities but normal SFRs relative to their total gas surface densities. The HI-dominated regions are mostly located in the outer part of NGC 2207 where the HI velocity dispersion is high, 40–50 kmmore » s{sup −1}. We suggest that the star-forming clouds in these regions have envelopes at lower densities than normal, making them predominantly atomic, and cores at higher densities than normal because of the high turbulent Mach numbers. This is consistent with theoretical predictions of a flattening in the density probability distribution function for compressive, high Mach number turbulence.« less
LPWA using supersonic gas jet with tailored density profile
NASA Astrophysics Data System (ADS)
Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras
2016-10-01
Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.
NASA Technical Reports Server (NTRS)
Vedantam, NandaKishore; Parthasarathy, Ramkumar N.
2004-01-01
The effects of the mean velocity profiles on the instability characteristics in the near-injector region of axisymmetric low density gas jets injected vertically upwards into a high-density gas medium were investigated using linear inviscid stability analysis. The flow was assumed to be isothermal and locally parallel. Three velocity profiles, signifying different changes in the mean velocity in the shear layer, were used in the analysis. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the instability for each set of mean profiles were delineated. At a large Froude number (negligible gravity), a critical density ratio was found for the three profiles at which the jet became absolutely unstable. The critical density ratio for each velocity profile was increased as the Froude number was reduced. A critical Froude number was found for the three sets of profiles, below which the jet was absolutely unstable for all the density ratios less than unity, which demarcated the jet flow into the momentum-driven regime and the buoyancy-driven regime.
Deuterium fractionation and H2D+ evolution in turbulent and magnetized cloud cores
NASA Astrophysics Data System (ADS)
Körtgen, Bastian; Bovino, Stefano; Schleicher, Dominik R. G.; Giannetti, Andrea; Banerjee, Robi
2017-08-01
High-mass stars are expected to form from dense prestellar cores. Their precise formation conditions are widely discussed, including their virial condition, which results in slow collapse for supervirial cores with strong support by turbulence or magnetic fields, or fast collapse for subvirial sources. To disentangle their formation processes, measurements of the deuterium fractions are frequently employed to approximately estimate the ages of these cores and to obtain constraints on their dynamical evolution. We here present 3D magnetohydrodynamical simulations including for the first time an accurate non-equilibrium chemical network with 21 gas-phase species plus dust grains and 213 reactions. With this network we model the deuteration process in fully depleted prestellar cores in great detail and determine its response to variations in the initial conditions. We explore the dependence on the initial gas column density, the turbulent Mach number, the mass-to-magnetic flux ratio and the distribution of the magnetic field, as well as the initial ortho-to-para ratio (OPR) of H2. We find qualitatively good agreement with recent observations of deuterium fractions in quiescent sources. Our results show that deuteration is rather efficient, even when assuming a conservative OPR of 3 and highly subvirial initial conditions, leading to large deuterium fractions already within roughly a free-fall time. We discuss the implications of our results and give an outlook to relevant future investigations.
Massive Fermi gas in the expanding universe
NASA Astrophysics Data System (ADS)
Trautner, Andreas
2017-03-01
The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic at decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.
Massive Fermi gas in the expanding universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trautner, Andreas, E-mail: atrautner@uni-bonn.de
The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic atmore » decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.« less
NASA Astrophysics Data System (ADS)
Lube, G.; Cronin, S. J.; Breard, E.; Valentine, G.; Bursik, M. I.; Hort, M. K.; Freundt, A.
2013-12-01
We report on the first systematic series of large-scale Pyroclastic Density Current (PDC) experiments using the New Zealand PDC Generator, a novel international research facility in Physical Volcanology recently commissioned at Massey University. Repeatable highly energetic and hot PDCs are synthesized by the controlled ';eruption column-collapse' of up to 3500 kg of homogenously aerated Taupo ignimbrite material from a 15 m-elevated hopper onto an instrumented inclined flume. At discharge rates between 250-1300 kg/s and low- to moderate gas injection rates (yielding initial solids concentration of 15-70 vol%) channelized gas-particle mixture flows life-scaled to dense PDCs can be generated. The flow fronts of the currents reach velocities of up to 9.5 m/s over their first 12 m of travel and rapidly develop strong vertical density stratification. The PDCs typically form a highly mobile, <60 cm-thick dense and channel-confined underflow, with an overriding dilute and turbulent ash cloud surge that also laterally escapes the flume boundaries. Depending on the PDC starting conditions underflows with 1-45 vol% solids concentration are formed, while the upper surge contains <<1 vol.% solids. A characteristic feature of the underflow is the occurrence of 'ignitive' front breakouts, producing jetted lobes that accelerate outward from the flow front, initially forming a lobe-cleft structure, followed by segregation downslope into multiple flow pulses. Depending on initial solids concentration and discharge rate, stratified, dune-bedded and inversely graded bedforms are created whose thicknesses are remarkably uniform along the medial to distal runout path characterising highly mobile flow runout. Along with high-speed video footage we present time-series data of basal arrays of load- and gas-pore pressure transducers to characterise the mobile dense underflows. Data shows that the PDCs are comprised of a turbulent coarse-grained and air-ingesting front with particle-solids concentrations of 1-5 vol%. The front shows a brief phase of negative pore pressure due to the entrainment and upward elutriation of ambient air inside this front. It is immediately followed by the fine-ash rich and highly impermeable main flow body. Passage of the flow body is accompanied by strongly increasing pore-pressures of 1-3 kPa that almost fully supports the weight of the entire underflow - depicting flow-induced fluidisation of the main flow part. The remainder of the flow body shows further increases in pore-pressure aside with strong reductions in flow mass. This suggests the occurrence of zones of air-cushions forming at the base of the underflow that largely aid its inviscid runout. This sequence is repeated during arrival and passage of up to three more flow pulses. The low-permeability deposits maintain high internal gas pore pressures for several minutes after emplacement, before sudden deaeration, settling and gas loss is caused by fracturing. Flow-induced fluidisation and basal air-cushioning provide key processes behind the enigmatic long runout behaviour of dense PDCs.
Data analysis and interpretation related to space system/environment interactions at LEO altitude
NASA Technical Reports Server (NTRS)
Raitt, W. John; Schunk, Robert W.
1991-01-01
Several studies made on the interaction of active systems with the LEO space environment experienced from orbital or suborbital platforms are covered. The issue of high voltage space interaction is covered by theoretical modeling studies of the interaction of charged solar cell arrays with the ionospheric plasma. The theoretical studies were complemented by experimental measurements made in a vacuum chamber. The other active system studied was the emission of effluent from a space platform. In one study the emission of plasma into the LEO environment was studied by using initially a 2-D model, and then extending this model to 3-D to correctly take account of plasma motion parallel to the geomagnetic field. The other effluent studies related to the releases of neutral gas from an orbiting platform. One model which was extended and used determined the density, velocity, and energy of both an effluent gas and the ambient upper atmospheric gases over a large volume around the platform. This model was adapted to study both ambient and contaminant distributions around smaller objects in the orbital frame of reference with scale sizes of 1 m. The other effluent studies related to the interaction of the released neutral gas with the ambient ionospheric plasma. An electrostatic model was used to help understand anomalously high plasma densities measured at times in the vicinity of the space shuttle orbiter.
High-Voltage, High-Power Gaseous Electronics Switch For Electric Grid Power Conversion
NASA Astrophysics Data System (ADS)
Sommerer, Timothy J.
2014-05-01
We are developing a high-voltage, high-power gas switch for use in low-cost power conversion terminals on the electric power grid. Direct-current (dc) power transmission has many advantages over alternating current (ac) transmission, but at present the high cost of ac-dc power interconversion limits the use of dc. The gas switch we are developing conducts current through a magnetized cold cathode plasma in hydrogen or helium to reach practical current densities > 1 A/cm2. Thermal and sputter damage of the cathode by the incident ion flux is a major technical risk, and is being addressed through use of a ``self-healing'' liquid metal cathode (eg, gallium). Plasma conditions and cathode sputtering loss are estimated by analyzing plasma spectral emission. A particle-in-cell plasma model is used to understand various aspects of switch operation, including the conduction phase (where plasma densities can exceed 1013 cm-3), the switch-open phase (where the high-voltage must be held against gas breakdown on the left side of Paschen's curve), and the switching transitions (especially the opening process, which is initiated by forming an ion-matrix sheath adjacent to a control grid). The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
Method and apparatus for the formation of a spheromak plasma
Jardin, Stephen C.; Yamada, Masaaki; Furth, Harold P.; Okabayashi, Mitcheo
1984-01-01
An inductive method and apparatus for forming detached spheromak plasma using a thin-walled metal toroidal ring, with external current leads and internal poloidal and toroidal field coils located inside a vacuum chamber filled with low density hydrogen gas and an external axial field generating coil. The presence of a current in the poloidal field coils, and an externally generated axial field sets up the initial poloidal field configuration in which the field is strongest toward the major axis of the toroid. The internal toroidal-field-generating coil is then pulsed on, ionizing the gas and inducing poloidal current and toroidal magnetic field into the plasma region in the sleeve exterior to and adjacent to the ring and causing the plasma to expand away from the ring and toward the major axis. Next the current in the poloidal field coils in the ring is reversed. This induces toroidal current into the plasma and causes the poloidal magnetic field lines to reconnect. The reconnection continues until substantially all of the plasma is formed in a separated spheromak configuration held in equilibrium by the initial external field.
Observational and Numerical Diagnostics of Galaxy Cluster Outer Regions
NASA Technical Reports Server (NTRS)
Eckert, D.; Vazza, F.; Ettori, S.; Molendi, S.; Nagai, D.; Lau, E.; Roncarelli, M.; Rossetti, M.; Snowden, S. L.; Gastaldello, F.
2011-01-01
Aims. We present the analysis of a local (z = 0.04 - 0.2) sample of 31 galaxy clusters with the aim of measuring the density of the X-ray emitting gas in cluster outskirts. We compare our results with numerical simulations to set constraints on the azimuthal symmetry and gas clumping in the outer regions of galaxy clusters. Methods. We exploit the large field-of-view and low instrumental background of ROSAT/PSPC to trace the density of the intracluster gas out to the virial radius. We perform a stacking of the density profiles to detect a signal beyond r(sub 200) and measure the typical density and scatter in cluster outskirts. We also compute the azimuthal scatter of the profiles with respect to the mean value to look for deviations from spherical symmetry. Finally, we compare our average density and scatter profiles with the results of numerical simulations. Results. As opposed to several recent results, we observe a steepening of the density profiles beyond approximately 0.3r(sub 500). Comparing our density profiles with simulations, we find that non-radiative runs predict too steep density profiles, whereas runs including additional physics and/or gas clumping are in better agreement with the observed gas distribution. We note a systematic difference between cool-core and non-cool core clusters beyond approximately 0.3r(sub 200), which we explain by a different distribution of the gas in the two classes. Beyond approximately r(sub 500), galaxy clusters deviate significantly from spherical symmetry, with only little differences between relaxed and disturbed systems. We find good agreement between the observed and predicted scatter profiles, but only when the 1% densest clumps are filtered out in the simulations. Conclusions. The general trend of steepening density around the virial radius indicates that the shallow density profiles found in several recent works were probably obtained along particular directions (e.g., filaments) and are not representative of the typical behavior of clusters. Comparing our results with numerical simulations, we find that non-radiative simulations fail to reproduce the gas distribution, even well outside cluster cores. Therefore, a detailed treatment of gas cooling, star formation, clumping, and AGN feedback is required to construct realistic models of cluster outer regions.
Surface density: a new parameter in the fundamental metallicity relation of star-forming galaxies
NASA Astrophysics Data System (ADS)
Hashimoto, Tetsuya; Goto, Tomotsugu; Momose, Rieko
2018-04-01
Star-forming galaxies display a close relation among stellar mass, metallicity, and star formation rate (or molecular-gas mass). This is known as the fundamental metallicity relation (FMR) (or molecular-gas FMR), and it has a profound implication on models of galaxy evolution. However, there still remains a significant residual scatter around the FMR. We show here that a fourth parameter, the surface density of stellar mass, reduces the dispersion around the molecular-gas FMR. In a principal component analysis of 29 physical parameters of 41 338 star-forming galaxies, the surface density of stellar mass is found to be the fourth most important parameter. The new 4D fundamental relation forms a tighter hypersurface that reduces the metallicity dispersion to 50 per cent of that of the molecular-gas FMR. We suggest that future analyses and models of galaxy evolution should consider the FMR in a 4D space that includes surface density. The dilution time-scale of gas inflow and the star-formation efficiency could explain the observational dependence on surface density of stellar mass.
Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti
NASA Technical Reports Server (NTRS)
Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.;
2017-01-01
We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X., E-mail: zhouxuan12@mails.thu.edu.cn; Zeng, R.; Zhuang, C.
2015-06-15
Leader discharge is one of the main phases in long air gap breakdown, which is characterized by high temperature and high conductivity. It is of great importance to determine thermal characteristics of leader discharges. In this paper, a long-optical-path Mach-Zehnder interferometer was set up to measure the thermal parameters (thermal diameter, gas density, and gas temperature) of positive leader discharges in atmospheric air. IEC standard positive switching impulse voltages were applied to a near-one-meter point-plane air gap. Filamentary channels with high gas temperature and low density corresponding to leader discharges were observed as significant distortions in the interference fringe images.more » Typical diameters of the entire heated channel range from 1.5 mm to 3.5 mm with an average expansion velocity of 6.7 m/s. In contrast, typical diameters of the intensely heated region with a sharp gas density reduction range from 0.4 mm to 1.1 mm, about one third of the entire heated channel. The radial distribution of the gas density is calculated from the fringe displacements by performing an Abel inverse transform. The typical calculated gas density reduction in the center of a propagating leader channel is 80% to 90%, corresponding to a gas temperature of 1500 K to 3000 K based on the ideal gas law. Leaders tend to terminate if the central temperature is below 1500 K.« less
Interpreting the sub-linear Kennicutt-Schmidt relationship: the case for diffuse molecular gas
NASA Astrophysics Data System (ADS)
Shetty, Rahul; Clark, Paul C.; Klessen, Ralf S.
2014-08-01
Recent statistical analysis of two extragalactic observational surveys strongly indicate a sub-linear Kennicutt-Schmidt (KS) relationship between the star formation rate (ΣSFR) and molecular gas surface density (Σmol). Here, we consider the consequences of these results in the context of common assumptions, as well as observational support for a linear relationship between ΣSFR and the surface density of dense gas. If the CO traced gas depletion time (τ_dep^CO) is constant, and if CO only traces star-forming giant molecular clouds (GMCs), then the physical properties of each GMC must vary, such as the volume densities or star formation rates. Another possibility is that the conversion between CO luminosity and Σmol, the XCO factor, differs from cloud-to-cloud. A more straightforward explanation is that CO permeates the hierarchical interstellar medium, including the filaments and lower density regions within which GMCs are embedded. A number of independent observational results support this description, with the diffuse gas comprising at least 30 per cent of the total molecular content. The CO bright diffuse gas can explain the sub-linear KS relationship, and consequently leads to an increasing τ_dep^CO with Σmol. If ΣSFR linearly correlates with the dense gas surface density, a sub-linear KS relationship indicates that the fraction of diffuse gas fdiff grows with Σmol. In galaxies where Σmol falls towards the outer disc, this description suggests that fdiff also decreases radially.
NASA Astrophysics Data System (ADS)
Bertram, Erik; Glover, Simon C. O.; Clark, Paul C.; Ragan, Sarah E.; Klessen, Ralf S.
2016-02-01
We run numerical simulations of molecular clouds, adopting properties similar to those found in the central molecular zone (CMZ) of the Milky Way. For this, we employ the moving mesh code AREPO and perform simulations which account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of gas and dust. We perform simulations using an initial density of n0 = 103 cm-3 and a mass of 1.3 × 105 M⊙. Furthermore, we vary the virial parameter, defined as the ratio of kinetic and potential energy, α = Ekin/|Epot|, by adjusting the velocity dispersion. We set it to α = 0.5, 2.0 and 8.0, in order to analyse the impact of the kinetic energy on our results. We account for the extreme conditions in the CMZ and increase both the interstellar radiation field (ISRF) and the cosmic ray flux (CRF) by a factor of 1000 compared to the values found in the solar neighbourhood. We use the radiative transfer code RADMC-3D to compute synthetic images in various diagnostic lines. These are [C II] at 158 μm, [O I] (145 μm), [O I] (63 μm), 12CO (J = 1 → 0) and 13CO (J = 1 → 0) at 2600 and 2720 μm, respectively. When α is large, the turbulence disperses much of the gas in the cloud, reducing its mean density and allowing the ISRF to penetrate more deeply into the cloud's interior. This significantly alters the chemical composition of the cloud, leading to the dissociation of a significant amount of the molecular gas. On the other hand, when α is small, the cloud remains compact, allowing more of the molecular gas to survive. We show that in each case the atomic tracers accurately reflect most of the physical properties of both the H2 and the total gas of the cloud and that they provide a useful alternative to molecular lines when studying the interstellar medium in the CMZ.
Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air
NASA Astrophysics Data System (ADS)
Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri
2018-04-01
C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.
Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.
We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer diskmore » of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.« less
Fragmentation during primordial star formation
NASA Astrophysics Data System (ADS)
Dutta, Jayanta
Understanding the physics of the very first stars in the universe, the so-called Population III (or Pop III) stars, is crucial in determining how the universe evolved into what we observe today. In the standard model of Pop III star formation, the baryonic matter, mainly atomic hydrogen, collapses gravitationally into small Dark Matter (DM) minihalos. However, so far there is little understanding on how the thermal, dynamical and chemical evolution of the primordial gas depend on the initial configuration of the minihalos (for example, rotation of the unstable clumps inside minihalos, turbulence, formation of molecular hydrogen and cosmic variance of the minihalos). We use the modified version of the Gadget-2 code, a three-dimensional smoothed particle hydrodynamics (SPH) simulations, to follow the evolution of the collapsing gas in both idealized as well as more realistic minihalos. Unlike some earlier cosmological calculations, the implementation of sink particles allows us to follow the evolution of the accretion disk that builds up in the centre of each minihalo and fragments. We find that the fragmentation behavior depends on the adopted choice of three-body H2 formation rate coefficient. The increasing cooling rate during rapid conversion of the atomic to molecular hydrogen is offset by the heating due to gas contraction. We propose that the H2 cooling, the heating due to H2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation. We also find that the cloud's initial degree of rotation has a significant effect on the thermal and dynamical evolution of the collapsing gas. Clouds with higher rotation exhibit spiral-arm-like structures that become gravitationally unstable to fragmentation on several scales. These type of clouds tend to fragment more and have lower accretion rates compared to their slowly rotating counterparts. In addition, we find that the distribution of specific angular momentum (L) of the gas follows a power-law relation with the enclosed gas mass (M), L ∝ M1.125, which is controlled by the gravitational and pressure torque, and does not depend on the cloud's initial degree of rotation and turbulence.
Formation Of the Giant Planets By Concurrent Accretion Of Solids And Gas
NASA Technical Reports Server (NTRS)
Pollack, James B.; Hubickyj, Olenka; Bodenheimer, Peter; Lissauer, Jack J.; Podolak, Morris; Greenzweig, Yuval; Cuzzi, Jeffery N. (Technical Monitor)
1995-01-01
New numerical simulations of the formation of the giant planets are presented, in which for the first time both the gas and planetesimal accretion rates are calculated in a self-consistent, interactive fashion. The simulations combine three elements: 1) three-body accretion cross-sections of solids onto an isolated planetary embryo, 2) a stellar evolution code for the planet's gaseous envelope, and 3) a planetesimal dissolution code within the envelope, used to evaluate the planet's effective capture radius and the energy deposition profile of accreted material. Major assumptions include: The planet is embedded in a disk of gas and small planetesimals with locally uniform initial surface mass density, and planetesimals are not allowed to migrate into or out of the planet's feeding zone. All simulations are characterized by three major phases. During the first phase, the planet's mass consists primarily of solid material. The planetesimal accretion rate, which dominates that of gas, rapidly increases owing to runaway accretion, then decreases as the planet's feeding zone is depleted. During the second phase, both solid and gas accretion rates are small and nearly independent of time. The third phase, marked by runaway gas accretion, starts when the solid and gas masses are about equal. It is engendered by a strong positive feedback on the gas accretion rates, driven by the rapid contraction of the gaseous envelope and the rapid expansion of the outer boundary, which depends on the planet's total mass. The overall evolutionary time scale is generally determined by the length of the second phase. The actual rates at which the giant planets accreted small planetesimals is probably intermediate between the constant rates assumed in most previous studies and the highly variable rates that we have used. Within the context, of the adopted model of planetesimal accretion, the joint constraints of the time scale for dissipation of the solar nebula and the current high-Z masses of the giant planets lead to estimates of the initial surface density (sigma(sub init)) of planetesimals in the outer region of the solar nebula. The results show sigma(sub init) approx. = 10 g/sq cm near Jupiter's orbit and that sigma(sub init) proportional to alpha(sup -2), where alpha is the distance from the Sun. These values are a factor of 3 - 4 times as high as that of the "minimum mass" solar nebula at Jupiter's distance and a factor of 2 - 3 times as high it Saturn's distance. Our estimates for the formation time of Jupiter and Saturn are 1 - 10 million years while those for Uranus fall in the range of 2 - 16 million years. These estimates follow from the properties of our Solar System and do not necessarily apply to giant planets in other planetary systems.
Equilibrium star formation in a constant Q disc: model optimization and initial tests
NASA Astrophysics Data System (ADS)
Zheng, Zheng; Meurer, Gerhardt R.; Heckman, Timothy M.; Thilker, David A.; Zwaan, Martin A.
2013-10-01
We develop a model for the distribution of the interstellar medium (ISM) and star formation in galaxies based on recent studies that indicate that galactic discs stabilize to a constant stability parameter, which we combine with prescriptions of how the phases of the ISM are determined and for the star formation law (SFL). The model predicts the gas surface mass density and star formation intensity of a galaxy given its rotation curve, stellar surface mass density and the gas velocity dispersion. This model is tested on radial profiles of neutral and molecular ISM surface mass density and star formation intensity of 12 galaxies selected from the H I Nearby Galaxy Survey sample. Our tests focus on intermediate radii (0.3 to 1 times the optical radius) because there are insufficient data to test the outer discs and the fits are less accurate in detail in the centre. Nevertheless, the model produces reasonable agreement with the ISM mass and star formation rate integrated over the central region in all but one case. To optimize the model, we evaluate four recipes for the stability parameter, three recipes for apportioning the ISM into molecular and neutral components, and eight versions of the SFL. We find no clear-cut best prescription for the two-fluid (gas and stars) stability parameter Q2f and therefore for simplicity, we use the Wang and Silk approximation (QWS). We found that an empirical scaling between the molecular-to-neutral ISM ratio (Rmol) and the stellar surface mass density proposed by Leroy et al. works marginally better than the other two prescriptions for this ratio in predicting the ISM profiles, and noticeably better in predicting the star formation intensity from the ISM profiles produced by our model with the SFLs we tested. Thus, in the context of our modelled ISM profiles, the linear molecular SFL and the two-component SFL work better than the other prescriptions we tested. We incorporate these relations into our `constant Q disc' model.
Initial experiments to understand the interaction of stellar radiation with molecular clouds
NASA Astrophysics Data System (ADS)
Vandervort, Robert; Davis, Josh; Trantham, Matt; Klein, Sallee; Shvarts, Dov; Keiter, Paul; Drake, R. Paul
2017-10-01
Enhanced star formation triggered by local O and B type stars is an astrophysical problem of interest. O and B type stars are massive, hot stars that emit an enormous amount of radiation. This radiation acts to either compress or blow apart gas clumps in the interstellar media. For example, in the optically thick limit, when the radiation in the gas clump has a short mean free path, radiation is absorbed near the clump edge and compresses the clump. In the optically thin limit, when the mean free path is long, the radiation is absorbed throughout, acting to heat the clump. This heating explodes the gas clump. Careful selection of parameters, such as foam density or source temperature, allow the experimental platform to access different hydrodynamic regimes. 2D CRASH simulations guide our parameter selection. A stellar radiation source is mimicked by a laser-irradiated, thin, gold foil, providing a source of thermal x-rays around 100 eV. The gas clump is mimicked by low-density CRF foam. We plan to show the preliminary experimental results of this platform in the optically thick limit, from experiments scheduled in August. This work is funded by the U.S. DOE, through the NNSA-DS and SC-OFES Joint Program in HEDPLP, Grant No. DE-NA0002956, and the NLUF Program, Grant No. DE-NA0002719, and through LLE, University of Rochester by the NNSA/OICF under Cooperative Agreement No. DE-NA0001944. This work is funded by the Lawrence Livermore National Laboratory under subcontract B614207.
Richtmyer-Meshkov instability for elastic-plastic solids in converging geometries
NASA Astrophysics Data System (ADS)
López Ortega, A.; Lombardini, M.; Barton, P. T.; Pullin, D. I.; Meiron, D. I.
2015-03-01
We present a detailed study of the interface instability that develops at the boundary between a shell of elastic-plastic material and a cylindrical core of confined gas during the inbound implosive motion generated by a shock-wave. The main instability in this configuration is the so-called Richtmyer-Meshkov instability that arises when the shock wave crosses the material interface. Secondary instabilities, such as Rayleigh-Taylor, due to the acceleration of the interface, and Kelvin-Helmholtz, due to slip between solid and fluid, arise as the motion progresses. The reflection of the shock wave at the axis and its second interaction with the material interface as the shock moves outbound, commonly known as re-shock, results in a second Richtmyer-Meshkov instability that potentially increases the growth rate of interface perturbations, resulting in the formation of a mixing zone typical of fluid-fluid configurations and the loss of the initial perturbation length scales. The study of this problem is of interest for achieving stable inertial confinement fusion reactions but its complexity and the material conditions produced by the implosion close to the axis prove to be challenging for both experimental and numerical approaches. In this paper, we attempt to circumvent some of the difficulties associated with a classical numerical treatment of this problem, such as element inversion in Lagrangian methods or failure to maintain the relationship between the determinant of the deformation tensor and the density in Eulerian approaches, and to provide a description of the different events that occur during the motion of the interface. For this purpose, a multi-material numerical solver for evolving in time the equations of motion for solid and fluid media in an Eulerian formalism has been implemented in a Cartesian grid. Equations of state are derived using thermodynamically consistent hyperelastic relations between internal energy and stresses. The resolution required for capturing the state of solid and fluid materials close to the origin is achieved by making use of adaptive mesh refinement techniques. Rigid-body rotations contained in the deformation tensor have been shown to have a negative effect on the accuracy of the method in extreme compression conditions and are removed by transforming the deformation tensor into a stretch tensor at each time step. With this methodology, the evolution of the interface can be tracked up to a point at which numerical convergence cannot be achieved due to the inception of numerical Kelvin-Helmholtz instabilities caused by slip between materials. From that point, only qualitative conclusions can be extracted from this analysis. The influence of different geometrical parameters, initial conditions, and material properties on the motion of the interface are investigated. Some major differences are found with respect to the better understood fluid-fluid case. For example, increasing the wave number of the interface perturbations leads to a second phase reversal of the interface (i.e., the first phase reversal of the interface naturally occurs due to the initial negative growth-rate of the instability as the shock wave transitions from the high-density material to the low-density one). This phenomenon is caused by the compressive effect of the converging geometry and the low density of the gas with respect to the solid, which allows for the formation of an incipient spike in the center of an already existing bubble. Multiple solid-gas density ratios are also considered. Results show that the motion of the interface asymptotically converges to the solid-vacuum case. When a higher initial density for the gas is considered, the growth rate of interface perturbations decreases and, in some situations, its sign may reverse, as the fluid becomes more dense than the solid due to having higher compressibility. Finally, the influence of the Mach number of the driving shock and the yield stress on the mixing-zone is examined. We find that the width of the mixing zone produced after the re-shock increases in proportion to the strength of the incident shock. An increased yield stress in the solid material makes the interface less unstable due to vorticity being carried away from the interface by shear waves and limits the generation of smaller length scales after the re-shock.
NASA Astrophysics Data System (ADS)
Banda-Barragán, W. E.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.
2018-01-01
We present a set of numerical experiments designed to systematically investigate how turbulence and magnetic fields influence the morphology, energetics, and dynamics of filaments produced in wind-cloud interactions. We cover 3D, magnetohydrodynamic systems of supersonic winds impacting clouds with turbulent density, velocity, and magnetic fields. We find that lognormal density distributions aid shock propagation through clouds, increasing their velocity dispersion and producing filaments with expanded cross-sections and highly magnetized knots and subfilaments. In self-consistently turbulent scenarios, the ratio of filament to initial cloud magnetic energy densities is ∼1. The effect of Gaussian velocity fields is bound to the turbulence Mach number: Supersonic velocities trigger a rapid cloud expansion; subsonic velocities only have a minor impact. The role of turbulent magnetic fields depends on their tension and is similar to the effect of radiative losses: the stronger the magnetic field or the softer the gas equation of state, the greater the magnetic shielding at wind-filament interfaces and the suppression of Kelvin-Helmholtz instabilities. Overall, we show that including turbulence and magnetic fields is crucial to understanding cold gas entrainment in multiphase winds. While cloud porosity and supersonic turbulence enhance the acceleration of clouds, magnetic shielding protects them from ablation and causes Rayleigh-Taylor-driven subfilamentation. Wind-swept clouds in turbulent models reach distances ∼15-20 times their core radius and acquire bulk speeds ∼0.3-0.4 of the wind speed in one cloud-crushing time, which are three times larger than in non-turbulent models. In all simulations, the ratio of turbulent magnetic to kinetic energy densities asymptotes at ∼0.1-0.4, and convergence of all relevant dynamical properties requires at least 64 cells per cloud radius.
NASA Technical Reports Server (NTRS)
Flower, D. R.; Desforets, G. P.; Roueff, E.; Hartquist, T. W.
1986-01-01
Considerable effort in recent years has been devoted to the study of shocks in the diffuse interstellar medium. This work has been motivated partly by the observations of rotationally excited states of H2, and partly by the realization that species such as CH(+), OH and H2O might be formed preferentially in hot, post-shock gas. The problem of CH(+) and the difficulties encountered when trying to explain the high column densities, observed along lines of sight to certain hot stars, have been reviewed earlier. The importance of a transverse magnetic field on the structure of an interstellar shock was also demonstrated earlier. Transverse magnetic fields above a critical strength give rise to an acceleration zone or precursor, in which the parameters on the flow vary continuously. Chemical reactions, which change the degree of ionization of the gas, also modify the structure of the shock considerably. Recent work has shown that large column densities of CH(+) can be produced in magnetohydrodynamic shock models. Shock speeds U sub s approx. = 10 km/s and initial magnetic field strengths of a few micro G are sufficient to produce ion-neutral drift velocities which can drive the endothermic C(+)(H2,H)CH(+) reaction. It was also shown that single-fluid hydrodynamic models do not generate sufficiently large column densities of CH(+) unless unacceptably high shock velocities (u sub s approx. 20 km/s) are assumed in the models. Thus, the observed column densities of CH(+) provide a constraint on the mode of shock propagation in diffuse clouds. More precisely, they determine a lower limit to the ion-neutral drift velocity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muliyati, Dewi, E-mail: dmuliyati@unj.ac.id; Dept. of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta; Wella, Sasfan A.
2015-09-30
In this research, we performed first-principles calculations by means of density functional theory (DFT) to investigate the interaction of H{sub 2}S gas on the surface of single-walled carbon nanotubes (SWNTs). In order to understand the effect of chirality to the electronic structure of SWNTs/H{sub 2}S, the pristine SWNTs was varied to become SWNTs (5,0), (6,0), (7,0), (8,0), (9,0), and (10,0). From the calculation we found that after H{sub 2}S adsorbed on surface of SWNTs, the electronic properties of system changes from semiconductor to metal but not vice versa. It was only SWNTs (5,0), (7,0), (8,0), and (10,0) occuring the changingmore » on its electronic properties behavior, others were remain similar with its initial behavior. In the degassing process, metal return to semiconductor behavior, which is an indication that SWNTs is a good gas sensors, responsive and reversible.« less
Initial experimental test of a helicon plasma based mass filter
NASA Astrophysics Data System (ADS)
Gueroult, R.; Evans, E. S.; Zweben, S. J.; Fisch, N. J.; Levinton, F.
2016-06-01
High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. Concurrent spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.
Propagation of ultrashort laser pulses in optically ionized gases
NASA Astrophysics Data System (ADS)
Morozov, A.; Luo, Y.; Suckewer, S.; Gordon, D. F.; Sprangle, P.
2010-02-01
Propagation of 800 nm, 120 fs laser pulses with intensities of 4×1016 W/cm2 in supersonic gas jets of N2 and H2 is studied using a shear-type interferometer. The plasma density distribution resulting from photoionization is resolved in space and time with simultaneously measured initial neutral density distribution. A distinct difference in laser beam propagation distance is observed when comparing propagation in jets of H2 and N2. This is interpreted in terms of ionization induced refraction, which is stronger when electrons are produced from states of higher ionization potential. Three dimensional particle-in-cell simulations, based on directly solving the Maxwell-Lorentz system of equations, show the roles played by the forward Raman and ionization scattering instabilities, which further affect the propagation distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahl, R. J.; Trott, W. M.; Snedigar, S.
A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300{mu}m) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-{mu}m and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visiblemore » induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaneda, Jaime N.; Pahl, Robert J.; Snedigar, Shane
A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300{micro}m) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-{micro}m and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visiblemore » induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.« less
Convection in an ideal gas at high Rayleigh numbers.
Tilgner, A
2011-08-01
Numerical simulations of convection in a layer filled with ideal gas are presented. The control parameters are chosen such that there is a significant variation of density of the gas in going from the bottom to the top of the layer. The relations between the Rayleigh, Peclet, and Nusselt numbers depend on the density stratification. It is proposed to use a data reduction which accounts for the variable density by introducing into the scaling laws an effective density. The relevant density is the geometric mean of the maximum and minimum densities in the layer. A good fit to the data is then obtained with power laws with the same exponent as for fluids in the Boussinesq limit. Two relations connect the top and bottom boundary layers: The kinetic energy densities computed from free fall velocities are equal at the top and bottom, and the products of free fall velocities and maximum horizontal velocities are equal for both boundaries.
NASA Astrophysics Data System (ADS)
Marks, Michael; Kroupa, Pavel; Dabringhausen, Jörg; Pawlowski, Marcel S.
2012-05-01
Residual-gas expulsion after cluster formation has recently been shown to leave an imprint in the low-mass present-day stellar mass function (PDMF) which allowed the estimation of birth conditions of some Galactic globular clusters (GCs) such as mass, radius and star formation efficiency. We show that in order to explain their characteristics (masses, radii, metallicity and PDMF) their stellar initial mass function (IMF) must have been top heavy. It is found that the IMF is required to become more top heavy the lower the cluster metallicity and the larger the pre-GC cloud-core density are. The deduced trends are in qualitative agreement with theoretical expectation. The results are consistent with estimates of the shape of the high-mass end of the IMF in the Arches cluster, Westerlund 1, R136 and NGC 3603, as well as with the IMF independently constrained for ultra-compact dwarf galaxies (UCDs). The latter suggests that GCs and UCDs might have formed along the same channel or that UCDs formed via mergers of GCs. A Fundamental Plane is found which describes the variation of the IMF with density and metallicity of the pre-GC cloud cores. The implications for the evolution of galaxies and chemical enrichment over cosmological times are expected to be major.
The Neutral Gas Desorption and Breakdown on a Metal-Dielectric Junction Immersed in a Plasma
NASA Technical Reports Server (NTRS)
Vayner, Boris; Galofaro, Joel; Ferguson, Dale; Lyons, Valerie J. (Technical Monitor)
2002-01-01
New results are presented of an experimental study and theoretical analysis of arcing on metal-dielectric junctions immersed in a low-density plasma. Two samples of conventional solar arrays have been used to investigate the effects of arcing within a wide range of neutral gas pressures, ion currents, and electron number densities. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, intensities of spectral lines, and so on). Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are trip le-junctions, even though some arcs were initiated in gaps between cells. The effect of surface conditioning (decrease of arc rate due to outgassing) was clearly demonstrated. Moreover, a considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. The analysis of optical spectra (240-800 nm) reveals intense narrow atomic lines (Ag, H) and wide molecular bands (OH, CH, SiH, SiN) that confirm a complicated mechanism of arc plasma generation. The rate of plasma contamination due to arcing was measured by employing a mass-spectrometer. These measurements provided quite reliable data for the development of a theoretical model of plasma contamination, In conclusion, the arc threshold was increased to above 350 V (from 190 V) by keeping a sample in vacuum (20 micronTorr) for seven days. The results obtained are important for the understanding of the arc inception mechanism, which is absolutely essential for progress toward the design of high voltage solar arrays for space applications.
Role of Magnetic Diffusion Induced by Turbulent Magnetic Reconnection for Star Formation
NASA Astrophysics Data System (ADS)
Lazarian, Alex; Santos de Lima, R.; de Gouveia Dal Pino, E.
2010-01-01
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology or reconnect in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence is reassuring that the magnetic field behavior in the computer simulations and turbulent astrophysical environments is similar, as far as the magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our study of magnetic field diffusion reveals important propertie s of the process. First of all, our 3D MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a decorrelation of the magnetic field and density, which corresponds well to the observations of the interstellar media. In the presence of gravity, our 3D simulations show the decrease of the flux to mass ratio with density concentration when turbulence is present. We observe this effect both in the situations when we start with the equilibrium distributions of gas and magnetic field and when we start with collapsing dynamically unstable configurations. Thus the process of turbulent magnetic field removal should be applicable both to quasistatic subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and flux in the saturated final state of simulations, supporting the notion that turbulent diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. At the same time, turbulence of high level may get the system unbound making the flux to mass ratio more uniform through the simulation box.
Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A
2014-11-01
The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate.
Human respiration at rest in rapid compression and at high pressures and gas densities
NASA Technical Reports Server (NTRS)
Gelfand, R.; Lambertsen, C. J.; Strauss, R.; Clark, J. M.; Puglia, C. D.
1983-01-01
The ventilation (V), end-tidal PCO2 (PACO2), and CO2 elimination rate were determined in men at rest breathing CO2-free gas over the pressure range 1-50 ATA and the gas density range 0.4-25 g/l, during slow and rapid compressions, at stable elevated ambient pressures and during slow decompressions. Progressive increase in pulmonary gas flow resistance due to elevation of ambient pressure and inspired gas density to the He-O2 equivalent of 5000 feet of seawater was found to produce a complex pattern of change in PACO2. It was found that as both ambient pressure and pulmonary gas flow resistance were progressively raised, PACO2 at first increased, went through a maximum, and then declined towards values near the 1 ATA level. It is concluded that this pattern of PACO2 change results from the interaction on ventilation of the increase in pulmonary resistance due to the elevation of gas density with the increase in respiratory drive postulated as due to generalized central nervous system excitation associated with exposure to high hydrostatic pressure. It is suggested that a similar interaction exists between increased gas flow resistance and the increase in respiratory drive related to nitrogen partial pressure and the resulting narcosis.
Hot and cold gas toward young stellar objects
NASA Technical Reports Server (NTRS)
Mitchell, George F.; Maillard, Jean-Pierre; Allen, Mark; Beer, Reinhard; Belcourt, Kenneth
1990-01-01
High-resolution M band spectra are presented for the seven embedded IR sources W3 IRS 5, S140 IRS1, NGC 7538 IRS 1, NGC 7538 IRS 9, GL 2136, LkH-alpha 101, and MWC 349A, and the data are combined with previously published work for W33A and GL 2591. Cold CO is seen toward all nine sources, with temperatures from 11 K to 66 K. Column densities of cold CO are presented. Hot gas is seen toward eight of the nine objects with temperatures from 120 K to 1010 K. New lower limits to the hot gas density are obtained. The hot gas toward GL 2591, GL 2136, W3 IRS 5, and S140 IRS 1 is probably very near the central source and heated via gas-grain collisions. The optical depth in the silicate feature is strongly correlated with the (C-13)O column density, confirming that silicate optical depth is a useful measure of gas column density. The ratio of solid-to-gaseous CO is obtained for seven sources.
Production of high-density highly-ionized helicon plasmas in the ProtoMPEX
NASA Astrophysics Data System (ADS)
Caneses, J. F.; Kafle, N.; Showers, M.; Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Bigelow, T.; Rapp, J.
2017-10-01
High-density (2-6e19 m-3) Deuterium helicon plasmas in the ProtoMPEX have been produced that successfully use differential pumping to produce neutral gas pressures suitable for testing the RF electron and ion heating concepts. To minimize collisional losses when heating electrons and ions, plasmas with very low neutral gas content (<< 0.1 Pa) in the heating sections are required. This requirement is typically not compatible with the neutral gas pressures (1-2 Pa) commonly used in high-density light-ion helicon sources. By using skimmers, a suitable gas injection scheme and long duration discharges (>0.3 s), high-density plasmas with very low neutral gas pressures (<< 0.1 Pa) in the RF heating sections have been produced. Measurements indicate the presence of a highly-ionized plasma column and that discharges lasting at least 0.3 s are required to significantly reduce the neutral gas pressure in the RF heating sections to levels suitable for investigating electron/ion RF heating concepts in this linear configuration. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
A teaching phantom for sonographers.
Zagzebski, J A; Madsen, E L; Frank, G R
1991-01-01
An anthropomorphic torso section phantom is described that is intended for use during initial stages of ultrasonographer training. The phantom represents a section of the upper abdomen, with simulated ribs, liver, kidney with fat pad, gallbladder, aorta, and bowel gas. Positioned in the liver are ten simulated soft tissue masses, which produce a variety of typical echographic patterns. All simulated soft tissue components are formed of tissue-mimicking materials that match their corresponding tissue counterparts in terms of speed of sound, ultrasonic attenuation, and density. Construction details are presented and examples of images are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovskiy, A. V.; Galkin, A. L.; Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997
The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.
NASA Technical Reports Server (NTRS)
Goldsmith, Paul F.
2008-01-01
Viewgraph topics include: optical image of Taurus; dust extinction in IR has provided a new tool for probing cloud morphology; observations of the gas can contribute critical information on gas temperature, gas column density and distribution, mass, and kinematics; the Taurus molecular cloud complex; average spectra in each mask region; mas 2 data; dealing with mask 1 data; behavior of mask 1 pixels; distribution of CO column densities; conversion to H2 column density; variable CO/H2 ratio with values much less than 10(exp -4) at low N indicated by UV results; histogram of N(H2) distribution; H2 column density distribution in Taurus; cumulative distribution of mass and area; lower CO fractional abundance in mask 0 and 1 regions greatly increases mass determined in the analysis; masses determined with variable X(CO) and including diffuse regions agrees well with the found from L(CO); distribution of young stars as a function of molecular column density; star formation efficiency; star formation rate and gas depletion; and enlarged images of some of the regions with numerous young stars. Additional slides examine the origin of the Taurus molecular cloud, evolution from HI gas, kinematics as a clue to its origin, and its relationship to star formation.
Oxygen evolution from olivine M n1 -xMxP O4 (M =Fe ,Ni,Al,Mg) delithiated cathode materials
NASA Astrophysics Data System (ADS)
Snydacker, David H.; Wolverton, C.
2017-01-01
Olivine LiMnP O4 is a promising cathode material for Li-ion batteries. One drawback of this material is the propensity of its delithiated phase, MnP O4 , to evolve oxygen gas above approximately 200 °C. During thermal runaway of cells, this oxygen gas can burn the electrolyte and other cell components and thereby jeopardize safety. Partial substitution of Mn with M =Fe , Ni, Al, or Mg has been used to improve the lithium intercalation kinetics of L ixMnP O4 ; however, the effect of these substitutions on oxygen evolution is not fully documented. In this paper, we calculate phase diagrams and oxygen evolution diagrams for these M n1 -xMxP O4 delithiated cathode materials. To generate the phase diagrams, we use subregular solid-solution models and fit the energetic parameters of these models to density functional theory calculations of special quasirandom structures. The resulting thermodynamic models describe the effect of mixing on the initial temperature of oxygen evolution and on the cumulative amount of oxygen evolution at elevated temperatures. We find that addition of Fe increases the initial temperature and decreases the cumulative amount of oxygen evolution. M n0.5F e0.5P O4 exhibits an initial temperature 50 °C higher than MnP O4 and releases 70% less oxygen gas at 300 °C. Al is insoluble in MnP O4 , so addition of Al has no affect on the initial temperature. However, Al addition does slightly decrease the amount of oxygen evolution due to an inactive AlP O4 component. Mg and Ni both decrease the initial temperature of oxygen evolution, and therefore may worsen the safety of MnP O4 .
First Argon Gas Puff Experiments With 500 ns Implosion Time On Sphinx Driver
NASA Astrophysics Data System (ADS)
Zucchini, F.; Calamy, H.; Lassalle, F.; Loyen, A.; Maury, P.; Grunenwald, J.; Georges, A.; Morell, A.; Bedoch, J.-P.; Ritter, S.; Combes, P.; Smaniotto, O.; Lample, R.; Coleman, P. L.; Krishnan, M.
2009-01-01
Experiments have been performed at the SPHINX driver to study potential of an Argon Gas Puff load designed by AASC. We present here the gas Puff hardware and results of the last shot series. The Argon Gas Puff load used is injected thanks to a 20 cm diameter nozzle. The nozzle has two annuli and a central jet. The pressure and gas type in each of the nozzle plena can be independently adjusted to tailor the initial gaz density distribution. This latter is selected as to obtain an increasing radial density from outer shell towards the pinch axis in order to mitigate the RT instabilities and to increase radiating mass on axis. A flashboard unit produces a high intensity UV source to pre-ionize the Argon gas. Typical dimensions of the load are 200 mm in diameter and 40 mm height. Pressures are adjusted to obtain an implosion time around 550 ns with a peak current of 3.5 MA. With the goal of improving k-shell yield a mass scan of the central jet was performed and implosion time, mainly given by outer and middle plena settings, was kept constant. Tests were also done to reduce the implosion time for two configurations of the central jet. Strong zippering of the radiation production was observed mainly due to the divergence of the central jet over the 40 mm of the load height. Due to that feature k-shell radiation is mainly obtained near cathode. Therefore tests were done to mitigate this effect first by adjusting local pressure of middle and central jet and second by shortening the pinch length. At the end of this series, best shot gave 5 kJ of Ar k-shell yield. PCD detectors showed that k-shell x-ray power was 670 GW with a FWHM of less than 10 ns.
H-mode fueling optimization with the supersonic deuterium jet in NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soukhanovskii, V A; Bell, M G; Bell, R E
2008-06-18
High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphitemore » Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms-scale controls and a reservoir gas pressure up to P{sub 0} = 5000 Torr. In this paper we summarize recent progress toward optimization of H-mode fueling in NSTX using the SGI-U.« less
Galactic Spiral Shocks with Thermal Instability in Vertically Stratified Galactic Disks
NASA Astrophysics Data System (ADS)
Kim, Chang-Goo; Kim, Woong-Tae; Ostriker, Eve C.
2010-09-01
Galactic spiral shocks are dominant morphological features and believed to be responsible for substructure formation within spiral arms in disk galaxies. They can also contribute a substantial amount of kinetic energy to the interstellar gas by tapping the (differential) rotational motion. We use numerical hydrodynamic simulations to investigate dynamics and structure of spiral shocks with thermal instability (TI) in vertically stratified galactic disks, focusing on environmental conditions (of heating and the galactic potential) similar to the Solar neighborhood. We initially consider an isothermal disk in vertical hydrostatic equilibrium and let it evolve subject to interstellar cooling and heating as well as a stellar spiral potential. Due to TI, a disk with surface density Σ0 >= 6.7 M sun pc-2 rapidly turns to a thin dense slab near the midplane sandwiched between layers of rarefied gas. The imposed spiral potential leads to a vertically curved shock that exhibits strong flapping motions in the plane perpendicular to the arm. The overall flow structure at saturation is comprised of the arm, postshock expansion zone, and interarm regions that occupy typically 10%, 20%, and 70% of the arm-to-arm distance, in which the gas resides for 15%, 30%, and 55% of the arm-to-arm crossing time, respectively. The flows are characterized by transitions from rarefied to dense phases at the shock and from dense to rarefied phases in the postshock expansion zone, although gas with too-large postshock-density does not undergo this return phase transition, instead forming dense condensations. If self-gravity is omitted, the shock flapping drives random motions in the gas, but only up to ~2-3 km s-1 in the in-plane direction and less than 2 km s-1 in the vertical direction. Time-averaged shock profiles show that the spiral arms in stratified disks are broader and less dense compared to those in unstratified models, and that the vertical density distribution is overall consistent with local effective hydrostatic equilibrium. Inclusion of self-gravity increases the dense gas fraction by a factor of ~2 and raises the in-plane velocity dispersion to ~5-7 km s-1. When the disks are massive enough, with Σ0 >= 5 M sun pc-2, self-gravity promotes formation of bound clouds that repeatedly collide with each other in the arm and break up in the postshock expansion zone.
Acceleration Modes and Transitions in Pulsed Plasma Accelerators
NASA Technical Reports Server (NTRS)
Polzin, Kurt A.; Greve, Christine M.
2018-01-01
Pulsed plasma accelerators typically operate by storing energy in a capacitor bank and then discharging this energy through a gas, ionizing and accelerating it through the Lorentz body force. Two plasma accelerator types employing this general scheme have typically been studied: the gas-fed pulsed plasma thruster and the quasi-steady magnetoplasmadynamic (MPD) accelerator. The gas-fed pulsed plasma accelerator is generally represented as a completely transient device discharging in approximately 1-10 microseconds. When the capacitor bank is discharged through the gas, a current sheet forms at the breech of the thruster and propagates forward under a j (current density) by B (magnetic field) body force, entraining propellant it encounters. This process is sometimes referred to as detonation-mode acceleration because the current sheet representation approximates that of a strong shock propagating through the gas. Acceleration of the initial current sheet ceases when either the current sheet reaches the end of the device and is ejected or when the current in the circuit reverses, striking a new current sheet at the breech and depriving the initial sheet of additional acceleration. In the quasi-steady MPD accelerator, the pulse is lengthened to approximately 1 millisecond or longer and maintained at an approximately constant level during discharge. The time over which the transient phenomena experienced during startup typically occur is short relative to the overall discharge time, which is now long enough for the plasma to assume a relatively steady-state configuration. The ionized gas flows through a stationary current channel in a manner that is sometimes referred to as the deflagration-mode of operation. The plasma experiences electromagnetic acceleration as it flows through the current channel towards the exit of the device. A device that had a short pulse length but appeared to operate in a plasma acceleration regime different from the gas-fed pulsed plasma accelerators was developed by Cheng, et al. The Coaxial High ENerGy (CHENG) thruster operated on the 10-microseconds timescales of pulsed plasma thrusters, but claimed high thrust density, high efficiency and low electrode erosion rates, which are more consistent with the deflagration mode of acceleration. Separate work on gas-fed pulsed plasma thrusters (PPTs) by Ziemer, et al. identified two separate regimes of performance. The regime at higher mass bits (termed Mode I in that work) possessed relatively constant thrust efficiency (ratio of jet kinetic energy to input electrical energy) as a function of mass bit. In the second regime at very low mass bits (termed Mode II), the efficiency increased with decreasing mass bit. Work by Poehlmann et al. and by Sitaraman and Raja sought to understand the performance of the CHENG thruster and the Mode I / Mode II performance in PPTs by modeling the acceleration using the Hugoniot Relation, with the detonation and deflagration modes representing two distinct sets of solutions to the relevant conservation laws. These works studied the proposal that, depending upon the values of the various controllable parameters, the accelerator would operate in either the detonation or deflagration mode. In the present work, we propose a variation on the explanation for the differences in performance between the various pulsed plasma accelerators. Instead of treating the accelerator as if it were only operating in one mode or the other during a pulse, we model the initial stage of the discharge in all cases as an accelerating current sheet (detonation mode). If the current sheet reaches the exit of the accelerator before the discharge is completed, the acceleration mode transitions to the deflagration mode type found in the quasi-steady MPD thrusters. This modeling method is used to demonstrate that standard gas-fed pulsed plasma accelerators, the CHENG thruster, and the quasi-steady MPD accelerator are variations of the same device, with the overall acceleration of the plasma depending upon the behavior of the plasma discharge during initial transient phase and the relative lengths of the detonation and deflagration modes of operation.
Simultaneous density-field visualization and PIV of the Richtmyer-Meshkov instability
NASA Astrophysics Data System (ADS)
Prestridge, Katherine; Rightley, Paul; Benjamin, Robert; Kurnit, Norman; Boxx, Isaac; Vorobieff, Peter
1999-11-01
We describe a highly-detailed experimental characterization of the Richtmyer-Meshkov instability. A vertical curtain of heavy gas (SF_6) flows into the test section of an air-filled, horizontal shock tube, and the instability evolves after the passage of a Mach 1.2 shock past the curtain. The evolution of the curtain is visualized by seeding the SF6 with small (d ≈ 0.5 μm) glycol/water droplets using a modified theatrical fog generator. Because the event lasts only 1 ms and the initial conditions vary from test to test, rapid and high-resolution (both spatial and temporal) data acquisition is required in order to characterize the initial and dynamic conditions for each experimental event. A customized, frequency-doubled, burst mode Nd:YAG laser and a commercial single-pulse laser are used for the implementation of simultaneous density-field imaging and PIV diagnostics. We have provided data about flow scaling and mixing through image analysis, and PIV data gives us further quantitative physical insight into the evolution of the Richtmyer-Meshkov instability.
NASA Astrophysics Data System (ADS)
Caton, J. A.; Payne, S. E.; Terracina, D. P.; Kihm, K. D.
Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures, and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% by mass coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m(exp 3)), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time, and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.
NASA Astrophysics Data System (ADS)
Hyhlík, Tomáš
2018-06-01
The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.
NASA Astrophysics Data System (ADS)
Ruggeri, Michele; Luo, Hongjun; Alavi, Ali
Full Configuration Interaction Quantum Monte Carlo (FCIQMC) is able to give remarkably accurate results in the study of atoms and molecules. The study of the uniform electron gas (UEG) on the other hand has proven to be much harder, particularly in the low density regime. The source of this difficulty comes from the strong interparticle correlations that arise at low density, and essentially forbid the study of the electron gas in proximity of Wigner crystallization. We extend a previous study on the three dimensional electron gas computing the energy of a fully polarized gas for N=27 electrons at high and medium density (rS = 0 . 5 to 5 . 0). We show that even when dealing with a polarized UEG the computational cost of the study of systems with rS > 5 . 0 is prohibitive; in order to deal with correlations and to extend the density range that to be studied we introduce a basis of localized states and an effective transcorrelated Hamiltonian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, L.; Ding, B. J.; Li, M. H.
2013-06-15
A triple Langmuir probe is mounted on the top of the Lower Hybrid (LH) antenna to measure the electron density near the LH grills in Experimental Advanced Superconducting Tokamak. In this work, the LH power density ranges from 2.3 MWm{sup −2} to 10.3 MWm{sup −2} and the rate of puffing gas varies from 1.7 × 10{sup 20} el/s to 14 × 10{sup 20} el/s. The relation between the edge density (from 0.3 × n{sub e-cutoff} to 20 × n{sub e-cutoff}, where n{sub e-cutoff} is the cutoff density, n{sub e-cutoff} = 0.74 × 10{sup 17} m{sup −3} for 2.45 GHz lowermore » hybrid current drive) near the LH grill and the LH power reflection coefficients is investigated. The factors, including the gap between the LH grills and the last closed magnetic flux surface, line-averaged density, LH power, edge safety factor, and gas puffing, are analyzed. The experiments show that injection of LH power is beneficial for increasing edge density. Gas puffing is beneficial for increasing grill density but excess gas puffing is unfavorable for coupling and current drive.« less
Remote-sensing gas measurements with coherent Rayleigh-Brillouin scattering
Gerakis, A.; Shneider, M. N.; Stratton, B. C.
2016-07-21
Here, we measure the coherent Rayleigh-Brillouin scattering (CRBS) signal integral as a function of the recorded gas pressure in He, Co 2, SF 6, and air, and confirm the already established quadratic dependence of the signal on the gas density. Finally, we propose the use of CRBS as an effective diagnostic for the remote measurement of gas' density (pressure) and temperature, as well as polarizability, for gases of known composition.
Laser-induced electron source in a vacuum diode
NASA Astrophysics Data System (ADS)
Ghera, U.; Boxman, R. L.; Kleinman, H.; Ruschin, S.
1989-11-01
Experiments were conducted in which a high-power CO2 TEA laser interacted with metallic cathode in a high-vacuum (10 to the -8th Torr) diode. For power densities lower than 5 x 10 to the 7th W/sq cm, no current was detected. For power densities in the range of 5 x 10 to the 7th to 5 x 10 to the 8th W/sq cm, the Cu cathode emitted a maximum current of 40 mA. At a higher power density level, a circuit-limited current of 8 A was detected. The jump of a few orders of magnitude in the current is attributed to breakdown of the diode gap. The experimental results are similar to those of a triggered vacuum gap, and a thorough comparison is presented in this paper. The influence of the pressure in the vacuum chamber on the current magnitude shows the active role that adsorbed gas molecules have in the initial breakdown. When the cathode material was changed from metal to metal oxide, much lower laser power densities were required to reach the breakdown current region.
Characteristic Structure of Star-forming Clouds
NASA Astrophysics Data System (ADS)
Myers, Philip C.
2015-06-01
This paper presents a new method to diagnose the star-forming potential of a molecular cloud region from the probability density function of its column density (N-pdf). This method provides expressions for the column density and mass profiles of a symmetric filament having the same N-pdf as a filamentary region. The central concentration of this characteristic filament can distinguish regions and can quantify their fertility for star formation. Profiles are calculated for N-pdfs which are pure lognormal, pure power law, or a combination. In relation to models of singular polytropic cylinders, characteristic filaments can be unbound, bound, or collapsing depending on their central concentration. Such filamentary models of the dynamical state of N-pdf gas are more relevant to star-forming regions than are spherical collapse models. The star formation fertility of a bound or collapsing filament is quantified by its mean mass accretion rate when in radial free fall. For a given mass per length, the fertility increases with the filament mean column density and with its initial concentration. In selected regions the fertility of their characteristic filaments increases with the level of star formation.
NASA Astrophysics Data System (ADS)
Garland, N. A.; Boyle, G. J.; Cocks, D. G.; White, R. D.
2018-02-01
This study reviews the neutral density dependence of electron transport in gases and liquids and develops a method to determine the nonlinear medium density dependence of electron transport coefficients and scattering rates required for modeling transport in the vicinity of gas-liquid interfaces. The method has its foundations in Blanc’s law for gas-mixtures and adapts the theory of Garland et al (2017 Plasma Sources Sci. Technol. 26) to extract electron transport data across the gas-liquid transition region using known data from the gas and liquid phases only. The method is systematically benchmarked against multi-term Boltzmann equation solutions for Percus-Yevick model liquids. Application to atomic liquids highlights the utility and accuracy of the derived method.
Outcomes of Grazing Impacts between Sub-Neptunes in Kepler Multis
NASA Astrophysics Data System (ADS)
Hwang, Jason; Chatterjee, Sourav; Lombardi, James, Jr.; Steffen, Jason H.; Rasio, Frederic
2018-01-01
Studies of high-multiplicity, tightly packed planetary systems suggest that dynamical instabilities are common and affect both the orbits and planet structures, where the compact orbits and typically low densities make physical collisions likely outcomes. Since the structure of many of these planets is such that the mass is dominated by a rocky core, but the volume is dominated by a tenuous gas envelope, the sticky-sphere approximation, used in dynamical integrators, may be a poor model for these collisions. We perform five sets of collision calculations, including detailed hydrodynamics, sampling mass ratios, and core mass fractions typical in Kepler Multis. In our primary set of calculations, we use Kepler-36 as a nominal remnant system, as the two planets have a small dynamical separation and an extreme density ratio. We use an N-body code, Mercury 6.2, to integrate initially unstable systems and study the resultant collisions in detail. We use these collisions, focusing on grazing collisions, in combination with realistic planet models created using gas profiles from Modules for Experiments in Stellar Astrophysics and core profiles using equations of state from Seager et al. to perform hydrodynamic calculations, finding scatterings, mergers, and even a potential planet–planet binary. We dynamically integrate the remnant systems, examine the stability, and estimate the final densities, finding that the remnant densities are sensitive to the core masses, and collisions result in generally more stable systems. We provide prescriptions for predicting the outcomes and modeling the changes in mass and orbits following collisions for general use in dynamical integrators.
NASA Astrophysics Data System (ADS)
Makalkin, A. B.; Artyushkova, M. E.
2017-11-01
Radial contraction of the dust layer in the midplane of a gas-dust protoplanetary disk that consists of large dust aggregates is modeled. Sizes of aggregates vary from centimeters to meters assuming the monodispersion of the layer. The highly nonlinear continuity equation for the solid phase of the dust layer is solved numerically. The purpose of the study is to identify the conditions under which the solid matter is accumulated in the layer, which contributes to the formation of planetesimals as a result of gravitational instability of the dust phase of the layer. We consider the collective interaction of the layer with the surrounding gas of the protoplanetary disk: shear stresses act on the gas in the dust layer that has a higher orbital velocity than the gas outside the layer, this leads to a loss of angular momentum and a radial drift of the layer. The stress magnitude is determined by the turbulent viscosity, which is represented as the sum of the α-viscosity associated with global turbulence in the disk and the viscosity associated with turbulence that is localized in a thin equatorial region comprising the dust layer and is caused by the Kelvin-Helmholtz instability. The evaporation of water ice and the continuity of the mass flux of the nonvolatile component on the ice line is also taken into account. It is shown that the accumulation of solid matter on either side of the ice line and in other regions of the disk is determined primarily by the ratio of the radii of dust aggregates on either side of the ice line. If after the ice evaporation the sizes (or density) of dust aggregates decrease by an order of magnitude or more, the density of the solid phase of the layer's matter in the annular zone adjacent to the ice line from the inside increases sharply. If, however, the sizes of the aggregates on the inner side of the ice line are only a few times smaller than behind the ice line, then in the same zone there is a deficit of mass at the place of the modern asteroid belt. We have obtained constraints on the parameters at which the layer compaction is possible: the global turbulence viscosity parameter (α < 10-5), the initial radial distribution of the surface density of the dust layer, and the distribution of the gas surface density in the disk. Restrictions on the surface density depend on the size of dust aggregates. It is shown that the timescale of radial contraction of a dust layer consisting of meter-sized bodies is two orders of magnitude and that of decimeter ones, an order of magnitude greater than the timescale of the radial drift of individual particles if there is no dust layer.
The Formation of the First Cosmic Structures and the Physics of the z ~ 20 Universe
NASA Astrophysics Data System (ADS)
O'Leary, Ryan M.; McQuinn, Matthew
2012-11-01
We perform a suite of cosmological simulations in the ΛCDM paradigm of the formation of the first structures in the universe prior to astrophysical reheating and reionization (15 <~ z < 200). These are the first simulations initialized in a manner that self-consistently accounts for the impact of pressure on the rate of growth of modes, temperature fluctuations in the gas, and the dark matter-baryon supersonic velocity difference. Even with these improvements, these are still difficult times to simulate accurately as the Jeans length of the cold intergalactic gas must be resolved while also capturing a representative sample of the universe. We explore the box size and resolution requirements to meet these competing objectives. Our simulations support the finding of recent studies that the dark matter-baryon velocity difference has a surprisingly large impact on the accretion of gas onto the first star-forming minihalos (which have masses of ~106 M ⊙). In fact, the halo gas is often significantly downwind of such halos and with lower densities in the simulations in which the baryons have a bulk flow with respect to the dark matter, modulating the formation of the first stars by the local value of this velocity difference. We also show that dynamical friction plays an important role in the nonlinear evolution of the dark matter-baryon differential velocity, acting to erase this velocity difference quickly in overdense gas, as well as sourcing visually apparent bow shocks and Mach cones throughout the universe. We use simulations with both the GADGET and Enzo cosmological codes to test the robustness of these conclusions. The comparison of these codes' simulations also provides a relatively controlled test of these codes themselves, allowing us to quantify some of the tradeoffs between the algorithms. For example, we find that particle coupling in GADGET between the gas and dark matter particles results in spurious growth that mimics nonlinear growth in the matter power spectrum for standard initial setups. This coupling is alleviated by using adaptive gravitational softening for the gas. In a companion paper, we use the simulations presented here to make detailed estimates for the impact of the dark matter-baryon velocity differential on redshifted 21 cm radiation. The initial conditions generator used in this study, CICSASS, can be publicly downloaded.
Injector design for liner-on-target gas-puff experiments
NASA Astrophysics Data System (ADS)
Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.
2017-11-01
We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.
Injector design for liner-on-target gas-puff experiments.
Valenzuela, J C; Krasheninnikov, I; Conti, F; Wessel, F; Fadeev, V; Narkis, J; Ross, M P; Rahman, H U; Ruskov, E; Beg, F N
2017-11-01
We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ∼1 cm radius gas profile that satisfies the theoretical requirement for best performance on ∼1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.
Wuest, C.R.; Lowry, M.E.
1994-03-29
An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium. 3 figures.
Wuest, Craig R.; Lowry, Mark E.
1994-01-01
An optical ionization detector wherein a beam of light is split so that one arm passes through a fiber optics and the other arm passes through a gas-filled region, and uses interferometry to detect density changes in a gas when charged particles pass through it. The gas-filled region of the detector is subjected to a high electric field and as a charged particle traverses this gas region electrons are freed from the cathode and accelerated so as to generate an electron avalanche which is collected on the anode. The gas density is effected by the electron avalanche formation and if the index or refraction is proportional to the gas density the index will change accordingly. The detector uses this index change by modulating the one arm of the split light beam passing through the gas, with respect to the other arm that is passed through the fiber optic. Upon recombining of the beams, interference fringe changes as a function of the index change indicates the passage of charged particles through the gaseous medium.
Cho, Jung Sang; Lee, Jeong-Cheol; Rhee, Sang-Hoon
2016-02-01
In the synthesis of hydroxyapatite powders by spray pyrolysis, control of the particle size was investigated by varying the initial concentration of the precursor solution and the pyrolysis temperature. Calcium phosphate solutions (Ca/P ratio of 1.67) with a range of concentrations from 0.1 to 2.0 mol/L were prepared by dissolving calcium nitrate tetrahydrate and diammonium hydrogen phosphate in deionized water and subsequently adding nitric acid. Hydroxyapatite powders were then synthesized by spray pyrolysis at 900°C and at 1500°C, using these calcium phosphate precursor solutions, under the fixed carrier gas flow rate of 10 L/min. The particle size decreased as the precursor concentration decreased and the spray pyrolysis temperature increased. Sinterability tests conducted at 1100°C for 1 h showed that the smaller and denser the particles were, the higher the relative densities were of sintered hydroxyapatite disks formed from these particles. The practical implication of these results is that highly sinterable small and dense hydroxyapatite particles can be synthesized by means of spray pyrolysis using a low-concentration precursor solution and a high pyrolysis temperature under a fixed carrier gas flow rate. © 2015 Wiley Periodicals, Inc.
The First Stars: A Low-Mass Formation Mode
NASA Technical Reports Server (NTRS)
Stacy, Athena; Bromm, Volker
2014-01-01
We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as approx. 1 AU, corresponding to gas densities of 10(exp 16)/cu cm. Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from <1Stellar Mass to approx. 5 Stellar Mass by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.
Equations of state of detonation products: ammonia and methane
NASA Astrophysics Data System (ADS)
Lang, John; Dattelbaum, Dana; Goodwin, Peter; Garcia, Daniel; Coe, Joshua; Leiding, Jeffery; Gibson, Lloyd; Bartram, Brian
2015-06-01
Ammonia (NH3) and methane (CH4) are two principal product gases resulting from explosives detonation, and the decomposition of other organic materials under shockwave loading (such as foams). Accurate thermodynamic descriptions of these gases are important for understanding the detonation performance of high explosives. However, shock compression data often do not exist for molecular species in the dense gas phase, and are limited in the fluid phase. Here, we present equation of state measurements of elevated initial density ammonia and methane gases dynamically compressed in gas-gun driven plate impact experiments. Pressure and density of the shocked gases on the principal Hugoniot were determined from direct particle velocity and shock wave velocity measurements recorded using optical velocimetry (Photonic Doppler velocimetry (PDV) and VISAR (velocity interferometer system for any reflector)). Streak spectroscopy and 5-color pyrometry were further used to measure the emission from the shocked gases, from which the temperatures of the shocked gases were estimated. Up to 0.07 GPa, ammonia was not observed to ionize, with temperature remaining below 7000 K. These results provide quantitative measurements of the Hugoniot locus for improving equations of state models of detonation products.
Neptune's Triton: A moon rich in dry ice and carbon
NASA Technical Reports Server (NTRS)
Prentice, A. J. R.
1989-01-01
The encounter of the spacecraft Voyager 2 with Neptune and its large satellite Triton in August 1989 will provide a crucial test of ideas regarding the origin and chemical composition of the outer solar system. In this pre-encounter publication, the possibility is quantified that Titron is a captured moon which, like Pluto and Charon, originally condensed as a major planetesimal within the gas ring that was shed by the contracting protosolar cloud at Neptune's orbit. Ideas of supersonic convective turbulence are used to compute the gas pressure, temperature and rat of catalytic synthesis of CH4, CO2, and C(s) within the protosolar cloud, assuming that all C is initially present as CO. The calculations lead to a unique composition for Triton, Pluto, Charon: each body consists of, by mass, 18 1/2 percent solid CO2 ice, 4 percent graphite, 1/2 percent CH4 ice, 29 percent methanated water ice and 48 percent of anhydrous rock. This mix has a density consistent with that of the Pluto-Charon system and yields a predicted mean density for Triton of 2.20 + or - 0.5 g/cu cm, for satellite radius equal to 1,750 km.
The Dynamics of a Viscous Gas Ring around a Kerr Black Hole
NASA Astrophysics Data System (ADS)
Riffert, H.
2000-01-01
The dynamics of a rotationally symmetric viscous gas ring around a Kerr black hole is calculated in the thin-disk approximation. An evolution equation for the surface density Σ(t,r) is derived, which is the relativistic extension of a classical equation obtained by R. Lüst. A singular point appears at the radius of the last stable circular orbit r=rc. The nature of this point is investigated, and it turns out that the solution is always bounded at rc, and no boundary condition can be obtained at this radius. A unique solution of an initial value problem requires a matching condition at rc which follows from the flow structure between rc and the horizon. In the model presented here, the density in this domain is zero, and the resulting boundary condition leads to a vanishing shear stress at r=rc, which is the condition used in the standard stationary thin-disk model of Novikov & Thorne. Numerical solutions of the evolution equation are presented for two different angular momenta of the black hole. The time evolution of the resulting accretion rate depends strongly on this angular momentum.
NASA Technical Reports Server (NTRS)
Noyes, G. P.; Cusick, R. J.
1985-01-01
The three steps in pyrolytic carbon formation are: (1) gaseous hydrocarbon polymerization and aromatic formation; (2) gas-phase condensation and surface adsorption/impingement of polyaromatic hydrocarbon; and (3) final dehydration to carbon. The structure of the carbon in the various stages of formation is examined. The apparatuses and experimental procedures for the pyrolysis of methane in a 60 cm long quartz reactor tube at temperatures ranging from 1400-1600 K are described. The percentage of carbon converted and its density are calculated and tabularly presented. The results reveal that dense carbon formation is maximized and soot eliminated by this procedure. It is observed that conversion efficiency depends on the composition of the inlet gas and conversion increases with increasing temperature. Based on the experimental data a three-man carbon reactor subsystem (CRS) is developed; the functions of the Sabatier Methanation Reactor, two carbon formation reactors and fluid handling components of the CRS are analyzed. The CRS forms 16 kg of carbon at a rate of 0.8 kg/day for 20 days in a two percent volume density quartz wool packing at temperature of 1500-1600 K.
Shock Interaction with a Finite Thickness Two-Gas Interface
NASA Astrophysics Data System (ADS)
Labenski, John; Kim, Yong
2006-03-01
A dual-driver shock tube was used to investigate the growth rate of a finite thickness two-gas interface after shock forcing. One driver was used to create an argon-refrigerant interface as the contact surface behind a weak shock wave. The other driver, at the opposite end of the driven section, generates a stronger shock of Mach 1.1 to 1.3 to force the interface back in front of the detector station. Two schlieren systems record the density fluctuations while light scattering detectors record the density of the refrigerant as a function of position over the interface during both it's initial passage and return. A pair of digital cameras take stereo images of the interface, as mapped out by the tracer particles under illumination by a Q-switched ruby laser. The amount of time that the interface is allowed to travel up the driven section determines the interaction time as a control. Comparisons made between the schlieren signals, light scattering detector outputs, and the images quantify the fingered characteristics of the interface and its growth due to shock forcing. The results show that the interface has a distribution of thicknesses and that the interaction with a shock further broadens the interface.
Detecting the BCS pairing amplitude via a sudden lattice ramp in a honeycomb lattice
NASA Astrophysics Data System (ADS)
Tiesinga, Eite; Nuske, Marlon; Mathey, Ludwig
2016-05-01
We determine the exact time evolution of an initial Bardeen-Cooper-Schrieffer (BCS) state of ultra-cold atoms in a hexagonal optical lattice. The dynamical evolution is triggered by ramping the lattice potential up, such that the interaction strength Uf is much larger than the hopping amplitude Jf. The quench initiates collective oscillations with frequency | Uf | /(2 π) in the momentum occupation numbers and imprints an oscillating phase with the same frequency on the order parameter Δ. The latter is not reproduced by treating the time evolution in mean-field theory. The momentum density-density or noise correlation functions oscillate at frequency | Uf | /(2 π) as well as its second harmonic. For a very deep lattice, with negligible tunneling energy, the oscillations of momentum occupation numbers are undamped. Non-zero tunneling after the quench leads to dephasing of the different momentum modes and a subsequent damping of the oscillations. This occurs even for a finite-temperature initial BCS state, but not for a non-interacting Fermi gas. We therefore propose to use this dephasing to detect a BCS state. Finally, we predict that the noise correlation functions in a honeycomb lattice will develop strong anti-correlations near the Dirac point. We acknowledge funding from the National Science Foundation.
Numerical simulation of magma chamber dynamics.
NASA Astrophysics Data System (ADS)
Longo, Antonella; Papale, Paolo; Montagna, Chiara Paola; Vassalli, Melissa; Giudice, Salvatore; Cassioli, Andrea
2010-05-01
Magma chambers are characterized by periodic arrivals of deep magma batches that give origin to complex patterns of magma convection and mixing, and modify the distribution of physical quantities inside the chamber. We simulate the transient, 2D, multi-component homogeneous dynamics in geometrically complex dyke+chamber systems, by means of GALES, a finite element parallel C++ code solving mass, momentum and energy equations for multi-component homogeneous gas-liquid (± crystals) mixtures in compressible-to-incompressible flow conditions. Code validation analysis includes several cases from the classical engineering literature, corresponding to a variety of subsonic to supersonic gas-liquid flow regimes (see http://www.pi.ingv.it/~longo/gales/gales.html). The model allows specification of the composition of the different magmas in the domain, in terms of ten major oxides plus the two volatile species H2O and CO2. Gas-liquid thermodynamics are modeled by using the compositional dependent, non-ideal model in Papale et al. (Chem.. Geol., 2006). Magma properties are defined in terms of local pressure, temperature, and composition including volatiles. Several applications are performed within domains characterized by the presence of one or more magma chambers and one or more dykes, with different geometries and characteristic size from hundreds of m to several km. In most simulations an initial compositional interface is placed at the top of a feeding dyke, or at larger depth, with the deeper magma having a lower density as a consequence of larger volatile content. The numerical results show complex patterns of magma refilling in the chamber, with alternating phases of magma ingression and magma sinking from the chamber into the feeding dyke. Intense mixing takes place in feeding dykes, so that the new magma entering the chamber is always a mixture of the deep and the initially resident magma. Buoyant plume rise occurs through the formation of complex convective patterns, giving origin to a density-stratified magma chamber.
Li, Huishu; Carlson, Kenneth H
2014-01-01
Public concerns over potential environmental contamination associated with oil and gas well drilling and fracturing in the Wattenberg field in northeast Colorado are increasing. One of the issues of concern is the migration of oil, gas, or produced water to a groundwater aquifer resulting in contamination of drinking water. Since methane is the major component of natural gas and it can be dissolved and transported with groundwater, stray gas in aquifers has elicited attention. The initial step toward understanding the environmental impacts of oil and gas activities, such as well drilling and fracturing, is to determine the occurrence, where it is and where it came from. In this study, groundwater methane data that has been collected in response to a relatively new regulation in Colorado is analyzed. Dissolved methane was detected in 78% of groundwater wells with an average concentration of 4.0 mg/L and a range of 0-37.1 mg/L. Greater than 95% of the methane found in groundwater wells was classified as having a microbial origin, and there was minimal overlap between the C and H isotopic characterization of the produced gas and dissolved methane measured in the aquifer. Neither density of oil/gas wells nor distance to oil/gas wells had a significant impact on methane concentration suggesting other important factors were influencing methane generation and distribution. Thermogenic methane was detected in two aquifer wells indicating a potential contamination pathway from the producing formation, but microbial-origin gas was by far the predominant source of dissolved methane in the Wattenberg field.
Inductively-coupled plasmas in pure chlorine: comparison experiments/HPEM
NASA Astrophysics Data System (ADS)
Booth, Jean-Paul; Sirse, Nishant; Azamoum, Yasmina; Chabert, Pascal
2012-10-01
Inductively-coupled plasmas in chlorine-based gas mixtures are widely used for etching of nanometric features in silicon for CMOS device manufacture. This system is also of considerable fundamental interest as an archetype of strongly electronegative plasmas in a simple gas, for which reliable techniques exist to measure the densities of all key species. As such, it is an ideal test-bed for comparison of simulations to experiment. We have developed a technique based on two-photon Laser-Induced Fluorescence to determine the absolute Cl atom density. The Cl surface recombination coefficient was determined from time-resolved measurements in the afterglow. Electron densities were determined by microwave hairpin resonator and EEDF's were measured by Langmuir probe. Whereas the HPEM results were in good agreement at lower pressures (below 10mTorr), electron densities are increasingly underestimated at higher pressures. The gas temperature was measured by Doppler-resolved Infra-red Laser Absorption spectroscopy of Ar metastable atoms (with a small fraction Ar added). At higher pressures the gas temperature was considerably underestimated by the model. The concomitant overestimation of the gas density is a major reason for the disagreement between model and experiment.
Theoretical study of water-gas shift reaction on the silver nanocluster
NASA Astrophysics Data System (ADS)
Arab, Ali; Sharafie, Darioush; Fazli, Mostafa
2017-10-01
The kinetics of water gas shift reaction (WGSR) on the silver nanocluster was investigated using density functional theory according to the carboxyl associative mechanism. The hybrid B3PW91 functional along with the 6-31+G* and LANL2DZ basis sets were used throughout the calculations. It was observed that CO and H2O molecules adsorb physically on the Ag5 cluster without energy barrier as the initial steps of WGSR. The next three steps including H2Oads dissociation, carboxyl (OCOHads) formation, and CO2(ads) formation were accompanied by activation barrier. Transition states, as well as energy profiles of these three steps, were determined and analyzed. Our results revealed that the carboxyl and CO2(ads) formation were fast steps whereas H2Oads dissociation was the slowest step of WGSR.
NASA Technical Reports Server (NTRS)
Shull, J. M.
1979-01-01
Copernicus UV data on interstellar lines toward Epsilon Ori and Pi-5 Ori are analyzed to study abundances and physical conditions in both low- and intermediate-velocity components. Clouds at -8 and +5 km/s (LSR) toward Epsilon Ori show typical depletions of Fe, Ti, Mg, and Si in dense (H number density about 100 per cu cm) gas. Low-column-density intermediate-velocity clouds toward both stars, with low densities (hydrogen number density less than 1 per cu cm) and near-cosmic Si abundances, are consistent with a widespread pattern of high-velocity gas over a 15-deg area surrounding the Orion region. Such activity may be attributed to the repeated action of supernovae in a patchy low-density region of interstellar gas.
NASA Astrophysics Data System (ADS)
Suzuki, K.; Takayama, T.; Fujii, T.; Yamamoto, K.
2014-12-01
Many geologists have discussed slope instability caused by gas-hydrate dissociation, which could make movable fluid in pore space of sediments. However, physical property changes caused by gas hydrate dissociation would not be so simple. Moreover, during the period of natural gas-production from gas-hydrate reservoir applying depressurization method would be completely different phenomena from dissociation processes in nature, because it could not be caused excess pore pressure, even though gas and water exist. Hence, in all cases, physical properties of gas-hydrate bearing sediments and that of their cover sediments are quite important to consider this phenomena, and to carry out simulation to solve focusing phenomena during gas hydrate dissociation periods. Daini-Atsumi knoll that was the first offshore gas-production test site from gas-hydrate is partially covered by slumps. Fortunately, one of them was penetrated by both Logging-While-Drilling (LWD) hole and pressure-coring hole. As a result of LWD data analyses and core analyses, we have understood density structure of sediments from seafloor to Bottom Simulating Reflector (BSR). The results are mentioned as following. ・Semi-confined slump showed high-density, relatively. It would be explained by over-consolidation that was result of layer-parallel compression caused by slumping. ・Bottom sequence of slump has relative high-density zones. It would be explained by shear-induced compaction along slide plane. ・Density below slump tends to increase in depth. It is reasonable that sediments below slump deposit have been compacting as normal consolidation. ・Several kinds of log-data for estimating physical properties of gas-hydrate reservoir sediments have been obtained. It will be useful for geological model construction from seafloor until BSR. We can use these results to consider geological model not only for slope instability at slumping, but also for slope stability during depressurized period of gas production from gas-hydrate. AcknowledgementThis study was supported by funding from the Research Consortium for Methane Hydrate Resources in Japan (MH21 Research Consortium) planned by the Ministry of Economy, Trade and Industry (METI).
The anatomy of the Orion B giant molecular cloud: A local template for studies of nearby galaxies
NASA Astrophysics Data System (ADS)
Pety, Jérôme; Guzmán, Viviana V.; Orkisz, Jan H.; Liszt, Harvey S.; Gerin, Maryvonne; Bron, Emeric; Bardeau, Sébastien; Goicoechea, Javier R.; Gratier, Pierre; Le Petit, Franck; Levrier, François; Öberg, Karin I.; Roueff, Evelyne; Sievers, Albrecht
2017-01-01
Context. Molecular lines and line ratios are commonly used to infer properties of extra-galactic star forming regions. The new generation of millimeter receivers almost turns every observation into a line survey. Full exploitation of this technical advancement in extra-galactic study requires detailed bench-marking of available line diagnostics. Aims: We aim to develop the Orion B giant molecular cloud (GMC) as a local template for interpreting extra-galactic molecular line observations. Methods: We use the wide-band receiver at the IRAM-30 m to spatially and spectrally resolve the Orion B GMC. The observations cover almost 1 square degree at 26'' resolution with a bandwidth of 32 GHz from 84 to 116 GHz in only two tunings. Among the mapped spectral lines are the , , C18O, C17O, HCN, HNC, , C2H, HCO+, N2H+(1-0), and , , SiO, c - C3H2, CH3OH (2-1) transitions. Results: We introduce the molecular anatomy of the Orion B GMC, including relationships between line intensities and gas column density or far-UV radiation fields, and correlations between selected line and line ratios. We also obtain a dust-traced gas mass that is less than approximately one third the CO-traced mass, using the standard XCO conversion factor. The presence of over-luminous CO can be traced back to the dependence of the CO intensity on UV illumination. As a matter of fact, while most lines show some dependence on the UV radiation field, CN and C2H are the most sensitive. Moreover, dense cloud cores are almost exclusively traced by N2H+. Other traditional high-density tracers, such as HCN(1-0), are also easily detected in extended translucent regions at a typical density of 500 H2 cm-3. In general, we find no straightforward relationship between line critical density and the fraction of the line luminosity coming from dense gas regions. Conclusions: Our initial findings demonstrate that the relationships between line (ratio) intensities and environment in GMCs are more complicated than often assumed. Sensitivity (I.e., the molecular column density), excitation, and, above all, chemistry contribute to the observed line intensity distributions, and they must be considered together when developing the next generation of extra-galactic molecular line diagnostics of mass, density, temperature, and radiation field.
2016-04-01
noise, and energy relaxation for doped zinc-oxide and structured ZnO transistor materials with a 2-D electron gas (2DEG) channel subjected to a strong...function on the time delay. Closed symbols represent the Monte Carlo data with hot-phonon effect at different electron gas density: 1•1017 cm-3...Monte Carlo simulation is performed for electron gas density of 1•1018 cm-3. Figure 18. Monte Carlo simulation of density-dependent hot-electron energy
Evolution of HI from Z=5 to the present
NASA Technical Reports Server (NTRS)
Storrie-Lombardi, L. J.
2002-01-01
Studies of damped Lya systems provide us with a good measure of the evolution of the HI column density distribution function and the contribution to the comoving mass density in neutral gas out to redshifts of z = 5 . The column density distribution function at high redshift steepens for the highest column density HI absorbers, though the contribution to the comoving mass density of neutral gas remains fiat from 2 < z < 5 . Results from studies at z < 2 are finding substantial numbers of damped absorbers identified from MgII absorption, compared to previous blind surveys. These results indicate that the contribution to the comoving mass density in neutral gas may be constant from z 0 to z 5. Details of recent work in the redshift range z < 2 work is covered elsewhere in this volume (see D. Nestor). We review here recent results for the redshift range 2 < z < 5.
High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum
NASA Astrophysics Data System (ADS)
Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.
2015-04-01
A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.
NASA Astrophysics Data System (ADS)
Jacobson, R. B.; Li, Yize; Foote, Ryan; Cui, Xiaorui; Savage, Donald; Sookchoo, Pornsatit; Eriksson, Mark; Lagally, Max
2014-03-01
A high-quality 2-dimensional electron gas (2DEG) is crucial for quantum electronics and spintronics. Grown heterostructures on SiGe nanomembranes (NMs) show promise to create these 2DEG structures because they have reduced strain inhomogeneities and mosaic tilt. We investigate charge transport properties of these SiGe NMs/heterostructures over a range of temperatures and compare them with results from heterostructures grown on compositionally graded SiGe substrates. Measurements are done by creating Hall bars with top gates on the samples. From the magneto-transport data, low-carrier-density mobility values are calculated. Initial results on the grown heterostructures give a typical curve for mobility versus carrier density, but extraction of the zero-carrier-density mobility is dependent on the curve-fitting technique. Sponsored by United States Department of Defense. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressly or implied, of the U.S. Government.
Effects of Ionization in a Laser Wakefield Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuffey, C.; Schumaker, W.; Matsuoka, T.
2010-11-04
Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure.
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
Efforts this quarter have concentrated on legal agreements, including alternative field sites. Preliminary design of the bench-scale equipment has been initiated. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbing liquid. These resilient membranesmore » provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50--70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less
NASA Astrophysics Data System (ADS)
Tremblin, P.; Minier, V.; Schneider, N.; Audit, E.; Hill, T.; Didelon, P.; Peretto, N.; Arzoumanian, D.; Motte, F.; Zavagno, A.; Bontemps, S.; Anderson, L. D.; André, Ph.; Bernard, J. P.; Csengeri, T.; Di Francesco, J.; Elia, D.; Hennemann, M.; Könyves, V.; Marston, A. P.; Nguyen Luong, Q.; Rivera-Ingraham, A.; Roussel, H.; Sousbie, T.; Spinoglio, L.; White, G. J.; Williams, J.
2013-12-01
Context. Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M 16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation. Aims: The formation mechanisms of these structures are still being debated. The initial morphology of the molecular cloud and its turbulent state are key parameters since they generate deformations and curvatures of the shell during the expansion of the H ii region. Recent numerical simulations have shown how pillars can arise from the collapse of the shell in on itself and how globules can be formed from the interplay of the turbulent molecular cloud and the ionization from massive stars. The goal here is to test this scenario through recent observations of two massive star-forming regions, M 16 and the Rosette molecular cloud. Methods: First, the column density structure of the interface between molecular clouds and associated H ii regions was characterized using column density maps obtained from far-infrared imaging of the Herschel HOBYS key programme. Then, the DisPerSe algorithm was used on these maps to detect the compressed layers around the ionized gas and pillars in different evolutionary states. Column density profiles were constructed. Finally, their velocity structure was investigated using CO data, and all observational signatures were tested against some distinct diagnostics established from simulations. Results: The column density profiles have revealed the importance of compression at the edge of the ionized gas. The velocity properties of the structures, i.e. pillars and globules, are very close to what we predict from the numerical simulations. We have identified a good candidate of a nascent pillar in the Rosette molecular cloud that presents the velocity pattern of the shell collapsing on itself, induced by a high local curvature. Globules have a bulk velocity dispersion that indicates the importance of the initial turbulence in their formation, as proposed from numerical simulations. Altogether, this study re-enforces the picture of pillar formation by shell collapse and globule formation by the ionization of highly turbulent clouds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandi, F., E-mail: fernando.brandi@ino.it; Istituto Italiano di Tecnologia; Giammanco, F.
2016-08-15
The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gasmore » flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 10{sup 19} cm{sup −3} range well suited for LWFA.« less
Surface effects in the unitary Fermi gas
NASA Astrophysics Data System (ADS)
Salasnich, L.; Ancilotto, F.; Toigo, F.
2010-01-01
We study the extended Thomas-Fermi (ETF) density functional of the superfluid unitary Fermi gas. This functional includes a gradient term which is essential to describe accurately the surface effects of the system, in particular with a small number of atoms, where the Thomas-Fermi (local density) approximation fails. We find that our ETF functional gives density profiles which are in good agreement with recent Monte Carlo results and also with a more sophisticated superfluid density functional based on Bogoliubov-de Gennes equations. In addition, by using extended hydrodynamics equations of superfluids, we calculate the frequencies of collective surface oscillations of the unitary Fermi gas, showing that quadrupole and octupole modes strongly depend on the number of trapped atoms.
Entanglement classification in the noninteracting Fermi gas
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Eghbalifam, F.; Nami, S.; Yahyavi, M.
In this paper, entanglement classification shared among the spins of localized fermions in the noninteracting Fermi gas is studied. It is proven that the Fermi gas density matrix is block diagonal on the basis of the projection operators to the irreducible representations of symmetric group Sn. Every block of density matrix is in the form of the direct product of a matrix and identity matrix. Then it is useful to study entanglement in every block of density matrix separately. The basis of corresponding Hilbert space are identified from the Schur-Weyl duality theorem. Also, it can be shown that the symmetric part of the density matrix is fully separable. Then it has been shown that the entanglement measure which is introduced in Eltschka et al. [New J. Phys. 10, 043104 (2008)] and Guhne et al. [New J. Phys. 7, 229 (2005)], is zero for the even n qubit Fermi gas density matrix. Then by focusing on three spin reduced density matrix, the entanglement classes have been investigated. In three qubit states there is an entanglement measure which is called 3-tangle. It can be shown that 3-tangle is zero for three qubit density matrix, but the density matrix is not biseparable for all possible values of its parameters and its eigenvectors are in the form of W-states. Then an entanglement witness for detecting non-separable state and an entanglement witness for detecting nonbiseparable states, have been introduced for three qubit density matrix by using convex optimization problem. Finally, the four spin reduced density matrix has been investigated by restricting the density matrix to the irreducible representations of Sn. The restricted density matrix to the subspaces of the irreducible representations: Ssym, S3,1 and S2,2 are denoted by ρsym, ρ3,1 and ρ2,2, respectively. It has been shown that some highly entangled classes (by using the results of Miyake [Phys. Rev. A 67, 012108 (2003)] for entanglement classification) do not exist in the blocks of density matrix ρ3,1 and ρ2,2, so these classes do not exist in the total Fermi gas density matrix.
Mapping the core mass function to the initial mass function
NASA Astrophysics Data System (ADS)
Guszejnov, Dávid; Hopkins, Philip F.
2015-07-01
It has been shown that fragmentation within self-gravitating, turbulent molecular clouds (`turbulent fragmentation') can naturally explain the observed properties of protostellar cores, including the core mass function (CMF). Here, we extend recently developed analytic models for turbulent fragmentation to follow the time-dependent hierarchical fragmentation of self-gravitating cores, until they reach effectively infinite density (and form stars). We show that turbulent fragmentation robustly predicts two key features of the initial mass function (IMF). First, a high-mass power-law scaling very close to the Salpeter slope, which is a generic consequence of the scale-free nature of turbulence and self-gravity. We predict the IMF slope (-2.3) is slightly steeper than the CMF slope (-2.1), owing to the slower collapse and easier fragmentation of large cores. Secondly, a turnover mass, which is set by a combination of the CMF turnover mass (a couple solar masses, determined by the `sonic scale' of galactic turbulence, and so weakly dependent on galaxy properties), and the equation of state (EOS). A `soft' EOS with polytropic index γ < 1.0 predicts that the IMF slope becomes `shallow' below the sonic scale, but fails to produce the full turnover observed. An EOS, which becomes `stiff' at sufficiently low surface densities Σgas ˜ 5000 M⊙ pc-2, and/or models, where each collapsing core is able to heat and effectively stiffen the EOS of a modest mass (˜0.02 M⊙) of surrounding gas, are able to reproduce the observed turnover. Such features are likely a consequence of more detailed chemistry and radiative feedback.
NASA Astrophysics Data System (ADS)
Inada, Yuki; Kumada, Akiko; Ikeda, Hisatoshi; Hidaka, Kunihiko; Nakano, Tomoyuki; Murai, Kosuke; Tanaka, Yasunori; Shinkai, Takeshi
2017-05-01
Shack-Hartmann type laser wavefront sensors were applied to gas-blasted arc discharges under current-zero phases, generated in a 50 mm-long interelectrode gap confined by a gas flow nozzle, in order to conduct a systematic comparison of electron density decaying processes for two kinds of arc-quenching gas media: air and \\text{C}{{\\text{O}}2} . The experimental results for the air and \\text{C}{{\\text{O}}2} arc plasmas showed that the electron densities and arc diameters became thinner toward the nozzle-throat inlet due to a stronger convection loss in the arc radial direction. In addition, \\text{C}{{\\text{O}}2} had a shorter electron density decaying time constant than air, which could be caused by convection loss and turbulent flow of \\text{C}{{\\text{O}}2} stronger than air.
Extended Thomas-Fermi density functional for the unitary Fermi gas
NASA Astrophysics Data System (ADS)
Salasnich, Luca; Toigo, Flavio
2008-11-01
We determine the energy density ξ(3/5)nɛF and the gradient correction λℏ2(∇n)2/(8mn) of the extended Thomas-Fermi (ETF) density functional, where n is the number density and ɛF is the Fermi energy, for a trapped two-component Fermi gas with infinite scattering length (unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC) calculations [Phys. Rev. Lett. 99, 233201 (2007)]. In particular we find that ξ=0.455 and λ=0.13 give the best fit of the DMC data with an even number N of particles. We also study the odd-even splitting γN1/9ℏω of the ground-state energy for the unitary gas in a harmonic trap of frequency ω determining the constant γ . Finally we investigate the effect of the gradient term in the time-dependent ETF model by introducing generalized Galilei-invariant hydrodynamics equations.
Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs.
Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O
2016-01-01
A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.
EFFECTS OF GAMMA IRRADIATION ON EPDM ELASTOMERS (REVISION 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, E.
Two formulations of EPDM elastomer, one substituting a UV stabilizer for the normal antioxidant in this polymer, and the other the normal formulation, were synthesized and samples of each were exposed to gamma irradiation in initially pure deuterium gas to compare their radiation stability. Stainless steel containers having rupture disks were designed for this task. After 130 MRad dose of cobalt-60 radiation in the SRNL Gamma Irradiation Facility, a significant amount of gas was created by radiolysis; however the composition indicated by mass spectroscopy indicated an unexpected increase in the total amount deuterium in both formulations. The irradiated samples retainedmore » their ductility in a bend test. No change of sample weight, dimensions, or density was observed. No change of the glass transition temperature as measured by dynamic mechanical analysis was observed, and most of the other dynamic mechanical properties remained unchanged. There appeared to be an increase in the storage modulus of the irradiated samples containing the UV stabilizer above the glass transition, which may indicate hardening of the material by radiation damage. Revision 1 adds a comparison with results of a study of tritium exposed EPDM. The amount of gas produced by the gamma irradiation was found to be equivalent to about 280 days exposure to initially pure tritium gas at one atmosphere. The glass transition temperature of the tritium exposed EPDM rose about 10°C. over 280 days, while no glass transition temperature change was observed for gamma irradiated EPDM. This means that gamma irradiation in deuterium cannot be used as a surrogate for tritium exposure.« less
A sample of [C II] clouds tracing dense clouds in weak FUV fields observed by Herschel
NASA Astrophysics Data System (ADS)
Pineda, J. L.; Velusamy, T.; Langer, W. D.; Goldsmith, P. F.; Li, D.; Yorke, H. W.
2010-10-01
The [C ii] fine-structure line at 158 μm is an excellent tracer of the warm diffuse gas in the ISM and the interfaces between molecular clouds and their surrounding atomic and ionized envelopes. Here we present the initial results from Galactic observations of terahertz C+ (GOT C+), a Herschel key project devoted to studying the [C ii] emission in the Galactic plane using the HIFI instrument. We used the [C ii] emission, together with observations of CO, as a probe to understand the effects of newly formed stars on their interstellar environment and characterize the physical and chemical state of the star-forming gas. We collected data along 16 lines-of-sight passing near star-forming regions in the inner Galaxy near longitudes 330° and 20°. We identified fifty-eight [C ii] components that are associated with high-column density molecular clouds as traced by 13CO emission. We combined [C ii], 12CO, and 13CO observations to derive the physical conditions of the [C ii]-emitting regions in our sample of high-column density clouds based on comparing results from a grid of photon dominated region (PDR) models. From this unbiased sample, our results suggest that most of the [C ii] emission originates in clouds with H2 volume densities between 103.5 and 105.5 cm-3 and weak FUV strength (χ0 = 1-10). We find two regions where our analysis suggest high densities >105 cm-3 and strong FUV fields (χ0 = 104-106), likely associated with massive star formation. We suggest that [C ii] emission in conjunction with CO isotopes is a good tool for differentiating regions of massive star formation (high densities/strong FUV fields) and regions that are distant from massive stars (lower densities/weaker FUV fields) along the line-of-sight. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
NASA Astrophysics Data System (ADS)
Sugano, Koji; Matsumoto, Ryu; Tsutsui, Ryota; Kishihara, Hiroyuki; Matsuzuka, Naoki; Yamashita, Ichiro; Uraoka, Yukiharu; Isono, Yoshitada
2016-07-01
This study focuses on the development of a multi-walled carbon nanotube (MWCNT) forest integrated micromechanical resonator working as a rarefied gas analyzer for nitrogen (N2) and hydrogen (H2) gases in a medium vacuum atmosphere. The resonant response is detected in the form of changes in the resonant frequency or damping effects, depending on the rarefied gas species. The carbon nanotube (CNT) forest on the resonator enhances the effective specific surface area of the resonator, such that the variation of the resonant frequency and the damping effect based on the gas species increase significantly. We developed the fabrication process for the proposed resonator, which consists of standard micro-electro-mechanical systems (MEMS) processes and high-density CNT synthesis on the resonator mass. The high-density CNT synthesis was realized using multistep alternate coating of two types of ferritin proteins that act as catalytic iron particles. Two devices with different CNT densities were fabricated and characterized to evaluate the effect of the surface area of the CNT forest on the resonant response as a function of gas pressures ranging from 0.011 to 1 Pa for N2 and H2. Considering the damping effect, we found that the device with higher density was able to distinguish N2 and H2 clearly, whereas the device with lower density showed no difference between N2 and H2. We confirmed that a larger surface area showed a higher damping effect. These results were explained based on the kinetic theory of gases. In the case of resonant frequency, the relative resonant frequency shift increased with gas pressure and surface area because of the adsorption of gas molecules on the resonator surfaces. Higher density CNT forest adsorbed more gas molecules on the surfaces. The developed CNT forest integrated micromechanical resonator could successfully detect N2 and H2 gases and distinguish between them under pressures of 1 Pa.
Doping and defect-induced germanene: A superior media for sensing H2S, SO2, and CO2 gas molecules
NASA Astrophysics Data System (ADS)
Monshi, M. M.; Aghaei, S. M.; Calizo, I.
2017-11-01
First-principles calculations based on density functional theory (DFT) have been employed to investigate the structural, electronic, and gas-sensing properties of pure, defected, and doped germanene nanosheets. Our calculations have revealed that while a pristine germanene nanosheet adsorbs CO2 weakly, H2S moderately, and SO2 strongly, the introduction of vacancy defects increases the sensitivity significantly which is promising for future gas-sensing applications. Mulliken population analysis imparts that an appreciable amount of charge transfer occurs between gas molecules and a germanene nanosheet which supports our results for adsorption energies of the systems. The enhancement of the interactions between gas molecules and the germanene nanosheet has been further investigated by density of states. Projected density of states provides detailed insight of the gas molecule's contribution in the gas-sensing system. Additionally, the influences of substituted dopant atoms such as B, N, and Al in the germanene nanosheet have also been considered to study the impact on its gas sensing ability. There was no significant improvement found in the doped gas sensing capability of germanene over the vacancy defects, except for CO2 upon adsorption on N-doped germanene.
Dwarf Galaxy Dark Matter Density Profiles Inferred from Stellar and Gas Kinematics
NASA Astrophysics Data System (ADS)
Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.; van den Bosch, Remco C. E.; Barentine, John C.; Bender, Ralf; Gebhardt, Karl; Hill, Gary J.; Murphy, Jeremy D.; Swaters, R. A.; Thomas, Jens; van de Ven, Glenn
2014-07-01
We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the seven galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these three trends for feedback models. Determining the importance of these correlations will require further model developments and larger observational samples. This paper includes data obtained at The McDonald Observatory of The University of Texas at Austin.
Dwarf galaxy dark matter density profiles inferred from stellar and gas kinematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Joshua J.; Simon, Joshua D.; Fabricius, Maximilian H.
2014-07-01
We present new constraints on the density profiles of dark matter (DM) halos in seven nearby dwarf galaxies from measurements of their integrated stellar light and gas kinematics. The gas kinematics of low-mass galaxies frequently suggest that they contain constant density DM cores, while N-body simulations instead predict a cuspy profile. We present a data set of high-resolution integral-field spectroscopy on seven galaxies and measure the stellar and gas kinematics simultaneously. Using Jeans modeling on our full sample, we examine whether gas kinematics in general produce shallower density profiles than are derived from the stars. Although two of the sevenmore » galaxies show some localized differences in their rotation curves between the two tracers, estimates of the central logarithmic slope of the DM density profile, γ, are generally robust. The mean and standard deviation of the logarithmic slope for the population are γ = 0.67 ± 0.10 when measured in the stars and γ = 0.58 ± 0.24 when measured in the gas. We also find that the halos are not under-concentrated at the radii of half their maximum velocities. Finally, we search for correlations of the DM density profile with stellar velocity anisotropy and other baryonic properties. Two popular mechanisms to explain cored DM halos are an exotic DM component or feedback models that strongly couple the energy of supernovae into repeatedly driving out gas and dynamically heating the DM halos. While such models do not yet have falsifiable predictions that we can measure, we investigate correlations that may eventually be used to test models. We do not find a secondary parameter that strongly correlates with the central DM density slope, but we do find some weak correlations. The central DM density slope weakly correlates with the abundance of α elements in the stellar population, anti-correlates with H I fraction, and anti-correlates with vertical orbital anisotropy. We expect, if anything, the opposite of these three trends for feedback models. Determining the importance of these correlations will require further model developments and larger observational samples.« less
Three Essays In and Tests of Theoretical Urban Economics
NASA Astrophysics Data System (ADS)
Zhao, Weihua
This dissertation consists of three essays on urban economics. The three essays are related to urban spatial structure change, energy consumption, greenhouse gas emissions, and housing redevelopment. Chapter 1 answers the question: Does the classic Standard Urban Model still describe the growth of cities? Chapter 2 derives the implications of telework on urban spatial structure, energy consumption, and greenhouse gas emissions. Chapter 3 investigates the long run effects of minimum lot size zoning on neighborhood redevelopment. Chapter 1 identifies a new implication of the classic Standard Urban Model, the "unitary elasticity property (UEP)", which is the sum of the elasticity of central density and the elasticity of land area with respect to population change is approximately equal to unity. When this implication of the SUM is tested, it fits US cities fairly well. Further analysis demonstrates that topographic barriers and age of housing stock are the key factors explaining deviation from the UEP. Chapter 2 develops a numerical urban simulation model with households that are able to telework to investigate the urban form, congestion, energy consumption and greenhouse gas emission implications of telework. Simulation results suggest that by reducing transportation costs, telework causes sprawl, with associated longer commutes and consumption of larger homes, both of which increase energy consumption. Overall effects depend on who captures the gains from telework (workers versus firms), urban land use regulation such as height limits or greenbelts, and the fraction of workers participating in telework. The net effects of telework on energy use and GHG emissions are generally negligible. Chapter 3 applies dynamic programming to investigate the long run effects of minimum lot size zoning on neighborhood redevelopment. With numerical simulation, comparative dynamic results show that minimum lot size zoning can delay initial land conversion and slow down demolition and housing redevelopment. Initially, minimum lot size zoning is not binding. However, as city grows, it becomes binding and can effectively distort housing supply. It can lower both floor area ratio and residential density, and reduce aggregate housing supply. Overall, minimum lot size zoning can stabilize the path of structure/land ratios, housing service levels, structure density, and housing prices. In addition, minimum lot size zoning provides more incentive for developer to maintain the building, slow structure deterioration, and raise the minimum level of housing services provided over the life cycle of development.
The Ties that Bind? Galactic Magnetic Fields and Ram Pressure Stripping
NASA Astrophysics Data System (ADS)
Tonnesen, Stephanie; Stone, James
2014-11-01
One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially accelerate stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.
The ties that bind? Galactic magnetic fields and ram pressure stripping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonnesen, Stephanie; Stone, James, E-mail: stonnes@astro.princeton.edu, E-mail: jstone@astro.princeton.edu
One process affecting gas-rich cluster galaxies is ram pressure stripping (RPS), i.e., the removal of galactic gas through direct interaction with the intracluster medium (ICM). Galactic magnetic fields may have an important impact on the stripping rate and tail structure. We run the first magnetohydrodynamic (MHD) simulations of RPS that include a galactic magnetic field, using 159 pc resolution throughout our entire domain in order to resolve mixing throughout the tail. We find very little difference in the total amount of gas removed from the unmagnetized and magnetized galaxies, although a magnetic field with a radial component will initially acceleratemore » stripped gas more quickly. In general, we find that magnetic fields in the disk lead to slower velocities in the stripped gas near the disk and faster velocities farther from the disk. We also find that magnetic fields in the galactic gas lead to larger unmixed structures in the tail. Finally, we discuss whether ram pressure stripped tails can magnetize the ICM. We find that the total magnetic energy density grows as the tail lengthens, likely through turbulence. There are μG-strength fields in the tail in all of our MHD runs, which survive to at least 100 kpc from the disk (the edge of our simulated region), indicating that the area-filling factor of magnetized tails in a cluster could be large.« less
Molecule formation and infrared emission in fast interstellar shocks. I Physical processes
NASA Technical Reports Server (NTRS)
Hollenbach, D.; Mckee, C. F.
1979-01-01
The paper analyzes the structure of fast shocks incident upon interstellar gas of ambient density from 10 to the 7th per cu cm, while focusing on the problems of formation and destruction of molecules and infrared emission in the cooling, neutral post shock gas. It is noted that such fast shocks initially dissociate almost all preexisting molecules. Discussion covers the physical processes which determine the post shock structure between 10 to the 4 and 10 to the 2 K. It is shown that the chemistry of important molecular coolants H2, CO, OH, and H2O, as well as HD and CH, is reduced to a relatively small set of gas phase and grain surface reactions. Also, the chemistry follows the slow conversion of atomic hydrogen into H2, which primarily occurs on grain surfaces. The dependence of this H2 formation rate on grain and gas temperatures is examined and the survival of grains behind fast shocks is discussed. Post shock heating and cooling rates are calculated and an appropriate, analytic, universal cooling function is developed for molecules other than hydrogen which includes opacities from both the dust and the lines.
The Scylla Multi-Code Comparison Project
NASA Astrophysics Data System (ADS)
Maller, Ariyeh; Stewart, Kyle; Bullock, James; Oñorbe, Jose; Scylla Team
2016-01-01
Cosmological hydrodynamical simulations are one of the main techniques used to understand galaxy formation and evolution. However, it is far from clear to what extent different numerical techniques and different implementations of feedback yield different results. The Scylla Multi-Code Comparison Project seeks to address this issue by running idenitical initial condition simulations with different popular hydrodynamic galaxy formation codes. Here we compare simulations of a Milky Way mass halo using the codes enzo, ramses, art, arepo and gizmo-psph. The different runs produce galaxies with a variety of properties. There are many differences, but also many similarities. For example we find that in all runs cold flow disks exist; extended gas structures, far beyond the galactic disk, that show signs of rotation. Also, the angular momentum of warm gas in the halo is much larger than the angular momentum of the dark matter. We also find notable differences between runs. The temperature and density distribution of hot gas can differ by over an order of magnitude between codes and the stellar mass to halo mass relation also varies widely. These results suggest that observations of galaxy gas halos and the stellar mass to halo mass relation can be used to constarin the correct model of feedback.
Impact of neutral density fluctuations on gas puff imaging diagnostics
NASA Astrophysics Data System (ADS)
Wersal, C.; Ricci, P.
2017-11-01
A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.
Plasma channel created by ionization of gas by a surface wave
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konovalov, V. N.; Kuz’min, G. P.; Minaev, I. M., E-mail: minaev1945@mail.ru
2015-09-15
Conditions for gas ionization in the field of a slow surface wave excited by a microwave source are considered. The gas ionization rate and the plasma density distribution over the radius of the discharge tube were studied by the optical method. The experiments were conducted in a dielectric tube with a radius much smaller than the tube length, the gas pressure being ∼1–3 Torr. It is shown that the stationary distribution of the plasma density is determined by diffusion processes.
Initial experimental test of a helicon plasma based mass filter
Gueroult, R.; Evans, E. S.; Zweben, S. J.; ...
2016-05-12
High throughput plasma mass separation requires rotation control in a high density multi-species plasmas. A preliminary mass separation device based on a helicon plasma operating in gas mixtures and featuring concentric biasable ring electrodes is introduced. Plasma profile shows strong response to electrode biasing. In light of floating potential measurements, the density response is interpreted as the consequence of a reshaping of the radial electric field in the plasma. This field can be made confining or de-confining depending on the imposed potential at the electrodes, in a way which is consistent with single particle orbit radial stability. In conclusion, concurrentmore » spatially resolved spectroscopic measurements suggest ion separation, with heavy to light ion emission line ratio increasing with radius when a specific potential gradient is applied to the electrodes.« less
Longitudinal gas-density profilometry for plasma-wakefield acceleration targets
NASA Astrophysics Data System (ADS)
Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens
2014-03-01
Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swadling, G. F.; Ross, J. S.; Manha, D.
The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity (“x-ray blanking”) have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr $-$1, 250–300 eV). Blanking of fused silica (SiO 2) wasmore » measured to occur over a range of time-integrated soft x-ray (<3 keV) fluence from ~0.2–2.5 J cm $-$2. A shield test device consisting of a 30 nm silicon nitride (Si 3N 4) and a 10 cm long volume of 0.04 bar xenon gas succeeded in delaying loss of transmission through a magnesium fluoride sample; optical transmission was observed over a longer period than for the unprotected sample. It is hoped that the design of this x-ray shield can be scaled in order to produce a shield device for the National Ignition Facility optical Thomson scattering collection telescope, in order to allow measurements of hohlraum plasma conditions produced in inertial confinement fusion experiments. Finally, if successful, it will also have applications in many other high energy density experiments where optical and ultra-violet measurements are desirable.« less
Swadling, G. F.; Ross, J. S.; Manha, D.; ...
2017-03-16
The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity (“x-ray blanking”) have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr $-$1, 250–300 eV). Blanking of fused silica (SiO 2) wasmore » measured to occur over a range of time-integrated soft x-ray (<3 keV) fluence from ~0.2–2.5 J cm $-$2. A shield test device consisting of a 30 nm silicon nitride (Si 3N 4) and a 10 cm long volume of 0.04 bar xenon gas succeeded in delaying loss of transmission through a magnesium fluoride sample; optical transmission was observed over a longer period than for the unprotected sample. It is hoped that the design of this x-ray shield can be scaled in order to produce a shield device for the National Ignition Facility optical Thomson scattering collection telescope, in order to allow measurements of hohlraum plasma conditions produced in inertial confinement fusion experiments. Finally, if successful, it will also have applications in many other high energy density experiments where optical and ultra-violet measurements are desirable.« less
Subsystem functional and the missing ingredient of confinement physics in density functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armiento, Rickard Roberto; Mattsson, Ann Elisabet; Hao, Feng
2010-08-01
The subsystem functional scheme is a promising approach recently proposed for constructing exchange-correlation density functionals. In this scheme, the physics in each part of real materials is described by mapping to a characteristic model system. The 'confinement physics,' an essential physical ingredient that has been left out in present functionals, is studied by employing the harmonic-oscillator (HO) gas model. By performing the potential {yields} density and the density {yields} exchange energy per particle mappings based on two model systems characterizing the physics in the interior (uniform electron-gas model) and surface regions (Airy gas model) of materials for the HO gases,more » we show that the confinement physics emerges when only the lowest subband of the HO gas is occupied by electrons. We examine the approximations of the exchange energy by several state-of-the-art functionals for the HO gas, and none of them produces adequate accuracy in the confinement dominated cases. A generic functional that incorporates the description of the confinement physics is needed.« less
Numerical simulation of the distribution of individual gas bubbles in shaped sapphire crystals
NASA Astrophysics Data System (ADS)
Borodin, A. V.; Borodin, V. A.
2017-11-01
The simulation of the effective density of individual gas bubbles in a two-phase melt, consisting of a liquid and gas bubbles, is performed using the virtual model of the thermal unit. Based on the studies, for the first time the theoretically and experimentally grounded mechanism of individual gas bubbles formation in shaped sapphire is proposed. It is shown that the change of the melt flow pattern in crucible affects greatly the bubble density at the crystallization front, and in the crystal. The obtained results allowed reducing the number of individual gas bubbles in sapphire sheets.
Gravitational Waves from Binary Black Hole Mergers inside Stars.
Fedrow, Joseph M; Ott, Christian D; Sperhake, Ulrich; Blackman, Jonathan; Haas, Roland; Reisswig, Christian; De Felice, Antonio
2017-10-27
We present results from a controlled numerical experiment investigating the effect of stellar density gas on the coalescence of binary black holes (BBHs) and the resulting gravitational waves (GWs). This investigation is motivated by the proposed stellar core fragmentation scenario for BBH formation and the associated possibility of an electromagnetic counterpart to a BBH GW event. We employ full numerical relativity coupled with general-relativistic hydrodynamics and set up a 30+30 M_{⊙} BBH (motivated by GW150914) inside gas with realistic stellar densities. Our results show that at densities ρ≳10^{6}-10^{7} g cm^{-3} dynamical friction between the BHs and gas changes the coalescence dynamics and the GW signal in an unmistakable way. We show that for GW150914, LIGO observations appear to rule out BBH coalescence inside stellar gas of ρ≳10^{7} g cm^{-3}. Typical densities in the collapsing cores of massive stars are in excess of this density. This excludes the fragmentation scenario for the formation of GW150914.
Super-Earths: Atmospheric Accretion, Thermal Evolution and Envelope Loss
NASA Astrophysics Data System (ADS)
Ginzburg, Sivan; Inamdar, Niraj K.; Schlichting, Hilke E.
Combined mass and radius observations have recently revealed many short-period planets a few times the size of Earth but with significantly lower densities. A natural explanation for the low density of these super Earths
Feasibility of SiC composite structures for 1644 deg gas turbine seal applications
NASA Technical Reports Server (NTRS)
Darolia, R.
1979-01-01
The feasibility of silicon carbide composite structures was evaluated for 1644 K gas turbine seal applications. The silicon carbide composites evaluated consisted of Si/SiC Silcomp (Trademark) - and sintered silicon carbide as substrates, both with attached surface layers containing BN as an additive. A total of twenty-eight candidates with variations in substrate type and density, and layer chemistry, density, microstructure, and thickness were evaluated for abradability, cold particle erosion resistance, static oxidation resistance, ballistic impact resistance, and fabricability. The BN-free layers with variations in density and pore size were later added for evaluation. The most promising candidates were evaluated for Mach 1.0 gas oxidation/erosion resistance from 1477 K to 1644 K. The as-fabricated rub layers did not perform satisfactorily in the gas oxidation/erosion tests. However, preoxidation was found to be beneficial in improving the hot gas erosion resistance. Overall, the laboratory and rig test evaluations show that material properties are suitable for 1477 K gas turbine seal applications.
Acoustics of tachyon Fermi gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trojan, Ernst; Vlasov, George V.
2011-06-15
We consider a Fermi gas of free tachyons as a continuous medium and find whether it satisfies the causality condition. There is no stable tachyon matter with the particle density below critical value n{sub T} and the Fermi momentum k{sub F}<{radical}((3/2))m that depends on the tachyon mass m. The pressure P and energy density E cannot be arbitrary small, but the situation P>E is not forbidden. Existence of shock waves in tachyon gas is also discussed. At low density n{sub T}
NASA Astrophysics Data System (ADS)
Peterson, Richard D.; Eshel, Ben; Rice, Christopher A.; Perram, Glen P.
2018-02-01
The diode-pumped rare gas laser (DPRGL) has been suggested as a potential high-gain, high-energy laser which requires densities on the order of 1013 cm-3 at pressures around 1 atmosphere for efficient operation. Argon 1s5 number densities have been measured in micro-hollow cathode discharges with electrode gaps of 127 and 254 μm and hole diameters from 100-400 μm. The dependency of the metastable argon (1s5) density on total gas pressure, electrode gap distance and hole diameter were explored. The measured densities were all in the range of 0.5 - 2 × 1013 cm-3 with the 400 μm hole diameters being the lowest.
Morrow, Thomas E.; Behring, II, Kendricks A.
2004-03-09
A method to determine thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.
Morrow, Thomas B.; Behring, II, Kendricks A.
2005-02-01
A computer product for determining thermodynamic properties of a natural gas hydrocarbon, when the speed of sound in the gas is known at an arbitrary temperature and pressure. Thus, the known parameters are the sound speed, temperature, pressure, and concentrations of any dilute components of the gas. The method uses a set of reference gases and their calculated density and speed of sound values to estimate the density of the subject gas. Additional calculations can be made to estimate the molecular weight of the subject gas, which can then be used as the basis for mass flow calculations, to determine the speed of sound at standard pressure and temperature, and to determine various thermophysical characteristics of the gas.
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Valentine, G.; Gaudin, D.; Graettinger, A. H.; Lube, G.; Kueppers, U.; Sonder, I.; White, J. D.; Ross, P.; Bowman, D. C.
2013-12-01
Ballistics - bomb-sized pyroclasts that travel from volcanic source to final emplacement position along ballistic trajectories - represent a prime source of volcanic hazard, but their emplacement range, size, and density is useful to inverse model key eruption parameters related to their initial ejection velocity. Models and theory, however, have so far focused on the trajectory of ballistics after leaving the vent, neglecting the complex dynamics of their initial acceleration phase in the vent/conduit. Here, we use field-scale buried explosion experiments to study the ground-to-ground ballistic emplacement of particles through their entire acceleration-deceleration cycle. Twelve blasts were performed at the University at Buffalo Large Scale Experimental Facility with a range of scaled depths (burial depth divided by the cubic root of the energy of the explosive charge) and crater configurations. In all runs, ballistic analogs were placed on the ground surface at variable distance from the vertical projection of the buried charge, resulting in variable ejection angle. The chosen analogs are tennis and ping-pong balls filled with different materials, covering a limited range of sizes and densities. The analogs are tracked in multiple high-speed and high-definition videos, while Particle Image Velocimetry is used to detail ground motion in response to the buried blasts. In addition, after each blast the emplacement position of all analog ballistics was mapped with respect to the blast location. Preliminary results show the acceleration history of ballistics to be quite variable, from very short and relatively simple acceleration coupled with ground motion, to more complex, multi-stage accelerations possibly affected not only by the initial ground motion but also by variable coupling with the gas-particle mixture generated by the blasts. Further analysis of the experimental results is expected to provide new interpretative tools for ballistic deposits and better hazard assessment, with particular emphasis for the case of vent-opening eruptions driven by explosive gas expansion beneath loose debris.
Particulate deposition in the human lung under lunar habitat conditions.
Darquenne, Chantal; Prisk, G Kim
2013-03-01
Lunar dust may be a toxic challenge to astronauts. While deposition in reduced gravity is less than in normal gravity (1 G), reduced gravitational sedimentation causes particles to penetrate deeper in the lung, potentially causing more harm. The likely design of the lunar habitat has a reduced pressure environment and low-density gas has been shown to reduce upper airway deposition and increase peripheral deposition. Breathing air and a reduced-density gas approximating the density of the proposed lunar habitat atmosphere, five healthy subjects inhaled 1 -microm diameter aerosol boluses at penetration volumes (V(p)) of 200 ml (central airways), 500 ml, and 1000 ml (lung periphery) in microgravity during parabolic flight, and in 1 G. Deposition in the lunar habitat was significantly less than for Earth conditions (and less than in 1 G with the low-density gas) with a relative decrease in deposition of -59.1 +/- 14.0% (-46.9 +/- 11.7%), -50.7 +/- 9.2% (-45.8 +/- 11.2%), and -46.0 +/- 8.3% (-45.3 +/- 11.1%) at V(p) = 200, 500, and 1000 ml, respectively. There was no significant effect of reduced density on deposition in 1 G. While minimally affected by gas density, deposition was significantly less in microgravity than in 1 G for both gases, with a larger portion of particles depositing in the lung periphery under lunar conditions than Earth conditions. Thus, gravity, and not gas properties, mainly affects deposition in the peripheral lung, suggesting that studies of aerosol transport in the lunar habitat need not be performed at the low density proposed for the atmosphere in that environment.
NASA Astrophysics Data System (ADS)
Kim, Jinju; Phung, Vanessa L. J.; Kim, Minseok; Hur, Min-Sup; Suk, Hyyong
2017-10-01
Plasma-based accelerators can generate about 1000 times stronger acceleration field compared with RF-based conventional accelerators, which can be done by high power laser and plasma. There are many issues in this research and one of them is development of a good plasma source for higher electron beam energy. For this purpose, we are investigating a special type of plasma source, which is a density-tapered gas cell with a mixed-gas for easy injection. By this type of special gas cell, we expect higher electron beam energies with easy injection in the wakefield. In this poster, some experimental results for electron beam generation with the density-tapered mixed-gas cell are presented. In addition to the experimental results, CFD (Computational-Fluid-Dynamics) and PIC (Particle-In-Cell) simulation results are also presented for comparison studies.
How Does Dense Molecular Gas Contribute to Star Formation in the Starburst Galaxy NGC 2146?
NASA Astrophysics Data System (ADS)
Wofford, Alia
2017-01-01
The starburst galaxy NGC 2146 is believed to have been formed approximately 800 Myr ago, when two galaxies collided with each other possibly leading to a burst of star formation. NGC 2146 is known as a starburst galaxy for the high frequency of star formation going on in its molecular clouds. These clouds serve as nurseries for star formation to occur. Hydrogen Cyanide (HCN) and Carbon monoxide (CO) are molecules found in molecular gas clouds. HCN molecules are tracers for high density star forming gas. Whereas, CO molecules are tracers for low density star forming gas. In this project, we are observing these two molecules and their proximity to where the stars are forming in the galaxy to determine if the star formation is occurring in the same area as the high and low density molecular gas areas in starburst galaxy NGC 2146.
Antiproton powered propulsion with magnetically confined plasma engines
NASA Technical Reports Server (NTRS)
Lapointe, Michael R.
1989-01-01
Matter-antimatter annihilation releases more energy per unit mass than any other method of energy production, making it an attractive energy source for spacecraft propulsion. In the magnetically confined plasma engine, antiproton beams are injected axially into a pulsed magnetic mirror system, where they annihilate with an initially neutral hydrogen gas. The resulting charged annihilation products transfer energy to the hydrogen propellant, which is then exhausted through one end of the pulsed mirror system to provide thrust. The calculated energy transfer efficiencies for a low number density (10(14)/cu cm) hydrogen propellant are insufficient to warrant operating the engine in this mode. Efficiencies are improved using moderate propellant number densities (10(16)/cu cm), but the energy transferred to the plasma in a realistic magnetic mirror system is generally limited to less than 2 percent of the initial proton-antiproton annihilation energy. The energy transfer efficiencies are highest for high number density (10(18)/cu cm) propellants, but plasma temperatures are reduced by excessive radiation losses. Low to moderate thrust over a wide range of specific impulse can be generated with moderate propellant number densities, while higher thrust but lower specific impulse may be generated using high propellant number densities. Significant mass will be required to shield the superconducting magnet coils from the high energy gamma radiation emitted by neutral pion decay. The mass of such a radiation shield may dominate the total engine mass, and could severely diminish the performance of antiproton powered engines which utilize magnetic confinement. The problem is compounded in the antiproton powered plasma engine, where lower energy plasma bremsstrahlung radiation may cause shield surface ablation and degradation.
Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies
NASA Technical Reports Server (NTRS)
Toft, S.; Smolcic, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.;
2014-01-01
Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts.With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42(sup+40) -29 Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.
NASA Technical Reports Server (NTRS)
Petkov, Mihail P.; Jones, Steven M.
2010-01-01
The Ps-aerogel system [Ps is positronium (an electron-positron-hydrogen-like atom)] has been evaluated and optimized as a potential tool for planetary exploration missions. Different configurations of use were assessed, and the results provide a quantitative measure of the expected performance. The aerogel density is first optimized to attain maximum production of Ps that reaches the pores of the aerogel. This has been accomplished, and the optimum aerogel density is .70 mg/cm3. The aerogel is used as a concentrator for target volatile moieties, which accumulate in its open porosity over an extended period of time. For the detection of the accumulated materials, the use of Ps as a probe for the environment at the pore surface, has been proposed. This concept is based on two steps: (1) using aerogel to produce Ps and (2) using the propensity of Ps to interact differently with organic and inorganic matter. The active area of such a detector will comprise aerogel with a certain density, specific surface area, and gas permeability optimized for Ps production and gas diffusion and adsorption. The aerogel is a natural adsorber of organic molecules, which adhere to its internal surface, where their presence is detected by the Ps probe. Initial estimates indicate that, e.g., trace organic molecules in the Martian atmosphere, can be detected at the ppm level, which rivals current methods having significantly higher complexity, volume, mass, and power consumption (e.g. Raman, IR).
Submillimeter Galaxies as Progenitors of Compact Quiescent Galaxies
NASA Astrophysics Data System (ADS)
Toft, S.; Smolčić, V.; Magnelli, B.; Karim, A.; Zirm, A.; Michalowski, M.; Capak, P.; Sheth, K.; Schawinski, K.; Krogager, J.-K.; Wuyts, S.; Sanders, D.; Man, A. W. S.; Lutz, D.; Staguhn, J.; Berta, S.; Mccracken, H.; Krpan, J.; Riechers, D.
2014-02-01
Three billion years after the big bang (at redshift z = 2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low-redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3 < z < 6). Simulations show that gas-rich major mergers can give rise to such starbursts, which produce dense remnants. Submillimeter-selected galaxies (SMGs) are prime examples of intense, gas-rich starbursts. With a new, representative spectroscopic sample of compact, quiescent galaxies at z = 2 and a statistically well-understood sample of SMGs, we show that z = 3-6 SMGs are consistent with being the progenitors of z = 2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses, and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42^{+40}_{-29} Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star formation. These results suggest a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.
Gas storage using fullerene based adsorbents
NASA Technical Reports Server (NTRS)
Mikhael, Michael G. (Inventor); Loutfy, Raouf O. (Inventor); Lu, Xiao-Chun (Inventor); Li, Weijiong (Inventor)
2000-01-01
This invention is directed to the synthesis of high bulk density high gas absorption capacity adsorbents for gas storage applications. Specifically, this invention is concerned with novel gas absorbents with high gravimetric and volumetric gas adsorption capacities which are made from fullerene-based materials. By pressing fullerene powder into pellet form using a conventional press, then polymerizing it by subjecting the fullerene to high temperature and high inert gas pressure, the resulting fullerene-based materials have high bulk densities and high gas adsorption capacities. By pre-chemical modification or post-polymerization activation processes, the gas adsorption capacities of the fullerene-based adsorbents can be further enhanced. These materials are suitable for low pressure gas storage applications, such as oxygen storage for home oxygen therapy uses or on-board vehicle natural gas storage. They are also suitable for storing gases and vapors such as hydrogen, nitrogen, carbon dioxide, and water vapor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, C. D.; Brown, A.; Dunphy, R. T.
2013-03-15
Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density,more » diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, C. D.; Brown, A.; Dunphy, R. T.
2013-03-01
Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density,more » diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.« less
Low Velocity Sphere Impact of a Soda Lime Silicate Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Fox, Ethan E; Morrissey, Timothy G
2011-10-01
This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted inmore » context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.« less
Proceedings of the Power Sources Conference (36th) Held in Cherry Hill, New Jersey on June 6-9, 1994
1994-06-09
bi- polar design. Activation: Entrapped gas bubbles are diffiult to remove. Thorough wetting requires pulling vacuum several times. Initial Charging...accomplished by pulling an exdernal vacuum which evacuates air from each cell through the sNTEvCEI.L-fill I vent tubes. After release of vacuum and...density = 1.75 amnps/in2 System Weight =86 lbs (9.7 WI-l1b) System Volume =1071 in3 (.78 W~fn 3) 7SI I I I I I 70 C~~URREN PRGRM GOALI 60 CCLE IFEEPI is
Propagation of detonation wave in hydrogen-air mixture in channels with sound-absorbing surfaces
NASA Astrophysics Data System (ADS)
Bivol, G. Yu.; Golovastov, S. V.; Golub, V. V.
2015-12-01
The possibility of using sound-absorbing surfaces for attenuating the intensity of detonation waves propagating in hydrogen-air mixtures has been experimentally studied in a cylindrical detonation tube open at one end, with an explosive initiated by spark discharge at the closed end. Sound-absorbing elements were made of an acoustic-grade foamed rubber with density of 0.035 g/cm3 containing open pores with an average diameter of 0.5 mm. The degree of attenuation of the detonation wave front velocity was determined as dependent on the volume fraction of hydrogen in the gas mixture.
Dust coagulation and magnetic field strength in a planet-induced gap subject to MRI turbulence
NASA Astrophysics Data System (ADS)
Carballido, Augusto; Matthews, Lorin; Hyde, Truell
2017-01-01
We investigate the coagulation of dust particles in and around a gap opened by a Jupiter-mass planet. To this end, we carry out a high-resolution magnetohydrodynamic (MHD) simulation of the gap environment, which is turbulent due to the magneto rotational instability. From the MHD simulation, we obtain values of the gas velocities, densities and turbulent stresses close to the gap edge, in one of the two gas streams that accrete onto the planet, and inside the low-density gap. The MHD values are then supplied to a Monte Carlo dust coagulation algorithm, which models grain sticking, compaction and bouncing. We consider two dust populations for each region: one whose initial size distribution is monodisperse, with monomer radius equal to 1 micron, and another one whose initial size distribution follows the Mathis-Rumpl-Nordsieck distribution for interstellar dust grains, with an initial range of monomer radii between 0.5 and 10 microns. Without bouncing, our Monte Carlo calculations show steady growth of dust aggregates in all regions, and the mass-weighted (MW) average porosity of the initially mono disperse population reaches extremely high final values of 98%. The final MW porosities in all other cases without bouncing range from 30% to 82%. The efficiency of compaction is due to high turbulent relative speeds between dust particles. When bouncing is introduced, growth is slowed down in the planetary wake and inside the gap.We also analyze the strength of the magnetic field threading the gaps opened by planets of different sub-Jovian masses. Preliminary results show that, in a gap opened by a large-mass planet (~ 1 MJ), the time-averaged radial profile of the vertical component of the field (Bz) increases sharply inside the gap, and less sharply in the case of less massive planets. In gaps opened by intermediate-mass planets (~ 0.5 — 0.75 MJ), the radial profile of Bz exhibits local maxima in the vicinity of the planet, but not at the gap center.
NASA Astrophysics Data System (ADS)
Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.
2017-09-01
Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.
Equation of state, initiation, and detonation of pure ammonium nitrate
NASA Astrophysics Data System (ADS)
Robbins, D. L.; Sheffield, S. A.; Dattelbaum, D. M.; Velisavljevic, N.; Stahl, D. B.
2009-06-01
Ammonium nitrate (AN) is a widely used fertilizer and mining explosive throughout the world. One of the more common explosives using AN is called ANFO, a mixture of AN prills and fuel oil in a 94:6 ratio by weight. The AN prills are specially made to absorb the fuel oil, forming a mixture that reacts under shock loading through a diffusion-controlled process, resulting in a non-ideal explosive with detonation velocities around 4 km/s. While there are a number of studies on ANFO, there are only a few studies relating to the equation of state (EOS) and detonation properties of pure AN - resulting mainly from studies of accidents that have occurred during transportation of large quantities of AN. We present the results of a series of gas gun-driven plate impact experiments on pressed AN ranging in density from 1.72 to 0.9 g/cm^3. Several of the high density experiments were performed in front surface impact geometry, in which pressed AN disks were built into the projectile front and impacted onto LiF windows. Additional experiments at low density have been done in ``half cell'' multiple magnetic gauge gun experiments. From this work a complete unreacted EOS has been developed, as well as some initiation and detonation information. Additional high pressure x-ray diffraction experiments in diamond anvil cells have provided a static isotherm for AN.
Durability of Polymer Electrolyte Membrane Fuel Cells Operated at Subfreezing Temperatures
Macauley, Natalia; Lujan, Roger W.; Spernjak, Dusan; ...
2016-09-15
The structure, composition, and interfaces of membrane electrode assemblies (MEA) and gas-diffusion layers (GDLs) have a significant effect on the performance of single-proton-exchange-membrane (PEM) fuel cells operated isothermally at subfreezing temperatures. During isothermal constant-current operation at subfreezing temperatures, water forming at the cathode initially hydrates the membrane, then forms ice in the catalyst layer and/or GDL. This ice formation results in a gradual decay in voltage. High-frequency resistance initially decreases due to an increase in membrane water content and then increases over time as the contact resistance increases. The water/ice holding capacity of a fuel cell decreases with decreasing subfreezingmore » temperature (-10°C vs. -20°C vs. -30°C) and increasing current density (0.02 A cm -2 vs. 0.04 A cm -2). Ice formation monitored using in-situ high-resolution neutron radiography indicated that the ice was concentrated near the cathode catalyst layer at low operating temperatures (≈-20°C) and high current densities (0.04 A cm -2). Significant ice formation was also observed in the GDLs at higher subfreezing temperatures (≈-10°C) and lower current densities (0.02 A cm -2). These results are in good agreement with the long-term durability observations that show more severe degradation at lower temperatures (-20°C and -30°C).« less
Long implosion time (240 ns) Z-pinch experiments with a large diameter (12 cm) double-shell nozzle
NASA Astrophysics Data System (ADS)
Levine, J. S.; Banister, J. W.; Failor, B. H.; Qi, N.; Song, Y.; Sze, H. M.; Fisher, A.
2004-05-01
Recently, an 8 cm diameter double-shell nozzle has produced argon Z pinches with high K-shell yields with implosion time of 210 ns. To produce even longer implosion time Z pinches for facilities such as Decade Quad [D. Price, et al., "Electrical and Mechanical Design of the Decade Quad in PRS Mode," in Proceedings of the 12th IEEE Pulsed Power Conference, Monterey, CA, edited by C. Stallings and H. Kirbie (IEEE, New York, 1999), p. 489] (9 MA short circuit current at 300 ns), a larger nozzle (12 cm outer diameter) was designed and fabricated. During initial testing on Double-EAGLE [P. Sincerny et al., Proceedings of the 5th IEEE Pulsed Power Conference, Arlington, VA, edited by M. F. Rose and P. J. Turchi (IEEE, New York, 1985), p. 151], 9 kJ of argon K-shell radiation in a 6 ns full width at half maximum pulse was produced with a 240 ns implosion. The initial gas distributions produced by various nozzle configurations have been measured and their impact on the final radiative characteristics of the pinch are presented. The addition of a central jet to increase the initial gas density near the axis is observed to enhance the pinch quality, increasing K-shell yield by 17% and power by 40% in the best configuration tested.
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-02-01
Small exoplanets tend to fall into two categories: the smallest ones are predominantly rocky, like Earth, and the larger ones have a lower-density, more gaseous composition, similar to Neptune. The planet Kepler-454b was initially estimated to fall between these two groups in radius. So what is its composition?Small-Planet DichotomyThough Kepler has detected thousands of planet candidates with radii between 1 and 2.7 Earth radii, we have only obtained precise mass measurements for 12 of these planets.Mass-radius diagram (click for a closer look!) for planets with radius 2.7 Earth radii and well-measured masses. The six smallest planets (and Venus and Earth) fall along a single mass-radius curve of Earth-like composition. The six larger planets (including Kepler-454b) have lower-density compositions. [Gettel et al. 2016]These measurements, however, show an interesting dichotomy: planets with radii less than 1.6 Earth radii have rocky, Earth-like compositions, following a single relation between their mass and radius. Planets between 2 and 2.7 Earth radii, however, have lower densities and dont follow a single mass-radius relation. Their low densities suggest they contain a significant fraction of volatiles, likely in the form of a thick gas envelope of water, hydrogen, and/or helium.The planet Kepler-454b, discovered transiting a Sun-like star, was initially estimated to have a radius of 1.86 Earth radii placing it in between these two categories. A team of astronomers led by Sara Gettel (Harvard-Smithsonian Center for Astrophysics) have since followed up on the initial Kepler detection, hoping to determine the planets composition.Low-Density OutcomeGettel and collaborators obtained 63 observations of the host stars radial velocity with the HARPS-N spectrograph on the Telescopio Nazionale Galileo, and another 36 observations with the HIRES spectrograph at Keck Observatory. These observations allowed them to do several things:Obtain a more accurate radius estimate for Kepler-454b: 2.37 Earth radii.Measure the planets mass: roughly 6.8 Earth masses.Discover surprise! two other, non-transiting companions in the system: Kepler-454c, a planet with a minimum mass of ~4.5 Jupiter masses on a 524-day orbit, and Kepler-454d, a more distant (10-year orbit) brown dwarf or low-mass star.Kepler-454bs newly measured size and mass place it firmly in the category of non-rocky, larger, less dense planets (the authors calculate a density of ~2.76 g/cm3, or roughly half that of Earth). This seems to reinforce the idea that rocky planets dont grow larger than ~1.6 Earth radii, and planets with mass greater than about 6 Earth masses are typically low-density and/or swathed in an envelope of gas.The authors point out that future observing missions like NASA TESS (launching in 2017) will provide more targets that can be followed up to obtain mass measurements, allowing us to determine if this trend in mass and radius holds up in a larger sample.CitationSara Gettel et al 2016 ApJ 816 95. doi:10.3847/0004-637X/816/2/95
Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian
2018-05-01
We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.
Dynamics of explosively imploded pressurized tubes
NASA Astrophysics Data System (ADS)
Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent
2011-04-01
The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.
Magnetohydrodynamic Simulations of the Wiggle Instability in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Tanaka, Minoru; Wada, Keiichi; Machida, Mami; Matsumoto, Ryoji; Miyaji, Shigeki
2005-09-01
We studied the stability of galactic spiral shocks through two dimensional global magnetohydrodynamic simulations. Recently, Wada & Koda (2003) showed, using global hydrodynamic simulations, that galactic gas flows behind a spiral shock becomes unstable against a perturbation parallel to the shock front and form spur-like density structures. They attributed the origin of this wiggle instability to the Kelvin-Helmholtz (K-H) instability triggered by the acceleration of the gas behind the shock. We carried out global simulations including galactic magnetic fields. The initial magnetic field is assumed to be either uniform or purely toroidal. We found that although the magnetic field reduces the growth rate of the K-H instability, wiggle instability develops even in galaxies with μG magnetic fields. We also present the results of local simulations to demonstrate the dependence of the growth rate of the instability with the wavelength. The interval of spurs is determined by the most unstable wavelength of the wiggle instability.
Design and Preliminary Testing of a High Performance Antiproton Trap (HiPAT)
NASA Technical Reports Server (NTRS)
Martin, James; Meyer, Kirby; Kramer, Kevin; Smith, Gerald; Lewis, Raymond; Rodgers, Stephen L. (Technical Monitor)
2000-01-01
Antimatter represents the pinnacle of energy density, offering the potential to enhance current fusion/fission concepts enabling various classes of deep space missions. Current production rates are sufficient to support proof-of-concept evaluation of many key technologies associated with antimatter-derived propulsion. Storage has been identified as a key enabling technology for all antimatter-related operations, and as such is the current focus of this NASA-MSFC effort to design and fabricate a portable device capable of holding up to 10(exp 12) particles. Hardware has been assembled and initial tests are underway to evaluate the trap behavior using electron gun generated, positive hydrogen ions. Ions have been stored for tens of minutes, limited by observed interaction with background gas. Additionally, radio frequency manipulation is being tested to increase lifetime by stabilizing the stored particles, potentially reducing their interaction with background gas, easing requirements on ultimate trap vacuum and precision mechanical alignment.
Ionization correction factors for H II regions in blue compact dwarf galaxies
NASA Astrophysics Data System (ADS)
Holovatyi, V. V.; Melekh, B. Ya.
2002-08-01
Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.
Continued development of abradable gas path seals. [for gas turbine engines
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1975-01-01
Major program objectives were the continued development of NiCrAlY feltmetal and honeycomb systems for knife edge seal applications in the 1144 to 1366 K temperature range, and to initiate abradable seal material evaluation for blade tip seal applications in the 1366 to 1589 K temperature range. Larger fiber size, higher density feltmetal showed greatly improved erosion resistance with a slight reduction in abradability compared to the baseline feltmetal. Pack aluminide coating of the honeycomb extended the oxidation resistance and slightly improved the abradability of this material. Evaluation through selected abradability, erosion and oxidation testing, and pertinent metallography led to selection of a plasma sprayed yttria stabilized zirconia (ZrO2)/CoCrAlY layered system as the system with the most potential to meet the 1589 K requirement for blade tip seals. This system demonstrated structural integrity, erosion resistance, and some degree of abradability.
Effect of protonation and deprotonation on the gas-phase reactivity of fluorinated 1,2,4-triazines.
Giorgi, Gianluca; Palumbo Piccionello, Antonio; Pace, Andrea; Buscemi, Silvestre
2008-05-01
Positive and negative electrospray mass spectrometry (MS), in-time and in-space MS(n) experiments, high-resolution and accurate mass measurements obtained with an Orbitrap, together with density functional theory calculations have been used to study the gas-phase ion chemistry of a series of fluorinated 1,2,4-triazines. As a result of low-energy collision-induced dissociations, occurring in an ion trap and in a triple quadrupole, their protonated and deprotonated molecules show interesting features depending on the nature and structure of the precursor ions. The occurrence of elimination/hydration reactions produced by positive ions in the ion trap is noteworthy. Decompositions of deprotonated molecules, initiated by elimination of a hydroxyl radical from [M-H](-), are dominated by radical anions. Theoretical calculations have allowed us to obtain information on atom sites involved in the protonation and deprotonation reactions.
Fluid dynamic modeling of nano-thermite reactions
NASA Astrophysics Data System (ADS)
Martirosyan, Karen S.; Zyskin, Maxim; Jenkins, Charles M.; Yuki Horie, Yasuyuki
2014-03-01
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stage of reaction and allows the investigation of "slower" reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.
Fluid dynamic modeling of nano-thermite reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martirosyan, Karen S., E-mail: karen.martirosyan@utb.edu; Zyskin, Maxim; Jenkins, Charles M.
2014-03-14
This paper presents a direct numerical method based on gas dynamic equations to predict pressure evolution during the discharge of nanoenergetic materials. The direct numerical method provides for modeling reflections of the shock waves from the reactor walls that generates pressure-time fluctuations. The results of gas pressure prediction are consistent with the experimental evidence and estimates based on the self-similar solution. Artificial viscosity provides sufficient smoothing of shock wave discontinuity for the numerical procedure. The direct numerical method is more computationally demanding and flexible than self-similar solution, in particular it allows study of a shock wave in its early stagemore » of reaction and allows the investigation of “slower” reactions, which may produce weaker shock waves. Moreover, numerical results indicate that peak pressure is not very sensitive to initial density and reaction time, providing that all the material reacts well before the shock wave arrives at the end of the reactor.« less
AlGaAs growth by OMCVD using an excimer laser
NASA Technical Reports Server (NTRS)
Warner, Joseph D.; Wilt, David M.; Pouch, John J.; Aron, Paul R.
1986-01-01
AlGaAs has been grown on GaAs by laser assisted OMCVD using an excimer laser, wavelength 193 nm, and a Cambridge OMCVD reactor. Films were grown at temperatures of 450 and 500 C with the laser beam parallel to the surface and impinging onto the surface at 15 deg from parallel. The samples were heated by RF coils while the laser beam was perpendicular to the gas flow. Typical gas flow parameters are 12 slm of H2, 15 sccm of Ga(CH3)3, 13 sccm of Al(CH3)3, and a pressure of 250 mbar. The initial energy density of the beam at the surface was 40 mJ/sq cm, the pulse rate was 20 pps, and the growth time was 7 min. The films were analyzed by Auger electron spectroscopy for the aluminum concentration and by TEM for the surface morphology.
Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea
2016-10-01
We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
THE CENTRAL SLOPE OF DARK MATTER CORES IN DWARF GALAXIES: SIMULATIONS VERSUS THINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Se-Heon; De Blok, W. J. G.; Brook, Chris
2011-07-15
We make a direct comparison of the derived dark matter (DM) distributions between hydrodynamical simulations of dwarf galaxies assuming a {Lambda}CDM cosmology and the observed dwarf galaxies sample from the THINGS survey in terms of (1) the rotation curve shape and (2) the logarithmic inner density slope {alpha} of mass density profiles. The simulations, which include the effect of baryonic feedback processes, such as gas cooling, star formation, cosmic UV background heating, and most importantly, physically motivated gas outflows driven by supernovae, form bulgeless galaxies with DM cores. We show that the stellar and baryonic mass is similar to thatmore » inferred from photometric and kinematic methods for galaxies of similar circular velocity. Analyzing the simulations in exactly the same way as the observational sample allows us to address directly the so-called cusp/core problem in the {Lambda}CDM model. We show that the rotation curves of the simulated dwarf galaxies rise less steeply than cold dark matter rotation curves and are consistent with those of the THINGS dwarf galaxies. The mean value of the logarithmic inner density slopes {alpha} of the simulated galaxies' DM density profiles is {approx}-0.4 {+-} 0.1, which shows good agreement with {alpha} = -0.29 {+-} 0.07 of the THINGS dwarf galaxies. The effect of non-circular motions is not significant enough to affect the results. This confirms that the baryonic feedback processes included in the simulations are efficiently able to make the initial cusps with {alpha} {approx}-1.0 to -1.5 predicted by DM-only simulations shallower and induce DM halos with a central mass distribution similar to that observed in nearby dwarf galaxies.« less
The Effects of Fuel and Cylinder Gas Densities on the Characteristics of Fuel Sprays for Oil Engines
NASA Technical Reports Server (NTRS)
Joachim, W F; Beardsley, Edward G
1928-01-01
This investigation was conducted as a part of a general research on fuel-injection engines for aircraft. The purpose of the investigation was to determine the effects of fuel and cylinder gas densities with several characteristics of fuel sprays for oil engines. The start, growth, and cut-off of single fuel sprays produced by automatic injection valves were recorded on photographic film by means of special high-speed motion-picture apparatus. This equipment, which has been described in previous reports, is capable of taking twenty-five consecutive pictures of the moving spray at the rate of 4,000 per second. The penetrations of the fuel sprays increased and the cone angles and relative distributions decreased with increase in the specific gravity of the fuel. The density of the gas into which the fuel sprays were injected controlled their penetration. This was the only characteristic of the chamber gas that had a measurable effect upon the fuel sprays. Application of fuel-spray penetration data to the case of an engine, in which the pressure is rising during injection, indicated that fuel sprays may penetrate considerably farther than when injected into a gas at a density equal to that of the gas in an engine cylinder at top center.
The essential signature of a massive starburst in a distant quasar.
Solomon, P; Vanden Bout, P; Carilli, C; Guelin, M
2003-12-11
Observations of carbon monoxide emission in high-redshift (zeta > 2) galaxies indicate the presence of large amounts of molecular gas. Many of these galaxies contain an active galactic nucleus powered by accretion of gas onto a supermassive black hole, and a key question is whether their extremely high infrared luminosities result from the active galactic nucleus, from bursts of massive star formation (associated with the molecular gas), or both. In the Milky Way, high-mass stars form in the dense cores of interstellar molecular clouds, where gas densities are n(H2) > 10(5) cm(-3) (refs 1, 2). Recent surveys show that virtually all galactic sites of high-mass star formation have similarly high densities. The bulk of the cloud material traced by CO observations, however, is at a much lower density. For galaxies in the local Universe, the HCN molecule is an effective tracer of high-density molecular gas. Here we report observations of HCN emission from the infrared-luminous 'Cloverleaf' quasar (at a redshift zeta = 2.5579). The HCN line luminosity indicates the presence of 10 billion solar masses of very dense gas, an essential feature of an immense starburst, which contributes, together with the active galactic nucleus it harbours, to its high infrared luminosity.
Population inversion calculations using near resonant charge exchange as a pumping mechanism
NASA Technical Reports Server (NTRS)
Chubb, D. L.; Rose, J. R.
1972-01-01
Near resonance charge exchange between ions of a large ionization potential gas such as helium or neon and vapors of metals such as zinc, cadmium, selenium, or tellurium has produced laser action in the metal ion gas. The possibility of obtaining population inversions in near resonant charge exchange systems (Xe-Ca, Xe-Mg, Xe-Sr, Xe-Ba, Ar-Mg, N-Ca) was investigated. The analysis is an initial value problem that utilizes rate equations for the densities of relevant levels of the laser gas (Ca, Ba, Mg, or Sr) and an electron energy equation. Electron excitation rates are calculated using the Bohr-Thomson approximation for the cross section. Approximations to experimental values of the electron ionization cross section and the ion-atom charge exchange cross section are used. Preliminary results have been obtained for the Ca-Xe system and show that it is possible to obtain gains greater than 10 to the 14th power/m with inversion times up to 8x10 to the minus 7th power second. A possible charge exchange laser system using a MPD arc plasma accelerator is also described.
Does long term exposure to radon gas influence the properties of polymeric waterproof materials?
NASA Astrophysics Data System (ADS)
Navratilova Rovenska, Katerina; Jiranek, Martin; Kokes, Pavel; Wasserbauer, Richard; Kacmarikova, Veronika
2014-01-01
The technical state of buildings and the quality of the indoor environment depend on the quality of the waterproofing course and on the properties of the insulating materials that are applied, in particular on their durability, long-term functional reliability and resistance to corrosive effects of the subsoil. Underground water chemistry and soil bacteria are well-known corrosive agents. Our investigations indicate that the ageing process of waterproof materials can be significantly accelerated by alpha particles emitted by radon and radon progenies which are present in soil gas. Materials commonly available on the building market, e.g. LDPE and HDPE of various densities, PVC, TPO (thermoplastic polyolefin), PP (polypropylene) and EPDM were selected for our experimental study. The preliminary results for 3-year exposure to radon gas show a decrease in tensile strength to 60%, elongation to 80% and hardness to 95% for samples based on PE. The diffusion coefficient of radon for samples based on PVC decreased to 20% of the initial value after 1-year exposure to radon and soil bacteria.
Shock Initiation Behavior of PBXN-9 Determined by Gas Gun Experiments
NASA Astrophysics Data System (ADS)
Sanchez, N. J.; Gustavsen, R. L.; Hooks, D. E.
2009-12-01
The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt&percent; dioctyl adipate with a density of 1.75 g/cm3 and 0.8&% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics were embedded magnetic gauges, which are based on Faraday's law of induction, and Photon Doppler Velocimetry (PDV). The run distance to detonation vs. shock pressure, or "Pop plot," was redefined as log(X) = 2.14-1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32+2.211 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 along with providing increased understanding of HMX based explosives in varying formulations.
Shock initiation behavior of PBXN-9 determined by gas gun experiments
NASA Astrophysics Data System (ADS)
Sanchez, Nathaniel; Gustavsen, Richard; Hooks, Daniel
2009-06-01
The shock to detonation transition was evaluated in the HMX based explosive PBXN-9 by a series of light-gas gun experiments. PBXN-9 consists of 92 wt% HMX, 2wt% Hycar 4054 & 6 wt% dioctyl adipate with a density of 1.75 g/cm^3 and 0.8% voids. The experiments were designed to understand the specifics of wave evolution and the run distance to detonation as a function of input shock pressure. These experiments were conducted on gas guns in order to vary the input shock pressure accurately. The primary diagnostics are embedded magnetic gauges which are based on Faraday's law of induction along with photon Doppler velocimetry (PDV). The run distance to detonation vs. shock pressure, or ``Pop plot,'' was redefined as log (X*) = 2.14 -- 1.82 log (P), which is substantially different than previous data. The Hugoniot was refined as Us = 2.32 + 2.21 Up. This data will be useful for the development of predictive models for the safety and performance of PBXN-9 in addition to providing an increased understanding of HMX based explosives in varying formulations.
Formation of intermediate-mass black holes through runaway collisions in the first star clusters
NASA Astrophysics Data System (ADS)
Sakurai, Yuya; Yoshida, Naoki; Fujii, Michiko S.; Hirano, Shingo
2017-12-01
We study the formation of massive black holes in the first star clusters. We first locate star-forming gas clouds in protogalactic haloes of ≳107 M⊙ in cosmological hydrodynamics simulations and use them to generate the initial conditions for star clusters with masses of ∼105 M⊙. We then perform a series of direct-tree hybrid N-body simulations to follow runaway stellar collisions in the dense star clusters. In all the cluster models except one, runaway collisions occur within a few million years, and the mass of the central, most massive star reaches ∼400-1900 M⊙. Such very massive stars collapse to leave intermediate-mass black holes (IMBHs). The diversity of the final masses may be attributed to the differences in a few basic properties of the host haloes such as mass, central gas velocity dispersion and mean gas density of the central core. Finally, we derive the IMBH mass to cluster mass ratios, and compare them with the observed black hole to bulge mass ratios in the present-day Universe.
NASA Astrophysics Data System (ADS)
Mohaghar, Mohammad; Carter, John; Pathikonda, Gokul; Ranjan, Devesh
2017-11-01
The current study experimentally investigates the influence of the initial Atwood ratio (At) on the evolution of Richtmyer-Meshkov instability at the Georgia Tech Shock Tube and Advanced Mixing Laboratory. Two Atwood numbers (At =0.22 and 0.67) are studied, which correspond to the gas combinations of nitrogen seeded with acetone vapor (light) over carbon dioxide (heavy) and same light gas over sulfur hexafluoride (heavy) respectively. A perturbed, multi-mode, inclined interface (with an amplitude to wavelength ratio of 0.088) is impulsively accelerated by the incident shock traveling vertically from light to heavy gas with a Mach number 1.55. The effect of Atwood ratio on turbulent mixing transition after reshock at the same non-dimensional times between the two cases is examined through ensemble-averaged turbulence statistics from simultaneous planar laser induced uorescence (PLIF) and particle image velocimetry (PIV) measurements. Preliminary studies over the smaller Atwood number indicates that turbulent mixing transition criteria can be satisfied after reshock. This work was supported by the National Science Foundation CAREER Award No. 1451994.
Phase diagram and universality of the Lennard-Jones gas-liquid system.
Watanabe, Hiroshi; Ito, Nobuyasu; Hu, Chin-Kun
2012-05-28
The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class.
Star formation in proto dwarf galaxies
NASA Technical Reports Server (NTRS)
Noriega-Crespo, A.; Bodenheimer, P.; Lin, D. N. C.; Tenorio-Tagle, G.
1990-01-01
The effects of the onset of star formation on the residual gas in primordial low-mass Local-Group dwarf spheroidal galaxies is studied by a series of hydrodynamical simulations. The models have concentrated on the effect of photoionization. The results indicate that photoionization in the presence of a moderate gas density gradient can eject most of the residual gas on a time scale of a few 10 to the 7th power years. High central gas density combined with inefficient star formation, however, may prevent mass ejection. The effect of supernova explosions is discussed briefly.
Oil and gas development influences big-game hunting in Wyoming
Dorning, Monica; Garman, Steven L.; Diffendorfer, James E.; Semmens, Darius J.; Hawbaker, Todd J.; Bagstad, Kenneth J.
2017-01-01
Development from extracting oil and gas resources can have unintended effects on multiple ecosystem functions, with cascading effects on wildlife, ecosystem services, and local economies. Big-game hunting opportunities may be closely related to these effects, but empirical analyses of impacts of energy development on hunting are limited. We examined the influence of oil and gas development density on harvest efficiency, or harvest per unit of hunter effort, within all hunt areas in Wyoming, USA, from 2008 to 2014 for 3 big-game species: elk (Cervus canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana). Using harvest/hunter day as the response variable, we compared linear mixed-effects models for each species that included total well density (i.e., all wells constructed up to the year of record), active well density (i.e., only those wells currently producing oil or gas in that year), or neither as a predictor variable. We used well densities as indicators of development in the absence of data specifying the locations of other oil and gas infrastructure (e.g., roads, well pads). Models also accounted for the fixed effects of road density, hunter density, proportion of the area that is public land with unrestricted hunter access, proportion of the area that is forested, year of observation, and random effects of variation among hunt areas nested within associated game herd units. Presence of oil and gas wells had a positive influence on harvest efficiency for elk and mule deer. Although there was no overall effect to pronghorn, there was a negative influence of wells on juvenile pronghorn harvest efficiency. Changes in harvest efficiency due to expanding oil and gas development could alter the time spent hunting by hunters and their chances of harvesting an animal. This could have subsequent impacts on hunter satisfaction, game populations, and economic revenue generated from recreational hunters.
Spatial heterogeneity in response of male greater sage-grouse lek attendance to energy development.
Gregory, Andrew J; Beck, Jeffrey L
2014-01-01
Landscape modification due to rapidly expanding energy development, in particular oil and gas, in the westernUSA, have prompted concerns over how such developments may impact wildlife. One species of conservation concern across much of the Intermountain West is the greater sage-grouse (Centrocercusurophasianus). Sage-grouse have been petitioned for listing under provisions of the Endangered Species Act 7 times and the state of Wyoming alone represents 64% of the extant sage-grouse population in the eastern portion of their range. Consequently, the relationship between sage-grouse populations and oil and gas development in Wyoming is an important component to managing the long-term viability of this species. We used 814 leks from the Wyoming Game and Fish Department's lek survey database and well pad data from the Wyoming Oil and Gas Conservation Commission to evaluate changes in sage-grouse lek counts as a function of oil and gas development since 1991.From 1991-2011 we found that oil and gas well-pad density increased 3.6-fold across the state and was associated with a 24% decline in the number of male sage-grouse. Using a spatial and temporally structured analysis via Geographically Weighted Regression, we found a 1-to-4 year time lag between development density and lek decline. Sage-grouse also responded to development densities at multiple spatial neighborhoods surrounding leks, including broad scales of 10 km. However, sage-grouse lek counts do not always decline as a result of oil and gas development. We found similar development densities resulting in different sage-grouse lek count responses, suggesting that development density alone is insufficient to predict the impacts that oil and gas development have on sage-grouse. Finally, our analysis suggests a maximum development density of 1 well-pad within 2 km of leks to avoid measurable impacts within 1 year, and <6 well-pads within 10 km of leks to avoid delayed impacts.
Coronal gas in the galaxy. II. A statistical analysis of O VI absorptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, E.B.
Results from the survey of interstellar O VI by Jenkins and by Jenkins and Meloy are analyzed to synthesize a global description of the properties of the coronal gas. Tests for correlations of column densities or velocities with properties of the target stars showed no evidence for a circumstellar origin for the absorption lines. An overall average density n (O VI) =2.8 x 10/sup -8/ cm/sup -3/ was found in the galactic plane, with a decrease which approximately follows exp (-z/300 pc) away from the plane.Fluctuations in column densities over various lines of sight suggest that existence of six hotmore » gas regions kpc/sup -/1, randomly distributed in space, each with an O VI column density of about 10/sup 13/ cm/sup -2/. These regions account for an average density n (O VI) =2.1 x 10/sup -8/ cm/sup -3/; the remaining 7 x 10/sup -9/ cm/sup -3/ is produced by more sparsely distributed but thicker parcels of hot gas which are seen toward 10% of the stars. The statistics of radial velocity centroids and widths support the interpretation of distinct domains; each region has an internal velocity dispersion consistent with a Doppler broadening of a plasma at T> or approx. =2 x 10/sup 5/ K (near the characteristic temperature for a maximum concentration of O VI in collisional equilibrium), while the regions themselves move about with a dispersion of radial velocities equal to 26 km s/sup -1/. Systematic motions of gas away from the galactic plane could not be seen, however.Excursions from the normal O VI per unit distance have no perceptible anicorrelation with deviations in reddening by cool interstellar coulds: a fact which suggests that the average filling factor of O VI gas is less than 20% if coronal gas really displaces the cooler material and does not have large variations in density and temperature.« less
Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.
A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation,more » and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.« less
Background gas density and beam losses in NIO1 beam source
NASA Astrophysics Data System (ADS)
Sartori, E.; Veltri, P.; Cavenago, M.; Serianni, G.
2016-02-01
NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.
W. J. Massman
2004-01-01
Atmospheric trace gas fluxes measured with an eddy covariance sensor that detects a constituent's density fluctuations within the in situ air need to include terms resulting from concurrent heat and moisture fluxes, the so called 'density' or 'WPL corrections' (Webb et al. 1980). The theory behind these additional terms is well established. But...
An experimental investigation of gas fuel injection with X-ray radiography
Swantek, Andrew B.; Duke, D. J.; Kastengren, A. L.; ...
2017-04-21
In this paper, an outward-opening compressed natural gas, direct injection fuel injector has been studied with single-shot x-ray radiography. Three dimensional simulations have also been performed to compliment the x-ray data. Argon was used as a surrogate gas for experimental and safety reasons. This technique allows the acquisition of a quantitative mapping of the ensemble-average and standard deviation of the projected density throughout the injection event. Two dimensional, ensemble average and standard deviation data are presented to investigate the quasi-steady-state behavior of the jet. Upstream of the stagnation zone, minimal shot-to-shot variation is observed. Downstream of the stagnation zone, bulkmore » mixing is observed as the jet transitions to a subsonic turbulent jet. From the time averaged data, individual slices at all downstream locations are extracted and an Abel inversion was performed to compute the radial density distribution, which was interpolated to create three dimensional visualizations. The Abel reconstructions reveal that upstream of the stagnation zone, the gas forms an annulus with high argon density and large density gradients. Inside this annulus, a recirculation region with low argon density exists. Downstream, the jet transitions to a fully turbulent jet with Gaussian argon density distributions. This experimental data is intended to serve as a quantitative benchmark for simulations.« less
An experimental investigation of gas fuel injection with X-ray radiography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swantek, Andrew B.; Duke, D. J.; Kastengren, A. L.
In this paper, an outward-opening compressed natural gas, direct injection fuel injector has been studied with single-shot x-ray radiography. Three dimensional simulations have also been performed to compliment the x-ray data. Argon was used as a surrogate gas for experimental and safety reasons. This technique allows the acquisition of a quantitative mapping of the ensemble-average and standard deviation of the projected density throughout the injection event. Two dimensional, ensemble average and standard deviation data are presented to investigate the quasi-steady-state behavior of the jet. Upstream of the stagnation zone, minimal shot-to-shot variation is observed. Downstream of the stagnation zone, bulkmore » mixing is observed as the jet transitions to a subsonic turbulent jet. From the time averaged data, individual slices at all downstream locations are extracted and an Abel inversion was performed to compute the radial density distribution, which was interpolated to create three dimensional visualizations. The Abel reconstructions reveal that upstream of the stagnation zone, the gas forms an annulus with high argon density and large density gradients. Inside this annulus, a recirculation region with low argon density exists. Downstream, the jet transitions to a fully turbulent jet with Gaussian argon density distributions. This experimental data is intended to serve as a quantitative benchmark for simulations.« less
Subgrid-scale effects in compressible variable-density decaying turbulence
GS, Sidharth; Candler, Graham V.
2018-05-08
We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less
Subgrid-scale effects in compressible variable-density decaying turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
GS, Sidharth; Candler, Graham V.
We present that many turbulent flows are characterized by complex scale interactions and vorticity generation caused by compressibility and variable-density effects. In the large-eddy simulation of variable-density flows, these processes manifest themselves as subgrid-scale (SGS) terms that interact with the resolved-scale flow. This paper studies the effect of the variable-density SGS terms and quantifies their relative importance. We consider the SGS terms appearing in the density-weighted Favre-filtered equations and in the unweighted Reynolds-filtered equations. The conventional form of the Reynolds-filtered momentum equation is complicated by a temporal SGS term; therefore, we derive a new form of the Reynolds-filtered governing equationsmore » that does not contain this term and has only double-correlation SGS terms. The new form of the filtered equations has terms that represent the SGS mass flux, pressure-gradient acceleration and velocity-dilatation correlation. To evaluate the dynamical significance of the variable-density SGS effects, we carry out direct numerical simulations of compressible decaying turbulence at a turbulent Mach number of 0.3. Two different initial thermodynamic conditions are investigated: homentropic and a thermally inhomogeneous gas with regions of differing densities. The simulated flow fields are explicitly filtered to evaluate the SGS terms. The importance of the variable-density SGS terms is quantified relative to the SGS specific stress, which is the only SGS term active in incompressible constant-density turbulence. It is found that while the variable-density SGS terms in the homentropic case are negligible, they are dynamically significant in the thermally inhomogeneous flows. Investigation of the variable-density SGS terms is therefore important, not only to develop variable-density closures but also to improve the understanding of scale interactions in variable-density flows.« less
Electrical tree initiation in polyethylene absorbing Penning gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, N.; Tohyama, N.; Sato, H.
1996-12-31
Ac tree initiation voltage was examined in untreated LDPE, vacuum degassed LDPE and LDPE absorbing He gas (He gas was absorbed after vacuum degassing). The authors have already reported that vacuum degassed LDPE shows much higher tree initiation voltage than untreated one because of absence of oxygen. Therefore they expected that LDPE absorbing He shows the same property with vacuum degassed LDPE. However tree initiation voltage of LDPE absorbing He is as low as that of untreated LDPE. LDPE absorbing Ar gas shows the same tendency. He or Ar gas does not change so much impulse tree initiation voltage. LDPEmore » absorbing He was not well dyed with methylene blue after ac voltage application, which indicates that active oxidation does not occur. Low ac tree initiation voltage in LDPE absorbing He or Ar may be caused by Penning ionization in free volume.« less
NASA Astrophysics Data System (ADS)
Scholten, Sarah K.; Perrella, Christopher; Anstie, James D.; White, Richard T.; Al-Ashwal, Waddah; Hébert, Nicolas Bourbeau; Genest, Jérôme; Luiten, Andre N.
2018-05-01
Real-time and accurate measurements of gas properties are highly desirable for numerous real-world applications. Here, we use an optical-frequency comb to demonstrate absolute number-density and temperature measurements of a sample gas with state-of-the-art precision and accuracy. The technique is demonstrated by measuring the number density of 12C16O2 with an accuracy of better than 1% and a precision of 0.04% in a measurement and analysis cycle of less than 1 s. This technique is transferable to numerous molecular species, thus offering an avenue for near-universal gas concentration measurements.
GAS/LIQUID MEMBRANES FOR NATURAL GAS UPGRADING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard S. Meyer
A new project was initiated this quarter to develop gas/liquid membranes for natural gas upgrading. Efforts have concentrated on legal agreements, including alternative field sites. Gas Technology Institute (GTI) is conducting this research program whose objective is to develop gas/liquid membranes for natural gas upgrading to assist DOE in achieving their goal of developing novel methods of upgrading low quality natural gas to meet pipeline specifications. Kvaerner Process Systems (KPS) and W. L. Gore & Associates (GORE) gas/liquid membrane contactors are based on expanded polytetrafluoroethylene (ePTFE) membranes acting as the contacting barrier between the contaminated gas stream and the absorbingmore » liquid. These resilient membranes provide much greater surface area for transfer than other tower internals, with packing densities five to ten times greater, resulting in equipment 50-70% smaller and lower weight for the same treating service. The scope of the research program is to (1) build and install a laboratory- and a field-scale gas/liquid membrane absorber; (2) operate the units with a low quality natural gas feed stream for sufficient time to verify the simulation model of the contactors and to project membrane life in this severe service; and (3) conducted an economic evaluation, based on the data, to quantify the impact of the technology. Chevron, one of the major producers of natural gas, has offered to host the test at a gas treating plant. KPS will use their position as a recognized leader in the construction of commercial amine plants for building the unit along with GORE providing the membranes. GTI will provide operator and data collection support during lab- and field-testing to assure proper analytical procedures are used. Kvaerner and GTI will perform the final economic evaluation. GTI will provide project management and be responsible for reporting and interactions with DOE on this project.« less
Electron particle transport and turbulence studies in the T-10 tokamak
NASA Astrophysics Data System (ADS)
Vershkov, V. A.; Borisov, M. A.; Subbotin, G. F.; Shelukhin, D. A.; Dnestrovskii, Yu. N.; Danilov, A. V.; Cherkasov, S. V.; Gorbunov, E. P.; Sergeev, D. S.; Grashin, S. A.; Krylov, S. V.; Kuleshin, E. O.; Myalton, T. B.; Skosyrev, Yu. V.; Chistiakov, V. V.
2013-08-01
The goals of this paper are to compare the results of electron particle transport measurements in ohmic (OH) plasmas by means of a small perturbation technique, high-level gas puff and gas switch off, investigate the phenomenon of ‘density pump out’ during electron cyclotron resonance heating (ECRH) and to correlate density behaviour with turbulence. Two approaches for plasma particle transport studies were compared: the low perturbation technique of periodic puff (δn/ne = 0.3%) and strong density variations (δn/ne < 50%), including density ramp-up by gas puff and ramp-down with gas switch off. The model with constant in time diffusion coefficients and pinch velocities could describe the core density perturbations but failed at the edge. In the case of strong puff three stages were distinguished. Degraded energy confinement and, respectively, low turbulence frequencies were observed during density ramp-up and ramp-down, while enhanced confinement and higher turbulence frequencies were typical for the intermediate stage. Density profile variation during this intermediate phase could be described in the framework of the transport model with constant in time coefficients. The application of ECRH at the density ramp-up phase provided the possibility of postponing the ‘density pump out’. The increase in the low-frequency modes in turbulence spectra was observed at the ‘density pump out’ phase during central ECRH. Although the high- and low-frequency bands of turbulence spectra behaved as trapped electron mode and ion temperature gradient, respectively, they both rotated at the same angular velocity as a rigid body together with magnetohydrodynamic mode m/n = 2/1 and [E × B] plasma rotation.
The H I-to-H2 Transition in a Turbulent Medium
NASA Astrophysics Data System (ADS)
Bialy, Shmuel; Burkhart, Blakesley; Sternberg, Amiel
2017-07-01
We study the effect of density fluctuations induced by turbulence on the H I/H2 structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H I/H2 balance calculations. We derive atomic-to-molecular density profiles and the H I column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H I/H2 density profiles are strongly perturbed in turbulent gas, the mean H I column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity-to-mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H I PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H I in the Perseus molecular cloud. We show that a narrow observed H I PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.
NASA Astrophysics Data System (ADS)
Chen, Shang; Kondo, Hiroki; Ishikawa, Kenji; Takeda, Keigo; Sekine, Makoto; Kano, Hiroyuki; Den, Shoji; Hori, Masaru
2011-01-01
For an innovation of molecular-beam-epitaxial (MBE) growth of gallium nitride (GaN), the measurements of absolute densities of N, H, and NH3 at the remote region of the radical source excited by plasmas have become absolutely imperative. By vacuum ultraviolet absorption spectroscopy (VUVAS) at a relatively low pressure of about 1 Pa, we obtained a N atom density of 9×1012 cm-3 for a pure nitrogen gas used, a H atom density of 7×1012 cm-3 for a gas composition of 80% hydrogen mixed with nitrogen gas were measured. The maximum density 2×1013 cm-3 of NH3 was measured by quadruple mass spectrometry (QMS) at H2/(N2+H2)=60%. Moreover, we found that N atom density was considerably affected by processing history, where the characteristic instability was observed during the pure nitrogen plasma discharge sequentially after the hydrogen-containing plasma discharge. These results indicate imply the importance of establishing radical-based processes to control precisely the absolute densities of N, H, and NH3 at the remote region of the radical source.
Plasma-puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Han, Kwang S.; Venable, Demetrius D.; Lee, Ja H.; Choi, Eun H.; Kim, Y. K.; Kim, J. H.; Nguyen, D. X.
1993-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. The optimal fill gas pressures for the azimuthally uniform plasma-puff were about 120 mTorr less than P(sub opt) less than 450 Torr for He and N2. For Argon 20 mTorr is less than P(sub opt) is less than 5 Torr. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with hypocycloidal pinch plasma-puff triggering. The main discharge of the inverse pinch switch with the plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with the hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. In order to assess the effects of plasma current density on material erosion of electrodes, emissions from both an inverse-pinch plasma switch (INPIStron) and from a spark gap switch under test were studied with an optical multichannel analyzer (OMA). The color temperature of the argon plasma was approximately 4,000 K which corresponded with the peak continuum emission near 750 nm. There are the strong line emissions of argon in the 650 - 800 nm range and a lack of line emissions of copper and other solid material used in the switch. This indicates that the plasma current density during closing is low and the hot spot or hot filament in the switch is negligible. This result also indicates considerable reduction of line emission with the INPIStron switch over that of a spark-gap switch. However, a strong carbon line emission exists due to vaporization of the plastic insulator used. In order to reduce the vaporization of the insulator, the plexiglass insulating material of INPIStron was replaced with Z-9 material. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron, with a low impedance of Z = 9 ohms, can transfer a high voltage pulse with a superior pulse-shape fidelity over that of a spark gap with Z = 100 ohms.
Plasma-puff initiation of high Coulomb transfer switches
NASA Technical Reports Server (NTRS)
Venable, D. D.; Han, K. S.
1993-01-01
The plasma-puff triggering mechanism based on a hypocycloidal pinch geometry was investigated to determine the optimal operating conditions for an azimuthally uniform surface flashover which initiates plasma-puff under wide ranges of fill gas pressures of Ar, He and N2. The optimal fill gas pressures for the azimuthally uniform plasma-puff were about 120 mTorr less than P(opt) less than 450 Torr for He and N2. For Argon 120 mTorr less than P(opt) less than 5 Torr for argon. The inverse pinch switch was triggered with the plasma-puff and the switching capability under various electrical parameters and working gas pressures of Ar, He and N2 was determined. It was also shown that the azimuthally uniform switching discharges were dependent on the type of fill gas and its fill pressure. A new concept of plasma-focus driven plasma-puff was also discussed in comparison with hypocycloidal pinch plasma-puff triggering. The main discharge of the inverse pinch switch with the plasma-focus driven plasma-puff trigger is found to be more azimuthally uniform than that with the hypocycloidal pinch plasma-puff trigger in a gas pressure region between 80 mTorr and 1 Torr. In order to assess the effects of plasma current density on material erosion of electrodes, emissions from both an inverse-pinch plasma switch (INPIStron) and from a spark gap switch under test were studied with an optical multichannel analyzer (OMA). The color temperature of the argon plasma was approximately 4,000 K which corresponded with the peak continuum emission near 750 nm. There are the strong line emissions of argon in the 650 - 800 nm range and a lack of line emissions of copper and other solid material used in the switch. This indicates that the plasma current density during closing is low and the hot spot or hot filament in the switch is negligible. This result also indicates considerable reduction of line emission with the INPIStron switch over that of a spark-gap switch. However, a strong carbon line emission exists due to vaporization of the plastic insulator used. In order to reduce the vaporization of the insulator, the plexiglass insulating material of INPIStron was replaced with Z-9 material. A comparative study of the INPIStron and a spark gap also reveals that the INPIStron, with a low impedance of Z equals 9 ohms, can transfer a high voltage pulse with a superior pulse-shape fidelity over that of a spark gap with Z equals 100 ohms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, C.M.; Burton, G.L.; Schweinforth, R.L.
1983-06-01
White bass (Morone chrysops) X striped bass (M. saxatilis) hybrids weighing 1691/lb were initially stocked in five 24 ft/sup 3/ floating screen cages for 20 days. Hybrids averaging one inch in total length and 361 fish/lb were released in four 614 ft/sup 3/ concrete raceways. Two stocking densities, 2.6 and 5.1 fish/ft/sup 3/, were evaluated in the 94-day study using a flow rate of 300 gpm/raceway. Water temperatures averaged 79/sup 0/F and water quality was adequate throughout the production period. Fish were hand fed to satiation daily. Columnaris and Aeromonas hydrophila caused the most serious disease problems. Gas supersaturation wasmore » suspect in high mortality levels during cage culture of hybrid bass fry. Cannibalism may have been responsible for unaccountable losses prior to raceway stocking and at harvest. The study yielded 5773 hybrids weighing 658 lb. The high density treatment showed greater weight gain, average weight, average length and percent survival as well as improved food conversion. Results suggest that higher stocking densities and periodic grading may increase production and suppress cannibalism. 10 references, 3 figures, 3 tables.« less
The dense gas mass fraction in the W51 cloud and its protoclusters
NASA Astrophysics Data System (ADS)
Ginsburg, Adam; Bally, John; Battersby, Cara; Youngblood, Allison; Darling, Jeremy; Rosolowsky, Erik; Arce, Héctor; Lebrón Santos, Mayra E.
2015-01-01
Context. The density structure of molecular clouds determines how they will evolve. Aims: We map the velocity-resolved density structure of the most vigorously star-forming molecular cloud in the Galactic disk, the W51 giant molecular cloud. Methods: We present new 2 cm and 6 cm maps of H2CO, radio recombination lines, and the radio continuum in the W51 star forming complex acquired with Arecibo and the Green Bank Telescope at ~ 50″ resolution. We use H2CO absorption to determine the relative line-of-sight positions of molecular and ionized gas. We measure gas densities using the H2CO densitometer, including continuous measurements of the dense gas mass fraction (DGMF) over the range 104cm-3
NASA Astrophysics Data System (ADS)
Liang, Ying-Shuang; Liu, Gang-Hu; Xue, Chan; Liu, Yong-Xin; Wang, You-Nian
2017-05-01
A two-dimensional self-consistent fluid model and the experimental diagnostic are employed to investigate the dependencies of species concentrations on the gas proportion in the capacitive N2/Ar discharges operated at 60 MHz, 50 Pa, and 140 W. The results indicate that the N2/Ar proportion has a considerable impact on the species densities. As the N2 fraction increases, the electron density, as well as the Ar+ and Arm densities, decreases remarkably. On the contrary, the N2 + density is demonstrated to increase monotonically with the N2 fraction. Moreover, the N density is observed to increase significantly with the N2 fraction at the N2 fractions below 40%, beyond which it decreases slightly. The electrons are primarily generated via the electron impact ionization of the feed gases. The electron impact ionization of Ar essentially determines the Ar+ density. For the N2 + production, the charge transition process between the Ar+ ions and the feed gas N2 dominates at low N2 fraction, while the electron impact ionization of N2 plays the more important role at high N2 fraction. At any gas mixtures, more than 60% Arm atoms are generated through the radiative decay process from Ar(4p). The dissociation of the feed gas N2 by the excited Ar atoms and by the electrons is responsible for the N formation at low N2 fraction and high N2 fraction, respectively. To validate the simulation results, the floating double probe and the optical emission spectroscopy are employed to measure the total positive ion density and the emission intensity originating from Ar(4p) transitions, respectively. The results from the simulation show a qualitative agreement with that from the experiment, which indicates the reliable model.
NASA Astrophysics Data System (ADS)
Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; Wolfire, M. G.; Emig, K. L.; Toribio, M. C.; Röttgering, H. J. A.; Tielens, A. G. G. M.
2018-04-01
Quantitative understanding of the interstellar medium requires knowledge of its physical conditions. Low-frequency carbon radio recombination lines (CRRLs) trace cold interstellar gas and can be used to determine its physical conditions (e.g. electron temperature and density). In this work, we present spatially resolved observations of the low-frequency (≤390 MHz) CRRLs centred around C268α, C357α, C494α, and C539α towards Cassiopeia A on scales of ≤1.2 pc. We compare the spatial distribution of CRRLs with other interstellar medium tracers. This comparison reveals a spatial offset between the peak of the CRRLs and other tracers, which is very characteristic for photodissociation regions and that we take as evidence for CRRLs being preferentially detected from the surfaces of molecular clouds. Using the CRRLs, we constrain the gas electron temperature and density. These constraints on the gas conditions suggest variations of less than a factor of 2 in pressure over ˜1 pc scales, and an average hydrogen density of 200-470 cm-3. From the electron temperature and density maps, we also constrain the ionized carbon emission measure, column density, and path length. Based on these, the hydrogen column density is larger than 1022 cm-2, with a peak of ˜4 × 1022 cm-2 towards the south of Cassiopeia A. Towards the southern peak, the line-of-sight length is ˜40 pc over a ˜2 pc wide structure, which implies that the gas is a thin surface layer on a large (molecular) cloud that is only partially intersected by Cassiopeia A. These observations highlight the utility of CRRLs as tracers of low-density extended H I and CO-dark gas halo's around molecular clouds.
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2018-03-01
The effect of neutral transport on the deposition rate profiles of thin films formed by plasma-enhanced chemical vapor deposition (PECVD) is investigated to improve the uniformity of amorphous hydrogenated silicon films. The PECVD reactor with a cylindrical showerhead is numerically simulated with a variation of the gas velocity and temperature in the capacitively coupled plasma with an intermediate-pressure SiH4/He gas mixture. The modulation of the gas velocity distribution results in a noticeable change in the density distributions of neutral molecules such as SiH4, SiH3, H, SiH2, and Si2H6, especially in the vicinity of the electrode edge. With the locally accelerated gas flow, the concomitant increase in Si2H6 density near the electrode edge induces increases in both the electron density and the deposition rate profile near the electrode edge. In addition, it is observed that changing the surface temperature distribution by changing the sidewall temperature can also effectively modulate the plasma density distributions. The simulated deposition rate profile matches the experimental data well, even under non-isothermal wall boundary conditions.
NASA Astrophysics Data System (ADS)
Zhang, S.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P. J.
2015-08-01
The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon +2% O2. The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent.
Nonintrusive performance measurement of a gas turbine engine in real time
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSilva, Upul P.; Claussen, Heiko
Performance of a gas turbine engine is monitored by computing a mass flow rate through the engine. Acoustic time-of-flight measurements are taken between acoustic transmitters and receivers in the flow path of the engine. The measurements are processed to determine average speeds of sound and gas flow velocities along those lines-of-sound. A volumetric flow rate in the flow path is computed using the gas flow velocities together with a representation of the flow path geometry. A gas density in the flow path is computed using the speeds of sound and a measured static pressure. The mass flow rate is calculatedmore » from the gas density and the volumetric flow rate.« less
Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43
NASA Astrophysics Data System (ADS)
Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.
2013-12-01
We aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12''. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104 M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106 M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas. Appendices are available in electronic form at http://www.aanda.orgThe final datacubes (13CO and C18O) for the entire survey are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A24
Evaluation of Aluminum Participation in the Development of Reactive Waves in Shock Compressed HMX
NASA Astrophysics Data System (ADS)
Pahl, R. J.; Trott, W. M.; Snedigar, S.; Castañeda, J. N.
2006-07-01
A series of gas gun tests has been performed to examine contributions to energy release from micron-sized and nanometric aluminum powder added to sieved (212-300μm) HMX. In the absence of added metal, 4-mm-thick, low-density (64-68% of theoretical maximum density) pressings of the sieved HMX respond to modest shock loading by developing distinctive reactive waves that exhibit both temporal and mesoscale spatial fluctuations. Parallel tests have been performed on samples containing 10% (by mass) aluminum in two particle sizes: 2-μm and 123-nm mean particle diameter, respectively. The finely dispersed aluminum initially suppresses wave growth from HMX reactions; however, after a visible induction period, the added metal drives rapid increases in the transmitted wave particle velocity. Wave profile variations as a function of the aluminum particle diameter are discussed.
Williams, C R; Bees, MA
2014-01-01
The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. Biotechnol. Bioeng. 2014;111: 320–335. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:24026984
Williams, C R; Bees, M A
2014-02-01
The ability of unicellular green algal species such as Chlamydomonas reinhardtii to produce hydrogen gas via iron-hydrogenase is well known. However, the oxygen-sensitive hydrogenase is closely linked to the photosynthetic chain in such a way that hydrogen and oxygen production need to be separated temporally for sustained photo-production. Under illumination, sulfur-deprivation has been shown to accommodate the production of hydrogen gas by partially-deactivating O2 evolution activity, leading to anaerobiosis in a sealed culture. As these facets are coupled, and the system complex, mathematical approaches potentially are of significant value since they may reveal improved or even optimal schemes for maximizing hydrogen production. Here, a mechanistic model of the system is constructed from consideration of the essential pathways and processes. The role of sulfur in photosynthesis (via PSII) and the storage and catabolism of endogenous substrate, and thus growth and decay of culture density, are explicitly modeled in order to describe and explore the complex interactions that lead to H2 production during sulfur-deprivation. As far as possible, functional forms and parameter values are determined or estimated from experimental data. The model is compared with published experimental studies and, encouragingly, qualitative agreement for trends in hydrogen yield and initiation time are found. It is then employed to probe optimal external sulfur and illumination conditions for hydrogen production, which are found to differ depending on whether a maximum yield of gas or initial production rate is required. The model constitutes a powerful theoretical tool for investigating novel sulfur cycling regimes that may ultimately be used to improve the commercial viability of hydrogen gas production from microorganisms. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narkis, J.; Rahman, H. U.; Ney, P.
2016-12-29
1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compressionmore » heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.« less
Faint blue counts from formation of dwarf galaxies at z approximately equals 1
NASA Technical Reports Server (NTRS)
Babul, Arif; Rees, Martin J.
1993-01-01
The nature of faint blue objects (FBO's) has been a source of much speculation since their detection in deep CCD images of the sky. Their high surface density argues against them being progenitors of present-day bright galaxies and since they are only weakly clustered on small scales, they cannot be entities that merged together to form present-day galaxies. Babul & Rees (1992) have suggested that the observed faint blue counts may be due to dwarf elliptical galaxies undergoing their initial starburst at z is approximately equal to 1. In generic hierarchical clustering scenarios, however, dwarf galaxy halos (M is approximately 10(exp 9) solar mass) are expected to form at an earlier epoch; for example, typical 10(exp 9) solar mass halos will virialize at z is approximately equal to 2.3 if the power-spectrum for the density fluctuations is that of the standard b = 2 cold dark matter (CDM) model. Under 'ordinary conditions' the gas would rapidly cool, collect in the cores, and undergo star-formation. Conditions at high redshifts are far from 'ordinary'. The intense UV background will prevent the gas in the dwarf halos from cooling, the halos being released from their suspended state only when the UV flux has diminished sufficiently.
GalMod: A Galactic Synthesis Population Model
NASA Astrophysics Data System (ADS)
Pasetto, Stefano; Grebel, Eva K.; Chiosi, Cesare; Crnojević, Denija; Zeidler, Peter; Busso, Giorgia; Cassarà, Letizia P.; Piovan, Lorenzo; Tantalo, Rosaria; Brogliato, Claudio
2018-06-01
We present a new Galaxy population synthesis Model, GalMod. GalMod is a star-count model featuring an asymmetric bar/bulge as well as spiral arms and related extinction. The model, initially introduced in Pasetto et al., has been here completed with a central bar, a new bulge description, new disk vertical profiles, and several new bolometric corrections. The model can generate synthetic mock catalogs of visible portions of the Milky Way, external galaxies like M31, or N-body simulation initial conditions. At any given time, e.g., at a chosen age of the Galaxy, the model contains a sum of discrete stellar populations, namely the bulge/bar, disk, and halo. These populations are in turn the sum of different components: the disk is the sum of the spiral arms, thin disks, a thick disk, and various gas components, while the halo is the sum of a stellar component, a hot coronal gas, and a dark-matter component. The Galactic potential is computed from these population density profiles and used to generate detailed kinematics by considering up to the first four moments of the collisionless Boltzmann equation. The same density profiles are then used to define the observed color–magnitude diagrams in a user-defined field of view (FoV) from an arbitrary solar location. Several photometric systems have been included and made available online, and no limits on the size of the FoV are imposed thus allowing full-sky simulations, too. Finally, we model the extinction by adopting a dust model with advanced ray-tracing solutions. The model's Web page (and tutorial) can be accessed at www.GalMod.org and support is provided at Galaxy.Model@yahoo.com.
Creating a Driven, Collapsed Radiative Shock in the Laboratory
NASA Astrophysics Data System (ADS)
Reighard, Amy
2006-10-01
We report details of the first experimental campaign to create a driven, planar, radiatively collapsed in laboratory experiment. Radiation hydrodynamics experiments are challenging to realize in a laboratory setting, requiring high temperatures in a system of sufficient extent. The Omega laser at ˜10^15 W/cm^2 drives a thin slab of low-Z material at >100 km/s gas via laser ablation pressure. This slab initially shocks, then continues driving a shock through a cylindrical volume of Xe gas at 6 mg/cc. Simulations predict a collapsed layer in which the density reaches ˜45 times initial density. Side-on x-ray backlighting was the principal diagnostic. We have successfully imaged shocks with average velocities between 95-205 km/sec, with measured thicknesses of 45-150 μm in experiments lasting up to 20 ns and spanning up 2.5 mm in extent. Comparison of the shock position as a function of time from these experiments to 1D radiation hydrodynamic simulation results show some discrepancy, which will be explored. Optical depth before and behind the shock is important for meaningful comparison to these astrophysical systems. This shock is optically thin to emitted radiation in the unshocked region and optically thick to radiation in the shocked, dense region. We compare this system to collapsed shocks in astrophysical systems with similar optical depth profiles. An experiment using a Thomson scattering diagnostic across the shock front is also discussed. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.