Sample records for initial human colonization

  1. Paleoenvironmental evidence for first human colonization of the eastern Caribbean

    NASA Astrophysics Data System (ADS)

    Siegel, Peter E.; Jones, John G.; Pearsall, Deborah M.; Dunning, Nicholas P.; Farrell, Pat; Duncan, Neil A.; Curtis, Jason H.; Singh, Sushant K.

    2015-12-01

    Identifying and dating first human colonization of new places is challenging, especially when group sizes were small and material traces of their occupations were ephemeral. Generating reliable reconstructions of human colonization patterns from intact archaeological sites may be difficult to impossible given post-depositional taphonomic processes and in cases of island and coastal locations the inundation of landscapes resulting from post-Pleistocene sea-level rise. Paleoenvironmental reconstruction is proving to be a more reliable method of identifying small-scale human colonization events than archaeological data alone. We demonstrate the method through a sediment-coring project across the Lesser Antilles and southern Caribbean. Paleoenvironmental data were collected informing on the timing of multiple island-colonization events and land-use histories spanning the full range of human occupations in the Caribbean, from the initial forays into the islands through the arrival and eventual domination of the landscapes and indigenous people by Europeans. In some areas, our data complement archaeological, paleoecological, and historical findings from the Lesser Antilles and in others amplify understanding of colonization history. Here, we highlight data relating to the timing and process of initial colonization in the eastern Caribbean. In particular, paleoenvironmental data from Trinidad, Grenada, Martinique, and Marie-Galante (Guadeloupe) provide a basis for revisiting initial colonization models of the Caribbean. We conclude that archaeological programs addressing human occupations dating to the early to mid-Holocene, especially in dynamic coastal settings, should systematically incorporate paleoenvironmental investigations.

  2. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K.

    PubMed

    Yueh, Alexander E; Payne, Susan N; Leystra, Alyssa A; Van De Hey, Dana R; Foley, Tyler M; Pasch, Cheri A; Clipson, Linda; Matkowskyj, Kristina A; Deming, Dustin A

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling.

  3. Colon Cancer Tumorigenesis Initiated by the H1047R Mutant PI3K

    PubMed Central

    Yueh, Alexander E.; Payne, Susan N.; Leystra, Alyssa A.; Van De Hey, Dana R.; Foley, Tyler M.; Pasch, Cheri A.; Clipson, Linda; Matkowskyj, Kristina A.; Deming, Dustin A.

    2016-01-01

    The phosphoinositide 3-kinase (PI3K) signaling pathway is critical for multiple important cellular functions, and is one of the most commonly altered pathways in human cancers. We previously developed a mouse model in which colon cancers were initiated by a dominant active PI3K p110-p85 fusion protein. In that model, well-differentiated mucinous adenocarcinomas developed within the colon and initiated through a non-canonical mechanism that is not dependent on WNT signaling. To assess the potential relevance of PI3K mutations in human cancers, we sought to determine if one of the common mutations in the human disease could also initiate similar colon cancers. Mice were generated expressing the Pik3caH1047R mutation, the analog of one of three human hotspot mutations in this gene. Mice expressing a constitutively active PI3K, as a result of this mutation, develop invasive adenocarcinomas strikingly similar to invasive adenocarcinomas found in human colon cancers. These tumors form without a polypoid intermediary and also lack nuclear CTNNB1 (β-catenin), indicating a non-canonical mechanism of tumor initiation mediated by the PI3K pathway. These cancers are sensitive to dual PI3K/mTOR inhibition indicating dependence on the PI3K pathway. The tumor tissue remaining after treatment demonstrated reduction in cellular proliferation and inhibition of PI3K signaling. PMID:26863299

  4. CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors

    PubMed Central

    Shmelkov, Sergey V.; Butler, Jason M.; Hooper, Andrea T.; Hormigo, Adilia; Kushner, Jared; Milde, Till; St. Clair, Ryan; Baljevic, Muhamed; White, Ian; Jin, David K.; Chadburn, Amy; Murphy, Andrew J.; Valenzuela, David M.; Gale, Nicholas W.; Thurston, Gavin; Yancopoulos, George D.; D’Angelica, Michael; Kemeny, Nancy; Lyden, David; Rafii, Shahin

    2008-01-01

    Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10–/–CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133– population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133– metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133– cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24–), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133– subset, which is also capable of tumor initiation in NOD/SCID mice. PMID:18497886

  5. The First New Zealanders: Patterns of Diet and Mobility Revealed through Isotope Analysis

    PubMed Central

    Kinaston, Rebecca L.; Walter, Richard K.; Jacomb, Chris; Brooks, Emma; Tayles, Nancy; Halcrow, Sian E.; Stirling, Claudine; Reid, Malcolm; Gray, Andrew R.; Spinks, Jean; Shaw, Ben; Fyfe, Roger; Buckley, Hallie R.

    2013-01-01

    Direct evidence of the environmental impact of human colonization and subsequent human adaptational responses to new environments is extremely rare anywhere in the world. New Zealand was the last Polynesian island group to be settled by humans, who arrived around the end of the 13th century AD. Little is known about the nature of human adaptation and mobility during the initial phase of colonization. We report the results of the isotopic analysis (carbon, nitrogen and strontium) of the oldest prehistoric skeletons discovered in New Zealand to assess diet and migration patterns. The isotope data show that the culturally distinctive burials, Group 1, had similar diets and childhood origins, supporting the assertion that this group was distinct from Group 2/3 and may have been part of the initial colonizing population at the site. The Group 2/3 individuals displayed highly variable diets and likely lived in different regions of the country before their burial at Wairau Bar, supporting the archaeological evidence that people were highly mobile in New Zealand since the initial phase of human settlement. PMID:23691250

  6. Helicobacter pylori colonization critically depends on postprandial gastric conditions

    PubMed Central

    Bücker, Roland; Azevedo-Vethacke, Marina; Groll, Claudia; Garten, Désirée; Josenhans, Christine; Suerbaum, Sebastian; Schreiber, Sören

    2012-01-01

    The risk of Helicobacter pylori infection is highest in childhood, but the colonization process of the stomach mucosa is poorly understood. We used anesthetized Mongolian gerbils to study the initial stages of H. pylori colonization. Prandial and postprandial gastric conditions characteristic of humans of different ages were simulated. The fraction of bacteria that reached the deep mucus layer varied strongly with the modelled postprandial conditions. Colonization success was weak with fast gastric reacidification typical of adults. The efficiency of deep mucus entry was also low with a slow pH decrease as seen in pH profiles simulating the situation in babies. Initial colonization was most efficient under conditions simulating the postprandial reacidification and pepsin activation profiles in young children. In conclusion, initial H. pylori colonization depends on age-related gastric physiology, providing evidence from an in vivo infection model that suggests an explanation why the bacterium is predominantly acquired in early childhood. PMID:23251780

  7. The human genetic history of the Americas: the final frontier.

    PubMed

    O'Rourke, Dennis H; Raff, Jennifer A

    2010-02-23

    The Americas, the last continents to be entered by modern humans, were colonized during the late Pleistocene via a land bridge across what is now the Bering strait. However, the timing and nature of the initial colonization events remain contentious. The Asian origin of the earliest Americans has been amply established by numerous classical marker studies of the mid-twentieth century. More recently, mtDNA sequences, Y-chromosome and autosomal marker studies have provided a higher level of resolution in confirming the Asian origin of indigenous Americans and provided more precise time estimates for the emergence of Native Americans. But these data raise many additional questions regarding source populations, number and size of colonizing groups and the points of entry to the Americas. Rapidly accumulating molecular data from populations throughout the Americas, increased use of demographic models to test alternative colonization scenarios, and evaluation of the concordance of archaeological, paleoenvironmental and genetic data provide optimism for a fuller understanding of the initial colonization of the Americas. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Human colonic myocytes are involved in postischemic inflammation through ADAM17-dependent TNFα production

    PubMed Central

    Jarry, Anne; Bach-Ngohou, Kalyane; Masson, Damien; Dejoie, Thomas; Lehur, Paul-Antoine; Mosnier, Jean-François; Denis, Marc G; Laboisse, Christian L

    2005-01-01

    The aim of this study was to identify human colonic resident cells able to initiate an inflammatory response in postischemic injury. Postischemic colonic injury, a condition relevant to various clinical settings, involves an inflammatory cascade in intestinal tissues through the recruitment of circulating inflammatory cells. However, there is no information on the nature of resident cells of the different intestinal layers able to initiate a postischemic inflammatory response. It is however an important issue in the context of a pharmacological approach of the early phase of intestinal ischemia. We reasoned that maintaining the different colonic layers as explant cultures in an oxygenated medium immediately after colonic resection, that is, after an ischemic period, would allow one to identify the resident cells able to initiate an inflammatory cascade, without interference of recruited inflammatory/immune cells. To this end, we designed an explant culture system that operationally defines three compartments in surgical specimens of the human colon, based on the microdissected layers, that is, mucosa, submucosa (containing muscularis mucosae) and muscularis propria. To validate the results obtained in explant cultures in the clinical setting of ischemic colitis, eight cases of sigmoid volvulus were examined. Only the myocytes-containing explants produced tumor necrosis factor alpha (TNFα), via an ADAM17 (a disintegrin and metalloproteinase-17)-dependent pathway, as shown by the abrogation of TNFα production by the inhibitor Tapi-2. Immunofluorescence studies identified nonvascular and vascular myocytes as resident cells coexpressing TNFα and ADAM17, both in our postischemic explant system and in surgical specimens from ischemic colitis patients. Finally, time-course experiments on explanted tissues showed that TNFα production by myocytes was an early event triggered by a postischemic oxidative stress involving nuclear factor kappa B (NF-κB). In conclusion, this study identifies human intestinal myocytes as resident cells able to initiate an inflammatory reaction through TNFα production in postischemic conditions, and delineates two points of control in TNFα production, NF-κB and ADAM17, which can be targeted by pharmacological manipulation. PMID:16273118

  9. STAT3 signaling pathway is necessary for cell survival and tumorsphere forming capacity in ALDH{sup +}/CD133{sup +} stem cell-like human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Li, E-mail: lin.796@osu.edu; Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030; Fuchs, James

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells. Black-Right-Pointing-Pointer STAT3 inhibitor, FLLL32 inhibits P-STAT3 and STAT3 target genes in colon cancer stem-like cells. Black-Right-Pointing-Pointer Inhibition of STAT3 resulted in decreased cell viability and reduced numbers of tumorspheres. Black-Right-Pointing-Pointer STAT3 is required for survival and tumorsphere forming capacity in colon cancer stem-like cells. Black-Right-Pointing-Pointer Targeting STAT3 in cancer stem-like cells may offer a novel treatment approach for colon cancer. -- Abstract: Persistent activation of Signal Transducers and Activators of Transcription 3 (STAT3) is frequently detected in colon cancer. Increasing evidence suggests the existencemore » of a small population of colon cancer stem or cancer-initiating cells may be responsible for tumor initiation, metastasis, and resistance to chemotherapy and radiation. Whether STAT3 plays a role in colon cancer-initiating cells and the effect of STAT3 inhibition is still unknown. Flow cytometry was used to isolate colon cancer stem-like cells from three independent human colon cancer cell lines characterized by both aldehyde dehydrogenase (ALDH)-positive and CD133-positive subpopulation (ALDH{sup +}/CD133{sup +}). The effects of STAT3 inhibition in colon cancer stem-like cells were examined. The phosphorylated or activated form of STAT3 was expressed in colon cancer stem-like cells and was reduced by a STAT3-selective small molecular inhibitor, FLLL32. FLLL32 also inhibited the expression of potential STAT3 downstream target genes in colon cancer stem-like cells including survivin, Bcl-XL, as well as Notch-1, -3, and -4, which may be involved in stem cell function. Furthermore, FLLL32 inhibited cell viability and tumorsphere formation as well as induced cleaved caspase-3 in colon cancer stem-like cells. FLLL32 is more potent than curcumin as evidenced with lower IC50 in colon cancer stem-like cells. In summary, our results indicate that STAT3 is a novel therapeutic target in colon cancer stem-like cells and inhibition of STAT3 in cancer stem-like cells may offer a potential treatment for colorectal cancer.« less

  10. High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia.

    PubMed

    Wilmshurst, Janet M; Hunt, Terry L; Lipo, Carl P; Anderson, Atholl J

    2011-02-01

    The 15 archipelagos of East Polynesia, including New Zealand, Hawaii, and Rapa Nui, were the last habitable places on earth colonized by prehistoric humans. The timing and pattern of this colonization event has been poorly resolved, with chronologies varying by >1000 y, precluding understanding of cultural change and ecological impacts on these pristine ecosystems. In a meta-analysis of 1,434 radiocarbon dates from the region, reliable short-lived samples reveal that the colonization of East Polynesia occurred in two distinct phases: earliest in the Society Islands A.D. ∼1025-1120, four centuries later than previously assumed; then after 70-265 y, dispersal continued in one major pulse to all remaining islands A.D. ∼1190-1290. We show that previously supported longer chronologies have relied upon radiocarbon-dated materials with large sources of error, making them unsuitable for precise dating of recent events. Our empirically based and dramatically shortened chronology for the colonization of East Polynesia resolves longstanding paradoxes and offers a robust explanation for the remarkable uniformity of East Polynesian culture, human biology, and language. Models of human colonization, ecological change and historical linguistics for the region now require substantial revision.

  11. High-precision radiocarbon dating shows recent and rapid initial human colonization of East Polynesia

    PubMed Central

    Wilmshurst, Janet M.; Hunt, Terry L.; Lipo, Carl P.; Anderson, Atholl J.

    2011-01-01

    The 15 archipelagos of East Polynesia, including New Zealand, Hawaii, and Rapa Nui, were the last habitable places on earth colonized by prehistoric humans. The timing and pattern of this colonization event has been poorly resolved, with chronologies varying by >1000 y, precluding understanding of cultural change and ecological impacts on these pristine ecosystems. In a meta-analysis of 1,434 radiocarbon dates from the region, reliable short-lived samples reveal that the colonization of East Polynesia occurred in two distinct phases: earliest in the Society Islands A.D. ∼1025–1120, four centuries later than previously assumed; then after 70–265 y, dispersal continued in one major pulse to all remaining islands A.D. ∼1190–1290. We show that previously supported longer chronologies have relied upon radiocarbon-dated materials with large sources of error, making them unsuitable for precise dating of recent events. Our empirically based and dramatically shortened chronology for the colonization of East Polynesia resolves longstanding paradoxes and offers a robust explanation for the remarkable uniformity of East Polynesian culture, human biology, and language. Models of human colonization, ecological change and historical linguistics for the region now require substantial revision. PMID:21187404

  12. [In vitro and in vivo effects of mango pulp (Mangifera indica cv. Azucar) in colon carcinogenesis].

    PubMed

    Corrales-Bernal, Andrea; Amparo Urango, Luz; Rojano, Benjamín; Maldonado, Maria Elena

    2014-03-01

    Mango pulp contains ascorbic acid, carotenoids, polyphenols, terpenoids and fiber which are healthy and could protect against colon cancer. The aim of this study was to evaluate the antiproliferative and preventive capacity of an aqueous extract of Mangifera indica cv. Azúcar on a human colon adenocarcinoma cell line (SW480) and in a rodent model of colorectal cancer, respectively. The content of total phenolics, flavonoids and carotenoids were also analyzed in the extract. SW480 cell growth was inhibited in a dose and time dependent manner by 22.3% after a 72h exposure to the extract (200 µg/ mL). Colon carcinogenesis was initiated in Balb/c mice by two intra-peritoneal injections of azoxymethane (AOM) at the third and fourth week of giving mango in drinking water (0.3%, 0.6%, 1.25%). After 10 weeks of treatment, in the colon of mice receiving 0.3% mango, aberrant crypt foci formation was inhibited more than 60% (p=0,05) and the inhibition was dose-dependent when compared with controls receiving water. These results show that mango pulp, a natural food, non toxic, part of human being diet, contains bioactive compounds able to reduce growth of tumor cells and to prevent the appearance of precancerous lesions in colon during carcinogenesis initiation.

  13. Human colon tissue in organ culture: calcium and multi-mineral-induced mucosal differentiation

    PubMed Central

    Dame, Michael K.; Veerapaneni, Indiradevi; Bhagavathula, Narasimharao; Naik, Madhav; Varani, James

    2011-01-01

    We have recently shown that a multi-mineral extract from the marine red algae, Lithothamnion calcareum, suppresses colon polyp formation and inflammation in mice. In the present study, we used intact human colon tissue in organ culture to compare responses initiated by Ca2+ supplementation versus the multi-mineral extract. Normal human colon tissue was treated for 2 d in culture with various concentrations of calcium or the mineral-rich extract. The tissue was then prepared for histology/immunohistochemistry, and the culture supernatants were assayed for levels of type I procollagen and type I collagen. At higher Ca2+ concentrations or with the mineral-rich extract, proliferation of epithelial cells at the base and walls of the mucosal crypts was suppressed, as visualized by reduced Ki67 staining. E-cadherin, a marker of differentiation, was more strongly expressed at the upper third of the crypt and at the luminal surface. Treatment with Ca2+ or with the multi-mineral extract influenced collagen turnover, with decreased procollagen and increased type I collagen. These data suggest that calcium or mineral-rich extract has the capacity to (1) promote differentiation in human colon tissue in organ culture and (2) modulate stromal function as assessed by increased levels of type I collagen. Taken together, these data suggest that human colon tissue in organ culture (supporting in vivo finding in mice) will provide a valuable model for the preclinical assessment of agents that regulate growth and differentiation in the colonic mucosa. PMID:21104039

  14. Destination Mars: Colonization via Initial One-way Missions

    NASA Astrophysics Data System (ADS)

    Schulze-Makuch, D.; Davies, P.

    Earth is located in a dangerous part of the universe. Threats to life on Earth are manifold and range from asteroid impacts to supernova explosions and from supervolcano eruptions to human-induced disasters. If the survival of the human species is to be ensured for the long term, then life on Earth has to spread to other planetary bodies. Mars is the most Earth-like planet we currently know and is the second closest planet; further it possesses a moderate surface gravity, an atmosphere, abundant water and carbon dioxide, together with a range of essential minerals. Thus, Mars is ideally suited to be a first colonization target. Here we argue that the most practical way that this can be accomplished is via a series of initial one-way human missions.

  15. Differential protein abundance of a basolateral MCT1 transporter in the human gastrointestinal tract.

    PubMed

    Al-Mosauwi, Hashemeya; Ryan, Elizabeth; McGrane, Alison; Riveros-Beltran, Stefanie; Walpole, Caragh; Dempsey, Eugene; Courtney, Danielle; Fearon, Naomi; Winter, Desmond; Baird, Alan; Stewart, Gavin

    2016-12-01

    Bacterially derived short chain fatty acids (SCFAs), such as butyrate, are vital in maintaining the symbiotic relationship that exists between humans and their gastrointestinal microbial populations. A key step in this process is the transport of SCFAs across colonic epithelial cells via MCT1 transporters. This study investigated MCT1 protein abundance in various human intestinal tissues. Initial RT-PCR analysis confirmed the expected MCT1 RNA expression pattern of colon > small intestine > stomach. Using surgical resection samples, immunoblot analysis detected higher abundance of a 45 kDa MCT1 protein in colonic tissue compared to ileum tissue (P < 0.001, N = 4, unpaired t-test). Importantly, MCT1 abundance was found to be significantly lower in sigmoid colon compared to ascending colon (P < 0.01, N = 8-11, ANOVA). Finally, immunolocalization studies confirmed MCT1 to be abundant in the basolateral membranes of surface epithelial cells of the ascending, transverse, and descending colon, but significantly less prevalent in the sigmoid colon (P < 0.05, N = 5-21, ANOVA). In conclusion, these data confirm that basolateral MCT1 protein abundance is correlated to levels of bacterially derived SCFAs along the human gastrointestinal tract. These findings highlight the importance of precise tissue location in studies comparing colonic MCT1 abundance between normal and diseased states. © 2016 International Federation for Cell Biology.

  16. Negligible Colon Cancer Risk from Food-Borne Acrylamide Exposure in Male F344 Rats and Nude (nu/nu) Mice-Bearing Human Colon Tumor Xenografts

    PubMed Central

    Raju, Jayadev; Roberts, Jennifer; Sondagar, Chandni; Kapal, Kamla; Aziz, Syed A.; Caldwell, Don; Mehta, Rekha

    2013-01-01

    Acrylamide, a possible human carcinogen, is formed in certain carbohydrate-rich foods processed at high temperature. We evaluated if dietary acrylamide, at doses (0.5, 1.0 or 2.0 mg/kg diet) reflecting upper levels found in human foods, modulated colon tumorigenesis in two rodent models. Male F344 rats were randomized to receive diets without (control) or with acrylamide. 2-weeks later, rats in each group received two weekly subcutaneous injections of either azoxymethane (AOM) or saline, and were killed 20 weeks post-injections; colons were assessed for tumors. Male athymic nude (nu/nu) mice bearing HT-29 human colon adenocarcinoma cells-derived tumor xenografts received diets without (control) or with acrylamide; tumor growth was monitored and mice were killed 4 weeks later. In the F344 rat study, no tumors were found in the colons of the saline-injected rats. However, the colon tumor incidence was 54.2% and 66.7% in the control and the 2 mg/kg acrylamide-treated AOM-injected groups, respectively. While tumor multiplicity was similar across all diet groups, tumor size and burden were higher in the 2 mg/kg acrylamide group compared to the AOM control. These results suggest that acrylamide by itself is not a “complete carcinogen”, but acts as a “co-carcinogen” by exacerbating the effects of AOM. The nude mouse study indicated no differences in the growth of human colon tumor xenografts between acrylamide-treated and control mice, suggesting that acrylamide does not aid in the progression of established tumors. Hence, food-borne acrylamide at levels comparable to those found in human foods is neither an independent carcinogen nor a tumor promoter in the colon. However, our results characterize a potential hazard of acrylamide as a colon co-carcinogen in association with known and possibly other environmental tumor initiators/promoters. PMID:24040114

  17. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    PubMed

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  18. Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft.

    PubMed

    Auyeung, Kathy Ka-Wai; Law, Pui-Ching; Ko, Joshua Ka-Shun

    2012-12-01

    Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus, a medicinal plant that possesses antitumorigenic properties. Our previous findings demonstrated that formononetin initiates growth-inhibitory and pro-apoptotic activities in human colon cancer cells. In the present study, we aimed to further examine the potential of formononetin in controlling angiogenesis and tumor cell invasiveness in human colon cancer cells and tumor xenografts. The results showed that formononetin downregulated the expression of the key pro-angiogenic factors, including vascular endothelial growth factor (VEGF) and matrix metalloproteinases. We also discovered that the invasiveness of metastatic colon cancer cells was alleviated following drug treatment. The potential anti-angiogenic effect of formononetin was examined in nude mouse xenografts. The tumor size and the number of proliferating cells were reduced in the tumor tissues obtained from the formononetin-treated group. The serum VEGF level was also reduced in the drug-treated animals when compared to the controls. These findings suggest that formononetin inhibits angiogenesis and tumor cell invasion, and thus support its use in the treatment of advanced and metastatic colon cancers.

  19. A calibrated agent-based computer model of stochastic cell dynamics in normal human colon crypts useful for in silico experiments.

    PubMed

    Bravo, Rafael; Axelrod, David E

    2013-11-18

    Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell's probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell's type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell's response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy specimens, and it can simulate the variation of cell types in addition to the average number of each cell type. The utility of the model was demonstrated with in silico experiments that evaluated cancer therapy protocols. The model is available for others to conduct additional experiments.

  20. Morphological Differentiation of Colon Carcinoma Cell Lines in Rotating Wall Vessels

    NASA Technical Reports Server (NTRS)

    Jessup, J. M.

    1994-01-01

    The objectives of this project were to determine whether (1) microgravity permits unique, three-dimensional cultures of neoplastic human colon tissues and (2) this culture interaction produces novel intestinal growth and differentiation factors. The initial phase of this project tested the efficacy of simulated microgravity for the cultivation and differentiation of human colon carcinoma in rotating wall vessels (RWV's) on microcarrier beads. The RWV's simulate microgravity by randomizing the gravity vector in an aqueous medium under a low shear stress environment in unit gravity. This simulation achieves approximately a one-fifth g environment that allows cells to 'float' and form three-dimensional relationships with less shear stress than in other stirred aqueous medium bioreactors. In the second phase of this project we assessed the ability of human colon carcinoma lines to adhere to various substrates because adhesion is the first event that must occur to create three-dimensional masses. Finally, we tested growth factor production in the last phase of this project.

  1. Generation of an inducible colon-specific Cre enzyme mouse line for colon cancer research.

    PubMed

    Tetteh, Paul W; Kretzschmar, Kai; Begthel, Harry; van den Born, Maaike; Korving, Jeroen; Morsink, Folkert; Farin, Henner; van Es, Johan H; Offerhaus, G Johan A; Clevers, Hans

    2016-10-18

    Current mouse models for colorectal cancer often differ significantly from human colon cancer, being largely restricted to the small intestine. Here, we aim to develop a colon-specific inducible mouse model that can faithfully recapitulate human colon cancer initiation and progression. Carbonic anhydrase I (Car1) is a gene expressed uniquely in colonic epithelial cells. We generated a colon-specific inducible Car1 CreER knock-in (KI) mouse with broad Cre activity in epithelial cells of the proximal colon and cecum. Deletion of the tumor suppressor gene Apc using the Car1 CreER KI caused tumor formation in the cecum but did not yield adenomas in the proximal colon. Mutation of both Apc and Kras yielded microadenomas in both the cecum and the proximal colon, which progressed to macroadenomas with significant morbidity. Aggressive carcinomas with some invasion into lymph nodes developed upon combined induction of oncogenic mutations of Apc, Kras, p53, and Smad4 Importantly, no adenomas were observed in the small intestine. Additionally, we observed tumors from differentiated Car1-expressing cells with Apc/Kras mutations, suggesting that a top-down model of intestinal tumorigenesis can occur with multiple mutations. Our results establish the Car1 CreER KI as a valuable mouse model to study colon-specific tumorigenesis and metastasis as well as cancer-cell-of-origin questions.

  2. Lactobacillus plantarum IFPL935 favors the initial metabolism of red wine polyphenols when added to a colonic microbiota.

    PubMed

    Barroso, Elvira; Sánchez-Patán, Fernando; Martín-Alvarez, Pedro J; Bartolomé, Begoña; Moreno-Arribas, María Victoria; Peláez, Carmen; Requena, Teresa; van de Wiele, Tom; Martínez-Cuesta, M Carmen

    2013-10-23

    This work aimed to unravel the role of Lactobacillus plantarum IFPL935 strain in the colonic metabolism of a polyphenolic red wine extract, when added to a complex human colonic microbiota from the dynamic simulator of the human intestinal microbial ecosystem (SHIME). The concentration of microbial-derived phenolic metabolites and microbial community changes along with fermentative and proteolytic activities were monitored. The results showed that L. plantarum IFPL935 significantly increased the concentration of the initial microbial ring-fission catabolite of catechins and procyanidins, diphenylpropanol, and, similarly, 4-hydroxy-5-(3'-hydroxyphenyl)valeric acid production. Overall, the addition of L. plantarum IFPL935 did not have an impact on the total concentration of phenolic metabolites, except for batches inoculated with colonic microbiota from the effluent compartment (EC), where the figures were significantly higher when L. plantarum IFPL935 was added (24 h). In summary, the data highlighted that L. plantarum IFPL935 may have an impact on the bioavailability of these dietary polyphenols. Some of the microbial-derived metabolites may play a key role in the protective effects that have been linked to a polyphenol-rich diet.

  3. Colonization and infection by Helicobacter pylori in humans.

    PubMed

    Andersen, Leif Percival

    2007-11-01

    When Helicobacter pylori arrives in the human stomach, it may penetrate the mucin layer and adhere to the gastric epithelial cells or it may pass through the stomach without colonizing the mucosa. In this paper, the colonization process and the ensuing immunological response will be briefly described. Urease production is necessary for H. pylori to establish a pH-neutral microenvironment around the bacteria. The flagella enable the bacteria to move and the shape of H. pylori makes it possible to penetrate the mucin layer where it comes into contact with the gastric epithelial cells. H. pylori contains several adhesins that enable it to adhere to the epithelial cells. This adherence activates IL-8 which, together with bacterial antigens, attracts polymorphs and monocytes and causes acute gastritis. Antigen-presenting cells activate lymphocytes and other mononuclear cells that are attracted to the inflamed mucosa, causing chronic superficial gastritis and initiating a cytotoxic or an antigen-producing Th response. The infection is established within a few weeks after the primary exposure to H. pylori. After this initial colonization, many chemical, biochemical, and immunologic reactions take place that are of importance in the progress of the infection and the development of disease.

  4. Colon Tumors with the Simultaneous Induction of Driver Mutations in APC, KRAS, and PIK3CA Still Progress through the Adenoma-to-carcinoma Sequence.

    PubMed

    Hadac, Jamie N; Leystra, Alyssa A; Paul Olson, Terrah J; Maher, Molly E; Payne, Susan N; Yueh, Alexander E; Schwartz, Alexander R; Albrecht, Dawn M; Clipson, Linda; Pasch, Cheri A; Matkowskyj, Kristina A; Halberg, Richard B; Deming, Dustin A

    2015-10-01

    Human colorectal cancers often possess multiple mutations, including three to six driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present before the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here, we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. ©2015 American Association for Cancer Research.

  5. Colon tumors with the simultaneous induction of driver mutations in APC, KRAS, and PIK3CA still progress through the adenoma-to-carcinoma sequence

    PubMed Central

    Hadac, Jamie N.; Leystra, Alyssa A.; Olson, Terrah J. Paul; Maher, Molly E.; Payne, Susan N; Yueh, Alexander E.; Schwartz, Alexander R.; Albrecht, Dawn M.; Clipson, Linda; Pasch, Cheri A.; Matkowskyj, Kristina A.; Halberg, Richard B.; Deming, Dustin A.

    2015-01-01

    Human colorectal cancers often possess multiple mutations, including 3–6 driver mutations per tumor. The timing of when these mutations occur during tumor development and progression continues to be debated. More advanced lesions carry a greater number of driver mutations, indicating that colon tumors might progress from adenomas to carcinomas through the stepwise accumulation of mutations following tumor initiation. However, mutations that have been implicated in tumor progression have been identified in normal-appearing epithelial cells of the colon, leaving the possibility that these mutations might be present prior to the initiation of tumorigenesis. We utilized mouse models of colon cancer to investigate whether tumorigenesis still occurs through the adenoma-to-carcinoma sequence when multiple mutations are present at the time of tumor initiation. To create a model in which tumors could concomitantly possess mutations in Apc, Kras, and Pik3ca, we developed a novel minimally invasive technique to administer an adenovirus expressing Cre recombinase to a focal region of the colon. Here we demonstrate that the presence of these additional driver mutations at the time of tumor initiation results in increased tumor multiplicity and an increased rate of progression to invasive adenocarcinomas. These cancers can even metastasize to retroperitoneal lymph nodes or the liver. However, despite having as many as three concomitant driver mutations at the time of initiation, these tumors still proceed through the adenoma-to-carcinoma sequence. PMID:26276752

  6. Pharmacokinetics of colon-specific pH and time-dependent flurbiprofen tablets.

    PubMed

    Vemula, Sateesh Kumar; Veerareddy, Prabhakar Reddy; Devadasu, Venkat Ratnam

    2015-09-01

    Present research deals with the development of compression-coated flurbiprofen colon-targeted tablets to retard the drug release in the upper gastro intestinal system, but progressively release the drug in the colon. Flurbiprofen core tablets were prepared by direct compression method and were compression coated using sodium alginate and Eudragit S100. The formulation is optimized based on the in vitro drug release study and further evaluated by X-ray imaging and pharmacokinetic studies in healthy humans for colonic delivery. The optimized formulation showed negligible drug release (4.33 ± 0.06 %) in the initial lag period followed by progressive release (100.78 ± 0.64 %) for 24 h. The X-ray imaging in human volunteers showed that the tablets reached the colon without disintegrating in the upper gastrointestinal tract. The C max of colon-targeted tablets was 12,374.67 ng/ml at T max 10 h, where as in case of immediate release tablets the C max was 15,677.52 ng/ml at T max 3 h, that signifies the ability of compression-coated tablets to target the colon. Development of compression-coated tablets using combination of time-dependent and pH-sensitive approaches was suitable to target the flurbiprofen to colon.

  7. Parallels between Global Transcriptional Programs of Polarizing Caco-2 Intestinal Epithelial Cells In Vitro and Gene Expression Programs in Normal Colon and Colon Cancer

    PubMed Central

    Sääf, Annika M.; Halbleib, Jennifer M.; Chen, Xin; Yuen, Siu Tsan; Leung, Suet Yi

    2007-01-01

    Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell–cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2. PMID:17699589

  8. Streptococcus pneumoniae Colonization Is Required To Alter the Nasal Microbiota in Cigarette Smoke-Exposed Mice

    PubMed Central

    Shen, Pamela; Whelan, Fiona J.; Schenck, L. Patrick; McGrath, Joshua J. C.; Vanderstocken, Gilles; Bowdish, Dawn M. E.; Surette, Michael G.

    2017-01-01

    ABSTRACT Smokers have nasal microbiota dysbiosis, with an increased frequency of colonizing bacterial pathogens. It is possible that cigarette smoke increases pathogen acquisition by perturbing the microbiota and decreasing colonization resistance. However, it is difficult to disentangle microbiota dysbiosis due to cigarette smoke exposure from microbiota changes caused by increased pathogen acquisition in human smokers. Using an experimental mouse model, we investigated the impact of cigarette smoke on the nasal microbiota in the absence and presence of nasal pneumococcal colonization. We observed that cigarette smoke exposure alone did not alter the nasal microbiota composition. The microbiota composition was also unchanged at 12 h following low-dose nasal pneumococcal inoculation, suggesting that the ability of the microbiota to resist initial nasal pneumococcal acquisition was not impaired in smoke-exposed mice. However, nasal microbiota dysbiosis occurred as a consequence of established high-dose nasal pneumococcal colonization at day 3 in smoke-exposed mice. Similar to clinical reports on human smokers, an enrichment of potentially pathogenic bacterial genera such as Fusobacterium, Gemella, and Neisseria was observed. Our findings suggest that cigarette smoke exposure predisposes to pneumococcal colonization independent of changes to the nasal microbiota and that microbiota dysbiosis observed in smokers may occur as a consequence of established pathogen colonization. PMID:28760931

  9. Streptococcus pneumoniae Colonization Is Required To Alter the Nasal Microbiota in Cigarette Smoke-Exposed Mice.

    PubMed

    Shen, Pamela; Whelan, Fiona J; Schenck, L Patrick; McGrath, Joshua J C; Vanderstocken, Gilles; Bowdish, Dawn M E; Surette, Michael G; Stämpfli, Martin R

    2017-10-01

    Smokers have nasal microbiota dysbiosis, with an increased frequency of colonizing bacterial pathogens. It is possible that cigarette smoke increases pathogen acquisition by perturbing the microbiota and decreasing colonization resistance. However, it is difficult to disentangle microbiota dysbiosis due to cigarette smoke exposure from microbiota changes caused by increased pathogen acquisition in human smokers. Using an experimental mouse model, we investigated the impact of cigarette smoke on the nasal microbiota in the absence and presence of nasal pneumococcal colonization. We observed that cigarette smoke exposure alone did not alter the nasal microbiota composition. The microbiota composition was also unchanged at 12 h following low-dose nasal pneumococcal inoculation, suggesting that the ability of the microbiota to resist initial nasal pneumococcal acquisition was not impaired in smoke-exposed mice. However, nasal microbiota dysbiosis occurred as a consequence of established high-dose nasal pneumococcal colonization at day 3 in smoke-exposed mice. Similar to clinical reports on human smokers, an enrichment of potentially pathogenic bacterial genera such as Fusobacterium , Gemella , and Neisseria was observed. Our findings suggest that cigarette smoke exposure predisposes to pneumococcal colonization independent of changes to the nasal microbiota and that microbiota dysbiosis observed in smokers may occur as a consequence of established pathogen colonization. Copyright © 2017 American Society for Microbiology.

  10. Amblyomma americanum as a Bridging Vector for Human Infection with Francisella tularensis

    PubMed Central

    2015-01-01

    The γ-proteobacterium Francisella tularensis causes seasonal tick-transmitted tularemia outbreaks in natural rabbit hosts and incidental infections in humans in the south-central United States. Although Dermacentor variabilis is considered a primary vector for F. tularensis, Amblyomma americanum is the most abundant tick species in this endemic region. A systematic study of F. tularensis colonization of A. americanum was undertaken to better understand its potential to serve as an overwintering reservoir for F. tularensis and as a bridging vector for human infections. Colony-reared A. americanum were artificially fed F. tularensis subspecies holarctica strain LVS via glass capillaries and colonization levels determined. Capillary-fed larva and nymph were initially infected with 104 CFU/tick which declined prior to molting for both stages, but rebounded post-molting in nymphs and persisted in 53% at 103 to 108 CFU/nymph at 168 days post-capillary feeding (longest sampling time in the study). In contrast, only 18% of adults molted from colonized nymphs maintained LVS colonization at 101 to 105 CFU/adult at 168 days post-capillary feeding (longest sampling time). For adults, LVS initially colonized the gut and disseminated to salivary glands by 24 h and had an ID50 of <5CFU in mice. Francisella tularensis infected the ovaries of gravid females, but transmission to eggs was infrequent and transovarial transmission to hatched larvae was not observed. The prolonged persistence of F. tularensis in A. americanum nymphs supports A. americanum as an overwintering reservoir for F. tularensis from which seasonal epizootics may originate; however, although the rapid dissemination of F. tularensis from gut to salivary glands in adults A. americanum is compatible with intermittent feeding adult males acting as bridging vectors for incidental F. tularensis infections of humans, acquisition of F. tularensis by adults may be unlikely based on adult feeding preference for larger mammals which are not involved in maintenance of sylvatic tularemia. PMID:26121137

  11. Cancer prevention with freeze-dried berries and berry components.

    PubMed

    Stoner, Gary D; Wang, Li-Shu; Zikri, Nancy; Chen, Tong; Hecht, Stephen S; Huang, Chuanshu; Sardo, Christine; Lechner, John F

    2007-10-01

    Our laboratory is developing a food-based approach to the prevention of esophageal and colon cancer utilizing freeze-dried berries and berry extracts. Dietary freeze-dried berries were shown to inhibit chemically induced cancer of the rodent esophagus by 30-60% and of the colon by up to 80%. The berries are effective at both the initiation and promotion/progression stages of tumor development. Berries inhibit tumor initiation events by influencing carcinogen metabolism, resulting in reduced levels of carcinogen-induced DNA damage. They inhibit promotion/progression events by reducing the growth rate of pre-malignant cells, promoting apoptosis, reducing parameters of tissue inflammation and inhibiting angiogenesis. On a molecular level, berries modulate the expression of genes involved with proliferation, apoptosis, inflammation and angiogenesis. We have recently initiated clinical trials; results from a toxicity study indicated that freeze-dried black raspberries are well tolerated in humans when administered orally for 7 days at a dose of 45 g per day. Several Phase IIa clinical trials are underway in patients at high risk for esophagus and colon cancer; i.e., Barrett's esophagus, esophageal dysplasia and colonic polyps, to determine if berries will modulate various histological and molecular biomarkers of development of these diseases.

  12. Cancer Prevention with Freeze-dried Berries and Berry Components

    PubMed Central

    Stoner, Gary D.; Wang, Li-Shu; Zikri, Nancy; Chen, Tong; S. Hecht, Stephen; Huang, Chuanshu; Sardo, Christine; Lechner, John F.

    2007-01-01

    Our laboratory is developing a food-based approach to the prevention of esophageal and colon cancer utilizing freeze-dried berries and berry extracts. Dietary freeze-dried berries were shown to inhibit chemically-induced cancer of the rodent esophagus by 30-60% and of the colon by up- to 80%. The berries are effective at both the initiation and promotion/progression stages of tumor development. Berries inhibit tumor initiation events by influencing carcinogen metabolism, resulting in reduced levels of carcinogen-induced DNA damage. They inhibit promotion/progression events by reducing the growth rate of premalignant cells, promoting apoptosis, reducing parameters of tissue inflammation and inhibiting angiogenesis. On a molecular level, berries modulate the expression of genes involved with proliferation, apoptosis, inflammation and angiogenesis. We have recently initiated clinical trials; results from a toxicity study indicated that freeze-dried black raspberries are well tolerated in humans when administered orally for 7 days at a dose of 45 grams per day. Several Phase IIa clinical trials are underway in patients at high risk for esophagus and colon cancer; i.e., Barrett’s esophagus, esophageal dysplasia and colonic polyps, to determine if berries will modulate various histological and molecular biomarkers of development of these diseases. PMID:17574861

  13. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4.

    PubMed

    Todaro, Matilde; Alea, Mileidys Perez; Di Stefano, Anna B; Cammareri, Patrizia; Vermeulen, Louis; Iovino, Flora; Tripodo, Claudio; Russo, Antonio; Gulotta, Gaspare; Medema, Jan Paul; Stassi, Giorgio

    2007-10-11

    A novel paradigm in tumor biology suggests that cancer growth is driven by stem-like cells within a tumor. Here, we describe the identification and characterization of such cells from colon carcinomas using the stem cell marker CD133 that accounts around 2% of the cells in human colon cancer. The CD133(+) cells grow in vitro as undifferentiated tumor spheroids, and they are both necessary and sufficient to initiate tumor growth in immunodeficient mice. Xenografts resemble the original human tumor maintaining the rare subpopulation of tumorigenic CD133(+) cells. Further analysis revealed that the CD133(+) cells produce and utilize IL-4 to protect themselves from apoptosis. Consistently, treatment with IL-4Ralpha antagonist or anti-IL-4 neutralizing antibody strongly enhances the antitumor efficacy of standard chemotherapeutic drugs through selective sensitization of CD133(+) cells. Our data suggest that colon tumor growth is dictated by stem-like cells that are treatment resistant due to the autocrine production of IL-4.

  14. Mouse models for the study of colon carcinogenesis

    PubMed Central

    Rosenberg, Daniel W.; Giardina, Charles; Tanaka, Takuji

    2009-01-01

    The study of experimental colon carcinogenesis in rodents has a long history, dating back almost 80 years. There are many advantages to studying the pathogenesis of carcinogen-induced colon cancer in mouse models, including rapid and reproducible tumor induction and the recapitulation of the adenoma–carcinoma sequence that occurs in humans. The availability of recombinant inbred mouse panels and the existence of transgenic, knock-out and knock-in genetic models further increase the value of these studies. In this review, we discuss the general mechanisms of tumor initiation elicited by commonly used chemical carcinogens and how genetic background influences the extent of disease. We will also describe the general features of lesions formed in response to carcinogen treatment, including the underlying molecular aberrations and how these changes may relate to the pathogenesis of human colorectal cancer. PMID:19037092

  15. Keratinocytes as sensors and central players in the immune defense against Staphylococcus aureus in the skin.

    PubMed

    Bitschar, Katharina; Wolz, Christiane; Krismer, Bernhard; Peschel, Andreas; Schittek, Birgit

    2017-09-01

    Healthy human skin provides an effective mechanical as well as immunologic barrier against pathogenic microorganisms with keratinocytes as the main cell type in the epidermis actively participating and orchestrating the innate immune response of the skin. As constituent of the outermost layer encountering potential pathogens they have to sense signals from the environment and must be able to initiate a differential immune response to harmless commensals and harmful pathogens. Staphylococci are among the most abundant colonizers of the skin: Whereas Staphylococcus epidermidis is part of the skin microbiota and ubiquitously colonizes human skin, Staphylococcus aureus is only rarely found on healthy human skin, but frequently colonizes the skin of atopic dermatitis (AD) patients. This review highlights recent advances in understanding how keratinocytes as sessile innate immune cells orchestrate an effective defense against S. aureus in healthy skin and the mechanisms leading to an impaired keratinocyte function in AD patients. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  16. Helicobacter pylori Persistence: an Overview of Interactions between H. pylori and Host Immune Defenses

    PubMed Central

    Algood, Holly M. Scott; Cover, Timothy L.

    2006-01-01

    Helicobacter pylori is a gram-negative bacterium that persistently colonizes more than half of the global human population. In order to successfully colonize the human stomach, H. pylori must initially overcome multiple innate host defenses. Remarkably, H. pylori can persistently colonize the stomach for decades or an entire lifetime despite development of an acquired immune response. This review focuses on the immune response to H. pylori and the mechanisms by which H. pylori resists immune clearance. Three main sections of the review are devoted to (i) analysis of the immune response to H. pylori in humans, (ii) analysis of interactions of H. pylori with host immune defenses in animal models, and (iii) interactions of H. pylori with immune cells in vitro. The topics addressed in this review are important for understanding how H. pylori resists immune clearance and also are relevant for understanding the pathogenesis of diseases caused by H. pylori (peptic ulcer disease, gastric adenocarcinoma, and gastric lymphoma). PMID:17041136

  17. Branched chain amino acid suppressed insulin-initiated proliferation of human cancer cells through induction of autophagy.

    PubMed

    Wubetu, Gizachew Yismaw; Utsunomiya, Tohru; Ishikawa, Daichi; Ikemoto, Tetsuya; Yamada, Shinichiro; Morine, Yuji; Iwahashi, Shuichi; Saito, Yu; Arakawa, Yusuke; Imura, Satoru; Arimochi, Hideki; Shimada, Mitsuo

    2014-09-01

    Branched chain amino acid (BCAA) dietary supplementation inhibits activation of the insulin-like growth factor (IGF)/IGF-I receptor (IGF-IR) axis in diabetic animal models. However, the in vitro effect of BCAA on human cancer cell lines under hyper-insulinemic conditions remains unclear. Colon (HCT-116) and hepatic (HepG2) tumor cells were treated with varying concentrations of BCAA with or without fluorouracil (5-FU). The effect of BCAA on insulin-initiated proliferation was determined. Gene and protein expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting, respectively. BCAA supplementation had no significant effect on cell proliferation and did not show significant synergistic or antagonistic effects with 5-FU. However, BCAA significantly decreased insulin-initiated proliferation of human colon and hepatic cancer cell lines in vitro. BCAA supplementation caused a marked decrease in activated IGF-IR expression and significantly enhanced both mRNA and protein expression of LC3-II and BECN1 (BECLIN-1). BCAA could be a useful chemopreventive modality for cancer in hyperinsulinemic conditions. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. Pharmacokinetics of ketorolac tromethamine compression-coated tablets for colon delivery.

    PubMed

    Vemula, Sateesh Kumar; Veerareddy, Prabhakar Reddy; Devadasu, Venkat Ratnam

    2014-08-01

    Present research efforts are focused in developing compression-coated ketorolac tromethamine tablets to improve the drug levels in colon by retarding the drug release in the stomach and small intestine. To achieve this objective, core tablets containing ketorolac tromethamine were prepared by direct compression and compression coated with sodium alginate. The developed tablets were evaluated for physical properties, in vitro drug release, X-ray imaging, and pharmacokinetic studies in human volunteers. Based on the in vitro drug release study, the optimized formulation showed very little drug release (6.75 ± 0.49 %) in the initial lag period of 5 h, followed by progressive release up to 97.47 ± 0.93 % within 24 h. The X-ray imaging of tablets in human volunteers showed that the tablets reached the colon without disintegrating in the upper gastrointestinal tract. From the pharmacokinetic study, the C max of colon-targeted tablets was 3,486.70 ng/ml at T max 10 h, whereas in the case of immediate-release tablets, the C max of 4,506.31 ng/ml at T max 2 h signifies the ability of compression-coated tablets to target the colon. In conclusion, compression-coated tablets are suitable to deliver ketorolac tromethamine to the colon.

  19. Methanolic extract of white asparagus shoots activates TRAIL apoptotic death pathway in human cancer cells and inhibits colon carcinogenesis in a preclinical model

    PubMed Central

    BOUSSEROUEL, SOUAD; LE GRANDOIS, JULIE; GOSSÉ, FRANCINE; WERNER, DALAL; BARTH, STEPHAN W.; MARCHIONI, ERIC; MARESCAUX, JACQUES; RAUL, FRANCIS

    2013-01-01

    Shoots of white asparagus are a popular vegetable dish, known to be rich in many bioactive phytochemicals reported to possess antioxidant, and anti-inflammatory and antitumor activities. We evaluated the anticancer mechanisms of a methanolic extract of Asparagus officinalis L. shoots (Asp) on human colon carcinoma cells (SW480) and their derived metastatic cells (SW620), and Asp chemopreventive properties were also assessed in a model of colon carcinogenesis. SW480 and SW620 cell proliferation was inhibited by 80% after exposure to Asp (80 μg/ml). We demonstrated that Asp induced cell death through the activation of TRAIL DR4/DR5 death receptors leading to the activation of caspase-8 and caspase-3 and to cell apoptosis. By specific blocking agents of DR4/DR5 receptors we were able to prevent Asp-triggered cell death confirming the key role of DR4/DR5 receptors. We found also that Asp (80 μg/ml) was able to potentiate the effects of the cytokine TRAIL on cell death even in the TRAIL-resistant metastatic SW620 cells. Colon carcinogenesis was initiated in Wistar rats by intraperitoneal injections of azoxymethane (AOM), once a week for two weeks. One week after (post-initiation) rats received daily Asp (0.01%, 14 mg/kg body weight) in drinking water. After 7 weeks of Asp-treatment the colon of rats exhibited a 50% reduction of the number of preneoplastic lesions (aberrant crypt foci). In addition Asp induced inhibition of several pro-inflammatory mediators, in association with an increased expression of host-defense mediators. In the colonic mucosa of Asp-treated rats we also confirmed the pro-apoptotic effects observed in vitro including the activation of the TRAIL death-receptor signaling pathway. Taken together, our data highlight the chemopreventive effects of Asp on colon carcinogenesis and its ability to promote normal cellular homeostasis. PMID:23754197

  20. Characterization of intestinal inflammation and identification of related gene expression changes in mdr1a−/− mice

    PubMed Central

    Dommels, Y. E.M.; Zhu, S.; Davy, M.; Martell, S.; Hedderley, D.; Barnett, M. P.G.; McNabb, W. C.; Roy, N. C.

    2007-01-01

    Multidrug resistance targeted mutation (mdr1a−/−) mice spontaneously develop intestinal inflammation. The aim of this study was to further characterize the intestinal inflammation in mdr1a−/− mice. Intestinal samples were collected to measure inflammation and gene expression changes over time. The first signs of inflammation occurred around 16 weeks of age and most mdr1a−/− mice developed inflammation between 16 and 27 weeks of age. The total histological injury score was the highest in the colon. The inflammatory lesions were transmural and discontinuous, revealing similarities to human inflammatory bowel diseases (IBD). Genes involved in inflammatory response pathways were up-regulated whereas genes involved in biotransformation and transport were down-regulated in colonic epithelial cell scrapings of inflamed mdra1−/− mice at 25 weeks of age compared to non-inflamed FVB mice. These results show overlap to human IBD and strengthen the use of this in vivo model to study human IBD. The anti-inflammatory regenerating islet-derived genes were expressed at a lower level during inflammation initiation in non-inflamed colonic epithelial cell scrapings of mdr1a−/− mice at 12 weeks of age. This result suggests that an insufficiently suppressed immune response could be crucial to the initiation and development of intestinal inflammation in mdr1a−/− mice. PMID:18850176

  1. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway.

    PubMed

    Larrosa, Mar; Tomás-Barberán, Francisco A; Espín, Juan Carlos

    2006-09-01

    Polyphenol-rich dietary foodstuffs have attracted attention due to their cancer chemopreventive and chemotherapeutic properties. Ellagitannins (ETs) belong to the so-called hydrolysable tannins found in strawberries, raspberries, walnuts, pomegranate, oak-aged red wine, etc. Both ETs and their hydrolysis product, ellagic acid (EA), have been reported to induce apoptosis in tumour cells. Ellagitannins are not absorbed in vivo but reach the colon and release EA that is metabolised by the human microflora. Our aim was to investigate the effect of a dietary ET [pomegranate punicalagin (PUNI)] and EA on human colon cancer Caco-2 and colon normal CCD-112CoN cells. Both PUNI and EA provoked the same effects on Caco-2 cells: down-regulation of cyclins A and B1 and upregulation of cyclin E, cell-cycle arrest in S phase, induction of apoptosis via intrinsic pathway (FAS-independent, caspase 8-independent) through bcl-XL down-regulation with mitochondrial release of cytochrome c into the cytosol, activation of initiator caspase 9 and effector caspase 3. Neither EA nor PUNI induced apoptosis in normal colon CCD-112CoN cells (no chromatin condensation and no activation of caspases 3 and 9 were detected). In the case of Caco-2 cells, no specific effect can be attributed to PUNI since it was hydrolysed in the medium to yield EA, which entered into the cells and was metabolised to produce dimethyl-EA derivatives. Our study suggests that the anticarcinogenic effect of dietary ETs could be mainly due to their hydrolysis product, EA, which induced apoptosis via mitochondrial pathway in colon cancer Caco-2 cells but not in normal colon cells.

  2. Chemopreventive potential of β-Sitosterol in experimental colon cancer model - an In vitro and In vivo study

    PubMed Central

    2010-01-01

    Background Asclepias curassavica Linn. is a traditional medicinal plant used by tribal people in the western ghats, India, to treat piles, gonorrhoea, roundworm infestation and abdominal tumours. We have determined the protective effect of β-sitosterol isolated from A. curassavica in colon cancer, using in vitro and in vivo models. Methods The active molecule was isolated, based upon bioassay guided fractionation, and identified as β-sitosterol on spectral evidence. The ability to induce apoptosis was determined by its in vitro antiradical activity, cytotoxic studies using human colon adenocarcinoma and normal monkey kidney cell lines, and the expression of β-catenin and proliferating cell nuclear antigen (PCNA) in human colon cancer cell lines (COLO 320 DM). The chemopreventive potential of β-sitosterol in colon carcinogenesis was assessed by injecting 1,2-dimethylhydrazine (DMH, 20 mg/kg b.w.) into male Wistar rats and supplementing this with β-sitosterol throughout the experimental period of 16 weeks at 5, 10, and 20 mg/kg b.w. Results β-sitosterol induced significant dose-dependent growth inhibition of COLO 320 DM cells (IC50 266.2 μM), induced apoptosis by scavenging reactive oxygen species, and suppressed the expression of β-catenin and PCNA antigens in human colon cancer cells. β-sitosterol supplementation reduced the number of aberrant crypt and crypt multiplicity in DMH-initiated rats in a dose-dependent manner with no toxic effects. Conclusion We found doses of 10-20 mg/kg b.w. β-sitosterol to be effective for future in vivo studies. β-sitosterol had chemopreventive potential by virtue of its radical quenching ability in vitro, with minimal toxicity to normal cells. It also attenuated β-catenin and PCNA expression, making it a potential anticancer drug for colon carcinogenesis. PMID:20525330

  3. Shyer and larger bird species show more reduced fear of humans when living in urban environments.

    PubMed

    delBarco-Trillo, Javier

    2018-04-01

    As the natural habitats of many species are degraded or disappear, there is scope for these species to be established in urban habitats. To ease the establishment and maintenance of urban populations of more species we need to better understand what degree of phenotypical change to expect as different species transition into urban environments. During the first stages of urban colonization, behavioural changes such as an increase in boldness are particularly important. A consistent response in urban populations is to decrease the distance at which individuals flee from an approaching human (flight initiation distance, or FID). Performing a phylogenetic generalized least-squares (PGLS) analysis on 130 avian species, I found that the largest changes in FID between rural and urban populations occur in species that are larger-bodied and naturally shy (higher rural FID), two phenotypic traits that are not normally associated with urban colonizers. More unlikely species may thus be able to colonize urban environments, especially if we design cities in ways that promote such urban colonizations. © 2018 The Author(s).

  4. Limited Colonization Undermined by Inadequate Early Immune Responses Defines the Dynamics of Decidual Listeriosis.

    PubMed

    Rizzuto, Gabrielle; Tagliani, Elisa; Manandhar, Priyanka; Erlebacher, Adrian; Bakardjiev, Anna I

    2017-08-01

    The bacterial pathogen Listeria monocytogenes causes foodborne systemic disease in pregnant women, which can lead to preterm labor, stillbirth, or severe neonatal disease. Colonization of the maternal decidua appears to be an initial step in the maternal component of the disease as well as bacterial transmission to the placenta and fetus. Host-pathogen interactions in the decidua during this early stage of infection remain poorly understood. Here, we assessed the dynamics of L. monocytogenes infection in primary human decidual organ cultures and in the murine decidua in vivo A high inoculum was necessary to infect both human and mouse deciduas, and the data support the existence of a barrier to initial colonization of the murine decidua. If successful, however, colonization in both species was followed by significant bacterial expansion associated with an inability of the decidua to mount appropriate innate cellular immune responses. The innate immune deficits included the failure of bacterial foci to attract macrophages and NK cells, cell types known to be important for early defenses against L. monocytogenes in the spleen, as well as a decrease in the tissue density of inflammatory Ly6C hi monocytes in vivo These results suggest that the infectivity of the decidua is not the result of an enhanced recruitment of L. monocytogenes to the gestational uterus but rather is due to compromised local innate cellular immune responses. Copyright © 2017 American Society for Microbiology.

  5. Catabolism of coffee chlorogenic acids by human colonic microbiota.

    PubMed

    Ludwig, Iziar A; Paz de Peña, Maria; Concepción, Cid; Alan, Crozier

    2013-01-01

    Several studies have indicated potential health benefits associated with coffee consumption. These benefits might be ascribed in part to the chlorogenic acids (CGAs), the main (poly)phenols in coffee. The impact of these dietary (poly)phenols on health depends on their bioavailability. As they pass along the gastrointestinal tract, CGAs are metabolized extensively and it is their metabolites rather than the parent compounds that predominate in the circulatory system. This article reports on a study in which after incubation of espresso coffee with human fecal samples, high-performance liquid chromatography-mass spectrometry (HPLC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to monitor CGA breakdown and identify and quantify the catabolites produced by the colonic microflora. The CGAs were rapidly degraded by the colonic microflora and over the 6-h incubation period, 11 catabolites were identified and quantified. The appearance of the initial degradation products, caffeic and ferulic acids, was transient, with maximum quantities at 1 h. Dihydrocaffeic acid, dihydroferulic acid, and 3-(3'-hydroxyphenyl)propionic acid were the major end products, comprising 75-83% of the total catabolites, whereas the remaining 17-25% consisted of six minor catabolites. The rate and extent of the degradation showed a clear influence of the composition of the gut microbiota of individual volunteers. Pathways involved in colonic catabolism of CGAs are proposed and comparison with studies on the bioavailability of coffee CGAs ingested by humans helped distinguish between colonic catabolites and phase II metabolites of CGAs. © 2013 International Union of Biochemistry and Molecular Biology.

  6. Induction of KIAA1199/CEMIP is associated with colon cancer phenotype and poor patient survival

    PubMed Central

    Fink, Stephen P.; Myeroff, Lois L.; Kariv, Revital; Platzer, Petra; Xin, Baozhong; Mikkola, Debra; Lawrence, Earl; Morris, Nathan; Nosrati, Arman; Willson, James K. V.; Willis, Joseph; Veigl, Martina; Barnholtz-Sloan, Jill S.; Wang, Zhenghe; Markowitz, Sanford D.

    2015-01-01

    Genes induced in colon cancer provide novel candidate biomarkers of tumor phenotype and aggressiveness. We originally identified KIAA1199 (now officially called CEMIP) as a transcript highly induced in colon cancer: initially designating the transcript as Colon Cancer Secreted Protein 1. We molecularly characterized CEMIP expression both at the mRNA and protein level and found it is a secreted protein induced an average of 54-fold in colon cancer. Knockout of CEMIPreduced the ability of human colon cancer cells to form xenograft tumors in athymic mice. Tumors that did grow had increased deposition of hyaluronan, linking CEMIP participation in hyaluronan degradation to the modulation of tumor phenotype. We find CEMIP mRNA overexpression correlates with poorer patient survival. In stage III only (n = 31) or in combined stage II plus stage III colon cancer cases (n = 73), 5-year overall survival was significantly better (p = 0.004 and p = 0.0003, respectively) among patients with low CEMIP expressing tumors than those with high CEMIP expressing tumors. These results demonstrate that CEMIP directly facilitates colon tumor growth, and high CEMIP expression correlates with poor outcome in stage III and in stages II+III combined cohorts. We present CEMIP as a candidate prognostic marker for colon cancer and a potential therapeutic target. PMID:26437221

  7. Development, evaluation and pharmacokinetics of time-dependent ketorolac tromethamine tablets.

    PubMed

    Vemula, Sateesh Kumar; Veerareddy, Prabhakar Reddy

    2013-01-01

    The present study was intended to develop a time-dependent colon-targeted compression-coated tablets of ketorolac tromethamine (KTM) using hydroxypropyl methylcellulose (HPMC) that release the drug slowly but completely in the colonic region by retarding the drug releases in stomach and small intestine. KTM core tablets were prepared by direct compression method and were compression coated with HPMC. The formulation is optimized based on the in vitro drug release studies and further evaluated by X-ray imaging technique in healthy humans to ensure the colonic delivery. To prove these results, in vivo pharmacokinetic studies in human volunteers were designed to study the in vitro-in vivo correlation. From the in vitro dissolution study, optimized formulation F3 showed negligible drug release (6.75 ± 0.49%) in the initial lag period followed by slow release (97.47 ± 0.93%) for 24 h which clearly indicates that the drug is delivered to the colon. The X-ray imaging studies showed that the tablets reached the colon without disintegrating in upper gastrointestinal system. From the pharmacokinetic evaluation, the immediate-release tablets producing peak plasma concentration (C(max)) was 4482.74 ng/ml at 2 h T(max) and colon-targeted tablets showed C(max) = 3562.67 ng/ml at 10 h T(max). The area under the curve for the immediate-release and compression-coated tablets was 10595.14 and 18796.70 ng h/ml and the mean resident time was 3.82 and 10.75 h, respectively. Thus, the compression-coated tablets based on time-dependent approach were preferred for colon-targeted delivery of ketorolac.

  8. Calcium and α-tocopherol suppress cured-meat promotion of chemically induced colon carcinogenesis in rats and reduce associated biomarkers in human volunteers123

    PubMed Central

    Martin, Océane CB; Santarelli, Raphaelle L; Taché, Sylviane; Naud, Nathalie; Guéraud, Françoise; Audebert, Marc; Dupuy, Jacques; Meunier, Nathalie; Attaix, Didier; Vendeuvre, Jean-Luc; Mirvish, Sidney S; Kuhnle, Gunter CG; Cano, Noel; Corpet, Denis E

    2013-01-01

    Background: Processed meat intake has been associated with increased colorectal cancer risk. We have shown that cured meat promotes carcinogen-induced preneoplastic lesions and increases specific biomarkers in the colon of rats. Objectives: We investigated whether cured meat modulates biomarkers of cancer risk in human volunteers and whether specific agents can suppress cured meat–induced preneoplastic lesions in rats and associated biomarkers in rats and humans. Design: Six additives (calcium carbonate, inulin, rutin, carnosol, α-tocopherol, and trisodium pyrophosphate) were added to cured meat given to groups of rats for 14 d, and fecal biomarkers were measured. On the basis of these results, calcium and tocopherol were kept for the following additional experiments: cured meat, with or without calcium or tocopherol, was given to dimethylhydrazine-initiated rats (47% meat diet for 100 d) and to human volunteers in a crossover study (180 g/d for 4 d). Rat colons were scored for mucin-depleted foci, putative precancer lesions. Biomarkers of nitrosation, lipoperoxidation, and cytotoxicity were measured in the urine and feces of rats and volunteers. Results: Cured meat increased nitroso compounds and lipoperoxidation in human stools (both P < 0.05). Calcium normalized both biomarkers in rats and human feces, whereas tocopherol only decreased nitro compounds in rats and lipoperoxidation in feces of volunteers (all P < 0.05). Last, calcium and tocopherol reduced the number of mucin-depleted foci per colon in rats compared with nonsupplemented cured meat (P = 0.01). Conclusion: Data suggest that the addition of calcium carbonate to the diet or α-tocopherol to cured meat may reduce colorectal cancer risk associated with cured-meat intake. This trial was registered at clinicaltrials.gov as NCT00994526. PMID:24025632

  9. In vivo adaptation and persistence of Neisseria meningitidis within the nasopharyngeal mucosa.

    PubMed

    Johswich, Kay O; McCaw, Shannon E; Islam, Epshita; Sintsova, Anna; Gu, Angel; Shively, John E; Gray-Owen, Scott D

    2013-01-01

    Neisseria meningitidis (Nme) asymptomatically colonizes the human nasopharynx, yet can initiate rapidly-progressing sepsis and meningitis in rare instances. Understanding the meningococcal lifestyle within the nasopharyngeal mucosa, a phase of infection that is prerequisite for disease, has been hampered by the lack of animal models. Herein, we compare mice expressing the four different human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) that can bind the neisserial Opa protein adhesins, and find that expression of human CEACAM1 is necessary and sufficient to establish intranasal colonization. During infection, in vivo selection for phase variants expressing CEACAM1-specific Opa proteins occurs, allowing mucosal attachment and entry into the subepithelial space. Consistent with an essential role for Opa proteins in this process, Opa-deficient meningococci were unable to colonize the CEACAM1-humanized mice. While simple Opa-mediated attachment triggered an innate response regardless of meningococcal viability within the inoculum, persistence of viable Opa-expressing bacteria within the CEACAM1-humanized mice was required for a protective memory response to be achieved. Parenteral immunization with a capsule-based conjugate vaccine led to the accumulation of protective levels of Nme-specific IgG within the nasal mucus, yet the sterilizing immunity afforded by natural colonization was instead conferred by Nme-specific IgA without detectable IgG. Considered together, this study establishes that the availability of CEACAM1 helps define the exquisite host specificity of this human-restricted pathogen, displays a striking example of in vivo selection for the expression of desirable Opa variants, and provides a novel model in which to consider meningococcal infection and immunity within the nasopharyngeal mucosa.

  10. In Vivo Adaptation and Persistence of Neisseria meningitidis within the Nasopharyngeal Mucosa

    PubMed Central

    Johswich, Kay O.; McCaw, Shannon E.; Islam, Epshita; Sintsova, Anna; Gu, Angel; Shively, John E.; Gray-Owen, Scott D.

    2013-01-01

    Neisseria meningitidis (Nme) asymptomatically colonizes the human nasopharynx, yet can initiate rapidly-progressing sepsis and meningitis in rare instances. Understanding the meningococcal lifestyle within the nasopharyngeal mucosa, a phase of infection that is prerequisite for disease, has been hampered by the lack of animal models. Herein, we compare mice expressing the four different human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) that can bind the neisserial Opa protein adhesins, and find that expression of human CEACAM1 is necessary and sufficient to establish intranasal colonization. During infection, in vivo selection for phase variants expressing CEACAM1-specific Opa proteins occurs, allowing mucosal attachment and entry into the subepithelial space. Consistent with an essential role for Opa proteins in this process, Opa-deficient meningococci were unable to colonize the CEACAM1-humanized mice. While simple Opa-mediated attachment triggered an innate response regardless of meningococcal viability within the inoculum, persistence of viable Opa-expressing bacteria within the CEACAM1-humanized mice was required for a protective memory response to be achieved. Parenteral immunization with a capsule-based conjugate vaccine led to the accumulation of protective levels of Nme-specific IgG within the nasal mucus, yet the sterilizing immunity afforded by natural colonization was instead conferred by Nme-specific IgA without detectable IgG. Considered together, this study establishes that the availability of CEACAM1 helps define the exquisite host specificity of this human-restricted pathogen, displays a striking example of in vivo selection for the expression of desirable Opa variants, and provides a novel model in which to consider meningococcal infection and immunity within the nasopharyngeal mucosa. PMID:23935487

  11. Defining the bacteroides ribosomal binding site.

    PubMed

    Wegmann, Udo; Horn, Nikki; Carding, Simon R

    2013-03-01

    The human gastrointestinal tract, in particular the colon, hosts a vast number of commensal microorganisms. Representatives of the genus Bacteroides are among the most abundant bacterial species in the human colon. Bacteroidetes diverged from the common line of eubacterial descent before other eubacterial groups. As a result, they employ unique transcription initiation signals and, because of this uniqueness, they require specific genetic tools. Although some tools exist, they are not optimal for studying the roles and functions of these bacteria in the human gastrointestinal tract. Focusing on translation initiation signals in Bacteroides, we created a series of expression vectors allowing for different levels of protein expression in this genus, and we describe the use of pepI from Lactobacillus delbrueckii subsp. lactis as a novel reporter gene for Bacteroides. Furthermore, we report the identification of the 3' end of the 16S rRNA of Bacteroides ovatus and analyze in detail its ribosomal binding site, thus defining a core region necessary for efficient translation, which we have incorporated into the design of our expression vectors. Based on the sequence logo information from the 5' untranslated region of other Bacteroidales ribosomal protein genes, we conclude that our findings are relevant to all members of this order.

  12. A Geographically Explicit Genetic Model of Worldwide Human-Settlement History

    PubMed Central

    Liu, Hua; Prugnolle, Franck; Manica, Andrea; Balloux, François

    2006-01-01

    Currently available genetic and archaeological evidence is generally interpreted as supportive of a recent single origin of modern humans in East Africa. However, this is where the near consensus on human settlement history ends, and considerable uncertainty clouds any more detailed aspect of human colonization history. Here, we present a dynamic genetic model of human settlement history coupled with explicit geographical distances from East Africa, the likely origin of modern humans. We search for the best-supported parameter space by fitting our analytical prediction to genetic data that are based on 52 human populations analyzed at 783 autosomal microsatellite markers. This framework allows us to jointly estimate the key parameters of the expansion of modern humans. Our best estimates suggest an initial expansion of modern humans ∼56,000 years ago from a small founding population of ∼1,000 effective individuals. Our model further points to high growth rates in newly colonized habitats. The general fit of the model with the data is excellent. This suggests that coupling analytical genetic models with explicit demography and geography provides a powerful tool for making inferences on human-settlement history. PMID:16826514

  13. Bacterial colonization patterns in mechanically ventilated patients with traumatic and medical head injury. Incidence, risk factors, and association with ventilator-associated pneumonia.

    PubMed

    Ewig, S; Torres, A; El-Ebiary, M; Fábregas, N; Hernández, C; González, J; Nicolás, J M; Soto, L

    1999-01-01

    We prospectively evaluated the relation of upper airway, lower airway, and gastric colonization patterns with the development of pneumonia and its etiology in 48 patients with surgical (n = 25) and medical (n = 23) head injury. Initial colonization was assessed by cultures of nasal and pharyngeal swabs, tracheobronchial aspirates, gastric juice, and bronchoscopically retrieved protected specimen brush. Follow-up colonization was determined until the end points extubation, suspected ventilator-associated pneumonia (VAP), or death. The initial colonization rate at any site at ICU admission was 39/47 (83%). It mainly accounted for Group I pathogens (Streptococcus pneumoniae, Staphylococcus aureus, Hemophilus influenzae) of the upper and lower airways. At follow-up, colonization rates with Group II pathogens (Gram-negative enteric bacilli and Pseudomonas spp.) increased significantly. The high initial bacterial load with Group I pathogens of the upper airways and trachea decreased during Days 2 to 4, whereas that of Group II pathogens increased. Upper airway colonization was an independent predictor of follow-up tracheobronchial colonization (odds ratio [OR], 9.9; 95% confidence interval [CI], 1.8 to 56.3 for initial colonization with Group I pathogens; OR, 23.9; 95% CI, 3.8 to 153.3 for follow-up colonization with Group II pathogens). Previous (short-term) antibiotics had a protective effect against colonization with Group I pathogens of the lower respiratory tract (OR, 0.2; 95% CI, 0.05 to 0.86), but they were a risk factor for colonization with Group II pathogens (OR, 6.1; 95% CI, 1.3 to 29). Initial tracheobronchial colonization with Group I pathogens was associated with a higher probability of early onset pneumonia (OR, 4. 1; 95% CI, 0.7 to 23.3), whereas prolonged antibiotic treatment (> 24 h) independently predicted late-onset pneumonia (OR, 9.2; 95% CI, 1.7 to 51.3). We conclude that patients with head injury are colonized in the airways mainly by Group I pathogens early in the evolution of illness. The upper airways represent the main reservoir for subsequent lower airway colonization with Group I pathogens. Previous (short-term) antibiotic treatment is protective against initial tracheobronchial colonization with Group I pathogens, but it represents a risk factor for subsequent lower airway colonization by Group II pathogens.

  14. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life

    DOE PAGES

    Xiong, Weili; Brown, Christopher T.; Morowitz, Michael J.; ...

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. But, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants’ gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for eachmore » of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We also identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. By applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.« less

  15. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Weili; Brown, Christopher T.; Morowitz, Michael J.

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. But, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants’ gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for eachmore » of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We also identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. By applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.« less

  16. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.

    PubMed

    Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization and short-chain fatty acid production. Overall, this study reports species-specific proteome profiles and metabolic functions of human gut microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of preterm infant gut.

  17. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice

    PubMed Central

    Turnbaugh, Peter J.; Ridaura, Vanessa K.; Faith, Jeremiah J.; Rey, Federico E.; Knight, Rob; Gordon, Jeffrey I.

    2010-01-01

    Diet and nutritional status are among the most important, modifiable determinants of human health. The nutritional value of food is influenced in part by a person’s gut microbial community (microbiota) and its component genes (microbiome). Unraveling the interrelationships between diet, the structure and operations of the gut microbiota, and nutrient and energy harvest is confounded by variations in human environmental exposures, microbial ecology and genotype. To help overcome these problems, we created a well-defined, representative animal model of the human gut ecosystem by transplanting fresh or frozen adult human fecal microbial communities into germ-free C57BL/6J mice. Culture-independent, metagenomic analysis of the temporal, spatial and intergenerational patterns of bacterial colonization showed that these humanized mice were stably and heritably colonized, and reproduced much of the bacterial diversity of the donor’s microbiota. Switching from a low-fat, plant polysaccharide-rich diet to a high-fat/high-sugar “Western” diet shifted the structure of the microbiota within a single day, changed the representation of metabolic pathways in the microbiome, and altered microbiome gene expression. Reciprocal transplants involving various combinations of donor and recipient diets revealed that colonization history influences the initial structure of the microbial community, but that these effects can be rapidly altered by diet. Humanized mice fed the Western diet have increased adiposity; this trait is transmissible via microbiota transplantation. Humanized gnotobiotic mice will be useful for conducting proof-of-principle “clinical trials” that test the effects of environmental and genetic factors on the gut microbiota and host physiology. PMID:20368178

  18. The Osteogenic Niche Promotes Early-Stage Bone Colonization of Disseminated Breast Cancer Cells

    PubMed Central

    Wang, Hai; Yu, Cuijuan; Gao, Xia; Welte, Thomas; Muscarella, Aaron M.; Tian, Lin; Zhao, Hong; Zhao, Zhen; Du, Shiyu; Tao, Jianning; Lee, Brendan; Westbrook, Thomas F.; Wong, Stephen T. C.; Jin, Xin; Rosen, Jeffrey M.; Osborne, C. Kent; Zhang, Xiang H.-F.

    2014-01-01

    Summary Breast cancer bone micrometastases can remain asymptomatic for years before progressing into overt lesions. The biology of this process, including the microenvironment niche and supporting pathways, is unclear. We find that bone micrometastases predominantly reside in a niche that exhibits features of osteogenesis. Niche interactions are mediated by heterotypic adherens junctions (hAJs) involving cancer-derived E-cadherin and osteogenic N-cadherin, the disruption of which abolishes niche-conferred advantages. We further elucidate that hAJ activates the mTOR pathway in cancer cells, which drives the progression from single cells to micrometastases. Human datasets analyses support the roles of AJ and the mTOR pathway in bone colonization. Our study illuminates the initiation of bone colonization, and provides potential therapeutic targets to block progression toward osteolytic metastases. Significance In advanced stages, breast cancer bone metastases are driven by paracrine crosstalk among cancer cells, osteoblasts, and osteoclasts, which constitute a vicious osteolytic cycle. Current therapies targeting this process limit tumor progression, but do not improve patient survival. On the other hand, bone micrometastases may remain indolent for years before activating the vicious cycle, providing a therapeutic opportunity to prevent macrometastases. Here, we show that bone colonization is initiated in a microenvironment niche exhibiting active osteogenesis. Cancer and osteogenic cells form heterotypic adherens junctions, which enhance mTOR activity and drive early-stage bone colonization prior to osteolysis. These results reveal a strong connection between osteogenesis and micrometastasis and suggest potential therapeutic targets to prevent bone macrometastases. PMID:25600338

  19. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging.

    PubMed

    Zhou, Juan; Joshi, Bishnu P; Duan, Xiyu; Pant, Asha; Qiu, Zhen; Kuick, Rork; Owens, Scott R; Wang, Thomas D

    2015-07-16

    Colorectal cancer initially lies dormant as dysplasia, a premalignant state that provides an opportunity for early cancer detection. Dysplasia can be flat in morphology, focal in size, and patchy in distribution, and thus it appears "invisible" on conventional wide-field endoscopy. We aim to develop and validate a peptide that is specific for epidermal growth factor receptor (EGFR), a cell surface target that is overexpressed in colonic adenomas and is readily accessible for imaging. We expressed and purified the extracellular domain of EGFR for use with phage display to identify a peptide QRHKPRE that binds to domain 2 of this target. A near-infrared fluorescence endoscope was used to perform in vivo imaging to validate specific peptide binding to spontaneous colonic adenomas in a mouse model with topical administration. We also validated specific peptide binding to human colonic adenomas on immunohistochemistry and immunofluorescence. After labeling with Cy5.5, we validated specific peptide binding to EGFR on knockdown and competition studies. Peptide binding to cells occurred within 2.46 min and had an affinity of 50 nm. No downstream signaling was observed. We measured a target-to-background ratio of 4.0±1.7 and 2.7±0.7, for polyps and flat lesions, respectively. On immunofluorescence of human colonic specimens, greater intensity from peptide binding to dysplasia than normal was found with a 19.4-fold difference. We have selected and validated a peptide that can be used as a specific contrast agent to identify colonic adenomas that overexpress EGFR in vivo on fluorescence endoscopy.

  20. Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon.

    PubMed

    Kendig, Derek M; Hurst, Norman R; Bradley, Zachary L; Mahavadi, Sunila; Kuemmerle, John F; Lyall, Vijay; DeSimone, John; Murthy, Karnam S; Grider, John R

    2014-12-01

    Intraluminal nutrients in the gut affect the peristaltic reflex, although the mechanism is not well defined. Recent evidence supports the presence of taste receptors and their signaling components in enteroendocrine cells, although their function is unclear. This study aimed to determine if nutrients modify colonic motility through activation of taste receptors. Colonic sections were immunostained for the umami taste receptor T1R1/T1R3, which mediates the response to umami ligands, such as monosodium glutamate (MSG), in taste cells. Ascending contraction, descending relaxation, and calcitonin gene-related peptide release were measured in three-chamber flat-sheet preparations of rat colon in response to MSG alone or with inosine 5'-monophosphate (IMP). Velocity of artificial fecal pellet propulsion was measured by video recording in guinea pig distal colon. T1R1/T1R3 receptors were present in enteroendocrine cells of colonic sections from human, rat, mouse, and guinea pig. MSG initiated ascending contraction and descending relaxation components of the peristaltic reflex and calcitonin gene-related peptide release in flat-sheet preparations. IMP augmented the MSG-induced effects, suggesting activation of T1R1/T1R3 receptors. In T1R1(-/-) mice, mucosal stroking, but not MSG, elicited a peristaltic reflex. Intraluminal perfusion of MSG enhanced the velocity of artificial fecal pellet propulsion, which was also augmented by IMP. Propulsion was also increased by l-cysteine, but not l-tryptophan, supporting a role of T1R1/T1R3 receptors. We conclude that T1R1/T1R3 activation by luminal MSG or l-cysteine elicits a peristaltic reflex and CGRP release and increases the velocity of pellet propulsion in distal colon. This mechanism may explain how nutrients regulate colonic propulsion. Copyright © 2014 the American Physiological Society.

  1. Activation of the umami taste receptor (T1R1/T1R3) initiates the peristaltic reflex and pellet propulsion in the distal colon

    PubMed Central

    Kendig, Derek M.; Hurst, Norman R.; Bradley, Zachary L.; Mahavadi, Sunila; Kuemmerle, John F.; Lyall, Vijay; DeSimone, John; Murthy, Karnam S.

    2014-01-01

    Intraluminal nutrients in the gut affect the peristaltic reflex, although the mechanism is not well defined. Recent evidence supports the presence of taste receptors and their signaling components in enteroendocrine cells, although their function is unclear. This study aimed to determine if nutrients modify colonic motility through activation of taste receptors. Colonic sections were immunostained for the umami taste receptor T1R1/T1R3, which mediates the response to umami ligands, such as monosodium glutamate (MSG), in taste cells. Ascending contraction, descending relaxation, and calcitonin gene-related peptide release were measured in three-chamber flat-sheet preparations of rat colon in response to MSG alone or with inosine 5′-monophosphate (IMP). Velocity of artificial fecal pellet propulsion was measured by video recording in guinea pig distal colon. T1R1/T1R3 receptors were present in enteroendocrine cells of colonic sections from human, rat, mouse, and guinea pig. MSG initiated ascending contraction and descending relaxation components of the peristaltic reflex and calcitonin gene-related peptide release in flat-sheet preparations. IMP augmented the MSG-induced effects, suggesting activation of T1R1/T1R3 receptors. In T1R1−/− mice, mucosal stroking, but not MSG, elicited a peristaltic reflex. Intraluminal perfusion of MSG enhanced the velocity of artificial fecal pellet propulsion, which was also augmented by IMP. Propulsion was also increased by l-cysteine, but not l-tryptophan, supporting a role of T1R1/T1R3 receptors. We conclude that T1R1/T1R3 activation by luminal MSG or l-cysteine elicits a peristaltic reflex and CGRP release and increases the velocity of pellet propulsion in distal colon. This mechanism may explain how nutrients regulate colonic propulsion. PMID:25324508

  2. Initiation of antiretroviral therapy before detection of colonic infiltration by HIV reduces viral reservoirs, inflammation and immune activation

    PubMed Central

    Crowell, Trevor A; Fletcher, James LK; Sereti, Irini; Pinyakorn, Suteeraporn; Dewar, Robin; Krebs, Shelly J; Chomchey, Nitiya; Rerknimitr, Rungsun; Schuetz, Alexandra; Michael, Nelson L; Phanuphak, Nittaya; Chomont, Nicolas; Ananworanich, Jintanat

    2016-01-01

    Introduction Colonic infiltration by HIV occurs soon after infection, establishing a persistent viral reservoir and a barrier to cure. We investigated virologic and immunologic correlates of detectable colonic HIV RNA during acute HIV infection (AHI) and their response to antiretroviral treatment (ART). Methods From 49,458 samples screened for HIV, 74 participants were enrolled during AHI and 41 consented to optional sigmoidoscopy, HIV RNA was categorized as detectable (≥50 copies/mg) or undetectable in homogenized colon biopsy specimens. Biomarkers and HIV burden in blood, colon and cerebrospinal fluid were compared between groups and after 24 weeks of ART. Results Colonic HIV RNA was detectable in 31 participants (76%) and was associated with longer duration since HIV exposure (median 16 vs. 11 days, p=0.02), higher median plasma levels of cytokines and inflammatory markers (CXCL10 476 vs. 148 pg/mL, p=0.02; TNF-RII 1036 vs. 649 pg/mL, p<0.01; neopterin 2405 vs. 1368 pg/mL, p=0.01) and higher levels of CD8+ T cell activation in the blood (human leukocyte antigen - antigen D related (HLA-DR)/CD38 expression 14.4% vs. 7.6%, p <0.01) and colon (8.9% vs. 4.5%, p=0.01). After 24 weeks of ART, participants with baseline detectable colonic HIV RNA demonstrated persistent elevations in total HIV DNA in colonic mucosal mononuclear cells (CMMCs) (median 61 vs. 0 copies/106 CMMCs, p=0.03) and a trend towards higher total HIV DNA in peripheral blood mononuclear cells (PBMC) (41 vs. 1.5 copies/106 PBMCs, p=0.06). There were no persistent differences in immune activation and inflammation. Conclusions The presence of detectable colonic HIV RNA at the time of ART initiation during AHI is associated with higher levels of proviral DNA after 24 weeks of treatment. Seeding of HIV in the gut may have long-lasting effects on the size of persistent viral reservoirs and may represent an important therapeutic target in eradication strategies. PMID:27637172

  3. Muscarinic receptor agonists stimulate matrix metalloproteinase 1-dependent invasion of human colon cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raufman, Jean-Pierre, E-mail: jraufman@medicine.umaryland.edu; Cheng, Kunrong; Saxena, Neeraj

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Muscarinic receptor agonists stimulated robust human colon cancer cell invasion. Black-Right-Pointing-Pointer Anti-matrix metalloproteinase1 antibody pre-treatment blocks cell invasion. Black-Right-Pointing-Pointer Bile acids stimulate MMP1 expression, cell migration and MMP1-dependent invasion. -- Abstract: Mammalian matrix metalloproteinases (MMPs) which degrade extracellular matrix facilitate colon cancer cell invasion into the bloodstream and extra-colonic tissues; in particular, MMP1 expression correlates strongly with advanced colon cancer stage, hematogenous metastasis and poor prognosis. Likewise, muscarinic receptor signaling plays an important role in colon cancer; muscarinic receptors are over-expressed in colon cancer compared to normal colon epithelial cells. Muscarinic receptor activation stimulates proliferation, migration and invasionmore » of human colon cancer cells. In mouse intestinal neoplasia models genetic ablation of muscarinic receptors attenuates carcinogenesis. In the present work, we sought to link these observations by showing that MMP1 expression and activation plays a mechanistic role in muscarinic receptor agonist-induced colon cancer cell invasion. We show that acetylcholine, which robustly increases MMP1 expression, stimulates invasion of HT29 and H508 human colon cancer cells into human umbilical vein endothelial cell monolayers - this was abolished by pre-incubation with atropine, a non-selective muscarinic receptor inhibitor, and by pre-incubation with anti-MMP1 neutralizing antibody. Similar results were obtained using a Matrigel chamber assay and deoxycholyltaurine (DCT), an amidated dihydroxy bile acid associated with colon neoplasia in animal models and humans, and previously shown to interact functionally with muscarinic receptors. DCT treatment of human colon cancer cells resulted in time-dependent, 10-fold increased MMP1 expression, and DCT-induced cell invasion was also blocked by pre-treatment with anti-MMP1 antibody. This study contributes to understanding mechanisms underlying muscarinic receptor agonist-induced promotion of colon cancer and, more importantly, indicates that blocking MMP1 expression and activation has therapeutic promise to stop or retard colon cancer invasion and dissemination.« less

  4. Prebiotic effect of fructooligosaccharide in the simulator of the human intestinal microbial ecosystem (SHIME® model).

    PubMed

    Sivieri, Katia; Morales, Martha L Villarreal; Saad, Susana M I; Adorno, Maria A Tallarico; Sakamoto, Isabel Kimiko; Rossi, Elizeu A

    2014-08-01

    Maintaining "gut health" is a goal for scientists throughout the world. Therefore, microbiota management models for testing probiotics, prebiotics, and synbiotics have been developed. The SHIME(®) model was used to study the effect of fructooligosaccharide (FOS) on the fermentation pattern of the colon microbiota. Initially, an inoculum prepared from human feces was introduced into the reactor vessels and stabilized over 2 weeks using a culture medium. This stabilization period was followed by a 2-week control period during which the microbiota was monitored. The microbiota was then subjected to a 4-week treatment period by adding 5 g/day-1 FOS to vessel one (the "stomach" compartment). Plate counts, Denaturing Gradient Gel Electrophoresis (DGGE), short-chain fatty acid (SCFA), and ammonium analyses were used to observe the influence of FOS treatment in simulated colon compartments. A significant increase (P<.01) in the Lactobacillus spp. and Bifidobacterium spp. populations was observed during the treatment period. The DGGE obtained showed the overall microbial community was changed in the ascending colon compartment of the SHIME reactor. FOS induced increase of the SCFA concentration (P<.05) during the treatment period, mainly due to significant increased levels of acetic and butyric acids. However, ammonium concentrations increased during the same period (P<.01). This study indicates the usefulness of in vitro methods that simulate the colon region as part of research towards the improvement of human health.

  5. Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro.

    PubMed

    Bazzocco, Sarah; Mattila, Ismo; Guyot, Sylvain; Renard, Catherine M G C; Aura, Anna-Marja

    2008-12-01

    Proanthocyanidins (PAs) in apples are condensed tannins comprised mostly of (-)-epicatechin units with some terminal (+)-catechins. PAs, especially those having a long chain-length, are absorbed in the upper intestine only to a small extent and are passed to the colon. In the colon they are subjected to microbial metabolism by colonic microbiota. In the present article, the ability of human microbiota to ferment apple PAs is studied. Freeze-dried fruit preparations (apple, enzymatically digested apple, isolated cell-walls, isolated PAs or ciders) from two varieties, Marie Ménard and Avrolles, containing PAs of different chain lengths, were compared. Fermentation studies were performed in an in vitro colon model using human faecal microbiota as an inoculum. The maximal extent of conversion to known microbial metabolites, was observed at late time point for Marie Ménard cider, having short PAs. In this case, the initial dose also contributed to the extent of conversion. Long-chain PAs were able to inhibit the in vitro microbial metabolism of PAs shown as low maxima at early time points. Presence of isolated PAs also suppressed SCFA formation from carbohydrates as compared with that from apple cell wall or faecal suspension without substrates. The low maximal extents at early time points suggest that there is a competition between the inhibitory effect of the PAs on microbial activity, and the ability to convert PAs by the microbiota.

  6. Role of Lactobacillus reuteri in Human Health and Diseases

    PubMed Central

    Mu, Qinghui; Tavella, Vincent J.; Luo, Xin M.

    2018-01-01

    Lactobacillus reuteri (L. reuteri) is a well-studied probiotic bacterium that can colonize a large number of mammals. In humans, L. reuteri is found in different body sites, including the gastrointestinal tract, urinary tract, skin, and breast milk. The abundance of L. reuteri varies among different individuals. Several beneficial effects of L. reuteri have been noted. First, L. reuteri can produce antimicrobial molecules, such as organic acids, ethanol, and reuterin. Due to its antimicrobial activity, L. reuteri is able to inhibit the colonization of pathogenic microbes and remodel the commensal microbiota composition in the host. Second, L. reuteri can benefit the host immune system. For instance, some L. reuteri strains can reduce the production of pro-inflammatory cytokines while promoting regulatory T cell development and function. Third, bearing the ability to strengthen the intestinal barrier, the colonization of L. reuteri may decrease the microbial translocation from the gut lumen to the tissues. Microbial translocation across the intestinal epithelium has been hypothesized as an initiator of inflammation. Therefore, inflammatory diseases, including those located in the gut as well as in remote tissues, may be ameliorated by increasing the colonization of L. reuteri. Notably, the decrease in the abundance of L. reuteri in humans in the past decades is correlated with an increase in the incidences of inflammatory diseases over the same period of time. Direct supplementation or prebiotic modulation of L. reuteri may be an attractive preventive and/or therapeutic avenue against inflammatory diseases. PMID:29725324

  7. Dynamic changes in the initial colonization of Actinomyces naeslundii and Streptococcus gordonii using a new animal model.

    PubMed

    Zhang, Xi; Senpuku, Hidenobu

    2013-01-01

    Actinomyces naeslundii and Streptococcus gordonii are the predominant bacteria and initial colonizers of oral microflora. The binding of A. naeslundii and S. gordonii and the interaction between them on the salivary pellicle-coated tooth surface play an important role in the biofilm development. Recently, we reported that NOD/SCID.e2f1(-) mice are a useful model for studying oral biofilm formation by Streptococcus mutans on the tooth surface. In this study, we aimed to determine whether NOD/SCID.e2f1(-) mice can be used for studying oral colonization of A. naeslundii and S. gordonii. Colonization of A. naeslundii in mice fed with 1% sucrose water for 24 h before inoculation was higher than that among mice fed with sucrose water for 1 h. A. naeslundii colonization using mixed species-inoculation was lower than that using single-species inoculation 30-90 min after inoculation; however, the colonization was higher 120-180 min after inoculation. The mixed inoculation induced better colonization of S. gordonii than single-species inoculation 60-180 min after inoculation. Polyclonal and fluorescein isothiocyanate-labeled antibody stained bacteria showed better colonization of S. gordonii when a mixed culture is used in vivo. NOD/SCID.e2f1(-) mice were useful for studying the initial colonization of A. naeslundii and S. gordonii. Long-term supply of sucrose water creates a favorable environment for the initial colonization of A. naeslundii that, in turn, supports the colonization of S. gordonii.

  8. Modification of Intestinal Microbiota and Its Consequences for Innate Immune Response in the Pathogenesis of Campylobacteriosis

    PubMed Central

    Heimesaat, Markus M.; Bereswill, Stefan; Tareen, Abdul Malik; Lugert, Raimond; Groß, Uwe; Zautner, Andreas E.

    2013-01-01

    Campylobacter jejuni is the leading cause of bacterial food-borne gastroenteritis in the world, and thus one of the most important public health concerns. The initial stage in its pathogenesis after ingestion is to overcome colonization resistance that is maintained by the human intestinal microbiota. But how it overcomes colonization resistance is unknown. Recently developed humanized gnotobiotic mouse models have provided deeper insights into this initial stage and host's immune response. These studies have found that a fat-rich diet modifies the composition of the conventional intestinal microbiota by increasing the Firmicutes and Proteobacteria loads while reducing the Actinobacteria and Bacteroidetes loads creating an imbalance that exposes the intestinal epithelial cells to adherence. Upon adherence, deoxycholic acid stimulates C. jejuni to synthesize Campylobacter invasion antigens, which invade the epithelial cells. In response, NF-κB triggers the maturation of dendritic cells. Chemokines produced by the activated dendritic cells initiate the clearance of C. jejuni cells by inducing the actions of neutrophils, B-lymphocytes, and various subsets of T-cells. This immune response causes inflammation. This review focuses on the progress that has been made on understanding the relationship between intestinal microbiota shift, establishment of C. jejuni infection, and consequent immune response. PMID:24324507

  9. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production.

    PubMed

    Hofmann, Andreas; Fischer, Doreen; Hartmann, Anton; Schmid, Michael

    2014-01-01

    In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system) or via agricultural soil amended with spiked organic fertilizers (soil system). In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH) was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4 × 10 CFU/ml in the axenic system or 4 × 10(5) CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in some cases.

  10. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production

    PubMed Central

    Hofmann, Andreas; Fischer, Doreen; Hartmann, Anton; Schmid, Michael

    2014-01-01

    In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system) or via agricultural soil amended with spiked organic fertilizers (soil system). In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH) was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4 × 10 CFU/ml in the axenic system or 4 × 105 CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in some cases. PMID:24829562

  11. Spontaneous Aberrant Crypt Foci in Apc1638N Mice with a Mutant Apc Allele

    PubMed Central

    Pretlow, Theresa P.; Edelmann, Winfried; Kucherlapati, Raju; Pretlow, Thomas G.; Augenlicht, Leonard H.

    2003-01-01

    The Apc1638N/+ mouse has a chain-terminating mutation in one allele of the adenomatous polyposis coli (Apc) gene that is similar to most mutations observed in the human familial adenomatous polyposis syndrome. Aberrant crypt foci (ACF), the earliest identified neoplastic lesions in the colon, are morphologically abnormal structures that are identifiedmicroscopically in the grossly normal colonic mucosas of rodents treated with colon carcinogens and of human patients. The colons and cecums of 62 Apc1638N/+ mice were evaluated for the spontaneous occurrence of ACF and tumors. Both male and female mice were killed at different times between 5 and 28 weeks of age. Wild-type littermates, ie, Apc+/+ mice, at 22 to 26 weeks of age served as controls. ACF were identified in 97% of the Apc1638N/+ mice starting at 5 weeks of age and not in any wild-type littermates. Although the number of ACF increased with age (P < 0.0001), the average number of crypts per focus of the ACF did not increase significantly. In addition, wild-type Apc protein was detected by immunohistochemistry in all 22 ACF evaluated. Together these data suggest that heterozygous loss of Apc may be sufficient to initiate ACF in these mice and that these mice may be suitable models to study the interaction of environmental factors with an inherited mutation of the Apc gene that is associated with colon cancer. PMID:14578176

  12. GEN-27, a Newly Synthetic Isoflavonoid, Inhibits the Proliferation of Colon Cancer Cells in Inflammation Microenvironment by Suppressing NF-κB Pathway

    PubMed Central

    Wang, Yajing; Lu, Ping; Zhang, Weifeng; Du, Qianming; Tang, Jingjing; Wang, Hong; Lu, Jinrong; Hu, Rong

    2016-01-01

    Nonresolving inflammation is one of the consistent features of the tumor microenvironment in the intestine and plays a critical role in the initiation and development of colon cancer. Here we reported the inhibitory effects of GEN-27, a new derivative of genistein, on the inflammation-related colon cancer cell proliferation and delineated the mechanism of its action. The results indicated that GEN-27 inhibited the proliferation of human colon tumor HCT116 cells stimulated by culture supernatants of LPS-induced human monocytes THP-1 cells and significantly decreased LPS-induced secretion of proinflammatory cytokines interleukin-6 and interleukin-1β in THP-1 cells. The HCT116 cell proliferation elicited by THP-1-conditioned medium could be blocked by the interleukin-1 receptor antagonist (IL-1RA). Further mechanistic study revealed that GEN-27 remarkably inhibited the nuclear translocation of NF-κB and phosphorylation of IκB and IKKα/β in both HCT116 and THP-1 cells. In addition, GEN-27 markedly suppressed the HCT116 cell proliferation stimulated by IL-1β treatment, which was dependent on the inhibition of NF-κB/p65 nuclear localization, as verified by p65 overexpression and BAY 11-7082, an NF-κB inhibitor. Taken together, our findings established that GEN-27 modulated NF-κB signaling pathway involved in inflammation-induced cancer cells proliferation and therefore could be a potential chemopreventive agent against inflammation-associated colon cancer. PMID:27057094

  13. A cross sectional study of animal and human colonization with Methicillin-Resistant Staphylococcus aureus (MRSA) in an Aboriginal community.

    PubMed

    Daley, Peter; Bajgai, Janak; Penney, Carla; Williams, Karen; Whitney, Hugh; Golding, George R; Weese, Scott

    2016-07-19

    Methicillin-resistant Staphylococcus aureus (MRSA) infections are common among humans in Aboriginal communities in Canada, for unknown reasons. Cross sectional study of humans and dogs in an Aboriginal community of approximately 1200 persons. Our objectives were to measure community-based prevalence of nasal MRSA colonization among humans, use multivariable logistic regression to analyze risk factors for MRSA colonization, and perform molecular typing of Staphylococci isolated to investigate interspecies transmission. 461 humans were approached for consent and 442 provided complete data. 109/442 (24.7 %, 95 % C.I. = 20.7-28.7 %) of humans were colonized with MRSA. 169/442 (38.2 %) of humans had received antibiotics in the last 12 months. Only number of rooms in the house (OR 0.86, p = 0.023) and recreational dog use (OR 7.7, p = 0.002) were significant risk factors for MRSA colonization. 95/109 (87.1 %) of MRSA strains from humans were of the same spa type (CMRSA10/USA300). 8/157 (5.1 %, 95 % C.I. = 1.7-8.5 %) of dogs were colonized with methicillin-susceptible S. aureus, and no dogs were colonized with MRSA. Human MRSA colonization in this community is very common, and a single clone is predominant, suggesting local transmission. Antibiotic use is also very common. Crowding may partially explain high colonization, but most considered risk factors including animal exposure were not predictive. Very few dogs carried human Staphylococcal strains.

  14. The role of pH in determining the species composition of the human colonic microbiota.

    PubMed

    Duncan, Sylvia H; Louis, Petra; Thomson, John M; Flint, Harry J

    2009-08-01

    The pH of the colonic lumen varies with anatomical site and microbial fermentation of dietary residue. We have investigated the impact of mildly acidic pH, which occurs in the proximal colon, on the growth of different species of human colonic bacteria in pure culture and in the complete microbial community. Growth was determined for 33 representative human colonic bacteria at three initial pH values (approximately 5.5, 6.2 and 6.7) in anaerobic YCFA medium, which includes a mixture of short-chain fatty acids (SCFA) with 0.2% glucose as energy source. Representatives of all eight Bacteroides species tested grew poorly at pH 5.5, as did Escherichia coli, whereas 19 of the 23 gram-positive anaerobes tested gave growth rates at pH 5.5 that were at least 50% of those at pH 6.7. Growth inhibition of B. thetaiotaomicron at pH 5.5 was increased by the presence of the SCFA mix (33 mM acetate, 9 mM propionate and 1 mM each of iso-valerate, valerate and iso-butyrate). Analysis of amplified 16S rRNA sequences demonstrated a major pH-driven shift within a human faecal bacterial community in a continuous flow fermentor. Bacteroides spp. accounted for 27% of 16S rRNA sequences detected at pH 5.5, but 86% of sequences at pH 6.7. Conversely, butyrate-producing gram-positive bacteria related to Eubacterium rectale represented 50% of all 16S rRNA sequences at pH 5.5, but were not detected at pH 6.7. Inhibition of the growth of a major group of gram-negative bacteria at mildly acidic pH apparently creates niches that can be exploited by more low pH-tolerant microorganisms.

  15. Archaeological support for the three-stage expansion of modern humans across northeastern Eurasia and into the Americas.

    PubMed

    Hamilton, Marcus J; Buchanan, Briggs

    2010-08-30

    Understanding the dynamics of the human range expansion across northeastern Eurasia during the late Pleistocene is central to establishing empirical temporal constraints on the colonization of the Americas. Opinions vary widely on how and when the Americas were colonized, with advocates supporting either a pre- or post- last glacial maximum (LGM) colonization, via either a land bridge across Beringia, a sea-faring Pacific Rim coastal route, a trans-Arctic route, or a trans-Atlantic oceanic route. Here we analyze a large sample of radiocarbon dates from the northeast Eurasian Upper Paleolithic to identify the origin of this expansion, and estimate the velocity of colonization wave as it moved across northern Eurasia and into the Americas. We use diffusion models to quantify these dynamics. Our results show the expansion originated in the Altai region of southern Siberia approximately 46kBP , and from there expanded across northern Eurasia at an average velocity of 0.16 km per year. However, the movement of the colonizing wave was not continuous but underwent three distinct phases: 1) an initial expansion from 47-32k calBP; 2) a hiatus from approximately 32-16k calBP, and 3) a second expansion after the LGM approximately 16k calBP. These results provide archaeological support for the recently proposed three-stage model of the colonization of the Americas. Our results falsify the hypothesis of a pre-LGM terrestrial colonization of the Americas and we discuss the importance of these empirical results in the light of alternative models. Our results demonstrate that the radiocarbon record of Upper Paleolithic northeastern Eurasia supports a post-LGM terrestrial colonization of the Americas falsifying the proposed pre-LGM terrestrial colonization of the Americas. We show that this expansion was not a simple process, but proceeded in three phases, consistent with genetic data, largely in response to the variable climatic conditions of late Pleistocene northeast Eurasia. Further, the constraints imposed by the spatiotemporal gradient in the empirical radiocarbon record across this entire region suggests that North America cannot have been colonized much before the existing Clovis radiocarbon record suggests.

  16. The Road to Infection: Host-Microbe Interactions Defining the Pathogenicity of Streptococcus bovis/Streptococcus equinus Complex Members

    PubMed Central

    Jans, Christoph; Boleij, Annemarie

    2018-01-01

    The Streptococcus bovis/Streptococcus equinus complex (SBSEC) comprises several species inhabiting the animal and human gastrointestinal tract (GIT). They match the pathobiont description, are potential zoonotic agents and technological organisms in fermented foods. SBSEC members are associated with multiple diseases in humans and animals including ruminal acidosis, infective endocarditis (IE) and colorectal cancer (CRC). Therefore, this review aims to re-evaluate adhesion and colonization abilities of SBSEC members of animal, human and food origin paired with genomic and functional host-microbe interaction data on their road from colonization to infection. SBSEC seem to be a marginal population during GIT symbiosis that can proliferate as opportunistic pathogens. Risk factors for human colonization are considered living in rural areas and animal-feces contact. Niche adaptation plays a pivotal role where Streptococcus gallolyticus subsp. gallolyticus (SGG) retained the ability to proliferate in various environments. Other SBSEC members have undergone genome reduction and niche-specific gene gain to yield important commensal, pathobiont and technological species. Selective colonization of CRC tissue is suggested for SGG, possibly related to increased adhesion to cancerous cell types featuring enhanced collagen IV accessibility. SGG can colonize, proliferate and may shape the tumor microenvironment to their benefit by tumor promotion upon initial neoplasia development. Bacteria cell surface structures including lipotheichoic acids, capsular polysaccharides and pilus loci (pil1, pil2, and pil3) govern adhesion. Only human blood-derived SGG contain complete pilus loci and other disease-associated surface proteins. Rumen or feces-derived SGG and other SBSEC members lack or harbor mutated pili. Pili also contribute to binding to fibrinogen upon invasion and translocation of cells from the GIT into the blood system, subsequent immune evasion, human contact system activation and collagen-I-binding on damaged heart valves. Only SGG carrying complete pilus loci seem to have highest IE potential in humans with significant links between SGG bacteremia/IE and underlying diseases including CRC. Other SBSEC host-microbe combinations might rely on currently unknown mechanisms. Comparative genome data of blood, commensal and food isolates are limited but required to elucidate the role of pili and other virulence factors, understand pathogenicity mechanisms, host specificity and estimate health risks for animals, humans and food alike. PMID:29692760

  17. The soy-derived peptide Vglycin inhibits the growth of colon cancer cells in vitro and in vivo.

    PubMed

    Gao, Chang; Sun, Rui; Xie, Ya-Rong; Jiang, An-Li; Lin, Mei; Li, Min; Chen, Zheng-Wang; Zhang, Ping; Jin, Honglin; Feng, Jue-Ping

    2017-05-01

    Vglycin, a novel natural polypeptide isolated from pea seeds, possesses antidiabetic properties. Our previous studies have shown that Vglycin can induce the differentiation of human colon adenocarcinoma cells. We aimed to determine the anticancer activity of Vglycin against colon cancer cells and to elucidate related apoptosis-inducing mechanisms. Treatment with purified Vglycin significantly reduced growth, viability, and colony formation of CT-26, SW480, and NCL-H716 colon cancer cells in a dose-dependent manner while down-regulating the expression of proliferating cell nuclear antigen. Mouse xenograft studies showed a 38% inhibition of colon cancer growth in mice treated with Vglycin (20 mg/kg/day) at day 21. Furthermore, the potential mechanisms involved in Vglycin-induced cell apoptosis were examined using cell cycle studies, ultrastructural examination, as well as apoptosis-associated pathway analysis. The results showed that Vglycin significantly promoted apoptosis and G1/S phase cell cycle arrest. As revealed by Western blot, the expression of CDK2 and Cyclin D1 was down-regulated in all three Vglycin-treated colon cancer cells, indicating that the CDK2/Cyclin D1 cell cycle pathway involved in the initiation and progression of colon cancer. Moreover, the inhibition of Vglycin-induced cell proliferation in colon cancer cells was accompanied by alteration of the expression levels of the apoptosis-related proteins Bax, Bcl-2 and Mcl-1, and an increase of caspase-3 activity. Together, our results suggest that Vglycin may be another plant-derived peptide that suppresses colon cancer, supporting the continued investigation of Vglycin as therapeutic agent for colon cancer. Impact statement The antidiabetic properties and the capability of inducing differentiation of human colon adenocarcinoma cells of Vglycin have been reported in our previous studies. However, the anticancer potential of Vglycin on colon cancer cells and its possible related mechanisms were still unknown. In this study, we found that Vglycin could reduce growth, viability, and colony formation or colony size of CT-26, SW480, and NCL-H716 colon cancer cells. Moreover, Vglycin decreased tumor volume by 38% in xenograft mice transplanted with CT-26 cells. The mechanisms of these phenomena may be due to the down-regulated CDK2 and Cyclin D1, G1/S phase cell cycle arrest, and the dysregulated expression of Bax, Bcl-2, and Mcl-1. The findings highlight the anticancer potential of Vglycin against colon cancer cells, and suggest Vglycin may be another colon cancer potential suppressive component of plant-derived peptides.

  18. Post-irradiation somatic mutation and clonal stabilisation time in the human colon.

    PubMed Central

    Campbell, F; Williams, G T; Appleton, M A; Dixon, M F; Harris, M; Williams, E D

    1996-01-01

    BACKGROUND: Colorectal crypts are clonal units in which somatic mutation of marker genes in stem cells leads to crypt restricted phenotypic conversion initially involving part of the crypt, later the whole crypt. Studies in mice show that the time taken for the great majority of mutated crypts to be completely converted, the clonal stabilisation time, is four weeks in the colon and 21 weeks in the ileum. Differences in the clonal stabilisation time between tissues and species are thought to reflect differences in stem cell organisation and crypt kinetics. AIM: To study the clonal stabilisation time in the human colorectum. METHODS: Stem cell mutation can lead to crypt restricted loss of O-acetylation of sialomucins in subjects heterozygous for O-acetyltransferase gene activity. mPAS histochemistry was used to visualise and quantify crypts partially or wholly involved by the mutant phenotype in 21 informative cases who had undergone colectomy up to 34 years after radiotherapy. RESULTS: Radiotherapy was followed by a considerable increase in the discordant crypt frequency that remained significantly increased for many years. The proportion of discordant crypts showing partial involvement was initially high but fell to normal levels about 12 months after irradiation. CONCLUSIONS: Crypts wholly involved by a mutant phenotype are stable and persistent while partially involved crypts are transient. The clonal stabilisation time is approximately one year in the human colon compared with four weeks in the mouse. The most likely reason for this is a difference in the number of stem cells in a crypt stem cell niche, although differences in stem cell cycle time and crypt fission may also contribute. These findings are of relevance to colorectal gene therapy and carcinogenesis in stem cell systems. PMID:8944567

  19. A kinetic model to study the regulation of β-catenin, APC, and Axin in the human colonic crypt.

    PubMed

    Emerick, Brooks; Schleiniger, Gilberto; Boman, Bruce M

    2017-11-01

    The Wnt/[Formula: see text]-catenin pathway plays a crucial role in stem cell renewal and differentiation in the normal human colonic crypt. The balance between [Formula: see text]-catenin and APC along the crypt axis determines its normal functionality. The mechanism that deregulates this balance may give insight into the initiation of colorectal cancer. This is significant because the spatial dysregulation of [Formula: see text]-catenin by the mutated tumor suppressor gene/protein APC in human colonic crypts is responsible for the initiation and growth of colorectal cancer. We consider a regulatory function that promotes APC synthesis within the cell and its effect on the accumulation of the Wnt target protein, [Formula: see text]-catenin. It is evident that an APC gradient exists along the crypt axis; however, the mechanism by which APC expression is regulated within the cell is not well known. We investigate the dynamics of an APC regulatory mechanism with an increased level of Axin at the subcellular level. Model output shows an increase of APC for a diminished Wnt signal, which explains the APC gradient along the crypt. We find that the dynamic interplay between [Formula: see text]-catenin, APC, and Axin produces oscillatory behavior, which is controlled by the Wnt stimulus. In the presence of reduced functional APC, the oscillations are amplified, which suggests that the cell remains in a more proliferative state for longer periods of time. Increased Axin levels (typical of mammalian cells) reduce oscillatory behavior and minimize the levels of [Formula: see text]-catenin within the cell while raising the levels of APC.

  20. Complete mtDNA genomes of Filipino ethnolinguistic groups: a melting pot of recent and ancient lineages in the Asia-Pacific region

    PubMed Central

    Delfin, Frederick; Min-Shan Ko, Albert; Li, Mingkun; Gunnarsdóttir, Ellen D; Tabbada, Kristina A; Salvador, Jazelyn M; Calacal, Gayvelline C; Sagum, Minerva S; Datar, Francisco A; Padilla, Sabino G; De Ungria, Maria Corazon A; Stoneking, Mark

    2014-01-01

    The Philippines is a strategic point in the Asia-Pacific region for the study of human diversity, history and origins, as it is a cross-road for human migrations and consequently exhibits enormous ethnolinguistic diversity. Following on a previous in-depth study of Y-chromosome variation, here we provide new insights into the maternal genetic history of Filipino ethnolinguistic groups by surveying complete mitochondrial DNA (mtDNA) genomes from a total of 14 groups (11 groups in this study and 3 groups previously published) including previously published mtDNA hypervariable segment (HVS) data from Filipino regional center groups. Comparison of HVS data indicate genetic differences between ethnolinguistic and regional center groups. The complete mtDNA genomes of 14 ethnolinguistic groups reveal genetic aspects consistent with the Y-chromosome, namely: diversity and heterogeneity of groups, no support for a simple dichotomy between Negrito and non-Negrito groups, and different genetic affinities with Asia-Pacific groups that are both ancient and recent. Although some mtDNA haplogroups can be associated with the Austronesian expansion, there are others that associate with South Asia, Near Oceania and Australia that are consistent with a southern migration route for ethnolinguistic group ancestors into the Asia-Pacific, with a timeline that overlaps with the initial colonization of the Asia-Pacific region, the initial colonization of the Philippines and a possible separate post-colonization migration into the Philippine archipelago. PMID:23756438

  1. The modern human colonization of western Eurasia: when and where?

    NASA Astrophysics Data System (ADS)

    Hublin, Jean-Jacques

    2015-06-01

    Dating the timing of the replacement of local Neandertal populations by modern humans in western Eurasia at the dawn of the Upper Palaeolithic remains challenging due to the scarcity of the palaeontological evidence and to the complexity of the archaeological record. Furthermore, key specimens have been discovered in the course of excavations that unfortunately did not meet today's archaeological standards. The importance of site-formation processes in the considered time period makes it sometimes difficult to precisely assign fragmentary remains a posteriori to distinct techno-complexes. The improvements in dating methods have however allowed for the clarification of many chronological issues in the past decade. Archaeological and palaeontological evidence strongly suggest that the initial modern colonization of eastern Europe and central Asia should be related to the spread of techno-complexes assigned to the Initial Upper Palaeolithic. This first expansion may have started as early as 48 ka cal BP. The earliest phases of the Aurignacian complex (Protoaurignacian and Early Aurignacian) seem to represent another modern wave of migrations, starting in the Levant area. The expansion of this techno-complex throughout Europe completed the modern colonization of the continent. The interpretation of a third group of industries referred to as "transitional assemblages" in western and central Europe is much debated. At least in part, these assemblages might have been produced by Neandertal groups that may have survived until c. 41 ka cal BP, according to the directly dated Neandertal specimens of Saint-Césaire (France) and Spy (Belgium).

  2. MSH3-deficiency initiates EMAST without oncogenic transformation of human colon epithelial cells.

    PubMed

    Campregher, Christoph; Schmid, Gerald; Ferk, Franziska; Knasmüller, Siegfried; Khare, Vineeta; Kortüm, Benedikt; Dammann, Kyle; Lang, Michaela; Scharl, Theresa; Spittler, Andreas; Roig, Andres I; Shay, Jerry W; Gerner, Christopher; Gasche, Christoph

    2012-01-01

    Elevated microsatellite instability at selected tetranucleotide repeats (EMAST) is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. HCT116 and HCT116+chr3 (both MSH3-deficient) and primary human colon epithelial cells (HCEC, MSH3-wildtype) were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs) were assessed by Comet assay. Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10(-4)) at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50), apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon carcinogenesis.

  3. MSH3-Deficiency Initiates EMAST without Oncogenic Transformation of Human Colon Epithelial Cells

    PubMed Central

    Campregher, Christoph; Schmid, Gerald; Ferk, Franziska; Knasmüller, Siegfried; Khare, Vineeta; Kortüm, Benedikt; Dammann, Kyle; Lang, Michaela; Scharl, Theresa; Spittler, Andreas; Roig, Andres I.; Shay, Jerry W.; Gerner, Christopher; Gasche, Christoph

    2012-01-01

    Background/Aim Elevated microsatellite instability at selected tetranucleotide repeats (EMAST) is a genetic signature in certain cases of sporadic colorectal cancer and has been linked to MSH3-deficiency. It is currently controversial whether EMAST is associated with oncogenic properties in humans, specifically as cancer development in Msh3-deficient mice is not enhanced. However, a mutator phenotype is different between species as the genetic positions of repetitive sequences are not conserved. Here we studied the molecular effects of human MSH3-deficiency. Methods HCT116 and HCT116+chr3 (both MSH3-deficient) and primary human colon epithelial cells (HCEC, MSH3-wildtype) were stably transfected with an EGFP-based reporter plasmid for the detection of frameshift mutations within an [AAAG]17 repeat. MSH3 was silenced by shRNA and changes in protein expression were analyzed by shotgun proteomics. Colony forming assay was used to determine oncogenic transformation and double strand breaks (DSBs) were assessed by Comet assay. Results Despite differential MLH1 expression, both HCT116 and HCT116+chr3 cells displayed comparable high mutation rates (about 4×10−4) at [AAAG]17 repeats. Silencing of MSH3 in HCECs leads to a remarkable increased frameshift mutations in [AAAG]17 repeats whereas [CA]13 repeats were less affected. Upon MSH3-silencing, significant changes in the expression of 202 proteins were detected. Pathway analysis revealed overexpression of proteins involved in double strand break repair (MRE11 and RAD50), apoptosis, L1 recycling, and repression of proteins involved in metabolism, tRNA aminoacylation, and gene expression. MSH3-silencing did not induce oncogenic transformation and DSBs increased 2-fold. Conclusions MSH3-deficiency in human colon epithelial cells results in EMAST, formation of DSBs and significant changes of the proteome but lacks oncogenic transformation. Thus, MSH3-deficiency alone is unlikely to drive human colon carcinogenesis. PMID:23209772

  4. Preventive Effects of Cocoa and Cocoa Antioxidants in Colon Cancer

    PubMed Central

    Martín, María Angeles; Goya, Luis; Ramos, Sonia

    2016-01-01

    Colorectal cancer is one of the main causes of cancer-related mortality in the developed world. Carcinogenesis is a multistage process conventionally defined by the initiation, promotion and progression stages. Natural polyphenolic compounds can act as highly effective antioxidant and chemo-preventive agents able to interfere at the three stages of cancer. Cocoa has been demonstrated to counteract oxidative stress and to have a potential capacity to interact with multiple carcinogenic pathways involved in inflammation, proliferation and apoptosis of initiated and malignant cells. Therefore, restriction of oxidative stress and/or prevention or delayed progression of cancer stages by cocoa antioxidant compounds has gained interest as an effective approach in colorectal cancer prevention. In this review, we look over different in vitro and in vivo studies that have identified potential targets and mechanisms whereby cocoa and their flavonoids could interfere with colonic cancer. In addition, evidence from human studies is also illustrated. PMID:28933386

  5. Age-related differential responses to curcumin-induced apoptosis during the initiation of colon cancer in rats.

    PubMed

    Kwon, Youngjoo; Magnuson, Bernadene A

    2009-02-01

    Curcumin is a widely-used dietary supplement and a chemopreventive agent for various cancers. Pre-clinical chemopreventive studies rarely consider the effect of aging. We previously reported that unlike young animals, curcumin is ineffective in middle-aged rats for colon chemoprevention. This study investigated whether resistance to apoptosis during cancer initiation contributes to this age-dependent effect. Young, middle-aged, and old F344 rats were fed either curcumin (0.6%) or control diet. Colonic apoptosis was evaluated 0, 8, and 16 h after azoxymethane (AOM) injection. Colonic Hsp70 mRNA levels, caspase-9 activity, cell proliferation, and crypt morphology were measured. In AOM-treated rats, only middle-aged rats were resistant to curcumin-induced apoptosis whereas cell proliferation was reduced by curcumin in all ages. Curcumin-induced apoptosis was mediated by caspase-9 in young but not older rats. Transcriptional Hsp70 expression was induced in only young rats and was suppressed by curcumin. Therefore, the age-related difference in curcumin chemoprevention is due to a differential response in induction of apoptosis. The mitochondria-dependent pathway seems to mediate curcumin-induced apoptosis in young but not older animals. Hsp70 expression was not related with resistance to curcumin-induced apoptosis. Understanding age-related differences in the apoptotic response may lead to improved translation from pre-clinical animal studies to humans.

  6. Mitochondrial diversity in human head louse populations across the Americas.

    PubMed

    Ascunce, Marina S; Fane, Jackie; Kassu, Gebreyes; Toloza, Ariel C; Picollo, Maria I; González-Oliver, Angélica; Reed, David L

    2013-09-01

    Anthropological studies suggest that the genetic makeup of human populations in the Americas is the result of diverse processes including the initial colonization of the continent by the first people plus post-1492 European migrations. Because of the recent nature of some of these events, understanding the geographical origin of American human diversity is challenging. However, human parasites have faster evolutionary rates and larger population sizes allowing them to maintain greater levels of genetic diversity than their hosts. Thus, we can use human parasites to provide insights into some aspects of human evolution that may be unclear from direct evidence. In this study, we analyzed mitochondrial DNA (mtDNA) sequences from 450 head lice in the Americas. Haplotypes clustered into two well-supported haplogroups, known as A and B. Haplogroup frequencies differ significantly among North, Central and South America. Within each haplogroup, we found evidence of demographic expansions around 16,000 and 20,000 years ago, which correspond broadly with those estimated for Native Americans. The parallel timing of demographic expansions of human lice and Native Americans plus the contrasting pattern between the distribution of haplogroups A and B through the Americas suggests that human lice can provide additional evidence about the human colonization of the New World. Copyright © 2013 Wiley Periodicals, Inc.

  7. Quantification of horizontal transmission of Salmonella enterica serovar Enteritidis bacteria in pair-housed groups of laying hens.

    PubMed

    Thomas, M E; Klinkenberg, D; Ejeta, G; Van Knapen, F; Bergwerff, A A; Stegeman, J A; Bouma, A

    2009-10-01

    An important source of human salmonellosis is the consumption of table eggs contaminated with Salmonella enterica serovar Enteritidis. Optimization of the various surveillance programs currently implemented to reduce human exposure requires knowledge of the dynamics of S. Enteritidis infection within flocks. The aim of this study was to provide parameter estimates for a transmission model of S. Enteritidis in laying-type chicken flocks. An experiment was carried out with 60 pairs of laying hens. Per pair, one hen was inoculated with S. Enteritidis and the other was contact exposed. After inoculation, cloacal swab samples from all hens were collected over 18 days and tested for the presence of S. Enteritidis. On the basis of this test, it was determined if and when each contact-exposed hen became colonized. A transmission model including a latency period of 1 day and a slowly declining infectivity level was fitted. The mean initial transmission rate was estimated to be 0.47 (95% confidence interval [CI], 0.30 to 0.72) per day. The reproduction number R(0), the average number of hens infected by one colonized hen in a susceptible population, was estimated to be 2.8 (95% CI, 1.9 to 4.2). The generation time, the average time between colonization of a "primary" hen and colonization of contact-exposed hens, was estimated to be 7.0 days (95% CI, 5.0 to 11.6 days). Simulations using these parameters showed that a flock of 20,000 hens would reach a maximum colonization level of 92% within 80 days after colonization of the first hen. These results can be used, for example, to evaluate the effectiveness of control and surveillance programs and to optimize these programs in a cost-benefit analysis.

  8. High-resolution anatomic correlation of cyclic motor patterns in the human colon: Evidence of a rectosigmoid brake

    PubMed Central

    Lin, Anthony Y.; Du, Peng; Dinning, Philip G.; Arkwright, John W.; Kamp, Jozef P.; Cheng, Leo K.; Bissett, Ian P.

    2017-01-01

    Colonic cyclic motor patterns (CMPs) have been hypothesized to act as a brake to limit rectal filling. However, the spatiotemporal profile of CMPs, including anatomic origins and distributions, remains unclear. This study characterized colonic CMPs using high-resolution (HR) manometry (72 sensors, 1-cm resolution) and their relationship with proximal antegrade propagating events. Nine healthy volunteers were recruited. Recordings were performed over 4 h, with a 700-kcal meal given after 2 h. Propagating events were visually identified and analyzed by pattern, origin, amplitude, extent of propagation, velocity, and duration. Manometric data were normalized using anatomic landmarks identified on abdominal radiographs. These were mapped over a three-dimensional anatomic model. CMPs comprised a majority of detected propagating events. Most occurred postprandially and were retrograde propagating events (84.9 ± 26.0 retrograde vs. 14.3 ± 11.8 antegrade events/2 h, P = 0.004). The dominant sites of initiation for retrograde CMPs were in the rectosigmoid region, with patterns proximally propagating by a mean distance of 12.4 ± 0.3 cm. There were significant differences in the characteristics of CMPs depending on the direction of travel and site of initiation. Association analysis showed that proximal antegrade propagating events occurred independently of CMPs. This study accurately characterized CMPs with anatomic correlation. CMPs were unlikely to be triggered by proximal antegrade propagating events in our study context. However, the distal origin and prominence of retrograde CMPs could still act as a mechanism to limit rectal filling and support the theory of a “rectosigmoid brake.” NEW & NOTEWORTHY Retrograde cyclic motor patterns (CMPs) are the dominant motor patterns in a healthy prepared human colon. The major sites of initiation are in the rectosigmoid region, with retrograde propagation, supporting the idea of a “rectosigmoid brake.” A significant increase in the number of CMPs is seen after a meal. In our study context, the majority of CMPs occurred independent of proximal propagating events, suggesting that CMPs are primarily controlled by external innervation. PMID:28336544

  9. AMPK/p53 Axis Is Essential for α-Lipoic Acid-Regulated Metastasis in Human and Mouse Colon Cancer Cells.

    PubMed

    Park, Sunmi; Choi, Seung Kug; Choi, Yura; Moon, Hyun-Seuk

    2015-10-01

    α-Lipoic acid (ALA) has an anticancer property of lung, cervix, and prostate cancer cells. However, direct evidence that ALA contributes to the development of colon cancer has not been fully elucidated. In addition, no previous studies have evaluated whether ALA may regulate malignant potential, such as adhesion, invasion, and colony formation of colon cancer cells. To address the aforementioned questions, we conducted in vitro ALA signaling studies using human (HT29) and mouse (MCA38) colon cancer cell lines. We observed that cell proliferation is reduced by ALA administration in a dose-dependent manner in human and mouse colon cancer cell lines. Specifically, 0.5 to 1 mM concentration of ALA significantly decreased cell proliferation when compared with control. Similarly, we found that ALA downregulates adhesion, invasion, and colony formation. Finally, we observed that ALA activates p53 and AMPK signaling pathways in human and mouse colon cancer cells. We found for the first time that ALA suppresses cell proliferation and malignant potential via p53 and AMPK signaling pathways in human and mouse colon cancer cells. These new and early mechanistic studies provide a causal role of ALA in colon cancer, suggesting that ALA might be a useful agent in the management or chemoprevention of colon cancer.

  10. Activation of Intestinal Human Pregnane X Receptor Protects against Azoxymethane/Dextran Sulfate Sodium–Induced Colon Cancer

    PubMed Central

    Cheng, Jie; Fang, Zhong-Ze; Nagaoka, Kenjiro; Okamoto, Minoru; Qu, Aijuan; Tanaka, Naoki; Kimura, Shioko

    2014-01-01

    The role of intestinal human pregnane X receptor (PXR) in colon cancer was determined through investigation of the chemopreventive role of rifaximin, a specific agonist of intestinal human PXR, toward azoxymethane (AOM)/dextran sulfate sodium (DSS)–induced colon cancer. Rifaximin treatment significantly decreased the number of colon tumors induced by AOM/DSS treatment in PXR-humanized mice, but not wild-type or Pxr-null mice. Additionally, rifaximin treatment markedly increased the survival rate of PXR-humanized mice, but not wild-type or Pxr-null mice. These data indicated a human PXR–dependent therapeutic chemoprevention of rifaximin toward AOM/DSS-induced colon cancer. Nuclear factor κ-light-chain-enhancer of activated B cells–mediated inflammatory signaling was upregulated in AOM/DSS-treated mice, and inhibited by rifaximin in PXR-humanized mice. Cell proliferation and apoptosis were also modulated by rifaximin treatment in the AOM/DSS model. In vitro cell-based assays further revealed that rifaximin regulated cell apoptosis and cell cycle in a human PXR-dependent manner. These results suggested that specific activation of intestinal human PXR exhibited a chemopreventive role toward AOM/DSS-induced colon cancer by mediating anti-inflammation, antiproliferation, and proapoptotic events. PMID:25277138

  11. Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.

    1992-01-01

    A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.

  12. Worm Burden-Dependent Disruption of the Porcine Colon Microbiota by Trichuris suis Infection

    PubMed Central

    Wu, Sitao; Li, Robert W.; Li, Weizhong; Beshah, Ethiopia; Dawson, Harry D.; Urban, Joseph F.

    2012-01-01

    Helminth infection in pigs serves as an excellent model for the study of the interaction between human malnutrition and parasitic infection and could have important implications in human health. We had observed that pigs infected with Trichuris suis for 21 days showed significant changes in the proximal colon microbiota. In this study, interactions between worm burden and severity of disruptions to the microbial composition and metabolic potentials in the porcine proximal colon microbiota were investigated using metagenomic tools. Pigs were infected by a single dose of T. suis eggs for 53 days. Among infected pigs, two cohorts were differentiated that either had adult worms or were worm-free. Infection resulted in a significant change in the abundance of approximately 13% of genera detected in the proximal colon microbiota regardless of worm status, suggesting a relatively persistent change over time in the microbiota due to the initial infection. A significant reduction in the abundance of Fibrobacter and Ruminococcus indicated a change in the fibrolytic capacity of the colon microbiota in T. suis infected pigs. In addition, ∼10% of identified KEGG pathways were affected by infection, including ABC transporters, peptidoglycan biosynthesis, and lipopolysaccharide biosynthesis as well as α-linolenic acid metabolism. Trichuris suis infection modulated host immunity to Campylobacter because there was a 3-fold increase in the relative abundance in the colon microbiota of infected pigs with worms compared to naïve controls, but a 3-fold reduction in worm-free infected pigs compared to controls. The level of pathology observed in infected pigs with worms compared to worm-free infected pigs may relate to the local host response because expression of several Th2-related genes were enhanced in infected pigs with worms versus those worm-free. Our findings provided insight into the dynamics of the proximal colon microbiota in pigs in response to T. suis infection. PMID:22532855

  13. Identification and use of the putative Bacteroides ovatus xylanase promoter for the inducible production of recombinant human proteins.

    PubMed

    Hamady, Zaed Z R; Farrar, Mark D; Whitehead, Terence R; Holland, Keith T; Lodge, J Peter A; Carding, Simon R

    2008-10-01

    The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate Bacteroides ovatus for the production of these molecules, due to its ability to colonize the colon and xylan utilization properties. Here we have identified the putative xylanase promoter. The 5' region of the corresponding mRNA was determined by 5'RACE analysis and the transcription initiation site was identified 216 bp upstream of the ATG start codon. The putative xylanase promoter was regulated by xylan in a dose- and time-dependent manner, and repressed by glucose. This promoter was subsequently used to direct the controlled expression of a gene encoding the human intestinal trefoil factor (TFF-3) after integration as a single copy into the chromosome of B. ovatus. The resulting strain produced biologically active TFF-3 in the presence of xylan. These findings identify the B. ovatus xylanase operon promoter and show that it can be utilized to direct xylan-inducible expression of heterologous eukaryotic genes in B. ovatus.

  14. Effects of antimicrobial therapy on faecal bulking.

    PubMed Central

    Kurpad, A V; Shetty, P S

    1986-01-01

    It has recently been postulated that dietary fibre acts as a substrate for colonic flora, and that the resultant microbial growth bulks the faeces. Antimicrobial therapy was used in this study to assess the effect of reduction in colonic microbial proliferation on faecal output in human subjects on a constant dietary fibre intake. Six healthy young male subjects were maintained on constant daily diets and metronidazole (1 g/day) and ampicillin (1 g/day) were administered in divided doses for one week after an initial baseline study period of two weeks. After antimicrobial therapy, mean faecal weights rose from 176.0 +/- 27.0 g to 348.1 +/- 37.7 g/day. Faecal solids increased from 32.9 +/- 4.2 g to 46.1 +/- 5.8 g/day. Faecal neutral detergent fibre increased from 1.92 +/- 0.42 g to 15.19 +/- 2.58 g/day. The mean transit times and mean daily faecal nitrogen remained the same, both before and after treatment. Substantial breakdown of dietary fibre occurs in the human colon which may decrease faecal bulk, suggesting that water holding by dietary fibre is probably of greater importance for faecal bulking. PMID:3005139

  15. The Multiple Carbohydrate Binding Specificities of Helicobacter pylori

    NASA Astrophysics Data System (ADS)

    Teneberg, Susann

    Persistent colonization of the human stomach by Helicobacter pylori is a risk factor for the development of peptic ulcer disease and gastric cancer. Adhesion of microbes to the target tissue is an important determinant for successful initiation, establishment and maintenance of infection, and a variety of different candidate carbohydrate receptors for H. pylori have been identified. Here the different the binding specifities, and their potential role in adhesion to human gastric epithelium are described. Finally, recent findings on the roles of sialic acid binding SabA adhesin in interactions with human neutrophils and erythrocytes are discussed.

  16. Role of Streptococcus sanguinis sortase A in bacterial colonization.

    PubMed

    Yamaguchi, Masaya; Terao, Yutaka; Ogawa, Taiji; Takahashi, Toshihito; Hamada, Shigeyuki; Kawabata, Shigetada

    2006-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, has low cariogenicity, though colonization on tooth surfaces by this bacterium initiates aggregation by other oral bacteria and maturation of dental plaque. Additionally, S. sanguinis is frequently isolated from infective endocarditis patients. We investigated the functions of sortase A (SrtA), which cleaves LPXTG-containing proteins and anchors them to the bacterial cell wall, as a possible virulence factor of S. sanguinis. We identified the srtA gene of S. sanguinis by searching a homologous gene of Streptococcus mutans in genome databases. Next, we constructed an srtA-deficient mutant strain of S. sanguinis by insertional inactivation and compared it to the wild type strain. In the case of the mutant strain, some surface proteins could not anchor to the cell wall and were partially released into the culture supernatant. Furthermore, adherence to saliva-coated hydroxyapatite beads and polystyrene plates, as well as adherence to and invasion of human epithelial cells were reduced significantly in the srtA-deficient strain when compared to the wild type. In addition, antiopsonization levels and bacterial survival of the srtA-deficient mutant were decreased in human whole blood. This is the first known study to report that SrtA contributes to antiopsonization in streptococci. Our results suggest that SrtA anchors surface adhesins as well as some proteins that function as antiopsonic molecules as a means of evading the human immune system. Furthermore, they demonstrate that SrtA of S. sanguinis plays important roles in bacterial colonization.

  17. Extensive Horizontal Gene Transfer during Staphylococcus aureus Co-colonization In Vivo

    PubMed Central

    McCarthy, Alex J.; Loeffler, Anette; Witney, Adam A.; Gould, Katherine A.; Lloyd, David H.; Lindsay, Jodi A.

    2014-01-01

    Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro. PMID:25260585

  18. The Association Between Molecular Markers in Colorectal Sessile Serrated Polyps and Colorectal Cancer Risk

    DTIC Science & Technology

    2017-08-01

    mouse and human colon epithelium; Aim 2.) Perform genome editing using CRISPR /Cas9 on immortalized human colon epithelial cells to introduce CRC...relevant gene mutations; Aim 3.) Use CRISPR /Cas9 genome editing in colon organoid cultures to introduce CRC relevant gene mutations into primary colon cells

  19. Pneumolysin plays a key role at the initial step of establishing pneumococcal nasal colonization.

    PubMed

    Hotomi, Muneki; Yuasa, Jun; Briles, David E; Yamanaka, Noboru

    2016-09-01

    Nasopharyngeal colonization by Streptococcus pneumoniae is an important initial step for the subsequent development of pneumococcal infections. Pneumococci have many virulence factors that play a role in colonization. Pneumolysin (PLY), a pivotal pneumococcal virulence factor for invasive disease, causes severe tissue damage and inflammation with disruption of epithelial tight junctions. In this study, we evaluated the role of PLY in nasal colonization of S. pneumoniae using a mouse colonization model. A reduction of numbers of PLY-deficient pneumococci recovered from nasal tissue, as well as nasal wash, was observed at days 1 and 2 post-intranasal challenges, but not later. The findings strongly support an important role for PLY in the initial establishment nasal colonization. PLY-dependent invasion of local nasal mucosa may be required to establish nasal colonization with S. pneumoniae. The data help provide a rationale to explain why an organism that exists as an asymptomatic colonizer has evolved virulence factors that enable it to occasionally invade and kill its hosts. Thus, the same pneumococcal virulence factor, PLY that can contribute to killing the host, may also play a role early in the establishment of nasopharynx carriage.

  20. Human aberrant crypt foci with carcinoma in situ from a patient with sporadic colon cancer.

    PubMed

    Konstantakos, A K; Siu, I M; Pretlow, T G; Stellato, T A; Pretlow, T P

    1996-09-01

    Aberrant crypt foci are putative preneoplastic lesions found in the colons of carcinogen-treated rodents and at an increased frequency in humans at increased risk for colon cancer. There is a strong association between aberrant crypt foci and colon cancer, including many shared phenotypic and genetic alterations. The aim of this study is to present further evidence of a relationship between aberrant crypt foci and colon cancer in humans. Multiple aberrant crypt foci from a single patient were identified in unembedded colonic mucosa. Histological sections of the aberrant crypt foci and adjacent mucosa were evaluated for dysplasia, proliferative activity, and pigment-laden macrophages that were characterized with histochemical techniques. The first patient with sporadic colon cancer identified with aberrant crypt foci with carcinoma in situ is described. It is interesting that this 99-year-old patient had multiple carcinomas in situ, pseudomelanosis coli, and two metachronous colon cancers. These data lend support to the hypothesis that aberrant crypt foci are precursors of some colon cancers.

  1. Vasopressor use after initial damage control laparotomy increases risk for anastomotic disruption in the management of destructive colon injuries.

    PubMed

    Fischer, Peter E; Nunn, Andrew M; Wormer, Blair A; Christmas, A Britton; Gibeault, Lindsay A; Green, John M; Sing, Ronald F

    2013-12-01

    Management of destructive colon injuries during damage control (DC) laparotomy is debated. The authors reviewed a single institution's experience with destructive colon injuries to identify risk factors for anastomotic failure after colon reconstruction. The authors identified all trauma patients sustaining destructive colon injuries between 2002 and 2011 from their medical center's trauma registry. Anastomotic leak was defined as suture or staple line disruption or enteral fistula formation. Of 171 identified patients, 68 had DC procedures, 41 (60%) had subsequent anastomoses performed during the same hospitalization, and 27 (40%) were diverted. The colon anastomotic leak rate in patients who underwent DC laparotomy was higher than in patients who were reconstructed at the primary operation in a non-DC setting (17% vs 6%, P = .09). The use of vasopressors after the initial DC operation more than quadrupled the leak rate to 50% (P = .02). Colonic anastomotic disruptions yield deadly consequences, and diversion rather than anastomosis should be used in patients who require vasopressor support after the initial DC procedure. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Archaeological Support for the Three-Stage Expansion of Modern Humans across Northeastern Eurasia and into the Americas

    PubMed Central

    Hamilton, Marcus J.; Buchanan, Briggs

    2010-01-01

    Background Understanding the dynamics of the human range expansion across northeastern Eurasia during the late Pleistocene is central to establishing empirical temporal constraints on the colonization of the Americas [1]. Opinions vary widely on how and when the Americas were colonized, with advocates supporting either a pre-[2] or post-[1], [3], [4], [5], [6] last glacial maximum (LGM) colonization, via either a land bridge across Beringia [3], [4], [5], a sea-faring Pacific Rim coastal route [1], [3], a trans-Arctic route [4], or a trans-Atlantic oceanic route [5]. Here we analyze a large sample of radiocarbon dates from the northeast Eurasian Upper Paleolithic to identify the origin of this expansion, and estimate the velocity of colonization wave as it moved across northern Eurasia and into the Americas. Methodology/Principal Findings We use diffusion models [6], [7] to quantify these dynamics. Our results show the expansion originated in the Altai region of southern Siberia ∼46kBP , and from there expanded across northern Eurasia at an average velocity of 0.16 km per year. However, the movement of the colonizing wave was not continuous but underwent three distinct phases: 1) an initial expansion from 47-32k calBP; 2) a hiatus from ∼32-16k calBP, and 3) a second expansion after the LGM ∼16k calBP. These results provide archaeological support for the recently proposed three-stage model of the colonization of the Americas [8], [9]. Our results falsify the hypothesis of a pre-LGM terrestrial colonization of the Americas and we discuss the importance of these empirical results in the light of alternative models. Conclusions/Significance Our results demonstrate that the radiocarbon record of Upper Paleolithic northeastern Eurasia supports a post-LGM terrestrial colonization of the Americas falsifying the proposed pre-LGM terrestrial colonization of the Americas. We show that this expansion was not a simple process, but proceeded in three phases, consistent with genetic data, largely in response to the variable climatic conditions of late Pleistocene northeast Eurasia. Further, the constraints imposed by the spatiotemporal gradient in the empirical radiocarbon record across this entire region suggests that North America cannot have been colonized much before the existing Clovis radiocarbon record suggests. PMID:20814574

  3. Pseudomonas aeruginosa RsmA Plays an Important Role during Murine Infection by Influencing Colonization, Virulence, Persistence, and Pulmonary Inflammation▿

    PubMed Central

    Mulcahy, Heidi; O'Callaghan, Julie; O'Grady, Eoin P.; Maciá, María D.; Borrell, Nuria; Gómez, Cristina; Casey, Pat G.; Hill, Colin; Adams, Claire; Gahan, Cormac G. M.; Oliver, Antonio; O'Gara, Fergal

    2008-01-01

    The ability of Pseudomonas aeruginosa to cause a broad range of infections in humans is due, at least in part, to its adaptability and its capacity to regulate the expression of key virulence genes in response to specific environmental conditions. Multiple two-component response regulators have been shown to facilitate rapid responses to these environmental conditions, including the coordinated expression of specific virulence determinants. RsmA is a posttranscriptional regulatory protein which controls the expression of a number of virulence-related genes with relevance for acute and chronic infections. Many membrane-bound sensors, including RetS, LadS, and GacS, are responsible for the reciprocal regulation of genes associated with acute infection and chronic persistence. In P. aeruginosa this is due to sensors influencing the expression of the regulatory RNA RsmZ, with subsequent effects on the level of free RsmA. While interactions between an rsmA mutant and human airway epithelial cells have been examined in vitro, the role of RsmA during infection in vivo has not been determined yet. Here the function of RsmA in both acute and chronic models of infection was examined. The results demonstrate that RsmA is involved in initial colonization and dissemination in a mouse model of acute pneumonia. Furthermore, while loss of RsmA results in reduced colonization during the initial stages of acute infection, the data show that mutation of rsmA ultimately favors chronic persistence and results in increased inflammation in the lungs of infected mice. PMID:18025099

  4. Risk of vancomycin-resistant enterococci bloodstream infection among patients colonized with vancomycin-resistant enterococci.

    PubMed

    Kara, Ahu; Devrim, İlker; Bayram, Nuri; Katipoğlu, Nagehan; Kıran, Ezgi; Oruç, Yeliz; Demiray, Nevbahar; Apa, Hurşit; Gülfidan, Gamze

    2015-01-01

    Vancomycin-resistant enterococci colonization has been reported to increase the risk of developing infections, including bloodstream infections. In this study, we aimed to share our experience with the vancomycin-resistant enterococci bloodstream infections following gastrointestinal vancomycin-resistant enterococci colonization in pediatric population during a period of 18 months. A retrospective cohort of children admitted to a 400-bed tertiary teaching hospital in Izmir, Turkey whose vancomycin-resistant enterococci colonization was newly detected during routine surveillances for gastrointestinal vancomycin-resistant enterococci colonization during the period of January 2009 and December 2012 were included in this study. All vancomycin-resistant enterococci isolates found within 18 months after initial detection were evaluated for evidence of infection. Two hundred and sixteen patients with vancomycin-resistant enterococci were included in the study. Vancomycin-resistant enterococci colonization was detected in 136 patients (62.3%) while they were hospitalized at intensive care units; while the remaining majority (33.0%) were hospitalized at hematology-oncology department. Vancomycin-resistant enterococci bacteremia was present only in three (1.55%) patients. All these patients were immunosuppressed due to human immunodeficiency virus (one patient) and intensive chemotherapy (two patients). In conclusion, our study found that 1.55% of vancomycin-resistant enterococci-colonized children had developed vancomycin-resistant enterococci bloodstream infection among the pediatric intensive care unit and hematology/oncology patients; according to our findings, we suggest that immunosupression is the key point for developing vancomycin-resistant enterococci bloodstream infections. Copyright © 2014 Elsevier Editora Ltda. All rights reserved.

  5. Characterization of the EP receptor types that mediate longitudinal smooth muscle contraction of human colon, mouse colon and mouse ileum.

    PubMed

    Fairbrother, S E; Smith, J E; Borman, R A; Cox, H M

    2011-08-01

    Prostaglandin E(2) (PGE(2) ) is an inflammatory mediator implicated in several gastrointestinal pathologies that affect normal intestinal transit. The aim was to establish the contribution of the four EP receptor types (EP(1-4) ), in human colon, that mediate PGE(2) -induced longitudinal smooth muscle contraction. Changes in isometric muscle tension of human colon, mouse colon and mouse ileum were measured in organ baths in response to receptor-specific agonists and antagonists. In addition, lidocaine was used to block neurogenic activity to investigate whether EP receptors were pre- or post-junctional. PGE(2) contracted longitudinal muscle from human and mouse colon and mouse ileum. These contractions were inhibited by the EP(1) receptor antagonist, EP(1) A in human colon, whereas a combination of EP(1) A and the EP(3) antagonist, L798106 inhibited agonist responses in both mouse preparations. The EP(3) agonist, sulprostone also increased muscle tension in both mouse tissues, and these responses were inhibited by lidocaine in the colon but not in the ileum. Although PGE(2) consistently contracted all three muscle preparations, butaprost decreased tension by activating smooth muscle EP(2) receptors in both colonic tissues. Alternatively, in mouse ileum, butaprost responses were lidocaine-sensitive, suggesting that it was activating prejunctional EP(2) receptors on inhibitory motor neurons. Conversely, EP(4) receptors were not functional in all the intestinal muscle preparations tested. PGE(2) -induced contraction of longitudinal smooth muscle is mediated by EP(1) receptors in human colon and by a combination of EP(1) and EP(3) receptors in mouse intestine, whereas EP(2) receptors modulate relaxation in all three preparations. © 2011 Blackwell Publishing Ltd.

  6. Chemoprevention of azoxymethane-initiated colon cancer in rat by using a novel polymeric nanocarrier--curcumin.

    PubMed

    Alizadeh, Ali Mohammad; Khaniki, Mahmood; Azizian, Saleh; Mohaghgheghi, Mohammad Ali; Sadeghizadeh, Majid; Najafi, Farhood

    2012-08-15

    Curcumin is a potential natural anticancer drug with limited bioavailability due to the lack of solubility in aqueous solvents. The present study is designed to investigate the preventive effects of polymeric nanocarrier-curcumin (PNCC) on colon carcinogenesis in an azoxymethane-induced rat tumor. Forty rats were divided into control, curcumin- and PNCC-treated groups. Animals received azoxymethane (AOM) as a carcinogenic agent (15 mg/kg, s.c.) weekly for two consecutive weeks. They were given curcumin 0.2% and PNCC two weeks before till 14 weeks after the last injection of AOM. In the end, post euthanasia, the entire gastrointestinal tract was scrutinized for tumors, and the rest of the body for metastatic deposits. Tumor number, size and location were characterized. The histopathological and immunohistochemistry examinations were also performed on colon tissue. In vivo, curcumin nanoparticles inhibited colon cancer growth in animal model. The tumors incidence and number decreased by nanocurcumin comparison with control. Furthermore, the nuclear/cytoplasmic ratio, epithelial stratification, nuclear dispolarity, goblet depletion, structural abnormality, and the expression of Beta-catenin and Bcl-2 proteins were reduced in PNCC compared to others groups (P<0.05). In addition, Bax protein expression was significantly increased in PNCC in comparison with control and curcumin-treated groups (P<0.001). The present study demonstrated the potential anticancer effects of PNCC in a typical animal model. The results provide evidence that nanopolymeric curcumin exerts a significant chemopreventive effect on AOM-initiated colon cancer through cell proliferation inhibition and apoptosis induction. More investigations are needed to confirm its safety for human use. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Recording In Vivo Human Colonic Motility: What Have We Learnt Over the Past 100 Years?

    PubMed

    Dinning, Phil G

    To understand the abnormalities that underpin functional gut disorders we must first gain insight into the normal patterns of gut motility. While detailed information continually builds on the motor patterns (and mechanisms that control them) of the human esophagus and anorectum, our knowledge of normal and abnormal motility in the more inaccessible regions of the gut remains poor. This particularly true of the human colon. Investigation of in vivo colonic motor patterns is achieved through measures of transit (radiology, scintigraphy and, more recently, "smart pills") or by direct real-time recording of colonic contractility (intraluminal manometry). This short review will provide an overview of findings from the past and present and attempt to piece together the complex nature of colonic motor patterns. In doing so it will build a profile of human colonic motility and determine the likely mechanisms that control this motility.

  8. A comparative study of functional 5-HT4 receptors in human colon, rat oesophagus and rat ileum.

    PubMed Central

    McLean, P. G.; Coupar, I. M.; Molenaar, P.

    1995-01-01

    1. The pharmacological properties of 5-hydroxytryptamine (5-HT), the 5-HT4 receptor agonists, DAU 6236 and SC 53116 and the 5-HT4 receptor antagonist, GR 1130808, were studied in the rat oesophagus, rat ileum and human colon. 2. 5-HT relaxed the longitudinal muscle of the rat oesophagus and rat ileum and the circular muscle of the human colon. Absolute values of relaxation were measured and showed the order of the maximum responses, rat oesophagus >> human colon > rat ileum with EC50 values of 189 +/- 15 nM, 157 +/- 4 nM, 306 +/- 72 nM, respectively. 5-HT also inhibited the spontaneous contractions of the human colon with an EC50 value of 119 +/- 1 nM. The effect of 5-HT on the human colon was not affected by methysergide (10 microM) or ondansetron (1 microM). 3. The use of the uptake and metabolism inhibitors, cocaine (30 microM) and pargyline (100 microM), did not increase the potency of 5-HT in the rat oesophagus or human colon. In the rat oesophagus, cocaine (30 microM) produced a reduction in carbachol-induced tone of 22.2 +/- 0.6% and reduced the 5-HT maximum effect by 52.0 +/- 0.4%. 4. The compounds, DAU 6236 and SC 53116, showed a different pattern of potencies and efficacies in the rat oesophagus, rat ileum and human colon compared to 5-HT. DAU 6236 relaxed the human colonic circular muscle with an EC50 value of 129 +/- 16 nM but its efficacy was less than that of 5-HT. DAU 6236 (1 microM) also antagonized the 5-HT-induced relaxation of the human colon with a dose-ratio of 9.9. In the rat oesophagus and rat ileum, DAU 6236 was inactive in the majority of tissues. In the minority of oesophagus tissues that did respond the EC50 value was 1.2 +/- 0.7 microM. DAU 6236 also antagonized the effect of 5-HT in the rat oesophagus in a non-surmountable fashion. SC 53116 relaxed the rat oesophagus with an EC50 value of 91 +/- 4 nM, with an efficacy less than that observed to 5-HT; however, at 200 nM it did not antagonize the 5-HT-induced relaxation of the rat oesophagus. SC 53116 showed no agonist activity in the rat ileum and human colon, but at 1 microM it did antagonize the effect of 5-HT in the human colon with a dose-ratio of 11.3 +/- 0.3.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7647983

  9. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo.

    PubMed

    McCarthy, Alex J; Loeffler, Anette; Witney, Adam A; Gould, Katherine A; Lloyd, David H; Lindsay, Jodi A

    2014-09-25

    Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut

    PubMed Central

    Rivière, Audrey; Selak, Marija; Lantin, David; Leroy, Frédéric; De Vuyst, Luc

    2016-01-01

    With the increasing amount of evidence linking certain disorders of the human body to a disturbed gut microbiota, there is a growing interest for compounds that positively influence its composition and activity through diet. Besides the consumption of probiotics to stimulate favorable bacterial communities in the human gastrointestinal tract, prebiotics such as inulin-type fructans (ITF) and arabinoxylan-oligosaccharides (AXOS) can be consumed to increase the number of bifidobacteria in the colon. Several functions have been attributed to bifidobacteria, encompassing degradation of non-digestible carbohydrates, protection against pathogens, production of vitamin B, antioxidants, and conjugated linoleic acids, and stimulation of the immune system. During life, the numbers of bifidobacteria decrease from up to 90% of the total colon microbiota in vaginally delivered breast-fed infants to <5% in the colon of adults and they decrease even more in that of elderly as well as in patients with certain disorders such as antibiotic-associated diarrhea, inflammatory bowel disease, irritable bowel syndrome, obesity, allergies, and regressive autism. It has been suggested that the bifidogenic effects of ITF and AXOS are the result of strain-specific yet complementary carbohydrate degradation mechanisms within cooperating bifidobacterial consortia. Except for a bifidogenic effect, ITF and AXOS also have shown to cause a butyrogenic effect in the human colon, i.e., an enhancement of colon butyrate production. Butyrate is an essential metabolite in the human colon, as it is the preferred energy source for the colon epithelial cells, contributes to the maintenance of the gut barrier functions, and has immunomodulatory and anti-inflammatory properties. It has been shown that the butyrogenic effects of ITF and AXOS are the result of cross-feeding interactions between bifidobacteria and butyrate-producing colon bacteria, such as Faecalibacterium prausnitzii (clostridial cluster IV) and Anaerostipes, Eubacterium, and Roseburia species (clostridial cluster XIVa). These kinds of interactions possibly favor the co-existence of bifidobacterial strains with other bifidobacteria and with butyrate-producing colon bacteria in the human colon. PMID:27446020

  11. Induction of Attachment-Independent Biofilm Formation and Repression of hfq Expression by Low-Fluid-Shear Culture of Staphylococcus aureus ▿

    PubMed Central

    Castro, Sarah L.; Nelman-Gonzalez, Mayra; Nickerson, Cheryl A.; Ott, C. Mark

    2011-01-01

    The opportunistic pathogen Staphylococcus aureus encounters a wide variety of fluid shear levels within the human host, and they may play a key role in dictating whether this organism adopts a commensal interaction with the host or transitions to cause disease. By using rotating-wall vessel bioreactors to create a physiologically relevant, low-fluid-shear environment, S. aureus was evaluated for cellular responses that could impact its colonization and virulence. S. aureus cells grown in a low-fluid-shear environment initiated a novel attachment-independent biofilm phenotype and were completely encased in extracellular polymeric substances. Compared to controls, low-shear-cultured cells displayed slower growth and repressed virulence characteristics, including decreased carotenoid production, increased susceptibility to oxidative stress, and reduced survival in whole blood. Transcriptional whole-genome microarray profiling suggested alterations in metabolic pathways. Further genetic expression analysis revealed downregulation of the RNA chaperone Hfq, which parallels low-fluid-shear responses of certain Gram-negative organisms. This is the first study to report an Hfq association with fluid shear in a Gram-positive organism, suggesting an evolutionarily conserved response to fluid shear among structurally diverse prokaryotes. Collectively, our results suggest S. aureus responds to a low-fluid-shear environment by initiating a biofilm/colonization phenotype with diminished virulence characteristics, which could lead to insight into key factors influencing the divergence between infection and colonization during the initial host-pathogen interaction. PMID:21803898

  12. Dynamics of initial colonization of nonconserved perennial ryegrass by anaerobic fungi in the bovine rumen.

    PubMed

    Edwards, Joan E; Kingston-Smith, Alison H; Jimenez, Hugo R; Huws, Sharon A; Skøt, Kirsten P; Griffith, Gareth W; McEwan, Neil R; Theodorou, Michael K

    2008-12-01

    Anaerobic fungi (Neocallimastigales) are active degraders of fibrous plant material in the rumen. However, only limited information is available relating to how quickly they colonize ingested feed particles. The aim of this study was to determine the dynamics of initial colonization of forage by anaerobic fungi in the rumen and the impact of different postsampling wash procedures used to remove loosely associated microorganisms. Neocallimastigales-specific molecular techniques were optimized to ensure maximal coverage before application to assess the population size (quantitative PCR) and composition (automated ribosomal intergenic spacer analysis) of the colonizing anaerobic fungi. Colonization of perennial ryegrass (PRG) was evident within 5 min, with no consistent effect of time or wash procedure on fungal population composition. Wash procedure had no effect on population size unlike time, which had a significant effect. Colonizing fungal population size continued to increase over the incubation period after an initial lag of c. 4 min. This dynamic differs from that reported previously for rumen bacteria, where substantial colonization of PRG occurred within 5 min. The observed delay in colonization of plant material by anaerobic fungi is suggested to be primarily mediated by the time taken for fungal zoospores to locate, attach and encyst on plant material.

  13. The Y-chromosome landscape of the Philippines: extensive heterogeneity and varying genetic affinities of Negrito and non-Negrito groups

    PubMed Central

    Delfin, Frederick; Salvador, Jazelyn M; Calacal, Gayvelline C; Perdigon, Henry B; Tabbada, Kristina A; Villamor, Lilian P; Halos, Saturnina C; Gunnarsdóttir, Ellen; Myles, Sean; Hughes, David A; Xu, Shuhua; Jin, Li; Lao, Oscar; Kayser, Manfred; Hurles, Matthew E; Stoneking, Mark; De Ungria, Maria Corazon A

    2011-01-01

    The Philippines exhibits a rich diversity of people, languages, and culture, including so-called ‘Negrito' groups that have for long fascinated anthropologists, yet little is known about their genetic diversity. We report here, a survey of Y-chromosome variation in 390 individuals from 16 Filipino ethnolinguistic groups, including six Negrito groups, from across the archipelago. We find extreme diversity in the Y-chromosome lineages of Filipino groups with heterogeneity seen in both Negrito and non-Negrito groups, which does not support a simple dichotomy of Filipino groups as Negrito vs non-Negrito. Filipino non-recombining region of the human Y chromosome lineages reflect a chronology that extends from after the initial colonization of the Asia-Pacific region, to the time frame of the Austronesian expansion. Filipino groups appear to have diverse genetic affinities with different populations in the Asia-Pacific region. In particular, some Negrito groups are associated with indigenous Australians, with a potential time for the association ranging from the initial colonization of the region to more recent (after colonization) times. Overall, our results indicate extensive heterogeneity contributing to a complex genetic history for Filipino groups, with varying roles for migrations from outside the Philippines, genetic drift, and admixture among neighboring groups. PMID:20877414

  14. Patterns of genic diversity and structure in a species undergoing rapid chromosomal radiation: an allozyme analysis of house mice from the Madeira archipelago.

    PubMed

    Britton-Davidian, J; Catalan, J; Lopez, J; Ganem, G; Nunes, A C; Ramalhinho, M G; Auffray, J C; Searle, J B; Mathias, M L

    2007-10-01

    The chromosomal radiation of the house mouse in the island of Madeira most likely involved a human-mediated colonization event followed by within-island geographical isolation and recurrent episodes of genetic drift. The genetic signature of such processes was assessed by an allozyme analysis of the chromosomal races from Madeira. No trace of a decrease in diversity was observed suggesting the possibility of large founder or bottleneck sizes, multiple introductions and/or a high post-colonization expansion rate. The Madeira populations were more closely related to those of Portugal than to other continental regions, in agreement with the documented human colonization of the island. Such a Portuguese origin contrasts with a study indicating a north European source of the mitochondrial haplotypes present in the Madeira mice. This apparent discrepancy may be resolved if not one but two colonization events took place, an initial north European introduction followed by a later one from Portugal. Asymmetrical reproduction between these mice would have resulted in a maternal north European signature with a nuclear Portuguese genome. The extensive chromosomal divergence of the races in Madeira is expected to contribute to their genic divergence. However, there was no significant correlation between chromosomal and allozyme distances. This low apparent chromosomal impact on genic differentiation may be related to the short time since the onset of karyotypic divergence, as the strength of the chromosomal barrier will become significant only at later stages.

  15. Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design

    PubMed Central

    Brown, Aisling F.; Leech, John M.; Rogers, Thomas R.; McLoughlin, Rachel M.

    2014-01-01

    In apparent contrast to its invasive potential Staphylococcus aureus colonizes the anterior nares of 20–80% of the human population. The relationship between host and microbe appears particularly individualized and colonization status seems somehow predetermined. After decolonization, persistent carriers often become re-colonized with their prior S. aureus strain, whereas non-carriers resist experimental colonization. Efforts to identify factors facilitating colonization have thus far largely focused on the microorganism rather than on the human host. The host responds to S. aureus nasal colonization via local expression of anti-microbial peptides, lipids, and cytokines. Interplay with the co-existing microbiota also influences colonization and immune regulation. Transient or persistent S. aureus colonization induces specific systemic immune responses. Humoral responses are the most studied of these and little is known of cellular responses induced by colonization. Intriguingly, colonized patients who develop bacteremia may have a lower S. aureus-attributable mortality than their non-colonized counterparts. This could imply a staphylococcal-specific immune “priming” or immunomodulation occurring as a consequence of colonization and impacting on the outcome of infection. This has yet to be fully explored. An effective vaccine remains elusive. Anti-S. aureus vaccine strategies may need to drive both humoral and cellular immune responses to confer efficient protection. Understanding the influence of colonization on adaptive response is essential to intelligent vaccine design, and may determine the efficacy of vaccine-mediated immunity. Clinical trials should consider colonization status and the resulting impact of this on individual patient responses. We urgently need an increased appreciation of colonization and its modulation of host immunity. PMID:24409186

  16. Evaluation of an in vitro faecal degradation method for early assessment of the impact of colonic degradation on colonic absorption in humans.

    PubMed

    Tannergren, Christer; Borde, Anders; Boreström, Cecilia; Abrahamsson, Bertil; Lindahl, Anders

    2014-06-16

    The objective of this study was to develop and evaluate an in vitro method to investigate bacterial-mediated luminal degradation of drugs in colon in humans. This would be a valuable tool for the assessment of drug candidates during early drug development, especially for compounds intended to be developed as oral extended release formulations. Freshly prepared faecal homogenate from healthy human volunteers (n=3-18), dog (n=6) and rat (colon and caecal content, n=3) was homogenised with 3.8 parts (w/w) physiological saline under anaerobical conditions. Four model compounds (almokalant, budesonide, ximelagatran and metoprolol) were then incubated (n=3-18) separately in the human faecal homogenate for up to 120min at 37°C. In addition, ximelagatran was also incubated in the faecal or colonic content from dog and rat. The mean (±SD) in vitro half-life for almokalant, budesonide and ximelagatran was 39±1, 68±21 and 26±12min, respectively, in the human faecal homogenate. Metoprolol was found to be stable in the in vitro model. The in vitro degradation data was then compared to literature data on fraction absorbed after direct colon administration in humans. The percentage of drug remaining after 60min of in vitro incubation correlated (R(2)=0.90) with the fraction absorbed from colon in humans. The mean in vitro half-life of ximelagatran was similar in human faeces (26±12min) and rat colon content (34±31min), but significantly (p<0.05) longer in rat caecum content (50±11min) and dog faeces (126±17min). The in vitro method is in vivo relevant both qualitatively as all the model drugs that undergoes colonic degradation in vivo was rapidly degraded in the faecal homogenates as well as quantitatively since a correlation was established between percentage degraded in vitro at 60min and fraction absorbed in the colon for the model drugs, which have no other absorption limiting properties. Also, the method is easy to use from a technical point of view, which suggests that the method is suitable for use in early assessment of colonic absorption of extended release formulation candidates. Further improvement of the confidence in the use of the method would either require an extension of the correlation, which most likely will require more human regional absorption studies, or by including colonic degradation rate as an input in a physiological mechanistic absorption model and evaluate if the prediction of the plasma exposure after colonic administration of the present model drugs is improved. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Streptococcal pharyngitis and rheumatic heart disease: the superantigen hypothesis revisited.

    PubMed

    Hurst, Jacklyn R; Kasper, Katherine J; Sule, Akshay N; McCormick, John K

    2018-07-01

    Streptococcus pyogenes is a human-specific and globally prominent bacterial pathogen that despite causing numerous human infections, this bacterium is normally found in an asymptomatic carrier state. This review provides an overview of both bacterial and human factors that likely play an important role in nasopharyngeal colonization and pharyngitis, as well as the development of acute rheumatic fever and rheumatic heart disease. Here we highlight a recently described role for bacterial superantigens in promoting acute nasopharyngeal infection, and discuss how these immune system activating toxins could be crucial to initiate the autoimmune process in rheumatic heart disease. Copyright © 2018. Published by Elsevier B.V.

  18. Chemokine (C-C Motif) Receptor 2 Mediates Dendritic Cell Recruitment to the Human Colon but Is Not Responsible for Differences Observed in Dendritic Cell Subsets, Phenotype, and Function Between the Proximal and Distal Colon.

    PubMed

    Bernardo, David; Durant, Lydia; Mann, Elizabeth R; Bassity, Elizabeth; Montalvillo, Enrique; Man, Ripple; Vora, Rakesh; Reddi, Durga; Bayiroglu, Fahri; Fernández-Salazar, Luis; English, Nick R; Peake, Simon T C; Landy, Jon; Lee, Gui H; Malietzis, George; Siaw, Yi Harn; Murugananthan, Aravinth U; Hendy, Phil; Sánchez-Recio, Eva; Phillips, Robin K S; Garrote, Jose A; Scott, Paul; Parkhill, Julian; Paulsen, Malte; Hart, Ailsa L; Al-Hassi, Hafid O; Arranz, Eduardo; Walker, Alan W; Carding, Simon R; Knight, Stella C

    2016-01-01

    Most knowledge about gastrointestinal (GI)-tract dendritic cells (DC) relies on murine studies where CD103 + DC specialize in generating immune tolerance with the functionality of CD11b +/- subsets being unclear. Information about human GI-DC is scarce, especially regarding regional specifications. Here, we characterized human DC properties throughout the human colon. Paired proximal (right/ascending) and distal (left/descending) human colonic biopsies from 95 healthy subjects were taken; DC were assessed by flow cytometry and microbiota composition assessed by 16S rRNA gene sequencing. Colonic DC identified were myeloid (mDC, CD11c + CD123 - ) and further divided based on CD103 and SIRPα (human analog of murine CD11b) expression. CD103 - SIRPα + DC were the major population and with CD103 + SIRPα + DC were CD1c + ILT3 + CCR2 + (although CCR2 was not expressed on all CD103 + SIRPα + DC). CD103 + SIRPα - DC constituted a minor subset that were CD141 + ILT3 - CCR2 - . Proximal colon samples had higher total DC counts and fewer CD103 + SIRPα + cells. Proximal colon DC were more mature than distal DC with higher stimulatory capacity for CD4 + CD45RA + T-cells. However, DC and DC-invoked T-cell expression of mucosal homing markers (β7, CCR9) was lower for proximal DC. CCR2 was expressed on circulating CD1c + , but not CD141 + mDC, and mediated DC recruitment by colonic culture supernatants in transwell assays. Proximal colon DC produced higher levels of cytokines. Mucosal microbiota profiling showed a lower microbiota load in the proximal colon, but with no differences in microbiota composition between compartments. Proximal colonic DC subsets differ from those in distal colon and are more mature. Targeted immunotherapy using DC in T-cell mediated GI tract inflammation may therefore need to reflect this immune compartmentalization.

  19. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth.

    PubMed

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-08-21

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment.

  20. Dragon (repulsive guidance molecule b, RGMb) is a novel gene that promotes colorectal cancer growth

    PubMed Central

    Shi, Ying; Chen, Guo-Bin; Huang, Xiao-Xiao; Xiao, Chuan-Xing; Wang, Huan-Huan; Li, Ye-Sen; Zhang, Jin-Fang; Li, Shao; Xia, Yin; Ren, Jian-Lin; Guleng, Bayasi

    2015-01-01

    Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. Dragon (RGMb), a member of the repulsive guidance molecule (RGM) family, has been recently identified as a co-receptor for bone morphogenetic protein (BMP) signaling, but the role of Dragon in CRC development is undefined. Here, we show that Dragon expression was increased in colon cancer tissues compared to control tissues in CAC mouse model and in human patients. Dragon promoted proliferation of CT26.WT and CMT93 colon cancer cells and accelerated tumor growth in the xenograft mouse model. Dragon's action on colon cancer development was mediated via the BMP4-Smad1/5/8 and Erk1/2 pathways. Therefore, our results have revealed that Dragon is a novel gene that promotes CRC growth through the BMP pathway. Dragon may be exploited as a potential therapeutic target for CRC treatment. PMID:26029998

  1. Diversity of forensic rove beetles (Coleoptera, Staphylinidae) associated with decaying pig carcass in a forest biotope.

    PubMed

    Dekeirsschieter, Jessica; Frederick, Christine; Verheggen, Francois J; Drugmand, Didier; Haubruge, Eric

    2013-07-01

    Most forensic studies are focused on Diptera pattern colonization while neglecting Coleoptera succession. So far, little information is available on the postmortem colonization by beetles and the decomposition process they initiate under temperate biogeoclimatic countries. These beetles have, however, been referred to as being part of the entomofaunal colonization of a dead body. Forensic entomologists need increased databases detailing the distribution, ecology, and phenology of necrophagous insects, including staphylinids (Coleoptera, Staphylinidae). While pig carcasses are commonly used in forensic entomology studies to surrogate human decomposition and to investigate the entomofaunal succession, very few works have been conducted in Europe on large carcasses. Our work reports the monitoring of the presence of adult rove beetles (Coleoptera, Staphylinidae) on decaying pig carcasses in a forest biotope during four seasons (spring, summer, fall, and winter). A total of 23 genera comprising 60 species of rove beetles were collected from pig carcasses. © 2013 American Academy of Forensic Sciences.

  2. Acquisition and maturation of oral microbiome throughout childhood: An update

    PubMed Central

    Sampaio-Maia, Benedita; Monteiro-Silva, Filipa

    2014-01-01

    Traditional microbiology concepts are being renewed since the development of new microbiological technologies, such as, sequencing and large-scale genome analysis. Since the entry into the new millennium, a lot of new information has emerged regarding the oral microbiome. This revision presents an overview of this renewed knowledge on oral microbial community acquisition in the newborn and on the evolution of this microbiome to adulthood. Throughout childhood, the oral microbial load increases, but the microbial diversity decreases. The initial colonizers are related to the type of delivery, personal relationships, and living environment. These first colonizers seem to condition the subsequent colonization, which will lead to more complex and stable ecosystems in adulthood. These early oral microbial communities, therefore, play a major role in the development of the adult oral microbiota and may represent a source of both pathogenic and protective microorganisms in a very early stage of human life. The implications of this knowledge on the daily clinical practice of odontopediatrics are highlighted. PMID:25097637

  3. Human Antibodies to PhtD, PcpA, and Ply Reduce Adherence to Human Lung Epithelial Cells and Murine Nasopharyngeal Colonization by Streptococcus pneumoniae

    PubMed Central

    Kaur, Ravinder; Surendran, Naveen; Ochs, Martina

    2014-01-01

    Streptococcus pneumoniae adherence to human epithelial cells (HECs) is the first step in pathogenesis leading to infections. We sought to determine the role of human antibodies against S. pneumoniae protein vaccine candidates PhtD, PcpA, and Ply in preventing adherence to lung HECs in vitro and mouse nasopharyngeal (NP) colonization in vivo. Human anti-PhtD, -PcpA, and -Ply antibodies were purified and Fab fragments generated. Fabs were used to test inhibition of adherence of TIGR4 and nonencapsulated strain RX1 to A549 lung HECs. The roles of individual proteins in adherence were tested using isogenic mutants of strain TIGR4. Anti-PhtD, -PcpA, and -Ply human antibodies were assessed for their ability to inhibit NP colonization in vivo by passive transfer of human antibody in a murine model. Human antibodies generated against PhtD and PcpA caused a decrease in adherence to A549 cells (P < 0.05). Anti-PhtD but not anti-PcpA antibodies showed a protective role against mouse NP colonization. To our surprise, anti-Ply antibodies also caused a significant (P < 0.05) reduction in S. pneumoniae colonization. Our results support the potential of PhtD, PcpA, and Ply protein vaccine candidates as alternatives to conjugate vaccines to prevent non-serotype-specific S. pneumoniae colonization and invasive infection. PMID:25245804

  4. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon.

    PubMed

    Bettini, Sarah; Boutet-Robinet, Elisa; Cartier, Christel; Coméra, Christine; Gaultier, Eric; Dupuy, Jacques; Naud, Nathalie; Taché, Sylviane; Grysan, Patrick; Reguer, Solenn; Thieriet, Nathalie; Réfrégiers, Matthieu; Thiaudière, Dominique; Cravedi, Jean-Pierre; Carrière, Marie; Audinot, Jean-Nicolas; Pierre, Fabrice H; Guzylack-Piriou, Laurence; Houdeau, Eric

    2017-01-20

    Food-grade titanium dioxide (TiO 2 ) containing a nanoscale particle fraction (TiO 2 -NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO 2 -NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer's patches (PP) as observed with the TiO 2 -NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO 2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO 2 -treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO 2 from dietary sources.

  5. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon

    PubMed Central

    Bettini, Sarah; Boutet-Robinet, Elisa; Cartier, Christel; Coméra, Christine; Gaultier, Eric; Dupuy, Jacques; Naud, Nathalie; Taché, Sylviane; Grysan, Patrick; Reguer, Solenn; Thieriet, Nathalie; Réfrégiers, Matthieu; Thiaudière, Dominique; Cravedi, Jean-Pierre; Carrière, Marie; Audinot, Jean-Nicolas; Pierre, Fabrice H.; Guzylack-Piriou, Laurence; Houdeau, Eric

    2017-01-01

    Food-grade titanium dioxide (TiO2) containing a nanoscale particle fraction (TiO2-NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO2-NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer’s patches (PP) as observed with the TiO2-NP model NM-105. Dendritic cell frequency increased in PP regardless of the TiO2 treatment, while regulatory T cells involved in dampening inflammatory responses decreased with E171 only, an effect still observed after 100 days of treatment. In all TiO2-treated rats, stimulation of immune cells isolated from PP showed a decrease in Thelper (Th)-1 IFN-γ secretion, while splenic Th1/Th17 inflammatory responses sharply increased. E171 or NM-105 for one week did not initiate intestinal inflammation, while a 100-day E171 treatment promoted colon microinflammation and initiated preneoplastic lesions while also fostering the growth of aberrant crypt foci in a chemically induced carcinogenesis model. These data should be considered for risk assessments of the susceptibility to Th17-driven autoimmune diseases and to colorectal cancer in humans exposed to TiO2 from dietary sources. PMID:28106049

  6. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses.

    PubMed

    Kim, S B; Bozeman, R G; Kaisani, A; Kim, W; Zhang, L; Richardson, J A; Wright, W E; Shay, J W

    2016-06-30

    Proton radiotherapy is becoming more common as protons induce more precise DNA damage at the tumor site with reduced side effects to adjacent normal tissues. However, the long-term biological effects of proton irradiation in cancer initiation compared with conventional photon irradiation are poorly characterized. In this study, using a human familial adenomatous polyposis syndrome susceptible mouse model, we show that whole-body irradiation with protons are more effective in inducing senescence-associated inflammatory responses (SIRs), which are involved in colon cancer initiation and progression. After proton irradiation, a subset of SIR genes (Troy, Sox17, Opg, Faim2, Lpo, Tlr2 and Ptges) and a gene known to be involved in invasiveness (Plat), along with the senescence-associated gene (P19Arf), are markedly increased. Following these changes, loss of Casein kinase Iα and induction of chronic DNA damage and TP53 mutations are increased compared with X-ray irradiation. Proton irradiation also increases the number of colonic polyps, carcinomas and invasive adenocarcinomas. Pretreatment with the non-steroidal anti-inflammatory drug, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-ethyl amide (CDDO-EA), reduces proton irradiation-associated SIR and tumorigenesis. Thus exposure to proton irradiation elicits significant changes in colorectal cancer initiation and progression that can be mitigated using CDDO-EA.

  7. The colibactin warhead crosslinks DNA

    NASA Astrophysics Data System (ADS)

    Vizcaino, Maria I.; Crawford, Jason M.

    2015-05-01

    Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of Escherichia coli present in the human colon have been linked to the initiation of inflammation-induced colorectal cancer through an unknown small-molecule-mediated process. The responsible non-ribosomal peptide-polyketide hybrid pathway encodes ‘colibactin’, which belongs to a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway that are capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labelling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin's DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.

  8. Mir-30d suppresses cell proliferation of colon cancer cells by inhibiting cell autophagy and promoting cell apoptosis.

    PubMed

    Zhang, Rui; Xu, Jian; Zhao, Jian; Bai, Jinghui

    2017-06-01

    MiR-30 family plays an important role in the tumorigenesis of human cancers. The aim of the study is to investigate the role of miR-30d in human colon cancer cell lines and explore the molecular mechanism in the proliferation of colon cancer cells. The expression of miR-30d was determined by real-time polymerase chain reaction assay in colon cancer cell lines (HCT15, HCT116, HT-29, DLD-1, and SW480) and the results demonstrated that miR-30d level was significantly decreased in human colon cancer cell lines, compared with normal colon epithelial cell line. Transfection with miR-30d mimics inhibited cell proliferation, and transfection with miR-30d inhibitors significantly promoted cell viability of colon cancer cells. Furthermore, TargetScan analysis predicted that miR-30d interacted with messenger RNA on its 3' untranslated region of ATG5, phosphoinositide 3-kinase, and Beclin1 to negatively regulate cell autophagy in colon cancer cells. Moreover, transfection with miR-30d induced cell arrest at G2/M phase of HT-29 cells. Overexpression of miR-30d mimics inhibited cell viability probably due to the inhibition of cell autophagy and promotion of cell apoptosis. Thus, MiR-30d inhibited cell autophagy by directly targeting messenger RNA of ATG5, phosphoinositide 3-kinase, and Beclin1 and promoted cell apoptosis of human colon cancer cells. It is helpful to clarify the function of miR-30d in tumorigenesis of human cancers.

  9. A comparative study of functional 5-HT4 receptors in human colon, rat oesophagus and rat ileum.

    PubMed

    McLean, P G; Coupar, I M; Molenaar, P

    1995-05-01

    1. The pharmacological properties of 5-hydroxytryptamine (5-HT), the 5-HT4 receptor agonists, DAU 6236 and SC 53116 and the 5-HT4 receptor antagonist, GR 1130808, were studied in the rat oesophagus, rat ileum and human colon. 2. 5-HT relaxed the longitudinal muscle of the rat oesophagus and rat ileum and the circular muscle of the human colon. Absolute values of relaxation were measured and showed the order of the maximum responses, rat oesophagus > human colon > rat ileum with EC50 values of 189 +/- 15 nM, 157 +/- 4 nM, 306 +/- 72 nM, respectively. 5-HT also inhibited the spontaneous contractions of the human colon with an EC50 value of 119 +/- 1 nM. The effect of 5-HT on the human colon was not affected by methysergide (10 microM) or ondansetron (1 microM). 3. The use of the uptake and metabolism inhibitors, cocaine (30 microM) and pargyline (100 microM), did not increase the potency of 5-HT in the rat oesophagus or human colon. In the rat oesophagus, cocaine (30 microM) produced a reduction in carbachol-induced tone of 22.2 +/- 0.6% and reduced the 5-HT maximum effect by 52.0 +/- 0.4%. 4. The compounds, DAU 6236 and SC 53116, showed a different pattern of potencies and efficacies in the rat oesophagus, rat ileum and human colon compared to 5-HT. DAU 6236 relaxed the human colonic circular muscle with an EC50 value of 129 +/- 16 nM but its efficacy was less than that of 5-HT. DAU 6236 (1 microM) also antagonized the 5-HT-induced relaxation of the human colon with a dose-ratio of 9.9. In the rat oesophagus and rat ileum, DAU 6236 was inactive in the majority of tissues. In the minority of oesophagus tissues that did respond the EC50 value was 1.2 +/- 0.7 microM. DAU 6236 also antagonized the effect of 5-HT in the rat oesophagus in a non-surmountable fashion. SC 53116 relaxed the rat oesophagus with an EC50 value of 91 +/- 4 nM, with an efficacy less than that observed to 5-HT; however, at 200 nM it did not antagonize the 5-HT-induced relaxation of the rat oesophagus. SC 53116 showed no agonist activity in the rat ileum and human colon, but at 1 microM it did antagonize the effect of 5-HT in the human colon with a dose-ratio of 11.3 +/- 0.3. 5. GR 113808 competitively antagonized the 5-HT4 receptor-mediated relaxation of the rat oesophagus with a pA2 value of 8.59 (8.18-9.00) against 5-HT and 9.05 (8.79-9.31) against SC 53116. GR 113808(0.01 microM) also antagonized the 5-HT-induced relaxation of human colonic circular muscle with an apparent pA2 value of 9.02 +/- 0.12. However at 1 microM the apparent pA2 value was significantly lower than that measured at 0.01 and 0.1 microM. GR 113808 (0.01 microM) antagonized the 5-HT4 receptor-mediated relaxation of the rat ileum with an apparent pA2 value of 9.30 +/- 0.21.6. In conclusion, these studies have shown that the human colon, rat oesophagus and rat ileum contain functional 5-HT4 receptors. However, the 5-HT4 receptor agonists displayed differences in these tissues making it necessary to be cautious when extrapolating from animal to human tissue. This emphasizes the importance of the use of human tissue in the development of therapeutic drugs.

  10. The mitochondrial uncoupling protein-2 promotes chemoresistance in cancer cells

    PubMed Central

    Derdak, Zoltan; Mark, Nicholas M.; Beldi, Guido; Robson, Simon C.; Wands, Jack R.; Baffy, György

    2008-01-01

    Cancer cells acquire drug resistance as a result of selection pressure dictated by unfavorable microenvironments. This survival process is facilitated through efficient control of oxidative stress originating from mitochondria that typically initiates programmed cell death. We show this critical adaptive response in cancer cells to be linked to uncoupling protein-2 (UCP2), a mitochondrial suppressor of reactive oxygen species (ROS). UCP2 is present in drug-resistant lines of various cancer cells and in human colon cancer. Overexpression of UCP2 in HCT116 human colon cancer cells inhibits ROS accumulation and apoptosis post-exposure to chemotherapeutic agents. Tumor xenografts of UCP2-overexpressing HCT116 cells retain growth in nude mice receiving chemotherapy. Augmented cancer cell survival is accompanied by altered N-terminal phosphorylation of the pivotal tumor suppressor p53 and induction of the glycolytic phenotype (Warburg effect). These findings link UCP2 with molecular mechanisms of chemoresistance. Targeting UCP2 may be considered a novel treatment strategy for cancer. PMID:18413749

  11. Bacterial colonization stimulates a complex physiological response in the immature human intestinal epithelium

    PubMed Central

    Hill, David R; Huang, Sha; Nagy, Melinda S; Yadagiri, Veda K; Fields, Courtney; Mukherjee, Dishari; Bons, Brooke; Dedhia, Priya H; Chin, Alana M; Tsai, Yu-Hwai; Thodla, Shrikar; Schmidt, Thomas M; Walk, Seth

    2017-01-01

    The human gastrointestinal tract is immature at birth, yet must adapt to dramatic changes such as oral nutrition and microbial colonization. The confluence of these factors can lead to severe inflammatory disease in premature infants; however, investigating complex environment-host interactions is difficult due to limited access to immature human tissue. Here, we demonstrate that the epithelium of human pluripotent stem-cell-derived human intestinal organoids is globally similar to the immature human epithelium and we utilize HIOs to investigate complex host-microbe interactions in this naive epithelium. Our findings demonstrate that the immature epithelium is intrinsically capable of establishing a stable host-microbe symbiosis. Microbial colonization leads to complex contact and hypoxia driven responses resulting in increased antimicrobial peptide production, maturation of the mucus layer, and improved barrier function. These studies lay the groundwork for an improved mechanistic understanding of how colonization influences development of the immature human intestine. PMID:29110754

  12. Natural History of Streptococcus sanguinis in the Oral Cavity of Infants: Evidence for a Discrete Window of Infectivity

    PubMed Central

    Caufield, Page W.; Dasanayake, Ananda P.; Li, Yihong; Pan, Yaping; Hsu, Jay; Hardin, J. Michael

    2000-01-01

    The heterogeneous group of oral bacteria within the sanguinis (sanguis) streptococci comprise members of the indigenous biota of the human oral cavity. While the association of Streptococcus sanguinis with bacterial endocarditis is well described in the literature, S. sanguinis is thought to play a benign, if not a beneficial, role in the oral cavity. Little is known, however, about the natural history of S. sanguinis and its specific relationship with other oral bacteria. As part of a longitudinal study concerning the transmission and acquisition of oral bacteria within mother-infant pairs, we examined the initial acquisition of S. sanguinis and described its colonization relative to tooth emergence and its proportions in plaque and saliva as a function of other biological events, including subsequent colonization with mutans streptococci. A second cohort of infants was recruited to define the taxonomic affiliation of S. sanguinis. We found that the colonization of the S. sanguinis occurs during a discrete “window of infectivity” at a median age of 9 months in the infants. Its colonization is tooth dependent and correlated to the time of tooth emergence; its proportions in saliva increase as new teeth emerge. In addition, early colonization of S. sanguinis and its elevated levels in the oral cavity were correlated to a significant delay in the colonization of mutans streptococci. Underpinning this apparent antagonism between S. sanguinis and mutans streptococci is the observation that after mutans streptococci colonize the infant, the levels of S. sanguinis decrease. Children who do not harbor detectable levels of mutans streptococci have significantly higher levels of S. sanguinis in their saliva than do children colonized with mutans streptococci. Collectively, these findings suggest that the colonization of S. sanguinis may influence the subsequent colonization of mutans streptococci, and this in turn may suggest several ecological approaches toward controlling dental caries. PMID:10858217

  13. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity.

    PubMed

    Caufield, P W; Dasanayake, A P; Li, Y; Pan, Y; Hsu, J; Hardin, J M

    2000-07-01

    The heterogeneous group of oral bacteria within the sanguinis (sanguis) streptococci comprise members of the indigenous biota of the human oral cavity. While the association of Streptococcus sanguinis with bacterial endocarditis is well described in the literature, S. sanguinis is thought to play a benign, if not a beneficial, role in the oral cavity. Little is known, however, about the natural history of S. sanguinis and its specific relationship with other oral bacteria. As part of a longitudinal study concerning the transmission and acquisition of oral bacteria within mother-infant pairs, we examined the initial acquisition of S. sanguinis and described its colonization relative to tooth emergence and its proportions in plaque and saliva as a function of other biological events, including subsequent colonization with mutans streptococci. A second cohort of infants was recruited to define the taxonomic affiliation of S. sanguinis. We found that the colonization of the S. sanguinis occurs during a discrete "window of infectivity" at a median age of 9 months in the infants. Its colonization is tooth dependent and correlated to the time of tooth emergence; its proportions in saliva increase as new teeth emerge. In addition, early colonization of S. sanguinis and its elevated levels in the oral cavity were correlated to a significant delay in the colonization of mutans streptococci. Underpinning this apparent antagonism between S. sanguinis and mutans streptococci is the observation that after mutans streptococci colonize the infant, the levels of S. sanguinis decrease. Children who do not harbor detectable levels of mutans streptococci have significantly higher levels of S. sanguinis in their saliva than do children colonized with mutans streptococci. Collectively, these findings suggest that the colonization of S. sanguinis may influence the subsequent colonization of mutans streptococci, and this in turn may suggest several ecological approaches toward controlling dental caries.

  14. The inflammatory microenvironment in colorectal neoplasia.

    PubMed

    McLean, Mairi H; Murray, Graeme I; Stewart, Keith N; Norrie, Gillian; Mayer, Claus; Hold, Georgina L; Thomson, John; Fyfe, Nicky; Hope, Mairi; Mowat, N Ashley G; Drew, Janice E; El-Omar, Emad M

    2011-01-07

    Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified.

  15. Tissue-specific mutation accumulation in human adult stem cells during life

    NASA Astrophysics Data System (ADS)

    Blokzijl, Francis; de Ligt, Joep; Jager, Myrthe; Sasselli, Valentina; Roerink, Sophie; Sasaki, Nobuo; Huch, Meritxell; Boymans, Sander; Kuijk, Ewart; Prins, Pjotr; Nijman, Isaac J.; Martincorena, Inigo; Mokry, Michal; Wiegerinck, Caroline L.; Middendorp, Sabine; Sato, Toshiro; Schwank, Gerald; Nieuwenhuis, Edward E. S.; Verstegen, Monique M. A.; van der Laan, Luc J. W.; de Jonge, Jeroen; Ijzermans, Jan N. M.; Vries, Robert G.; van de Wetering, Marc; Stratton, Michael R.; Clevers, Hans; Cuppen, Edwin; van Boxtel, Ruben

    2016-10-01

    The gradual accumulation of genetic mutations in human adult stem cells (ASCs) during life is associated with various age-related diseases, including cancer. Extreme variation in cancer risk across tissues was recently proposed to depend on the lifetime number of ASC divisions, owing to unavoidable random mutations that arise during DNA replication. However, the rates and patterns of mutations in normal ASCs remain unknown. Here we determine genome-wide mutation patterns in ASCs of the small intestine, colon and liver of human donors with ages ranging from 3 to 87 years by sequencing clonal organoid cultures derived from primary multipotent cells. Our results show that mutations accumulate steadily over time in all of the assessed tissue types, at a rate of approximately 40 novel mutations per year, despite the large variation in cancer incidence among these tissues. Liver ASCs, however, have different mutation spectra compared to those of the colon and small intestine. Mutational signature analysis reveals that this difference can be attributed to spontaneous deamination of methylated cytosine residues in the colon and small intestine, probably reflecting their high ASC division rate. In liver, a signature with an as-yet-unknown underlying mechanism is predominant. Mutation spectra of driver genes in cancer show high similarity to the tissue-specific ASC mutation spectra, suggesting that intrinsic mutational processes in ASCs can initiate tumorigenesis. Notably, the inter-individual variation in mutation rate and spectra are low, suggesting tissue-specific activity of common mutational processes throughout life.

  16. Colonic Fermentation: A Neglected Topic in Human Physiology Education

    ERIC Educational Resources Information Center

    Valeur, Jorgen; Berstad, Arnold

    2010-01-01

    Human physiology textbooks tend to limit their discussion of colonic functions to those of absorbing water and electrolytes and storing waste material. However, the colon is a highly active metabolic organ, containing an exceedingly complex society of microbes. By means of fermentation, gastrointestinal microbes break down nutrients that cannot be…

  17. Aberrant, ectopic expression of VEGF and VEGF receptors 1 and 2 in malignant colonic epithelial cells. Implications for these cells growth via an autocrine mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahluwalia, Amrita; Jones, Michael K.; Department of Medicine, University of California, Irvine, CA

    2013-08-09

    Highlights: •Malignant colonic epithelial cells express VEGF and its receptors. •Cultured colon cancer cells secrete VEGF into the medium. •Inhibition of VEGF receptor significantly decreases colon cancer cell proliferation. •VEGF is critical for colon cancer cell growth. -- Abstract: Vascular endothelial growth factor A (referred to as VEGF) is implicated in colon cancer growth. Currently, the main accepted mechanism by which VEGF promotes colon cancer growth is via the stimulation of angiogenesis, which was originally postulated by late Judah Folkman. However, the cellular source of VEGF in colon cancer tissue; and, the expression of VEGF and its receptors VEGF-R1 andmore » VEGF-R2 in colon cancer cells are not fully known and are subjects of controversy. Material and methods: We examined and quantified expression of VEGF, VEGF-R1 and VEGF-R2 in three different human colonic tissue arrays containing sections of adenocarcinoma (n = 43) and normal mucosa (n = 41). In human colon cancer cell lines HCT116 and HT29 and normal colon cell lines NCM356 and NCM460, we examined expression of VEGF, VEGF-R1 and VEGF-R2 mRNA and protein, VEGF production and secretion into the culture medium; and, the effect of a potent, selective inhibitor of VEGF receptors, AL-993, on cell proliferation. Results: Human colorectal cancer specimens had strong expression of VEGF in cancer cells and also expressed VEGF-R1 and VEGF-R2.In vitro studies showed that human colon cancer cell lines, HCT116 and HT29, but not normal colonic cell lines, express VEGF, VEGF-R1 and VEGF-R2 and secrete VEGF into the medium up to a concentration 2000 pg/ml within 48 h. Furthermore, we showed that inhibition of VEGF receptors using a specific VEGF-R inhibitor significantly reduced proliferation (by >50%) of cultured colon cancer cell lines. Conclusions: Our findings support the contention that VEGF generated by colon cancer cells stimulates their growth directly through an autocrine mechanism that is independent of its primary function in the induction of angiogenesis.« less

  18. Ecological Interactions of Bacteria in the Human Gut

    NASA Astrophysics Data System (ADS)

    Falony, Gwen; de Vuyst, Luc

    The colon or large intestine is one of the most important organs of the human body (Macfarlane and Cummings, 1991). Moreover, its inhabitants, the colon microbiota, are the key elements of the human digestive ecosystem. The vast complexity of the human large-intestinal microbiota has inspired researchers to consider it as an organ itself, located inside the colon and acquired postnatally (Bäckhed et al., 2005; Zocco et al., 2007). From a physiologist's point of view, this image of the colon microbiota is relevant: like an organ, it is composed of different cell lineages that communicate with both one another and the host; it consumes, stores, and redistributes energy; it mediates physiologically important chemical transformations; and it is able to maintain and repair itself through self-replication (Bäckhed et al., 2005). As a microbial organ, the human colon community does not only broaden the digestive abilities of the host (Gill et al., 2006), but also influences body processes far beyond digestion (Roberfroid, 2005b; Turnbaugh et al., 2007).

  19. IFNγ Induces DNA Methylation-Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer.

    PubMed

    Bardhan, Kankana; Paschall, Amy V; Yang, Dafeng; Chen, May R; Simon, Priscilla S; Bhutia, Yangzom D; Martin, Pamela M; Thangaraju, Muthusamy; Browning, Darren D; Ganapathy, Vadivel; Heaton, Christopher M; Gu, Keni; Lee, Jeffrey R; Liu, Kebin

    2015-07-01

    Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A have been the subject of extensive studies; however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wild-type mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoter to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoter to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer, and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. ©2015 American Association for Cancer Research.

  20. IFNγ induces DNA methylation-silenced GPR109A expression via pSTAT1/p300 and H3K18 acetylation in colon cancer

    PubMed Central

    Bardhan, Kankana; Paschall, Amy V.; Yang, Dafeng; Chen, May R.; Simon, Priscilla S.; Bhutia, Yangzom; Martin, Pamela M.; Thangaraju, Muthusamy; Browning, Darren D.; Ganapathy, Vadivel; Heaton, Christopher M.; Gu, Keni; Lee, Jeffrey R.; Liu, Kebin

    2015-01-01

    Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A has been the subject of extensive studies, however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wildtype mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoters to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoters to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer and the host immune system might use IFNγ to counteract DNA methylation-mediated GPR109A silencing as a mechanism to suppress tumor development. PMID:25735954

  1. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium.

    PubMed

    Sato, Toshiro; Stange, Daniel E; Ferrante, Marc; Vries, Robert G J; Van Es, Johan H; Van den Brink, Stieneke; Van Houdt, Winan J; Pronk, Apollo; Van Gorp, Joost; Siersema, Peter D; Clevers, Hans

    2011-11-01

    We previously established long-term culture conditions under which single crypts or stem cells derived from mouse small intestine expand over long periods. The expanding crypts undergo multiple crypt fission events, simultaneously generating villus-like epithelial domains that contain all differentiated types of cells. We have adapted the culture conditions to grow similar epithelial organoids from mouse colon and human small intestine and colon. Based on the mouse small intestinal culture system, we optimized the mouse and human colon culture systems. Addition of Wnt3A to the combination of growth factors applied to mouse colon crypts allowed them to expand indefinitely. Addition of nicotinamide, along with a small molecule inhibitor of Alk and an inhibitor of p38, were required for long-term culture of human small intestine and colon tissues. The culture system also allowed growth of mouse Apc-deficient adenomas, human colorectal cancer cells, and human metaplastic epithelia from regions of Barrett's esophagus. We developed a technology that can be used to study infected, inflammatory, or neoplastic tissues from the human gastrointestinal tract. These tools might have applications in regenerative biology through ex vivo expansion of the intestinal epithelia. Studies of these cultures indicate that there is no inherent restriction in the replicative potential of adult stem cells (or a Hayflick limit) ex vivo. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  2. Nutritional basis for colonization resistance by human commensal Escherichia coli strains HS and Nissle 1917 against E. coli O157:H7 in the mouse intestine.

    PubMed

    Maltby, Rosalie; Leatham-Jensen, Mary P; Gibson, Terri; Cohen, Paul S; Conway, Tyrrell

    2013-01-01

    Escherichia coli is a single species consisting of many biotypes, some of which are commensal colonizers of mammals and others that cause disease. Humans are colonized on average with five commensal biotypes, and it is widely thought that the commensals serve as a barrier to infection by pathogens. Previous studies showed that a combination of three pre-colonized commensal E. coli strains prevents colonization of E. coli O157:H7 in a mouse model (Leatham, et al., 2010, Infect Immun 77: 2876-7886). The commensal biotypes included E. coli HS, which is known to successfully colonize humans at high doses with no adverse effects, and E. coli Nissle 1917, a human commensal strain that is used in Europe as a preventative of traveler's diarrhea. We hypothesized that commensal biotypes could exert colonization resistance by consuming nutrients needed by E. coli O157:H7 to colonize, thus preventing this first step in infection. Here we report that to colonize streptomycin-treated mice E. coli HS consumes six of the twelve sugars tested and E. coli Nissle 1917 uses a complementary yet divergent set of seven sugars to colonize, thus establishing a nutritional basis for the ability of E. coli HS and Nissle 1917 to occupy distinct niches in the mouse intestine. Together these two commensals use the five sugars previously determined to be most important for colonization of E. coli EDL933, an O157:H7 strain. As predicted, the two commensals prevented E. coli EDL933 colonization. The results support a model in which invading pathogenic E. coli must compete with the gut microbiota to obtain the nutrients needed to colonize and establish infection; accordingly, the outcome of the challenge is determined by the aggregate capacity of the native microbiota to consume the nutrients required by the pathogen.

  3. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut.

    PubMed

    Roager, Henrik M; Hansen, Lea B S; Bahl, Martin I; Frandsen, Henrik L; Carvalho, Vera; Gøbel, Rikke J; Dalgaard, Marlene D; Plichta, Damian R; Sparholt, Morten H; Vestergaard, Henrik; Hansen, Torben; Sicheritz-Pontén, Thomas; Nielsen, H Bjørn; Pedersen, Oluf; Lauritzen, Lotte; Kristensen, Mette; Gupta, Ramneek; Licht, Tine R

    2016-06-27

    Little is known about how colonic transit time relates to human colonic metabolism and its importance for host health, although a firm stool consistency, a proxy for a long colonic transit time, has recently been positively associated with gut microbial richness. Here, we show that colonic transit time in humans, assessed using radio-opaque markers, is associated with overall gut microbial composition, diversity and metabolism. We find that a long colonic transit time associates with high microbial richness and is accompanied by a shift in colonic metabolism from carbohydrate fermentation to protein catabolism as reflected by higher urinary levels of potentially deleterious protein-derived metabolites. Additionally, shorter colonic transit time correlates with metabolites possibly reflecting increased renewal of the colonic mucosa. Together, this suggests that a high gut microbial richness does not per se imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.

  4. Human antibodies to PhtD, PcpA, and Ply reduce adherence to human lung epithelial cells and murine nasopharyngeal colonization by Streptococcus pneumoniae.

    PubMed

    Kaur, Ravinder; Surendran, Naveen; Ochs, Martina; Pichichero, Michael E

    2014-12-01

    Streptococcus pneumoniae adherence to human epithelial cells (HECs) is the first step in pathogenesis leading to infections. We sought to determine the role of human antibodies against S. pneumoniae protein vaccine candidates PhtD, PcpA, and Ply in preventing adherence to lung HECs in vitro and mouse nasopharyngeal (NP) colonization in vivo. Human anti-PhtD, -PcpA, and -Ply antibodies were purified and Fab fragments generated. Fabs were used to test inhibition of adherence of TIGR4 and nonencapsulated strain RX1 to A549 lung HECs. The roles of individual proteins in adherence were tested using isogenic mutants of strain TIGR4. Anti-PhtD, -PcpA, and -Ply human antibodies were assessed for their ability to inhibit NP colonization in vivo by passive transfer of human antibody in a murine model. Human antibodies generated against PhtD and PcpA caused a decrease in adherence to A549 cells (P < 0.05). Anti-PhtD but not anti-PcpA antibodies showed a protective role against mouse NP colonization. To our surprise, anti-Ply antibodies also caused a significant (P < 0.05) reduction in S. pneumoniae colonization. Our results support the potential of PhtD, PcpA, and Ply protein vaccine candidates as alternatives to conjugate vaccines to prevent non-serotype-specific S. pneumoniae colonization and invasive infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    PubMed

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  6. BDNF contributes to IBS-like colonic hypersensitivity via activating the enteroglia-nerve unit

    PubMed Central

    Wang, Peng; Du, Chao; Chen, Fei-Xue; Li, Chang-Qing; Yu, Yan-Bo; Han, Ting; Akhtar, Suhail; Zuo, Xiu-Li; Tan, Xiao-Di; Li, Yan-Qing

    2016-01-01

    The over-expressed colonic brain-derived neurotrophic factor (BDNF) has been reported to be associated with abdominal pain in patients with irritable bowel syndrome (IBS). However, the neuropathological mechanism is unclear. We here investigated the involvement of enteroglial cells (EGCs) and enteric nerves in IBS-like visceral hypersensitivity. We showed that glial fibrillary acidic protein (GFAP), tyrosine receptor kinase B (TrkB) and substance P (SP) were significantly increased in the colonic mucosa of IBS patients. The upregulation of those proteins was also observed in the colon of mice with visceral hypersensitivity, but not in the colon of BDNF+/− mice. Functionally, TrkB or EGC inhibitors, or BDNF knockdown significantly suppressed visceral hypersensitivity in mice. Using the EGC cell line, we found that recombinant human BDNF (r-HuBDNF) could directly activate EGCs via the TrkB-phospholipase Cγ1 pathway, thereby inducing a significant upregulation of SP. Moreover, supernatants from r-HuBDNF-activated EGC culture medium, rather than r-HuBDNF alone, triggered markedly augmented discharges in isolated intestinal mesenteric afferent nerves. r-HuBDNF alone could cause mesenteric afferent mechanical hypersensitivity independently, and this effect was synergistically enhanced by activated EGCs. We conclude that EGC-enteric nerve unit may be involved in IBS-like visceral hypersensitivity, and this process is likely initiated by BDNF-TrkB pathway activation. PMID:26837784

  7. Helicobacter cinaedi Induced Typhlocolitis in Rag-2-Deficient Mice

    PubMed Central

    Shen, Zeli; Feng, Yan; Rickman, Barry; Fox, James G.

    2015-01-01

    Background Helicobacter cinaedi, an enterohepatic helicobacter species (EHS), is an important human pathogen and is associated with a wide range of diseases, especially in immunocompromised patients. It has been convincingly demonstrated that innate immune response to certain pathogenic enteric bacteria is sufficient to initiate colitis and colon carcinogenesis in recombinase-activating gene (Rag)-2-deficient mice model. To better understand the mechanisms of human IBD and its association with development of colon cancer, we investigated whether H. cinaedi could induce pathological changes noted with murine enterohepatic helicobacter infections in the Rag2−/− mouse model. Materials and Methods Sixty 129SvEv Rag2−/− mice mouse were experimentally or sham infected orally with H. cinaedi strain CCUG 18818. Gastrointestinal pathology and immune responses in infected and control mice were analyzed at 3, 6 and 9 months postinfection (MPI). H. cinaedi colonized the cecum, colon, and stomach in infected mice. Results H. cinaedi induced typhlocolitis in Rag2−/− mice by 3 MPI and intestinal lesions became more severe by 9 MPI. H. cinaedi was also associated with the elevation of proinflammatory cytokines, interferon-γ, tumor-necrosis factor-α, IL-1β, IL-10; iNOS mRNA levels were also upregulated in the cecum of infected mice. However, changes in IL-4, IL-6, Cox-2, and c-myc mRNA expressions were not detected. Conclusions Our results indicated that the Rag2−/− mouse model will be useful to continue investigating the pathogenicity of H. cinaedi, and to study the association of host immune responses in IBD caused by EHS. PMID:25381744

  8. Risk factors associated with recurrent hemorrhage after the initial improvement of colonic diverticular bleeding.

    PubMed

    Nishikawa, Hiroki; Maruo, Takanori; Tsumura, Takehiko; Sekikawa, Akira; Kanesaka, Takashi; Osaki, Yukio

    2013-03-01

    We elucidated risk factors contributing to recurrent hemorrhage after initial improvement of colonic diverticular bleeding. 172 consecutive hospitalized patients diagnosed with colonic diverticular bleeding were analyzed. Recurrent hemorrhage after initial improvement of colonic diverticular bleeding is main outcome measure. We analyzed factors contributing to recurrent hemorrhage risk in univariate and multivariate analyses. The length of the observation period after improvement of colonic diverticular bleeding was 26.4 +/- 14.6 months (range, 1-79 months). The cumulative recurrent hemorrhage rate in all patients at 1 and 2 years was 34.8% and 41.8%, respectively. By univariate analysis, age > 70 years (P = 0.021), BMI > 25 kg/m2 (P = 0.013), the use of anticoagulant drugs (P = 0.034), the use of NSAIDs (P = 0.040), history of hypertension (P = 0.011), history of smoking (P = 0.030) and serum creatinine level > 1.5 mg/dL (P < 0.001) were found to be significant risk factors for recurrent colonic diverticular bleeding. By multivariate analysis, age > 70 years (Hazard ratio (HR), 1.905, 95% confidence interval (CI), 1.067-3.403, P = 0.029), history of hypertension (HR, 0.493, 95% CI, 0.245-0.993, P = 0.048) and serum creatinine level > 1.5 mg/dL (HR, 95% CI, 0.288-0.964, P = 0.044) were shown to be significant independent risk factors. Close observation after the initial improvement of colonic diverticular bleeding is needed, especially in elderly patients or patients with history of hypertension or renal deficiency.

  9. Human colon cancer HT-29 cell death responses to doxorubicin and Morus Alba leaves flavonoid extract.

    PubMed

    Fallah, S; Karimi, A; Panahi, G; Gerayesh Nejad, S; Fadaei, R; Seifi, M

    2016-03-31

    The mechanistic basis for the biological properties of Morus alba flavonoid extract (MFE) and chemotherapy drug of doxorubicin on human colon cancer HT-29 cell line death are unknown. The effect of doxorubicin and flavonoid extract on colon cancer HT-29 cell line death and identification of APC gene expression and PARP concentration of HT-29 cell line were investigated. The results showed that flavonoid extract and doxorubicin induce a dose dependent cell death in HT-29 cell line. MFE and doxorubicin exert a cytotoxic effect on human colon cancer HT-29 cell line by probably promoting or induction of apoptosis.

  10. An ultrastructural study of the effect of neomycin on the colon in the human subject and in the conventional and the germ-free mouse.

    PubMed

    Aluwihare, A P

    1971-05-01

    An electron microscopic study of the colon of normal mice and human subjects and those treated with neomycin is reported; there is a close resemblance between the mouse and human colons. After rapid disinfection of the colon, there is epithelial cell damage due to a toxic effect of the drug, a reduction in epithelial turnover accompanying the change in flora, and an important reduction in the cellularity of the lamina propria mainly due to a reduction in inflammatory cells. The changes in the lamina propria probably represent changes in the antipathogenetic defences of the host.

  11. Hypomethylation of DNA from Benign and Malignant Human Colon Neoplasms

    NASA Astrophysics Data System (ADS)

    Goelz, Susan E.; Vogelstein, Bert; Hamilton, Stanley R.; Feinberg, Andrew P.

    1985-04-01

    The methylation state of DNA from human colon tissue displaying neoplastic growth was determined by means of restriction endonuclease analysis. When compared to DNA from adjacent normal tissue, DNA from both benign colon polyps and malignant carcinomas was substantially hypomethylated. With the use of probes for growth hormone, γ -globin, α -chorionic gonadotropin, and γ -crystallin, methylation changes were detected in all 23 neoplastic growths examined. Benign polyps were hypomethylated to a degree similar to that in malignant tissue. These results indicate that hypomethylation is a consistent biochemical characteristic of human colonic tumors and is an alteration in the DNA that precedes malignancy.

  12. Expression of L1-CAM and ADAM10 in human colon cancer cells induces metastasis.

    PubMed

    Gavert, Nancy; Sheffer, Michal; Raveh, Shani; Spaderna, Simone; Shtutman, Michael; Brabletz, Thomas; Barany, Francis; Paty, Phillip; Notterman, Daniel; Domany, Eytan; Ben-Ze'ev, Avri

    2007-08-15

    L1-CAM, a neuronal cell adhesion receptor, is also expressed in a variety of cancer cells. Recent studies identified L1-CAM as a target gene of beta-catenin-T-cell factor (TCF) signaling expressed at the invasive front of human colon cancer tissue. We found that L1-CAM expression in colon cancer cells lacking L1-CAM confers metastatic capacity, and mice injected in their spleen with such cells form liver metastases. We identified ADAM10, a metalloproteinase that cleaves the L1-CAM extracellular domain, as a novel target gene of beta-catenin-TCF signaling. ADAM10 overexpression in colon cancer cells displaying endogenous L1-CAM enhanced L1-CAM cleavage and induced liver metastasis, and ADAM10 also enhanced metastasis in colon cancer cells stably transfected with L1-CAM. DNA microarray analysis of genes induced by L1-CAM in colon cancer cells identified a cluster of genes also elevated in a large set of human colon carcinoma tissue samples. Expression of these genes in normal colon epithelium was low. These results indicate that there is a gene program induced by L1-CAM in colon cancer cells that is also present in colorectal cancer tissue and suggest that L1-CAM can serve as target for colon cancer therapy.

  13. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum.

    PubMed

    Mann, Elizabeth R; Bernardo, David; English, Nicholas R; Landy, Jon; Al-Hassi, Hafid O; Peake, Simon T C; Man, Ripple; Elliott, Timothy R; Spranger, Henning; Lee, Gui Han; Parian, Alyssa; Brant, Steven R; Lazarev, Mark; Hart, Ailsa L; Li, Xuhang; Knight, Stella C

    2016-02-01

    Dendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC. Human DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction. A lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-α and interleukin (IL)-1β) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4(+)FoxP3(+)IL-10(+) (regulatory) T cells. There were enhanced proportions of CD103(+)Sirpα(-) DC in the colon, with increased proportions of CD103(+)Sirpα(+) DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103(+)Sirpα(+) DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103(+) DC, in particular CD103(+)Sirpα(+) DC. However, expression of ILT3 was associated with CD103(-) DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells. The regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  14. Actinomyces naeslundii GroEL-dependent initial attachment and biofilm formation in a flow cell system.

    PubMed

    Arai, Toshiaki; Ochiai, Kuniyasu; Senpuku, Hidenobu

    2015-02-01

    Actinomyces naeslundii is an early colonizer with important roles in the development of the oral biofilm. The effects of butyric acid, one of short chain fatty acids in A. naeslundii biofilm formation was observed using a flow cell system with Tryptic soy broth without dextrose and with 0.25% sucrose (TSB sucrose). Significant biofilms were established involving live and dead cells in TSB sucrose with 60mM butyric acid but not in concentrations of 6, 30, 40, and 50mM. Biofilm formation failed in 60mM sodium butyrate but biofilm level in 60mM sodium butyrate (pH4.7) adjusted with hydrochloric acid as 60mM butyric media (pH4.7) was similar to biofilm levels in 60mM butyric acid. Therefore, butyric acid and low pH are required for significant biofilm formation in the flow cell. To determine the mechanism of biofilm formation, we investigated initial A. naeslundii colonization in various conditions and effects of anti-GroEL antibody. The initial colonization was observed in the 60mM butyric acid condition and anti-GroEL antibody inhibited the initial colonization. In conclusion, we established a new biofilm formation model in which butyric acid induces GroEL-dependent initial colonization of A. naeslundii resulting in significant biofilm formation in a flow system. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Mitochondrial genomes suggest rapid evolution of dwarf California Channel Islands foxes (Urocyon littoralis).

    PubMed

    Hofman, Courtney A; Rick, Torben C; Hawkins, Melissa T R; Funk, W Chris; Ralls, Katherine; Boser, Christina L; Collins, Paul W; Coonan, Tim; King, Julie L; Morrison, Scott A; Newsome, Seth D; Sillett, T Scott; Fleischer, Robert C; Maldonado, Jesus E

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California's Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200-7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics.

  16. Mitochondrial Genomes Suggest Rapid Evolution of Dwarf California Channel Islands Foxes (Urocyon littoralis)

    PubMed Central

    Hofman, Courtney A.; Rick, Torben C.; Hawkins, Melissa T. R.; Funk, W. Chris; Ralls, Katherine; Boser, Christina L.; Collins, Paul W.; Coonan, Tim; King, Julie L.; Morrison, Scott A.; Newsome, Seth D.; Sillett, T. Scott; Fleischer, Robert C.; Maldonado, Jesus E.

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California’s Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200–7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics. PMID:25714775

  17. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction

    PubMed Central

    Juhasz, Agnes; Markel, Susan; Gaur, Shikha; Liu, Han; Lu, Jiamo; Jiang, Guojian; Wu, Xiwei; Antony, Smitha; Wu, Yongzhong; Melillo, Giovanni; Meitzler, Jennifer L.; Haines, Diana C.; Butcher, Donna; Roy, Krishnendu; Doroshow, James H.

    2017-01-01

    Reactive oxygen species (ROS) play a critical role in cell signaling and proliferation. NADPH oxidase 1 (NOX1), a membrane-bound flavin dehydrogenase that generates O2˙̄, is highly expressed in colon cancer. To investigate the role that NOX1 plays in colon cancer growth, we used shRNA to decrease NOX1 expression stably in HT-29 human colon cancer cells. The 80–90% decrease in NOX1 expression achieved by RNAi produced a significant decline in ROS production and a G1/S block that translated into a 2–3-fold increase in tumor cell doubling time without increased apoptosis. The block at the G1/S checkpoint was associated with a significant decrease in cyclin D1 expression and profound inhibition of mitogen-activated protein kinase (MAPK) signaling. Decreased steady-state MAPK phosphorylation occurred concomitant with a significant increase in protein phosphatase activity for two colon cancer cell lines in which NOX1 expression was knocked down by RNAi. Diminished NOX1 expression also contributed to decreased growth, blood vessel density, and VEGF and hypoxia-inducible factor 1α (HIF-1α) expression in HT-29 xenografts initiated from NOX1 knockdown cells. Microarray analysis, supplemented by real-time PCR and Western blotting, revealed that the expression of critical regulators of cell proliferation and angiogenesis, including c-MYC, c-MYB, and VEGF, were down-regulated in association with a decline in hypoxic HIF-1α protein expression downstream of silenced NOX1 in both colon cancer cell lines and xenografts. These studies suggest a role for NOX1 in maintaining the proliferative phenotype of some colon cancers and the potential of NOX1 as a therapeutic target in this disease. PMID:28330872

  18. Prostaglandin E2-stimulated prostanoid EP4 receptors induce prolonged de novo prostaglandin E2 synthesis through biphasic phosphorylation of extracellular signal-regulated kinases mediated by activation of protein kinase A in HCA-7 human colon cancer cells.

    PubMed

    Fujino, Hiromichi; Seira, Naofumi; Kurata, Naoki; Araki, Yumi; Nakamura, Hiroyuki; Regan, John W; Murayama, Toshihiko

    2015-12-05

    Approximately two decades have passed since E-type prostanoid 4 (EP4) receptors were cloned, and the signaling pathways mediated by these receptors have since been implicated in cancer development through the alliance of Gαi-protein/phosphatidylinositol 3-kinase (PI3K)/extracellular signal-regulated kinases (ERKs) activation. Although prostanoid EP4 receptors were initially identified as Gαs-coupled receptors, the specific/distinctive role(s) of prostanoid EP4 receptor-induced cAMP/protein kinase A (PKA) pathways in cancer development have not yet been elucidated in detail. We previously reported using HCA-7 human colon cancer cells that prostaglandin E2 (PGE2)-stimulated prostanoid EP4 receptors induced cyclooxygenase-2 (COX-2) as an initiating event in development of colon cancer. Moreover, this induction of COX-2 was mediated by transactivation of epidermal growth factor (EGF) receptors. However, direct activation of EGF receptors by EGF also induced similar amounts of COX-2 in this cell line. Thus, the emergence of unique role(s) for prostanoid EP4 receptors is expected by clarifying the different signaling mechanisms between PGE2-stimulated prostanoid EP4 receptors and EGF-stimulated EGF receptors to induce COX-2 and produce PGE2. We here demonstrated that prostanoid EP4 receptor activation by PGE2 in HCA-7 cells led to PKA-dependent re-activation of ERKs, which resulted in prolonged de novo synthesis of PGE2. Although EGF-stimulated EGF receptors in cells also induced COX-2 and the de novo synthesis of PGE2, the activation of this pathway was transient and not mediated by PKA. Therefore, the novel mechanism underlying prolonged de novo synthesis of PGE2 has provided an insight into the importance of prostanoid EP4 receptor-mediated Gαs-protein/cAMP/PKA pathway in development of colon cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Epigenetic alterations are involved in the overexpression of glutathione S-transferase π-1 in human colorectal cancers.

    PubMed

    Zhang, Rui; Kang, Kyoung Ah; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Cha, Ji Won; Maeng, Young Hee; Chang, Weon Young; Moon, Pyong-Gon; Baek, Moon-Chang; Hyun, Jin Won

    2014-09-01

    Glutathione S-transferase π-1 (GSTP-1) is a member of the glutathione S-transferase enzyme superfamily, which catalyzes the conjugation of electrophiles to glutathione during the process of detoxification. In this study, the epigenetic alterations of GSTP-1 expression in human colorectal cancers and the underlying mechanisms were investigated. In 10 colon cancer patients, proteomic analysis revealed that expression of GSTP-1 protein was higher in tumor tissues than in paired adjacent normal tissues. Likewise, in 7 of 10 colon cancer patients, GSTP-1 protein expression was more than 1.5-fold higher in tumor tissues than in adjacent normal tissues, as determined by western blotting. Immunohistochemical data confirmed that GSTP-1 protein was expressed at higher levels in colon cancer tissues compared to normal mucosa. GSTP-1 enzyme activity was closely correlated with GSTP-1 protein expression in colon cancer patients. Consistent with this, GSTP-1 mRNA, protein and activity levels were higher in the colorectal cancer cell lines Caco-2, HCT-116, HT-29, SNU-407 and SNU-1033 compared to the normal colon cell line FHC. Methylation-specific PCR results indicated that the high levels of GSTP-1 in human colorectal cancer cell lines were likely due to the lower degree of promoter methylation in colon cancer cell lines compared to the normal colon cell line, consistent with findings in colon cancer patients. Moreover, the levels of specific activator-protein complexes and histone marks were higher in human colorectal cancer cells compared to the normal human colon cell line, whereas the repressor protein complexes exhibited the opposite pattern. Furthermore, chromatin immunoprecipitation assays demonstrated that expression levels of the transcription factors AP-1 and SP-1 were correlated with the upregulation of GSTP-1 expression in colorectal cancer cells. Finally, knockdown of GSTP-1 promoted the sensitivity of SNU-407 cells to the anticancer agent 5-fluorouracil. These data indicate that GSTP-1 may serve as a clinically useful biomarker of colon cancer and a target for anti-colon cancer drugs.

  20. Bacterial adherence in the pathogenesis of urinary tract infection: a review.

    PubMed

    Reid, G; Sobel, J D

    1987-01-01

    Bacterial adherence to the uroepithelium is recognized as an important mechanism in the initiation and pathogenesis of urinary tract infections (UTI). The uropathogens originate predominantly in the intestinal tract and initially colonize the periurethral region and ascend into the bladder, resulting in symptomatic or asymptomatic bacteriuria. Thereafter, depending on host factors and bacterial virulence factors, the organisms may further ascend and give rise to pyelonephritis. Uropathogens are selected by the presence of virulence characteristics that enable them to resist the normally efficient host defense mechanisms. Considerable progress has been made in identifying bacterial adhesins and in demonstrating bacterial receptor sites on uroepithelial surfaces. Recent studies have identified natural anti-adherence mechanisms in humans as well as possible increased susceptibility to UTI when these mechanisms are defective and when receptor density on uroepithelial cells is altered. Knowledge of bacterial adherence mechanisms may permit alternative methods of prevention and management of urinary infection, including the use of subinhibitory concentrations of antibiotics, vaccine development, nonimmune inhibition of bacterial adhesins and receptor sites, and the use of autochthonous flora, such as lactobacilli, to exclude uropathogens from colonizing the urinary tract.

  1. Indoors forensic entomology: colonization of human remains in closed environments by specific species of sarcosaprophagous flies.

    PubMed

    Pohjoismäki, Jaakko L O; Karhunen, Pekka J; Goebeler, Sirkka; Saukko, Pekka; Sääksjärvi, Ilari E

    2010-06-15

    Fly species that are commonly recovered on human corpses concealed in houses or other dwellings are often dependent on human created environments and might have special features in their biology that allow them to colonize indoor cadavers. In this study we describe nine typical cases involving forensically relevant flies on human remains found indoors in southern Finland. Eggs, larvae and puparia were reared to adult stage and determined to species. Of the five species found the most common were Lucilia sericata Meigen, Calliphora vicina Robineau-Desvoidy and Protophormia terraenovae Robineau-Desvoidy. The flesh fly Sarcophaga caerulescens Zetterstedt is reported for the first time to colonize human cadavers inside houses and a COI gene sequence based DNA barcode is provided for it to help facilitate identification in the future. Fly biology, colonization speed and the significance of indoors forensic entomological evidence are discussed. (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  2. The Inflammatory Microenvironment in Colorectal Neoplasia

    PubMed Central

    McLean, Mairi H.; Murray, Graeme I.; Stewart, Keith N.; Norrie, Gillian; Mayer, Claus; Hold, Georgina L.; Thomson, John; Fyfe, Nicky; Hope, Mairi; Mowat, N. Ashley G.; Drew, Janice E.; El-Omar, Emad M.

    2011-01-01

    Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes (CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified. PMID:21249124

  3. Microbiota source impact in vitro metabolite colonic production and anti-proliferative effect of spent coffee grounds on human colon cancer cells (HT-29).

    PubMed

    Hernández-Arriaga, Angélica María; Dave Oomah, B; Campos-Vega, Rocio

    2017-07-01

    Human gut flora-mediated non-digestible fraction of spent coffee grounds (hgf-NDSCG) was evaluated for its chemopreventive effect and molecular mechanisms involved on human colon adenocarcinoma HT-29 cell survival using two different microbiota source [lean (L) and overweight (OW)]. The source of human gut flora (hgf) (L or OW) affected the pH of hgf-NDSCG only minimally, but linearly reduced those of hgf-inulin. The variability between lean and overweight microbiota was characterized by the metabolism and/or bioaccessibility of different phenolic metabolites, their intermediate and end products as well as by variable time courses. Apoptosis of colon cancer HT-29 cells depended on the microbiota source with the lean microbiota expressing a low lethal concentration 50 (LC 50 /L-hgf-NDSCG=13.5%). We demonstrate that NDSCG and its colonic metabolite from lean microbiota induced HT-29 cell apoptosis by reducing catalase and 8-iso-prostaglandin F2α as biomarkers of in vivo oxidative stress as the primary mechanism underlying its overall chemoprotection against colon cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. mTOR inhibition elicits a dramatic response in PI3K-dependent colon cancers.

    PubMed

    Deming, Dustin A; Leystra, Alyssa A; Farhoud, Mohammed; Nettekoven, Laura; Clipson, Linda; Albrecht, Dawn; Washington, Mary Kay; Sullivan, Ruth; Weichert, Jamey P; Halberg, Richard B

    2013-01-01

    The phosphatidylinositide-3-kinase (PI3K) signaling pathway is critical for multiple cellular functions including metabolism, proliferation, angiogenesis, and apoptosis, and is the most commonly altered pathway in human cancers. Recently, we developed a novel mouse model of colon cancer in which tumors are initiated by a dominant active PI3K (FC PIK3ca). The cancers in these mice are moderately differentiated invasive mucinous adenocarcinomas of the proximal colon that develop by 50 days of age. Interestingly, these cancers form without a benign intermediary or aberrant WNT signaling, indicating a non-canonical mechanism of tumorigenesis. Since these tumors are dependent upon the PI3K pathway, we investigated the potential for tumor response by the targeting of this pathway with rapamycin, an mTOR inhibitor. A cohort of FC PIK3ca mice were treated with rapamycin at a dose of 6 mg/kg/day or placebo for 14 days. FDG dual hybrid PET/CT imaging demonstrated a dramatic tumor response in the rapamycin arm and this was confirmed on necropsy. The tumor tissue remaining after treatment with rapamycin demonstrated increased pERK1/2 or persistent phosphorylated ribosomal protein S6 (pS6), indicating potential resistance mechanisms. This unique model will further our understanding of human disease and facilitate the development of therapeutics through pharmacologic screening and biomarker identification.

  5. High protective efficacy of rice bran against human rotavirus diarrhea via enhancing probiotic growth, gut barrier function, and innate immunity.

    PubMed

    Yang, Xingdong; Twitchell, Erica; Li, Guohua; Wen, Ke; Weiss, Mariah; Kocher, Jacob; Lei, Shaohua; Ramesh, Ashwin; Ryan, Elizabeth P; Yuan, Lijuan

    2015-10-13

    Previously, we showed that rice bran (RB) was able to reduce human rotavirus (HRV) diarrhea in gnotobiotic pigs. Here, we investigated its effect on the growth of diarrhea-reducing probiotic Lactobacillus rhamnosus GG (LGG) and Escherichia coli Nissle (EcN), and the resulting effects on HRV diarrhea, gut epithelial health, permeability and innate immune responses during virulent HRV challenge. On 3, 5, and 7 days of age pigs were inoculated with 2 × 10(4) colony-forming-units LGG+EcN to initiate colonization. Daily RB supplementation (replacing 10% calorie intake) was started at 5 days of age and continued until euthanasia. A subset of pigs in each group was challenged orally with 10(5) focus-forming-units of virulent HRV at 33 days of age. RB completely prevented HRV diarrhea in LGG+EcN colonized pigs. RB significantly promoted the growth of both probiotic strains in the gut (~5 logs) and increased the body-weight-gain at 4-5 weeks of age compared to non-RB group. After HRV challenge, RB-fed pigs had significantly lower ileal mitotic index and villus width, and significantly increased intestinal IFN-γ and total IgA levels compared to non-RB group. Therefore, RB plus LGG+EcN colonization may represent a highly effective therapeutic approach against HRV and potentially a variety of other diarrhea-inducing enteric pathogens.

  6. Polyethylene Glycol (PEG) Linked to Near Infrared (NIR) Dyes Conjugated to Chimeric Anti-Carcinoembryonic Antigen (CEA) Antibody Enhances Imaging of Liver Metastases in a Nude-Mouse Model of Human Colon Cancer

    PubMed Central

    Maawy, Ali A.; Hiroshima, Yukihiko; Zhang, Yong; Luiken, George A.; Hoffman, Robert M.; Bouvet, Michael

    2014-01-01

    We report here that polyethylene glycol (PEG) linked to near infrared dyes conjugated to chimeric mouse-human anti-carcinoembryonic antigen (CEA) antibody greatly improves imaging of liver metastases in a nude mouse model of colon-cancer experimental metastases. PEGylated and non-PEGylated DyLight 650 and 750 dyes were conjugated to the chimeric anti-CEA antibody. The dyes were initially injected intravenously into nude mice without tumors. Tissue biodistribution was determined by tissue sonication and analyzing tissue dye concentration profiles over time. PEGylated dyes had significantly lower accumulation in the liver (p = 0.03 for the 650 dyes; p = 0.002 for the 750 dyes) compared to non-PEGylated dyes. In an experimental liver metastasis model of HT-29 colon cancer, PEGylated dyes conjugated to the anti-CEA antibody showed good labeling of metastatic tumors with high contrast between normal and malignant tissue which was not possible with the non-PEGylated dyes since there was so much non-specific accumulation in the liver. PEGylation of the DyLight 650 and 750 NIR dyes significantly altered tissue biodistribution, allowing brighter tissue labeling, decreased accumulation in normal organs, particularly the liver. This enabled high fidelity and high contrast imaging of liver metastases. PMID:24859320

  7. Bovine milk-derived α-lactalbumin inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sodium sulfate-treated mice.

    PubMed

    Yamaguchi, Makoto; Takai, Shoko; Hosono, Akira; Seki, Taiichiro

    2014-01-01

    Cyclooxygenase-2 is expressed early in colon carcinogenesis and plays crucial role in the progress of the disease. Recently, we found that α-lactalbumin had anti-inflammatory activity by inhibiting cyclooxygenase-2. In experiment 1, we investigated the effects of α-lactalbumin on the colon carcinogenesis initiated with azoxymethane (AOM) followed by promotion with dextran sodium sulfate (DSS) in mice. Dietary treatment with α-lactalbumin decreased fecal occult blood score at 3 days after DSS intake. α-Lactalbumin also decreased the colon tumor at week 9. In experiment 2, AOM-treated mice were sacrificed at 7 days after DSS intake. The plasma and colon prostaglandin E2 (PGE2) levels in AOM/DSS-treated mice were higher than those in the DSS-treated mice without initiation by AOM. α-Lactalbumin decreased PGE2 in both plasma and colon. These results suggest that α-lactalbumin effectively inhibited colon carcinogenesis, and the inhibition may be due to the decreased PGE2 by inhibiting cyclooxygenase-2 at cancer promotion stages.

  8. Extracellular Polymeric Substance Production and Aggregated Bacteria Colonization Influence the Competition of Microbes in Biofilms.

    PubMed

    Jayathilake, Pahala G; Jana, Saikat; Rushton, Steve; Swailes, David; Bridgens, Ben; Curtis, Tom; Chen, Jinju

    2017-01-01

    The production of extracellular polymeric substance (EPS) is important for the survival of biofilms. However, EPS production is costly for bacteria and the bacterial strains that produce EPS (EPS+) grow in the same environment as non-producers (EPS-) leading to competition between these strains for nutrients and space. The outcome of this competition is likely to be dependent on factors such as initial attachment, EPS production rate, ambient nutrient levels and quorum sensing. We use an Individual-based Model (IbM) to study the competition between EPS+ and EPS- strains by varying the nature of initial colonizers which can either be in the form of single cells or multicellular aggregates. The microbes with EPS+ characteristics obtain a competitive advantage if they initially colonize the surface as smaller aggregates and are widely spread-out between the cells of EPS-, when both are deposited on the substratum. Furthermore, the results show that quorum sensing-regulated EPS production may significantly reduce the fitness of EPS producers when they initially deposit as aggregates. The results provide insights into how the distribution of bacterial aggregates during initial colonization could be a deciding factor in the competition among different strains in biofilms.

  9. Contrast enema as a guide for senna-based laxatives in managing overflow retentive stool incontinence in pediatrics.

    PubMed

    Radwan, Ahmed Bassiuony; El-Debeiky, Mohammed Soliman; Abdel-Hay, Sameh

    2015-08-01

    Overflow retentive stool incontinence (ORSI) is secondary to constipation and fecal loading. In our study, the dose and duration of senna-based laxatives (SBL) treatment to achieve full defecatory control will be examined for possible correlation with new parameters measured from the initial contrast enema. Initially, an observational study was conducted prospectively on a group of patient with ORSI to define the optimum dose of SBL to achieve full defecatory control with measurement of six parameters in the initial contrast enema (level of colonic dilatation, recto-anal angle, ratio of maximal diameter of dilated colon to last lumbar spine, ratio of maximum diameter of dilated colon to normal descending colon, immediate and after 24-h post-evacuation residual contrast). The result was analyzed statistically to reach a correlation between the radiological data and prescribed dose. Over 2 and half years, 72 patients were included in the study; their mean age was 6.3 ± 3.33 years. The mean effective starting dose of SBL was 57 ± 18.13 mg/day and the mean effective ending dose was 75 ± 31.68 mg/day. Time lapsed till full defecatory control ranged from 1 to 16 weeks. Statistical correlation revealed that mean effective ending dose of SBL treatment significantly increased with higher levels of colonic dilatation. A weak positive correlation was found for both the mean effective starting and ending doses with the ratio of maximum colonic diameter to last lumbar spine and descending colonic diameters ratio. Senna-based laxatives are effective treatment for overflow retentive stool incontinence and their doses can be adjusted initially depending on the analysis of the radiological data.

  10. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and Is Up-Regulated in a Subset of Human Colon Cancers.

    PubMed

    Chen, Evan C; Karl, Taylor A; Kalisky, Tomer; Gupta, Santosh K; O'Brien, Catherine A; Longacre, Teri A; van de Rijn, Matt; Quake, Stephen R; Clarke, Michael F; Rothenberg, Michael E

    2015-09-01

    Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 DM colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription polymerase chain reaction, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib after injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5 associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cells. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44(+) cells indicated that KIT can promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT(+) colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. KIT and KITLG are expressed by a subset of human colon tumors. KIT signaling promotes growth of colon cancer cells and organoids in culture and xenograft tumors in mice via its ligand, KITLG, in an autocrine or paracrine manner. Patients with KIT-expressing colon tumors can benefit from KIT RTK inhibitors. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  11. KIT Signaling Promotes Growth of Colon Xenograft Tumors in Mice and is Upregulated in a Subset of Human Colon Cancers

    PubMed Central

    Chen, Evan C.; Karl, Taylor A.; Kalisky, Tomer; Gupta, Santosh K.; O’Brien, Catherine A.; Longacre, Teri A.; van de Rijn, Matt; Quake, Stephen R.; Clarke, Michael F.; Rothenberg, Michael E.

    2015-01-01

    Background & Aims Receptor tyrosine kinase (RTK) inhibitors have advanced colon cancer treatment. We investigated the role of the RTK KIT in development of human colon cancer. Methods An array of 137 patient-derived colon tumors and their associated xenografts were analyzed by immunohistochemistry to measure levels of KIT and its ligand KITLG. KIT and/or KITLG was stably knocked down by expression of small hairpin RNAs from lentiviral vectors in DLD1, HT29, LS174T, and COLO320 colon cancer cell lines, and in UM-COLON#8 and POP77 xenografts; cells transduced with only vector were used as controls. Cells were analyzed by real-time quantitative reverse transcription PCR, single-cell gene expression analysis, flow cytometry, and immunohistochemical, immunoblot, and functional assays. Xenograft tumors were grown from control and KIT-knockdown DLD1 and UM-COLON#8 cells in immunocompromised mice and compared. Some mice were given the RTK inhibitor imatinib following injection of cancer cells; tumor growth was measured based on bioluminescence. We assessed tumorigenicity using limiting dilution analysis. Results KIT and KITLG were expressed heterogeneously by a subset of human colon tumors. Knockdown of KIT decreased proliferation of colon cancer cell lines and growth of xenograft tumors in mice, compared with control cells. KIT knockdown cells had increased expression of enterocyte markers, decreased expression of cycling genes, and, unexpectedly, increased expression of LGR5-associated genes. No activating mutations in KIT were detected in DLD1, POP77, or UM-COLON#8 cell lines. However, KITLG-knockdown DLD1 cells formed smaller xenograft tumors than control cells. Gene expression analysis of single CD44+ cells indicated that KIT may promote growth via KITLG autocrine and/or paracrine signaling. Imatinib inhibited growth of KIT+ colon cancer organoids in culture and growth of xenograft tumors in mice. Cancer cells with endogenous KIT expression were more tumorigenic in mice. Conclusions KIT and KITLG are expressed by a subset of human colon tumors. KIT signaling promotes growth of colon cancer cells and organoids in culture and xenograft tumors in mice via its ligand, KITLG, in an autocrine or paracrine manner. Patients with KIT-expressing colon tumors may benefit from KIT RTK inhibitors. PMID:26026391

  12. Independent Bottlenecks Characterize Colonization of Systemic Compartments and Gut Lymphoid Tissue by Salmonella

    PubMed Central

    Lim, Chee Han; Voedisch, Sabrina; Wahl, Benjamin; Rouf, Syed Fazle; Geffers, Robert

    2014-01-01

    Vaccination represents an important instrument to control typhoid fever in humans and protects mice from lethal infection with mouse pathogenic serovars of Salmonella species. Mixed infections with tagged Salmonella can be used in combination with probabilistic models to describe the dynamics of the infection process. Here we used mixed oral infections with tagged Salmonella strains to identify bottlenecks in the infection process in naïve and vaccinated mice. We established a next generation sequencing based method to characterize the composition of tagged Salmonella strains which offers a fast and reliable method to characterise the composition of genome-tagged Salmonella strains. We show that initial colonization of Salmonella was distinguished by a non-Darwinian selection of few bacteria setting up the infection independently in gut associated lymphoid tissue and systemic compartments. Colonization of Peyer's patches fuels the sustained spread of bacteria into mesenteric lymph nodes via dendritic cells. In contrast, infection of liver and spleen originated from an independent pool of bacteria. Vaccination only moderately reduced invasion of Peyer's patches but potently uncoupled bacterial populations present in different systemic compartments. Our data indicate that vaccination differentially skews the capacity of Salmonella to colonize systemic and gut immune compartments and provide a framework for the further dissection of infection dynamics. PMID:25079958

  13. Impact of experimental human pneumococcal carriage on nasopharyngeal bacterial densities in healthy adults.

    PubMed

    Shak, Joshua R; Cremers, Amelieke J H; Gritzfeld, Jenna F; de Jonge, Marien I; Hermans, Peter W M; Vidal, Jorge E; Klugman, Keith P; Gordon, Stephen B

    2014-01-01

    Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63%) of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study's sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14) was seen compared to that in the presence of H. influenzae (12/16). Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p = 0.008) compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute.

  14. GCC signaling in colorectal cancer: Is colorectal cancer a paracrine deficiency syndrome?

    PubMed Central

    Li, P.; Lin, J.E.; Marszlowicz, G.P.; Valentino, M.A.; Chang, C.; Schulz, S.; Pitari, G.M.; Waldman, S.A.

    2011-01-01

    Summary Guanylyl cyclase C (GCC) is the receptor expressed by intestinal cells for the paracrine hormones guanylin and uroguanylin that coordinate mucosal homeostasis and its silencing contributes to intestinal transformation. It orchestrates proliferative and metabolic circuits by limiting the cell cycle and programming metabolic transitions central to regeneration along the crypt-villus axis. Mice deficient in GCC are more susceptible to colon cancer induced by germline mutations or carcinogens. Moreover, guanylin and uroguanylin are the most commonly lost gene products in colon cancer. The role of GCC as a tumor suppressor and the universal loss of its hormones in transformation suggest a paradigm in which colorectal cancer is a disease of paracrine hormone insufficiency. Indeed, GCC signaling reverses the tumorigenic phenotype of human colon cancer cells by regulating proliferation and metabolism. These data suggest a pathophysiological hypothesis in which GCC is a tumor suppressor coordinating proliferative homeostasis whose silencing through hormone loss initiates transformation. The correlative therapeutic hypothesis suggests that colorectal cancer is a disease of hormone insufficiency that can be prevented or treated by oral hormone replacement therapy employing GCC ligands. PMID:19771320

  15. A new mechanical device for circular compression anastomosis. Preliminary results of animal and clinical experimentation.

    PubMed Central

    Rosati, R; Rebuffat, C; Pezzuoli, G

    1988-01-01

    The authors report the preliminary results obtained in animal and clinical experimentation of a new mechanical device for circular anastomosis which they have developed. It is a gun that places an apparatus consisting of three polypropylene rings that, through the compression among them of the severed edges of the bowel, realize a sutureless anastomosis and are spontaneously evacuated. Fifty-eight colonic anastomoses were performed in dogs with this device; 23 stapled colonic anastomoses were also executed concurrently. Forty-four animals underwent a relaparotomy to remove the colonic specimen containing the anastomoses. Bursting pressure and the histologic features of the anastomoses were evaluated at different time intervals after operation. A good healing of all compression anastomoses was observed, thereby allowing them to initiate the experience in humans. Thirteen anastomoses (6 colorectal extraperitoneal, 1 colorectal intraperitoneal, 5 colocolonic, 1 ileorectal) were performed at the 1st Surgical Department, Milan University. One subclinical leakage (7.7%) spontaneously healed in a few days. No stenoses were observed. Images Fig. 1. Fig. 2., Fig. 4., Fig. 6. Fig. 3., Fig. 5., Fig. 7. Fig. 8. Fig. 9. PMID:3345111

  16. A novel nitro-oxy substituted analogue of rofecoxib reduces human colon cancer cell growth.

    PubMed

    Bocca, Claudia; Bozzo, Francesca; Ievolella, Monica; Miglietta, Antonella

    2012-02-01

    Rofecoxib is a specific COX-2 inhibitor able to exert antiproliferative activity against colorectal cancer cells. It was withdrawn from the market after the demonstration of an increased risk of cardiovascular complications after prolonged use. Nevertheless, it remains an interesting compound for laboratory research as an experimental COX-2 inhibitor. In this study, the antiproliferative activity of a novel dinitro-oxy-substituted analogue of rofecoxib (NO-rofe), potentially less cardiotoxic, has been investigated in vitro on human colon cancer cells and compared with the action of the parent drug. Due to the fact that COX-2 inhibition is the main characteristic of coxibs, we performed all experiments in COX-2-overexpressing (HT-29) and COX-2-negative (SW-480) human colon cancer cells, to elucidate whether the observed effects were dependent on COX-2 inhibition. Moreover, experiments were performed in order to evaluate whether COX-2 pharmacological inhibition may affect beta-catenin/E-cadherin signaling pathway. NO-rofe exerted a significant antiproliferative activity on COX-2 positive HT-29 human colon cancer cells, being less effective on the COX-2 negative SW-480 human colon cancer cell line. In particular, the rofecoxib analogue retained similar potencies with respect to COX-2 inhibition but was much more active than rofecoxib in inhibiting the growth of human colon cancer cells in vitro. In addition, this novel compound resulted in the induction of membrane β-catenin/E-cadherin expression, a feature that may significantly contribute to its antiproliferative activity.

  17. Regional differences in concentrations of regulatory peptides in human colon mucosal biopsy.

    PubMed

    Calam, J; Ghatei, M A; Domin, J; Adrian, T E; Myszor, M; Gupta, S; Tait, C; Bloom, S R

    1989-08-01

    The study was undertaken to examine regional differences in the concentrations of five regulatory peptides in the human colonic mucosa. Biopsies were obtained during routine colonoscopy from 33 patients whose colonic mucosa was macroscopically and histologically normal. Regulatory peptides were extracted, and measured by specific radioimmunoassays. Concentrations of three peptides that are present predominantly in endocrine cells within colonic mucosa increased significantly towards the rectum: Mean concentrations of peptide YY, enteroglucagon, and somatostatin were about three times greater in the rectum than in the cecum. However, concentrations of two peptides that are present in mucosal nerve fibers diminished significantly towards the rectum: Mean rectal concentrations of vasoactive intestinal peptide and peptide histidine methionine were both about 0.6 of mean cecal concentrations. Concentrations of all five peptides were lower in biopsies taken from colonic polyps than in normal colonic mucosa. Regional differences in colonic mucosal concentrations of regulatory peptides probably reflect differences in the physiological functions of different parts of the colon.

  18. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting {beta}-catenin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jian-Yong; State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an; Huang, Yi

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer miR-320a is downregulated in human colorectal carcinoma. Black-Right-Pointing-Pointer Overexpression of miR-320a inhibits colon cancer cell proliferation. Black-Right-Pointing-Pointer {beta}-Catenin is a direct target of miR-320a in colon cancer cells. Black-Right-Pointing-Pointer miR-320a expression inversely correlates with mRNA expression of {beta}-catenin's target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colonmore » cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and {beta}-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and {beta}-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting {beta}-catenin, suggesting its application in prognosis prediction and cancer treatment.« less

  19. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    PubMed

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  20. Cellular and molecular effects of yeast probiotics on cancer.

    PubMed

    Saber, Amir; Alipour, Beitollah; Faghfoori, Zeinab; Yari Khosroushahi, Ahmad

    2017-02-01

    The cancer is one of the main causes of human deaths worldwide. The exact mechanisms of initiation and progression of malignancies are not clear yet, but there is a common agreement about the role of colonic microbiota in the etiology of different cancers. Probiotics have been examined for their anti-cancer effects, and different mechanisms have been suggested about their antitumor functions. Nonpathogenic yeasts, as members of probiotics family, can be effective on gut microbiota dysbiosis. Generally safe yeasts have shown so many beneficial effects on human health. Probiotic yeasts influence physiology, metabolism, and immune homeostasis in the colon and contribute to cancer treatment due to possessing anti-inflammatory, anti-proliferative and anti-cancer properties. This study reviews some of the health-beneficial effects of probiotic yeasts and their biological substances like folic acid and β-glucan on cancer and focuses on the possible cellular and molecular mechanisms of probiotic yeasts such as influencing pathogenic bacteria, inactivation of carcinogenic compounds, especially those derived from food, improvement of intestinal barrier function, modulation of immune responses, antitoxic function, apoptosis, and anti-proliferative effects.

  1. Non-Typhoidal Salmonella Colonization in Chickens and Humans in the Mekong Delta of Vietnam.

    PubMed

    Trung, N V; Carrique-Mas, J J; Nghia, N H; Tu, L T P; Mai, H H; Tuyen, H T; Campbell, J; Nhung, N T; Nhung, H N; Minh, P V; Chieu, T T B; Hieu, T Q; Mai, N T N; Baker, S; Wagenaar, J A; Hoa, N T; Schultsz, C

    2017-03-01

    Salmonellosis is a public health concern in both the developed and developing countries. Although the majority of human non-typhoidal Salmonella enterica (NTS) cases are the result of foodborne infections or person-to-person transmission, NTS infections may also be acquired by environmental and occupational exposure to animals. While a considerable number of studies have investigated the presence of NTS in farm animals and meat/carcasses, very few studies have investigated the risk of NTS colonization in humans as a result of direct animal exposure. We investigated asymptomatic NTS colonization in 204 backyard chicken farms, 204 farmers and 306 matched individuals not exposed to chicken farming, in southern Vietnam. Pooled chicken faeces, collected using boot or handheld swabs on backyard chicken farms, and rectal swabs from human participants were tested. NTS colonization prevalence was 45.6%, 4.4% and 2.6% for chicken farms, farmers and unexposed individuals, respectively. Our study observed a higher prevalence of NTS colonization among chicken farmers (4.4%) compared with age-, sex- and location- matched rural and urban individuals not exposed to chickens (2.9% and 2.0%). A total of 164 chicken NTS strains and 17 human NTS strains were isolated, and 28 serovars were identified. Salmonella Weltevreden was the predominant serovar in both chickens and humans. NTS isolates showed resistance (20-40%) against tetracycline, chloramphenicol, sulfamethoxazole-trimethoprim and ampicillin. Our study reflects the epidemiology of NTS colonization in chickens and humans in the Mekong delta of Vietnam and emphasizes the need of larger, preferably longitudinal studies to study the transmission dynamics of NTS between and within animal and human host populations. © 2016 The Authors. Zoonoses and Public Health Published by Blackwell Verlag GmbH.

  2. Flagellin Induces β-Defensin 2 in Human Colonic Ex vivo Infection with Enterohemorrhagic Escherichia coli

    PubMed Central

    Lewis, Steven B.; Prior, Alison; Ellis, Samuel J.; Cook, Vivienne; Chan, Simon S. M.; Gelson, William; Schüller, Stephanie

    2016-01-01

    Enterohemorrhagic E.coli (EHEC) is an important foodborne pathogen in the developed world and can cause life-threatening disease particularly in children. EHEC persists in the human gut by adhering intimately to colonic epithelium and forming characteristic attaching/effacing lesions. In this study, we investigated the innate immune response to EHEC infection with particular focus on antimicrobial peptide and protein expression by colonic epithelium. Using a novel human colonic biopsy model and polarized T84 colon carcinoma cells, we found that EHEC infection induced expression of human β-defensin 2 (hBD2), whereas hBD1, hBD3, LL-37, and lysozyme remained unchanged. Infection with specific EHEC deletion mutants demonstrated that this was dependent on flagellin, and apical exposure to purified flagellin was sufficient to stimulate hBD2 and also interleukin (IL)-8 expression ex vivo and in vitro. Flagellin-mediated hBD2 induction was significantly reduced by inhibitors of NF-κB, MAP kinase p38 and JNK but not ERK1/2. Interestingly, IL-8 secretion by polarized T84 cells was vectorial depending on the side of stimulation, and apical exposure to EHEC or flagellin resulted in apical IL-8 release. Our results demonstrate that EHEC only induces a modest immune response in human colonic epithelium characterized by flagellin-dependent induction of hBD2 and low levels of IL-8. PMID:27446815

  3. New Archaeological Evidence for an Early Human Presence at Monte Verde, Chile.

    PubMed

    Dillehay, Tom D; Ocampo, Carlos; Saavedra, José; Sawakuchi, Andre Oliveira; Vega, Rodrigo M; Pino, Mario; Collins, Michael B; Scott Cummings, Linda; Arregui, Iván; Villagran, Ximena S; Hartmann, Gelvam A; Mella, Mauricio; González, Andrea; Dix, George

    2015-01-01

    Questions surrounding the chronology, place, and character of the initial human colonization of the Americas are a long-standing focus of debate. Interdisciplinary debate continues over the timing of entry, the rapidity and direction of dispersion, the variety of human responses to diverse habitats, the criteria for evaluating the validity of early sites, and the differences and similarities between colonization in North and South America. Despite recent advances in our understanding of these issues, archaeology still faces challenges in defining interdisciplinary research problems, assessing the reliability of the data, and applying new interpretative models. As the debates and challenges continue, new studies take place and previous research reexamined. Here we discuss recent exploratory excavation at and interdisciplinary data from the Monte Verde area in Chile to further our understanding of the first peopling of the Americas. New evidence of stone artifacts, faunal remains, and burned areas suggests discrete horizons of ephemeral human activity in a sandur plain setting radiocarbon and luminescence dated between at least ~18,500 and 14,500 cal BP. Based on multiple lines of evidence, including sedimentary proxies and artifact analysis, we present the probable anthropogenic origins and wider implications of this evidence. In a non-glacial cold climate environment of the south-central Andes, which is challenging for human occupation and for the preservation of hunter-gatherer sites, these horizons provide insight into an earlier context of late Pleistocene human behavior in northern Patagonia.

  4. Functional Differences between Human NKp44(-) and NKp44(+) RORC(+) Innate Lymphoid Cells.

    PubMed

    Hoorweg, Kerim; Peters, Charlotte P; Cornelissen, Ferry; Aparicio-Domingo, Patricia; Papazian, Natalie; Kazemier, Geert; Mjösberg, Jenny M; Spits, Hergen; Cupedo, Tom

    2012-01-01

    Human RORC(+) lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC(+) innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC(+) innate lymphoid cells are enriched for secretion of IL-17a or IL-22. Both subsets have an activated phenotype and can be distinguished based on the presence or absence of the natural cytotoxicity receptor NKp44. NKp44(+) IL-22 producing cells are present in tonsils while NKp44(-) IL-17a producing cells are present in fetal developing lymph nodes. Development of human intestinal NKp44(+) ILC is a programmed event that is independent of bacterial colonization and these cells colonize the fetal intestine during the first trimester. In the adult intestine, NKp44(+) ILC are the main ILC subset producing IL-22. NKp44(-) ILC remain present throughout adulthood in peripheral non-inflamed lymph nodes as resting, non-cytokine producing cells. However, upon stimulation lymph node ILC can swiftly initiate cytokine transcription suggesting that secondary human lymphoid organs may function as a reservoir for innate lymphoid cells capable of participating in inflammatory responses.

  5. New Archaeological Evidence for an Early Human Presence at Monte Verde, Chile

    PubMed Central

    Dillehay, Tom D.; Ocampo, Carlos; Saavedra, José; Sawakuchi, Andre Oliveira; Vega, Rodrigo M.; Pino, Mario; Collins, Michael B.; Scott Cummings, Linda; Arregui, Iván; Villagran, Ximena S.; Hartmann, Gelvam A.; Mella, Mauricio; González, Andrea; Dix, George

    2015-01-01

    Questions surrounding the chronology, place, and character of the initial human colonization of the Americas are a long-standing focus of debate. Interdisciplinary debate continues over the timing of entry, the rapidity and direction of dispersion, the variety of human responses to diverse habitats, the criteria for evaluating the validity of early sites, and the differences and similarities between colonization in North and South America. Despite recent advances in our understanding of these issues, archaeology still faces challenges in defining interdisciplinary research problems, assessing the reliability of the data, and applying new interpretative models. As the debates and challenges continue, new studies take place and previous research reexamined. Here we discuss recent exploratory excavation at and interdisciplinary data from the Monte Verde area in Chile to further our understanding of the first peopling of the Americas. New evidence of stone artifacts, faunal remains, and burned areas suggests discrete horizons of ephemeral human activity in a sandur plain setting radiocarbon and luminescence dated between at least ~18,500 and 14,500 cal BP. Based on multiple lines of evidence, including sedimentary proxies and artifact analysis, we present the probable anthropogenic origins and wider implications of this evidence. In a non-glacial cold climate environment of the south-central Andes, which is challenging for human occupation and for the preservation of hunter-gatherer sites, these horizons provide insight into an earlier context of late Pleistocene human behavior in northern Patagonia. PMID:26580202

  6. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults

    PubMed Central

    Chambers, Edward S; Viardot, Alexander; Psichas, Arianna; Morrison, Douglas J; Murphy, Kevin G; Zac-Varghese, Sagen E K; MacDougall, Kenneth; Preston, Tom; Tedford, Catriona; Finlayson, Graham S; Blundell, John E; Bell, Jimmy D; Thomas, E Louise; Mt-Isa, Shahrul; Ashby, Deborah; Gibson, Glen R; Kolida, Sofia; Dhillo, Waljit S; Bloom, Stephen R; Morley, Wayne; Clegg, Stuart; Frost, Gary

    2015-01-01

    Objective The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults. Design To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults. Results Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group. Conclusions These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans. Trial registration number NCT00750438. PMID:25500202

  7. Pharmacomicrobiomics: the impact of human microbiome variations on systems pharmacology and personalized therapeutics.

    PubMed

    ElRakaiby, Marwa; Dutilh, Bas E; Rizkallah, Mariam R; Boleij, Annemarie; Cole, Jason N; Aziz, Ramy K

    2014-07-01

    The Human Microbiome Project (HMP) is a global initiative undertaken to identify and characterize the collection of human-associated microorganisms at multiple anatomic sites (skin, mouth, nose, colon, vagina), and to determine how intra-individual and inter-individual alterations in the microbiome influence human health, immunity, and different disease states. In this review article, we summarize the key findings and applications of the HMP that may impact pharmacology and personalized therapeutics. We propose a microbiome cloud model, reflecting the temporal and spatial uncertainty of defining an individual's microbiome composition, with examples of how intra-individual variations (such as age and mode of delivery) shape the microbiome structure. Additionally, we discuss how this microbiome cloud concept explains the difficulty to define a core human microbiome and to classify individuals according to their biome types. Detailed examples are presented on microbiome changes related to colorectal cancer, antibiotic administration, and pharmacomicrobiomics, or drug-microbiome interactions, highlighting how an improved understanding of the human microbiome, and alterations thereof, may lead to the development of novel therapeutic agents, the modification of antibiotic policies and implementation, and improved health outcomes. Finally, the prospects of a collaborative computational microbiome research initiative in Africa are discussed.

  8. Pharmacomicrobiomics: The Impact of Human Microbiome Variations on Systems Pharmacology and Personalized Therapeutics

    PubMed Central

    ElRakaiby, Marwa; Dutilh, Bas E.; Rizkallah, Mariam R.; Boleij, Annemarie; Cole, Jason N.

    2014-01-01

    Abstract The Human Microbiome Project (HMP) is a global initiative undertaken to identify and characterize the collection of human-associated microorganisms at multiple anatomic sites (skin, mouth, nose, colon, vagina), and to determine how intra-individual and inter-individual alterations in the microbiome influence human health, immunity, and different disease states. In this review article, we summarize the key findings and applications of the HMP that may impact pharmacology and personalized therapeutics. We propose a microbiome cloud model, reflecting the temporal and spatial uncertainty of defining an individual's microbiome composition, with examples of how intra-individual variations (such as age and mode of delivery) shape the microbiome structure. Additionally, we discuss how this microbiome cloud concept explains the difficulty to define a core human microbiome and to classify individuals according to their biome types. Detailed examples are presented on microbiome changes related to colorectal cancer, antibiotic administration, and pharmacomicrobiomics, or drug–microbiome interactions, highlighting how an improved understanding of the human microbiome, and alterations thereof, may lead to the development of novel therapeutic agents, the modification of antibiotic policies and implementation, and improved health outcomes. Finally, the prospects of a collaborative computational microbiome research initiative in Africa are discussed. PMID:24785449

  9. Transit time affects the community stability of Lactobacillus and Bifidobacterium species in an in vitro model of human colonic microbiotia.

    PubMed

    Rodes, Laetitia; Paul, Arghya; Coussa-Charley, Michael; Al-Salami, Hani; Tomaro-Duchesneau, Catherine; Fakhoury, Marc; Prakash, Satya

    2011-12-01

    Retention time, which is analogous to transit time, is an index for bacterial stability in the intestine. Its consideration is of particular importance to optimize the delivery of probiotic bacteria in order to improve treatment efficacy. This study aims to investigate the effect of retention time on Lactobacilli and Bifidobacteria stability using an established in vitro human colon model. Three retention times were used: 72, 96, and 144 h. The effect of retention time on cell viability of different bacterial populations was analyzed with bacterial plate counts and PCR. The proportions of intestinal Bifidobacteria, Lactobacilli, Enterococci, Staphylococci and Clostridia populations, analyzed by plate counts, were found to be the same as that in human colonic microbiota. Retention time in the human colon affected the stability of Lactobacilli and Bifidobacteria communities, with maximum stability observed at 144 h. Therefore, retention time is an important parameter that influences bacterial stability in the colonic microbiota. Future clinical studies on probiotic bacteria formulations should take into consideration gastrointestinal transit parameters to improve treatment efficacy.

  10. Inhibitory effect of natural coumarin compounds, esculetin and esculin, on oxidative DNA damage and formation of aberrant crypt foci and tumors induced by 1,2-dimethylhydrazine in rat colons.

    PubMed

    Kaneko, Takao; Tahara, Shoichi; Takabayashi, Fumiyo

    2007-11-01

    The effects of esculetin (6,7-dihydroxycoumarin) and its 6-glycoside, esculin, on 8-oxo-2'-deoxyguanosine (8-oxodG) formation and carcinogenesis induced by a chemical carcinogen, 1,2-dimethylhydrazine (DMH), were examined in the colons of male Fischer 344 rats. Animals were given water containing esculetin or esculin for 7 d before subcutaneous injection of DMH (20 mg/kg body wt), killed 24 h after DMH treatment, and the levels of thiobarbituric acid reactive substances (TBARS) and 8-oxodG in the colons were determined. Both esculetin and esculin suppressed significantly the DMH-induced increases in 8-oxodG and TBARS in rat colon mucosa. We further investigated the modifying effect of esculin intake on the development of DMH-induced colonic aberrant crypt foci (ACF). Animals were given DMH once a week for 4 weeks to induce ACF. They then received water containing esculin ad libitum for 5 weeks (initiation phase) or 11 weeks after DMH treatment (post-initiation phase). Animals in the positive control group received tap water throughout the experiment. At the end of the experiment (16 weeks), the ingestion of esculin during the initiation phase significantly reduced the incidence of gross tumors, the number of ACF per rat and the mean number of AC per focus, while the esculin treatment during the post-initiation phase significantly decreased only the number of ACF per rat. These results suggest that esculin intake has an inhibitory effect on DMH-induced oxidative DNA damage and carcinogenesis in rat colons.

  11. SND1, a component of RNA-induced silencing complex, is up-regulated in human colon cancers and implicated in early stage colon carcinogenesis.

    PubMed

    Tsuchiya, Naoto; Ochiai, Masako; Nakashima, Katsuhiko; Ubagai, Tsuneyuki; Sugimura, Takashi; Nakagama, Hitoshi

    2007-10-01

    Colon cancers have been shown to develop after accumulation of multiple genetic and epigenetic alterations with changes in global gene expression profiles, contributing to the establishment of widely diverse phenotypes. Transcriptional and posttranscriptional regulation of gene expression by small RNA species, such as the small interfering RNA and microRNA and the RNA-induced silencing complex (RISC), is currently drawing major interest with regard to cancer development. SND1, also called Tudor-SN and p100 and recently reported to be a component of RISC, is among the list of highly expressed genes in human colon cancers. In the present study, we showed remarkable up-regulation of SND1 mRNA in human colon cancer tissues, even in early-stage lesions, and also in colon cancer cell lines. When mouse Snd1 was stably overexpressed in IEC6 rat intestinal epithelial cells, contact inhibition was lost and cell growth was promoted, even after the cells became confluent. Intriguingly, IEC6 cells with high levels of Snd1 also showed an altered distribution of E-cadherin from the cell membrane to the cytoplasm, suggesting loss of cellular polarity. Furthermore, the adenomatous polyposis coli (Apc) protein was coincidentally down-regulated, with no significant changes in the Apc mRNA level. Immunohistochemical analysis using chemically induced colonic lesions developed in rats revealed overexpression of Snd1 not only in colon cancers but also in aberrant crypt foci, putative precancerous lesions of the colon. Up-regulation of SND1 may thus occur at a very early stage in colon carcinogenesis and contribute to the posttranscriptional regulation of key players in colon cancer development, including APC and beta-catenin.

  12. Campylobacter jejuni Colonization in Wild Birds: Results from an Infection Experiment

    PubMed Central

    Waldenström, Jonas; Axelsson-Olsson, Diana; Olsen, Björn; Hasselquist, Dennis; Griekspoor, Petra; Jansson, Lena; Teneberg, Susann; Svensson, Lovisa; Ellström, Patrik

    2010-01-01

    Campylobacter jejuni is a common cause of bacterial gastroenteritis in most parts of the world. The bacterium has a broad host range and has been isolated from many animals and environments. To investigate shedding patterns and putative effects on an avian host, we developed a colonization model in which a wild bird species, the European Robin Erithacus rubecula, was inoculated orally with C. jejuni from either a human patient or from another wild bird species, the Song Thrush Turdus philomelos. These two isolates were genetically distinct from each other and provoked very different host responses. The Song Thrush isolate colonized all challenged birds and colonization lasted 6.8 days on average. Birds infected with this isolate also showed a transient but significant decrease in body mass. The human isolate did not colonize the birds and could be detected only in the feces of the birds shortly after inoculation. European Robins infected with the wild bird isolate generated a specific antibody response to C. jejuni membrane proteins from the avian isolate, which also was cross-reactive to membrane proteins of the human isolate. In contrast, European Robins infected with the human isolate did not mount a significant response to bacterial membrane proteins from either of the two isolates. The difference in colonization ability could indicate host adaptations. PMID:20140204

  13. Impact of Experimental Human Pneumococcal Carriage on Nasopharyngeal Bacterial Densities in Healthy Adults

    PubMed Central

    Shak, Joshua R.; Cremers, Amelieke J. H.; Gritzfeld, Jenna F.; de Jonge, Marien I.; Hermans, Peter W. M.; Vidal, Jorge E.; Klugman, Keith P.; Gordon, Stephen B.

    2014-01-01

    Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63%) of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study’s sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14) was seen compared to that in the presence of H. influenzae (12/16). Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p = 0.008) compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute. PMID:24915552

  14. Previously unrecognized stages of species-specific colonization in the mutualism between Xenorhabdus bacteria and Steinernema nematodes

    PubMed Central

    Chaston, John M.; Murfin, Kristen E.; Heath-Heckman, Elizabeth A.; Goodrich-Blair, Heidi

    2013-01-01

    Summary The specificity of a horizontally transmitted microbial symbiosis is often defined by molecular communication between host and microbe during initial engagement, which can occur in discrete stages. In the symbiosis between Steinernema nematodes and Xenorhabdus bacteria, previous investigations focused on bacterial colonization of the intestinal lumen (receptacle) of the nematode infective juvenile (IJ), as this was the only known persistent, intimate, and species-specific contact between the two. Here we show that bacteria colonize the anterior intestinal cells of other nematode developmental stages in a species-specific manner. Also, we describe three processes that only occur in juveniles that are destined to become IJs. First, a few bacterial cells colonize the nematode pharyngeal-intestinal valve (PIV) anterior to the intestinal epithelium. Second, the nematode intestine constricts while bacteria initially remain in the PIV. Third, anterior intestinal constriction relaxes and colonizing bacteria occupy the receptacle. At each stage, colonization requires X. nematophila symbiosis region 1 (SR1) genes and is species-specific: X. szentirmaii, which naturally lacks SR1, does not colonize unless SR1 is ectopically expressed. These findings reveal new aspects of Xenorhabdus bacteria interactions with and transmission by their Steinernema nematode hosts, and demonstrate that bacterial SR1 genes aid in colonizing nematode epithelial surfaces. PMID:23480552

  15. Magnetic Resonance Imaging Quantification of Fasted State Colonic Liquid Pockets in Healthy Humans.

    PubMed

    Murray, Kathryn; Hoad, Caroline L; Mudie, Deanna M; Wright, Jeff; Heissam, Khaled; Abrehart, Nichola; Pritchard, Susan E; Al Atwah, Salem; Gowland, Penny A; Garnett, Martin C; Amidon, Gregory E; Spiller, Robin C; Amidon, Gordon L; Marciani, Luca

    2017-08-07

    The rate and extent of drug dissolution and absorption from solid oral dosage forms is highly dependent on the volume of liquid in the gastrointestinal tract (GIT). However, little is known about the time course of GIT liquid volumes after drinking a glass of water (8 oz), particularly in the colon, which is a targeted site for both locally and systemically acting drug products. Previous magnetic resonance imaging (MRI) studies offered novel insights on GIT liquid distribution in fasted humans in the stomach and small intestine, and showed that freely mobile liquid in the intestine collects in fairly distinct regions or "pockets". Based on this previous pilot data, we hypothesized that (1) it is possible to quantify the time course of the volume and number of liquid pockets in the undisturbed colon of fasted healthy humans following ingestion of 240 mL, using noninvasive MRI methods; (2) the amount of freely mobile water in the fasted human colon is of the order of only a few milliliters. Twelve healthy volunteers fasted overnight and underwent fasted abdominal MRI scans before drinking 240 mL (∼8 fluid ounces) of water. After ingesting the water they were scanned at frequent intervals for 2 h. The images were processed to quantify freely mobile water in the total and regional colon: ascending, transverse, and descending. The fasted colon contained (mean ± SEM) 11 ± 5 pockets of resting liquid with a total volume of 2 ± 1 mL (average). The colonic fluid peaked at 7 ± 4 mL 30 min after the water drink. This peak fluid was distributed in 17 ± 7 separate liquid pockets in the colon. The regional analysis showed that pockets of free fluid were found primarily in the ascending colon. The interindividual variability was very high; the subjects showed a range of number of colonic fluid pockets from 0 to 89 and total colonic freely mobile fluid volume from 0 to 49 mL. This is the first study measuring the time course of the number, regional location, and volume of pockets of freely mobile liquid in the undisturbed colon of fasted humans after ingestion of a glass of water. Novel insights into the colonic fluid environment will be particularly relevant to improve our understanding and design of the in vivo performance of controlled release formulations targeted to the colon. The in vivo quantitative information presented here can be input into physiologically based mechanistic models of dissolution and absorption, and can be used in the design and set up of novel in vitro performance tools predictive of the in vivo environment.

  16. Early Prediction of Cancer Progression by Depth-Resolved Nanoscale Mapping of Nuclear Architecture from Unstained Tissue Specimens.

    PubMed

    Uttam, Shikhar; Pham, Hoa V; LaFace, Justin; Leibowitz, Brian; Yu, Jian; Brand, Randall E; Hartman, Douglas J; Liu, Yang

    2015-11-15

    Early cancer detection currently relies on screening the entire at-risk population, as with colonoscopy and mammography. Therefore, frequent, invasive surveillance of patients at risk for developing cancer carries financial, physical, and emotional burdens because clinicians lack tools to accurately predict which patients will actually progress into malignancy. Here, we present a new method to predict cancer progression risk via nanoscale nuclear architecture mapping (nanoNAM) of unstained tissue sections based on the intrinsic density alteration of nuclear structure rather than the amount of stain uptake. We demonstrate that nanoNAM detects a gradual increase in the density alteration of nuclear architecture during malignant transformation in animal models of colon carcinogenesis and in human patients with ulcerative colitis, even in tissue that appears histologically normal according to pathologists. We evaluated the ability of nanoNAM to predict "future" cancer progression in patients with ulcerative colitis who did and did not develop colon cancer up to 13 years after their initial colonoscopy. NanoNAM of the initial biopsies correctly classified 12 of 15 patients who eventually developed colon cancer and 15 of 18 who did not, with an overall accuracy of 85%. Taken together, our findings demonstrate great potential for nanoNAM in predicting cancer progression risk and suggest that further validation in a multicenter study with larger cohorts may eventually advance this method to become a routine clinical test. ©2015 American Association for Cancer Research.

  17. A Tad pilus promotes the establishment and resistance of Vibrio vulnificus biofilms to mechanical clearance.

    PubMed

    Pu, Meng; Rowe-Magnus, Dean Allistair

    2018-01-01

    Vibrio vulnificus is autochthonous to estuaries and warm coastal waters. Infection occurs via open wounds or ingestion, where its asymptomatic colonization of seafood, most infamously oysters, provides a gateway into the human food chain. Colonization begins with initial surface contact, which is often mediated by bacterial surface appendages called pili. Type IV Tad pili are widely distributed in the Vibrionaceae, but evidence for a physiological role for these structures is scant. The V. vulnificus genome codes for three distinct tad loci. Recently, a positive correlation was demonstrated between the expression of tad-3 and the phenotypes of a V. vulnificus descendent (NT) that exhibited increased biofilm formation, auto-aggregation, and oyster colonization relative to its parent. However, the mechanism by which tad pilus expression promoted these phenotypes was not determined. Here, we show that deletion of the tad pilin gene ( flp ) altered the near-surface motility profile of NT cells from high curvature, orbital retracing patterns characteristic of cells actively probing the surface to low curvature traces indicative of wandering and diminished bacteria-surface interactions. The NT flp pilin mutant also exhibited decreased initial surface attachment, attenuated auto-aggregation and formed fragile biofilms that disintegrated under hydrodynamic flow. Thus, the tad-3 locus, designated iam , promoted i nitial surface attachment, a uto-aggregation and resistance to m echanical clearance of V. vulnificus biofilms. The prevalence of tad loci in the Vibrionaceae suggests that they may play equally important roles in other family members.

  18. ARBUSCULAR MYCORRHIZAL COLONIZATION OF LARREA TRIDENTATA AND AMBROSIA DUMOSA ROOTS VARIES WITH PRECIPITATION AND SEASON IN THE MOJAVE DESERT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. E. APPLE; C. I. THEE; V. L. SMITH-LONGOZO

    2004-01-01

    The percentage of fine roots colonized by arbuscular mycorrhizal (AM) fungi varied with season and with species in the co-dominant shrubs Lurreu tridentutu and Ambrosia dumosu at a site adjacent to the Nevada Desert FACE (Free-Air CO{sub 2} Enrichment) Facility (NDFF) in the Mojave Desert. We excavated downward and outward from the shrub bases in both species to collect and examine fine roots (< 1.0 mm diameter) at monthly intervals throughout 2001 and from October 2002 to September 2003. Fungal structures became visible in cleared roots stained with trypan blue. We quantified the percent colonization of roots by AM fungimore » via the line intercept method. In both years and for both species, colonization was highest in fall, relatively low in spring when root growth began, increased in late spring, and decreased during summer drought periods. Increases in colonization during summer and fall reflect corresponding increases in precipitation. Spring mycorrhizal colonization is low despite peaks in soil water availability and precipitation, indicating that precipitation is not the only factor influencing mycorrhizal colonization. Because the spring decrease in mycorrhizal colonization occurs when these shrubs initiate a major flush of fine root growth, other phenological events such as competing demands for carbon by fine root initiation, early season shoot growth, and flowering may reduce carbon availability to the fungus, and hence decrease colonization. Another possibility is that root growth exceeds the rate of mycorrhizal colonization.« less

  19. Dispersal time for ancient human migrations: Americas and Europe colonization

    NASA Astrophysics Data System (ADS)

    Flores, J. C.

    2007-07-01

    I apply the recently proposed intermittence strategy to investigate the ancient human migrations in the world. That is, the Americas colonization (Bering-bridge and Pacific-coast theories) and Neanderthal replacement in Europe around 45000 years before the present. Using a mathematical equation related to diffusion and ballistic motion, I calculate the colonization time in all these cases in good agreement with archeological data (including Neolithic transition in Europe). Moreover, to support these calculations, I obtain analytically the effective speed of colonization in Europe veff=0.62 [km/yr] and related to the Aurignacian culture propagation.

  20. Death eaters respond to the dark mark of decomposition day and night: observations of initial insect activity on piglet carcasses.

    PubMed

    Weidner, Lauren M; Monzon, Michael A; Hamilton, George C

    2016-11-01

    Some insect taxa can be of critical importance for criminal investigations because they can be used to assist with a time since death determination. Blow flies (Diptera: Calliphoridae) often are the initial colonizers of a carcass, usually arriving within minutes to hours after carcass exposure during the day. Other insects, such as coleopterans and hymenopterans, can arrive to a carcass during early colonization and affect blow fly development. However, the extent of these interactions remains unclear. This study analyzed the initial 6 h after a piglet carcass was placed out in two locations (rural and urban) in diurnal and nocturnal conditions with continuous video recording and hourly observations. Four piglets were placed out every 2 weeks over the summer of 2014. Initial blow fly arrivals to the carcasses were only recorded during diurnal conditions, and a checklist of orders associated with each environment (time and location) was created. During diurnal conditions, initial blow fly arrival times in rural environments were significantly faster than those in urban, arriving as quickly as 23 s after exposure. These observations also included a novel interaction with Vespidae, which to the best of our knowledge has not been seen in the literature before. This experiment provides baseline data on early insect colonization in two environments in New Jersey, and lends insight into insect interactions that could affect initial colonization.

  1. Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans

    PubMed Central

    Metspalu, Mait; Kivisild, Toomas; Metspalu, Ene; Parik, Jüri; Hudjashov, Georgi; Kaldma, Katrin; Serk, Piia; Karmin, Monika; Behar, Doron M; Gilbert, M Thomas P; Endicott, Phillip; Mastana, Sarabjit; Papiha, Surinder S; Skorecki, Karl; Torroni, Antonio; Villems, Richard

    2004-01-01

    Background Recent advances in the understanding of the maternal and paternal heritage of south and southwest Asian populations have highlighted their role in the colonization of Eurasia by anatomically modern humans. Further understanding requires a deeper insight into the topology of the branches of the Indian mtDNA phylogenetic tree, which should be contextualized within the phylogeography of the neighboring regional mtDNA variation. Accordingly, we have analyzed mtDNA control and coding region variation in 796 Indian (including both tribal and caste populations from different parts of India) and 436 Iranian mtDNAs. The results were integrated and analyzed together with published data from South, Southeast Asia and West Eurasia. Results Four new Indian-specific haplogroup M sub-clades were defined. These, in combination with two previously described haplogroups, encompass approximately one third of the haplogroup M mtDNAs in India. Their phylogeography and spread among different linguistic phyla and social strata was investigated in detail. Furthermore, the analysis of the Iranian mtDNA pool revealed patterns of limited reciprocal gene flow between Iran and the Indian sub-continent and allowed the identification of different assemblies of shared mtDNA sub-clades. Conclusions Since the initial peopling of South and West Asia by anatomically modern humans, when this region may well have provided the initial settlers who colonized much of the rest of Eurasia, the gene flow in and out of India of the maternally transmitted mtDNA has been surprisingly limited. Specifically, our analysis of the mtDNA haplogroups, which are shared between Indian and Iranian populations and exhibit coalescence ages corresponding to around the early Upper Paleolithic, indicates that they are present in India largely as Indian-specific sub-lineages. In contrast, other ancient Indian-specific variants of M and R are very rare outside the sub-continent. PMID:15339343

  2. Metaproteomics Reveals Functional Shifts in Microbial and Human Proteins During Infant Gut Colonization Case

    DOE PAGES

    Young, Jacque C.; Pan, Chongle; Adams, Rachel M.; ...

    2015-01-01

    The microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity and functions increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data indicating three distinct colonization phases. Overall microbial community functions were established relatively early in development andmore » remained stable. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Moreover, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. Our study provides the first snapshot of coordinated human and microbial protein expression in the infant gut during early development.« less

  3. The action of sennosides and related compounds on human colon and rectum 1

    PubMed Central

    Hardcastle, J. D.; Wilkins, J. L.

    1970-01-01

    The direct action of intraluminal senna and related compounds on the human colon and rectum has been investigated. Motility was recorded by balloon kymography with recording units inserted into well established transverse colostomies or into the rectum. The motility of the colon was not changed by intraluminal senna glycosides but the introduction of senna previously incubated with faeces or Esch. coli stimulated the colon to peristalt. The peristalsis was similar to that stimulated by rheinanthrone, an oxanthrone produced by chemical hydrolysis and reduction of senna. Both activated senna and rheinanthrone appeared to act in the colon by contact stimulation. No peristaltic response was stimulated in the rectum, either with activated senna or with rheinanthrone. PMID:4929273

  4. Proteome Analysis Identifies the Dpr Protein of Streptococcus mutans as an Important Factor in the Presence of Early Streptococcal Colonizers of Tooth Surfaces

    PubMed Central

    Yoshida, Akihiro; Niki, Mamiko; Yamamoto, Yuji; Yasunaga, Ai; Ansai, Toshihiro

    2015-01-01

    Oral streptococci are primary colonizers of tooth surfaces and Streptococcus mutans is the principal causative agent of dental caries in humans. A number of proteins are involved in the formation of monospecies biofilms by S. mutans. This study analyzed the protein expression profiles of S. mutans biofilms formed in the presence or absence of S. gordonii, a pioneer colonizer of the tooth surface, by two-dimensional gel electrophoresis (2-DE). After identifying S. mutans proteins by Mass spectrometric analysis, their expression in the presence of S. gordonii was analyzed. S. mutans was inoculated with or without S. gordonii DL1. The two species were compartmentalized using 0.2-μl Anopore membranes. The biofilms on polystyrene plates were harvested, and the solubilized proteins were separated by 2-DE. When S. mutans biofilms were formed in the presence of S. gordonii, the peroxide resistance protein Dpr of the former showed 4.3-fold increased expression compared to biofilms that developed in the absence of the pioneer colonizer. In addition, we performed a competition assay using S. mutans antioxidant protein mutants together with S. gordonii and other initial colonizers. Growth of the dpr-knockout S. mutans mutant was significantly inhibited by S. gordonii, as well as by S. sanguinis. Furthermore, a cell viability assay revealed that the viability of the dpr-defective mutant was significantly attenuated compared to the wild-type strain when co-cultured with S. gordonii. Therefore, these results suggest that Dpr might be one of the essential proteins for S. mutans survival on teeth in the presence of early colonizing oral streptococci. PMID:25816242

  5. Prostaglandin E2 produced by Entamoeba histolytica binds to EP4 receptors and stimulates interleukin-8 production in human colonic cells.

    PubMed

    Dey, Indranil; Chadee, Kris

    2008-11-01

    Entamoeba histolytica pathogenesis in the colon occurs in a stepwise fashion. It begins with colonization of the mucin layer, which is followed by stimulation of a proinflammatory response that causes nonspecific tissue damage that may facilitate parasite invasion of the underlying colonic mucosa. Unfortunately, the parasite and/or host factors that stimulate a proinflammatory response in the gut are poorly understood. In this study, we found that live E. histolytica or secretory or proteins (SP) and soluble ameba components (SAP) can markedly increase interleukin-8 (IL-8) mRNA expression and protein production in colonic epithelial cells. The IL-8-stimulating molecule produced by live amebae was identified as prostaglandin E(2) (PGE(2)) as trophozoites treated with cyclooxygenase inhibitors inhibited the biosynthesis of PGE(2) and eliminated IL-8 production induced by live parasites or ameba components. Moreover, using specific prostaglandin EP2 and EP4 receptor agonists and antagonists, we found that PGE(2) binds exclusively through EP4 receptors in colonic epithelial cells to stimulate IL-8 production. Silencing of EP4 receptors with EP4 small interfering RNA completely eliminated SP- and SAP-induced IL-8 production. These studies identified bioactive PGE(2) as a one of the major virulence factors produced by E. histolytica that can stimulate the potent neutrophil chemokine and activator IL-8, which can trigger an acute host inflammatory response. Thus, the induction of IL-8 production in response to E. histolytica-derived PGE(2) may be a mechanism that explains the initiation and amplification of acute inflammation associated with intestinal amebiasis.

  6. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer.

    PubMed

    O'Neill, Ann Marie; Burrington, Christine M; Gillaspie, Erin A; Lynch, Darin T; Horsman, Melissa J; Greene, Michael W

    2016-12-01

    Strong epidemiologic evidence links colon cancer to obesity. The increasing worldwide incidence of colon cancer has been linked to the spread of the Western lifestyle, and in particular consumption of a high-fat Western diet. In this study, our objectives were to establish mouse models to examine the effects of high-fat Western diet-induced obesity on the growth of human colon cancer tumor xenografts, and to examine potential mechanisms driving obesity-linked human colon cancer tumor growth. We hypothesize that mice rendered insulin resistant due to consumption of a high-fat Western diet will show increased and accelerated tumor growth. Homozygous Rag1 tm1Mom mice were fed either a low-fat Western diet or a high-fat Western diet (HFWD), then human colon cancer xenografts were implanted subcutaneously or orthotopically. Tumors were analyzed to detect changes in receptor tyrosine kinase-mediated signaling and expression of inflammatory-associated genes in epididymal white adipose tissue. In both models, mice fed an HFWD weighed more and had increased intra-abdominal fat, and tumor weight was greater compared with in the low-fat Western diet-fed mice. They also displayed significantly higher levels of leptin; however, there was a negative correlation between leptin levels and tumor size. In the orthotopic model, tumors and adipose tissue from the HFWD group displayed significant increases in both c-Jun N-terminal kinase activation and monocyte chemoattractant protein 1 expression, respectively. In conclusion, this study suggests that human colon cancer growth is accelerated in animals that are obese and insulin resistant due to the consumption of an HFWD. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Jose de Escandon--Colonizer of Nuevo Santander.

    ERIC Educational Resources Information Center

    Miller, Hubert J.

    Jose de Escandon's colonization work in the present Mexican state of Tamaulipas and the lower Rio Grande valley forms an essential part of the Spanish northern borderlands. Many of the land grants in the area, ranching, and some of the present day agricultural industries originated with the colonization projects initiated by Escandon, who proved…

  8. Occurrence of the invasion associated marker (iam) in Campylobacter jejuni isolated from cattle

    PubMed Central

    2011-01-01

    Background The invasion associated marker (iam) has been detected in the majority of invasive Campylobacter jejuni retrieved from humans. Furthermore, the detection of iam in C. jejuni isolated from two important hosts, humans and chickens, suggested a role for this marker in C. jejuni's colonization of multiple hosts. However, no data exist regarding the occurrence of this marker in C. jejuni isolated from non-poultry food-animals such as cattle, an increasingly important source for human infections. Since little is known about the genetics associated with C. jejuni's capability for colonizing physiologically disparate hosts, we investigated the occurrence of the iam in C. jejuni isolated from cattle and assessed the potential of iam-containing cattle and human isolates for chicken colonization and human cell invasion. Results Simultaneous RAPD typing and iam-specific PCR analysis of 129 C. jejuni isolated from 1171 cattle fecal samples showed that 8 (6.2%) of the isolates were iam-positive, while 7 (54%) of human-associated isolates were iam-positive. The iam sequences were mostly heterogeneous and occurred in diverse genetic backgrounds. All iam-positive isolates were motile and possessed important genes (cadF, ciaB, cdtB) associated with adhesion and virulence. Although certain iam-containing isolates invaded and survived in INT-407 cells in high numbers and successfully colonized live chickens, there was no clear association between the occurrence, allelic sequence, and expression levels of the iam and the aforementioned phenotypes. Conclusions We show that the prevalence of iam in cattle C. jejuni is relatively lower as compared to isolates occurring in humans and chickens. In addition, iam was polymorphic and certain alleles occur in cattle isolates that were capable of colonizing and invading chickens and human intestinal cells, respectively. However, the iam did not appear to contribute to the cattle-associated C. jejuni's potential for invasion and intracellular survival in human intestinal cells as well as chicken colonization. PMID:22208406

  9. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs.

    PubMed

    Verstappen, Koen M; Tulinski, Pawel; Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential approach for the control of MRSA colonization to minimize the-often occupational-exposure of humans. The aim of this study was to assess the efficacy of bacteriophage treatment on porcine nasal colonization with MRSA in vitro, in vivo, and ex vivo. The effectiveness of a bacteriophage combination of phage K*710 and P68 was assessed in vitro by incubating them with MRSA V0608892/1 (ST398) measuring the OD600 hourly. To study the in vivo effect, bacteriophages were administered in a gel developed for human application, which contain 109 plaque-forming units (pfu)/mL (K and P68 in a 19.25:1 ratio) for 5 days to piglets (N = 8) that were experimentally colonized with the MRSA strain. Eight piglets experimentally colonized were used as a negative control. The MRSA strain was also used to colonize porcine nasal mucosa explants and bacteriophages were applied to assess the ex vivo efficacy of treatment. Bacteriophages were effective in vitro. In vivo, sixteen piglets were colonized with MRSA but the number of CFU recovered after the application of the bacteriophages in 8 piglets was not reduced compared to the control animals (approx. 105 CFU/swab). In the ex vivo model, 108 CFU were used to establish colonization with MRSA; a reduction of colonization was not observed after application of bacteriophages. However, application of mupirocin both in vivo and ex vivo resulted in a near eradication of MRSA. i) The MRSA strain was killed in the presence of the bacteriophages phage K*710 and P68 in vitro. ii) Bacteriophages did not reduce porcine nasal colonization in vivo or ex vivo. Physiological in vivo and ex vivo conditions may explain these observations. Efficacy in the ex vivo model matched that of the in vivo system.

  10. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs

    PubMed Central

    Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential approach for the control of MRSA colonization to minimize the—often occupational—exposure of humans. The aim of this study was to assess the efficacy of bacteriophage treatment on porcine nasal colonization with MRSA in vitro, in vivo, and ex vivo. The effectiveness of a bacteriophage combination of phage K*710 and P68 was assessed in vitro by incubating them with MRSA V0608892/1 (ST398) measuring the OD600 hourly. To study the in vivo effect, bacteriophages were administered in a gel developed for human application, which contain 109 plaque-forming units (pfu)/mL (K and P68 in a 19.25:1 ratio) for 5 days to piglets (N = 8) that were experimentally colonized with the MRSA strain. Eight piglets experimentally colonized were used as a negative control. The MRSA strain was also used to colonize porcine nasal mucosa explants and bacteriophages were applied to assess the ex vivo efficacy of treatment. Bacteriophages were effective in vitro. In vivo, sixteen piglets were colonized with MRSA but the number of CFU recovered after the application of the bacteriophages in 8 piglets was not reduced compared to the control animals (approx. 105 CFU/swab). In the ex vivo model, 108 CFU were used to establish colonization with MRSA; a reduction of colonization was not observed after application of bacteriophages. However, application of mupirocin both in vivo and ex vivo resulted in a near eradication of MRSA. In conclusion: i) The MRSA strain was killed in the presence of the bacteriophages phage K*710 and P68 in vitro. ii) Bacteriophages did not reduce porcine nasal colonization in vivo or ex vivo. Physiological in vivo and ex vivo conditions may explain these observations. Efficacy in the ex vivo model matched that of the in vivo system. PMID:27487020

  11. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    USDA-ARS?s Scientific Manuscript database

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of D...

  12. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer.

    PubMed

    Bordonaro, Michael

    2013-01-01

    RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation). Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC), has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for therapeutic benefit. Therefore, this minireview presents a brief overview of several aspects of RNA processing of relevance to cancer, which potentially influence, or are influenced by, Wnt signaling activity.

  13. Prevention and treatment of colon cancer by peroral administration of HAMLET (human α-lactalbumin made lethal to tumour cells).

    PubMed

    Puthia, Manoj; Storm, Petter; Nadeem, Aftab; Hsiung, Sabrina; Svanborg, Catharina

    2014-01-01

    Most colon cancers start with dysregulated Wnt/β-catenin signalling and remain a major therapeutic challenge. Examining whether HAMLET (human α-lactalbumin made lethal to tumour cells) may be used for colon cancer treatment is logical, based on the properties of the complex and its biological context. To investigate if HAMLET can be used for colon cancer treatment and prevention. Apc(Min)(/+) mice, which carry mutations relevant to hereditary and sporadic human colorectal tumours, were used as a model for human disease. HAMLET was given perorally in therapeutic and prophylactic regimens. Tumour burden and animal survival of HAMLET-treated and sham-fed mice were compared. Tissue analysis focused on Wnt/β-catenin signalling, proliferation markers and gene expression, using microarrays, immunoblotting, immunohistochemistry and ELISA. Confocal microscopy, reporter assay, immunoprecipitation, immunoblotting, ion flux assays and holographic imaging were used to determine effects on colon cancer cells. Peroral HAMLET administration reduced tumour progression and mortality in Apc(Min)(/+) mice. HAMLET accumulated specifically in tumour tissue, reduced β-catenin and related tumour markers. Gene expression analysis detected inhibition of Wnt signalling and a shift to a more differentiated phenotype. In colon cancer cells with APC mutations, HAMLET altered β-catenin integrity and localisation through an ion channel-dependent pathway, defining a new mechanism for controlling β-catenin signalling. Remarkably, supplying HAMLET to the drinking water from the time of weaning also significantly prevented tumour development. These data identify HAMLET as a new, peroral agent for colon cancer prevention and treatment, especially needed in people carrying APC mutations, where colon cancer remains a leading cause of death.

  14. Prevention and treatment of colon cancer by peroral administration of HAMLET (human α-lactalbumin made lethal to tumour cells)

    PubMed Central

    Puthia, Manoj; Storm, Petter; Nadeem, Aftab; Hsiung, Sabrina; Svanborg, Catharina

    2014-01-01

    Background Most colon cancers start with dysregulated Wnt/β-catenin signalling and remain a major therapeutic challenge. Examining whether HAMLET (human α-lactalbumin made lethal to tumour cells) may be used for colon cancer treatment is logical, based on the properties of the complex and its biological context. Objective To investigate if HAMLET can be used for colon cancer treatment and prevention. ApcMin/+ mice, which carry mutations relevant to hereditary and sporadic human colorectal tumours, were used as a model for human disease. Method HAMLET was given perorally in therapeutic and prophylactic regimens. Tumour burden and animal survival of HAMLET-treated and sham-fed mice were compared. Tissue analysis focused on Wnt/β-catenin signalling, proliferation markers and gene expression, using microarrays, immunoblotting, immunohistochemistry and ELISA. Confocal microscopy, reporter assay, immunoprecipitation, immunoblotting, ion flux assays and holographic imaging were used to determine effects on colon cancer cells. Results Peroral HAMLET administration reduced tumour progression and mortality in ApcMin/+ mice. HAMLET accumulated specifically in tumour tissue, reduced β-catenin and related tumour markers. Gene expression analysis detected inhibition of Wnt signalling and a shift to a more differentiated phenotype. In colon cancer cells with APC mutations, HAMLET altered β-catenin integrity and localisation through an ion channel-dependent pathway, defining a new mechanism for controlling β-catenin signalling. Remarkably, supplying HAMLET to the drinking water from the time of weaning also significantly prevented tumour development. Conclusions These data identify HAMLET as a new, peroral agent for colon cancer prevention and treatment, especially needed in people carrying APC mutations, where colon cancer remains a leading cause of death. PMID:23348960

  15. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells.

    PubMed

    Lajczak, Natalia K; Saint-Criq, Vinciane; O'Dwyer, Aoife M; Perino, Alessia; Adorini, Luciano; Schoonjans, Kristina; Keely, Stephen J

    2017-09-01

    Bile acids and epithelial-derived human β-defensins (HβDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HβD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HβD1 and HβD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HβD1 and HβD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 μM), but not by the farnesoid X receptor agonist, GW4064 (10 μM). INT-777 also stimulated colonic HβD1 and HβD2 release from wild-type, but not Takeda GPCR 5 -/- , mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 μM), inhibited DCA-induced HβD2, but not HβD1, release. We conclude that bile acids can differentially regulate colonic epithelial HβD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. © FASEB.

  16. Effects of recombinant human growth hormone and nandrolone phenylpropionate on the healing of ischemic colon anastomosis in rats.

    PubMed

    Yarimkaya, Ali; Apaydin, Berat; Unal, Ethem; Karabicak, Ilhan; Aydogan, Fatih; Uslu, Ezel; Erginoz, Ethem; Artis, Tarik; Eyuboglu, Erhun

    2003-12-01

    Recombinant human growth hormone and nandrolone phenylpropionate are two different anabolic agents. This study was designed to investigate the effects of these anabolic agents on the healing of ischemic colon anastomosis in rats. Seventy adult male Wistar rats were divided into five groups (n = 14). Group I was the sham laparotomy group. In the other groups, surgical procedures consisting of transsection and anastomosis were made at a distance 3 cm from the peritoneal reflection. Group II was the nonischemic control group. Ischemic colon model was produced in the remaining groups. Group III was the untreated control group. Groups IV and V received recombinant human growth hormone and nandrolone phenylpropionate, respectively. Bursting pressure and hydroxyproline levels were measured on the third and seventh postoperative days to evaluate anastomotic healing. Recombinant human growth hormone increased both collagen deposition and bursting pressure significantly at postoperative Days 3 and 7 compared with the sham and untreated control groups (P < 0.005). When compared with the untreated control, nandrolone phenylpropionate significantly increased collagen deposition at postoperative Days 3 and 7 (P < 0.005) and bursting pressure only at postoperative Day 3 (P < 0.005). Recombinant human growth hormone has more favorable therapeutic effects on the healing of ischemic colonic anastomoses than nandrolone phenylpropionate. Recombinant human growth hormone also improves healing of nonischemic colonic anastomosis.

  17. Bacteria from diverse habitats colonize and compete in the mouse gut.

    PubMed

    Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K; Reyes, Alejandro; Cheng, Jiye; Rey, Federico E; Smith, Michelle I; Simon, Gabriel M; Scheffrahn, Rudolf H; Woebken, Dagmar; Spormann, Alfred M; Van Treuren, William; Ursell, Luke K; Pirrung, Megan; Robbins-Pianka, Adam; Cantarel, Brandi L; Lombard, Vincent; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I

    2014-10-09

    To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Interleukin-22 promotes aerobic glycolysis associated with tumor progression via targeting hexokinase-2 in human colon cancer cells.

    PubMed

    Liu, Yulin; Xiang, Fan; Huang, Yongming; Shi, Liang; Hu, Chaojie; Yang, Yiming; Wang, Di; He, Nan; Tao, Kaixiong; Wu, Ke; Wang, Guobin

    2017-04-11

    Interleukin-22 has been explored extensively in human cancer, but its functions and underlying mechanisms are incompletely understood. Here, we show that aberrant interleukin-22 expression facilitates aerobic glycolysis in colon cancer cells. Elevated interleukin-22 mRNA expression was observed and positively correlated with hexokinase-2 in colon cancer tissues. In vitro, interleukin-22 enhanced glucose consumption and lactate production via targeting hexokinase-2 in colon cancer cells. Moreover, the transcriptional factor c-Myc and signal transducer and activator of transcription 3 were involved in interleukin-22-induced up-regulation of hexokinase-2. We further demonstrated that hexokinase-2 partly accounted for interleukin-22-mediated cellular proliferation in DLD-1 cells. In vivo, our data demonstrated that interleukin-22 significantly promoted tumor growth along with elevated expression of c-Myc and hexokinase-2 in mice. In summary, our findings provide a new perspective on the pro-inflammatory cytokine interleukin-22 in promoting aerobic glycolysis associated with tumor progression in human colon cancer cells.

  19. Effects of encapsulated Lactobacillus acidophilus along with pasteurized longan juice on the colon microbiota residing in a dynamic simulator of the human intestinal microbial ecosystem.

    PubMed

    Chaikham, Pittaya; Apichartsrangkoon, Arunee

    2014-01-01

    The effect of encapsulated Lactobacillus acidophilus LA5 along with pasteurized longan juice on the colon microbiota was investigated by applying a dynamic model of the human gastrointestinal tract. Encapsulated L. acidophilus LA5 in pasteurized longan juice or sole encapsulated L. acidophilus LA5 exhibited the efficiency of colonizing the colon and enabling the growth of colon lactobacilli as well as beneficial bifidobacteria but inhibited the growth of fecal coliforms and clostridia. Moreover, these treatments gave rise to a significant increase of lactic acid and short-chain fatty acids such as acetate, propionate, and butyrate. Although acetate displayed the highest quantity, it was likely that after incorporating encapsulated L. acidophilus LA5 plus pasteurized longan juice, quantity of butyrate exceed propionate, and acetate in comparison with their controls. Denaturant gradient gel electrophoresis patterns confirmed that various treatments affected the alteration of microbial community within the simulator of the human intestinal microbial ecosystem.

  20. The role of colonization in the dynamics of patchy populations of a cyclic vole species.

    PubMed

    Glorvigen, Petter; Gundersen, Gry; Andreassen, Harry P; Ims, Rolf A

    2013-09-01

    The crash phase of vole populations with cyclic dynamics regularly leads to vast areas of uninhabited habitats. Yet although the capacity for cyclic voles to re-colonize such empty space is likely to be large and predicted to have become evolved as a distinct life history trait, the processes of colonization and its effect on the spatio-temporal dynamics have been little studied. Here we report from an experiment with root voles (Microtus oeconomus) specifically targeted at quantifying the process of colonization of empty patches from distant source patches and its resultant effect on local vole deme size variation in a patchy landscape. Three experimental factors: habitat quality, predation risk and inter-patch distance were employed among 24 habitat patches in a 100 × 300-m experimental area. The first-born cohort in the spring efficiently colonized almost all empty patches irrespective of the degree of patch isolation and predation risk, but this was dependent on habitat quality. Just after the initial colonization wave the deme sizes in patches of the same quality were underdispersed relative to Poisson variance, indicating regulated (density-dependent) settlement. Towards the end of the breeding season local demographic processes acted to smooth out the initial post-colonization differences among source and colonization patches, and among patches of initially different quality. However, at this time demographic stochasticity had also given rise to a large (overdispersed) variation in deme sizes that may have contributed to an overshadowing of the effect of other factors. The results of this experiment confirmed our expectation that the space-filling capacity of voles is large. The costs associated with transience appeared to be so low, at least at the spatial scale considered in this experiment, that such costs are not likely to substantially constrain habitat selection and colonization in the increase phase of cyclic patchy populations.

  1. Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants

    PubMed Central

    Palumbo, Michelle C.; Xu, Gege; Davis, Jasmine C. C.; Lebrilla, Carlito B.; Freeman, Samara L.; German, J. Bruce; Smilowitz, Jennifer T.

    2017-01-01

    ABSTRACT Attempts to alter intestinal dysbiosis via administration of probiotics have consistently shown that colonization with the administered microbes is transient. This study sought to determine whether provision of an initial course of Bifidobacterium longum subsp. infantis (B. infantis) would lead to persistent colonization of the probiotic organism in breastfed infants. Mothers intending to breastfeed were recruited and provided with lactation support. One group of mothers fed B. infantis EVC001 to their infants from day 7 to day 28 of life (n = 34), and the second group did not administer any probiotic (n = 32). Fecal samples were collected during the first 60 postnatal days in both groups. Fecal samples were assessed by 16S rRNA gene sequencing, quantitative PCR, mass spectrometry, and endotoxin measurement. B. infantis-fed infants had significantly higher populations of fecal Bifidobacteriaceae, in particular B. infantis, while EVC001 was fed, and this difference persisted more than 30 days after EVC001 supplementation ceased. Fecal milk oligosaccharides were significantly lower in B. infantis EVC001-fed infants, demonstrating higher consumption of human milk oligosaccharides by B. infantis EVC001. Concentrations of acetate and lactate were significantly higher and fecal pH was significantly lower in infants fed EVC001, demonstrating alterations in intestinal fermentation. Infants colonized by Bifidobacteriaceae at high levels had 4-fold-lower fecal endotoxin levels, consistent with observed lower levels of Gram-negative Proteobacteria and Bacteroidetes. IMPORTANCE The gut microbiome in early life plays an important role for long-term health and is shaped in large part by diet. Probiotics may contribute to improvements in health, but they have not been shown to alter the community composition of the gut microbiome. Here, we found that breastfed infants could be stably colonized at high levels by provision of B. infantis EVC001, with significant changes to the overall microbiome composition persisting more than a month later, whether the infants were born vaginally or by caesarean section. This observation is consistent with previous studies demonstrating the capacity of this subspecies to utilize human milk glycans as a nutrient and underscores the importance of pairing a probiotic organism with a specific substrate. Colonization by B. infantis EVC001 resulted in significant changes to fecal microbiome composition and was associated with improvements in fecal biochemistry. The combination of human milk and an infant-associated Bifidobacterium sp. shows, for the first time, that durable changes to the human gut microbiome are possible and are associated with improved gut function. PMID:29242832

  2. Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y1 and Y2 receptors

    PubMed Central

    Tough, IR; Forbes, S; Tolhurst, R; Ellis, M; Herzog, H; Bornstein, JC; Cox, HM

    2011-01-01

    BACKGROUND AND PURPOSE Peptide YY (PYY) and neuropeptide Y (NPY) activate Y receptors, targets under consideration as treatments for diarrhoea and other intestinal disorders. We investigated the gastrointestinal consequences of selective PYY or NPY ablation on mucosal ion transport, smooth muscle activity and transit using wild-type, single and double peptide knockout mice, comparing mucosal responses with those from human colon. EXPERIMENTAL APPROACH Mucosae were pretreated with a Y1 (BIBO3304) or Y2 (BIIE0246) receptor antagonist and changes in short-circuit current recorded. Colonic transit and colonic migrating motor complexes (CMMCs) were assessed in vitro and upper gastrointestinal and colonic transit measured in vivo. KEY RESULTS Y receptor antagonists revealed tonic Y1 and Y2 receptor-mediated antisecretory effects in human and wild-type mouse colon mucosae. In both, Y1 tone was epithelial while Y2 tone was neuronal. Y1 tone was reduced 90% in PYY−/− mucosa but unchanged in NPY−/− tissue. Y2 tone was partially reduced in NPY−/− or PYY−/− mucosae and abolished in tetrodotoxin-pretreated PYY−/− tissue. Y1 and Y2 tone were absent in NPYPYY−/− tissue. Colonic transit was inhibited by Y1 blockade and increased by Y2 antagonism indicating tonic Y1 excitation and Y2 inhibition respectively. Upper GI transit was increased in PYY−/− mice only. Y2 blockade reduced CMMC frequency in isolated mouse colon. CONCLUSIONS AND IMPLICATIONS Endogenous PYY and NPY induced significant mucosal antisecretory tone mediated by Y1 and Y2 receptors, via similar mechanisms in human and mouse colon mucosa. Both peptides contributed to tonic Y2-receptor-mediated inhibition of colonic transit in vitro but only PYY attenuated upper GI transit. PMID:21457230

  3. Nocturnal colonization behavior of blowflies (Diptera: Calliphoridae) in southeastern Australia.

    PubMed

    George, Kelly A; Archer, Melanie S; Toop, Tes

    2013-01-01

    Worldwide research into nocturnal colonization by blowflies has produced many contradictory findings, prompting investigation specific to southeastern Australia. Initial experiments showed that blowfly colonization begins shortly after sunrise and continues until sunset; nocturnal colonization never occurred. Colonization peaks occurred at mid-morning, midday, and in the hours preceding sunset. In an additional experiment, wild blowflies were captured and placed in cages with colonization medium supplied nocturnally. Colonization occurred on four of five nights, and Calliphora augur (Fabricius) (Diptera: Calliphoridae) was the main species colonizing baits nocturnally. Results suggest that colonization is most likely to occur during warm weather and when flies are able to walk or crawl to bait. In particular, blowflies trapped within a confined space (such as a room or car) with warmer-than-ambient temperature may be stimulated to colonize nearby remains. Entomologists should consider these findings when estimating minimum postmortem interval under these environmental conditions. © 2012 American Academy of Forensic Sciences.

  4. Human outposts on Mars: engineering and scientific lessons learned from history

    NASA Astrophysics Data System (ADS)

    Gruenwald, J.

    2014-06-01

    There are several planned projects that aim to send humans to Mars which are currently developed by the ESA, the NASA or by initiatives from the private sector (e.g. The Mars One Project). Some of these projects include long-term stays or even permanent human outposts on the red planet. To achieve the necessary habitats on Mars, a vast amount of different engineering and scientific problems has to be solved. This paper identifies some of the most important issues by analyzing a similar endeavor from human history—the colonization of the American continent by the Europeans. This might seem to be an unconventional approach, but some valuable insights can be gathered by studying the significant dangers and drawbacks experienced by the early settlers in America. These historical records can help scientists and engineers to set up some guidelines for avoiding some of the risks for the first human beings on Mars.

  5. Characterization of a family of structurally related glycoproteins expressing beta 1-6-branched asparagine-linked oligosaccharides in human colon carcinoma cells.

    PubMed

    Laferté, S; Loh, L C

    1992-04-01

    Previous studies have established that metastatic tumour cells express high levels of beta 1-6-branched Asn-linked oligosaccharides which can be detected with the lectin leucoagglutinin (L-PHA) [Dennis, Laferté, Waghorne, Breitman & Kerbel (1987) Science 236, 582-585]. In order to identify L-PHA-binding glycoproteins which may play a role specifically in colon cancer, we have prepared monoclonal antibodies (MAbs) to the moderately well-differentiated human colon carcinoma cell line HT29. In this paper we present the initial characterization of a family of structurally related L-PHA-binding glycoproteins detected by MAb 1H9 which are differentially expressed and processed by HT29 cells and by two other human colon carcinoma cell lines, SW480 and SW620. In contrast to HT29, the SW480 and SW620 cell lines were established from a poorly differentiated grade III/IV primary tumour and one of its lymph node metastases respectively. MAb 1H9 detects in HT29 cells a conformational determinant present on three L-PHA-binding glycoproteins of 100, 70 and 25kDa, as well as a 74 kDa glycoprotein with high-mannose-type Asn-linked oligosaccharides. Pulse-chase experiments and peptide mapping analyses revealed that the 74 kDa and 100 kDa species are related by carbohydrate processing and are probably derived from a common 76 kDa precursor. On the other hand, the 70 kDa glycoprotein is synthesized from an endoglycosidase H-sensitive precursor of 56 kDa which is structurally related to, but distinct from, the aforementioned 76 kDa precursor. In addition, the 100 kDa species is secreted into the culture medium, whereas the 70 kDa glycoprotein is retained intracellularly. SW480 and SW620 cells showed qualitative and quantitative differences from HT29 cells, including increased secretion of a smaller L-PHA-binding glycoprotein of 92 kDa into the culture medium, as well as apparent differences in glycosylation of the intracellular 66 kDa glycoprotein. These results suggested that the expression, glycosylation and subcellular localization of this family of L-PHA-binding glycoproteins may correlate with the differentiation status of colon cancer cells and/or reflect biochemical changes. characteristic of more progressive metastatic tumours.

  6. The shared microbiota of humans and companion animals as evaluated from Staphylococcus carriage sites.

    PubMed

    Misic, Ana M; Davis, Meghan F; Tyldsley, Amanda S; Hodkinson, Brendan P; Tolomeo, Pam; Hu, Baofeng; Nachamkin, Irving; Lautenbach, Ebbing; Morris, Daniel O; Grice, Elizabeth A

    2015-01-01

    Staphylococcus aureus and other coagulase-positive staphylococci (CPS) colonize skin and mucous membrane sites and can cause skin and soft tissue infections (SSTIs) in humans and animals. Factors modulating methicillin-resistant S. aureus (MRSA) colonization and infection in humans remain unclear, including the role of the greater microbial community and environmental factors such as contact with companion animals. In the context of a parent study evaluating the households of outpatients with community MRSA SSTI, the objectives of this study were 1) to characterize the microbiota that colonizes typical coagulase-positive Staphylococcus spp. carriage sites in humans and their companion pets, 2) to analyze associations between Staphylococcus infection and carriage and the composition and diversity of microbial communities, and 3) to analyze factors that influence sharing of microbiota between pets and humans. We enrolled 25 households containing 56 pets and 30 humans. Sampling locations were matched to anatomical sites cultured by the parent study for MRSA and other CPS. Bacterial microbiota were characterized by sequencing of 16S ribosomal RNA genes. Household membership was strongly associated with microbial communities, in both humans and pets. Pets were colonized with a greater relative abundance of Proteobacteria, whereas people were colonized with greater relative abundances of Firmicutes and Actinobacteria. We did not detect differences in microbiota associated with MRSA SSTI, or carriage of MRSA, S. aureus or CPS. Humans in households without pets were more similar to each other than humans in pet-owning households, suggesting that companion animals may play a role in microbial transfer. We examined changes in microbiota over a 3-month time period and found that pet staphylococcal carriage sites were more stable than human carriage sites. We characterized and identified patterns of microbiota sharing and stability between humans and companion animals. While we did not detect associations with MRSA SSTI, or carriage of MRSA, S. aureus or CPS in this small sample size, larger studies are warranted to fully explore how microbial communities may be associated with and contribute to MRSA and/or CPS colonization, infection, and recurrence.

  7. An In Vitro Evaluation of Antioxidant and Colonic Microbial Profile Levels following Mushroom Consumption

    PubMed Central

    Vamanu, Emanuel; Avram, Ionela; Nita, Sultana

    2013-01-01

    The biological activity of mushroom consumption is achieved by the antioxidant effect of constituent biomolecules released during digestion. In the following study, the consumption of mushroom fungi was determined to increase the number of Lactobacillus and Bifidobacterium strains within the colon. The main phenolic antioxidant compounds identified were both gentisic and homogentisic acids. Moreover, the flavonoid catechin as well as a significant amount of δ- and γ-tocopherols was determined. The amount of Lactobacillus and Bifidobacterium strains from different sections of the human colon was significantly correlated with levels of antioxidative biomolecules. The experimental data clearly demonstrate a significant impact of mushroom consumption on the fermentative function of microorganisms in the human colon, resulting in the homeostasis of normal physiological colonic functions. PMID:24027755

  8. Butyrate and deoxycholic acid play common and distinct roles in HCT116 human colon cell proliferation

    USDA-ARS?s Scientific Manuscript database

    Consumption of a high fat diet causes an increase in bile acid deoxycholic acid (DCA) in colon lumen and colon cancer risk while butyrate, an intestinal microbiota metabolite of dietary fiber, has been shown to exhibit colon cancer preventive effects. To distinguish these opposing effects of DCA and...

  9. Shut-Up and Listen: Implications and Possibilities of Albert Memmi's Characteristics of Colonization upon the "Natural World"

    ERIC Educational Resources Information Center

    Blenkinsop, Sean; Affifi, Ramsey; Piersol, Laura; De Danann Sitka-Sage, Michael

    2017-01-01

    This paper begins by exploring the anti-colonial work of Tunisian scholar Albert Memmi in his classic book "The Colonizer and the Colonized" and determining whether the characteristics of colonization that he names can be successfully applied to the current relationship between modern humans and the "natural world". After…

  10. Rhizosphere Colonization and Control of Meloidogyne spp. by Nematode-trapping Fungi

    PubMed Central

    Persson, Christina; Jansson, Hans-Börje

    1999-01-01

    The ability of nematode-trapping fungi to colonize the rhizosphere of crop plants has been suggested to be an important factor in biological control of root-infecting nematodes. In this study, rhizosphere colonization was evaluated for 38 isolates of nematode-trapping fungi representing 11 species. In an initial screen, Arthrobotrys dactyloides, A. superba, and Monacrosporium ellipsosporum were most frequently detected in the tomato rhizosphere. In subsequent pot experiments these fungi and the non-root colonizing M. geophyropagum were introduced to soil in a sodium alginate matrix, and further tested both for establishment in the tomato rhizosphere and suppression of root-knot nematodes. The knob-forming M. ellipsosporum showed a high capacity to colonize the rhizosphere both in the initial screen and the pot experiments, with more than twice as many fungal propagules in the rhizosphere as in the root-free soil. However, neither this fungus nor the other nematode-trapping fungi tested reduced nematode damage to tomato plants. PMID:19270886

  11. Influence of Salmonella enterica Serovar Typhimurium ssrB on Colonization of Eastern Oysters (Crassostrea virginica) as Revealed by a Promoter Probe Screen

    PubMed Central

    Cox, Clayton E.; Wright, Anita C.; McClelland, Michael

    2015-01-01

    Although Salmonella has been isolated from 7.4 to 8.6% of domestic raw oysters, representing a significant risk for food-borne illness, little is known about the factors that influence their initial colonization by Salmonella. This study tested the hypothesis that specific regulatory changes enable a portion of the invading Salmonella population to colonize oysters. An in vivo promoter probe library screen identified 19 unique regions as regulated during colonization. The mutants in the nearest corresponding downstream genes were tested for colonization defects in oysters. Only one mutation, in ssrB, resulted in a significantly reduced ability to colonize oysters compared to that of wild-type Salmonella. Because ssrB regulates Salmonella pathogenicity island 2 (SPI-2)-dependent infections in vertebrate macrophages, the possibility that ssrB mediated colonization of oyster hemocytes in a similar manner was examined. However, no difference in hemocyte colonization was observed. The complementary hypothesis that signal exchange between Salmonella and the oyster's native microbial community aids colonization was also tested. Signals that triggered responses in quorum sensing (QS) reporters were shown to be produced by oyster-associated bacteria and present in oyster tissue. However, no evidence for signal exchange was observed in vivo. The sdiA reporter responded to salinity, suggesting that SdiA may also have a role in environmental sensing. Overall, this study suggests the initial colonization of live oysters by Salmonella is controlled by a limited number of regulators, including ssrB. PMID:26497459

  12. Use of a Local Immunotherapy as an Adjunctive Tool for the Generation of Human Monoclonal Antibodies from Regional Lymph Nodes of Colonic Cancer Patients

    PubMed Central

    Yagyu, Toshio; Monden, Takushi; Tamaki, Yasuhiro; Morimoto, Hideki; Takeda, Tsutomu; Kobayashi, Tetsuro; Shimano, Takashi; Murakami, Hiroki; Mori, Takesada

    1992-01-01

    Human hybridomas were generated through the fusion of the human B‐lymphoblastoid cell line HO‐323 with the regional lymph node lymphocytes of colonic cancer patients who had received a local immunotherapy. A total of 353 hybridomas were obtained from 4 patients and 116 of these were found to secrete ≧ 100 ng/ml human immunoglobulin. The efficiency was remarkably high as compared with that from patients without the local immunotherapy. Further immunohistological examination showed that 5 hybridomas secreted IgM which selectively reacted with colonic cancers. The results indicate that local immunotherapy could be an adjunctive tool for the generation of highly potent human hybridomas through augmenting the host's immunity. PMID:1544869

  13. Salt Reduction in a Model High-Salt Akawi Cheese: Effects on Bacterial Activity, pH, Moisture, Potential Bioactive Peptides, Amino Acids, and Growth of Human Colon Cells.

    PubMed

    Gandhi, Akanksha; Shah, Nagendra P

    2016-04-01

    This study evaluated the effects of sodium chloride reduction and its substitution with potassium chloride on Akawi cheese during storage for 30 d at 4 °C. Survival of probiotic bacteria (Lactobacillus acidophilus, Lactobacillus casei, and Bifidobacterium longum) and starter bacteria (Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus), angiotensin-converting enzyme-inhibitory and antioxidant activities, and concentrations of standard amino acids as affected by storage in different brine solutions (10% NaCl, 7.5% NaCl, 7.5% NaCl+KCl [1:1], 5% NaCl, and 5% NaCl+KCl [1:1]) were investigated. Furthermore, viability of human colon cells and human colon cancer cells as affected by the extract showing improved peptide profiles, highest release of amino acids and antioxidant activity (that is, from cheese brined in 7.5% NaCl+KCl) was evaluated. Significant increase was observed in survival of probiotic bacteria in cheeses with low salt after 30 d. Calcium content decreased slightly during storage in all cheeses brined in various solutions. Further, no significant changes were observed in ACE-inhibitory activity and antioxidant activity of cheeses during storage. Interestingly, concentrations of 4 essential amino acids (phenylalanine, tryptophan, valine, and leucine) increased significantly during storage in brine solutions containing 7.5% total salt. Low concentration of cheese extract (100 μg/mL) significantly improved the growth of normal human colon cells, and reduced the growth of human colon cancer cells. Overall, the study revealed that cheese extracts from reduced-NaCl brine improved the growth of human colon cells, and the release of essential amino acids, but did not affect the activities of potential bioactive peptides. © 2016 Institute of Food Technologists®

  14. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle

    PubMed Central

    Dwyer, Laura; Rhee, Poong-Lyul; Lowe, Vanessa; Zheng, Haifeng; Peri, Lauren; Ro, Seungil; Sanders, Kenton M.

    2011-01-01

    Resting membrane potential (RMP) plays an important role in determining the basal excitability of gastrointestinal smooth muscle. The RMP in colonic muscles is significantly less negative than the equilibrium potential of K+, suggesting that it is regulated not only by K+ conductances but by inward conductances such as Na+ and/or Ca2+. We investigated the contribution of nonselective cation channels (NSCC) to the RMP in human and monkey colonic smooth muscle cells (SMC) using voltage- and current-clamp techniques. Qualitative reverse transcriptase-polymerase chain reaction was performed to examine potential molecular candidates for these channels among the transient receptor potential (TRP) channel superfamily. Spontaneous transient inward currents and holding currents were recorded in human and monkey SMC. Replacement of extracellular Na+ with equimolar tetraethylammonium or Ca2+ with Mn2+ inhibited basally activated nonselective cation currents. Trivalent cations inhibited these channels. Under current clamp, replacement of extracellular Na+ with N-methyl-d-glucamine or addition of trivalent cations caused hyperpolarization. Three unitary conductances of NSCC were observed in human and monkey colonic SMC. Molecular candidates for basally active NSCC were TRPC1, C3, C4, C7, M2, M4, M6, M7, V1, and V2 in human and monkey SMC. Comparison of the biophysical properties of these TRP channels with basally active NSCC (bINSCC) suggests that TRPM4 and specific TRPC heteromultimer combinations may underlie the three single-channel conductances of bINSCC. In conclusion, these findings suggest that basally activated NSCC contribute to the RMP in human and monkey colonic SMC and therefore may play an important role in determining basal excitability of colonic smooth muscle. PMID:21566016

  15. The transition from isolated patches to a metapopulation in the eastern collared lizard in response to prescribed fires.

    PubMed

    Templeton, Alan R; Brazeal, Hilary; Neuwald, Jennifer L

    2011-09-01

    Habitat fragmentation often arises from human-induced alterations to the matrix that reduce or eliminate dispersal between habitat patches. Elimination of dispersal increases local extinction and decreases recolonization. These phenomena were observed in the eastern collared lizard (Crotaphytus collaris collaris), which lives in the mid-continental highland region of the Ozarks (Missouri, USA) on glades: habitats of exposed bedrock that form desert-like habitats imbedded in a woodland matrix. With the onset of woodland fire suppression, glade habitats degenerated and the woodland matrix was altered to create a strong barrier to dispersal. By 1980, lizard populations in the Ozarks were rapidly going extinct. In response to this decline, some glades were restored by clearing and burning. Starting in 1984, collared lizard populations were translocated onto these restored habitats. The translocated populations persisted but did not colonize nearby glades or disperse among one another. In 1994 prescribed woodland fires were initiated, which unleashed much dispersal and colonizing behavior. Dispersal was highly nonrandom by both intrinsic variables (age, gender) and extrinsic variables (overall demography, glade population sizes, glade areas, landscape features), resulting in different classes of lizards being dominant in creating demographic cohesiveness among glades, colonizing new glades on a mountain, and colonizing new mountain systems. A dramatic transition was documented from isolated fragments, to a nonequilibrium colonizing metapopulation, and finally to a stable metapopulation. This transition is characterized by the convergence of rates of extinction and recolonization and a major alteration of dispersal probabilities and pattern in going from the nonequilibrium to stable metapopulation states.

  16. Isolation of Human Colon Stem Cells Using Surface Expression of PTK7.

    PubMed

    Jung, Peter; Sommer, Christian; Barriga, Francisco M; Buczacki, Simon J; Hernando-Momblona, Xavier; Sevillano, Marta; Duran-Frigola, Miquel; Aloy, Patrick; Selbach, Matthias; Winton, Douglas J; Batlle, Eduard

    2015-12-08

    Insertion of reporter cassettes into the Lgr5 locus has enabled the characterization of mouse intestinal stem cells (ISCs). However, low cell surface abundance of LGR5 protein and lack of high-affinity anti-LGR5 antibodies represent a roadblock to efficiently isolate human colonic stem cells (hCoSCs). We set out to identify stem cell markers that would allow for purification of hCoSCs. In an unbiased approach, membrane-enriched protein fractions derived from in vitro human colonic organoids were analyzed by quantitative mass spectrometry. Protein tyrosine pseudokinase PTK7 specified a cell population within human colonic organoids characterized by highest self-renewal and re-seeding capacity. Antibodies recognizing the extracellular domain of PTK7 allowed us to isolate and expand hCoSCs directly from patient-derived mucosa samples. Human PTK7+ cells display features of canonical Lgr5+ ISCs and include a fraction of cells that undergo differentiation toward enteroendocrine lineage that resemble crypt label retaining cells (LRCs). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Cell Transformation by PTP1B Truncated Mutants Found in Human Colon and Thyroid Tumors.

    PubMed

    Mei, Wenhan; Wang, Kemin; Huang, Jian; Zheng, Xinmin

    2016-01-01

    Expression of wild-type protein tyrosine phosphatase (PTP) 1B may act either as a tumor suppressor by dysregulation of protein tyrosine kinases or a tumor promoter through Src dephosphorylation at Y527 in human breast cancer cells. To explore whether mutated PTP1B is involved in human carcinogenesis, we have sequenced PTP1B cDNAs from human tumors and found splice mutations in ~20% of colon and thyroid tumors. The PTP1BΔE6 mutant expressed in these two tumor types and another PTP1BΔE5 mutant expressed in colon tumor were studied in more detail. Although PTP1BΔE6 revealed no phosphatase activity compared with wild-type PTP1B and the PTP1BΔE5 mutant, its expression induced oncogenic transformation of rat fibroblasts without Src activation, indicating that it involved signaling pathways independent of Src. The transformed cells were tumourigenic in nude mice, suggesting that the PTP1BΔE6 affected other molecule(s) in the human tumors. These observations may provide a novel therapeutic target for colon and thyroid cancer.

  18. In vitro approaches to assess the effects of açai (Euterpe oleracea) digestion on polyphenol availability and the subsequent impact on the faecal microbiota.

    PubMed

    Alqurashi, Randah M; Alarifi, Sehad N; Walton, Gemma E; Costabile, Adele F; Rowland, Ian R; Commane, Daniel M

    2017-11-01

    A considerable proportion of dietary plant-polyphenols reach the colon intact; determining the effects of these compounds on colon-health is of interest. We hypothesise that both fibre and plant polyphenols present in açai (Euterpe oleracea) provide prebiotic and anti-genotoxic benefits in the colon. We investigated this hypothesis using a simulated in vitro gastrointestinal digestion of açai pulp, and a subsequent pH-controlled, anaerobic, batch-culture fermentation model reflective of the distal region of the human large intestine. Following in vitro digestion, 49.8% of the total initial polyphenols were available. In mixed-culture fermentations with faecal inoculate, the digested açai pulp precipitated reductions in the numbers of both the Bacteroides-Prevotella spp. and the Clostridium-histolyticum groups, and increased the short-chain fatty acids produced compared to the negative control. The samples retained significant anti-oxidant and anti-genotoxic potential through digestion and fermentation. Dietary intervention studies are needed to prove that consuming açai is beneficial to gut health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Convergence of miR-143 overexpression, oxidative stress and cell death in HCT116 human colon cancer cells.

    PubMed

    Gomes, Sofia E; Pereira, Diane M; Roma-Rodrigues, Catarina; Fernandes, Alexandra R; Borralho, Pedro M; Rodrigues, Cecília M P

    2018-01-01

    MicroRNAs (miRNAs) regulate a wide variety of biological processes, including tumourigenesis. Altered miRNA expression is associated with deregulation of signalling pathways, which in turn cause abnormal cell growth and de-differentiation, contributing to cancer. miR-143 and miR-145 are anti-tumourigenic and influence the sensitivity of tumour cells to chemotherapy and targeted therapy. Comparative proteomic analysis was performed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145. Immunoblotting analysis validated the proteomic data in stable and transient miRNA overexpression conditions in human colon cancer cells. We show that approximately 100 proteins are differentially expressed in HCT116 human colon cancer cells stably transduced with miR-143 or miR-145 compared to Empty control cells. Further, Gene Ontology and pathway enrichment analysis indicated that proteins involved in specific cell signalling pathways such as cell death, response to oxidative stress, and protein folding might be modulated by these miRNAs. In particular, antioxidant enzyme superoxide dismutase 1 (SOD1) was downregulated by stable expression of either miR-143 or miR-145. Further, SOD1 gain-of-function experiments rescued cells from miR-143-induced oxidative stress. Moreover, miR-143 overexpression increased oxaliplatin-induced apoptosis associated with reactive oxygen species generation, which was abrogated by genetic and pharmacological inhibition of oxidative stress. Overall, miR-143 might circumvent resistance of colon cancer cells to oxaliplatin via increased oxidative stress in HCT116 human colon cancer cells.

  20. Sensations of gas and pain and their relationship with compliance during distension in human colon.

    PubMed

    Iturrino, J; Camilleri, M; Busciglio, I; Burton, D; Zinsmeister, A R

    2012-07-01

    Colonic mechanosensory afferents 'in parallel' to circular muscle activate prevertebral ganglion reflexes; 'in series', afferents convey visceral sensation to the central nervous system; and pain receptors are activated with muscle distension. Our aim was to analyze the relationships of gas and pain sensations during graded distensions, and the association of sensations with colonic compliance in conscious humans. The data were acquired in a prior study performed on 60 healthy volunteers (aged 18-75 years) under baseline conditions. Colonic compliance was measured in response to 4 mmHg stepwise balloon distensions to estimate pressure at half-maximum volume (Pr(50%)). Sensation ratings for gas and pain were averaged over distensions at 16, 24, 30 and 36 mmHg above baseline operating pressure. Associations between mean gas and pain ratings, and colonic compliance were assessed with Pearson correlations. Gas and pain sensations were significantly correlated at all levels of distension (all P < 0.001). Significant inverse correlations between Pr(50%) and sensations of gas and pain were observed, suggesting that lower compliance was associated with lower sensations. Up to 25% of the variance in sensation may be attributed to colonic compliance. These data are consistent with the hypothesis that, if circumferential colonic receptors are stimulated by distension to mediate gas and pain in humans, they are, at least partly, arranged 'in parallel' to the muscle layer. © 2012 Blackwell Publishing Ltd.

  1. Periodic colonic motor activity identified by 24-h pancolonic ambulatory manometry in humans.

    PubMed

    Hagger, R; Kumar, Devinder; Benson, M; Grundy, A

    2002-06-01

    The pattern of colonic motor activity in healthy humans has not been fully elucidated to date. The aim of this study was to evaluate colorectal motor activity employing 24-h ambulant pancolonic manometry. Ten healthy volunteers (6F, 4M), aged 19-31 years were studied. Motor activity was measured using two custom-made silicone coated catheters, each with five solid-state pressure transducers. No bowel preparation or sedation was used. The study period was 24 h. A total of 232 h of recording was obtained. Sixty-three high amplitude propagated contractions were observed, median six per 24-h period. Low-amplitude colonic contractile activity showed regional and diurnal variations. Frequency of contraction was highest in the right colon [median 5.26 cpm (cycles per minute)], and transverse colon and splenic flexure (median 5.15 cpm). The interval between colonic motor complexes was shortest in the transverse colon and splenic flexure. This study introduces a new technique for the evaluation of colorectal motor activity. Subjects were studied in an ambulant setting in their own environment ensuring that this method of study is as physiological as possible. This study demonstrates that colonic motor activity has two main components: high amplitude propagated contractions and low amplitude colonic contractile activity.

  2. Association of healthcare exposure with acquisition of different Clostridium difficile strain types in patients with recurrent infection or colonization after clinical resolution of initial infection.

    PubMed

    Thabit, A K; Housman, S T; Burnham, C D; Nicolau, D P

    2016-02-01

    Following the resolution of an episode of Clostridium difficile infection (CDI), the factors associated with acquisition of different C. difficile strain types in patients with recurrent infection or persistent colonization have not been evaluated. To explore factors with potential correlation with acquisition of different C. difficile strain types in patients clinically cured of CDI through long-term follow-up across the continuum of care. Polymerase chain reaction ribotyping was performed on C. difficile isolates recovered at baseline and follow-up (days 19-38) from stool samples of patients successfully treated for CDI, and those who had recurrence and/or colonization following symptom resolution. Chart review was conducted to determine factors associated with acquisition of a different C. difficile ribotype. Of 25 patients initially cured of CDI, five had a recurrence and eight were colonized at follow-up. Patients did not differ with regard to age, sex, and whether the initial infection was with the BI/NAP1/027 strain. Ribotyping revealed that two out of five patients had recurrence attributed to a different strain type. Three of the colonized patients demonstrated strain switching compared with five patients who carried the same baseline strain. All patients (both infected and colonized) with different C. difficile ribotypes were exposed to the healthcare system. Exposure to antibiotics and proton pump inhibitors were not related to strain switching. Exposure to healthcare, but not to antibiotics or proton pump inhibitors, was consistently associated with recurrence or colonization with a different C. difficile ribotype. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Polyphenol-rich extract of Ocimum gratissimum leaves ameliorates colitis via attenuating colonic mucosa injury and regulating pro-inflammatory cytokines production and oxidative stress.

    PubMed

    Alabi, Quadri K; Akomolafe, Rufus O; Omole, Joseph G; Adefisayo, Modinat A; Ogundipe, Olaofe L; Aturamu, Ayodeji; Sanya, Joseph O

    2018-04-20

    Colitis is a chronic inflammation and ulcer on the inner lining of the large intestine. For many centuries Ocimum gratissimum (OG) leaves have been used in folk medicine in Nigeria to treat inflammatory bowel diseases, however, to date, the anti-colitis effects of OG have not been scientifically proven. In this study we investigated the effects of polyphenol rich extract of Ocimum gratissimum (PREOG) leaf on colonic mucosa injury in colitis, its mechanisms, initial administration time and dosage. Dextran sodium sulfate (DSS)-induced rat colitis models was used. PREOG administration was initiated at 3 and 7 d after the model was established at doses of 200, 400 and 800 mg/kg for 7 d. 5-aminosalicylic acid (5-ASA) was used as a reference drug. The disease activity index (DAI), vascular permeability, markers of oxidative stress, granulocyte infiltration, inflammation and histopathological alteration were evaluated. Obvious colonic inflammation and mucosa injuries were observed in DSS-induced colitis groups. PREOG administration promoted repair of colonic mucosa injuries, attenuated inflammation, and decreased DAI scores in rats with colitis. PREOG also decreased the plasma concentrations of Interleukin-(IL)-6 and tumor necrosis factor (TNF)-α, and concentrations of myeloperoxidase, nitric oxide, cyclooxygenase-2 and malondialdehyde in the colon, and increased the plasma concentrations of IL-4 and IL-10 as well as the concentration of superoxide dismutase, catalase and reduced glutathione in the colon. The efficacy of PREOG was dosage dependent. In conclusion, OG repairs colonic mucosa injury in experimental colitis through its ant-inflammatory and ant-oxidant. Its efficacy related to initial administration time and dose. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  4. Colonic spirochetosis in animals and humans.

    PubMed

    Smith, James L

    2005-07-01

    Colonic spirochetosis is a disease caused by the gram-negative bacteria Brachyspira aalborgi and Brachyspira pilosicoli. B. pilosicoli induces disease in both humans and animals, whereas B. aalborgi affects only humans and higher primates. Symptoms in humans include diarrhea, rectal bleeding, and abdominal cramps. Colonic spirochetosis is common in third world countries; however, in developed countries, the disease is observed mainly in homosexual males. Terminally ill patients infected with Brachyspira are particularly at risk for developing spirochetemia. Diarrhea, poor growth performance, and decreased feed-to-gain efficiency is seen in pigs with colonic spirochetosis. The disease in chickens is characterized by delayed and/or reduced egg production, diarrhea, poor feed conversion, and retarded growth. Thus, colonic spirochetosis can represent a serious economic loss in the swine and poultry industries. The organisms are transmitted by the fecal-oral route, and several studies have demonstrated that human, primate, pig, dog, or bird strains of B. pilosicoli can be transmitted to pigs, chickens, and mice. B. pilosicoli may be a zoonotic pathogen, and although it has not been demonstrated, there is a possibility that both B. pilosicoli and B. aalborgi can be transferred to humans via contact with the feces of infected animals, meat from infected animals, or food contaminated by food handlers. Neither B. pilosicoli nor B. aalborgi has been well characterized in terms of basic cellular functions, pathogenicity, or genetics. Studies are needed to more thoroughly understand these Brachyspira species and their disease mechanisms.

  5. Constitutive modeling of the passive inflation-extension behavior of the swine colon.

    PubMed

    Patel, Bhavesh; Chen, Huan; Ahuja, Aashish; Krieger, Joshua F; Noblet, Jillian; Chambers, Sean; Kassab, Ghassan S

    2018-01-01

    In the present work, we propose the first structural constitutive model of the passive mechanical behavior of the swine colon that is validated against physiological inflation-extension tests, and accounts for residual strains. Sections from the spiral colon and the descending colon were considered to investigate potential regional variability. We found that the proposed constitutive model accurately captures the passive inflation-extension behavior of both regions of the swine colon (coefficient of determination R 2 =0.94±0.02). The model revealed that the circumferential muscle layer does not provide significant mechanical support under passive conditions and the circumferential load is actually carried by the submucosa layer. The stress analysis permitted by the model showed that the colon tissue can distend up to 30% radially without significant increase in the wall stresses suggesting a highly compliant behavior of the tissue. This is in-line with the requirement for the tissue to easily accommodate variable quantities of fecal matter. The analysis also showed that the descending colon is significantly more compliant than the spiral colon, which is relevant to the storage function of the descending colon. Histological analysis showed that the swine colon possesses a four-layer structure similar to the human colon, where the longitudinal muscle layer is organized into bands called taeniae, a typical feature of the human colon. The model and the estimated parameters can be used in a Finite Element framework to conduct simulations with realistic geometry of the swine colon. The resulting computational model will provide a foundation for virtual assessment of safe and effective devices for the treatment of colonic diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A mannose-specific adherence mechanism in Lactobacillus plantarum conferring binding to the human colonic cell line HT-29.

    PubMed

    Adlerberth, I; Ahrne, S; Johansson, M L; Molin, G; Hanson, L A; Wold, A E

    1996-07-01

    Two Lactobacillus plantarum strains of human intestinal origin, strains 299 (= DSM 6595) and 299v (= DSM 9843), have proved to be efficient colonizers of the human intestine under experimental conditions. These strains and 17 other L. plantarum strains were tested for the ability to adhere to cells of the human colonic cell line HT-29.L.plantarum 299 and 299v and nine other L. plantarum strains, including all six strains that belong to the same genetic subgroup as L. plantarum 299 and 299v, adhered to HT-29 cells in a manner that could be inhibited by methyl-alpha-D-mannoside. The ability to adhere to HT-29 cells correlated with an ability to agglutinate cells of Saccharomyces cerevisiae and erythrocytes in a mannose-sensitive manner and with adherence to D-mannose-coated agarose beads. L. plantarum 299 and 299v adhered to freshly isolated human colonic and ileal enterocytes, but the binding was not significantly inhibited by methyl-alpha-D-mannoside. Periodate treatment of HT-29 cells abolished mannose-sensitive adherence, confirming that the cell-bound receptor was of carbohydrate nature. Proteinase K treatment of the bacteria also abolished adherence, indicating that the binding involved protein structures on the bacterial cell surface. Thus, a mannose-specific adhesin has been identified in L. plantarum; this adhesin could be involved in the ability to colonize the intestine.

  7. Fluorescently labeled chimeric anti-CEA antibody improves detection and resection of human colon cancer in a patient-derived orthotopic xenograft (PDOX) nude mouse model.

    PubMed

    Metildi, Cristina A; Kaushal, Sharmeela; Luiken, George A; Talamini, Mark A; Hoffman, Robert M; Bouvet, Michael

    2014-04-01

    The aim of this study was to evaluate a new fluorescently labeled chimeric anti-CEA antibody for improved detection and resection of colon cancer. Frozen tumor and normal human tissue samples were stained with chimeric and mouse antibody-fluorophore conjugates for comparison. Mice with patient-derived orthotopic xenografts (PDOX) of colon cancer underwent fluorescence-guided surgery (FGS) or bright-light surgery (BLS) 24 hr after tail vein injection of fluorophore-conjugated chimeric anti-CEA antibody. Resection completeness was assessed using postoperative images. Mice were followed for 6 months for recurrence. The fluorophore conjugation efficiency (dye/mole ratio) improved from 3-4 to >5.5 with the chimeric CEA antibody compared to mouse anti-CEA antibody. CEA-expressing tumors labeled with chimeric CEA antibody provided a brighter fluorescence signal on frozen human tumor tissues (P = 0.046) and demonstrated consistently lower fluorescence signals in normal human tissues compared to mouse antibody. Chimeric CEA antibody accurately labeled PDOX colon cancer in nude mice, enabling improved detection of tumor margins for more effective FGS. The R0 resection rate increased from 86% to 96% with FGS compared to BLS. Improved conjugating efficiency and labeling with chimeric fluorophore-conjugated antibody resulted in better detection and resection of human colon cancer in an orthotopic mouse model. © 2013 Wiley Periodicals, Inc.

  8. The protective role of Lychnophora ericoides Mart. (Brazilian arnica) in 1,2-dimethylhydrazine-induced experimental colon carcinogenesis.

    PubMed

    Fernandes, Cleverson Rodrigues; Turatti, Aline; Gouvea, Dayana Rubio; Gobbo-Neto, Leonardo; Diniz, Andrea; Ribeiro-Silva, Alfredo; Lopes, Norberto Peporine; Garcia, Sérgio Britto

    2011-01-01

    Aberrant crypt foci (ACF) and colon rectal mucosal epithelial cell proliferation have been shown to be increased in patients with colon cancer and have been largely used for early detection of factors that influence colorectal carcinogenesis in rats. Fifty male Wistar rats were randomly divided into 5 groups. The groups G1 to G4 were given 4 injections of the carcinogen 1,2-dimethylhydrazine (DMH). The G2 group received Lychnophora ericoides (LE) extracts for 6 wk. The groups G3 and G4 received LE for 4 wk and 2 wk, respectively, at the postinitiation and initiation phases of colonic carcinogenesis. The group G5 was the control. Forty-two days after the first injections of DMH for the neoplasic induction, we observed a statistically significant decrease in the number of aberrant crypt foci (ACF) and an attenuation of the increase in cell proliferation induced by DMH in all the LE-treated groups. Thus, we concluded that Lychnophora ericoides extracts were effective against the development of cancer. These data suggest that LE has a protective influence on the process of colon carcinogenesis, suppressing both the initiation and the promotion of colonic carcinogenesis.

  9. Colonizing Dynamic Alluvial and Coastal Landscapes in the Holocene

    NASA Astrophysics Data System (ADS)

    Kidder, T.; Liu, X.; Ervin, K.

    2017-12-01

    Throughout the Holocene humans have had to adapt to dynamic, rapidly changing alluvial and coastal landscapes. Understanding when people inhabit a given environment is an important starting point for exploring human adaptations, but increasingly we need to consider how, and especially why certain environments are used—or not used— so we can understand the consequences of these human actions. Using four case studies—one from the Yellow River Valley, China, one from coastal Jiangsu, China, one from the Mississippi River Valley (Mississippi, USA) and one from the Mississippi River delta (Louisiana , USA)—we develop a model of how humans at various stages of cultural development colonize new environments. Using archaeological data and ecological modeling we investigate the relationship between the timing of landscape colonization and the ecological richness and predictability of any given environment. As new landscapes emerge and mature humans adopt different strategies for exploiting these novel environments that begins with episodic use and increasingly shifts to stable, long-term habitation. The early phase of landscape colonization appears to be the most significant period because it shapes human environmental practices and sets each culture on a trajectory of socio-cultural development. Thus, human-environment interaction is a critical part of the emergence of cultural patterns that shapes the past, present, and even the future.

  10. Emerging human pathogen Acinetobacter baumannii in the natural aquatic environment: a public health risk?

    PubMed

    Dekić, Svjetlana; Klobučar, Göran; Ivanković, Tomislav; Zanella, Davor; Vucić, Matej; Bourdineaud, Jean-Paul; Hrenović, Jasna

    2018-05-08

    Bacterium Acinetobacter baumannii is an emerging human pathogen whose presence in the aquatic environment raises the issue of public health risk. Fish colonization represents the potential route of pathogen transmission to humans. The aim was to examine the colonization of A. baumannii to freshwater fish Poecilia reticulata. An extensively drug-resistant A. baumannii was tested at three concentrations in natural spring water. Additionally, 70 fish from the Sava River (Croatia) were screened for the presence of A. baumannii, which was not found in gill swabs or analysed gut. The colonization potential of A. baumannii in freshwater fish is dependent upon its concentration in surrounding water. The low concentration of A. baumannii in natural waters represents low colonization potential of freshwater fish. The risk for public health exists in closed water bodies where there is constant inflow of water polluted by A. baumannii in concentrations above 3 log CFU mL -1 .

  11. Physical stress and bacterial colonization

    PubMed Central

    Otto, Michael

    2014-01-01

    Bacterial surface colonizers are subject to a variety of physical stresses. During the colonization of human epithelia such as on the skin or the intestinal mucosa, bacteria mainly have to withstand the mechanical stress of being removed by fluid flow, scraping, or epithelial turnover. To that end, they express a series of molecules to establish firm attachment to the epithelial surface, such as fibrillar protrusions (pili) and surface-anchored proteins that bind to human matrix proteins. In addition, some bacteria – in particular gut and urinary tract pathogens – use internalization by epithelial cells and other methods such as directed inhibition of epithelial turnover to ascertain continued association with the epithelial layer. Furthermore, many bacteria produce multi-layered agglomerations called biofilms with a sticky extracellular matrix, providing additional protection from removal. This review will give an overview over the mechanisms human bacterial colonizers have to withstand physical stresses with a focus on bacterial adhesion. PMID:25212723

  12. A Cancer‐reactive Human Monoclonal Antibody Derived from a Colonic Cancer Patient Treated with Local Immunotherapy

    PubMed Central

    Yagyu, Toshio; Monden, Takushi; Baba, Masashi; Tamaki, Yasuhiro; Takeda, Tsutomu; Kobayashi, Tetsuro; Shimano, Takashi; Tsuji, Yoshiyuki; Matsushita, Hirohisa; Osawa, Hisao; Murakami, Hiroki; Mori, Takesada

    1993-01-01

    A human monoclonal antibody, YJ‐37 (IgM) was generated through the fusion of human B lymphoblastoid cell line HO‐323 with the regional lymph node lymphocytes from a colonic cancer patient who was treated with a local immunotherapy. This antibody was purified and conjugated with biotin, after which direct immunohistochemical staining was performed. The results revealed that YJ‐37 selectively reacted with colonic cancer (7/19), gastric cancer (3/6), endometrial cancer (1/2) and colonic adenoma (7/13), but not with normal epithelia. Membrane immunofluorescence and FACS analysis also showed that YJ‐37 bound to tumor cell surfaces. Furthermore, the chemical structure of the antigen defined by YJ‐37 was analyzed by means of thin‐layer chromatography immunostaining and ELISA. The results indicated that YJ‐37 reacted with sialylated lacto‐series carbohydrate chains, which have been reported to accumulate in cancer cells. PMID:8449830

  13. Cancer metastasis: enactment of the script for human reproductive drama.

    PubMed

    Sun, Xichun; Liu, Xiwu

    2017-01-01

    Based on compelling evidence from many biological disciplines, we put forth a hypothesis for cancer metastasis. In the hypothesis, the metastatic cascade is depicted as human reproduction in miniature. Illustrated in a reproductive light, the staggering resemblance of cancer metastasis to human reproduction becomes evident despite some ostensible dis-similarities. In parallel to the appearance of primordial germ cells during early embryogenesis, the cancer reproductive saga starts with the separation of metastasis initiating cells (MICs) from cancer initiating cells when the primary cancer is still in its infancy. Prime MICs embark on a journey to the host bone marrow where they undergo further development and regulation. Migrating MICs are guided by the same CXCR4/CYCL12 axis as used in the migration of primordial germ cells to the genital ridge. Like the ovary, the host bone marrow features immune privileges, coolness, hypoxia and acidity which are essential for stemness maintenance and regulation. Opportune activation of the MICs via fusion with bone marrow stem cells triggers a frenzy of cellular proliferation and sets them on the move again. This scenario is akin to oocyte fertilization in the Fallopian tube and its subsequent journey towards the decidum. Just as the human reproductive process is plagued with undesirable outcomes so is the cancer metastasis highly inefficient. The climax of the cancer metastatic drama (colonization) is reached when proliferating MIC clusters attempt to settle down on decidum-like premetastatic sites. Successfully colonized clusters blossom into overt macrometastases only after the execution of sophisticated immunomodulation, angiogenesis and vascular remodeling. Similarly, the implanted blastomere needs to orchestrate these feats before flourishing into a new life. What is more, the cancer reproductive drama seems to be directed by a primordial hypothalamus-pituitary-gonad axis. Pursuing this reproductive trail could lead to new frontiers and breakthroughs in cancer research and therapeutics.

  14. Antioxidant effects of gastrointestinal digested purple carrot extract on the human cells of colonic mucosa.

    PubMed

    Olejnik, Anna; Rychlik, Joanna; Kidoń, Marcin; Czapski, Janusz; Kowalska, Katarzyna; Juzwa, Wojciech; Olkowicz, Mariola; Dembczyński, Radosław; Moyer, Mary Pat

    2016-01-01

    Purple carrot (PC) is a potential dietary constituent, which represents a valuable source of antioxidants and can modulate the reactive oxygen species (ROS) level in the gastrointestinal tract. Antioxidant capacity of a PC extract subjected to digestion process simulated in the artificial alimentary tract, including the stomach, small intestine and colon, was analyzed in normal human cells of colon mucosa. Results indicated that the extract obtained upon passage through the gastrointestinal tract, which could come into contact with the colonic cells in situ, was less potent than the extract, which was not subjected to digestion process. Digested PC extract exhibited intracellular ROS-inhibitory capacity, with 1mg/mL showing the ROS clearance of 18.4%. A 20.7% reduction in oxidative DNA damage due to colon mucosa cells' treatment with digested PC extract was observed. These findings indicate that PC extract is capable of colonic cells' protection against the adverse effects of oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Properties of acetylcholine-induced relaxation of smooth muscle isolated from the proximal colon of the guinea-pig.

    PubMed

    Kodama, Youhei; Iino, Satoshi; Shigemasa, Yuhsuke; Suzuki, Hikaru

    2010-01-01

    The properties of mechanical responses elicited by stimulation with acetylcholine (ACh) were investigated in circular smooth muscle preparations isolated from the proximal colon of guinea-pig. Application of ACh (10(-8)-10(-6) M) for 3-5 min produced a biphasic response, with an initial contraction followed by a relaxation. Atropine inhibited the initial contraction, while N(ω)-nitro-L-arginine (L-NA) inhibited the relaxation, suggesting that the former was produced by activation of muscarinic receptors while the latter was produced by an elevated production of nitric oxide (NO). In the presence of atropine, the ACh-relaxation was attenuated by removal of the mucosa and abolished by removal of both submucosal and mucosal layers. The ACh-induced relaxation was also attenuated by either tetrodotoxin (TTX, 3 × 10(-7) M) or hexamethonium (10(-6) M). In the presence of atropine, transmural nerve stimulation (TNS) elicited a biphasic response, with an initial phasic contraction followed by a relaxation. The amplitude of TNS-induced relaxation was significantly reduced by hexamethonium or L-NA and was abolished by TTX. Both ACh and TNS produced relaxation in preparations isolated from the proximal colon, but not in those from the middle part of colon. Immunohistochemistry for neuronal nitric oxide synthase revealed no difference in the distribution of nitrergic nerves between the proximal and middle part of the colon, with nitrergic nerves in both the mucosal and submucosal layers as well as in the smooth muscle and myenteric layers. These results suggest that ACh induces NO production by excitation of postganglionic nerves distributed mainly in the mucosal and submucosal layers. In circular smooth muscle preparations isolated from the middle part of colon, ACh or TNS produced contractile responses alone, with no associated relaxation, suggesting that the ACh-activated postganglionic nitrergic nerves are distributed in the mucosal and submucosal layers of the proximal colon but not in the middle part of the colon.

  16. Combined quantification of pulmonary Pneumocystis jirovecii DNA and serum (1->3)-β-D-glucan for differential diagnosis of pneumocystis pneumonia and Pneumocystis colonization.

    PubMed

    Damiani, Céline; Le Gal, Solène; Da Costa, Cécilia; Virmaux, Michèle; Nevez, Gilles; Totet, Anne

    2013-10-01

    This study assessed a quantitative PCR (qPCR) assay for Pneumocystis jirovecii quantification in bronchoalveolar lavage (BAL) fluid samples combined with serum (1→3)-β-d-glucan (BG) level detection to distinguish Pneumocystis pneumonia (PCP) from pulmonary colonization with P. jirovecii. Forty-six patients for whom P. jirovecii was initially detected in BAL fluid samples were retrospectively enrolled. Based on clinical data and results of P. jirovecii detection, 17 and 29 patients were diagnosed with PCP and colonization, respectively. BAL fluid samples were reassayed using a qPCR assay targeting the mitochondrial large subunit rRNA gene. qPCR results and serum BG levels (from a Fungitell kit) were analyzed conjointly. P. jirovecii DNA copy numbers were significantly higher in the PCP group than in the colonization group (1.3 × 10(7) versus 3.4 × 10(3) copies/μl, P < 0.05). A lower cutoff value (1.6 × 10(3) copies/μl) achieving 100% sensitivity for PCP diagnosis and an upper cutoff value (2 × 10(4) copies/μl) achieving 100% specificity were determined. Applying these two values, 13/17 PCP patients and 19/29 colonized patients were correctly assigned to their patient groups. For the remaining 14 patients with P. jirovecii DNA copy numbers between the cutoff values, PCP and colonization could not be distinguished on the basis of qPCR results. Four of these patients who were initially assigned to the PCP group presented BG levels of ≥100 pg/ml. The other 10 patients, who were initially assigned to the colonization group, presented BG levels of <100 pg/ml. These results suggest that the combination of the qPCR assay, applying cutoff values of 1.6 × 10(3) and 2 × 10(4) copies/μl, and serum BG detection, applying a 100 pg/ml threshold, can differentiate PCP and colonization diagnoses.

  17. Combined Quantification of Pulmonary Pneumocystis jirovecii DNA and Serum (1→3)-β-d-Glucan for Differential Diagnosis of Pneumocystis Pneumonia and Pneumocystis Colonization

    PubMed Central

    Le Gal, Solène; Da Costa, Cécilia; Virmaux, Michèle; Nevez, Gilles; Totet, Anne

    2013-01-01

    This study assessed a quantitative PCR (qPCR) assay for Pneumocystis jirovecii quantification in bronchoalveolar lavage (BAL) fluid samples combined with serum (1→3)-β-d-glucan (BG) level detection to distinguish Pneumocystis pneumonia (PCP) from pulmonary colonization with P. jirovecii. Forty-six patients for whom P. jirovecii was initially detected in BAL fluid samples were retrospectively enrolled. Based on clinical data and results of P. jirovecii detection, 17 and 29 patients were diagnosed with PCP and colonization, respectively. BAL fluid samples were reassayed using a qPCR assay targeting the mitochondrial large subunit rRNA gene. qPCR results and serum BG levels (from a Fungitell kit) were analyzed conjointly. P. jirovecii DNA copy numbers were significantly higher in the PCP group than in the colonization group (1.3 × 107 versus 3.4 × 103 copies/μl, P < 0.05). A lower cutoff value (1.6 × 103 copies/μl) achieving 100% sensitivity for PCP diagnosis and an upper cutoff value (2 × 104 copies/μl) achieving 100% specificity were determined. Applying these two values, 13/17 PCP patients and 19/29 colonized patients were correctly assigned to their patient groups. For the remaining 14 patients with P. jirovecii DNA copy numbers between the cutoff values, PCP and colonization could not be distinguished on the basis of qPCR results. Four of these patients who were initially assigned to the PCP group presented BG levels of ≥100 pg/ml. The other 10 patients, who were initially assigned to the colonization group, presented BG levels of <100 pg/ml. These results suggest that the combination of the qPCR assay, applying cutoff values of 1.6 × 103 and 2 × 104 copies/μl, and serum BG detection, applying a 100 pg/ml threshold, can differentiate PCP and colonization diagnoses. PMID:23903553

  18. Corticotropin-releasing factor stimulates colonic motility via muscarinic receptors in the rat

    PubMed Central

    Kim, Kyung-Jo; Kim, Ki Bae; Yoon, Soon Man; Han, Joung-Ho; Chae, Hee Bok; Park, Seon Mee; Youn, Sei Jin

    2017-01-01

    AIM To measure exogenous corticotropin-releasing factor (CRF)-induced motility of the isolated rat colon and to demonstrate the effect of pharmacologic inhibition on CRF-induced motility. METHODS The isolated vascularly-perfused rat colon was used. Luminal pressure was monitored via microtip catheter pressure transducers in the proximal and distal colon. At first, exogenous CRF was administered in a stepwise manner and the concentration of CRF yielding maximal colonic motility was selected. After recording basal colonic motility, hexamethonium, phentolamine, propranolol, atropine and tetrodotoxin were infused into the isolated colon. Initially, only the test drug was infused; then, CRF was added. The motility index was expressed as percentage change over basal level. RESULTS Administration of 1.4, 14.4, 144 and 288 pmol/L CRF progressively increased colonic motility in the proximal and distal colon. Infusion of atropine or tetrodotoxin reduced CRF-induced motility of both the proximal and distal colon, whereas hexamethonium, phentolamine and propranolol had no effect. CONCLUSION CRF-induced colonic motility appears to be mediated by local cholinergic signaling via muscarinic receptors. Muscarinic receptors are potential targets for counteracting CRF-induced colonic hypermotility. PMID:28638222

  19. Genetics of the pig tapeworm in Madagascar reveal a history of human dispersal and colonization

    USDA-ARS?s Scientific Manuscript database

    An intricate history of human dispersal and geographic colonization has strongly affected the distribution of obligate parasites circulating among people. Among these parasites, the pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serio...

  20. CpxRA influences Xenorhabdus nematophila colonization initiation and outgrowth in Steinernema carpocapsae nematodes through regulation of the nil locus.

    PubMed

    Herbert Tran, Erin E; Andersen, Aaron W; Goodrich-Blair, Heidi

    2009-06-01

    The gammaproteobacterium Xenorhabdus nematophila mutualistically colonizes an intestinal region of a soil-dwelling nematode and is a blood pathogen of insects. The X. nematophila CpxRA two-component regulatory system is necessary for both of these host interactions (E. Herbert et al., Appl. Environ. Microbiol. 73:7826-7836, 2007). Mutualistic association of X. nematophila with its nematode host consists of two stages: initiation, where a small number of bacterial cells establish themselves in the colonization site, and outgrowth, where these cells grow to fill the space. In this study, we show that the Cpx system is necessary for both of these stages. X. nematophila DeltacpxR1 colonized fewer nematodes than its wild-type parent and did not achieve as high a density as did the wild type within a portion of the colonized nematodes. To test whether the DeltacpxR1 host interaction phenotypes are due to its overexpression of mrxA, encoding the type I pilin subunit protein, we assessed the colonization phenotype of a DeltacpxR1 DeltamrxA1 double mutant. This mutant displayed the same colonization defect as DeltacpxR1, indicating that CpxR negative regulation of mrxA does not play a detectable role in X. nematophila-host interactions. CpxR positively regulates expression of nilA, nilB, and nilC genes necessary for nematode colonization. Here we show that the nematode colonization defect of the DeltacpxR1 mutant is rescued by elevating nil gene expression through mutation of nilR, a negative regulator of nilA, nilB, and nilC. These data suggest that the nematode colonization defect previously observed in DeltacpxR1 is caused, at least in part, by altered regulation of nilA, nilB, and nilC.

  1. Stress increases descending inhibition in mouse and human colon.

    PubMed

    Reed, D E; Zhang, Y; Beyak, M J; Lourenssen, S; Blennerhassett, M G; Paterson, W G; Vanner, S J

    2016-04-01

    A relationship between stress and the symptoms of irritable bowel syndrome (IBS) has been well established but the cellular mechanisms are poorly understood. Therefore, we investigated effects of stress and stress hormones on colonic descending inhibition and transit in mouse models and human tissues. Stress was applied using water avoidance stress (WAS) in the animal model or mimicked using stress hormones, adrenaline (5 nM), and corticosterone (1 μM). Intracellular recordings were obtained from colonic circular smooth muscle cells in isolated smooth muscle/myenteric plexus preparations and the inhibitory junction potential (IJP) was elicited by nerve stimulation or balloon distension oral to the site of recording. Water avoidance stress increased the number of fecal pellets compared to control (p < 0.05). WAS also caused a significant increase in IJP amplitude following balloon distension. Stress hormones also increased the IJP amplitude following nerve stimulation and balloon distension (p < 0.05) in control mice but had no effect in colons from stressed mice. No differences were observed with application of ATP between stress and control tissues, suggesting the actions of stress hormones were presynaptic. Stress hormones had a large effect in the nerve stimulated IJP in human colon (increased >50%). Immunohistochemical studies identified alpha and beta adrenergic receptor immunoreactivity on myenteric neurons in human colon. These studies suggest that WAS and stress hormones can signal via myenteric neurons to increase inhibitory neuromuscular transmission. This could lead to greater descending relaxation, decreased transit time, and subsequent diarrhea. © 2016 John Wiley & Sons Ltd.

  2. Basolateral K+ channel involvement in forskolin-activated chloride secretion in human colon

    PubMed Central

    McNamara, Brian; Winter, Desmond C; Cuffe, John E; O'Sullivan, Gerald C; Harvey, Brian J

    1999-01-01

    In this study we investigated the role of basolateral potassium transport in maintaining cAMP-activated chloride secretion in human colonic epithelium. Ion transport was quantified in isolated human colonic epithelium using the short-circuit current technique. Basolateral potassium transport was studied using nystatin permeabilization. Intracellular calcium measurements were obtained from isolated human colonic crypts using fura-2 spectrofluorescence imaging. In intact isolated colonic strips, forskolin and prostaglandin E2 (PGE2) activated an inward transmembrane current (ISC) consistent with anion secretion (for forskolin ΔISC = 63.8 ± 6.2 μA cm−2, n = 6; for PGE2 ΔISC = 34.3 ± 5.2 μA cm−2, n = 6). This current was inhibited in chloride-free Krebs solution or by inhibiting basolateral chloride uptake with bumetanide and 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The forskolin- and PGE2-induced chloride secretion was inhibited by basolateral exposure to barium (5 mM), tetrapentylammonium (10 μM) and tetraethylammonium (10 mM). The transepithelial current produced under an apical to serosal K+ gradient in nystatin-perforated colon is generated at the basolateral membrane by K+ transport. Forskolin failed to activate this current under conditions of high or low calcium and failed to increase the levels of intracellular calcium in isolated crypts In conclusion, we propose that potassium recycling through basolateral K+ channels is essential for cAMP-activated chloride secretion. PMID:10432355

  3. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis.

    PubMed

    Myung, Seung-Jae; Rerko, Ronald M; Yan, Min; Platzer, Petra; Guda, Kishore; Dotson, Angela; Lawrence, Earl; Dannenberg, Andrew J; Lovgren, Alysia Kern; Luo, Guangbin; Pretlow, Theresa P; Newman, Robert A; Willis, Joseph; Dawson, Dawn; Markowitz, Sanford D

    2006-08-08

    15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is a prostaglandin-degrading enzyme that is highly expressed in normal colon mucosa but is ubiquitously lost in human colon cancers. Herein, we demonstrate that 15-PGDH is active in vivo as a highly potent suppressor of colon neoplasia development and acts in the colon as a required physiologic antagonist of the prostaglandin-synthesizing activity of the cyclooxygenase 2 (COX-2) oncogene. We first show that 15-PGDH gene knockout induces a marked 7.6-fold increase in colon tumors arising in the Min (multiple intestinal neoplasia) mouse model. Furthermore, 15-PGDH gene knockout abrogates the normal resistance of C57BL/6J mice to colon tumor induction by the carcinogen azoxymethane (AOM), conferring susceptibility to AOM-induced adenomas and carcinomas in situ. Susceptibility to AOM-induced tumorigenesis is mediated by a marked induction of dysplasia, proliferation, and cyclin D1 expression throughout microscopic aberrant crypt foci arising in 15-PGDH null colons and is concomitant with a doubling of prostaglandin E(2) in 15-PGDH null colonic mucosa. A parallel role for 15-PGDH loss in promoting the earliest steps of colon neoplasia in humans is supported by our finding of a universal loss of 15-PGDH expression in microscopic colon adenomas recovered from patients with familial adenomatous polyposis, including adenomas as small as a single crypt. These models thus delineate the in vivo significance of 15-PGDH-mediated negative regulation of the COX-2 pathway and moreover reveal the particular importance of 15-PGDH in opposing the neoplastic progression of colonic aberrant crypt foci.

  4. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX.

    PubMed

    Van den Abbeele, Pieter; Grootaert, Charlotte; Marzorati, Massimo; Possemiers, Sam; Verstraete, Willy; Gérard, Philippe; Rabot, Sylvie; Bruneau, Aurélia; El Aidy, Sahar; Derrien, Muriel; Zoetendal, Erwin; Kleerebezem, Michiel; Smidt, Hauke; Van de Wiele, Tom

    2010-08-01

    Dynamic, multicompartment in vitro gastrointestinal simulators are often used to monitor gut microbial dynamics and activity. These reactors need to harbor a microbial community that is stable upon inoculation, colon region specific, and relevant to in vivo conditions. Together with the reproducibility of the colonization process, these criteria are often overlooked when the modulatory properties from different treatments are compared. We therefore investigated the microbial colonization process in two identical simulators of the human intestinal microbial ecosystem (SHIME), simultaneously inoculated with the same human fecal microbiota with a high-resolution phylogenetic microarray: the human intestinal tract chip (HITChip). Following inoculation of the in vitro colon compartments, microbial community composition reached steady state after 2 weeks, whereas 3 weeks were required to reach functional stability. This dynamic colonization process was reproducible in both SHIME units and resulted in highly diverse microbial communities which were colon region specific, with the proximal regions harboring saccharolytic microbes (e.g., Bacteroides spp. and Eubacterium spp.) and the distal regions harboring mucin-degrading microbes (e.g., Akkermansia spp.). Importantly, the shift from an in vivo to an in vitro environment resulted in an increased Bacteroidetes/Firmicutes ratio, whereas Clostridium cluster IX (propionate producers) was enriched compared to clusters IV and XIVa (butyrate producers). This was supported by proportionally higher in vitro propionate concentrations. In conclusion, high-resolution analysis of in vitro-cultured gut microbiota offers new insight on the microbial colonization process and indicates the importance of digestive parameters that may be crucial in the development of new in vitro models.

  5. High association of Cryptosporidium spp. infection with colon adenocarcinoma in Lebanese patients.

    PubMed

    Osman, Marwan; Benamrouz, Sadia; Guyot, Karine; Baydoun, Martha; Frealle, Emilie; Chabe, Magali; Gantois, Nausicaa; Delaire, Baptiste; Goffard, Anne; Aoun, Albert; Jurdi, Nawaf; Dabboussi, Fouad; Even, Gael; Slomianny, Christian; Gosset, Pierre; Hamze, Monzer; Creusy, Colette; Viscogliosi, Eric; Certad, Gabriela

    2017-01-01

    The association between Cryptosporidium and human colon cancer has been reported in different populations. However, this association has not been well studied. In order to add new strong arguments for a probable link between cryptosporidiosis and colon human cancer, the aim of this study was to determine prevalence and to identify species of Cryptosporidium among Lebanese patients. Overall, 218 digestive biopsies were collected in Tripoli, Lebanon, from three groups of patients: (i) patients with recently diagnosed colon intraepithelial neoplasia/adenocarcinoma before any treatment (n = 72); (ii) patients with recently diagnosed stomach intraepithelial neoplasia/adenocarcinoma before any treatment (n = 21); and (iii) patients without digestive intraepithelial neoplasia/adenocarcinoma but with persistent digestive symptoms (n = 125). DNA extraction was performed from paraffin-embedded tissue. The presence of the parasite in tissues was confirmed by PCR, microscopic observation and immunofluorescence analysis. We identified a high rate (21%) of Cryptosporidium presence in biopsies from Lebanese patients with recently diagnosed colonic neoplasia/adenocarcinoma before any treatment. This prevalence was significantly higher compared to 7% of Cryptosporidium prevalence among patients without colon neoplasia but with persistent gastrointestinal symptoms (OR: 4, CI: 1.65-9.6, P = 0.001). When the comparison was done against normal biopsies, the risk of infection increased 11-fold in the group of patients with colon adenocarcinoma (OR: 11.315, CI: 1.44-89.02, P = 0.003). This is the first study performed in Lebanon reporting the prevalence of Cryptosporidium among patients with digestive cancer. These results show that Cryptosporidium is strongly associated with human colon cancer being maybe a potential etiological agent of this disease.

  6. Complications of acromegaly: thyroid and colon.

    PubMed

    Tirosh, Amit; Shimon, Ilan

    2017-02-01

    In acromegaly the long-term exposure to high growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels may result in specific complications in different human organs, including the thyroid gland and the colon. We will review here the evidence available regarding the characteristic thyroid and colon complications in acromegaly. This review summarizes the published data observing noncancerous structural abnormalities (thyroid nodules, colonic polyps) and thyroid and colon cancer in patients diagnosed with acromegaly. Thyroid micro-carcinomas are probably over-diagnosed among acromegalic patients. In regard to colon cancer, there is no sufficient data to suggest that colon cancer risk is higher in acromegaly compared to the general population.

  7. [Effect of nonsteroidal antiinflammatory drugs on colonic lipoxygenase and cyclooxygenase activities from patients with colonic neoplasia].

    PubMed

    Di Girolamo, G; Franchi, A; De Los Santos, A R; Martí, M L; Farina, M; Fernández de Gimeno, M A

    2001-01-01

    Lysine clonixinate (LC) is a nonsteroidal anti-inflammatory drug (NSAID) with good gastrointestinal tolerance. Treatment with LC at levels equivalent to those found in plasma following therapeutic doses resulted in significant inhibition of both cyclooxygenase 2 (COX-2) and production of 5 hydroxy-eicosatetraeonic acid (5-HETE) and slightly affected levels of cyclooxygenase 1 (COX-1) in in vitro studies carried out on human tissues. This study deals with the in vivo effect of the drug on human colon segments. Experiment 1: Five patients about to undergo hemicholectomy due to colon neoplasia were treated preoperatively with a continuous infusion of LC, to achieve a steady-state concentration between 4 and 6 mg/ml. Human colon segments from the five patients and from another five control patients receiving no treatment with [14C]-arachidonic acid were incubated. Human colon segments treated with LC showed significant inhibition of PGE2, the only prostaglandin (PG) synthesised by the tissue, as well as of 5-HETE. Experiment 2: Fifteen patients received an i.v. bolus of LC 100 mg (n1 = 5); LC 200 mg (n2 = 5) or indomethacin (INDO) 50 mg (n3 = 5). Both doses of LC showed greater inhibition of PGE2 synthesis than the INDO bolus. Both NSAIDs studied proved to have different effects on the production of 5-HETE; while treatment with LC elicited significant inhibition, levels with INDO remained unchanged. Western blotting analysis showed expression of both COX isoforms in colon segments, COX-2 levels being 20% higher. Both types of in vivo studies conducted continuous infusion and i.v. bolus, revealed that LC exerted significant inhibition of basal synthesis of PGE2 and 5-HETE.

  8. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia.

    PubMed

    Mellars, Paul; Gori, Kevin C; Carr, Martin; Soares, Pedro A; Richards, Martin B

    2013-06-25

    It has been argued recently that the initial dispersal of anatomically modern humans from Africa to southern Asia occurred before the volcanic "supereruption" of the Mount Toba volcano (Sumatra) at ∼74,000 y before present (B.P.)-possibly as early as 120,000 y B.P. We show here that this "pre-Toba" dispersal model is in serious conflict with both the most recent genetic evidence from both Africa and Asia and the archaeological evidence from South Asian sites. We present an alternative model based on a combination of genetic analyses and recent archaeological evidence from South Asia and Africa. These data support a coastally oriented dispersal of modern humans from eastern Africa to southern Asia ∼60-50 thousand years ago (ka). This was associated with distinctively African microlithic and "backed-segment" technologies analogous to the African "Howiesons Poort" and related technologies, together with a range of distinctively "modern" cultural and symbolic features (highly shaped bone tools, personal ornaments, abstract artistic motifs, microblade technology, etc.), similar to those that accompanied the replacement of "archaic" Neanderthal by anatomically modern human populations in other regions of western Eurasia at a broadly similar date.

  9. Postnatal colonization with human "infant-type" Bifidobacterium species alters behavior of adult gnotobiotic mice.

    PubMed

    Luk, Berkley; Veeraragavan, Surabi; Engevik, Melinda; Balderas, Miriam; Major, Angela; Runge, Jessica; Luna, Ruth Ann; Versalovic, James

    2018-01-01

    Accumulating studies have defined a role for the intestinal microbiota in modulation of host behavior. Research using gnotobiotic mice emphasizes that early microbial colonization with a complex microbiota (conventionalization) can rescue some of the behavioral abnormalities observed in mice that grow to adulthood completely devoid of bacteria (germ-free mice). However, the human infant and adult microbiomes vary greatly, and effects of the neonatal microbiome on neurodevelopment are currently not well understood. Microbe-mediated modulation of neural circuit patterning in the brain during neurodevelopment may have significant long-term implications that we are only beginning to appreciate. Modulation of the host central nervous system by the early-life microbiota is predicted to have pervasive and lasting effects on brain function and behavior. We sought to replicate this early microbe-host interaction by colonizing gnotobiotic mice at the neonatal stage with a simplified model of the human infant gut microbiota. This model consortium consisted of four "infant-type" Bifidobacterium species known to be commensal members of the human infant microbiota present in high abundance during postnatal development. Germ-free mice and mice neonatally-colonized with a complex, conventional murine microbiota were used for comparison. Motor and non-motor behaviors of the mice were tested at 6-7 weeks of age, and colonization patterns were characterized by 16S ribosomal RNA gene sequencing. Adult germ-free mice were observed to have abnormal memory, sociability, anxiety-like behaviors, and motor performance. Conventionalization at the neonatal stage rescued these behavioral abnormalities, and mice colonized with Bifidobacterium spp. also exhibited important behavioral differences relative to the germ-free controls. The ability of Bifidobacterium spp. to improve the recognition memory of both male and female germ-free mice was a prominent finding. Together, these data demonstrate that the early-life gut microbiome, and human "infant-type" Bifidobacterium species, affect adult behavior in a strongly sex-dependent manner, and can selectively recapitulate the results observed when mice are colonized with a complex microbiota.

  10. Human colonic crypts in culture: segregation of immunochemical markers in normal versus adenoma-derived.

    PubMed

    Dame, Michael K; Jiang, Yan; Appelman, Henry D; Copley, Kelly D; McClintock, Shannon D; Aslam, Muhammad Nadeem; Attili, Durga; Elmunzer, B Joseph; Brenner, Dean E; Varani, James; Turgeon, D Kim

    2014-02-01

    In order to advance a culture model of human colonic neoplasia, we developed methods for the isolation and in vitro maintenance of intact colonic crypts from normal human colon tissue and adenomas. Crypts were maintained in three-dimensional Matrigel culture with a simple, serum-free, low Ca(2+) (0.15 mM) medium. Intact colonic crypts from normal human mucosa were viably maintained for 3-5 days with preservation of the in situ crypt-like architecture, presenting a distinct base and apex. Abnormal structures from adenoma tissue could be maintained through multiple passages (up to months), with expanding buds/tubules. Immunohistochemical markers for intestinal stem cells (Lgr5), growth (Ki67), differentiation (E-cadherin, cytokeratin 20 (CK20) and mucin 2 (MUC2)) and epithelial turnover (Bax, cleaved Caspase-3), paralleled the changes in function. The epithelial cells in normal crypts followed the physiological sequence of progression from proliferation to differentiation to dissolution in a spatially and temporally appropriate manner. Lgr5 expression was seen in a few basal cells of freshly isolated crypts, but was not detected after 1-3 days in culture. After 24 h in culture, crypts from normal colonic tissue continued to show strong Ki67 and MUC2 expression at the crypt base, with a gradual decrease over time such that by days 3-4 Ki67 was not expressed. The differentiation marker CK20 increased over the same period, eventually becoming intense throughout the whole crypt. In adenoma-derived structures, expression of markers for all stages of progression persisted for the entire time in culture. Lgr5 showed expression in a few select cells after months in culture. Ki67 and MUC2 were largely associated with the proliferative budding regions while CK20 was localized to the parent structure. This ex vivo culture model of normal and adenomatous crypts provides a readily accessible tool to help understand the growth and differentiation process in human colonic epithelium.

  11. Kaposi's sarcoma: an opportunistic infection by human herpesvirus-8 in ulcerative colitis.

    PubMed

    Rodríguez-Peláez, María; Fernández-García, María Soledad; Gutiérrez-Corral, Natalia; de Francisco, Ruth; Riestra, Sabino; García-Pravia, Carmen; Rodríguez, José Ignacio; Rodrigo, Luis

    2010-11-01

    Kaposi's sarcoma is a vascular tumor caused by human herpesvirus-8 infection. Iatrogenic Kaposi's sarcoma often occurs in patients receiving immunosuppressive therapy. To date, a few cases of colonic Kaposi's sarcoma have been reported in ulcerative colitis patients treated with immunomodulators. We describe a 65-year-old male diagnosed with left-sided ulcerative colitis who was treated with methotrexate and low-dose steroids for greater than 6 years. He presented with several papular, violet lesions on both legs. Colonoscopy revealed the presence of multiple reddish, elevated lesions in the sigmoid colon and rectum. Histological evaluation of skin and colonic biopsies showed findings suggestive of Kaposi's sarcoma; immunohistochemistry for human herpesvirus-8 was positive in the colonic lesions. To avoid the need for further immunosuppressive treatment, the patient underwent a colectomy. Following immunomodulator discontinuation, the patient experienced spontaneous regression of his skin lesions. With the present case, we wish to stress the important interaction of immunosuppressive therapy (mainly corticosteroids) used in ulcerative colitis patients in relation to the development of colonic Kaposi's sarcoma. Human herpesvirus-8 infection should be recognized as a possible opportunistic infection in patients with inflammatory bowel disease. Copyright © 2010 European Crohn's and Colitis Organisation. Published by Elsevier B.V. All rights reserved.

  12. Dietary modulation and structure prediction of rat mucosal pentraxin (Mptx) protein and loss of function in humans

    PubMed Central

    van der Meer-van Kraaij, Cindy; Siezen, Roland; Kramer, Evelien; Reinders, Marjolein; Blokzijl, Hans; van der Meer, Roelof

    2007-01-01

    Mucosal pentraxin (Mptx), identified in rats, is a short pentraxin of unknown function. Other subfamily members are Serum amyloid P component (SAP), C-reactive protein (CRP) and Jeltraxin. Rat Mptx mRNA is predominantly expressed in colon and in vivo is strongly (30-fold) regulated by dietary heme and calcium, modulators of colon cancer risk. This renders Mptx a potential nutrient sensitive biomarker of gut health. To support a role as biomarker, we examined whether the pentraxin protein structure is conserved, whether Mptx protein is nutrient-sensitively expressed and whether Mptx is expressed in mouse and human. Sequence comparison and 3D modelling showed that rat Mptx is highly homologous to the other pentraxins. The calcium-binding site and subunit interaction sites are highly conserved, while a loop deletion and charged residues contribute to a distinctive “top” face of the pentamer. In accordance with mRNA expression, Mptx protein is strongly down-regulated in rat colon mucosa in response to high dietary heme intake. Mptx mRNA is expressed in rat and mouse colon, but not in human colon. A stop codon at the beginning of human exon two indicates loss of function, which may be related to differences in intestinal cell turnover between man and rodents. PMID:18850182

  13. 21 CFR 876.5220 - Colonic irrigation system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Colonic irrigation system. 876.5220 Section 876.5220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5220 Colonic irrigation system...

  14. 21 CFR 876.5220 - Colonic irrigation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Colonic irrigation system. 876.5220 Section 876.5220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY DEVICES Therapeutic Devices § 876.5220 Colonic irrigation system...

  15. G protein-coupled estrogen receptor and estrogen receptor ligands regulate colonic motility and visceral pain.

    PubMed

    Zielińska, M; Fichna, J; Bashashati, M; Habibi, S; Sibaev, A; Timmermans, J-P; Storr, M

    2017-07-01

    Diarrhea-predominant irritable bowel syndrome (IBS-D) is a functional gastrointestinal (GI) disorder, which occurs more frequently in women than men. The aim of our study was to determine the role of activation of classical estrogen receptors (ER) and novel membrane receptor, G protein-coupled estrogen receptor (GPER) in human and mouse tissue and to assess the possible cross talk between these receptors in the GI tract. Immunohistochemistry was used to determine the expression of GPER in human and mouse intestines. The effect of G-1, a GPER selective agonist, and estradiol, a non-selective ER agonist, on muscle contractility was characterized in isolated preparations of the human and mouse colon. To characterize the effect of G-1 and estradiol in vivo, colonic bead expulsion test was performed. G-1 and estradiol activity on the visceral pain signaling was assessed in the mustard oil-induced abdominal pain model. GPER is expressed in the human colon and in the mouse colon and ileum. G-1 and estradiol inhibited muscle contractility in vitro in human and mouse colon. G-1 or estradiol administered intravenously at the dose of 20 mg/kg significantly prolonged the time to bead expulsion in females. Moreover, G-1 prolonged the time to bead expulsion and inhibited GI hypermotility in both genders. The injection of G-1 or estradiol resulted in a significant reduction in the number of pain-induced behaviors in mice. GPER and ER receptors are involved in the regulation of GI motility and visceral pain. Both may thus constitute an important pharmacological target in the IBS-D therapy. © 2017 John Wiley & Sons Ltd.

  16. H3K9 Trimethylation Silences Fas Expression to Confer Colon Carcinoma Immune Escape and 5-Fluorouracil Chemoresistance

    PubMed Central

    Paschall, Amy V.; Yang, Dafeng; Lu, Chunwan; Choi, Jeong-Hyeon; Li, Xia; Liu, Feiyan; Figueroa, Mario; Oberlies, Nicholas H.; Pearce, Cedric; Bollag, Wendy B.; Nayak-Kapoor, Asha; Liu, Kebin

    2015-01-01

    The Fas-FasL effector mechanism plays a key role in cancer immune surveillance by host T cells, but metastatic human colon carcinoma often uses silencing Fas expression as a mechanism of immune evasion. The molecular mechanism under FAS transcriptional silencing in human colon carcinoma is unknown. We performed genome-wide ChIP-Sequencing analysis and identified that the FAS promoter is enriched with H3K9me3 in metastatic human colon carcinoma cells. H3K9me3 level in the FAS promoter region is significantly higher in metastatic than in primary cancer cells, and is inversely correlated with Fas expression level. We discovered that verticillin A is a selective inhibitor of histone methyltransferases SUV39H1, SUV39H2 and G9a/GLP that exhibit redundant functions in H3K9 trimethylation and FAS transcriptional silencing. Genome-wide gene expression analysis identified FAS as one of the verticillin A target genes. Verticillin A treatment decreased H3K9me3 level in the FAS promoter and restored Fas expression. Furthermore, verticillin A exhibited greater efficacy than Decitabine and Vorinostat in overcoming colon carcinoma resistance to FasL-induced apoptosis. Verticillin A also increased DR5 expression and overcame colon carcinoma resistance to DR5 agonist drozitumab-induced apoptosis. Interestingly, verticillin A overcame metastatic colon carcinoma resistance to 5-Fluouracil in vitro and in vivo. Using an orthotopic colon cancer mouse model, we demonstrated that tumor-infiltrating cytotoxic T lymphocytes are FasL+ and FasL-mediated cancer immune surveillance is essential for colon carcinoma growth control in vivo. Our findings determine that H3K9me3 of the FAS promoter is a dominant mechanism underlying FAS silencing and resultant colon carcinoma immune evasion and progression. PMID:26136424

  17. Understanding uncertainty in seagrass injury recovery: an information-theoretic approach.

    PubMed

    Uhrin, Amy V; Kenworthy, W Judson; Fonseca, Mark S

    2011-06-01

    Vessel groundings cause severe, persistent gaps in seagrass beds. Varying degrees of natural recovery have been observed for grounding injuries, limiting recovery prediction capabilities, and therefore, management's ability to focus restoration efforts where natural recovery is unlikely. To improve our capacity for predicting seagrass injury recovery, we used an information-theoretic approach to evaluate the relative contribution of specific injury attributes to the natural recovery of 30 seagrass groundings in Florida Keys National Marine Sanctuary, Florida, USA. Injury recovery was defined by three response variables examined independently: (1) initiation of seagrass colonization, (2) areal contraction, and (3) sediment in-filling. We used a global model and all possible subsets for four predictor variables: (1) injury age, (2) original injury volume, (3) original injury perimeter-to-area ratio, and (4) wave energy. Successional processes were underway for many injuries with fast-growing, opportunistic seagrass species contributing most to colonization. The majority of groundings that exhibited natural seagrass colonization also exhibited areal contraction and sediment in-filling. Injuries demonstrating colonization, contraction, and in-filling were on average older and smaller, and they had larger initial perimeter-to-area ratios. Wave energy was highest for colonizing injuries. The information-theoretic approach was unable to select a single "best" model for any response variable. For colonization and contraction, injury age had the highest relative importance as a predictor variable; wave energy appeared to be associated with second-order effects, such as sediment in-filling, which in turn, facilitated seagrass colonization. For sediment in-filling, volume and perimeter-to-area ratio had similar relative importance as predictor variables with age playing a lesser role than seen for colonization and contraction. Our findings confirm that these injuries naturally initiate seagrass colonization with the potential to recover to pre-injury conditions, but likely on a decadal scale given the slow growth of the climax species (Thalassia testudinum), which is often the most severely injured. Our analysis supports current perceptions that sediment in-filling is critical to the recovery process and indicates that in order to stabilize injuries and facilitate seagrass recovery, managers should consider immediate restorative filling procedures for injuries having an original volume >14-16 m3.

  18. Dysfunctions at human intestinal barrier by water-borne protozoan parasites: lessons from cultured human fully differentiated colon cancer cell lines.

    PubMed

    Liévin-Le Moal, Vanessa

    2013-06-01

    Some water-borne protozoan parasites induce diseases through their membrane-associated functional structures and virulence factors that hijack the host cellular molecules and signalling pathways leading to structural and functional lesions in the intestinal barrier. In this Microreview we analyse the insights on the mechanisms of pathogenesis of Entamoeba intestinalis, Giardia and Cryptosporidium observed in the human colon carcinoma fully differentiated colon cancer cell lines, cell subpopulations and clones expressing the structural and functional characteristics of highly specialized fully differentiated epithelial cells lining the intestinal epithelium and mimicking structurally and functionally an intestinal barrier. © 2013 John Wiley & Sons Ltd.

  19. Chemoprevention of 1,2-dimethylhydrazine-induced colonic preneoplastic lesions in Fischer rats by 6-methylsulfinylhexyl isothiocyanate, a wasabi derivative

    PubMed Central

    KUNO, TOSHIYA; HIROSE, YOSHINOBU; YAMADA, YASUHIRO; IMAIDA, KATSUMI; TATEMATSU, KENJIRO; MORI, YUKIO; MORI, HIDEKI

    2010-01-01

    The preventive effects of dietary exposure to a wasabi derivative 6-methylsulfinylhexyl isothiocyanate (6-MSITC) during the initiation and post-initiation phases on the development of 1,2-dimethylhydrazine (DMH)-induced colonic aberrant crypt foci (ACF), and β-catenin-accumulated crypts (BCAC) were investigated in male F344 rats. To induce ACF and BCAC, rats were given four weekly subcutaneous injections of DMH (40 mg/kg body weight). The rats also received diets containing 200 or 400 ppm 6-MSITC during the initiation or post-initiation phases. The experiment was terminated 12 weeks after the start. DMH exposure produced a substantial number of ACF (323.8±69.7/colon) and BCAC (3.80±1.05/cm2) at the end of the study. Dietary administration of 6-MSITC at a dose of 400 ppm during the initiation phase caused a significant reduction in the total number of ACF (52% reduction, P<0.0001), larger ACF (4 or more crypt ACF) (58% reduction, P<0.001) and BCAC (76% reduction, P<0.00001). The dietary exposure to 6-MSITC significantly reduced the size (crypt multiplicity) of BCAC during both initiation and post-initiation treatment when compared to group 1 treated with DMH alone. Immunohistochemically, 6-MSITC administration lowered the proliferating cell nuclear antigen labeling index in ACF and BCAC. In addition, protein levels of hepatic cytochrome P-450 isozymes at 24 h after 6-MSITC exposure were significantly suppressed (P<0.01). The results indicated that 6-MSITC exerted chemopreventive effects in the present short-term colon carcinogenesis bioassay, through alterations in cell proliferation activity and drug metabolizing enzyme levels. PMID:22966293

  20. Chemoprevention of 1,2-dimethylhydrazine-induced colonic preneoplastic lesions in Fischer rats by 6-methylsulfinylhexyl isothiocyanate, a wasabi derivative.

    PubMed

    Kuno, Toshiya; Hirose, Yoshinobu; Yamada, Yasuhiro; Imaida, Katsumi; Tatematsu, Kenjiro; Mori, Yukio; Mori, Hideki

    2010-03-01

    The preventive effects of dietary exposure to a wasabi derivative 6-methylsulfinylhexyl isothiocyanate (6-MSITC) during the initiation and post-initiation phases on the development of 1,2-dimethylhydrazine (DMH)-induced colonic aberrant crypt foci (ACF), and β-catenin-accumulated crypts (BCAC) were investigated in male F344 rats. To induce ACF and BCAC, rats were given four weekly subcutaneous injections of DMH (40 mg/kg body weight). The rats also received diets containing 200 or 400 ppm 6-MSITC during the initiation or post-initiation phases. The experiment was terminated 12 weeks after the start. DMH exposure produced a substantial number of ACF (323.8±69.7/colon) and BCAC (3.80±1.05/cm(2)) at the end of the study. Dietary administration of 6-MSITC at a dose of 400 ppm during the initiation phase caused a significant reduction in the total number of ACF (52% reduction, P<0.0001), larger ACF (4 or more crypt ACF) (58% reduction, P<0.001) and BCAC (76% reduction, P<0.00001). The dietary exposure to 6-MSITC significantly reduced the size (crypt multiplicity) of BCAC during both initiation and post-initiation treatment when compared to group 1 treated with DMH alone. Immunohistochemically, 6-MSITC administration lowered the proliferating cell nuclear antigen labeling index in ACF and BCAC. In addition, protein levels of hepatic cytochrome P-450 isozymes at 24 h after 6-MSITC exposure were significantly suppressed (P<0.01). The results indicated that 6-MSITC exerted chemopreventive effects in the present short-term colon carcinogenesis bioassay, through alterations in cell proliferation activity and drug metabolizing enzyme levels.

  1. In vivo production of novel vitamin D2 hydroxy-derivatives by human placentas, epidermal keratinocytes, Caco-2 colon cells and the adrenal gland

    PubMed Central

    Slominski, Andrzej T.; Kim, Tae-Kang; Shehabi, Haleem Z.; Tang, Edith; Benson, Heather A. E.; Semak, Igor; Lin, Zongtao; Yates, Charles R.; Wang, Jin; Li, Wei; Tuckey, Robert C.

    2014-01-01

    We investigated the metabolism of vitamin D2 to hydroxyvitamin D2 metabolites ((OH)D2) by human placentas ex-utero, adrenal glands ex-vivo and cultured human epidermal keratinocytes and colonic Caco-2 cells, and identified 20(OH)D2, 17,20(OH)2D2, 1,20(OH)2D2, 25(OH)D2 and 1,25(OH)2D2 as products. Inhibition of product formation by 22R-hydroxycholesterol indicated involvement of CYP11A1 in 20- and 17-hydroxylation of vitamin D2, while use of ketoconazole indicated involvement of CYP27B1 in 1α-hydroxylation of products. Studies with purified human CYP11A1 confirmed the ability of this enzyme to convert vitamin D2 to 20(OH)D2 and 17,20(OH)2D2. In placentas and Caco-2 cells, production of 20(OH)D2 was higher than 25(OH)D2 while in human keratinocytes the production of 20(OH)D2 and 25(OH)D2 were comparable. HaCaT keratinocytes showed high accumulation of 1,20(OH)2D2 relative to 20(OH)D2 indicating substantial CYP27B1 activity. This is the first in vivo evidence for a novel pathway of vitamin D2 metabolism initiated by CYP11A1 and modified by CYP27B1, with the product profile showing tissue- and cell-type specificity. PMID:24382416

  2. Giant T-shaped duplication of the transverse colon. A case report.

    PubMed

    Trotovsek, Blaz; Hribernik, Marija; Gvardijancic, Diana; Jelenc, Franc

    2006-01-01

    A case of long diverticular colonic duplication producing acute abdominal pain in a 6-year-old girl is presented. Physical examination showed no signs of acute abdomen at the initial presentation. After a pain-free interval, there was a sudden onset of severe abdominal pain and a large tumor in the lower abdomen was observed. A plain x-ray showed an enormously dilated colonic pouch filled with gas. Excision of the T-shaped duplication and small part of the transverse colon was successful. Because of extensive fibrotic changes in the colon near the opening of duplication, a resection margin of at least 2 cm is recommended.

  3. Sulforaphane inhibits hypoxia-induced HIF-1α and VEGF expression and migration of human colon cancer cells.

    PubMed

    Kim, Dong Hwan; Sung, Bokyung; Kang, Yong Jung; Hwang, Seong Yeon; Kim, Min Jeong; Yoon, Jeong-Hyun; Im, Eunok; Kim, Nam Deuk

    2015-12-01

    The effects of sulforaphane (a natural product commonly found in broccoli) was investigated on hypoxia inducible factor-1α (HIF-1α) expression in HCT116 human colon cancer cells and AGS human gastric cancer cells. We found that hypoxia-induced HIF-1α protein expression in HCT116 and AGS cells, while treatment with sulforaphane markedly and concentration-dependently inhibited HIF-1α expression in both cell lines. Treatment with sulforaphane inhibited hypoxia-induced vascular endothelial growth factor (VEGF) expression in HCT116 cells. Treatment with sulforaphane modulated the effect of hypoxia on HIF-1α stability. However, degradation of HIF-1α by sulforaphane was not mediated through the 26S proteasome pathway. We also found that the inhibition of HIF-1α by sulforaphane was not mediated through AKT and extracellular signal-regulated kinase phosphorylation under hypoxic conditions. Finally, hypoxia-induced HCT116 cell migration was inhibited by sulforaphane. These data suggest that sulforaphane may inhibit human colon cancer progression and cancer cell angiogenesis by inhibiting HIF-1α and VEGF expression. Taken together, these results indicate that sulforaphane is a new and potent chemopreventive drug candidate for treating patients with human colon cancer.

  4. Lack of chemoprevention of dietary Agaricus blazei against rat colonic aberrant crypt foci.

    PubMed

    Ziliotto, L; Barbisan, L F; Rodrigues, M A M

    2008-06-01

    The mushroom Agaricus blazei (Ab) has been widely used in folk medicine to treat various diseases including cancer. No information is available on its possible protective effects on the development of colon cancer. The potential blocking effect of Ab intake on the initiation stage of colon carcinogenesis was investigated in a short-term (4-week) bioassay using aberrant crypt foci (ACF) as biomarker. Male Wistar rats were given four subcutaneous injections of the carcinogen 1,2-dimethylhydrazine (DMH, 40 mg/kg bw, twice a week), during 2 weeks to induce ACF. The diet containing Ab at 5% was given 2 weeks before and during carcinogen treatment to investigate the potential beneficial effects of this edible mushroom on DMH-induced ACF. All groups were killed at the end of the fourth week. The colons were analyzed for ACF formation in 1% methylene blue whole-mount preparations and for cell proliferation in histological sections immunohistochemically stained for the proliferating cell nuclear antigen (PCNA). All DMH-treated rats developed ACF mainly in the middle and distal colon. Agaricus blazei intake at 5% did not alter the number of ACF induced by DMH or the PCNA indices in the colonic mucosa. Thus, the results of the present study did not confirm a chemopreventive activity of Ab on the initiation stage of rat colon carcinogenesis.

  5. Increased choline kinase activity in 1,2-dimethylhydrazine-induced rat colon cancer.

    PubMed

    Nakagami, K; Uchida, T; Ohwada, S; Koibuchi, Y; Morishita, Y

    1999-11-01

    Cancer cells acquire particular characteristics that benefit their proliferation. We previously reported that human colon cancers examined had increased choline kinase activity and phosphocholine levels. The elevated phosphocholine levels were in part due to both activation of choline kinase and increased choline kinase alpha protein levels. In this report, we analyzed choline kinase, which catalyzes the phosphorylation of choline to produce phosphocholine, in rat 1,2-dimethylhydrazine (DMH)-induced colon cancer. This study is the first to demonstrate increased choline kinase alpha enzymatic activity, protein levels, and mRNA levels in DMH-induced colon cancer as well as human colon cancer, although phosphocholine was not increased in DMH-induced rat cancer. The increase in the mRNA level was partly due to an increase in the transcription of the choline kinase alpha gene. The increased choline kinase activity may be a specific characteristic acquired by cancer cells that benefits their proliferation.

  6. Virulence as a model for interplanetary and interstellar colonization - parasitism or mutualism?

    NASA Astrophysics Data System (ADS)

    Starling, Jonathan; Forgan, Duncan H.

    2014-01-01

    In the light of current scientific assessments of human-induced climate change, we investigate an experimental model to inform how resource-use strategies may influence interplanetary and interstellar colonization by intelligent civilizations. In doing so, we seek to provide an additional aspect for refining the famed Fermi Paradox. The model described is necessarily simplistic, and the intent is to simply obtain some general insights to inform and inspire additional models. We model the relationship between an intelligent civilization and its host planet as symbiotic, where the relationship between the symbiont and the host species (the civilization and the planet's ecology, respectively) determines the fitness and ultimate survival of both organisms. We perform a series of Monte Carlo Realization simulations, where civilizations pursue a variety of different relationships/strategies with their host planet, from mutualism to parasitism, and can consequently `infect' other planets/hosts. We find that parasitic civilizations are generally less effective at survival than mutualist civilizations, provided that interstellar colonization is inefficient (the maximum velocity of colonization/infection is low). However, as the colonization velocity is increased, the strategy of parasitism becomes more successful, until they dominate the `population'. This is in accordance with predictions based on island biogeography and r/K selection theory. While heavily assumption dependent, we contend that this provides a fertile approach for further application of insights from theoretical ecology for extraterrestrial colonization - while also potentially offering insights for understanding the human-Earth relationship and the potential for extraterrestrial human colonization.

  7. Sensations of Gas and Pain and their Relationship to Compliance during Distension in Human Colon

    PubMed Central

    Iturrino, Johanna; Camilleri, Michael; Busciglio, Irene; Burton, Duane; Zinsmeister, Alan R.

    2012-01-01

    Background Colonic mechanosensory afferents “in parallel” to circular muscle activate prevertebral ganglion reflexes; “in series” afferents convey visceral sensation to the central nervous system; and pain receptors are activated with muscle distension. Our aim was to analyze the relationships of gas and pain sensations during graded distensions and the association of sensations with colonic compliance in conscious humans. Methods The data were acquired in a prior study performed in 60 healthy volunteers (aged 18–75 y) under baseline conditions... Colonic compliance was measured in response to 4mmHg stepwise balloon distensions to estimate pressure at half-maximum volume (Pr50%). Sensation ratings for gas and pain were averaged over distensions at 16, 24, 30 and 36mmHg above baseline operating pressure. Associations between mean gas and pain ratings, and colonic compliance were assessed with Pearson correlations. Key Results Gas and pain sensations were significantly correlated at all levels of distension (all p<0.001). Significant inverse correlations between Pr50% and sensations of gas and pain were observed, suggesting that lower compliance was associated with lower sensations. Up to 25% of the variance in sensation may be attributed to colonic compliance. Conclusions and Inferences These data are consistent with the hypothesis that, if circumferential colonic receptors are stimulated by distension to mediate gas and pain in humans, they are, at least partly, arranged “in parallel” to the muscle layer. PMID:22393902

  8. An Ahemolytic Pneumolysin of Streptococcus Pneumoniae Manipulates Human Innate and CD4+ T-Cell Responses and Reduces Resistance to Colonization in Mice in a Serotype-Independent Manner

    PubMed Central

    Khan, M. Nadeem; Coleman, John Robert; Vernatter, Joshua; Varshney, Avanish Kumar; Dufaud, Chad; Pirofski, Liise-anne

    2014-01-01

    Background. Some Streptococcus pneumoniae serotypes express an ahemolytic pneumolysin (PLYa). Serotypes that commonly express PLYa, including serotype 8 (ST8) and ST1, are often associated with a low prevalence during colonization but a higher propensity to cause invasive disease. We sought to study the host response to ST8 PLYa in a homologous and heterologous capsular background. Methods. We genetically exchanged the PLYa of ST8 strain 6308 with the hemolytic PLY (PLYh) of ST3 A66.1 and vice versa and determined the impact of the exchange on nasopharyngeal colonization in mice. Then, to compare the response of human cells to PLYa-expressing and PLYh-expressing strains, we infected human peripheral blood mononuclear cells (PBMCs) with PLY-switched strains and assessed dendritic cell and CD4+ T-cell responses by intracellular cytokine staining. Result. Mice colonized with PLYa-expressing strains had significantly higher colonization densities than those colonized with PLYh-expressing strains, irrespective of capsular background. Compared with infection of PBMCs with PLYh-expressing strains, infection with PLYa-expressing strains induced diminished innate (dendritic cell cytokines, costimulatory receptor, and apoptotic) and adaptive (CD4+ T-cell proliferative and memory interleukin 17A) responses. Conclusion. Our findings demonstrate that PLYa has the potential to manipulate host immunity irrespective of capsule type. PLY exchange between STs expressing PLYa and PLYh could lead to unexpected colonization or invasion phenotypes. PMID:25001458

  9. Manipulation of host diet to reduce gastrointestinal colonization by the opportunistic pathogen Candida albicans

    USDA-ARS?s Scientific Manuscript database

    Candida albicans, the most common human fungal pathogen, can cause systemic infections with a mortality rate of ~40%. Infections arise from colonization of the gastrointestinal (GI) tract, where C. albicans is part of the normal microflora. Reducing colonization in at-risk patients using antifungal ...

  10. In-water supplementation of Trans-cinnamaldehyde nanoemulsion reduces Campylobacter jejuni colonization in broiler chickens

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a major foodborne pathogen that causes severe gastroenteritis in humans. Chickens act as the reservoir host for C. jejuni, wherein the pathogen colonizes the ceca thereby leading to contamination of the carcass during slaughter. Reducing C. jejuni cecal colonization could pot...

  11. Consumption of lycopene inhibits the growth and progression of colon cancer in a mouse xenograft model

    USDA-ARS?s Scientific Manuscript database

    A previous study indicated that lycopene could significantly inhibit the proliferation of human colon cancer cells in vitro. However, the in vivo anticancer effects of lycopene against colon cancer have not been demonstrated yet. Therefore, this study investigated whether consumption of lycopene cou...

  12. Avenanthramides inhibit proliferation of human colon cancer cell lines in vitro

    USDA-ARS?s Scientific Manuscript database

    High intake of whole grain food is associated with reduced risk of colon cancer, but the mechanism underlying this protection has yet to be elucidated. Chronic inflammation and associated cyclooxygenase-2 (COX-2) expression in the colon epithelium are causally related to epithelial carcinogenesis, p...

  13. Colon Cancer-Upregulated Long Non-Coding RNA lincDUSP Regulates Cell Cycle Genes and Potentiates Resistance to Apoptosis.

    PubMed

    Forrest, Megan E; Saiakhova, Alina; Beard, Lydia; Buchner, David A; Scacheri, Peter C; LaFramboise, Thomas; Markowitz, Sanford; Khalil, Ahmad M

    2018-05-09

    Long non-coding RNAs (lncRNAs) are frequently dysregulated in many human cancers. We sought to identify candidate oncogenic lncRNAs in human colon tumors by utilizing RNA sequencing data from 22 colon tumors and 22 adjacent normal colon samples from The Cancer Genome Atlas (TCGA). The analysis led to the identification of ~200 differentially expressed lncRNAs. Validation in an independent cohort of normal colon and patient-derived colon cancer cell lines identified a novel lncRNA, lincDUSP, as a potential candidate oncogene. Knockdown of lincDUSP in patient-derived colon tumor cell lines resulted in significantly decreased cell proliferation and clonogenic potential, and increased susceptibility to apoptosis. The knockdown of lincDUSP affects the expression of ~800 genes, and NCI pathway analysis showed enrichment of DNA damage response and cell cycle control pathways. Further, identification of lincDUSP chromatin occupancy sites by ChIRP-Seq demonstrated association with genes involved in the replication-associated DNA damage response and cell cycle control. Consistent with these findings, lincDUSP knockdown in colon tumor cell lines increased both the accumulation of cells in early S-phase and γH2AX foci formation, indicating increased DNA damage response induction. Taken together, these results demonstrate a key role of lincDUSP in the regulation of important pathways in colon cancer.

  14. The relationship between the immune response and susceptibility to Salmonella enterica serovar Enteritidis infection in the laying hen

    USDA-ARS?s Scientific Manuscript database

    Chicken eggs are one of the main sources of human salmonellosis, with Salmonella enterica serovar Enteritidis the most frequent cause of human non-typhoid salmonellosis. Laying hens colonized with S. Enteritidis generally do not show clinical signs. The bacteria colonize and invade the intestinal ...

  15. Effective chemotherapy of heterogeneous and drug-resistant early colon cancers by intermittent dose schedules: a computer simulation study.

    PubMed

    Axelrod, David E; Vedula, Sudeepti; Obaniyi, James

    2017-05-01

    The effectiveness of cancer chemotherapy is limited by intra-tumor heterogeneity, the emergence of spontaneous and induced drug-resistant mutant subclones, and the maximum dose to which normal tissues can be exposed without adverse side effects. The goal of this project was to determine if intermittent schedules of the maximum dose that allows colon crypt maintenance could overcome these limitations, specifically by eliminating mixtures of drug-resistant mutants from heterogeneous early colon adenomas while maintaining colon crypt function. A computer model of cell dynamics in human colon crypts was calibrated with measurements of human biopsy specimens. The model allowed simulation of continuous and intermittent dose schedules of a cytotoxic chemotherapeutic drug, as well as the drug's effect on the elimination of mutant cells and the maintenance of crypt function. Colon crypts can tolerate a tenfold greater intermittent dose than constant dose. This allows elimination of a mixture of relatively drug-sensitive and drug-resistant mutant subclones from heterogeneous colon crypts. Mutants can be eliminated whether they arise spontaneously or are induced by the cytotoxic drug. An intermittent dose, at the maximum that allows colon crypt maintenance, can be effective in eliminating a heterogeneous mixture of mutant subclones before they fill the crypt and form an adenoma.

  16. Livestock-Associated MRSA: The Impact on Humans

    PubMed Central

    Cuny, Christiane; Wieler, Lothar H.; Witte, Wolfgang

    2015-01-01

    During the past 25 years an increase in the prevalence of methicillin-resistant Staphylococcus aureus (HA-MRSA) was recorded worldwide. Additionally, MRSA infections may occur outside and independent of hospitals, caused by community associated MRSA (CA-MRSA). In Germany, we found that at least 10% of these sporadic infections are due to livestock-associated MRSA (LA-MRSA), which is initially associated with livestock. The majority of these MRSA cases are attributed to clonal complex CC398. LA-MRSA CC398 colonizes the animals asymptomatically in about half of conventional pig farms. For about 77%–86% of humans with occupational exposure to pigs, nasal carriage has been reported; it can be lost when exposure is interrupted. Among family members living at the same farms, only 4%–5% are colonized. Spread beyond this group of people is less frequent. The prevalence of LA-MRSA in livestock seems to be influenced by farm size, farming systems, usage of disinfectants, and in-feed zinc. LA-MRSA CC398 is able to cause the same kind of infections in humans as S. aureus and MRSA in general. It can be introduced to hospitals and cause nosocomial infections such as postoperative surgical site infections, ventilator associated pneumonia, septicemia, and infections after joint replacement. For this reason, screening for MRSA colonization at hospital admittance is recommended for farmers and veterinarians with livestock contacts. Intrahospital dissemination, typical for HA-MRSA in the absence of sufficient hygiene, has only rarely been observed for LA-MRSA to date. The proportion of LA-MRSA among all MRSA from nosocomial infections is about 3% across Germany. In geographical areas with a comparatively high density of conventional farms, LA-MRSA accounts for up to 10% of MRSA from septicemia and 15% of MRSA from wound infections. As known from comparative genome analysis, LA-MRSA has evolved from human-adapted methicillin-susceptible S. aureus, and the jump to livestock was obviously associated with several genetic changes. Reversion of the genetic changes and readaptation to humans bears a potential health risk and requires tight surveillance. Although most LA-MRSA (>80%) is resistant to several antibiotics, there are still sufficient treatment options. PMID:27025639

  17. A novel initiation mechanism of death in Streptococcus pneumoniae induced by the human milk protein-lipid complex HAMLET and activated during physiological death.

    PubMed

    Clementi, Emily A; Marks, Laura R; Duffey, Michael E; Hakansson, Anders P

    2012-08-03

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets.

  18. A Novel Initiation Mechanism of Death in Streptococcus pneumoniae Induced by the Human Milk Protein-Lipid Complex HAMLET and Activated during Physiological Death*

    PubMed Central

    Clementi, Emily A.; Marks, Laura R.; Duffey, Michael E.; Hakansson, Anders P.

    2012-01-01

    To cause colonization or infection, most bacteria grow in biofilms where differentiation and death of subpopulations is critical for optimal survival of the whole population. However, little is known about initiation of bacterial death under physiological conditions. Membrane depolarization has been suggested, but never shown to be involved, due to the difficulty of performing such studies in bacteria and the paucity of information that exists regarding ion transport mechanisms in prokaryotes. In this study, we performed the first extensive investigation of ion transport and membrane depolarization in a bacterial system. We found that HAMLET, a human milk protein-lipid complex, kills Streptococcus pneumoniae (the pneumococcus) in a manner that shares features with activation of physiological death from starvation. Addition of HAMLET to pneumococci dissipated membrane polarity, but depolarization per se was not enough to trigger death. Rather, both HAMLET- and starvation-induced death of pneumococci specifically required a sodium-dependent calcium influx, as shown using calcium and sodium transport inhibitors. This mechanism was verified under low sodium conditions, and in the presence of ionomycin or monensin, which enhanced pneumococcal sensitivity to HAMLET- and starvation-induced death. Pneumococcal death was also inhibited by kinase inhibitors, and indicated the involvement of Ser/Thr kinases in these processes. The importance of this activation mechanism was made evident, as dysregulation and manipulation of physiological death was detrimental to biofilm formation, a hallmark of bacterial colonization. Overall, our findings provide novel information on the role of ion transport during bacterial death, with the potential to uncover future antimicrobial targets. PMID:22700972

  19. Human milk lactoferrin inactivates two putative colonization factors expressed by Haemophilus influenzae.

    PubMed

    Qiu, J; Hendrixson, D R; Baker, E N; Murphy, T F; St Geme, J W; Plaut, A G

    1998-10-13

    Haemophilus influenzae is a major cause of otitis media and other respiratory tract disease in children. The pathogenesis of disease begins with colonization of the upper respiratory mucosa, a process that involves evasion of local immune mechanisms and adherence to epithelial cells. Several studies have demonstrated that human milk is protective against H. influenzae colonization and disease. In the present study, we examined the effect of human milk on the H. influenzae IgA1 protease and Hap adhesin, two autotransported proteins that are presumed to facilitate colonization. Our results demonstrated that human milk lactoferrin efficiently extracted the IgA1 protease preprotein from the bacterial outer membrane. In addition, lactoferrin specifically degraded the Hap adhesin and abolished Hap-mediated adherence. Extraction of IgA1 protease and degradation of Hap were localized to the N-lobe of the bilobed lactoferrin molecule and were inhibited by serine protease inhibitors, suggesting that the lactoferrin N-lobe may contain serine protease activity. Additional experiments revealed no effect of lactoferrin on the H. influenzae P2, P5, and P6 outer-membrane proteins, which are distinguished from IgA1 protease and Hap by the lack of an N-terminal passenger domain or an extracellular linker region. These results suggest that human milk lactoferrin may attenuate the pathogenic potential of H. influenzae by selectively inactivating IgA1 protease and Hap, thereby interfering with colonization. Future studies should examine the therapeutic potential of lactoferrin, perhaps as a supplement in infant formulas.

  20. Pro-neurotensin/neuromedin N expression and processing in human colon cancer cell lines.

    PubMed

    Rovère, C; Barbero, P; Maoret, J J; Laburthe, M; Kitabgi, P

    1998-05-08

    The regulatory peptide neurotensin NT has been proposed to exert an autocrine trophic effect on human colon cancers. In the present study, pro-neurotensin/neuromedin N (proNT/NN) expression and processing were investigated in 13 human colon cancer cell lines using a combination of radioimmunoassay and HPLC techniques. All 13 cell lines displayed low to moderate levels of proNT/NN ranging from 10 to 250 fmol/mg protein. However, only 6 (HCT8, LoVo, HT29, C119A, LS174T, and coloDM320) processed the precursor. Three of the latter (HCT8, LS174T, and coloDM320) were analysed in detail with regard to proNT/NN processing pattern and were found to produce NT and large precursor fragments ending with the NT or NN sequence. They had no detectable level of NN. Such a processing pattern resembles that generated by the prohormone convertase PC5. Northern and Western blot analysis of prohormone convertase expression in the 3 cell lines revealed that they were devoid of PC1 and PC2, whereas they all expressed PC5. These data indicate that proNT/NN is a good marker of human colon cancer cell lines while NT is found in only about half of the cell lines. They also suggest that, in addition to NT, several proNT/NN-derived products, possibly generated by PC5, might exert an autocrine positive effect on human colon cancer growth.

  1. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma

    PubMed Central

    Shin, Kunyoo; Lim, Agnes; Odegaard, Justin I.; Honeycutt, Jared D.; Kawano, Sally; Hsieh, Michael H.; Beachy, Philip A.

    2014-01-01

    Understanding how malignancies arise within normal tissues requires identification of the cancer cell of origin and knowledge of the cellular and tissue dynamics of tumor progression. Here we examine bladder cancer in a chemical carcinogenesis model that mimics muscle-invasive human bladder cancer. With no prior bias regarding genetic pathways or cell types, we prospectively mark or ablate cells to show that muscle-invasive bladder carcinomas arise exclusively from Sonic hedgehog (Shh)-expressing stem cells in basal urothelium. These carcinomas arise clonally from a single cell whose progeny aggressively colonize a major portion of the urothelium to generate a lesion with histological features identical to human carcinoma-in-situ. Shh-expressing basal cells within this precursor lesion become tumor-initiating cells, although Shh expression is lost in subsequent carcinomas. We thus find that invasive carcinoma is initiated from basal urothelial stem cells but that tumor cell phenotype can diverge significantly from that of the cancer cell-of-origin. PMID:24747439

  2. Distinct Transcriptional Changes and Epithelial-stromal Interactions are Altered in Early Stage Colon Cancer Development

    PubMed Central

    Mo, Allen; Jackson, Stephen; Varma, Kamini; Carpino, Alan; Giardina, Charles; Devers, Thomas J.; Rosenberg, Daniel W.

    2016-01-01

    While the progression of mutated colonic cells is dependent upon interactions between the initiated epithelium and surrounding stroma, the nature of these interactions is poorly understood. Here the development of an ultra-sensitive laser-capture microdissection (LCM)/RNA-seq approach for studying the epithelial and stromal compartments of aberrant crypt foci (ACF) is described. ACF are the earliest identifiable pre-neoplastic lesion found within the human colon and are detected using high-definition endoscopy with contrast dye-spray. The current analysis focused on the epithelium of ACF with somatic mutations to either KRAS, BRAF, or APC, with expression patterns compared to normal mucosa from each patient. By comparing gene expression patterns between groups, an increase in a number of pro-inflammatory NF-κB target genes were identified that were specific to ACF epithelium, including TIMP1, RELA and RELB. Distinct transcriptional changes associated with each somatic mutation were observed and a subset display a BRAFV600E-mediated senescence-associated transcriptome characterized by increased expression of CDKN2A. Finally, LCM-captured ACF-associated stroma was found to be transcriptionally distinct from normal stroma, with an up-regulation of genes related to immune cell infiltration and fibroblast activation. Immunofluorescence confirmed increased CD3+ T cells within the stromal microenvironment of ACF and an abundance of activated fibroblasts. Collectively, these results provide new insight into the cellular interplay that occurs at the earliest stages of colonic neoplasia, highlighting the important role of NF-kB, activated stromal fibroblasts and lymphocyte infiltration. Implications Fibroblasts and immune cells in the stromal microenvironment play an important role during the earliest stages of colon carcinogenesis. PMID:27353028

  3. Selling space colonization and immortality: A psychosocial, anthropological critique of the rush to colonize Mars

    NASA Astrophysics Data System (ADS)

    Slobodian, Rayna Elizabeth

    2015-08-01

    Extensive media coverage regarding the proposal to send four people to Mars by 2025 has exploded recently. Private enterprise has taken the reins to venture into space, which has typically only been reserved for government agencies. I argue, that with this new direction comes less regulation, raising questions regarding the ethics of sending people into outer space to colonize Mars within a decade. Marketers selling colonization to the public include perspectives such as biological drives, species survival, inclusiveness and utopian ideals. I challenge these narratives by suggesting that much of our desire to colonize space within the next decade is motivated by ego, money and romanticism. More specifically, I will examine the roles that fear and stories of immortality play within selling space and how those stories are marketed. I am passionate about space and hope that one day humanity will colonize other worlds, but the rush to settle is dangerous and careless. I assert that humanity should first gain more experience and knowledge before colonizing outer space, using this research to mitigate the risk to astronauts and proceed with careful consideration for the lives of potential astronauts.

  4. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols.

    PubMed

    Bomar, Lindsey; Brugger, Silvio D; Yost, Brian H; Davies, Sean S; Lemon, Katherine P

    2016-01-05

    Bacterial interspecies interactions play clinically important roles in shaping microbial community composition. We observed that Corynebacterium spp. are overrepresented in children free of Streptococcus pneumoniae (pneumococcus), a common pediatric nasal colonizer and an important infectious agent. Corynebacterium accolens, a benign lipid-requiring species, inhibits pneumococcal growth during in vitro cocultivation on medium supplemented with human skin surface triacylglycerols (TAGs) that are likely present in the nostrils. This inhibition depends on LipS1, a TAG lipase necessary for C. accolens growth on TAGs such as triolein. We determined that C. accolens hydrolysis of triolein releases oleic acid, which inhibits pneumococcus, as do other free fatty acids (FFAs) that might be released by LipS1 from human skin surface TAGs. Our results support a model in which C. accolens hydrolyzes skin surface TAGS in vivo releasing antipneumococcal FFAs. These data indicate that C. accolens may play a beneficial role in sculpting the human microbiome. Little is known about how harmless Corynebacterium species that colonize the human nose and skin might impact pathogen colonization and proliferation at these sites. We show that Corynebacterium accolens, a common benign nasal bacterium, modifies its local habitat in vitro as it inhibits growth of Streptococcus pneumoniae by releasing antibacterial free fatty acids from host skin surface triacylglycerols. We further identify the primary C. accolens lipase required for this activity. We postulate a model in which higher numbers of C. accolens cells deter/limit S. pneumoniae nostril colonization, which might partly explain why children without S. pneumoniae colonization have higher levels of nasal Corynebacterium. This work narrows the gap between descriptive studies and the needed in-depth understanding of the molecular mechanisms of microbe-microbe interactions that help shape the human microbiome. It also lays the foundation for future in vivo studies to determine whether habitat modification by C. accolens could be promoted to control pathogen colonization. Copyright © 2016 Bomar et al.

  5. Stromal COX-2 signaling activated by deoxycholic acid mediates proliferation and invasiveness of colorectal epithelial cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yingting, E-mail: yitizhu@yahoo.com; Tissue Tech Inc., Miami, FL 33173; Zhu, Min

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer Human colonic cancer associated fibroblasts are major sources of COX-2 and PGE{sub 2}. Black-Right-Pointing-Pointer The fibroblasts interact with human colonic epithelial cancer cells. Black-Right-Pointing-Pointer Activation of COX-2 signaling in the fibroblasts affects behavior of the epithelia. Black-Right-Pointing-Pointer Protein Kinase C controls the activation of COX-2 signaling. -- Abstract: COX-2 is a major regulator implicated in colonic cancer. However, how COX-2 signaling affects colonic carcinogenesis at cellular level is not clear. In this article, we investigated whether activation of COX-2 signaling by deoxycholic acid (DCA) in primary human normal and cancer associated fibroblasts play a significant role in regulationmore » of proliferation and invasiveness of colonic epithelial cancer cells. Our results demonstrated while COX-2 signaling can be activated by DCA in both normal and cancer associated fibroblasts, the level of activation of COX-2 signaling is significantly greater in cancer associated fibroblasts than that in normal fibroblasts. In addition, we discovered that the proliferative and invasive potential of colonic epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts pre-treated with DCA than with normal fibroblasts pre-treated with DCA. Moreover, COX-2 siRNA attenuated the proliferative and invasive effect of both normal and cancer associate fibroblasts pre-treated with DCA on the colonic cancer cells. Further studies indicated that the activation of COX-2 signaling by DCA is through protein kinase C signaling. We speculate that activation of COX-2 signaling especially in cancer associated fibroblasts promotes progression of colonic cancer.« less

  6. High association of Cryptosporidium spp. infection with colon adenocarcinoma in Lebanese patients

    PubMed Central

    Osman, Marwan; Benamrouz, Sadia; Guyot, Karine; Baydoun, Martha; Frealle, Emilie; Chabe, Magali; Gantois, Nausicaa; Delaire, Baptiste; Goffard, Anne; Aoun, Albert; Jurdi, Nawaf; Dabboussi, Fouad; Even, Gael; Slomianny, Christian; Gosset, Pierre; Hamze, Monzer; Creusy, Colette; Viscogliosi, Eric

    2017-01-01

    Background The association between Cryptosporidium and human colon cancer has been reported in different populations. However, this association has not been well studied. In order to add new strong arguments for a probable link between cryptosporidiosis and colon human cancer, the aim of this study was to determine prevalence and to identify species of Cryptosporidium among Lebanese patients. Methodology and principal findings Overall, 218 digestive biopsies were collected in Tripoli, Lebanon, from three groups of patients: (i) patients with recently diagnosed colon intraepithelial neoplasia/adenocarcinoma before any treatment (n = 72); (ii) patients with recently diagnosed stomach intraepithelial neoplasia/adenocarcinoma before any treatment (n = 21); and (iii) patients without digestive intraepithelial neoplasia/adenocarcinoma but with persistent digestive symptoms (n = 125). DNA extraction was performed from paraffin-embedded tissue. The presence of the parasite in tissues was confirmed by PCR, microscopic observation and immunofluorescence analysis. We identified a high rate (21%) of Cryptosporidium presence in biopsies from Lebanese patients with recently diagnosed colonic neoplasia/adenocarcinoma before any treatment. This prevalence was significantly higher compared to 7% of Cryptosporidium prevalence among patients without colon neoplasia but with persistent gastrointestinal symptoms (OR: 4, CI: 1.65–9.6, P = 0.001). When the comparison was done against normal biopsies, the risk of infection increased 11-fold in the group of patients with colon adenocarcinoma (OR: 11.315, CI: 1.44–89.02, P = 0.003). Conclusions This is the first study performed in Lebanon reporting the prevalence of Cryptosporidium among patients with digestive cancer. These results show that Cryptosporidium is strongly associated with human colon cancer being maybe a potential etiological agent of this disease. PMID:29261714

  7. Specific Behaviors Predict Staphylococcus aureus Colonization and Skin and Soft Tissue Infections Among Human Immunodeficiency Virus-Infected Persons

    PubMed Central

    Crum-Cianflone, Nancy F.; Wang, Xun; Weintrob, Amy; Lalani, Tahaniyat; Bavaro, Mary; Okulicz, Jason F.; Mende, Katrin; Ellis, Michael; Agan, Brian K.

    2015-01-01

    Background. Few data exist on the incidence and risk factors of Staphylococcus aureus colonization and skin and soft tissue infections (SSTIs) among patients infected with human immunodeficiency virus (HIV). Methods. Over a 2-year period, we prospectively evaluated adults infected with HIV for incident S aureus colonization at 5 body sites and SSTIs. Cox proportional hazard models using time-updated covariates were performed. Results. Three hundred twenty-two participants had a median age of 42 years (interquartile range, 32–49), an HIV duration of 9.4 years (2.7–17.4), and 58% were on highly active antiretroviral therapy (HAART). Overall, 102 patients (32%) became colonized with S aureus with an incidence rate of 20.6 (95% confidence interval [CI], 16.8–25.0) per 100 person-years [PYs]. Predictors of colonization in the final multivariable model included illicit drug use (hazard ratios [HR], 4.26; 95% CI, 1.33–13.69) and public gym use (HR 1.66, 95% CI, 1.04–2.66), whereas antibacterial soap use was protective (HR, 0.50; 95% CI, 0.32–0.78). In a separate model, perigenital colonization was associated with recent syphilis infection (HR, 4.63; 95% CI, 1.01–21.42). Fifteen percent of participants developed an SSTI (incidence rate of 9.4 cases [95% CI, 6.8–12.7] per 100 PYs). Risk factors for an SSTI included incident S aureus colonization (HR 2.52; 95% CI, 1.35–4.69), public shower use (HR, 2.59; 95% CI, 1.48–4.56), and hospitalization (HR 3.54; 95% CI, 1.67–7.53). The perigenital location for S aureus colonization was predictive of SSTIs. Human immunodeficiency virus-related factors (CD4 count, HIV RNA level, and HAART) were not associated with colonization or SSTIs. Conclusions. Specific behaviors, but not HIV-related factors, are predictors of colonization and SSTIs. Behavioral modifications may be the most important strategies in preventing S aureus colonization and SSTIs among persons infected with HIV. PMID:26380335

  8. Salvianolic acid B reverses multidrug resistance in nude mice bearing human colon cancer stem cells.

    PubMed

    Guo, Piaoting; Wang, Jianchao; Gao, Wencang; Liu, Xia; Wu, Shaofei; Wan, Boshun; Xu, Lei; Li, Yanhua

    2018-05-29

    Salvianolic acid B (SalB) is a water‑soluble phenolic compound, extractable from Salvia miltiorrhiza, and has previously been demonstrated to reverse tumor multidrug resistance (MDR) in colon cancer cells. Cancer stem cells (CSCs) are closely associated with drug resistance. Therefore, establishing a nude mouse model bearing human colon CSCs is important for the study of the mechanisms underlying colon cancer drug resistance as well as the reversal of drug resistance. The present study aimed to establish a nude mouse model bearing human colon CSCs and to investigate the effects of SalB on the drug resistance exhibited by the nude mouse model as well as determine its underlying mechanism. Cells from two colon cancer cell lines (LoVo and HCT‑116) were cultured in serum‑free medium to obtain CSCs‑enriched spheroid cells. Following this, nude mice were transplanted with LoVo and HCT‑116 colon CSCs to establish the CSC nude mouse model, which was subsequently demonstrated to exhibit MDR. The results of the present study revealed that following treatment with SalB, the chemotherapeutic drug resistance of xenografts was reversed to a certain extent. Western blot analysis was performed to investigate the expression levels of cluster of differentiation (CD)44, CD133, transcription factor sox‑2 (SOX2) and ATP‑binding cassette sub‑family G member 2 (ABCG2) proteins, and the results demonstrated that treatment with SalB downregulated the expression of CD44, SOX2 and ABCG2 proteins in both LoVo and HCT‑116 colon CSCs xenografts. In conclusion, the results of the present study revealed that a serum‑free suspension method can be performed to successfully isolate colon CSCs. In addition, a nude mice bearing colon CSCs animal model was successfully established, and associated tumors were confirmed to exhibit MDR. Furthermore, SalB was demonstrated to successfully reverse MDR in nude mice bearing LoVo and HCT‑116 colon CSCs, as well as suppress the expression of CD44, SOX2 and ABCG2 proteins.

  9. Methane-related metabolisms of deep-sea sediments captured with a colonization experiment.

    NASA Astrophysics Data System (ADS)

    Carr, S. A.; Wheat, C. G.; Orcutt, B.; Kopf, A.; Saffer, D. M.; Toczko, S.

    2016-12-01

    NanTroSEIZE is a multi-expedition project of the International Ocean Discovery Program (IODP) designed to investigate the Nankai Trough subduction zone. In 2016, a long-term borehole instrument package known as the "GeniusPlug" was collected from Hole C0010A after a six-year deployment within the sediment of a major fault zone, at a depth of 400 mbsf. This GeniusPlug included a set of osmotically-driven pumps, which continuously pumped in situ deep seated, formation water through a microbiological colonization experiment (flow-through osmo colonization system (FLOCS)). This FLOCS experiment contained cassettes of olivine, barite, and sediment collected from nearby Hole C0004D, to serve as colonization substrates. While similar FLOCS have been deployed within boreholes in the igneous oceanic crust, this FLOCS experiment represents the first to be deployed within a sedimentary environment, and thus represents the first opportunity to observe how pore water communities colonize sediment and rock substrates. Initial geochemistry results suggest that conditions within the FLOCS experiment were similar to a methane-sulfate transition zone, and initial enrichment cultures inoculated with the FLOCS substrates demonstrate methane production. Here, we will present integrated results of culturing experiments and culture-independent genomic investigations as a means to elucidate the methane-related metabolisms of these colonizing communities.

  10. Prevalence and Risk Factors of Colonization with Staphylococcus aureus in Healthy Pet Cats Kept in the City Households

    PubMed Central

    Płoneczka-Janeczko, Katarzyna; Rypuła, Krzysztof

    2016-01-01

    Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA), is a significant pathogen in both human medicine and veterinary medicine. The importance of pets as reservoirs of human infections is still poorly understood. This article provides detailed information of a cross-sectional study of a S. aureus colonization in clinically healthy indoor cats. The study systematically assessed a number of different anatomical locations for the S. aureus colonization and the influence of a range of potential risk factors on the value of the final S. aureus colonization rate. The incidence rates observed for cats with at least one site positive for S. aureus or MRSA were 17.5% and 6.63%, respectively. The following risk factors were identified: one or more owners working in the healthcare industry (human or veterinary); dogs being kept with the cat under investigation; treatment of the cat under investigation with antibiotics or chemotherapeutics during the previous year. In conclusion, this study revealed a higher prevalence of MRSA than what has previously been reported in healthy pets. A combination of anatomical locations from which the samples were collected had a major influence on the final value of the S. aureus colonization rate. PMID:27766257

  11. Mixed mating system in the fern Asplenium scolopendrium: implications for colonization potential

    PubMed Central

    Wubs, E. R. Jasper; de Groot, G. Arjen; During, Heinjo J.; Vogel, Johannes C.; Grundmann, Michael; Bremer, Piet; Schneider, Harald

    2010-01-01

    Background and Aims Human-mediated environmental change is increasing selection pressure for the capacity in plants to colonize new areas. Habitat fragmentation combined with climate change, in general, forces species to colonize areas over longer distances. Mating systems and genetic load are important determinants of the establishment and long-term survival of new populations. Here, the mating system of Asplenium scolopendrium, a diploid homosporous fern species, is examined in relation to colonization processes. Methods A common environment experiment was conducted with 13 pairs of sporophytes, each from a different site. Together they constitute at least nine distinct genotypes, representing an estimated approx. 95 % of the non-private intraspecific genetic variation in Europe. Sporophyte production was recorded for gametophytes derived from each parent sporophyte. Gametophytes were grown in vitro in three different ways: (I) in isolation, (II) with a gametophyte from a different sporophyte within the same site or (III) with a partner from a different site. Key Results Sporophyte production was highest in among-site crosses (III), intermediate in within-site crosses (II) and was lowest in isolated gametophytes (I), strongly indicating inbreeding depression. However, intragametophytic selfing was observed in most of the genotypes tested (eight out of nine). Conclusions The results imply a mixed mating system in A. scolopendrium, with outcrossing when possible and occasional selfing when needed. Occasional intragametophytic selfing facilitates the successful colonization of new sites from a single spore. The resulting sporophyte, which will be completely homozygous, will shed large amounts of spores over time. Each year this creates a bed of gametophytes in the vicinity of the parent. Any unrelated spore which arrives is then selectively favoured to reproduce and contribute its genes to the new population. Thus, while selfing facilitates initial colonization success, inbreeding depression promotes genetically diverse populations through outcrossing. The results provide further evidence against the overly simple dichotomous distinction of fern species as either selfing or outcrossing. PMID:20682575

  12. Colonization of Lutzomyia verrucarum and Lutzomyia longipalpis Sand Flies (Diptera: Psychodidae) by Bartonella bacilliformis, the Etiologic Agent of Carrión's Disease.

    PubMed

    Battisti, James M; Lawyer, Phillip G; Minnick, Michael F

    2015-01-01

    Bartonella bacilliformis is a pathogenic bacterium transmitted to humans presumably by bites of phlebotomine sand flies, infection with which results in a bi-phasic syndrome termed Carrión's disease. After constructing a low-passage GFP-labeled strain of B. bacilliformis, we artificially infected Lutzomyia verrucarum and L. longipalpis populations, and subsequently monitored colonization of sand flies by fluorescence microscopy. Initially, colonization of the two fly species was indistinguishable, with bacteria exhibiting a high degree of motility, yet still confined to the abdominal midgut. After 48 h, B. bacilliformis transitioned from bacillus-shape to a non-motile, small coccoid form and appeared to be digested along with the blood meal in both fly species. Differences in colonization patterns became evident at 72 h when B. bacilliformis was observed at relatively high density outside the peritrophic membrane in the lumen of the midgut in L. verrucarum, but colonization of L. longipalpis was limited to the blood meal within the intra-peritrophic space of the abdominal midgut, and the majority of bacteria were digested along with the blood meal by day 7. The viability of B. bacilliformis in L. longipalpis was assessed by artificially infecting, homogenizing, and plating for determination of colony-forming units in individual flies over a 13-d time course. Bacteria remained viable at relatively high density for approximately seven days, suggesting that L. longipalpis could potentially serve as a vector. The capacity of L. longipalpis to transmit viable B. bacilliformis from infected to uninfected meals was analyzed via interrupted feeds. No viable bacteria were retrieved from uninfected blood meals in these experiments. This study provides significant information toward understanding colonization of sand flies by B. bacilliformis and also demonstrates the utility of L. longipalpis as a user-friendly, live-vector model system for studying this severely neglected tropical disease.

  13. Colonization of Lutzomyia verrucarum and Lutzomyia longipalpis Sand Flies (Diptera: Psychodidae) by Bartonella bacilliformis, the Etiologic Agent of Carrión’s Disease

    PubMed Central

    Battisti, James M.; Lawyer, Phillip G.; Minnick, Michael F.

    2015-01-01

    Bartonella bacilliformis is a pathogenic bacterium transmitted to humans presumably by bites of phlebotomine sand flies, infection with which results in a bi-phasic syndrome termed Carrión’s disease. After constructing a low-passage GFP-labeled strain of B. bacilliformis, we artificially infected Lutzomyia verrucarum and L. longipalpis populations, and subsequently monitored colonization of sand flies by fluorescence microscopy. Initially, colonization of the two fly species was indistinguishable, with bacteria exhibiting a high degree of motility, yet still confined to the abdominal midgut. After 48h, B. bacilliformis transitioned from bacillus-shape to a non-motile, small coccoid form and appeared to be digested along with the blood meal in both fly species. Differences in colonization patterns became evident at 72h when B. bacilliformis was observed at relatively high density outside the peritrophic membrane in the lumen of the midgut in L. verrucarum, but colonization of L. longipalpis was limited to the blood meal within the intra-peritrophic space of the abdominal midgut, and the majority of bacteria were digested along with the blood meal by day 7. The viability of B. bacilliformis in L. longipalpis was assessed by artificially infecting, homogenizing, and plating for determination of colony-forming units in individual flies over a 13-d time course. Bacteria remained viable at relatively high density for approximately seven days, suggesting that L. longipalpis could potentially serve as a vector. The capacity of L. longipalpis to transmit viable B. bacilliformis from infected to uninfected meals was analyzed via interrupted feeds. No viable bacteria were retrieved from uninfected blood meals in these experiments. This study provides significant information toward understanding colonization of sand flies by B. bacilliformis and also demonstrates the utility of L. longipalpis as a user-friendly, live-vector model system for studying this severely neglected tropical disease. PMID:26436553

  14. Effect of vancomycin, tylosin, and chlortetracycline on vancomycin-resistant Enterococcus faecium colonization of broiler chickens during grow-out

    USDA-ARS?s Scientific Manuscript database

    Broiler chickens may serve as reservoirs for human colonization by vancomycin-resistant Enterococcus (VRE). We examined the effects of vancomycin and two commonly-used antimicrobial feed additives on VRE colonization in broiler chickens during grow-out. Chicks received unsupplemented feed or feed ...

  15. H2 metabolism is widespread and diverse among human colonic microbes

    PubMed Central

    Wolf, Patricia G.; Biswas, Ambarish; Morales, Sergio E.; Greening, Chris; Gaskins, H. Rex

    2016-01-01

    ABSTRACT Microbial molecular hydrogen (H2) cycling is central to metabolic homeostasis and microbial composition in the human gastrointestinal tract. Molecular H2 is produced as an endproduct of carbohydrate fermentation and is reoxidised primarily by sulfate-reduction, acetogenesis, and methanogenesis. However, the enzymatic basis for these processes is incompletely understood and the hydrogenases responsible have not been investigated. In this work, we surveyed the genomic and metagenomic distribution of hydrogenase-encoding genes in the human colon to infer dominant mechanisms of H2 cycling. The data demonstrate that 70% of gastrointestinal microbial species listed in the Human Microbiome Project encode the genetic capacity to metabolise H2. A wide variety of anaerobically-adapted hydrogenases were present, with [FeFe]-hydrogenases predominant. We subsequently analyzed the hydrogenase gene content of stools from 20 healthy human subjects. The hydrogenase gene content of all samples was overwhelmingly dominated by fermentative and electron-bifurcating [FeFe]-hydrogenases emerging from the Bacteroidetes and Firmicutes. This study supports that H2 metabolism in the human gut is driven by fermentative H2 production and interspecies H2 transfer. However, it suggests that electron-bifurcation rather than respiration is the dominant mechanism of H2 reoxidation in the human colon, generating reduced ferredoxin to sustain carbon-fixation (e.g. acetogenesis) and respiration (via the Rnf complex). This work provides the first comprehensive bioinformatic insight into the mechanisms of H2 metabolism in the human colon. PMID:27123663

  16. Closely spaced fibre Bragg grating sensors for detailed measurement of peristalsis in the human gut

    NASA Astrophysics Data System (ADS)

    Arkwright, John W.; Dinning, Phil G.; Underhill, Ian D.; Maunder, Simon A.; Blenman, Neil; Szczesniak, Michal M.; Cook, Ian J.

    2009-10-01

    We report the design and use of multi-channel fibre Bragg grating based manometry catheters with pressure sensors spaced at 1 cm intervals along its axis. The catheters have been tested in-vivo in both the human oesophagus and colon and have been shown to provide analogous results to commercially available solid state pressure sensors. The advantage of using fibre gratings comes from the ability to extend the number of sensor elements without increasing the diameter or complexity of the catheter or data acquisition system. We present our progress towards the fabrication of a manometry catheter suitable for recording manometric data along the full length of the human colon. Results from early phase equivalence testing and recent in-vivo trials in the human oesophagus and colon are presented. The colonic recordings were taken in basal and post-prandial periods of 2.5 hours each. The close axial spacing of the pressure sensors has identified the complex nature of propagating sequences in the colon in both antegrade (towards the anus) and retrograde (away from the anus) for the first time. By sub-sampling the data using data from sensors 7 cm apart the potential to misrepresent propagating sequences at wider sensor spacings is demonstrated and proposed as a potential reason why correlation between peristaltic abnormalities recorded using traditional catheters, with 7.5-10 cm spaced sensors, and actual patient symptoms remains elusive.

  17. Xylan-regulated Delivery of Human Keratinocyte Growth Factor-2 to the Inflamed Colon by the Human Anaerobic Commensal Bacterium Bacteroides ovatus

    USDA-ARS?s Scientific Manuscript database

    The use of genetically modified bacteria to deliver biologically active molecules directly to the gut has become an increasingly attractive area of investigation. The challenge of regulation of production of the therapeutic molecule and colonization of the bowel led us to investigate Bacteroides ov...

  18. The complete genome sequence and annotation of a Campylobacter jejuni strain, MTVDSCj20, isolated from a naturally colonized farm-raised chicken

    USDA-ARS?s Scientific Manuscript database

    Campylobacter jejuni is a major cause of human foodborne illness worldwide with contaminated poultry products serving as a main source of human infection. C. jejuni strain MTVDSCj20 was isolated from the cecal contents of a farm-raised chicken naturally colonized with Campylobacter. The complete,...

  19. Kinin effects on ion transport in monolayers of HCA-7 cells, a line from a human colonic adenocarcinoma.

    PubMed

    Cuthbert, A W; Kirkland, S C; MacVinish, L J

    1985-09-01

    Using epithelial monolayers of HCA-7 cells, derived from a primary human colonic adenocarcinoma and grown on pervious supports, it is shown that responses to lysylbradykinin can be elicited from either side. It is proposed that kinin receptors are inserted into both apical and basolateral membrane domains.

  20. Effect of water flow and chemical environment on microbiota growth and composition in the human colon.

    PubMed

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-06-20

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota.

  1. Effect of soy saponin on the growth of human colon cancer cells

    PubMed Central

    Tsai, Cheng-Yu; Chen, Yue-Hwa; Chien, Yi-Wen; Huang, Wen-Hsuan; Lin, Shyh-Hsiang

    2010-01-01

    AIM: To investigate the effect of extracted soybean saponins on the growth of human colon cancer cells. METHODS: WiDr human colon cancer cells were treated with 150, 300, 600 or 1200 ppm of soy saponin to determine the effect on cell growth, cell morphology, alkaline phosphatase (AP) and protein kinase C (PKC) activities, and P53 protein, c-Fos and c-Jun gene expression. RESULTS: Soy saponin decreased the number of viable cells in a dose-dependent manner and suppressed 12-O-tetradecanol-phorbol-13-acetate-stimulated PKC activity (P < 0.05). Cells treated with saponins developed cytoplasmic vesicles and the cell membrane became rougher and more irregular in a dose-dependent manner, and eventually disassembled. At 600 and 1200 ppm, the activity of AP was increased (P < 0.05). However, the apoptosis markers such as c-Jun and c-Fos were not significantly affected by saponin. CONCLUSION: Soy saponin may be effective in preventing colon cancer by affecting cell morphology, cell proliferation enzymes, and cell growth. PMID:20632438

  2. GRP-induced up-regulation of Hsp72 promotes CD16+/94+ natural killer cell binding to colon cancer cells causing tumor cell cytolysis.

    PubMed

    Taglia, Lauren; Matusiak, Damien; Benya, Richard V

    2008-01-01

    Gastrin-releasing peptide (GRP) and its receptor (GRPR) are not normally expressed by epithelial cells lining the adult human colon. However post malignant transformation both GRP and its receptor are aberrantly expressed in the colon where we have previously shown they act to retard metastasis by enhancing tumor cell attachment to the extracellular matrix. In the present study, we show that GRP signaling via its cognate receptor when both are aberrantly expressed in human colon cancer cells causes heat shock protein 72 (Hsp72) to be expressed. We show that GRP/GRPR induces expression of Hsp72 by signaling via focal adhesion kinase. When expressed, Hsp72 promotes the binding of CD16+ and CD94+ natural killer cells, resulting in tumor cell cytolysis. These findings demonstrate the presence of a novel mechanism whereby aberrantly expressed GRP/GRPR in human colorectal cancer attenuates tumor progression and may promote a favorable outcome.

  3. Effect of water flow and chemical environment on microbiota growth and composition in the human colon

    PubMed Central

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-01-01

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota. PMID:28588144

  4. Different molecular organization of two carotenoids, lutein and zeaxanthin, in human colon epithelial cells and colon adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Grudzinski, Wojciech; Piet, Mateusz; Luchowski, Rafal; Reszczynska, Emilia; Welc, Renata; Paduch, Roman; Gruszecki, Wieslaw I.

    2018-01-01

    Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.

  5. Characterization of a family of structurally related glycoproteins expressing beta 1-6-branched asparagine-linked oligosaccharides in human colon carcinoma cells.

    PubMed Central

    Laferté, S; Loh, L C

    1992-01-01

    Previous studies have established that metastatic tumour cells express high levels of beta 1-6-branched Asn-linked oligosaccharides which can be detected with the lectin leucoagglutinin (L-PHA) [Dennis, Laferté, Waghorne, Breitman & Kerbel (1987) Science 236, 582-585]. In order to identify L-PHA-binding glycoproteins which may play a role specifically in colon cancer, we have prepared monoclonal antibodies (MAbs) to the moderately well-differentiated human colon carcinoma cell line HT29. In this paper we present the initial characterization of a family of structurally related L-PHA-binding glycoproteins detected by MAb 1H9 which are differentially expressed and processed by HT29 cells and by two other human colon carcinoma cell lines, SW480 and SW620. In contrast to HT29, the SW480 and SW620 cell lines were established from a poorly differentiated grade III/IV primary tumour and one of its lymph node metastases respectively. MAb 1H9 detects in HT29 cells a conformational determinant present on three L-PHA-binding glycoproteins of 100, 70 and 25kDa, as well as a 74 kDa glycoprotein with high-mannose-type Asn-linked oligosaccharides. Pulse-chase experiments and peptide mapping analyses revealed that the 74 kDa and 100 kDa species are related by carbohydrate processing and are probably derived from a common 76 kDa precursor. On the other hand, the 70 kDa glycoprotein is synthesized from an endoglycosidase H-sensitive precursor of 56 kDa which is structurally related to, but distinct from, the aforementioned 76 kDa precursor. In addition, the 100 kDa species is secreted into the culture medium, whereas the 70 kDa glycoprotein is retained intracellularly. SW480 and SW620 cells showed qualitative and quantitative differences from HT29 cells, including increased secretion of a smaller L-PHA-binding glycoprotein of 92 kDa into the culture medium, as well as apparent differences in glycosylation of the intracellular 66 kDa glycoprotein. These results suggested that the expression, glycosylation and subcellular localization of this family of L-PHA-binding glycoproteins may correlate with the differentiation status of colon cancer cells and/or reflect biochemical changes. characteristic of more progressive metastatic tumours. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:1567368

  6. NLRP6 inflammasome is a regulator of colonic microbial ecology and risk for colitis

    PubMed Central

    Elinav, Eran; Strowig, Till; Kau, Andrew L.; Henao-Mejia, Jorge; Thaiss, Christoph A.; Booth, Carmen J.; Peaper, David R.; Bertin, John; Eisenbarth, Stephanie C.; Gordon, Jeffrey I.; Flavell, Richard A.

    2011-01-01

    Inflammasomes are multi-protein complexes that function as sensors of endogenous or exogenous damage-associated molecular patterns. Here we show that deficiency of NLRP6 in mouse colonic epithelial cells results in reduced IL-18 levels and altered fecal microbiota characterized by expanded representation of the bacterial phyla Bacteroidetes (Prevotellaceae) and TM7. NLRP6 inflammasome-deficient mice were characterized by spontaneous intestinal hyperplasia, inflammatory cell recruitment, and exacerbation of chemical colitis induced by exposure to dextran sodium sulfate (DSS). Cross-fostering and cohousing experiments revealed that the colitogenic activity of this microbiota is transferable to neonatal or adult wild-type mice, leading to exacerbation of DSS colitis via induction of CCL5. Antibiotic treatment and electron microscopy studies further supported the role of Prevotellaceae as a key representative of this microbiota-associated phenotype. Altogether, perturbations in this inflammasome pathway, including NLRP6, ASC, caspase-1 and IL-18 may constitute a predisposing or initiating event in some cases of human IBD. PMID:21565393

  7. Perivascular epithelioid cell tumor of the descending colon mimicking a gastrointestinal stromal tumor: a case report.

    PubMed

    Iwamoto, Ryuta; Kataoka, Tatsuki R; Furuhata, Ayako; Ono, Kazuo; Hirota, Seiichi; Kawada, Kenji; Sakai, Yoshiharu; Haga, Hironori

    2016-11-14

    We present a case of perivascular epithelioid cell tumor (PEComa), which clinically and histologically mimics a gastrointestinal stromal tumor (GIST). A 42-year-old woman was found to have a mass in the left flank during her annual medical checkup. Computed tomography examination revealed a submucosal tumor of the descending colon. Surgeons and radiologists suspected that the lesion was a GIST, and left hemicolectomy was performed without biopsy. Microscopic examination showed that the lesion was composed of spindle and epithelioid cells, which were immunohistochemically negative for c-kit and positive for platelet-derived growth factor receptor (PDGFR) α. Initial diagnosis of PDGFRα-positive GIST was made. However, gene analysis did not reveal mutations in PDGFRα. Additional immunohistochemistry showed that tumor cells were positive for human melanin black 45 (HMB45), melanA, and the myogenic marker calponin. A final diagnosis of PEComa was made. PEComa should be included in the differential diagnosis of PDGFRα-positive spindle cell tumors in the wall of the gastrointestinal tract.

  8. Increased colonic propionate reduces anticipatory reward responses in the human striatum to high-energy foods.

    PubMed

    Byrne, Claire S; Chambers, Edward S; Alhabeeb, Habeeb; Chhina, Navpreet; Morrison, Douglas J; Preston, Tom; Tedford, Catriona; Fitzpatrick, Julie; Irani, Cherag; Busza, Albert; Garcia-Perez, Isabel; Fountana, Sofia; Holmes, Elaine; Goldstone, Anthony P; Frost, Gary S

    2016-07-01

    Short-chain fatty acids (SCFAs), metabolites produced through the microbial fermentation of nondigestible dietary components, have key roles in energy homeostasis. Animal research suggests that colon-derived SCFAs modulate feeding behavior via central mechanisms. In humans, increased colonic production of the SCFA propionate acutely reduces energy intake. However, evidence of an effect of colonic propionate on the human brain or reward-based eating behavior is currently unavailable. We investigated the effect of increased colonic propionate production on brain anticipatory reward responses during food picture evaluation. We hypothesized that elevated colonic propionate would reduce both reward responses and ad libitum energy intake via stimulation of anorexigenic gut hormone secretion. In a randomized crossover design, 20 healthy nonobese men completed a functional magnetic resonance imaging (fMRI) food picture evaluation task after consumption of control inulin or inulin-propionate ester, a unique dietary compound that selectively augments colonic propionate production. The blood oxygen level-dependent (BOLD) signal was measured in a priori brain regions involved in reward processing, including the caudate, nucleus accumbens, amygdala, anterior insula, and orbitofrontal cortex (n = 18 had analyzable fMRI data). Increasing colonic propionate production reduced BOLD signal during food picture evaluation in the caudate and nucleus accumbens. In the caudate, the reduction in BOLD signal was driven specifically by a lowering of the response to high-energy food. These central effects were partnered with a decrease in subjective appeal of high-energy food pictures and reduced energy intake during an ad libitum meal. These observations were not related to changes in blood peptide YY (PYY), glucagon-like peptide 1 (GLP-1), glucose, or insulin concentrations. Our results suggest that colonic propionate production may play an important role in attenuating reward-based eating behavior via striatal pathways, independent of changes in plasma PYY and GLP-1. This trial was registered at clinicaltrials.gov as NCT00750438.

  9. Passage of Campylobacter jejuni through the chicken reservoir or mice promotes phase variation in contingency genes Cj0045 and Cj0170 that strongly associates with colonization and disease in a mouse model

    PubMed Central

    Kim, Joo-Sung; Artymovich, Katherine A.; Hall, David F.; Smith, Eric J.; Fulton, Richard; Bell, Julia; Dybas, Leslie; Mansfield, Linda S.; Tempelman, Robert; Wilson, David L.

    2012-01-01

    Human illness due to Camplyobacter jejuni infection is closely associated with consumption of poultry products. We previously demonstrated a 50 % shift in allele frequency (phase variation) in contingency gene Cj1139 (wlaN) during passage of C. jejuni NCTC11168 populations through Ross 308 broiler chickens. We hypothesized that phase variation in contingency genes during chicken passage could promote subsequent colonization and disease in humans. To test this hypothesis, we passaged C. jejuni strains NCTC11168, 33292, 81-176, KanR4 and CamR2 through broiler chickens and analysed the ability of passaged and non-passaged populations to colonize C57BL6 IL-10-deficient mice, our model for human colonization and disease. We utilized fragment analysis and nucleotide sequence analysis to measure phase variation in contingency genes. Passage through the chicken reservoir promoted phase variation in five specific contingency genes, and these ‘successful’ populations colonized mice. When phase variation did not occur in these same five contingency genes during chicken passage, these ‘unsuccessful’ populations failed to colonize mice. Phase variation during chicken passage generated small insertions or deletions (indels) in the homopolymeric tract (HT) in contingency genes. Single-colony isolates of C. jejuni strain KanR4 carrying an allele of contingency gene Cj0170 with a10G HT colonized mice at high frequency and caused disease symptoms, whereas single-colony isolates carrying the 9G allele failed to colonize mice. Supporting results were observed for the successful 9G allele of Cj0045 in strain 33292. These data suggest that phase variation in Cj0170 and Cj0045 is strongly associated with mouse colonization and disease, and that the chicken reservoir can play an active role in natural selection, phase variation and disease. PMID:22343355

  10. Passage of Campylobacter jejuni through the chicken reservoir or mice promotes phase variation in contingency genes Cj0045 and Cj0170 that strongly associates with colonization and disease in a mouse model.

    PubMed

    Kim, Joo-Sung; Artymovich, Katherine A; Hall, David F; Smith, Eric J; Fulton, Richard; Bell, Julia; Dybas, Leslie; Mansfield, Linda S; Tempelman, Robert; Wilson, David L; Linz, John E

    2012-05-01

    Human illness due to Camplyobacter jejuni infection is closely associated with consumption of poultry products. We previously demonstrated a 50 % shift in allele frequency (phase variation) in contingency gene Cj1139 (wlaN) during passage of C. jejuni NCTC11168 populations through Ross 308 broiler chickens. We hypothesized that phase variation in contingency genes during chicken passage could promote subsequent colonization and disease in humans. To test this hypothesis, we passaged C. jejuni strains NCTC11168, 33292, 81-176, KanR4 and CamR2 through broiler chickens and analysed the ability of passaged and non-passaged populations to colonize C57BL6 IL-10-deficient mice, our model for human colonization and disease. We utilized fragment analysis and nucleotide sequence analysis to measure phase variation in contingency genes. Passage through the chicken reservoir promoted phase variation in five specific contingency genes, and these 'successful' populations colonized mice. When phase variation did not occur in these same five contingency genes during chicken passage, these 'unsuccessful' populations failed to colonize mice. Phase variation during chicken passage generated small insertions or deletions (indels) in the homopolymeric tract (HT) in contingency genes. Single-colony isolates of C. jejuni strain KanR4 carrying an allele of contingency gene Cj0170 with a10G HT colonized mice at high frequency and caused disease symptoms, whereas single-colony isolates carrying the 9G allele failed to colonize mice. Supporting results were observed for the successful 9G allele of Cj0045 in strain 33292. These data suggest that phase variation in Cj0170 and Cj0045 is strongly associated with mouse colonization and disease, and that the chicken reservoir can play an active role in natural selection, phase variation and disease.

  11. N-acetylcysteine prevents the development of gastritis induced by Helicobacter pylori infection.

    PubMed

    Jang, Sungil; Bak, Eun-Jung; Cha, Jeong-Heon

    2017-05-01

    Helicobacter pylori (H. pylori) is a human gastric pathogen, causing various gastric diseases ranging from gastritis to gastric adenocarcinoma. It has been reported that combining N-acetylcysteine (NAC) with conventional antibiotic therapy increases the success rate of H. pylori eradication. We evaluated the effect of NAC itself on the growth and colonization of H. pylori, and development of gastritis, using in vitro liquid culture system and in vivo animal models. H. pylori growth was evaluated in broth culture containing NAC. The H. pylori load and histopathological scores of stomachs were measured in Mongolian gerbils infected with H. pylori strain 7.13, and fed with NAC-containing diet. In liquid culture, NAC inhibited H. pylori growth in a concentration-dependent manner. In the animal model, 3-day administration of NAC after 1 week from infection reduced the H. pylori load; 6-week administration of NAC after 1 week from infection prevented the development of gastritis and reduced H. pylori colonization. However, no reduction in the bacterial load or degree of gastritis was observed with a 6-week administration of NAC following 6-week infection period. Our results indicate that NAC may exert a beneficial effect on reduction of bacterial colonization, and prevents the development of severe inflammation, in people with initial asymptomatic or mild H. pylori infection.

  12. Structural determinants of the interaction between the Haemophilus influenzae Hap autotransporter and fibronectin.

    PubMed

    Spahich, Nicole A; Kenjale, Roma; McCann, Jessica; Meng, Guoyu; Ohashi, Tomoo; Erickson, Harold P; St Geme, Joseph W

    2014-06-01

    Haemophilus influenzae is a Gram-negative cocco-bacillus that initiates infection by colonizing the upper respiratory tract. Hap is an H. influenzae serine protease autotransporter protein that mediates adherence, invasion and microcolony formation in assays with human epithelial cells and is presumed to facilitate the process of colonization. Additionally, Hap mediates adherence to fibronectin, laminin and collagen IV, extracellular matrix (ECM) proteins that are present in the respiratory tract and are probably important targets for H. influenzae colonization. The region of Hap responsible for adherence to ECM proteins has been localized to the C-terminal 511 aa of the Hap passenger domain (HapS). In this study, we characterized the structural determinants of the interaction between HapS and fibronectin. Using defined fibronectin fragments, we established that Hap interacts with the fibronectin repeat fragment called FNIII(1-2). Using site-directed mutagenesis, we found a series of motifs in the C-terminal region of HapS that contribute to the interaction with fibronectin. Most of these motifs are located on the F1 and F3 faces of the HapS structure, suggesting that the F1 and F3 faces may be responsible for the HapS-fibronectin interaction. © 2014 The Authors.

  13. Structural determinants of the interaction between the Haemophilus influenzae Hap autotransporter and fibronectin

    PubMed Central

    Spahich, Nicole A.; Kenjale, Roma; McCann, Jessica; Meng, Guoyu; Ohashi, Tomoo; Erickson, Harold P.

    2014-01-01

    Haemophilus influenzae is a Gram-negative cocco-bacillus that initiates infection by colonizing the upper respiratory tract. Hap is an H. influenzae serine protease autotransporter protein that mediates adherence, invasion and microcolony formation in assays with human epithelial cells and is presumed to facilitate the process of colonization. Additionally, Hap mediates adherence to fibronectin, laminin and collagen IV, extracellular matrix (ECM) proteins that are present in the respiratory tract and are probably important targets for H. influenzae colonization. The region of Hap responsible for adherence to ECM proteins has been localized to the C-terminal 511 aa of the Hap passenger domain (HapS). In this study, we characterized the structural determinants of the interaction between HapS and fibronectin. Using defined fibronectin fragments, we established that Hap interacts with the fibronectin repeat fragment called FNIII(1–2). Using site-directed mutagenesis, we found a series of motifs in the C-terminal region of HapS that contribute to the interaction with fibronectin. Most of these motifs are located on the F1 and F3 faces of the HapS structure, suggesting that the F1 and F3 faces may be responsible for the HapS–fibronectin interaction. PMID:24687948

  14. Lactobacillus salivarius REN counteracted unfavorable 4-nitroquinoline-1-oxide-induced changes in colonic microflora of rats.

    PubMed

    Zhang, Ming; Qiao, Xuewei; Zhao, Liang; Jiang, Lu; Ren, Fazheng

    2011-12-01

    Probiotics and carcinogens both have a significant effect on the microfloral composition of the human intestine. The objective of this study was to investigate the impact of an important carcinogen, 4-Nitroquinoline-1-Oxide on colonic microflora and the efficacy of the probiotic Lactobacillus salivarius REN as an agent of counteracting these effects. Using denaturing gradient gel electrophoresis (DGGE) combined with redundancy analysis, we demonstrated that both 4-Nitroquinoline-1-Oxide and L. salivarius REN significantly altered the bacterial communities of rat colons. A total of 27 bacterial strains were identified as being affected by treatment with 4-Nitroquinoline-1-Oxide or L. salivarius REN using a t-value biplot combined with band sequencing. 4-Nitroquinoline-1-Oxide treatment increased the abundance of two potential pathogens (one Helicobacter strain and one Desulfovibrio strain), as well as reducing the abundance of two potentially beneficial strains (one Ruminococcaceae strain and one Rumen bacteria). The Helicobacter strain was initally detected in carcinogen-treated rat intestinal microflora, but L. salivarius REN treatment effectively suppressed the growth of the Helicobacter strain. These results suggested that L. salivarius REN may be a potential probiotic, efficiently acting against the initial infection with, and the growth of pathogenic bacteria.

  15. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus.

    PubMed

    García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina; Lopez, Daniel

    2017-09-12

    A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus , which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureus teichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types.

  16. Cell differentiation defines acute and chronic infection cell types in Staphylococcus aureus

    PubMed Central

    García-Betancur, Juan-Carlos; Goñi-Moreno, Angel; Horger, Thomas; Schott, Melanie; Sharan, Malvika; Eikmeier, Julian; Wohlmuth, Barbara; Zernecke, Alma; Ohlsen, Knut; Kuttler, Christina

    2017-01-01

    A central question to biology is how pathogenic bacteria initiate acute or chronic infections. Here we describe a genetic program for cell-fate decision in the opportunistic human pathogen Staphylococcus aureus, which generates the phenotypic bifurcation of the cells into two genetically identical but different cell types during the course of an infection. Whereas one cell type promotes the formation of biofilms that contribute to chronic infections, the second type is planktonic and produces the toxins that contribute to acute bacteremia. We identified a bimodal switch in the agr quorum sensing system that antagonistically regulates the differentiation of these two physiologically distinct cell types. We found that extracellular signals affect the behavior of the agr bimodal switch and modify the size of the specialized subpopulations in specific colonization niches. For instance, magnesium-enriched colonization niches causes magnesium binding to S. aureusteichoic acids and increases bacterial cell wall rigidity. This signal triggers a genetic program that ultimately downregulates the agr bimodal switch. Colonization niches with different magnesium concentrations influence the bimodal system activity, which defines a distinct ratio between these subpopulations; this in turn leads to distinct infection outcomes in vitro and in an in vivo murine infection model. Cell differentiation generates physiological heterogeneity in clonal bacterial infections and helps to determine the distinct infection types. PMID:28893374

  17. Protein kinase C βII and TGFβRII in ω-3 fatty acid–mediated inhibition of colon carcinogenesis

    PubMed Central

    Murray, Nicole R.; Weems, Capella; Chen, Lu; Leon, Jessica; Yu, Wangsheng; Davidson, Laurie A.; Jamieson, Lee; Chapkin, Robert S.; Thompson, E. Aubrey; Fields, Alan P.

    2002-01-01

    Încreasing evidence demonstrates that protein kinase C βII (PKCβII) promotes colon carcinogenesis. We previously reported that colonic PKCβII is induced during colon carcinogenesis in rodents and humans, and that elevated expression of PKCβII in the colon of transgenic mice enhances colon carcinogenesis. Here, we demonstrate that PKCβII represses transforming growth factor β receptor type II (TGFβRII) expression and reduces sensitivity to TGF-β–mediated growth inhibition in intestinal epithelial cells. Transgenic PKCβII mice exhibit hyperproliferation, enhanced colon carcinogenesis, and marked repression of TGFβRII expression. Chemopreventive dietary ω-3 fatty acids inhibit colonic PKCβII activity in vivo and block PKCβII-mediated hyperproliferation, enhanced carcinogenesis, and repression of TGFβRII expression in the colonic epithelium of transgenic PKCβII mice. These data indicate that dietary ω-3 fatty acids prevent colon cancer, at least in part, through inhibition of colonic PKCβII signaling and restoration of TGF-β responsiveness. PMID:12058013

  18. Surgery and Adjuvant Chemotherapy Use Among Veterans With Colon Cancer: Insights From a California Study

    PubMed Central

    Hynes, Denise M.; Tarlov, Elizabeth; Durazo-Arvizu, Ramon; Perrin, Ruth; Zhang, Qiuying; Weichle, Thomas; Ferreira, M. Rosario; Lee, Todd; Benson, Al B.; Bhoopalam, Nirmala; Bennett, Charles L.

    2010-01-01

    Purpose US veterans have been shown to be a vulnerable population with high cancer rates, and cancer care quality in Veterans Affairs (VA) hospitals is the focus of a congressionally mandated review. We examined rates of surgery and chemotherapy use among veterans with colon cancer at VA and non-VA facilities in California to gain insight into factors associated with quality of cancer care. Methods A retrospective cohort of incident colon cancer patients from the California Cancer Registry, who were ≥ 66 years old and eligible to use VA and Medicare between 1999 and 2001, were observed for 6 months after diagnosis. Results Among 601 veterans with colon cancer, 72% were initially diagnosed and treated in non-VA facilities. Among veterans with stage I to III cancer, those diagnosed and initially treated in VA facilities experienced similar colectomy rates as those at non-VA facilities. Stage III patients diagnosed and initially treated in VA versus non-VA facilities had similar odds of receiving adjuvant chemotherapy. In both settings, older patients had lower odds of receiving chemotherapy than their younger counterparts even when race and comorbidity were considered (age 76 to 85 years: odds ratio [OR] = 0.18; 95% CI, 0.07 to 0.46; age ≥ 86 years: OR = 0.17; 95% CI, 0.04 to 0.73). Conclusion In California, older veterans with colon cancer used both VA and non-VA facilities for cancer treatment, and odds of receiving cancer-directed surgery and chemotherapy were similar in both systems. Among stage III patients, older age lowered odds of receiving adjuvant chemotherapy in both systems. Further studies should continue to explore potential health system effects on quality of colon cancer care across the United States. PMID:20406940

  19. Overexpression of peptide deformylase in breast, colon, and lung cancers.

    PubMed

    Randhawa, Harsharan; Chikara, Shireen; Gehring, Drew; Yildirim, Tuba; Menon, Jyotsana; Reindl, Katie M

    2013-07-01

    Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression. The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay. PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines. This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression of PDF in several cancers and the inhibition of cancer cell growth by a PDF inhibitor suggest this enzyme may act as an oncogene to promote cancer cell proliferation.

  20. Overexpression of peptide deformylase in breast, colon, and lung cancers

    PubMed Central

    2013-01-01

    Background Human mitochondrial peptide deformylase (PDF) has been proposed as a novel cancer therapeutic target. However, very little is known about its expression and regulation in human tissues. The purpose of this study was to characterize the expression pattern of PDF in cancerous tissues and to identify mechanisms that regulate its expression. Methods The mRNA expression levels of PDF and methionine aminopeptidase 1D (MAP1D), an enzyme involved in a related pathway with PDF, were determined using tissue panels containing cDNA from patients with various types of cancer (breast, colon, kidney, liver, lung, ovarian, prostate, or thyroid) and human cell lines. Protein levels of PDF were also determined in 2 colon cancer patients via western blotting. Colon cancer cells were treated with inhibitors of ERK, Akt, and mTOR signaling pathways and the resulting effects on PDF and MAP1D mRNA levels were determined by qPCR for colon and lung cancer cell lines. Finally, the effects of a PDF inhibitor, actinonin, on the proliferation of breast, colon, and prostate cell lines were determined using the CyQUANT assay. Results PDF and MAP1D mRNA levels were elevated in cancer cell lines compared to non-cancer lines. PDF mRNA levels were significantly increased in breast, colon, and lung cancer samples while MAP1D mRNA levels were increased in just colon cancers. The expression of PDF and MAP1D varied with stage in these cancers. Further, PDF protein expression was elevated in colon cancer tissue samples. Inhibition of the MEK/ERK, but not PI3K or mTOR, pathway reduced the expression of PDF and MAP1D in both colon and lung cancer cell lines. Further, inhibition of PDF with actinonin resulted in greater reduction of breast, colon, and prostate cancer cell proliferation than non-cancer cell lines. Conclusions This is the first report showing that PDF is over-expressed in breast, colon, and lung cancers, and the first evidence that the MEK/ERK pathway plays a role in regulating the expression of PDF and MAP1D. The over-expression of PDF in several cancers and the inhibition of cancer cell growth by a PDF inhibitor suggest this enzyme may act as an oncogene to promote cancer cell proliferation. PMID:23815882

  1. Oxalobacter formigenes Colonization and Oxalate Dynamics in a Mouse Model

    PubMed Central

    Li, Xingsheng; Ellis, Melissa L.

    2015-01-01

    Animal and human studies have provided compelling evidence that colonization of the intestine with Oxalobacter formigenes reduces urinary oxalate excretion and lowers the risk of forming calcium oxalate kidney stones. The mechanism providing protection appears to be related to the unique ability of O. formigenes to rely on oxalate as a major source of carbon and energy for growth. However, much is not known about the factors that influence colonization and host-bacterium interactions. We have colonized mice with O. formigenes OxCC13 and systematically investigated the impacts of diets with different levels of calcium and oxalate on O. formigenes intestinal densities and urinary and intestinal oxalate levels. Measurement of intestinal oxalate levels in mice colonized or not colonized with O. formigenes demonstrated the highly efficient degradation of soluble oxalate by O. formigenes relative to other microbiota. The ratio of calcium to oxalate in diets was important in determining colonization densities and conditions where urinary oxalate and fecal oxalate excretion were modified, and the results were consistent with those from studies we have performed with colonized and noncolonized humans. The use of low-oxalate purified diets showed that 80% of animals retained O. formigenes colonization after a 1-week dietary oxalate deprivation. Animals not colonized with O. formigenes excreted two times more oxalate in feces than they had ingested. This nondietary source of oxalate may play an important role in the survival of O. formigenes during periods of dietary oxalate deprivation. These studies suggest that the mouse will be a useful model to further characterize interactions between O. formigenes and the host and factors that impact colonization. PMID:25979889

  2. Effects of pro-inflammatory cytokines, lipopolysaccharide and COX-2 mediators on human colonic neuromuscular function and epithelial permeability.

    PubMed

    Safdari, B K; Sia, T C; Wattchow, D A; Smid, S D

    2016-07-01

    Chronic colitis is associated with decreased colonic muscle contraction and loss of mucosal barrier function. Pro-inflammatory cytokines and bacterial lipopolysaccharide (LPS) are important in the generation and maintenance of inflammation. While colitis is associated with upregulated COX-2 -derived prostanoids and nitric oxide (NO), the direct activity of pro-inflammatory cytokines on human colonic neuromuscular function is less clear. This study investigated the effects of IBD-associated pro-inflammatory cytokines IL-17, TNF-α, IL-1β and LPS on human colonic muscle strip contractility, alone and following inhibition of COX-2 or nitric oxide production. In addition, human colonic epithelial Caco-2 cell monolayers were treated with LPS or COX-2 mediators including prostaglandins (PGE2, PGF2α) or their corresponding ethanolamides (PGE2-EA or PGF2α-EA) over 48h and trans-epithelial electrical resistance used to record permeability changes. Longitudinal muscle strips were obtained from healthy colonic resection margins and mounted in organ baths following IL-17, TNF-α, IL-1β and bacterial LPS incubations in an explant setting over 20h. Contraction in response to acetylcholine (ACh) was then measured, before and after either COX-2 inhibition (nimesulide; 10(-5)M) or nitric oxide synthase (NOS) inhibition (l-NNA; 10(-4)M). None of the cytokine or LPS explant incubations affected the potency or maximum cholinergic contraction in vitro, and subsequent COX-2 blockade with nimesulide revealed a significant but similar decrease in potency of ACh-evoked contraction in control, LPS and cytokine-incubated muscle strips. Pre-treatment with l-NNA provided no functional differences in the potency or maximum contractile responses to ACh in cytokine or LPS-incubated colonic longitudinal smooth muscle. Only PGE2 transiently increased Caco-2 monolayer permeability at 24h, while LPS (10μg/ml) increased permeability over 24-48h. These findings indicate that cholinergic contractility in the human colon can be decreased by the blockade of COX-2 generated excitatory prostanoids, but major pro-inflammatory cytokines or LPS do not alter the sensitivity or amplitude of this contraction ex vivo. While PGE2 transiently increase epithelial permeability, LPS generates a significant and sustained increase in permeability indicative of an important role on barrier function at the mucosal interface. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells

    PubMed Central

    Lee, Hsin-chung; Ling, Qing-Dong; Yu, Wan-Chun; Hung, Chunh-Ming; Kao, Ta-Chun; Huang, Yi-Wei; Higuchi, Akon

    2013-01-01

    Purpose We evaluated the higher levels of carcinoembryonic antigen (CEA) secreted by the LoVo human colon carcinoma cells in a medium containing anticancer drugs. Drug-resistant LoVo cells were analyzed by subcutaneously xenotransplanting them into mice. The aim of this study was to evaluate whether the drug-resistant cells isolated in this study were cancer-initiating cells, known also as cancer stem cells (CSCs). Methods The production of CEA was investigated in LoVo cells that were cultured with 0–10 mM of anticancer drugs, and we evaluated the increase in CEA production by the LoVo cells that were stimulated by anticancer drug treatment. The expression of several CSC markers in LoVo cells treated with anticancer drugs was also evaluated. Following anticancer drug treatment, LoVo cells were injected subcutaneously into the flanks of severe combined immunodeficiency mice in order to evaluate the CSC fraction. Results Production of CEA by LoVo cells was stimulated by the addition of anticancer drugs. Drug-resistant LoVo cells expressed lower levels of CSC markers, and LoVo cells treated with any of the anticancer drugs tested did not generate tumors within 8 weeks from when the cells were injected subcutaneously into severe combined immunodeficiency mice. These results suggest that the drug-resistant LoVo cells have a smaller population of CSCs than the untreated LoVo cells. Conclusion Production of CEA by LoVo cells can be stimulated by the addition of anticancer drugs. The drug-resistant subpopulation of LoVo colon cancer cells could stimulate the production of CEA, but these cells did not act as CSCs in in vivo tumor generation experiments. PMID:23818760

  4. Regulation of Deoxycholate Induction of CXCL8 by the Adenomatous Polyposis Coli Gene in Colorectal Cancer

    PubMed Central

    Rial, Nathaniel S; Lazennec, Gwendal; Prasad, Anil R; Krouse, Robert S; Lance, Peter; Gerner, Eugene W

    2009-01-01

    Elevated deoxycholic acid (DCA), mutations in the adenomatous polyposis coli (APC) gene and chronic inflammation are associated with increased risk of colorectal cancer (CRC). APC status was manipulated to determine whether DCA mediates inflammatory molecules in normal or initiated colonic mucosa. DCA increased steady state mRNA and protein levels of CXCL8 in cells which do not express wild type APC. Steady state CXCL8 mRNA and protein were suppressed when cells with conditional expression of wild type APC were exposed to DCA. Immunostaining did not detect CXCL8 in normal human colonic mucosa. CXCL8 was expressed in adenomatous polyps and adenocarcinomas. CXCL8 expression correlated with nuclear β-catenin localization in epithelial cells of adenomas, but was associated with endothelial cells and neutrophils in the adenocarcinomas. DCA-mediated CXCL8 promoter-reporter activity was elevated in a mutant APC background. Wild type APC suppressed this effect. Mutation of activator protein-1 (AP-1) or nuclear factor kappa B (NF-κB) sites suppressed the activation of the CXCL8 promoter-reporter by DCA. Chromatin immunoprecipitation (ChIP) revealed that AP-1 and NF-κB binding to the 5′-promoter of CXCL8 was induced by DCA. The β-catenin transcription factor was bound to the 5′-promoter of CXCL8 in the absence or presence of DCA. Phenotypic assays determined that DCA-mediated invasion was blocked by antibody directed against CXCL8 or wild type-APC. CXCL8 exposure lead to matrix metalloproteinase-2 (MMP-2) production and increased invasion on laminin coated filters. These data suggest that DCA-mediated CXCL8 occurs in initiated colonic epithelium and neutralizing CXCL8 could reduce the invasive potential of tumors. PMID:19173296

  5. Specialized metabolites from the microbiome in health and disease

    PubMed Central

    Sharon, Gil; Garg, Neha; Debelius, Justine; Knight, Rob; Dorrestein, Pieter C.; Mazmanian, Sarkis K.

    2015-01-01

    The microbiota, and the genes that comprise its microbiome, play key roles in human health. Host-microbe interactions affect immunity, metabolism, development, and behavior, and dysbiosis of gut bacteria contributes to disease. Despite advances in correlating changes in the microbiota with various conditions, specific mechanisms of host-microbiota signaling remain largely elusive. We discuss the synthesis of microbial metabolites, their absorption, and potential physiological effects on the host. We propose that the effects of specialized metabolites may explain present knowledge gaps linking the gut microbiota to biological host mechanisms during initial colonization, and in health and disease. PMID:25440054

  6. Hierarchical modeling of an invasive spread: The eurasian collared-dove streptopelia decaocto in the United States

    USGS Publications Warehouse

    Bled, F.; Royle, J. Andrew; Cam, E.

    2011-01-01

    Invasive species are regularly claimed as the second threat to biodiversity. To apply a relevant response to the potential consequences associated with invasions (e.g., emphasize management efforts to prevent new colonization or to eradicate the species in places where it has already settled), it is essential to understand invasion mechanisms and dynamics. Quantifying and understanding what influences rates of spatial spread is a key research area for invasion theory. In this paper, we develop a model to account for occupancy dynamics of an invasive species. Our model extends existing models to accommodate several elements of invasive processes; we chose the framework of hierarchical modeling to assess site occupancy status during an invasion. First, we explicitly accounted for spatial structure and how distance among sites and position relative to one another affect the invasion spread. In particular, we accounted for the possibility of directional propagation and provided a way of estimating the direction of this possible spread. Second, we considered the influence of local density on site occupancy. Third, we decided to split the colonization process into two subprocesses, initial colonization and recolonization, which may be ground-breaking because these subprocesses may exhibit different relationships with environmental variations (such as density variation) or colonization history (e.g., initial colonization might facilitate further colonization events). Finally, our model incorporates imperfection in detection, which might be a source of substantial bias in estimating population parameters. We focused on the case of the Eurasian Collared-Dove (Streptopelia decaocto) and its invasion of the United States since its introduction in the early 1980s, using data from the North American BBS (Breeding Bird Survey). The Eurasian Collared-Dove is one of the most successful invasive species, at least among terrestrial vertebrates. Our model provided estimation of the spread direction consistent with empirical observations. Site persistence probability exhibits a quadratic response to density. We also succeeded at detecting differences in the relationship between density and initial colonization vs. recolonization probabilities. We provide a map of sites that may be colonized in the future as an example of possible practical application of our work. ?? 2011 by the Ecological Society of America.

  7. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon

    PubMed Central

    Ze, Xiaolei; Duncan, Sylvia H; Louis, Petra; Flint, Harry J

    2012-01-01

    The release of energy from particulate substrates such as dietary fiber and resistant starch (RS) in the human colon may depend on the presence of specialist primary degraders (or ‘keystone species') within the microbial community. We have explored the roles of four dominant amylolytic bacteria found in the human colon in the degradation and utilization of resistant starches. Eubacterium rectale and Bacteroides thetaiotaomicron showed limited ability to utilize RS2- and RS3-resistant starches by comparison with Bifidobacterium adolescentis and Ruminococcus bromii. In co-culture, however, R. bromii proved unique in stimulating RS2 and RS3 utilization by the other three bacterial species, even in a medium that does not permit growth of R. bromii itself. Having previously demonstrated low RS3 fermentation in vivo in two individuals with undetectable populations of R. bromii-related bacteria, we show here that supplementation of mixed fecal bacteria from one of these volunteers with R. bromii, but not with the other three species, greatly enhanced the extent of RS3 fermentation in vitro. This argues strongly that R. bromii has a pivotal role in fermentation of RS3 in the human large intestine, and that variation in the occurrence of this species and its close relatives may be a primary cause of variable energy recovery from this important component of the diet. This work also indicates that R. bromii possesses an exceptional ability to colonize and degrade starch particles when compared with previously studied amylolytic bacteria from the human colon. PMID:22343308

  8. Candida tropicalis biofilm and human epithelium invasion is highly influenced by environmental pH.

    PubMed

    Ferreira, Carina; Gonçalves, Bruna; Vilas Boas, Diana; Oliveira, Hugo; Henriques, Mariana; Azeredo, Joana; Silva, Sónia

    2016-11-01

    The main goal of this study was to investigate the role of pH on Candida tropicalis virulence determinants, namely the ability to form biofilms and to colonize/invade reconstituted human vaginal epithelia. Biofilm formation was evaluated by enumeration of cultivable cells, total biomass quantification and structural analysis by scanning electron microscopy and confocal laser scanning microscopy. Candida tropicalis human vaginal epithelium colonization and invasiveness were examined qualitatively by epifluorescence microscopy and quantitatively by a novel quantitative real-time PCR protocol for Candida quantification in tissues. The results revealed that environmental pH influences C. tropicalis biofilm formation as well as the colonization and potential to invade human epithelium with intensification at neutral and alkaline conditions compared to acidic conditions. For the first time, we have demonstrated that C. tropicalis biofilm formation and invasion is highly influenced by environmental pH. © Crown copyright 2016.

  9. [Two cases of curative resection by laparoscopic surgery following preoperative chemotherapy with bevacizumab for locally advanced colon cancer].

    PubMed

    Sakaguchi, Masazumi; Kan, Takatsugu; Tsubono, Michihiko; Kii, Eiji

    2014-04-01

    Here we report 2 cases of curative resection following preoperative chemotherapy with bevacizumab for locally advanced colon cancer. Case 1 was a 62-year-old man admitted with constipation, abdominal distention, and abdominal pain. An abdominal computed tomography(CT)scan revealed an obstructive tumor of the sigmoid colon with invasion into the bladder. A diverting colostomy was performed, and chemotherapy with mFOLFOX6(infusional 5-fluorouracil/Leucovorin+ oxaliplatin) plus bevacizumab was initiated. The tumor shrunk markedly after 6 courses of this treatment. Thereafter, laparoscopy- assisted sigmoidectomy was successfully performed. Case 2 was a 61-year-old woman admitted with diarrhea, abdominal pain, and fever. An abdominal CT scan revealed an obstructive tumor of the sigmoid colon with invasion into the ileum, uterus and retroperitoneum. A diverting colostomy was performed, and chemotherapy with XELOX(capecitabine+ oxaliplatin)plus bevacizumab was initiated. The tumor shrunk markedly after 6 courses of this treatment. Thereafter, laparoscopy- assisted sigmoidectomy was successfully performed. Both cases demonstrated partial clinical responses to chemotherapy; thus, curative resection surgeries were performed. There were no perioperative complications. Therefore, we conclude that oxaliplatin-based chemotherapy plus bevacizumab and laparoscopic resection could be very effective for locally advanced colon cancer.

  10. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  11. Cysteine-Conjugated Metabolites of Ginger Components, Shogaols, Induce Apoptosis through Oxidative Stress-Mediated p53 Pathway in Human Colon Cancer Cells

    PubMed Central

    2015-01-01

    Shogaols, the major constituents of thermally processed ginger, have been proven to be highly effective anticancer agents. Our group has identified cysteine-conjugated shogaols (M2, M2′, and M2″) as the major metabolites of [6]-, [8]-, and [10]-shogaol in human and found that M2 is a carrier of its parent molecule [6]-shogaol in cancer cells and in mice, while being less toxic to normal colon fibroblast cells. The objectives of this study are to determine whether M2′ and M2″ behave in a similar manner to M2, in both metabolism and efficacy as anticancer agents, and to further explore the biological pro-apoptotic mechanisms of the cysteine-conjugated shogaols against human colon cancer cells HCT-116 and HT-29. Our results show that [8]- and [10]-shogaol have similar metabolic profiles to [6]-shogaol and exhibit similar toxicity toward human colon cancer cells. M2′ and M2″ both show low toxicity against normal colon cells but retain potency against colon cancer cells, suggesting that they have similar activity to M2. We further demonstrate that the cysteine-conjugated shogaols can cause cancer cell death through the activation of the mitochondrial apoptotic pathway. Our results show that oxidative stress activates a p53 pathway that ultimately leads to p53 up-regulated modulator of apoptosis (PUMA) induction and down-regulation of B-cell lymphoma 2 (Bcl-2), followed by cytochrome c release, perturbation of inhibitory interactions of X-linked inhibitor of apoptosis protein (XIAP) with caspases, and finally caspase 9 and 3 activation and cleavage. A brief screen of the markers attenuated by the proapoptotic activity of M2 revealed similar results for [8]- and [10]-shogaol and their respective cysteine-conjugated metabolites M2′ and M2″. This study highlights the cysteine-conjugated metabolites of shogaols as novel dietary colon cancer preventive agents. PMID:24786146

  12. Distinct stages during colonization of the mouse gastrointestinal tract by Candida albicans

    PubMed Central

    Prieto, Daniel; Pla, Jesús

    2015-01-01

    Candida albicans is a member of the human microbiota, colonizing both the vaginal and gastrointestinal tracts. This yeast is devoid of a life style outside the human body and the mechanisms underlying the adaptation to the commensal status remain to be determined. Using a model of mouse gastrointestinal colonization, we show here that C. albicans stably colonizes the mouse gut in about 3 days starting from a dose as low as 100 cells, reaching steady levels of around 107 cells/g of stools. Using fluorescently labeled strains, we have assessed the competition between isogenic populations from different sources in cohoused animals. We show that long term (15 days) colonizing cells have increased fitness in the gut niche over those grown in vitro or residing in the gut for 1–3 days. Therefore, two distinct states, proliferation and adaptation, seem to exist in the adaptation of this fungus to the mouse gut, a result with potential significance in the prophylaxis and treatment of Candida infections. PMID:26300861

  13. Assessing the potential for raw meat to influence human colonization with Staphylococcus aureus.

    PubMed

    Carrel, Margaret; Zhao, Chang; Thapaliya, Dipendra; Bitterman, Patrick; Kates, Ashley E; Hanson, Blake M; Smith, Tara C

    2017-09-07

    The role of household meat handling and consumption in the transfer of Staphylococcus aureus (S. aureus) from livestock to consumers is not well understood. Examining the similarity of S. aureus colonizing humans and S. aureus in meat from the stores in which those individuals shop can provide insight into the role of meat in human S. aureus colonization. S. aureus isolates were collected from individuals in rural and urban communities in Iowa (n = 3347) and contemporaneously from meat products in stores where participants report purchasing meat (n = 913). The staphylococcal protein A (spa) gene was sequenced for all isolates to determine a spa type. Morisita indices and Permutational Multivariate Analysis of Variance Using Distance Matrices (PERMANOVA) were used to determine the relationship between spa type composition among human samples and meat samples. spa type composition was significantly different between households and meat sampled from their associated grocery stores. spa types found in meat were not significantly different regardless of the store or county in which they were sampled. spa types in people also exhibit high similarity regardless of residential location in urban or rural counties. Such findings suggest meat is not an important source of S. aureus colonization in shoppers.

  14. Reduction in promotor methylation utilizing EGCG (epigallocatechin-3-gallate) restores RXRα expression in human colon cancer cells.

    PubMed

    Morris, Jay; Moseley, Vondina R; Cabang, April B; Coleman, Katie; Wei, Wei; Garrett-Mayer, Elizabeth; Wargovich, Michael J

    2016-06-07

    Silencing of regulatory genes through hypermethylation of CpG islands is an important mechanism in tumorigenesis. In colon cancer, RXRα, an important dimerization partner with other nuclear transcription factors, is silenced through this mechanism. We previously found that colon tumors in ApcMin/+ mice had diminished levels of RXRα protein and expression levels of this gene were restored by treatment with a green tea intervention, due to reduced promoter methylation of RXRα. We hypothesized that CIMP+ cell lines, which epigenetically silence key regulatory genes would also evidence silencing of RXRα and EGCG treatment would restore its expression. We indeed found EGCG to restore RXRα activity levels in the human cell lines, in a dose dependent manner and reduced RXRα promoter methylation. EGCG induced methylation changes in several other colon cancer related genes but did not cause a decrease in global methylation. Numerous epidemiological reports have shown the benefits of green tea consumption in reducing colon cancer risk but to date no studies have shown that the risk reduction may be related to the epigenetic restoration by tea polyphenols. Our results show that EGCG modulates the reversal of gene silencing involved in colon carcinogenesis providing a possible avenue for colon cancer prevention and treatment.

  15. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche.

    PubMed

    Templeton, Zach S; Lie, Wen-Rong; Wang, Weiqi; Rosenberg-Hasson, Yael; Alluri, Rajiv V; Tamaresis, John S; Bachmann, Michael H; Lee, Kitty; Maloney, William J; Contag, Christopher H; King, Bonnie L

    2015-12-01

    Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Development, validation and implementation of an in vitro model for the study of metabolic and immune function in normal and inflamed human colonic epithelium.

    PubMed

    Pedersen, Gitte

    2015-01-01

    Ulcerative colitis (UC) and Crohn's disease (CD), collectively referred to as inflammatory bowel disease (IBD), are chronic immune disorders affecting the gastrointestinal tract. The aetiology of IBD remains an enigma, but increasing evidence suggests that the development of IBD may be triggered by a disturbance in the balance between gut commensal bacteria and host response in the intestinal mucosa. It is now known that epithelial cells have the capacity to secrete and respond to a range of immunological mediators and this suggests that these cells play a prominent role in the pathogenesis of IBD. Current knowledge about the intestinal epithelium has mainly been obtained using models based on animal cells, transformed human intestinal cell lines and isolated cells from resected colonic bowel segments. Species difference, malignant origin and confounders related to surgery, obviously make these cell models however less applicable for patophysiological studies. Consequently, there was a clear need for models of representative intestinal epithelial cells that would allow functional and dynamic studies of the differentiated human colonic epithelium in vitro. The primary purpose of this thesis was to explore and validate the optimal conditions for establishing a model based on short-term cultures of human colonic epithelial cells obtained from endoscopical biopsies. The cell cultures were accordingly used to describe the interplay between proinflammatory cytokines and colonic epithelium, with focus on alterations in viability, butyrate metabolism and secretion of a chemokine and metalloproteinases (MMP). Finally, the model was used to characterize expression and activation of receptors like toll like receptor (TLR)9 and peroxisome activated proliferators (PPAR)- known to be important players in regulation of innate and adaptive immune responses in human colonic epithelium. The results showed that it is possible to establish short-term cultures of representative, viable human colonic epithelial cells from endoscopic mucosal biopsies of patients with IBD. Short-time isolation by EGTA/EDTA from colonic biopsies allowed establishment of small scale cultures of epithelial cells which were viable and metabolic active for up to 48 hours in vitro. The cell model preserved important cellular metabolic and immunological functions of the human colonic epithelium, including the ability to oxidate butyrate, detoxificate phenolic compounds and secrete the chemokine interleukin (IL)-8 in vitro. Tumour necrosis factor (TNF)-α and interferon (IFN)-γ are pro-inflammatory cytokines, which are present in increased amounts in inflamed colonic mucosa. The precise mechanisms of cytokine-mediated mucosal injury are unknown, but one might be that TNF-α and IFN-γ directly impair epithelial cell function similar to effects seen on distinct target cells in other autoimmune diseases. Using the model, both cytokines were found directly to impair the viability of colonic epithelial cells and to induce secretion of IL-8 in vitro. Interestingly, the cells from inflamed IBD mucosa were less sensitive to cytokine-induced damage, which suggests that an intrinsic defense mechanism is triggered in these cells, perhaps as a result of exposure to toxic luminal factors or high local cytokine levels in vivo. TNF-α and IFN-γ may also be involved in regulation of intestinal inflammation through stimulation of MMP expression and proteolytic activity. We found that colonic epithelial cells express a range of MMPs and moreover that expression of distinct MMPs is increased in cells from inflamed IBD mucosa. Using a functional peptide cleavage assay it was shown that epithelial cells secreted proteolytic active enzymes and that the functional MMP activity was increased in inflamed IBD mucosa. This suggests that colonic epithelial cells, like myofibroblasts and immune cells, may contribute to local intestinal mucosal damage, through secretion of active MMPs. Disturbance of recognition and discrimination of potentially harmful pathogens from commensals in the intestinal mucosa have increasingly been implicated in the pathogenesis of IBD. Our results revealed that colonic epithelial cells express TLR9, a key pattern recognition receptor. Interestingly, the differentiated epithelial cells, which have been exposed to the luminal bacterial flora in vivo, were unresponsive to TLR9 ligand stimulation, contrasting findings in the epithelial cell line HT-29 that is cultured continuously in bacteria free environment. These findings suggest, theoretically, that colonic epithelium may regulate immune responses to microbial antigens including commensal bacterial DNA through modulation of the TLR9 pathway. Currently, the results are in line with the emerging view, that the epithelium represents an important frontline cellular component of the innate immune system in the gut. PPARγ is a nuclear receptor involved in the regulation of lipid and carbonhydrate metabolism. Recent studies in rodent colitis models suggest that PPARγ also is involved in modulation of inflammatory processes in the colon. Using the model, we characterise expression and activity of PPARs in human colonic epithelium and, additionally, evaluated the functional significance of a possible imbalanced PPARγ regulation in relation to inflammation. Our experiments showed that colonic epithelial cells express PPARγ and furthermore that PPARγ signalling was impaired in inflamed UC epithelium. It was possible to restore PPARγ signalling in the cell cultures by stimulation with rosiglitazone (a synthetic PPARγ ligand) in vitro. Hence, these experiments prompted us to design a small controlled, clinical study exploring the possible stimulatory effects of rosiglitazone (a PPAR ligand) in vivo. Interestingly, it was found that topical application of rosiglitazone in patients with active distal UC reduced clinical activity and mucosal inflammation similar to the effects measured in patients treated with mesalazine enemas. Moreover, rectal application of rosiglitazone induced PPARγ signalling in the epithelium in vivo, supporting the view that activation of PPARγ may be a new potential therapeutic target in the treatment of UC. Overall, the in vitro model of representative human colonic epithelial cells has shown to be a useful technique for detailed studies of metabolic and immunological functions that are important for homeostasis of the colonic epithelium. Currently, the findings support the view that intestinal epithelial cells actively participate in immunological processes in the colonic mucosa. Additionally, the model seems to be applicable for generating and evaluating new therapeutic approaches from laboratory bench to bed line as illustrated by the PPARγ study. It is therefore probable, that studies in models of representative colonic epithelial cells, as the one described here, could contribute with important knowledge about the pathogenesis of human inflammatory colonic diseases also in the future.

  17. Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon

    PubMed Central

    Baker, Ann-Marie; Cereser, Biancastella; Melton, Samuel; Fletcher, Alexander G.; Rodriguez-Justo, Manuel; Tadrous, Paul J.; Humphries, Adam; Elia, George; McDonald, Stuart A.C.; Wright, Nicholas A.; Simons, Benjamin D.; Jansen, Marnix; Graham, Trevor A.

    2014-01-01

    Summary Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+). Furthermore, we show that, in adenomatous crypts (APC−/−), there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics. PMID:25127143

  18. Differential effects of oestrogenic hormones on cell proliferation in the colonic crypt epithelium and in colonic carcinomata of rats.

    PubMed

    Tutton, P J; Barkla, D H

    1982-01-01

    A number of hormones, including some steroids, have previously been shown to influence the rate of cell division in the colonic crypt epithelium and in colonic tumours. In this report the effect of oophorectomy and of treatment with ovarian hormones on cell proliferation in these tissues is compared. Colonic tumours cell proliferation was retarded following oophorectomy and this retardation was reversed by the administration of oestradiol, but not by the administration of progesterone. Oophorectomy did not retard cell proliferation in the colonic crypts. The possible significance of these findings in relation to age-dependent variations in the sex ratio for human bowel cancer is discussed.

  19. Animal Models of Colorectal Cancer

    PubMed Central

    Johnson, Robert L.; Fleet, James C.

    2012-01-01

    Colorectal cancer is a heterogeneous disease that afflicts a large number of people in the United States. The use of animal models has the potential to increase our understanding of carcinogenesis, tumor biology, and the impact of specific molecular events on colon biology. In addition, animal models with features of specific human colorectal cancers can be used to test strategies for cancer prevention and treatment. In this review we provide an overview of the mechanisms driving human cancer, we discuss the approaches one can take to model colon cancer in animals, and we describe a number of specific animal models that have been developed for the study of colon cancer. We believe that there are many valuable animal models to study various aspects of human colorectal cancer. However, opportunities for improving upon these models exist. PMID:23076650

  20. Cannabinoid 1 (CB1) receptors coupled to cholinergic motorneurones inhibit neurogenic circular muscle contractility in the human colon

    PubMed Central

    Hinds, Nicholas M; Ullrich, Katja; Smid, Scott D

    2006-01-01

    The effects of cannabinoid subtype 1 (CB1) receptor activation were determined on smooth muscle, inhibitory and excitatory motorneuronal function in strips of human colonic longitudinal muscle (LM) and circular muscle (CM) in vitro. Electrical field stimulation (EFS; 0.5–20 Hz, 50 V) evoked a relaxation in LM and CM precontracted with a neurokinin-2 (NK-2) selective receptor agonist (β-ala8-neurokinin A; 10−6 M) in the presence of atropine (10−6 M); this was unaltered following pretreatment with the CB1-receptor selective agonist arachidonyl-2-chloroethylamide (ACEA; 10−6 M). In the presence of nitric oxide synthase blockade with N-nitro-L-arginine (10−4 M), EFS evoked a frequency-dependent ‘on-contraction' during stimulation and an ‘off-contraction' following stimulus cessation. On-contractions were significantly inhibited in CM strips by pretreatment with ACEA (10−6 M). These inhibitory effects were reversed in the presence of the CB1 receptor-selective antagonist N-(piperidine-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (10−7 M). ACEA did not alter LM or CM contractile responses to acetylcholine or NK-2 receptor-evoked contraction. Immunohistochemical studies revealed a colocalisation of CB1 receptors to cholinergic neurones in the human colon based on colabelling with choline acetyltransferase, in addition to CB1 receptor labelling in unidentified structures in the CM. In conclusion, activation of CB1 receptors coupled to cholinergic motorneurones selectively and reversibly inhibits excitatory nerve transmission in colonic human colonic CM. These results provide evidence of a direct role for cannabinoids in the modulation of motor activity in the human colon by coupling to cholinergic motorneurones. PMID:16520743

  1. Genetic diversity of a newly established population of golden eagles on the Channel Islands, California

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Coonan, Timothy J.; Latta, Brian C.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Gene flow can have profound effects on the genetic diversity of a founding population depending on the number and relationship among colonizers and the duration of the colonization event. Here we used data from nuclear microsatellite and mitochondrial DNA control region loci to assess genetic diversity in golden eagles of the recently colonized Channel Islands, California. Genetic diversity in the Channel Island population was low, similar to signatures observed for other recent colonizing island populations. Differences in levels of genetic diversity and structure observed between mainland California and the islands suggests that few individuals were involved in the initial founding event, and may have comprised a family group. The spatial genetic structure observed between Channel Island and mainland California golden eagle populations across marker types, and genetic signature of population decline observed for the Channel Island population, suggest a single or relatively quick colonization event. Polarity in gene flow estimates based on mtDNA confirm an initial colonization of the Channel Islands by mainland golden eagles, but estimates from microsatellite data suggest that golden eagles on the islands were dispersing more recently to the mainland, possibly after reaching the carrying capacity of the island system. These results illustrate the strength of founding events on the genetic diversity of a population, and confirm that changes to genetic diversity can occur within just a few generations.

  2. Surveillance for vancomycin-resistant enterococci: type, rates, costs, and implications.

    PubMed

    Shadel, Brooke N; Puzniak, Laura A; Gillespie, Kathleen N; Lawrence, Steven J; Kollef, Marin; Mundy, Linda M

    2006-10-01

    To evaluate 2 active surveillance strategies for detection of enteric vancomycin-resistant enterococci (VRE) in an intensive care unit (ICU). Thirty-month prospective observational study. ICU at a university-affiliated referral center. All patients with an ICU stay of 24 hours or more were eligible for the study. Clinical active surveillance (CAS), involving culture of a rectal swab specimen for detection of VRE, was performed on admission, weekly while the patient was in the ICU, and at discharge. Laboratory-based active surveillance (LAS), involving culture of a stool specimen for detection of VRE, was performed on stool samples submitted for Clostridium difficile toxin detection. Enteric colonization with VRE was detected in 309 (17%) of 1,872 patients. The CAS method initially detected 280 (91%) of the 309 patients colonized with VRE, compared with 25 patients (8%) detected by LAS; colonization in 4 patients (1%) was initially detected by analysis of other clinical specimens. Most patients with colonization (76%) would have gone undetected by LAS alone, whereas use of the CAS method exclusively would have missed only 3 patients (1%) who were colonized. CAS cost Dollars 1,913 per month, or Dollars 57,395 for the 30-month study period. Cost savings of CAS from preventing cases of VRE colonization and bacteremia were estimated to range from Dollars 56,258 to Dollars 303,334 per month. A patient-based CAS strategy for detection of enteric colonization with VRE was superior to LAS. In this high-risk setting, CAS appeared to be the most efficient and cost-effective surveillance method. The modest costs of CAS were offset by the averted costs associated with the prevention of VRE colonization and bacteremia.

  3. Genetic and archaeological perspectives on the initial modern human colonization of southern Asia

    PubMed Central

    Mellars, Paul; Gori, Kevin C.; Carr, Martin; Soares, Pedro A.; Richards, Martin B.

    2013-01-01

    It has been argued recently that the initial dispersal of anatomically modern humans from Africa to southern Asia occurred before the volcanic “supereruption” of the Mount Toba volcano (Sumatra) at ∼74,000 y before present (B.P.)—possibly as early as 120,000 y B.P. We show here that this “pre-Toba” dispersal model is in serious conflict with both the most recent genetic evidence from both Africa and Asia and the archaeological evidence from South Asian sites. We present an alternative model based on a combination of genetic analyses and recent archaeological evidence from South Asia and Africa. These data support a coastally oriented dispersal of modern humans from eastern Africa to southern Asia ∼60–50 thousand years ago (ka). This was associated with distinctively African microlithic and “backed-segment” technologies analogous to the African “Howiesons Poort” and related technologies, together with a range of distinctively “modern” cultural and symbolic features (highly shaped bone tools, personal ornaments, abstract artistic motifs, microblade technology, etc.), similar to those that accompanied the replacement of “archaic” Neanderthal by anatomically modern human populations in other regions of western Eurasia at a broadly similar date. PMID:23754394

  4. Test of Martin's overkill hypothesis using radiocarbon dates on extinct megafauna.

    PubMed

    Surovell, Todd A; Pelton, Spencer R; Anderson-Sprecher, Richard; Myers, Adam D

    2016-01-26

    Following Martin [Martin PS (1973) Science 179:969-974], we propose the hypothesis that the timing of human arrival to the New World can be assessed by examining the ecological impacts of a small population of people on extinct Pleistocene megafauna. To that end, we compiled lists of direct radiocarbon dates on paleontological specimens of extinct genera from North and South America with the expectation that the initial decline of extinct megafauna should correspond in time with the initial evidence for human colonization and that those declines should occur first in eastern Beringia, next in the contiguous United States, and last in South America. Analyses of spacings and frequency distributions of radiocarbon dates for each region support the idea that the extinction event first commenced in Beringia, roughly 13,300-15,000 BP. For the United States and South America, extinctions commenced considerably later but were closely spaced in time. For the contiguous United States, extinction began at ca. 12,900-13,200 BP, and at ca. 12,600-13,900 BP in South America. For areas south of Beringia, these estimates correspond well with the first significant evidence for human presence and are consistent with the predictions of the overkill hypothesis.

  5. Potential Factors Enabling Human Body Colonization by Animal Streptococcus dysgalactiae subsp. equisimilis Strains.

    PubMed

    Ciszewski, Marcin; Szewczyk, Eligia M

    2017-05-01

    Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a pyogenic, Lancefield C or G streptococcal pathogen. Until recently, it has been considered as an exclusive animal pathogen. Nowadays, it is responsible for both animal infections in wild animals, pets, and livestock and human infections often clinically similar to the ones caused by group A streptococcus (Streptococcus pyogenes). The risk of zoonotic infection is the most significant in people having regular contact with animals, such as veterinarians, cattlemen, and farmers. SDSE is also prevalent on skin of healthy dogs, cats, and horses, which pose a risk also to people having contact with companion animals. The main aim of this study was to evaluate if there are features differentiating animal and human SDSE isolates, especially in virulence factors involved in the first stages of pathogenesis (adhesion and colonization). Equal groups of human and animal SDSE clinical strains were obtained from superficial infections (skin, wounds, abscesses). The presence of five virulence genes (prtF1, prtF2, lmb, cbp, emm type) was evaluated, as well as ability to form bacterial biofilm and produce BLIS (bacteriocin-like inhibitory substances) which are active against human skin microbiota. The study showed that the presence of genes coding for fibronectin-binding protein and M protein, as well as BLIS activity inhibiting the growth of Corynebacterium spp. strains might constitute the virulence factors which are necessary to colonize human organism, whereas they are not crucial in animal infections. Those virulence factors might be horizontally transferred from human streptococci to animal SDSE strains, enabling their ability to colonize human organism.

  6. Human ribosomal protein L37 has motifs predicting serine/threonine phosphorylation and a zinc-finger domain.

    PubMed

    Barnard, G F; Staniunas, R J; Puder, M; Steele, G D; Chen, L B

    1994-08-02

    Ribosomal protein L37 mRNA is overexpressed in colon cancer. The nucleotide sequences of human L37 from several tumor and normal, colon and liver cDNA sources were determined to be identical. L37 mRNA was approximately 375 nucleotides long encoding 97 amino acids with M(r) = 11,070, pI = 12.6, multiple potential serine/threonine phosphorylation sites and a zinc-finger domain. The human sequence is compared to other species.

  7. Expression of fibronectin ED-A+ and ED-B+ isoforms by human and experimental colorectal cancer. Contribution of cancer cells and tumor-associated myofibroblasts.

    PubMed Central

    Pujuguet, P.; Hammann, A.; Moutet, M.; Samuel, J. L.; Martin, F.; Martin, M.

    1996-01-01

    Alternative splicing of primary fibronectin (FN) mRNA results in the synthesis of different isoforms. ED-A+ and ED-B+ FN isoforms are absent from plasma FN and are representative of cellular FN. Their expression was studied in human and rat normal colon, in human colorectal carcinomas, and in transplanted tumors derived from a chemically-induced rat colon cancer. In normal colon, only the ED-A+ FN isoform was expressed as a thin deposit between crypt colonocytes and pericryptal myofibroblasts. Conversely, heavy ED-A+ FN deposits and lighter ED-B+ FN expression were found in the stroma of colorectal tumors in association with myofibroblasts surrounding tumor glands. Some colonic cancer cells also contained intracellular FN isoform granules and expressed FN mRNA. Tumor-associated myofibroblasts and some cancer cell lines were able to synthesize and deposit extracellular ED-A+ and ED-B+ FN in vitro. FN isoform deposition by tumor-associated myofibroblasts was not modulated by colon cancer cell-conditioned medium, but was strongly enhanced when myofibroblasts were cultured on colon cancer cell extracellular matrix or on laminin. These results show that the ED-A+ and ED-B+ FN isoforms were overexpressed in colorectal cancer. Cancer cells can deposit these FN isoforms directly and also stimulate their deposition by tumor-associated myofibroblasts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 PMID:8579120

  8. Bidirectional regulation of human colonic smooth muscle contractility by tachykinin NK(2) receptors.

    PubMed

    Nakamura, Akihiro; Tanaka, Takahiro; Imanishi, Akio; Kawamoto, Makiko; Toyoda, Masao; Mizojiri, Gaku; Tsukimi, Yasuhiro

    2011-01-01

    In this study, we attempted to clarify the mechanism of tachykinin-induced motor response in isolated smooth muscle preparations of the human colon. Fresh specimens of normal colon were obtained from patients suffering from colonic cancer. Using mucosa-free smooth muscle strips, smooth muscle tension with circular direction was monitored isometrically. Substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) produced marked contraction. All of these contractions were inhibited by saredutant, a selective NK(2)-R antagonist, but not by CP122721, a selective NK(1)-R antagonist or talnetant, a selective NK(3)-R antagonist. βAla(8)-NKA(4-10) induced concentration-dependent contraction similar to NKA, but Sar(9)-Met(11)-SP and Met-Phe(7)-NKB did not cause marked contraction. Colonic contraction induced by βAla(8)-NKA(4-10) was completely blocked by saredutant, but not by atropine. Tetrodotoxin or N(G)-nitro-L-arginine methyl ester pretreatment significantly enhanced βAla(8)-NKA(4-10)-induced contraction. Immunohistochemical analysis showed that the NK(2)-R was expressed on the smooth muscle layers and myenteric plexus where it was also co-expressed with neuronal nitric oxide synthase in the myenteric plexus. These results suggest that the NK(2)-R is a major contributor to tachykinin-induced smooth muscle contraction in human colon and that the NK(2)-R-mediated response consists of an excitatory component via direct action on the smooth muscle and an inhibitory component possibly via nitric oxide neurons.

  9. Intestinal protozoa are hypothesized to stimulate immunosurveillance against colon cancer.

    PubMed

    Juckett, David A; Aylsworth, Charles F; Quensen, Janet Murphy

    2008-01-01

    Colon cancer in humans results in considerable morbidity and mortality throughout most of the world. During the twentieth century, there was a rapid rise in colon cancer within modernizing countries that has not been adequately explained, although the role of diet has been widely explored. Previously, we showed that the presence of the endemic Eimeria spp. protozoan in intestinal tissues is associated with regions of low tumorigenesis in the large and small bovine intestine and that an Eimeria surface protein is a potent activator of dendritic cells and a useful immunomodulator, with anti-cancer and anti-viral properties. Therefore, we hypothesize that the persistent presence of such an intestinal protozoan enhances immunosurveillance by elevating the intestinal alert status and that the loss of these organisms could lead to a higher incidence of colon cancer. Preliminary support of this hypothesis derives from the observations that domestic animals, known to maintain this protozoan, have very low colon cancer incidence. We propose that this also may occur in human populations that use human excrement (night soil) as a fertilizer, a practice that serves to complete the life cycle of this type of microbe. We examine some evidence for this hypothesis in Japan's mortality patterns, where we show that colon cancer increased after the cessation of night soil use, but before the change to a western diet. We conclude that this hypothesis, a variation of the hygiene hypothesis, is worth further consideration and continued elaboration.

  10. Host- and microbe determinants that may influence the success of S. aureus colonization

    PubMed Central

    Johannessen, Mona; Sollid, Johanna E.; Hanssen, Anne-Merethe

    2012-01-01

    Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25–30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed. PMID:22919647

  11. Host- and microbe determinants that may influence the success of S. aureus colonization.

    PubMed

    Johannessen, Mona; Sollid, Johanna E; Hanssen, Anne-Merethe

    2012-01-01

    Staphylococcus aureus may cause serious skin and soft tissue infections, deep abscesses, endocarditis, osteomyelitis, pneumonia, and sepsis. S. aureus persistently colonizes 25-30% of the adult human population, and S. aureus carriers have an increased risk for infections caused by the bacterium. The major site of colonization is the nose, i.e., the vestibulum nasi, which is covered with ordinary skin and hair follicles. Several host and microbe determinants are assumed to be associated with colonization. These include the presence and expression level of bacterial adhesins, which can adhere to various proteins in the extracellular matrix or on the cellular surface of human skin. The host expresses several antimicrobial peptides and lipids. The level of β-defensin 3, free sphingosine, and cis-6-hexadecenoic acid are found to be associated with nasal carriage of S. aureus. Other host factors are certain polymorphisms in Toll-like receptor 2, mannose-binding lectin, C-reactive protein, glucocorticoid-, and vitamin D receptor. Additional putative determinants for carriage include genetic variation and expression of microbial surface components recognizing adhesive matrix molecules and their interaction partners, as well as variation among humans in the ability of recognizing and responding appropriately to the bacteria. Moreover, the available microflora may influence the success of S. aureus colonization. In conclusion, colonization is a complex interplay between the bacteria and its host. Several bacterial and host factors are involved, and an increased molecular understanding of these are needed.

  12. Novel ent-Kaurane Diterpenoid from Rubus corchorifolius L. f. Inhibits Human Colon Cancer Cell Growth via Inducing Cell Cycle Arrest and Apoptosis.

    PubMed

    Chen, Xuexiang; Wu, Xian; Ouyang, Wen; Gu, Min; Gao, Zili; Song, Mingyue; Chen, Yunjiao; Lin, Yanyin; Cao, Yong; Xiao, Hang

    2017-03-01

    The tender leaves of Rubus corchorifolius L. f. have been consumed as tea for drinking in China since ancient times. In this study, a novel ent-kaurane diterpenoid was isolated and identified from R. corchorifolius L. f. leaves as ent-kaur-2-one-16β,17-dihydroxy-acetone-ketal (DEK). DEK suppressed the growth of HCT116 human colon cancer cells with an IC 50 value of 40 ± 0.21 μM, while it did not cause significant growth inhibition on CCD-18Co human colonic myofibroblasts at up to100 μM. Moreover, DEK induced extensive apoptosis and S phase cell cycle arrest in the colon cancer cells. Accordingly, DEK caused profound effects on multiple signaling proteins associated with cell proliferation, cell death, and inflammation. DEK significantly upregulated the expression levels of pro-apoptotic proteins such as cleaved caspase-3, cleaved caspase-9, cleaved PARP, p53, Bax, and tumor suppressor p21 Cip1/Waf1 , downregulated the levels of cell cycle regulating proteins such as cyclinD1, CDK2, and CDK4 and carcinogenic proteins such as EGFR and COX-2, and suppressed the activation of Akt. Overall, our results provide a basis for using DEK as a potential chemopreventive agent against colon carcinogenesis.

  13. Prostaglandin D2 regulates human colonic ion transport via the DP1 receptor.

    PubMed

    Medani, M; Collins, D; Mohan, H M; Walsh, E; Winter, D C; Baird, A W

    2015-02-01

    Prostaglandin D2 is released by mast cells and is important in allergies. Its role in gastrointestinal function is not clearly defined. This study aimed to determine the effect of exogenous PGD2 on ion transport in ex vivo normal human colonic mucosa. Mucosal sheets were mounted in Ussing chambers and voltage clamped to zero electric potential. Ion transport was quantified as changes in short-circuit current. In separate experiments epithelial monolayers or colonic crypts, isolated by calcium chelation, were treated with PGD2 and cAMP levels determined by ELISA or calcium levels were determined by fluorimetry. PGD2 caused a sustained, concentration-dependent rise in short-circuit current by increasing chloride secretion (EC50=376nM). This effect of PGD2 is mediated by the DP1 receptor, as the selective DP1 receptor antagonist BW A686C inhibited PGD2-induced but not PGE2-induced rise in short-circuit current. PGD2 also increased intracellular cAMP in isolated colonic crypts with no measurable influence on cytosolic calcium. PGD2 induces chloride secretion in isolated human colonic mucosa in a concentration-dependent manner with concomitant elevation of cytoplasmic cAMP in epithelial cells. The involvement of DP2 receptor subtypes has not previously been considered in regulation of ion transport in human intestine. Since inflammatory stimuli may induce production of eicosanoids, selective regulation of these pathways may be pivotal in determining therapeutic strategies and in understanding disease. Copyright © 2014. Published by Elsevier Inc.

  14. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization

    PubMed Central

    Cortese, Franco; Klokov, Dmitry; Osipov, Andreyan; Stefaniak, Jakub; Moskalev, Alexey; Schastnaya, Jane; Cantor, Charles; Aliper, Alexander; Mamoshina, Polina; Ushakov, Igor; Sapetsky, Alex; Vanhaelen, Quentin; Alchinova, Irina; Karganov, Mikhail; Kovalchuk, Olga; Wilkins, Ruth; Shtemberg, Andrey; Moreels, Marjan; Baatout, Sarah; Izumchenko, Evgeny; de Magalhães, João Pedro; Artemov, Artem V.; Costes, Sylvain V.; Beheshti, Afshin; Mao, Xiao Wen; Pecaut, Michael J.; Kaminskiy, Dmitry; Ozerov, Ivan V.; Scheibye-Knudsen, Morten; Zhavoronkov, Alex

    2018-01-01

    While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well. PMID:29581875

  15. Vive la radiorésistance!: converging research in radiobiology and biogerontology to enhance human radioresistance for deep space exploration and colonization.

    PubMed

    Cortese, Franco; Klokov, Dmitry; Osipov, Andreyan; Stefaniak, Jakub; Moskalev, Alexey; Schastnaya, Jane; Cantor, Charles; Aliper, Alexander; Mamoshina, Polina; Ushakov, Igor; Sapetsky, Alex; Vanhaelen, Quentin; Alchinova, Irina; Karganov, Mikhail; Kovalchuk, Olga; Wilkins, Ruth; Shtemberg, Andrey; Moreels, Marjan; Baatout, Sarah; Izumchenko, Evgeny; de Magalhães, João Pedro; Artemov, Artem V; Costes, Sylvain V; Beheshti, Afshin; Mao, Xiao Wen; Pecaut, Michael J; Kaminskiy, Dmitry; Ozerov, Ivan V; Scheibye-Knudsen, Morten; Zhavoronkov, Alex

    2018-03-06

    While many efforts have been made to pave the way toward human space colonization, little consideration has been given to the methods of protecting spacefarers against harsh cosmic and local radioactive environments and the high costs associated with protection from the deleterious physiological effects of exposure to high-Linear energy transfer (high-LET) radiation. Herein, we lay the foundations of a roadmap toward enhancing human radioresistance for the purposes of deep space colonization and exploration. We outline future research directions toward the goal of enhancing human radioresistance, including upregulation of endogenous repair and radioprotective mechanisms, possible leeways into gene therapy in order to enhance radioresistance via the translation of exogenous and engineered DNA repair and radioprotective mechanisms, the substitution of organic molecules with fortified isoforms, and methods of slowing metabolic activity while preserving cognitive function. We conclude by presenting the known associations between radioresistance and longevity, and articulating the position that enhancing human radioresistance is likely to extend the healthspan of human spacefarers as well.

  16. DNFB-DNS hapten-induced colitis in mice should not be considered a model of inflammatory bowel disease.

    PubMed

    Bailón, Elvira; Cueto-Sola, Margarita; Utrilla, Pilar; Nieto, Ana; Garrido-Mesa, Natividad; Celada, Antonio; Zarzuelo, Antonio; Xaus, Jordi; Gálvez, Julio; Comalada, Mònica

    2011-10-01

    The dinitrofluorobenzene/dinitrosulfonic acid (DNFB/DNS) model was originally described as an experimental model of intestinal inflammation resembling human ulcerative colitis (UC). Due to the absence of acceptable UC experimental models for pharmacological preclinical assays, here we examine the immune response induced in this model. Balb/c mice were sensitized by skin application of DNFB on day 1, followed by an intrarectal challenge with DNS on day 5. We further expanded this model by administering a second DNS challenge on day 15. The features of colonic inflammation and immune response were evaluated. The changes observed in colonic tissue corresponded, in comparison to the trinitrobenzene sulfonic acid (TNBS) colitis model, to a mild mucosal effect in the colon, which spontaneously resolved in less than 5 days. Furthermore, the second hapten challenge did not exacerbate the inflammatory response. In contrast to other studies, we did not observe any clear involvement of tumor necrosis factor alpha (TNF-α) or other Th1 cytokines during the initial inflammatory response; however, we found that a more Th2-humoral response appeared to mediate the first contact with the hapten. An increased humoral response was detected during the second challenge, although an increased Th1/Th17-cytokine expression profile was also simultaneously observed. On the basis of these results, although the DNFB/DNS model can display some features found in human UC, it should be considered as a model for the study of the intestinal hypersensitivity seen, for example, during food allergy or irritable bowel syndrome but not intestinal inflammation per se. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  17. Lucky number seven: RNase 7 can prevent Staphylococcus aureus skin colonization.

    PubMed

    Cho, John S; Xuan, Caiyun; Miller, Lloyd S

    2010-12-01

    Staphylococcus aureus colonization is a major risk factor for infection. In this issue, Simanski et al. demonstrate that the antimicrobial peptide RNase 7 is essential for preventing S. aureus colonization in human skin. These findings suggest that therapeutic interventions aimed at targeting RNase 7 production in the skin may be a novel strategy to protect against S. aureus infections.

  18. Epithelial and Mesenchymal Cells in the Bovine Colonic Mucosa Differ in Their Responsiveness to Escherichia coli Shiga Toxin 1

    USDA-ARS?s Scientific Manuscript database

    Cells in the depth of the crypts in the bovine colon express CD77 molecules that potentially act as receptors for Shiga toxins (Stx). The implication of this finding for the intestinal colonization 25 of cattle with human pathogenic Stx-producing Escherichia coli (STEC) remains undefined. We used f...

  19. Nutrient Limitation Governs Staphylococcus aureus Metabolism and Niche Adaptation in the Human Nose

    PubMed Central

    Krismer, Bernhard; Liebeke, Manuel; Janek, Daniela; Nega, Mulugeta; Rautenberg, Maren; Hornig, Gabriele; Unger, Clemens; Weidenmaier, Christopher; Lalk, Michael; Peschel, Andreas

    2014-01-01

    Colonization of the human nose by Staphylococcus aureus in one-third of the population represents a major risk factor for invasive infections. The basis for adaptation of S. aureus to this specific habitat and reasons for the human predisposition to become colonized have remained largely unknown. Human nasal secretions were analyzed by metabolomics and found to contain potential nutrients in rather low amounts. No significant differences were found between S. aureus carriers and non-carriers, indicating that carriage is not associated with individual differences in nutrient supply. A synthetic nasal medium (SNM3) was composed based on the metabolomics data that permits consistent growth of S. aureus isolates. Key genes were expressed in SNM3 in a similar way as in the human nose, indicating that SNM3 represents a suitable surrogate environment for in vitro simulation studies. While the majority of S. aureus strains grew well in SNM3, most of the tested coagulase-negative staphylococci (CoNS) had major problems to multiply in SNM3 supporting the notion that CoNS are less well adapted to the nose and colonize preferentially the human skin. Global gene expression analysis revealed that, during growth in SNM3, S. aureus depends heavily on de novo synthesis of methionine. Accordingly, the methionine-biosynthesis enzyme cysteine-γ-synthase (MetI) was indispensable for growth in SNM3, and the MetI inhibitor DL-propargylglycine inhibited S. aureus growth in SNM3 but not in the presence of methionine. Of note, metI was strongly up-regulated by S. aureus in human noses, and metI mutants were strongly abrogated in their capacity to colonize the noses of cotton rats. These findings indicate that the methionine biosynthetic pathway may include promising antimicrobial targets that have previously remained unrecognized. Hence, exploring the environmental conditions facultative pathogens are exposed to during colonization can be useful for understanding niche adaptation and identifying targets for new antimicrobial strategies. PMID:24453967

  20. PRE-INOCULATION OF URINARY CATHETERS WITH ESCHERICHIA COLI 83972 INHIBITS CATHETER COLONIZATION BY ENTEROCOCCUS FAECALIS

    PubMed Central

    TRAUTNER, BARBARA W.; DAROUICHE, RABIH O.; HULL, RICHARD A.; HULL, SHEILA; THORNBY, JOHN I.

    2010-01-01

    Purpose The capacity of a preexisting coating of Escherichia coli 83972 to reduce catheter colonization by Enterococcus faecalis 210 was investigated. Enterococcus was chosen for these trials since it is a common urinary pathogen in patients with an indwelling urinary catheter. Materials and Methods Each experiment tested 3 growth conditions. Group 1 or E. coli plus Enterococcus catheters were exposed to E. coli 83972 for 24 hours and then to Enterococcus for 30 minutes. Group 2 or E. coli alone catheters were incubated in E. coli for 24 hours and then in sterile broth for 30 minutes. Group 3 or Enterococcus alone catheters did not undergo the initial incubation with E. coli before the 30-minute incubation with Enterococcus: All catheters were then incubated in sterile human urine for 24 hours. Catheters were washed with saline and cut into 5, 1 cm. segments. Each segment was sonicated and the sonication fluid was diluted and plated. The results of each of the 5 segments were averaged and the set of experiments was repeated 7 times. Results A preexisting coating of E. coli 83972 reduced catheter colonization by E. faecalis 210 more than 10-fold. Enterococcus alone catheters had a median of 9.7 × 105 enterococci per cm., whereas E. coli plus Enterococcus catheters had a median of 0.38 × 105 enterococci per cm. (p = 0.016). Conclusions Pre-inoculating urinary catheters with E. coli 83972 significantly impedes catheter colonization by Enterococcus: These promising in vitro results prompt the clinical investigation of this particular application of bacterial interference. PMID:11743359

  1. The validation of an invitro colonic motility assay as a biomarker for gastrointestinal adverse drug reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keating, Christopher, E-mail: C.Keating@sheffield.ac.u; Martinez, Vicente; Ewart, Lorna

    Motility-related gastrointestinal adverse drug reactions (GADRs), such as constipation and diarrhea, are some of the most frequently reported adverse events associated with the clinical development of new chemical entities, and for marketed drugs. However, biomarkers capable of detecting such GADRs are lacking. Here, we describe an in vitro assay developed to detect and quantify changes in intestinal motility as a surrogate biomarker for constipation/diarrhea-type GADRs. In vitro recordings of intraluminal pressure were used to monitor the presence of colonic peristaltic motor complexes (CPMCs) in mouse colonic segments. CPMC frequency, contractile and total mechanical activity were assessed. To validate the assay,more » two experimental protocols were conducted. Initially, five drugs with known gastrointestinal effects were tested to determine optimal parameters describing excitation and inhibition as markers for disturbances in colonic motility. This was followed by a 'blinded' evaluation of nine drugs associated with or without clinically identified constipation/diarrhea-type GADRs. Concentration-response relationships were determined for these drugs and the effects were compared with their maximal free therapeutic plasma concentration in humans. The assay detected stimulatory and inhibitory responses, likely correlating to the occurrence of diarrhea or constipation. Concentration-related effects were identified and potential mechanisms of action were inferred for several drugs. Based on the results from the fourteen drugs assessed, the sensitivity of the assay was calculated at 90%, with a specificity of 75% and predictive capacity of 86%. These results support the potential use of this assay in screening for motility-related GADRs during early discovery phase, safety pharmacology assessment.« less

  2. Bioavailability of chlorogenic acids following acute ingestion of coffee by humans with an ileostomy.

    PubMed

    Stalmach, Angélique; Steiling, Heike; Williamson, Gary; Crozier, Alan

    2010-09-01

    The intestinal absorption and metabolism of 385 micromol chlorogenic acids following a single intake of 200 mL of instant coffee by human volunteers with an ileostomy was investigated. HPLC-MS(3) analysis of 0-24h post-ingestion ileal effluent revealed the presence of 274+/-28 micromol of chlorogenic acids and their metabolites accounting for 71+/-7% of intake. Of the compounds recovered, 78% comprised parent compounds initially present in the coffee, and 22% were metabolites including free and sulfated caffeic and ferulic acids. Over a 24h period after ingestion of the coffee, excretion of chlorogenic acid metabolites in urine accounted for 8+/-1% of intake, the main compounds being ferulic acid-4-O-sulfate, caffeic acid-3-O-sulfate, isoferulic acid-3-O-glucuronide and dihydrocaffeic acid-3-O-sulfate. In contrast, after drinking a similar coffee, urinary excretion by humans with an intact colon corresponded to 29+/-4% of chlorogenic acid intake. This difference was due to the excretion of higher levels of dihydroferulic acid and feruloylglycine together with sulfate and glucuronide conjugates of dihydrocaffeic and dihydroferulic acids. This highlights the importance of colonic metabolism. Comparison of the data obtained in the current study with that of Stalmach et al. facilitated elucidation of the pathways involved in post-ingestion metabolism of chlorogenic acids and also helped distinguish between compounds absorbed in the small and the large intestine. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Phylogeographic Analysis of Mitochondrial DNA in Northern Asian Populations

    PubMed Central

    Derenko, Miroslava ; Malyarchuk, Boris ; Grzybowski, Tomasz ; Denisova, Galina ; Dambueva, Irina ; Perkova, Maria ; Dorzhu, Choduraa ; Luzina, Faina ; Lee, Hong Kyu ; Vanecek, Tomas ; Villems, Richard ; Zakharov, Ilia 

    2007-01-01

    To elucidate the human colonization process of northern Asia and human dispersals to the Americas, a diverse subset of 71 mitochondrial DNA (mtDNA) lineages was chosen for complete genome sequencing from the collection of 1,432 control-region sequences sampled from 18 autochthonous populations of northern, central, eastern, and southwestern Asia. On the basis of complete mtDNA sequencing, we have revised the classification of haplogroups A, D2, G1, M7, and I; identified six new subhaplogroups (I4, N1e, G1c, M7d, M7e, and J1b2a); and fully characterized haplogroups N1a and G1b, which were previously described only by the first hypervariable segment (HVS1) sequencing and coding-region restriction-fragment–length polymorphism analysis. Our findings indicate that the southern Siberian mtDNA pool harbors several lineages associated with the Late Upper Paleolithic and/or early Neolithic dispersals from both eastern Asia and southwestern Asia/southern Caucasus. Moreover, the phylogeography of the D2 lineages suggests that southern Siberia is likely to be a geographical source for the last postglacial maximum spread of this subhaplogroup to northern Siberia and that the expansion of the D2b branch occurred in Beringia ∼7,000 years ago. In general, a detailed analysis of mtDNA gene pools of northern Asians provides the additional evidence to rule out the existence of a northern Asian route for the initial human colonization of Asia. PMID:17924343

  4. Phylogeographic analysis of mitochondrial DNA in northern Asian populations.

    PubMed

    Derenko, Miroslava; Malyarchuk, Boris; Grzybowski, Tomasz; Denisova, Galina; Dambueva, Irina; Perkova, Maria; Dorzhu, Choduraa; Luzina, Faina; Lee, Hong Kyu; Vanecek, Tomas; Villems, Richard; Zakharov, Ilia

    2007-11-01

    To elucidate the human colonization process of northern Asia and human dispersals to the Americas, a diverse subset of 71 mitochondrial DNA (mtDNA) lineages was chosen for complete genome sequencing from the collection of 1,432 control-region sequences sampled from 18 autochthonous populations of northern, central, eastern, and southwestern Asia. On the basis of complete mtDNA sequencing, we have revised the classification of haplogroups A, D2, G1, M7, and I; identified six new subhaplogroups (I4, N1e, G1c, M7d, M7e, and J1b2a); and fully characterized haplogroups N1a and G1b, which were previously described only by the first hypervariable segment (HVS1) sequencing and coding-region restriction-fragment-length polymorphism analysis. Our findings indicate that the southern Siberian mtDNA pool harbors several lineages associated with the Late Upper Paleolithic and/or early Neolithic dispersals from both eastern Asia and southwestern Asia/southern Caucasus. Moreover, the phylogeography of the D2 lineages suggests that southern Siberia is likely to be a geographical source for the last postglacial maximum spread of this subhaplogroup to northern Siberia and that the expansion of the D2b branch occurred in Beringia ~7,000 years ago. In general, a detailed analysis of mtDNA gene pools of northern Asians provides the additional evidence to rule out the existence of a northern Asian route for the initial human colonization of Asia.

  5. Human Prostate Cancer Infiltrating Lymphocytes: Raft Microdomains, Signaling and Activation in Organ Cultures

    DTIC Science & Technology

    2006-06-01

    and cell growth and differentiation (14). Increased ARG activity has long been detected in pa- tients with colon, breast , lung, and prostate cancer ...activity has long been detected in patients with colon, breast , lung and prostate cancer [23] and it was advanced that this enzymatic activity...AD_________________ Award Number: DAMD 17-03-01-0032 TITLE: Human Prostate Cancer Infiltrating

  6. Human Colon Cancer Cells Cultivated in Space

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Within five days, bioreactor cultivated human colon cancer cells (shown) grown in Microgravity on the STS-70 mission in 1995, had grown 30 times the volume of the control specimens on Earth. The samples grown in space had a higher level of cellular organization and specialization. Because they more closely resemble tumors found in the body, microgravity grown cell cultures are ideal for research purposes.

  7. Multi-scale modeling of APC and [Formula: see text]-catenin regulation in the human colonic crypt.

    PubMed

    Emerick, Brooks; Schleiniger, Gilberto; Boman, Bruce M

    2018-06-01

    Stem cell renewal and differentiation in the human colonic crypt are linked to the [Formula: see text]-catenin pathway. The spatial balance of Wnt factors in proliferative cells within the crypt maintain an appropriate level of cellular reproduction needed for normal crypt homeostasis. Mutational events at the gene level are responsible for deregulating the balance of Wnt factors along the crypt, causing an overpopulation of proliferative cells, a loss of structure of the crypt domain, and the initiation of colorectal carcinomas. We formulate a PDE model describing cell movement and reproduction in a static crypt domain. We consider a single cell population whose proliferative capabilities are determined by stemness, a quantity defined by intracellular levels of adenomatous polyposis coli (APC) scaffold protein and [Formula: see text]-catenin. We fit APC regulation parameters to biological data that describe normal protein gradients in the crypt. We also fit cell movement and protein flux parameters to normal crypt characteristics such as renewal time, total cell count, and proportion of proliferating cells. The model is used to investigate abnormal crypt dynamics when subjected to a diminished APC gradient, a scenario synonymous to mutations in the APC gene. We find that a 25% decrease in APC synthesis leads to a fraction of 0.88 proliferative, which is reflective of normal-appearing FAP crypts. A 50% drop in APC activity yields a fully proliferative crypt showing a doubling of the level of stemness, which characterizes the initial stages of colorectal cancer development. A sensitivity analysis of APC regulation parameters shows the perturbation of factors that is required to restore crypt dynamics to normal in the case of APC mutations.

  8. The CXCR5 chemokine receptor is expressed by carcinoma cells and promotes growth of colon carcinoma in the liver.

    PubMed

    Meijer, Joost; Zeelenberg, Ingrid S; Sipos, Bence; Roos, Ed

    2006-10-01

    The chemokine receptor CXCR5 is expressed by B cells and certain T cells and controls their migration into and within lymph nodes. Its ligand BCA-1/CXCL13 is present in lymph nodes and spleen and also in the liver. Surprisingly, we detected CXCR5 in several mouse and human carcinoma cell lines. CXCR5 was particularly prominent in pancreatic carcinoma cell lines and was also detected by immunohistochemistry in 7 of 18 human pancreatic carcinoma tissues. Expression in CT26 colon carcinoma was low in vitro, up-regulated in vivo, and rapidly lost when cells were explanted in vitro. CXCL13 strongly promoted proliferation of CXCR5-transfected CT26 cells in vitro. In the liver, after intrasplenic injection, these CXCR5 transfectants initially grew faster than controls, but the growth rate of control tumors accelerated later to become similar to the transfectants, likely due to the up-regulation of CXCR5. Inhibition of CXCR5 function, by trapping CXCR5 in the endoplasmic reticulum using a CXCL13-KDEL "intrakine," had no effect on initial growth of liver foci but later caused a prolonged growth arrest. In contrast, s.c. and lung tumors of CXCR5- and intrakine-transfected cells grew at similar rates as controls. We conclude that expression of CXCR5 on tumor cells promotes the growth of tumor cells in the liver and, at least for CT26 cells, seems to be required for outgrowth to large liver tumors. Given the limited expression on normal cells, CXCR5 may constitute an attractive target for therapy, particularly for pancreatic carcinoma.

  9. Insights from human studies into the host defense against candidiasis.

    PubMed

    Filler, Scott G

    2012-04-01

    Candida spp. are the most common cause of mucosal and disseminated fungal infections in humans. Studies using mutant strains of mice have provided initial information about the roles of dectin-1, CARD9, and Th17 cytokines in the host defense against candidiasis. Recent technological advances have resulted in the identification of mutations in specific genes that predispose humans to develop candidal infection. The analysis of individuals with these mutations demonstrates that dectin-1 is critical for the host defense against vulvovaginal candidiasis and candidal colonization of the gastrointestinal tract. They also indicate that CARD9 is important for preventing both mucosal and disseminated candidiasis, whereas the Th17 response is necessary for the defense against mucocutaneous candidiasis. This article reviews the recent studies of genetic defects in humans that result in an increased susceptibility to candidiasis and discusses how these studies provide new insight into the host defense against different types of candidal infections. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Factors that mediate colonization of the human stomach by Helicobacter pylori.

    PubMed

    Dunne, Ciara; Dolan, Brendan; Clyne, Marguerite

    2014-05-21

    Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease.

  11. Factors that mediate colonization of the human stomach by Helicobacter pylori

    PubMed Central

    Dunne, Ciara; Dolan, Brendan; Clyne, Marguerite

    2014-01-01

    Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease. PMID:24914320

  12. Rapidly cycling Lgr5+ stem cells are exquisitely sensitive to extrinsic dietary factors that modulate colon cancer risk.

    PubMed

    Kim, Eunjoo; Davidson, Laurie A; Zoh, Roger S; Hensel, Martha E; Salinas, Michael L; Patil, Bhimanagouda S; Jayaprakasha, Guddadarangavvanahally K; Callaway, Evelyn S; Allred, Clinton D; Turner, Nancy D; Weeks, Brad R; Chapkin, Robert S

    2016-11-10

    The majority of colon tumors are driven by aberrant Wnt signaling in intestinal stem cells, which mediates an efficient route toward initiating intestinal cancer. Natural lipophilic polyphenols and long-chain polyunsaturated fatty acids (PUFAs) generally suppress Wnt- and NF-κB- (nuclear factor-κ light-chain enhancer of activated B-cell) related pathways. However, the effects of these extrinsic agents on colonic leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5 + ) stem cells, the cells of origin of colon cancer, have not been documented to date. Therefore, we examined the effect of n-3 PUFA and polyphenol (curcumin) combination on Lgr5 + stem cells during tumor initiation and progression in the colon compared with an n-6 PUFA-enriched control diet. Lgr5-EGFP-IRES- creERT2 knock-in mice were fed diets containing n-6 PUFA (control), n-3 PUFA, n-6 PUFA+curcumin or n-3 PUFA+curcumin for 3 weeks, followed by 6 azoxymethane (AOM) injections, and terminated 17 weeks after the last injection. To further elucidate the effects of the dietary bioactives at the tumor initiation stage, Lgr5 + stem cells were also assessed at 12 and 24 h post AOM injection. Only n-3 PUFA+curcumin feeding reduced nuclear β-catenin in aberrant crypt foci (by threefold) compared with control at the progression time point. n-3 PUFA+curcumin synergistically increased targeted apoptosis in DNA-damaged Lgr5 + stem cells by 4.5-fold compared with control at 12 h and maximally reduced damaged Lgr5 + stem cells at 24 h, down to the level observed in saline-treated mice. Finally, RNAseq analysis indicated that p53 signaling in Lgr5 + stem cells from mice exposed to AOM was uniquely upregulated only following n-3 PUFA+curcumin cotreatment. These novel findings demonstrate that Lgr5 + stem cells are uniquely responsive to external dietary cues following the induction of DNA damage, providing a therapeutic strategy for eliminating damaged Lgr5 + stem cells to reduce colon cancer initiation.

  13. Rapidly cycling Lgr5+ stem cells are exquisitely sensitive to extrinsic dietary factors that modulate colon cancer risk

    PubMed Central

    Kim, Eunjoo; Davidson, Laurie A; Zoh, Roger S; Hensel, Martha E; Salinas, Michael L; Patil, Bhimanagouda S; Jayaprakasha, Guddadarangavvanahally K; Callaway, Evelyn S; Allred, Clinton D; Turner, Nancy D; Weeks, Brad R; Chapkin, Robert S

    2016-01-01

    The majority of colon tumors are driven by aberrant Wnt signaling in intestinal stem cells, which mediates an efficient route toward initiating intestinal cancer. Natural lipophilic polyphenols and long-chain polyunsaturated fatty acids (PUFAs) generally suppress Wnt- and NF-κB- (nuclear factor-κ light-chain enhancer of activated B-cell) related pathways. However, the effects of these extrinsic agents on colonic leucine-rich repeat-containing G-protein-coupled receptor 5-positive (Lgr5+) stem cells, the cells of origin of colon cancer, have not been documented to date. Therefore, we examined the effect of n-3 PUFA and polyphenol (curcumin) combination on Lgr5+ stem cells during tumor initiation and progression in the colon compared with an n-6 PUFA-enriched control diet. Lgr5-EGFP-IRES-creERT2 knock-in mice were fed diets containing n-6 PUFA (control), n-3 PUFA, n-6 PUFA+curcumin or n-3 PUFA+curcumin for 3 weeks, followed by 6 azoxymethane (AOM) injections, and terminated 17 weeks after the last injection. To further elucidate the effects of the dietary bioactives at the tumor initiation stage, Lgr5+ stem cells were also assessed at 12 and 24 h post AOM injection. Only n-3 PUFA+curcumin feeding reduced nuclear β-catenin in aberrant crypt foci (by threefold) compared with control at the progression time point. n-3 PUFA+curcumin synergistically increased targeted apoptosis in DNA-damaged Lgr5+ stem cells by 4.5-fold compared with control at 12 h and maximally reduced damaged Lgr5+ stem cells at 24 h, down to the level observed in saline-treated mice. Finally, RNAseq analysis indicated that p53 signaling in Lgr5+ stem cells from mice exposed to AOM was uniquely upregulated only following n-3 PUFA+curcumin cotreatment. These novel findings demonstrate that Lgr5+ stem cells are uniquely responsive to external dietary cues following the induction of DNA damage, providing a therapeutic strategy for eliminating damaged Lgr5+ stem cells to reduce colon cancer initiation. PMID:27831561

  14. Giardia Colonizes and Encysts in High-Density Foci in the Murine Small Intestine

    PubMed Central

    Barash, N. R.; Nosala, C.; Pham, J. K.; McInally, S. G.; Gourguechon, S.; McCarthy-Sinclair, B.

    2017-01-01

    ABSTRACT Giardia lamblia is a highly prevalent yet understudied protistan parasite causing significant diarrheal disease worldwide. Hosts ingest Giardia cysts from contaminated sources. In the gastrointestinal tract, cysts excyst to become motile trophozoites, colonizing and attaching to the gut epithelium. Trophozoites later differentiate into infectious cysts that are excreted and contaminate the environment. Due to the limited accessibility of the gut, the temporospatial dynamics of giardiasis in the host are largely inferred from laboratory culture and thus may not mirror Giardia physiology in the host. Here, we have developed bioluminescent imaging (BLI) to directly interrogate and quantify the in vivo temporospatial dynamics of Giardia infection, thereby providing an improved murine model to evaluate anti-Giardia drugs. Using BLI, we determined that parasites primarily colonize the proximal small intestine nonuniformly in high-density foci. By imaging encystation-specific bioreporters, we show that encystation initiates shortly after inoculation and continues throughout the duration of infection. Encystation also initiates in high-density foci in the proximal small intestine, and high density contributes to the initiation of encystation in laboratory culture. We suggest that these high-density in vivo foci of colonizing and encysting Giardia likely result in localized disruption to the epithelium. This more accurate visualization of giardiasis redefines the dynamics of the in vivo Giardia life cycle, paving the way for future mechanistic studies of density-dependent parasitic processes in the host. IMPORTANCE Giardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation. PMID:28656177

  15. Veillonella Catalase Protects the Growth of Fusobacterium nucleatum in Microaerophilic and Streptococcus gordonii-Resident Environments.

    PubMed

    Zhou, Peng; Li, Xiaoli; Huang, I-Hsiu; Qi, Fengxia

    2017-10-01

    The oral biofilm is a multispecies community in which antagonism and mutualism coexist among friends and foes to keep an ecological balance of community members. The pioneer colonizers, such as Streptococcus gordonii , produce H 2 O 2 to inhibit the growth of competitors, like the mutans streptococci, as well as strict anaerobic middle and later colonizers of the dental biofilm. Interestingly, Veillonella species, as early colonizers, physically interact (coaggregate) with S. gordonii A putative catalase gene ( catA ) is found in most sequenced Veillonella species; however, the function of this gene is unknown. In this study, we characterized the ecological function of catA from Veillonella parvula PK1910 by integrating it into the only transformable strain, Veillonella atypica OK5, which is catA negative. The strain (OK5- catA ) became more resistant to H 2 O 2 Further studies demonstrated that the catA gene expression is induced by the addition of H 2 O 2 or coculture with S. gordonii Mixed-culture experiments further revealed that the transgenic OK5- catA strain not only enhanced the growth of Fusobacterium nucleatum , a strict anaerobic periodontopathogen, under microaerophilic conditions, but it also rescued F. nucleatum from killing by S. gordonii A potential role of catalase in veillonellae in biofilm ecology and pathogenesis is discussed here. IMPORTANCE Veillonella species, as early colonizers, can coaggregate with many bacteria, including the initial colonizer Streptococcus gordonii and periodontal pathogen Fusobacterium nucleatum , during various stages of oral biofilm formation. In addition to providing binding sites for many microbes, our previous study also showed that Veillonella produces nutrients for the survival and growth of periodontal pathogens. These findings indicate that Veillonella plays an important "bridging" role in the development of oral biofilms and the ecology of the human oral cavity. In this study, we demonstrated that the reducing activity of Veillonella can rescue the growth of Fusobacterium nucleatum not only under microaerophilic conditions, but also in an environment in which Streptococcus gordonii is present. Thus, this study will provide a new insight for future studies on the mechanisms of human oral biofilm formation and the control of periodontal diseases. Copyright © 2017 American Society for Microbiology.

  16. R-Spondins Are Expressed by the Intestinal Stroma and are Differentially Regulated during Citrobacter rodentium- and DSS-Induced Colitis in Mice.

    PubMed

    Kang, Eugene; Yousefi, Mitra; Gruenheid, Samantha

    2016-01-01

    The R-spondin family of proteins has recently been described as secreted enhancers of β-catenin activation through the canonical Wnt signaling pathway. We previously reported that Rspo2 is a major determinant of susceptibility to Citrobacter rodentium-mediated colitis in mice and recent genome-wide association studies have revealed RSPO3 as a candidate Crohn's disease-specific inflammatory bowel disease susceptibility gene in humans. However, there is little information on the endogenous expression and cellular source of R-spondins in the colon at steady state and during intestinal inflammation. RNA sequencing and qRT-PCR were used to assess the expression of R-spondins at steady state and in two mouse models of colonic inflammation. The cellular source of R-spondins was assessed in specific colonic cell populations isolated by cell sorting. Data mining from publicly available datasets was used to assess the expression of R-spondins in the human colon. At steady state, colonic expression of R-spondins was found to be exclusive to non-epithelial CD45- lamina propria cells, and Rspo3/RSPO3 was the most highly expressed R-spondin in both mouse and human colon. R-spondin expression was found to be highly dynamic and differentially regulated during C. rodentium infection and dextran sodium sulfate (DSS) colitis, with notably high levels of Rspo3 expression during DSS colitis, and high levels of Rspo2 expression during C. rodentium infection, specifically in susceptible mice. Our data are consistent with the hypothesis that in the colon, R-spondins are expressed by subepithelial stromal cells, and that Rspo3/RSPO3 is the family member most implicated in colonic homeostasis. The differential regulation of the R-spondins in different models of intestinal inflammation indicate they respond to specific pathogenic and inflammatory signals that differ in the two models and provides further evidence that this family of proteins plays a key role in linking intestinal inflammation and homeostasis.

  17. Man and his spaceships: Vehicles for extraterrestrial colonization?

    PubMed

    Siefert, Janet L

    2012-11-01

    The resiliency and adaptive ability of microbial life in real time on Earth relies heavily upon horizontal gene transfer. Based on that knowledge, how likely is earth based microbial life to colonize extraterrestrial targets such as Mars? To address this question, we consider manned and unmanned space exploration, the resident microbiota that is likely to inhabit those vehicles, the adaptive potential of that microbiota in an extraterrestrial setting especially with regards to mobile genetic elements, and the likelihood that Mars like environments could initiate and sustain colonization.

  18. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo.

    PubMed

    Lu, Wei-Dong; Qin, Yong; Yang, Chuang; Li, Lei; Fu, Zhong-Xue

    2013-05-01

    To determine whether curcumin reverses the multidrug resistance of human colon cancer cells in vitro and in vivo. In a vincristine-resistant cell line of human colon cancer, the cell viability of curcumin-treated cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Rhodamine123 efflux was evaluated to detect P-glycoprotein transporter activity, and expression of the multidrug resistance protein 1 and survivin genes was analyzed by reverse transcription polymerase chain reaction and western blotting. In addition, xenograft mouse tumors were grown and treated with curcumin. The morphology of the xenografts was investigated by hematoxylin-eosin staining. The in vivo expression of the multidrug resistance gene and P-glycoprotein and survivin genes and proteins was observed using reverse transcription-polymerase chain reaction and western blotting, respectively. Curcumin was not obviously toxic to the vincristine-resistant human colon cancer cells at concentrations less than 25 μM, but the growth of cells was significantly inhibited. At concentrations greater than 25 μM, curcumin was toxic in a concentration-dependent manner. The sensitivity of cells to vincristine, cisplatin, fluorouracil, and hydroxycamptothecin was enhanced, intracellular Rhodamine123 accumulation was increased (p<0.05), and the expression of the multidrug resistance gene and P-glycoprotein were significantly suppressed (p<0.05). The combination of curcumin and vincristine significantly inhibited xenograft growth. The expression of the multidrug resistance protein 1 and survivin genes was significantly reduced in xenografts of curcumin-treated mice and mice treated with both curcumin and vincristine relative to control mice. Curcumin has strong reversal effects on the multidrug resistance of human colon carcinoma in vitro and in vivo.

  19. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo

    PubMed Central

    Lu, Wei-Dong; Qin, Yong; Yang, Chuang; Li, Lei

    2013-01-01

    OBJECTIVE: To determine whether curcumin reverses the multidrug resistance of human colon cancer cells in vitro and in vivo. METHODS: In a vincristine-resistant cell line of human colon cancer, the cell viability of curcumin-treated cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Rhodamine123 efflux was evaluated to detect P-glycoprotein transporter activity, and expression of the multidrug resistance protein 1 and survivin genes was analyzed by reverse transcription polymerase chain reaction and western blotting. In addition, xenograft mouse tumors were grown and treated with curcumin. The morphology of the xenografts was investigated by hematoxylin-eosin staining. The in vivo expression of the multidrug resistance gene and P-glycoprotein and survivin genes and proteins was observed using reverse transcription-polymerase chain reaction and western blotting, respectively. RESULTS: Curcumin was not obviously toxic to the vincristine-resistant human colon cancer cells at concentrations less than 25 μM, but the growth of cells was significantly inhibited. At concentrations greater than 25 μM, curcumin was toxic in a concentration-dependent manner. The sensitivity of cells to vincristine, cisplatin, fluorouracil, and hydroxycamptothecin was enhanced, intracellular Rhodamine123 accumulation was increased (p<0.05), and the expression of the multidrug resistance gene and P-glycoprotein were significantly suppressed (p<0.05). The combination of curcumin and vincristine significantly inhibited xenograft growth. The expression of the multidrug resistance protein 1 and survivin genes was significantly reduced in xenografts of curcumin-treated mice and mice treated with both curcumin and vincristine relative to control mice. CONCLUSION: Curcumin has strong reversal effects on the multidrug resistance of human colon carcinoma in vitro and in vivo. PMID:23778405

  20. Bradykinin regulates human colonic ion transport in vitro

    PubMed Central

    Baird, A W; Skelly, M M; O'Donoghue, D P; Barrett, K E; Keely, S J

    2008-01-01

    Background and purpose: Kinins are acknowledged as important regulators of intestinal function during inflammation; however, their effects on human intestinal ion transport have not been reported. Here, we used muscle-stripped human colonic tissue and cultured T84-cell monolayers to study bradykinin (BK) actions on human intestinal ion transport. Experimental approach: Ion transport was measured as changes in short-circuit current (Isc) across colonic epithelia mounted in Ussing chambers. Key results: In intact tissue, there was a distinct polarity to BK-elicited Isc responses. Whereas basolateral BK stimulated sustained responses (EC50=0.5±0.1 μM), those to apical BK were more rapid and transient (EC50=4.1±1.2 nM). In T84 cells, responses to both apical and basolateral BK were similar to those seen upon apical addition to intact tissues. Cross-desensitization between apical and basolateral domains was not observed. BK-induced responses were largely due to Cl− secretion as shown by their sensitivity to bumetanide and removal of Cl− from the bathing solution. Studies using selective agonists and antagonists indicate responses to BK are mediated by B2 receptors. Finally, responses to basolateral BK in intact tissues were inhibited by tetrodotoxin (1 μM), atropine (1 μM), capsaicin (100 μM) and piroxicam (10 μM). BK-stimulated prostaglandin (PG)E2 release from colonic tissue. Conclusions: BK stimulates human colonic Cl− secretion by activation of apical and basolateral B2 receptors. Responses to apical BK reflect a direct action on epithelial cells, whereas those to basolateral BK are amplified by stimulation of enteric nerves and PG synthesis. PMID:18604228

  1. Qualitative and quantitative analysis of tachykinin NK2 receptors in chemically defined human colonic neuronal pathways.

    PubMed

    Jaafari, Nadia; Khomitch-Baud, Alexandra; Gilhodes, Jean-Claude; Hua, Guoqiang; Julé, Yvon

    2008-04-01

    The involvement of NK2 receptors (NK2r) in the neuroregulation of human colonic motility has been mainly assessed by using pharmacological approaches. The aim of this study was to characterize the intramural neurons and nerve varicosities expressing NK2r in human colonic neuronal pathways. Neuronal coding in the myenteric plexus and external muscle layers was identified on the basis of the patterns of colocalization of tachykinins (TK), vesicular acetylcholine transporter (VAChT), nitric oxide synthase (NOS), glutamate decarboxylase (GAD), and vasoactive intestinal peptide (VIP) with NK2r immunoreactivity. The proportions of chemically defined synaptophysin-immunoreactive nerve varicosities were accurately determined by using specific software. NK2r immunoreactivity was detected in the soma of many myenteric neurons (71.8%). A large proportion of these neurons was immunoreactive to VAChT (39.3%), TK (30%), and GAD (23.5%) and, to a lesser extent, to NOS and VIP. The proportions of nerve varicosities expressing NK2r showed significant regional differences: the highest proportion (59.8%) was located in the myenteric plexus. High proportions of the myenteric nerve varicosities expressing NK2r were immunoreactive to VIP (80.9%) and NOS (77.9%), and lower proportions were recorded with VAChT, TK, and GAD. In the circular and longitudinal muscle layers, the proportions of nerve varicosities expressing NK2r were 49.6% and 45.3%, respectively. The chemically defined intramuscular varicosities were closely apposed to smooth muscle cells expressing NK2r. In conclusion, the data obtained in this study, in which the expression of NK2r was mapped in the human colonic neuronal pathways, confirm that these receptors are involved in the neuroneuronal and neuromuscular processes regulating human colonic motility. Copyright 2008 Wiley-Liss, Inc.

  2. Matrix Stiffness Corresponding to Strictured Bowel Induces a Fibrogenic Response in Human Colonic Fibroblasts

    PubMed Central

    Johnson, Laura A.; Rodansky, Eva S.; Sauder, Kay L.; Horowitz, Jeffrey C.; Mih, Justin D.; Tschumperlin, Daniel J.; Higgins, Peter D.

    2013-01-01

    Background Crohn’s disease is characterized by repeated cycles of inflammation and mucosal healing which ultimately progress to intestinal fibrosis. This inexorable progression towards fibrosis suggests that fibrosis becomes inflammation-independent and auto-propagative. We hypothesized that matrix stiffness regulates this auto-propagation of intestinal fibrosis. Methods The stiffness of fresh ex vivo samples from normal human small intestine, Crohn’s disease strictures, and the unaffected margin were measured with a microelastometer. Normal human colonic fibroblasts were cultured on physiologically normal or pathologically stiff matrices corresponding to the physiological stiffness of normal or fibrotic bowel. Cellular response was assayed for changes in cell morphology, α-smooth muscle actin (αSMA) staining, and gene expression. Results Microelastometer measurements revealed a significant increase in colonic tissue stiffness between normal human colon and Crohn’s strictures as well as between the stricture and adjacent tissue margin. In Ccd-18co cells grown on stiff matrices corresponding to Crohn’s strictures, cellular proliferation increased. Pathologic stiffness induced a marked change in cell morphology and increased αSMA protein expression. Growth on a stiff matrix induced fibrogenic gene expression, decreased matrix metalloproteinase and pro-inflammatory gene expression, and was associated with nuclear localization of the transcriptional cofactor MRTF-A. Conclusions Matrix stiffness, representative of the pathological stiffness of Crohn’s strictures, activates human colonic fibroblasts to a fibrogenic phenotype. Matrix stiffness affects multiple pathways suggesting the mechanical properties of the cellular environment are critical to fibroblast function and may contribute to autopropagation of intestinal fibrosis in the absence of inflammation, thereby contributing to the intractable intestinal fibrosis characteristic of Crohn’s disease. PMID:23502354

  3. Resveratrol analogue, HS-1793, induces apoptotic cell death and cell cycle arrest through downregulation of AKT in human colon cancer cells.

    PubMed

    Kim, Dong Hwan; Kim, Min Jeong; Sung, Bokyung; Suh, Hongsuk; Jung, Jee H; Chung, Hae Young; Kim, Nam Deuk

    2017-01-01

    Resveratrol, a polyphenolic compound, is a naturally occurring phytochemical and is found in a variety of plants, including grapes, berries and peanuts. It has gained much attention for its potential anticancer activity against various types of human cancer. However, the usefulness of resveratrol as a chemotherapeutic agent is limited by its photosensitivity and metabolic instability. In this study the effects of a synthetic analogue of resveratrol, HS-1793, on the proliferation and apoptotic cell death were investigated using HCT116 human colon cancer cells. Although this compound has been reported to have anticancer activities in several human cancer cell lines, the therapeutic effects of HS-1793 on human colon cancer and its mechanisms of action have not been extensively studied. HS-1793 inhibited cell growth and induced apoptotic cell death in a concentration-dependent fashion. Induction of apoptosis was determined by morphological changes, cleavage of poly(ADP-ribose) polymerase, alteration of Bax/Bcl-2 expression ratio, and caspase activations. Flow cytometric analysis revealed that HS-1793 induced G2/M arrest in the cell cycle progression in HCT116 cells. Furthermore, HS-1793 showed more potent anticancer effects in several aspects than resveratrol in HCT116 cells. In addition, HS-1793 suppressed Akt and the phosphatidylinositol-3 kinase/Akt inhibitor LY294002 was found to enhance its induction of apoptosis. Thus, these findings suggest that HS-1793 have potential as a candidate chemotherapeutic agent against human colon cancer.

  4. Surface-layer (S-layer) of human and animal Clostridium difficile strains and their behaviour in adherence to epithelial cells and intestinal colonization.

    PubMed

    Spigaglia, Patrizia; Barketi-Klai, Amira; Collignon, Anne; Mastrantonio, Paola; Barbanti, Fabrizio; Rupnik, Maja; Janezic, Sandra; Kansau, Imad

    2013-09-01

    Clostridium difficile is a frequent cause of severe, recurrent post-antibiotic diarrhoea and pseudomembranous colitis. The surface layer (S-layer) is the predominant outer surface component of C. difficile which is involved in pathogen-host interactions critical to pathogenesis. In this study, we characterized the S-layer protein A (SlpA) of animal and human strains belonging to different PCR-ribotypes (PR) and compared the in vitro adherence and in vivo colonization properties of strains showing different SlpA variants. Since each SlpA variant has been recently associated with an S-layer cassette, we were able to deduce the cassette for each of our strains. In this study, an identity of 99-100 % was found among the SlpA of isolates belonging to PR 012, 014/020, 045 and 078. One exception was the SlpA of a poultry isolate, PR 014/020, which showed 99 % identity with that of strain 0160, another PR 014/020 which contains an S-layer cassette 6. Interestingly, this cassette has also been found in a PR 018 strain, an emerging virulent type currently predominant in Italy. Five other SlpA variants (v014/020a-e) were identified in strains PR 014/020. In vitro adherence assays and in vivo colonization experiments were performed on five PR 014/020 strains: human 1064 (v014/020e), human 4684/08 (v014/020b), human IT1106 (v078a), poultry P30 (v014/020d) and poultry PB90 (v014/020b) strains. Adhesion assays indicate that C. difficile strains vary in their capacity to adhere to cells in culture and that adhesion seems to be independent of the SlpA variant. Colonization properties were assessed in vivo using a dixenic mouse model of colonization. The kinetics of faecal shedding and caecal colonization were similar when human 4684/08 (v014/020b) strain was compared with human 1064 (v014/020e) and poultry PB90 (v014/020b) strain. In contrast, poultry P30 (v014/020d) strain outcompeted both human 4684/08 (v014/020b) and IT1106 (v078a) strains and its adherence to caeca at day 7 was significantly higher. The peculiar characteristics of C. difficile P30 seem to advantage it in colonizing the intestinal mice niche, increasing its ability to compete and adapt. The results obtained underline the need of an increased attention to the genetic evolution of C. difficile to prevent and limit the consequences of the emergence of increasingly virulent strains.

  5. Epsin is required for Dishevelled stability and Wnt signaling activation in colon cancer development

    PubMed Central

    Chang, Baojun; Tessneer, Kandice L.; McManus, John; Liu, Xiaolei; Hahn, Scott; Pasula, Satish; Wu, Hao; Song, Hoogeun; Chen, Yiyuan; Cai, Xiaofeng; Dong, Yunzhou; Brophy, Megan L.; Rahman, Ruby; Ma, Jian-Xing; Xia, Lijun; Chen, Hong

    2015-01-01

    Uncontrolled canonical Wnt signaling supports colon epithelial tumor expansion and malignant transformation. Understanding the regulatory mechanisms involved is crucial for elucidating the pathogenesis of and will provide new therapeutic targets for colon cancer. Epsins are ubiquitin-binding adaptor proteins upregulated in several human cancers; however, epsins’ involvement in colon cancer is unknown. Here we show that loss of intestinal epithelial epsins protects against colon cancer by significantly reducing the stability of the crucial Wnt signaling effector, dishevelled (Dvl2), and impairing Wnt signaling. Consistently, epsins and Dvl2 are correspondingly upregulated in colon cancer. Mechanistically, epsin binds Dvl2 via its epsin N-terminal homology domain and ubiquitin-interacting motifs and prohibits Dvl2 polyubiquitination and degradation. Our findings reveal an unconventional role for epsins in stabilizing Dvl2 and potentiating Wnt signaling in colon cancer cells to ensure robust colon cancer progression. Epsins’ pro-carcinogenic role suggests they are potential therapeutic targets to combat colon cancer. PMID:25871009

  6. Pathogenesis of Human Enterovirulent Bacteria: Lessons from Cultured, Fully Differentiated Human Colon Cancer Cell Lines

    PubMed Central

    Liévin-Le Moal, Vanessa

    2013-01-01

    SUMMARY Hosts are protected from attack by potentially harmful enteric microorganisms, viruses, and parasites by the polarized fully differentiated epithelial cells that make up the epithelium, providing a physical and functional barrier. Enterovirulent bacteria interact with the epithelial polarized cells lining the intestinal barrier, and some invade the cells. A better understanding of the cross talk between enterovirulent bacteria and the polarized intestinal cells has resulted in the identification of essential enterovirulent bacterial structures and virulence gene products playing pivotal roles in pathogenesis. Cultured animal cell lines and cultured human nonintestinal, undifferentiated epithelial cells have been extensively used for understanding the mechanisms by which some human enterovirulent bacteria induce intestinal disorders. Human colon carcinoma cell lines which are able to express in culture the functional and structural characteristics of mature enterocytes and goblet cells have been established, mimicking structurally and functionally an intestinal epithelial barrier. Moreover, Caco-2-derived M-like cells have been established, mimicking the bacterial capture property of M cells of Peyer's patches. This review intends to analyze the cellular and molecular mechanisms of pathogenesis of human enterovirulent bacteria observed in infected cultured human colon carcinoma enterocyte-like HT-29 subpopulations, enterocyte-like Caco-2 and clone cells, the colonic T84 cell line, HT-29 mucus-secreting cell subpopulations, and Caco-2-derived M-like cells, including cell association, cell entry, intracellular lifestyle, structural lesions at the brush border, functional lesions in enterocytes and goblet cells, functional and structural lesions at the junctional domain, and host cellular defense responses. PMID:24006470

  7. Intestinal Microbiota Composition Modulates Choline Bioavailability from Diet and Accumulation of the Proatherogenic Metabolite Trimethylamine-N-Oxide

    PubMed Central

    Romano, Kymberleigh A.; Vivas, Eugenio I.

    2015-01-01

    ABSTRACT Choline is a water-soluble nutrient essential for human life. Gut microbial metabolism of choline results in the production of trimethylamine (TMA), which upon absorption by the host is converted in the liver to trimethylamine-N-oxide (TMAO). Recent studies revealed that TMAO exacerbates atherosclerosis in mice and positively correlates with the severity of this disease in humans. However, which microbes contribute to TMA production in the human gut, the extent to which host factors (e.g., genotype) and diet affect TMA production and colonization of these microbes, and the effects TMA-producing microbes have on the bioavailability of dietary choline remain largely unknown. We screened a collection of 79 sequenced human intestinal isolates encompassing the major phyla found in the human gut and identified nine strains capable of producing TMA from choline in vitro. Gnotobiotic mouse studies showed that TMAO accumulates in the serum of animals colonized with TMA-producing species, but not in the serum of animals colonized with intestinal isolates that do not generate TMA from choline in vitro. Remarkably, low levels of colonization by TMA-producing bacteria significantly reduced choline levels available to the host. This effect was more pronounced as the abundance of TMA-producing bacteria increased. Our findings provide a framework for designing strategies aimed at changing the representation or activity of TMA-producing bacteria in the human gut and suggest that the TMA-producing status of the gut microbiota should be considered when making recommendations about choline intake requirements for humans. PMID:25784704

  8. Ogilvie's syndrome in a case of myxedema coma.

    PubMed

    Yanamandra, Uday; Kotwal, Narendra; Menon, Anil; Nair, Velu

    2012-05-01

    Ogilvie's syndrome [acute colonic pseudo-obstruction (ACPO)] presents as massive colonic dilatation without a mechanical cause, usually in critically ill patients due to imbalanced sympathetic and parasympathetic activity. The initial therapy remains conservative with supportive measures (correction of metabolic, infectious or pharmacologic factors) followed by neostigmine and decompressive colonoscopy. Surgery is reserved for patients with clinical deterioration or with evidence of colonic ischemia or perforation. A 60-year-old lady presented with fever, altered sensorium, obstipation, bradycardia and abdominal distension. Investigation revealed hyponatremia and acute colonic pseudo-obstruction. Supportive measures and decompressive colonoscopy were not of great benefit. Thyroid profile was suggestive of primary hypothyroidism. Colonic motility was restored only on starting thyroxin. The case is illustrative of the need to consider hypothyroidism, a common endocrine disorder, in the differential diagnosis of Ogilvie's.

  9. Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-bromopyruvate propyl ester.

    PubMed

    Tang, Zhenjie; Yuan, Shuqiang; Hu, Yumin; Zhang, Hui; Wu, Wenjing; Zeng, Zhaolei; Yang, Jing; Yun, Jingping; Xu, Ruihua; Huang, Peng

    2012-02-01

    It has long been observed that many cancer cells exhibit increased aerobic glycolysis and rely more on this pathway to generate ATP and metabolic intermediates for cell proliferation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in glycolysis and has been known as a housekeeping molecule. In the present study, we found that GAPDH expression was significantly up-regulated in human colorectal carcinoma tissues compared to the adjacent normal tissues, and also increased in colon cancer cell lines compared to the non-tumor colon mucosa cells in culture. The expression of GAPDH was further elevated in the liver metastatic tissues compared to the original colon cancer tissue of the same patients, suggesting that high expression of GAPDH might play an important role in colon cancer development and metastasis. Importantly, we found that 3-bromopyruvate propyl ester (3-BrOP) preferentially inhibited GAPDH and exhibited potent activity in inducing colon cancer cell death by causing severe depletion of ATP. 3-BrOP at low concentrations (1-10 μM) inhibited GAPDH and a much higher concentration (300 μM) was required to inhibit hexokinase-2. The cytotoxic effect of 3-BrOP was associated with its inhibition of GAPDH, and colon cancer cells with loss of p53 were more sensitive to this compound. Our study suggests that GAPDH may be a potential target for colon cancer therapy.

  10. Effects of Simulated Human Gastrointestinal Digestion of Two Purple-Fleshed Potato Cultivars on Anthocyanin Composition and Cytotoxicity in Colonic Cancer and Non-Tumorigenic Cells

    PubMed Central

    Kubow, Stan; Iskandar, Michèle M.; Melgar-Bermudez, Emiliano; Sleno, Lekha; Sabally, Kebba; Azadi, Behnam; How, Emily; Prakash, Satya; Burgos, Gabriela; zum Felde, Thomas

    2017-01-01

    A dynamic human gastrointestinal (GI) model was used to digest cooked tubers from purple-fleshed Amachi and Leona potato cultivars to study anthocyanin biotransformation in the stomach, small intestine and colonic vessels. Colonic Caco-2 cancer cells and non-tumorigenic colonic CCD-112CoN cells were tested for cytotoxicity and cell viability after 24 h exposure to colonic fecal water (FW) digests (0%, 10%, 25%, 75% and 100% FW in culture media). After 24 h digestion, liquid chromatography-mass spectrometry identified 36 and 15 anthocyanin species throughout the GI vessels for Amachi and Leona, respectively. The total anthocyanin concentration was over thirty-fold higher in Amachi compared to Leona digests but seven-fold higher anthocyanin concentrations were noted for Leona versus Amachi in descending colon digests. Leona FW showed greater potency to induce cytotoxicity and decrease viability of Caco-2 cells than observed with FW from Amachi. Amachi FW at 100% caused cytotoxicity in non-tumorigenic cells while FW from Leona showed no effect. The present findings indicate major variations in the pattern of anthocyanin breakdown and release during digestion of purple-fleshed cultivars. The differing microbial anthocyanin metabolite profiles in colonic vessels between cultivars could play a significant role in the impact of FW toxicity on tumor and non-tumorigenic cells. PMID:28850070

  11. Updated Histologic Classification of Adenomas and Carcinomas in the Colon of Carcinogen-treated Sprague-Dawley Rats.

    PubMed

    Rubio, Carlos A

    2017-12-01

    Recent studies have disclosed novel histological phenotypes of colon tumours in carcinogen-treated rats. The aim of this study was to update the current histological classification of colonic neoplasias in Sprague-Dawley (SD) rats. Archival sections from 398 SD rats having 408 neoplasias in previous experiments were re-evaluated. Of the 408 colonic neoplasias, 11% (44/408) were adenomas without invasive growth and 89% (364/408) invasive carcinomas. Out of the 44 adenomas, 82% were conventional (tubular or villous), 14% traditional serrated (TSA; with unlocked serrations or with closed microtubules) and 5% gut-associated lymphoid tissue (GALT)-associated adenomas. Out of 364 carcinomas, 57% were conventional carcinomas, 26% GALT carcinomas, 8% undifferentiated, 6% signet-ring cell carcinomas, and 4% traditional serrated carcinomas (TSC). Thus, conventional adenomas, conventional carcinomas and GALT-associated carcinomas predominated (p<0.05). The updated classification of colonic tumours in SD rats includes conventional adenomas, TSA, GALT-associated adenomas, conventional carcinomas, TSC, GALT-associated carcinomas, signet-ring cell carcinomas and undifferentiated carcinomas. Several of the histological phenotypes reported here are not included in any of the current classifications of colonic tumours in rodents. This updated classification fulfils the requirements for an animal model of human disease, inasmuch as similar histological phenotypes of colon neoplasias have been documented in humans. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  12. Studies on the bioavailability of the provitamin A carotenoid, beta-carotene, using human exfoliated colonic epithelial cells.

    PubMed

    Gireesh, T; Nair, P P; Sudhakaran, P R

    2004-08-01

    The possibility of using exfoliated colonic epithelial cells for assessing the bioavailability of beta-carotene was examined. Analysis of exfoliated colonic epithelial cells showed the presence of beta-carotene and vitamin A. The beta-carotene content was significantly lower in cells from stool samples of subjects on a beta-carotene-poor diet than those receiving a single dose of a beta-carotene supplement. Colonic epithelial cells isolated from stool samples collected daily during a wash-out period while the subjects were on a beta-carotene-poor diet showed a steady decrease in beta-carotene content, reaching the lowest value on day 7. Kinetic analysis showed that a single dose of a beta-carotene supplement in the form of spirulina (Spirulina platensis) or agathi (Sesbania grandiflora) after the wash-out period caused an increase in the beta-carotene content after a lag period of 5-7 d, but the vitamin A levels during these periods were not significantly affected. Analysis of plasma beta-carotene concentration also showed similar changes, which correlated with those of exfoliated colonic cells. A relationship between the beta-carotene content of the diet and that of the colonic epithelial cells suggests that analysis of the beta-carotene content in exfoliated human colonic epithelial cells is a useful non-invasive method to assess the bioavailability of provitamin A beta-carotene.

  13. Surgical Capabilities for Exploration and Colonization Space Flight - An Exploratory Symposium

    NASA Technical Reports Server (NTRS)

    Pantalos, George; Strangman, Gary; Doarn, Charles R.; Broderick, Timothy; Antonsen, Erik

    2015-01-01

    Identify realistic and achievable pathways for surgical capabilities during exploration and colonization space operations and develop a list of recommendations to the NASA Human Research Program to address challenges to developing surgical capabilities.

  14. Deciphering the colon cancer genes--report of the InSiGHT-Human Variome Project Workshop, UNESCO, Paris 2010.

    PubMed

    Kohonen-Corish, Maija R J; Macrae, Finlay; Genuardi, Maurizio; Aretz, Stefan; Bapat, Bharati; Bernstein, Inge T; Burn, John; Cotton, Richard G H; den Dunnen, Johan T; Frebourg, Thierry; Greenblatt, Marc S; Hofstra, Robert; Holinski-Feder, Elke; Lappalainen, Ilkka; Lindblom, Annika; Maglott, Donna; Møller, Pål; Morreau, Hans; Möslein, Gabriela; Sijmons, Rolf; Spurdle, Amanda B; Tavtigian, Sean; Tops, Carli M J; Weber, Thomas K; de Wind, Niels; Woods, Michael O

    2011-04-01

    The Human Variome Project (HVP) has established a pilot program with the International Society for Gastrointestinal Hereditary Tumours (InSiGHT) to compile all inherited variation affecting colon cancer susceptibility genes. An HVP-InSiGHT Workshop was held on May 10, 2010, prior to the HVP Integration and Implementation Meeting at UNESCO in Paris, to review the progress of this pilot program. A wide range of topics were covered, including issues relating to genotype-phenotype data submission to the InSiGHT Colon Cancer Gene Variant Databases (chromium.liacs.nl/LOVD2/colon_cancer/home.php). The meeting also canvassed the recent exciting developments in models to evaluate the pathogenicity of unclassified variants using in silico data, tumor pathology information, and functional assays, and made further plans for the future progress and sustainability of the pilot program. © 2011 Wiley-Liss, Inc.

  15. Optical properties of human colon tissues in the 350 – 2500 nm spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkatov, A N; Genina, E A; Kochubey, V I

    2014-08-31

    We present the optical characteristics of the mucosa and submucosa of human colon tissue. The experiments are performed in vitro using a LAMBDA 950 spectrophotometer in the 350 – 2500 nm spectral range. The absorption and scattering coefficients and the scattering anisotropy factor are calculated based on the measured diffuse reflectance and total and collimated transmittance spectra using the inverse Monte Carlo method. (laser biophotonics)

  16. p53 is a key regulator for osthole-triggered cancer pathogenesis.

    PubMed

    Huang, Ssu-Ming; Tsai, Cheng-Fang; Chen, Dar-Ren; Wang, Min-Ying; Yeh, Wei-Lan

    2014-01-01

    Osthole has been reported to have antitumor activities via the induction of apoptosis and inhibition of cancer cell growth and metastasis. However, the detailed molecular mechanisms underlying the anticancer effects of osthole in human colon cancer remain unclear. In the present study, we have assessed osthole-induced cell death in two different human colon cancer cell lines, HCT116 and SW480. Our results also showed that osthole activated proapoptotic signaling pathways in human colon cancer cells. By using cell culture insert system, osthole reduced cell motility in both human colon cancer cell lines. This study also provides evidence supporting the potential of osthole in p53 activation. Expression of p53, an apoptotic protein, was remarkably upregulated in cells treated with osthole. Importantly, the levels of phosphorylation of p53 on Ser15 (p-p53) and acetylation of p53 on Lys379 (acetyl-p53) were increased under osthole treatment. Our results also demonstrated that p53 was activated followed by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). Our study provides novel insights of p53-mediated responses under osthole treatment. Taken together, we concluded that osthole induces cancer cell death and inhibits migratory activity in a controlled manner and is a promising candidate for antitumor drug development.

  17. Terra Incognita - Cosmological Theory and Space Colonization

    NASA Astrophysics Data System (ADS)

    Tolkowsky, G.

    Philosophical and scientific cosmological theory may impact human motivation to colonize space. Isotropic theories regarding cosmic structure and function offer no a-priori advantages to the habitation of any given cosmic zone, and therefore deprive colonization ideology of a cosmological motive. In contrast, certain aniso- tropic theories, which assign superior qualities to some cosmic zones over others, provide such motives. It follows that future space colonization may partially depend on the emergence of anisotropic cosmological theories, some of which are already contained in Western intellectual tradition but are not currently accepted.

  18. Persistent Pneumocystis colonization leads to the development of chronic obstructive pulmonary disease (COPD) in a non-human primate model of AIDS

    PubMed Central

    Shipley, Timothy W.; Kling, Heather M.; Morris, Alison; Patil, Sangita; Kristoff, Jan; Guyach, Siobhan E.; Murphy, Jessica M.; Shao, Xiuping; Sciurba, Frank C.; Rogers, Robert M.; Richards, Thomas; Thompson, Paul; Montelaro, Ronald C.; Coxson, Harvey O.; Hogg, James C.; Norris, Karen A.

    2010-01-01

    HIV-infected patients are at increased risk for development of pulmonary complications, including chronic obstructive pulmonary disease (COPD). Inflammation associated with sub-clinical infection has been postulated to promote COPD. Persistence of Pneumocystis (Pc) is associated with HIV and COPD, although a causal relationship has not been established. We used a simian/human immunodeficiency virus (SHIV) model of HIV infection to study pulmonary effects of Pc colonization. SHIV-infected/Pc-colonized monkeys developed progressive obstructive pulmonary disease characterized by increased emphysematous tissue and bronchial-associated lymphoid tissue. Elevated Th2 cytokines and pro-inflammatory mediators in bronchoalveolar lavage fluid coincided with Pc colonization and pulmonary function decline. These results support the concept that an infectious agent contributes to development of HIV-associated lung disease and suggests that Pc colonization may be a risk factor for the development of HIV-associated COPD. Furthermore, this model allows examination of early host responses important to disease progression thus identifying potential therapeutic targets for COPD. PMID:20533880

  19. Butyrate-Induced Transcriptional Changes in Human Colonic Mucosa

    PubMed Central

    Vanhoutvin, Steven A. L. W.; Troost, Freddy J.; Hamer, Henrike M.; Lindsey, Patrick J.; Koek, Ger H.; Jonkers, Daisy M. A. E.; Kodde, Andrea; Venema, Koen; Brummer, Robert J. M.

    2009-01-01

    Background Fermentation of dietary fiber in the colon results in the production of short chain fatty acids (mainly propionate, butyrate and acetate). Butyrate modulates a wide range of processes, but its mechanism of action is mostly unknown. This study aimed to determine the effects of butyrate on the transcriptional regulation of human colonic mucosa in vivo. Methodology/Principal Findings Five hundred genes were found to be differentially expressed after a two week daily butyrate administration with enemas. Pathway analysis showed that the butyrate intervention mainly resulted in an increased transcriptional regulation of the pathways representing fatty acid oxidation, electron transport chain and oxidative stress. In addition, several genes associated with epithelial integrity and apoptosis, were found to be differentially expressed after the butyrate intervention. Conclusions/Significance Colonic administration of butyrate in concentrations that can be achieved by consumption of a high-fiber diet enhances the maintenance of colonic homeostasis in healthy subjects, by regulating fatty acid metabolism, electron transport and oxidative stress pathways on the transcriptional level and provide for the first time, detailed molecular insight in the transcriptional response of gut mucosa to butyrate. PMID:19707587

  20. Colonizing Green? We Must Remember Our Roots of Harmony, Beauty, Balance, Restoration

    ERIC Educational Resources Information Center

    Emerson, Larry

    2008-01-01

    While tribal educators rightfully search for ways to address the global warming and climate crisis using sustainability initiatives, people should also be cautious. They risk colonizing, exploiting, or commodifying the "green" dimension of the climate and energy crisis. By centering and privileging Indigenous knowing that assumes a nurturing,…

  1. Ingested Shiga Toxin 2 (Stx2) Causes Histopathological Changes in Kidney, Spleen and Thymus Tissues and Mortality in Mice

    USDA-ARS?s Scientific Manuscript database

    The Shiga toxin (Stxs) producing bacterial strain, Escherichia coli O157:H7, colonizes the distal small intestine and the colon, initiating a very broad spectrum of illnesses such as hemolytic-uremic syndrome (HUS) characterized by microangiopathic hemolytic anemia, thrombocytopenia and acute renal ...

  2. End-colostomy diverticulitis with parastomal phlegmon: A case report.

    PubMed

    Muradbegovic, Mirza; St-Amour, Pénélope; Martin, David; Petermann, David; Benabidallah, Samir; Di Mare, Luca

    2017-10-01

    Acute colonic diverticulitis is a well-known surgical emergency, which occurs in about 10 percent of patients known for diverticulosis. The case of a 77-year-old woman is reported, with past history of abdominoperineal resection with end-colostomy for low rectal adenocarcinoma, and who developed an acute colonic diverticulitis in a subcutaneous portion of colostomy with parastomal phlegmon. Initial computed tomography imaging demonstrated a significant submucosal parietal edema with local fat tissues infiltration in regard of 3 diverticula. A two-step treatment was decided: first a nonoperative treatment was initiated with 2 weeks antibiotics administration, followed by, 6 weeks after, a segmental resection of the terminal portion of the colon with redo of a new colostomy by direct open approach. Patient was discharged on the second postoperative day without complications. Follow-up at 2 weeks revealed centimetric dehiscence of the stoma, which was managed conservatively until sixth postoperative week by stomatherapists. Treatment of acute diverticulitis with parastomal phlegmon in a patient with end-colostomy could primary be nonoperative. Delayed surgical treatment with segmental colonic resection was proposed to avoid recurrence and potential associated complications.

  3. Type 1 fimbriae contribute to catheter-associated urinary tract infections caused by Escherichia coli.

    PubMed

    Reisner, Andreas; Maierl, Mario; Jörger, Michael; Krause, Robert; Berger, Daniela; Haid, Andrea; Tesic, Dijana; Zechner, Ellen L

    2014-03-01

    Biofilm formation on catheters is thought to contribute to persistence of catheter-associated urinary tract infections (CAUTI), which represent the most frequent nosocomial infections. Knowledge of genetic factors for catheter colonization is limited, since their role has not been assessed using physicochemical conditions prevailing in a catheterized human bladder. The current study aimed to combine data from a dynamic catheterized bladder model in vitro with in vivo expression analysis for understanding molecular factors relevant for CAUTI caused by Escherichia coli. By application of the in vitro model that mirrors the physicochemical environment during human infection, we found that an E. coli K-12 mutant defective in type 1 fimbriae, but not isogenic mutants lacking flagella or antigen 43, was outcompeted by the wild-type strain during prolonged catheter colonization. The importance of type 1 fimbriae for catheter colonization was verified using a fimA mutant of uropathogenic E. coli strain CFT073 with human and artificial urine. Orientation of the invertible element (IE) controlling type 1 fimbrial expression in bacterial populations harvested from the colonized catheterized bladder in vitro suggested that the vast majority of catheter-colonizing cells (up to 88%) express type 1 fimbriae. Analysis of IE orientation in E. coli populations harvested from patient catheters revealed that a median level of ∼73% of cells from nine samples have switched on type 1 fimbrial expression. This study supports the utility of the dynamic catheterized bladder model for analyzing catheter colonization factors and highlights a role for type 1 fimbriae during CAUTI.

  4. Human Staphylococcus aureus lineages among Zoological Park residents in Greece

    PubMed Central

    Drougka, E.; Foka, A.; Posantzis, D.; Giormezis, N.; Anastassiou, E.D.; Petinaki, E.; Spiliopoulou, I.

    2015-01-01

    Staphylococcus aureus is a part of the microbiota flora in many animal species. The clonal spread of S. aureus among animals and personnel in a Zoological Park was investigated. Samples were collected from colonized and infected sites among 32 mammals, 11 birds and eight humans. The genes mecA, mecC, lukF/lukS-PV (encoding Panton-Valentine leukocidin, PVL) and tst (toxic shock syndrome toxin-1) were investigated by PCR. Clones were defined by Multilocus Sequence Typing (MLST), spa type and Pulsed-Field Gel Electrophoresis (PFGE). Seven S. aureus isolates were recovered from four animals and one from an employee. All were mecA, mecC and tst–negative, whereas, one carried the PVL genes and was isolated from an infected Squirrel monkey. Clonal analysis revealed the occurrence of seven STs, eight PFGE and five spa types including ones of human origin. Even though a variety of genotypes were identified among S. aureus strains colonizing zoo park residents, our results indicate that colonization with human lineages has indeed occurred. PMID:26623381

  5. The Interaction between Dietary Fiber and Fat and Risk of Colorectal Cancer in the Women's Health Initiative.

    PubMed

    Navarro, Sandi L; Neuhouser, Marian L; Cheng, Ting-Yuan David; Tinker, Lesley F; Shikany, James M; Snetselaar, Linda; Martinez, Jessica A; Kato, Ikuko; Beresford, Shirley A A; Chapkin, Robert S; Lampe, Johanna W

    2016-11-30

    Combined intakes of specific dietary fiber and fat subtypes protect against colon cancer in animal models. We evaluated associations between self-reported individual and combinations of fiber (insoluble, soluble, and pectins, specifically) and fat (omega-6, omega-3, and docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), specifically) and colorectal cancer (CRC) risk in the Women's Health Initiative prospective cohort ( n = 134,017). During a mean 11.7 years (1993-2010), 1952 incident CRC cases were identified. Cox regression models computed multivariate adjusted hazard ratios to estimate the association between dietary factors and CRC risk. Assessing fiber and fat individually, there was a modest trend for lower CRC risk with increasing intakes of total and insoluble fiber ( p-trend 0.09 and 0.08). An interaction ( p = 0.01) was observed between soluble fiber and DHA + EPA, with protective effects of DHA + EPA with lower intakes of soluble fiber and an attenuation at higher intakes, however this association was no longer significant after correction for multiple testing. These results suggest a modest protective effect of higher fiber intake on CRC risk, but not in combination with dietary fat subtypes. Given the robust results in preclinical models and mixed results in observational studies, controlled dietary interventions with standardized intakes are needed to better understand the interaction of specific fat and fiber subtypes on colon biology and ultimately CRC susceptibility in humans.

  6. Selective maternal seeding and environment shape the human gut microbiome

    PubMed Central

    Korpela, Katri; Costea, Paul; Coelho, Luis Pedro; Kandels-Lewis, Stefanie; Willemsen, Gonneke; Boomsma, Dorret I.; Segata, Nicola; Bork, Peer

    2018-01-01

    Vertical transmission of bacteria from mother to infant at birth is postulated to initiate a life-long host-microbe symbiosis, playing an important role in early infant development. However, only the tracking of strictly defined unique microbial strains can clarify where the intestinal bacteria come from, how long the initial colonizers persist, and whether colonization by other strains from the environment can replace existing ones. Using rare single nucleotide variants in fecal metagenomes of infants and their family members, we show strong evidence of selective and persistent transmission of maternal strain populations to the vaginally born infant and their occasional replacement by strains from the environment, including those from family members, in later childhood. Only strains from the classes Actinobacteria and Bacteroidia, which are essential components of the infant microbiome, are transmitted from the mother and persist for at least 1 yr. In contrast, maternal strains of Clostridia, a dominant class in the mother's gut microbiome, are not observed in the infant. Caesarean-born infants show a striking lack of maternal transmission at birth. After the first year, strain influx from the family environment occurs and continues even in adulthood. Fathers appear to be more frequently donors of novel strains to other family members than receivers. Thus, the infant gut is seeded by selected maternal bacteria, which expand to form a stable community, with a rare but stable continuing strain influx over time. PMID:29496731

  7. Oxidative and Nitrosative Stress in the Metastatic Microenvironment

    PubMed Central

    Ortega, Ángel L.; Mena, Salvador; Estrela, José M.

    2010-01-01

    Metastases that are resistant to conventional therapies are the main cause of most cancer-related deaths in humans. Tumor cell heterogeneity, which associates with genomic and phenotypic instability, represents a major problem for cancer therapy. Additional factors, such as the attack of immune cells or organ-specific microenvironments, also influence metastatic cell behavior and the response to therapy. Interaction of cancer and endothelial cells in capillary beds, involving mechanical contact and transient adhesion, is a critical step in the initiation of metastasis. This interaction initiates a cascade of activation pathways that involves cytokines, growth factors, bioactive lipids and reactive oxygen and nitrogen species (ROS and RNS) produced by either the cancer cell or the endothelium. Vascular endothelium-derived NO and H2O2 are cytotoxic for the cancer cells, but also help to identify some critical molecular targets that appear essential for survival of invasive metastatic cell subsets. Surviving cancer cells that extravasate and start colonization of an organ or tissue can still be attacked by macrophages and be influenced by specific intraorgan microenvironment conditions. At all steps; from the primary tumor until colonization of a distant organ; metastatic cells undergo a dynamic process of constant adaptations that may lead to the survival of highly resistant malignant cell subsets. In this sequence of molecular events both ROS and RNS play key roles. PMID:24281071

  8. Volvulus of the ascending colon in a non-rotated midgut: Plain film and MDCT findings.

    PubMed

    Camera, Luigi; Calabrese, Milena; Mainenti, Pier Paolo; Masone, Stefania; Vecchio, Walter Del; Persico, Giovanni; Salvatore, Marco

    2012-10-28

    Colonic volvulus is a relatively uncommon cause of large bowel obstruction usually involving mobile, intra-peritoneal, colonic segments. Congenital or acquired anatomic variation may be associated with an increased risk of colonic volvulus which can occasionally involve retro-peritoneal segments. We report a case of 54-year-old female who presented to our Institution to perform a plain abdominal film series for acute onset of cramping abdominal pain. Both the upright and supine films showed signs of acute colonic obstruction which was thought to be due to an internal hernia of the transverse colon into the lesser sac. The patient was therefore submitted to a multi-detector contrast-enhanced computed tomography (CT). CT findings were initially thought to be consistent with the presumed diagnosis of internal hernia but further evaluation and coronal reformatting clearly depicted the presence of a colonic volvulus possibly resulting from a retro-gastric colon. At surgery, a volvulus of the ascending colon was found and a right hemi-colectomy had to be performed. However, a non rotated midgut with a right-sided duodeno-jejunal flexure and a left sided colon was also found at laparotomy and overlooked in the pre-operative CT. Retrospective evaluation of CT images was therefore performed and a number of CT signs of intestinal malrotation could be identified.

  9. Ethanolic Extract of Traditional Chinese Medicine (TCM) Gamboge Inhibits Colon Cancer via the Wnt/Beta-Catenin Signaling Pathway in an Orthotopic Mouse Model.

    PubMed

    Wang, Wei; Li, Youran; Chen, Yiqi; Chen, Hongjin; Zhu, Ping; Xu, Minmin; Wang, Hao; Wu, Minna; Yang, Zhijian; Hoffman, Robert M; Gu, Yunfei

    2018-04-01

    The aim of the present study was to investigate the efficacy of an ethanolic extract of gamboge (EEG), a traditional Chinese medicine (TCM), both in vitro on colon cancer cells and in vivo in an orthotopic mouse model of human colon cancer. The in vitro cytotoxicity of EEG on colon cancer cells was determined with the CCK8 proliferation assay and the Annexin V-PE/7-AAD apoptosis assay. Efficacy of EEG in vivo was evaluated in an orthotopic mouse model of human colon cancer implated with the green fluorescent protein-expressing human colon cancer cell line SW480-GFP. The tumor-bearing mice were treated with vehicle (0.2 ml/dose normal saline, po, daily), irinotecan (50 mg/kg/dose, ip, twice a week), 5-FU (15 mg/kg/dose, ip, every other day) as positive controls or EEG at doses of 12.5, 25 and 50 mg/kg/dose, po, daily. Real-time fluorescence imaging was performed to determine tumor inhibition in each treated group compared to the untreated controls. The protein expression of β-catenin, MMP-7, cyclin D1 and E-cadherin in the tumors was analyzed by immunohistochemistry. EEG significantly induced proliferation inhibition and apoptosis of SW480 colon cancer cells in vitro in a dose-dependent manner. Tumor growth in the colon-cancer orthotopic model was significantly inhibited by irinotecan, 5-FU and all three doses of EEG. The efficacy of EEG was comparable to irinotecan and 5-FU. Irinotecan, 5-FU and 50 mg/kg EEG significantly decreased the protein expression of β-catenin and MMP-7. Cyclin D1 expression was decreased and E-cadherin expression was increased by irinotecan, 5-FU and all three doses of EEG. The present study demonstrates anti-tumor efficacy of EEG on colon cancer both in vitro and in vivo through inducing proliferation inhibition and apoptosis of SW480 colon cancer cells and inhibiting tumor growth, respectively. EEG exerts anti-tumor activity at least partly via down-regulation of the Wnt/β-catenin signaling pathway. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal.

    PubMed

    Bui, Thi Phuong Nam; Ritari, Jarmo; Boeren, Sjef; de Waard, Pieter; Plugge, Caroline M; de Vos, Willem M

    2015-12-01

    Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products.

  11. Production of butyrate from lysine and the Amadori product fructoselysine by a human gut commensal

    PubMed Central

    Bui, Thi Phuong Nam; Ritari, Jarmo; Boeren, Sjef; de Waard, Pieter; Plugge, Caroline M.; de Vos, Willem M.

    2015-01-01

    Human intestinal bacteria produce butyrate, which has signalling properties and can be used as energy source by enterocytes thus influencing colonic health. However, the pathways and the identity of bacteria involved in this process remain unclear. Here we describe the isolation from the human intestine of Intestinimonas strain AF211, a bacterium that can convert lysine stoichiometrically into butyrate and acetate when grown in a synthetic medium. Intestinimonas AF211 also converts the Amadori product fructoselysine, which is abundantly formed in heated foods via the Maillard reaction, into butyrate. The butyrogenic pathway includes a specific CoA transferase that is overproduced during growth on lysine. Bacteria related to Intestinimonas AF211 as well as the genetic coding capacity for fructoselysine conversion are abundantly present in colonic samples from some healthy human subjects. Our results indicate that protein can serve as a source of butyrate in the human colon, and its conversion by Intestinimonas AF211 and related butyrogens may protect the host from the undesired side effects of Amadori reaction products. PMID:26620920

  12. Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects.

    PubMed

    Windey, Karen; De Preter, Vicky; Huys, Geert; Broekaert, Willem F; Delcour, Jan A; Louat, Thierry; Herman, Jean; Verbeke, Kristin

    2015-01-28

    Wheat bran extract (WBE), containing arabinoxylan-oligosaccharides that are potential prebiotic substrates, has been shown to modify bacterial colonic fermentation in human subjects and to beneficially affect the development of colorectal cancer (CRC) in rats. However, it is unclear whether these changes in fermentation are able to reduce the risk of developing CRC in humans. The aim of the present study was to evaluate the effects of WBE on the markers of CRC risk in healthy volunteers, and to correlate these effects with colonic fermentation. A total of twenty healthy subjects were enrolled in a double-blind, cross-over, randomised, controlled trial in which the subjects ingested WBE (10 g/d) or placebo (maltodextrin, 10 g/d) for 3 weeks, separated by a 3-week washout period. At the end of each study period, colonic handling of NH3 was evaluated using the biomarker lactose[15N, 15N']ureide, colonic fermentation was characterised through a metabolomics approach, and the predominant microbial composition was analysed using denaturing gradient gel electrophoresis. As markers of CRC risk, faecal water genotoxicity was determined using the comet assay and faecal water cytotoxicity using a colorimetric cell viability assay. Intake of WBE induced a shift from urinary to faecal 15N excretion, indicating a stimulation of colonic bacterial activity and/or growth. Microbial analysis revealed a selective stimulation of Bifidobacterium adolescentis. In addition, WBE altered the colonic fermentation pattern and significantly reduced colonic protein fermentation compared with the run-in period. However, faecal water cytotoxicity and genotoxicity were not affected. Although intake of WBE clearly affected colonic fermentation and changed the composition of the microbiota, these changes were not associated with the changes in the markers of CRC risk.

  13. Saccharomyces boulardii Protease Inhibits the Effects of Clostridium difficile Toxins A and B in Human Colonic Mucosa

    PubMed Central

    Castagliuolo, Ignazio; Riegler, Martin F.; Valenick, Leyla; LaMont, J. Thomas; Pothoulakis, Charalabos

    1999-01-01

    Saccharomyces boulardii is a nonpathogenic yeast used in the treatment of Clostridium difficile diarrhea and colitis. We have reported that S. boulardii inhibits C. difficile toxin A enteritis in rats by releasing a 54-kDa protease which digests the toxin A molecule and its brush border membrane (BBM) receptor (I. Castagliuolo, J. T. LaMont, S. T. Nikulasson, and C. Pothoulakis, Infect. Immun. 64:5225–5232, 1996). The aim of this study was to further evaluate the role of S. boulardii protease in preventing C. difficile toxin A enteritis in rat ileum and determine whether it protects human colonic mucosa from C. difficile toxins. A polyclonal rabbit antiserum raised against purified S. boulardii serine protease inhibited by 73% the proteolytic activity present in S. boulardii conditioned medium in vitro. The anti-protease immunoglobulin G (IgG) prevented the action of S. boulardii on toxin A-induced intestinal secretion and mucosal permeability to [3H]mannitol in rat ileal loops, while control rabbit IgG had no effect. The anti-protease IgG also prevented the effects of S. boulardii protease on digestion of toxins A and B and on binding of [3H]toxin A and [3H]toxin B to purified human colonic BBM. Purified S. boulardii protease reversed toxin A- and toxin B-induced inhibition of protein synthesis in human colonic (HT-29) cells. Furthermore, toxin A- and B-induced drops in transepithelial resistance in human colonic mucosa mounted in Ussing chambers were reversed by 60 and 68%, respectively, by preexposing the toxins to S. boulardii protease. We conclude that the protective effects of S. boulardii on C. difficile-induced inflammatory diarrhea in humans are due, at least in part, to proteolytic digestion of toxin A and B molecules by a secreted protease. PMID:9864230

  14. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies

    PubMed Central

    Robertis, Mariangela De; Massi, Emanuela; Poeta, Maria Luana; Carotti, Simone; Morini, Sergio; Cecchetelli, Loredana; Signori, Emanuela; Fazio, Vito Michele

    2011-01-01

    Colorectal cancer (CRC) is a major health problem in industrialized countries. Although inflammation-linked carcinogenesis is a well accepted concept and is often observed within the gastrointestinal tract, the underlying mechanisms remain to be elucidated. Inflammation can indeed provide initiating and promoting stimuli and mediators, generating a tumour-prone microenvironment. Many murine models of sporadic and inflammation-related colon carcinogenesis have been developed in the last decade, including chemically induced CRC models, genetically engineered mouse models, and xenoplants. Among the chemically induced CRC models, the combination of a single hit of azoxymethane (AOM) with 1 week exposure to the inflammatory agent dextran sodium sulphate (DSS) in rodents has proven to dramatically shorten the latency time for induction of CRC and to rapidly recapitulate the aberrant crypt foci–adenoma–carcinoma sequence that occurs in human CRC. Because of its high reproducibility and potency, as well as the simple and affordable mode of application, the AOM/DSS has become an outstanding model for studying colon carcinogenesis and a powerful platform for chemopreventive intervention studies. In this article we highlight the histopathological and molecular features and describe the principal genetic and epigenetic alterations and inflammatory pathways involved in carcinogenesis in AOM/DSS–treated mice; we also present a general overview of recent experimental applications and preclinical testing of novel therapeutics in the AOM/DSS model. PMID:21483655

  15. Ibuprofen Inhibits Colitis-Induced Overexpression of Tumor-Related Rac1b1

    PubMed Central

    Matos, Paulo; Kotelevets, Larissa; Goncalves, Vania; Henriques, Andreia; Zerbib, Philippe; Moyer, Mary Pat; Chastre, Eric; Jordan, Peter

    2013-01-01

    The serrated pathway to colorectal tumor formation involves oncogenic mutations in the BRAF gene, which are sufficient for initiation of hyperplastic growth but not for tumor progression. A previous analysis of colorectal tumors revealed that overexpression of splice variant Rac1b occurs in around 80% of tumors with mutant BRAF and both events proved to cooperate in tumor cell survival. Here, we provide evidence for increased expression of Rac1b in patients with inflamed human colonic mucosa as well as following experimentally induced colitis in mice. The increase of Rac1b in the mouse model was specifically prevented by the nonsteroidal anti-inflammatory drug ibuprofen, which also inhibited Rac1b expression in cultured HT29 colorectal tumor cells through a cyclooxygenase inhibition.independent mechanism. Accordingly, the presence of ibuprofen led to a reduction of HT29 cell survival in vitro and inhibited Rac1b-dependent tumor growth of HT29 xenografts. Together, our results suggest that stromal cues, namely, inflammation, can trigger changes in Rac1b expression in the colon and identify ibuprofen as a highly specific and efficient inhibitor of Rac1b overexpression in colorectal tumors. Our data suggest that the use of ibuprofen may be beneficial in the treatment of patients with serrated colorectal tumors or with inflammatory colon syndromes. PMID:23359345

  16. Down-regulation of liver-intestine cadherin enhances noscapine-induced apoptosis in human colon cancer cells.

    PubMed

    Tian, Xia; Liu, Meng; Zhu, Qingxi; Tan, Jie; Liu, Weijie; Wang, Yanfen; Chen, Wei; Zou, Yanli; Cai, Yishan; Han, Zheng; Huang, Xiaodong

    2017-09-01

    The aim of the present study was to explore the signaling pathway of noscapine which induces apoptosis by blocking liver-intestine cadherin (CDH17) gene in colon cancer SW480 cells. Human colon cancer SW480 cells were transfected with CDH17 interference vector and treatment with 10 µmol/L noscapine. The proliferation and apoptosis of SW480 cells were detected by MTT assay and AnnexinV-FITC/PI flow cytometry kit (BD), respectively. Cell invasion were assessed by transwell assays. Apoptosis related proteins (Cyt-c, Bax, Bcl-2 and Bcl-xL) levels were evaluated by western blot. Compared to the noscapine group, the proliferation was decreased significantly and the apoptosis was increased significantly in SW480 cells of the siCDH17+noscapine group. Cyt-c and Bax protein levels in siCDH17+noscapine group was higher than that of the noscapine group, but Bcl-2 and Bcl-xL protein levels in siCDH17+noscapine group were lower than that of the noscapine group. Moreover, up-expression of CDH17 inhibited the efficacy of noscapine-induced apoptosis in SW480 cells. We inferred that down-expression of extrinsic CDH17 gene can conspicuously promote apoptosis-inducing effects of noscapine on human colon cancer SW480 cells, which is a novel strategy to improve chemotherapeutic effects on colon cancer.

  17. CCDC88B is required for pathogenesis of inflammatory bowel disease.

    PubMed

    Fodil, Nassima; Moradin, Neda; Leung, Vicki; Olivier, Jean-Frederic; Radovanovic, Irena; Jeyakumar, Thiviya; Flores Molina, Manuel; McFarquhar, Ashley; Cayrol, Romain; Bozec, Dominique; Shoukry, Naglaa H; Kubo, Michiaki; Dimitrieva, Julia; Louis, Edouard; Theatre, Emilie; Dahan, Stephanie; Momozawa, Yukihide; Georges, Michel; Yeretssian, Garabet; Gros, Philippe

    2017-10-13

    Inflammatory bowel disease (IBD) involves interaction between host genetic factors and environmental triggers. CCDC88B maps within one IBD risk locus on human chromosome 11q13. Here we show that CCDC88B protein increases in the colon during intestinal injury, concomitant with an influx of CCDC88B + lymphoid and myeloid cells. Loss of Ccdc88b protects against DSS-induced colitis, with fewer pathological lesions and reduced intestinal inflammation in Ccdc88b-deficient mice. In a T cell transfer model of colitis, Ccdc88b mutant CD4 + T cells do not induce colitis in immunocompromised hosts. Expression of human CCDC88B RNA and protein is higher in IBD patient colons than in control colon tissue. In human CD14 + myeloid cells, CCDC88B is regulated by cis-acting variants. In a cohort of patients with Crohn's disease, CCDC88B expression correlates positively with disease risk. These findings suggest that CCDC88B has a critical function in colon inflammation and the pathogenesis of IBD.Hook-related protein family member CCDC88b is encoded by a locus that has been associated with inflammatory bowel disease. Here the authors show that Ccdc88b inactivation in T cells prevents colitis in a transfer model, and detect high colonic levels of CCDC88b in patients with Crohn disease or ulcerative colitis, identifying that expression correlates with disease risk.

  18. Secreted Human Adipose Leptin Decreases Mitochondrial Respiration in HCT116 Colon Cancer Cells

    PubMed Central

    Yehuda-Shnaidman, Einav; Nimri, Lili; Tarnovscki, Tanya; Kirshtein, Boris; Rudich, Assaf; Schwartz, Betty

    2013-01-01

    Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, p<0.05) and maximal (50%, p<0.05) OCR and gene expression of mitochondrial proteins and Bax without affecting cell viability or expression of glycolytic enzymes. Similar changes could be recapitulated by incubating cells with leptin, whereas, leptin-receptor specific antagonist inhibited the reduced OCR induced by conditioned media from obese subjects. We conclude that secreted products from the adipose tissue of obese subjects inhibit mitochondrial respiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues. PMID:24073224

  19. R-Spondin chromosome rearrangements drive Wnt-dependent tumour initiation and maintenance in the intestine.

    PubMed

    Han, Teng; Schatoff, Emma M; Murphy, Charles; Zafra, Maria Paz; Wilkinson, John E; Elemento, Olivier; Dow, Lukas E

    2017-07-11

    Defining the genetic drivers of cancer progression is a key in understanding disease biology and developing effective targeted therapies. Chromosome rearrangements are a common feature of human malignancies, but whether they represent bona fide cancer drivers and therapeutically actionable targets, requires functional testing. Here, we describe the generation of transgenic, inducible CRISPR-based mouse systems to engineer and study recurrent colon cancer-associated EIF3E-RSPO2 and PTPRK-RSPO3 chromosome rearrangements in vivo. We show that both Rspo2 and Rspo3 fusion events are sufficient to initiate hyperplasia and tumour development in vivo, without additional cooperating genetic events. Rspo-fusion tumours are entirely Wnt-dependent, as treatment with an inhibitor of Wnt secretion, LGK974, drives rapid tumour clearance from the intestinal mucosa without effects on normal intestinal crypts. Altogether, our study provides direct evidence that endogenous Rspo2 and Rspo3 chromosome rearrangements can initiate and maintain tumour development, and indicate a viable therapeutic window for LGK974 treatment of RSPO-fusion cancers.

  20. Boletus edulis ribonucleic acid - a potent apoptosis inducer in human colon adenocarcinoma cells.

    PubMed

    Lemieszek, Marta Kinga; Ribeiro, Miguel; Guichard Alves, Helena; Marques, Guilhermina; Nunes, Fernando Milheiro; Rzeski, Wojciech

    2016-07-13

    Despite the large popularity of the Boletus edulis mushroom, little is known about its influence on human health and the possibilities of its therapeutic use. Nevertheless, several reports revealed the usefulness of biopolymers isolated from it in cancer treatment. Our previous studies have shown that B. edulis water soluble biopolymers are not toxic against normal colon epithelial cells (CCD841 CoTr) and at the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells (LS180) which was accompanied with cell cycle arrest in the G0/G1 phase. The purpose of the present study was to verify the proapoptotic properties of a selected fraction from B. edulis - BE3, as well as determine its chemical nature. The BE3 fraction was extracted with hot water and purified by anion-exchange chromatography. Further chemical examinations revealed that BE3 consists mainly of ribonucleic acid (59.1%). The ability of BE3 to induce programmed cell death was examined in human colon cancer cell lines LS180 and HT-29 by measuring caspase activation, DNA fragmentation and expression of BAX, BCL2, TP53 and CDKN1A genes. The sensitivity of colon cancer cells with silenced BAX, TP53 and CDKN1A expression to BE3 treatment was also evaluated. We have demonstrated for the first time that the BE3 fraction is a potent apoptosis inducer in human colon cancer cells. The revealed mechanism of apoptosis triggering was dependent on the presence of functional p53 and consequently was a little different in investigated cell lines. Our results indicated that BE3 stimulated proapoptotic genes BAX (LS180, HT-29), TP53 (LS180) and CDKN1A (HT-29) while at the same time silenced the expression of the key prosurvival gene BCL2 (LS180, HT-29). The obtained results indicate the high therapeutic potential of the BE3 fraction against colon cancer, yet it is necessary to further confirm fraction efficacy and safety in animal and clinical studies.

  1. Aquaporins in the Colon as a New Therapeutic Target in Diarrhea and Constipation

    PubMed Central

    Ikarashi, Nobutomo; Kon, Risako; Sugiyama, Kiyoshi

    2016-01-01

    Aquaporins (AQPs) play important roles in the water transport system in the human body. There are currently 13 types of AQP, AQP0 through AQP12, which are expressed in various organs. Many members of the AQP family are expressed in the intestinal tract. AQP3 is predominantly expressed in the colon, ultimately controlling the water transport. Recently, it was clarified that several laxatives exhibit a laxative effect by changing the AQP3 expression level in the colon. In addition, it was revealed that morphine causes severe constipation by increasing the AQP3 expression level in the colon. These findings have shown that AQP3 is one of the most important functional molecules in water transport in the colon. This review will focus on the physiological and pathological roles of AQP3 in the colon, and discuss clinical applications of colon AQP3. PMID:27447626

  2. Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment.

    PubMed

    Afrin, Sadia; Giampieri, Francesca; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Varela-López, Alfonso; Quiles, José L; Mezzetti, Bruno; Battino, Maurizio

    2016-01-30

    Colon cancer is one of the most prevalent diseases across the world. Numerous epidemiological studies indicate that diets rich in fruit, such as berries, provide significant health benefits against several types of cancer, including colon cancer. The anticancer activities of berries are attributed to their high content of phytochemicals and to their relevant antioxidant properties. In vitro and in vivo studies have demonstrated that berries and their bioactive components exert therapeutic and preventive effects against colon cancer by the suppression of inflammation, oxidative stress, proliferation and angiogenesis, through the modulation of multiple signaling pathways such as NF-κB, Wnt/β-catenin, PI3K/AKT/PKB/mTOR, and ERK/MAPK. Based on the exciting outcomes of preclinical studies, a few berries have advanced to the clinical phase. A limited number of human studies have shown that consumption of berries can prevent colorectal cancer, especially in patients at high risk (familial adenopolyposis or aberrant crypt foci, and inflammatory bowel diseases). In this review, we aim to highlight the findings of berries and their bioactive compounds in colon cancer from in vitro and in vivo studies, both on animals and humans. Thus, this review could be a useful step towards the next phase of berry research in colon cancer.

  3. Development of an Anti-HER2 Monoclonal Antibody H2Mab-139 Against Colon Cancer.

    PubMed

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Kato, Yukinari

    2018-02-01

    Human epidermal growth factor receptor 2 (HER2) expression has been reported in several cancers, such as breast, gastric, lung, pancreatic, and colorectal cancers. HER2 is overexpressed in those cancers and is associated with poor clinical outcomes. Trastuzumab, a humanized anti-HER2 antibody, provides significant survival benefits for patients with HER2-overexpressing breast cancers and gastric cancers. In this study, we developed a novel anti-HER2 monoclonal antibody (mAb), H 2 Mab-139 (IgG 1 , kappa) and investigated it against colon cancers using flow cytometry, western blot, and immunohistochemical analyses. Flow cytometry analysis revealed that H 2 Mab-139 reacted with colon cancer cell lines, such as Caco-2, HCT-116, HCT-15, HT-29, LS 174T, COLO 201, COLO 205, HCT-8, SW1116, and DLD-1. Although H 2 Mab-139 strongly reacted with LN229/HER2 cells on the western blot, we did not observe a specific signal for HER2 in colon cancer cell lines. Immunohistochemical analyses revealed sensitive and specific reactions of H 2 Mab-139 against colon cancers, indicating that H 2 Mab-139 is useful in detecting HER2 overexpression in colon cancers using flow cytometry and immunohistochemical analyses.

  4. Methicillin-resistant Staphylococcus aureus colonization, behavioral risk factors, and skin and soft-tissue infection at an ambulatory clinic serving a large population of HIV-infected men who have sex with men.

    PubMed

    Szumowski, John D; Wener, Kenneth M; Gold, Howard S; Wong, Michael; Venkataraman, Lata; Runde, Carrie A; Cohen, Daniel E; Mayer, Kenneth H; Wright, Sharon B

    2009-07-01

    We conducted a prospective cohort study of 795 outpatients, many of whom were human immunodeficiency virus-infected men who have sex with men, to characterize risk of skin and soft-tissue infection (SSTI) associated with methicillin-resistant Staphylococcus aureus (MRSA) nares and perianal colonization. Multivariate analysis revealed that perianal colonization, drug use, and prior SSTIs were strongly associated with development of an SSTI. Of the patients who were colonized with MRSA at study entry, 36.7% developed an SSTI during the ensuing 12 months, compared with 8.1% of persons who were not colonized with MRSA.

  5. Human paleoecological integration in subarctic eastern Beringia

    NASA Astrophysics Data System (ADS)

    Lanoë, François B.; Reuther, Joshua D.; Holmes, Charles E.; Hodgins, Gregory W. L.

    2017-11-01

    We contribute to the understanding of megafauna extinction and human dispersal in subarctic eastern Beringia by focusing on changes in the trophic dynamics of the large mammal community as well as the ecological role of humans as a predator and competitor. We reconstruct habitat use by megafauna and humans throughout the Pleistocene-Holocene boundary based on zooarchaeological data and stable isotope ratios of collagen. Our results are consistent with habitat heterogeneity and availability being important factors in the changing abundance of large herbivores. We argue that an increase in herbivore diversity and biomass at the beginning of the Bølling-Allerød interstadial and a relative lack of competitors favored the initial human colonization of subarctic eastern Beringia. As herbivore resources dwindled later in the Late Glacial, people increasingly relied on bison and wapiti. By efficiently extracting some of the highest-ranked resources in the landscape, people are likely to have contributed to the trophic displacement or regional extirpation of other large predators. The ecological patterns that we observe in subarctic eastern Beringia are consistent with a mixture of both top-down and bottom-up controls over biotic turnover.

  6. A novel dissolution media for testing drug release from a nanostructured polysaccharide-based colon specific drug delivery system: an approach to alternative colon media.

    PubMed

    Kotla, Niranjan G; Singh, Sima; Maddiboyina, Balaji; Sunnapu, Omprakash; Webster, Thomas J

    2016-01-01

    The aim of this study was to develop a novel microbially triggered and animal-sparing dissolution method for testing of nanorough polysaccharide-based micron granules for colonic drug delivery. In this method, probiotic cultures of bacteria present in the colonic region were prepared and added to the dissolution media and compared with the performance of conventional dissolution methodologies (such as media with rat cecal and human fecal media). In this study, the predominant species (such as Bacteroides, Bifidobacterium, Lactobacillus species, Eubacterium and Streptococcus) were cultured in 12% w/v skimmed milk powder and 5% w/v grade "A" honey. Approximately 10(10)-10(11) colony forming units m/L of probiotic culture was added to the dissolution media to test the drug release of polysaccharide-based formulations. A USP dissolution apparatus I/II using a gradient pH dissolution method was used to evaluate drug release from formulations meant for colonic drug delivery. Drug release of guar gum/Eudragit FS30D coated 5-fluorouracil granules was assessed under gastric and small intestine conditions within a simulated colonic environment involving fermentation testing with the probiotic culture. The results with the probiotic system were comparable to those obtained from the rat cecal and human fecal-based fermentation model, thereby suggesting that a probiotic dissolution method can be successfully applied for drug release testing of any polysaccharide-based oral formulation meant for colonic delivery. As such, this study significantly adds to the nanostructured biomaterials' community by elucidating an easier assay for colonic drug delivery.

  7. Colonization of Ireland: revisiting 'the pygmy shrew syndrome' using mitochondrial, Y chromosomal and microsatellite markers.

    PubMed

    McDevitt, A D; Vega, R; Rambau, R V; Yannic, G; Herman, J S; Hayden, T J; Searle, J B

    2011-12-01

    There is great uncertainty about how Ireland attained its current fauna and flora. Long-distance human-mediated colonization from southwestern Europe has been seen as a possible way that Ireland obtained many of its species; however, Britain has (surprisingly) been neglected as a source area for Ireland. The pygmy shrew has long been considered an illustrative model species, such that the uncertainty of the Irish colonization process has been dubbed 'the pygmy shrew syndrome'. Here, we used new genetic data consisting of 218 cytochrome (cyt) b sequences, 153 control region sequences, 17 Y-intron sequences and 335 microsatellite multilocus genotypes to distinguish between four possible hypotheses for the colonization of the British Isles, formulated in the context of previously published data. Cyt b sequences from western Europe were basal to those found in Ireland, but also to those found in the periphery of Britain and several offshore islands. Although the central cyt b haplotype in Ireland was found in northern Spain, we argue that it most likely occurred in Britain also, from where the pygmy shrew colonized Ireland as a human introduction during the Holocene. Y-intron and microsatellite data are consistent with this hypothesis, and the biological traits and distributional data of pygmy shrews argue against long-distance colonization from Spain. The compact starburst of the Irish cyt b expansion and the low genetic diversity across all markers strongly suggests a recent colonization. This detailed molecular study of the pygmy shrew provides a new perspective on an old colonization question.

  8. Colonization of Ireland: revisiting ‘the pygmy shrew syndrome' using mitochondrial, Y chromosomal and microsatellite markers

    PubMed Central

    McDevitt, A D; Vega, R; Rambau, R V; Yannic, G; Herman, J S; Hayden, T J; Searle, J B

    2011-01-01

    There is great uncertainty about how Ireland attained its current fauna and flora. Long-distance human-mediated colonization from southwestern Europe has been seen as a possible way that Ireland obtained many of its species; however, Britain has (surprisingly) been neglected as a source area for Ireland. The pygmy shrew has long been considered an illustrative model species, such that the uncertainty of the Irish colonization process has been dubbed ‘the pygmy shrew syndrome'. Here, we used new genetic data consisting of 218 cytochrome (cyt) b sequences, 153 control region sequences, 17 Y-intron sequences and 335 microsatellite multilocus genotypes to distinguish between four possible hypotheses for the colonization of the British Isles, formulated in the context of previously published data. Cyt b sequences from western Europe were basal to those found in Ireland, but also to those found in the periphery of Britain and several offshore islands. Although the central cyt b haplotype in Ireland was found in northern Spain, we argue that it most likely occurred in Britain also, from where the pygmy shrew colonized Ireland as a human introduction during the Holocene. Y-intron and microsatellite data are consistent with this hypothesis, and the biological traits and distributional data of pygmy shrews argue against long-distance colonization from Spain. The compact starburst of the Irish cyt b expansion and the low genetic diversity across all markers strongly suggests a recent colonization. This detailed molecular study of the pygmy shrew provides a new perspective on an old colonization question. PMID:21673740

  9. A novel coating concept for ileo-colonic drug targeting: proof of concept in humans using scintigraphy.

    PubMed

    Varum, F J O; Hatton, G B; Freire, A C; Basit, A W

    2013-08-01

    The in vivo proof of concept of a novel double-coating system, based on enteric polymers, which accelerated drug release in the ileo-colonic region, was investigated in humans. Prednisolone tablets were coated with a double-coating formulation by applying an inner layer composed of EUDRAGIT S neutralised to pH 8.0 and a buffer salt (10% KH₂PO₄), which was overcoated with layer of standard EUDRAGIT S organic solution. For comparison, a single coating system was produced by applying the same amount of EUDRAGIT S organic solution on the tablet cores. Dissolution tests on the tablets were carried out using USP II apparatus in 0.1N HCl for 2 h and subsequently in pH 7.4 Krebs bicarbonate buffer. For comparison, tablets were also tested under the USP method established for modified release mesalamine formulations. Ten fasted volunteers received the double-coated and single-coated tablets in a two-way crossover study. The formulations were radiolabelled and followed by gamma scintigraphy; the disintegration times and positions were recorded. There was no drug release from the single-coated or double-coated tablets in 0.1N HCl for 2h. The single-coated tablets showed slow release in subsequent Krebs bicarbonate buffer with a lag time of 120 min, while in contrast drug release from the double-coated tablets was initiated at 60 min. In contrast, using the USP dissolution method, normally employed for modified release mesalamine products, no discrimination was attained. The in vivo disintegration of the single-coated EUDRAGIT S tablets in the large intestine was erratic. Furthermore, in 2 volunteers, the single-coated tablet was voided intact. Double-coated tablets disintegrated in a more consistent way, mainly in the ileo-caecal junction or terminal ileum. The accelerated in vivo disintegration of the double-coating EUDRAGIT S system can overcome the limitations of conventional enteric coatings targeting the colon and avoid the pass-through of intact tablets. Moreover, Krebs bicarbonate buffer has the ability to discriminate between formulations designed to target the ileo-colonic region. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Ampelopsin-induced reactive oxygen species enhance the apoptosis of colon cancer cells by activating endoplasmic reticulum stress-mediated AMPK/MAPK/XAF1 signaling

    PubMed Central

    Park, Ga Bin; Jeong, Jee-Yeong; Kim, Daejin

    2017-01-01

    Ampelopsin (Amp) is bioactive natural product and exerts anti-cancer effects against several cancer types. The present study investigated the anti-colon cancer activity of Amp and explored its mechanism of action. The treatment of colon cancer cells with Amp resulted in the dose- and time-dependent induction of apoptosis via the activation of endoplasmic reticulum (ER) stress, 5′ adenosine monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal protein kinase (JNK)/p38 mitogen-activated protein kinases (MAPKs). Salubrinal, an ER stress inhibitor, prevented the upregulation of ER stress-associated proteins, including phosphorylated protein kinase RNA-like ER kinase, phosphorylated eukaryotic translation initiation factor 2α, glucose-regulated protein 78, and CCAAT/enhancer-binding protein homologous protein, as well as suppressing AMPK activation and the MAPK signaling pathway. Knockdown of AMPK by RNA interference failed to block ER stress. Additionally, SP600125 (a JNK inhibitor) and SB203580 (a p38-MAPK inhibitor) effectively inhibited apoptosis and attenuated the expression of X-linked IAP-associated factor 1 (XAF1) and apoptotic Bcl-2 family proteins (BCL2 antagonist/killer 1 and BCL2-associated X protein) in Amp-treated colon cancer cells. Furthermore, reactive oxygen species (ROS)-mediated ER stress/AMPK apoptotic signaling pathway in Amp-treated colon cancer cells were markedly inhibited by treatment with N-acetyl-L-cysteine, a ROS scavenger. These results demonstrate that treatment with Amp induces the apoptotic death of colon cancer cells through ER stress-initiated AMPK/MAPK/XAF1 signaling. These results also provide experimental information for developing Amp as therapeutic drug against colon cancer. PMID:29250183

  11. Diverticular disease of the colon does not increase risk of repeat C. difficile infection.

    PubMed

    Feuerstadt, Paul; Das, Rohit; Brandt, Lawrence J

    2013-01-01

    Studies have suggested that colonic diverticulosis might increase the likelihood of repeat Clostridium difficile infection (CDI). Our study was designed to compare rates of repeat infection in patients with and without colon diverticula. Patients who had a positive C. difficile toxin assay and colonoscopic evidence of diverticulosis were classified as CDI and diverticulosis (CDI-D), whereas those with a positive toxin assay but no such colonoscopic evidence were classified as CDI and no diverticulosis (CDI-ND). Various clinical and epidemiologic factors were recorded for each patient. Primary outcomes were "relapse" (repeat CDI within 3 mo of initial infection) and "recurrent" infection (repeat CDI≥3 mo after initial infection). Secondary outcomes 30 days after diagnosis were mortality, intensive care unit transfer, and continuous hospitalization. A total of 128 patients were classified as CDI-D, whereas 137 had CDI-ND. There were no significant differences between CDI-D and CDI-ND when comparing frequencies of repeat infection and its subclassifications, relapse or recurrence. There were, however, statistical associations seen between diverticulosis of the ascending colon and increased recurrence rates [hazard ratio (HR): 1.4±0.38, P<0.05] and decreased rates of relapse in diverticular disease of the descending (HR: 0.40±0.46, P<0.05), and sigmoid colon (HR: 0.39±0.49, P<0.05). The ascending colon association is limited by a small patient population. There were no significant differences in any of the 30-day outcomes including intensive care unit requirement, hospitalization stay, or mortality. Patients with diverticular disease of the colon are not at increased risk of repeat CDI.

  12. Genes related to antioxidant metabolism are involved in Methylobacterium mesophilicum-soybean interaction.

    PubMed

    Araújo, Welington Luiz; Santos, Daiene Souza; Dini-Andreote, Francisco; Salgueiro-Londoño, Jennifer Katherine; Camargo-Neves, Aline Aparecida; Andreote, Fernando Dini; Dourado, Manuella Nóbrega

    2015-10-01

    The genus Methylobacterium is composed of pink-pigmented methylotrophic bacterial species that are widespread in natural environments, such as soils, stream water and plants. When in association with plants, this genus colonizes the host plant epiphytically and/or endophytically. This association is known to promote plant growth, induce plant systemic resistance and inhibit plant infection by phytopathogens. In the present study, we focused on evaluating the colonization of soybean seedling-roots by Methylobacterium mesophilicum strain SR1.6/6. We focused on the identification of the key genes involved in the initial step of soybean colonization by methylotrophic bacteria, which includes the plant exudate recognition and adaptation by planktonic bacteria. Visualization by scanning electron microscopy revealed that M. mesophilicum SR1.6/6 colonizes soybean roots surface effectively at 48 h after inoculation, suggesting a mechanism for root recognition and adaptation before this period. The colonization proceeds by the development of a mature biofilm on roots at 96 h after inoculation. Transcriptomic analysis of the planktonic bacteria (with plant) revealed the expression of several genes involved in membrane transport, thus confirming an initial metabolic activation of bacterial responses when in the presence of plant root exudates. Moreover, antioxidant genes were mostly expressed during the interaction with the plant exudates. Further evaluation of stress- and methylotrophic-related genes expression by qPCR showed that glutathione peroxidase and glutathione synthetase genes were up-regulated during the Methylobacterium-soybean interaction. These findings support that glutathione (GSH) is potentially a key molecule involved in cellular detoxification during plant root colonization. In addition to methylotrophic metabolism, antioxidant genes, mainly glutathione-related genes, play a key role during soybean exudate recognition and adaptation, the first step in bacterial colonization.

  13. Cloning and characterization of an adenoviral vector for highly efficient and doxycycline – suppressible expression of bioactive human single – chain interleukin 12 in colon cancer

    PubMed Central

    Wulff, Holger; Krieger, Thorsten; Krüger, Karen; Stahmer, Ingrid; Thaiss, Friedrich; Schäfer, Hansjörg; Block, Andreas

    2007-01-01

    Background Interleukin-12 (IL-12) is well characterized to induce cellular antitumoral immunity by activation of NK-cells and T-lymphocytes. However, systemic administration of recombinant human IL-12 resulted in severe toxicity without perceptible therapeutic benefit. Even though intratumoral expression of IL-12 leads to tumor regression and long-term survival in a variety of animal models, clinical trials have not yet shown a significant therapeutic benefit. One major obstacle in the treatment with IL-12 is to overcome the relatively low expression of the therapeutic gene without compromising the safety of such an approach. Our objective was to generate an adenoviral vector system enabling the regulated expression of very high levels of bioactive, human IL-12. Results High gene expression was obtained utilizing the VP16 herpes simplex transactivator. Strong regulation of gene expression was realized by fusion of the VP16 to a tetracycline repressor with binding of the fusion protein to a flanking tetracycline operator and further enhanced by auto-regulated expression of its fusion gene within a bicistronic promoter construct. Infection of human colon cancer cells (HT29) at a multiplicity of infection (m.o.i.) of 10 resulted in the production of up to 8000 ng/106 cells in 48 h, thus exceeding any published vector system so far. Doxycycline concentrations as low as 30 ng/ml resulted in up to 5000-fold suppression, enabling significant reduction of gene expression in a possible clinical setting. Bioactivity of the human single-chain IL-12 was similar to purified human heterodimeric IL-12. Frozen sections of human colon cancer showed high expression of the coxsackie adenovirus receptor with significant production of human single chain IL-12 in colon cancer biopsies after infection with 3*107 p.f.u. Ad.3r-scIL12. Doxycycline mediated suppression of gene expression was up to 9000-fold in the infected colon cancer tissue. Conclusion VP16 transactivator-mediated and doxycycline-regulated expression of the human interleukin-12 gene enables highly efficient and tightly controlled cytokine expression in human cancer. These data illustrate the potential of the described adenoviral vector system for the safe and superior expression of therapeutic genes in the treatment of colorectal cancer and other malignancies. PMID:17594499

  14. In Vivo Efficacy of Umbilical Cord Blood Stem Cell-Derived NK Cells in the Treatment of Metastatic Colorectal Cancer.

    PubMed

    Veluchamy, John P; Lopez-Lastra, Silvia; Spanholtz, Jan; Bohme, Fenna; Kok, Nina; Heideman, Daniëlle A M; Verheul, Henk M W; Di Santo, James P; de Gruijl, Tanja D; van der Vliet, Hans J

    2017-01-01

    Therapeutic monoclonal antibodies against the epidermal growth factor receptor (EGFR) act by inhibiting EGFR downstream signaling and by eliciting a natural killer (NK) cell-mediated antitumor response. The IgG 1 mAb cetuximab has been used for treatment of RAS wt metastatic colorectal cancer (mCRC) patients, showing limited efficacy. In the present study, we address the potential of adoptive NK cell therapy to overcome these limitations investigating two allogeneic NK cell products, i.e., allogeneic activated peripheral blood NK cells (A-PBNK) and umbilical cord blood stem cell-derived NK cells (UCB-NK). While cetuximab monotherapy was not effective against EGFR - RAS wt , EGFR + RAS mut , and EGFR + BRAF mut cells, A-PBNK were able to initiate lysis of EGFR + colon cancer cells irrespective of RAS or BRAF status. Cytotoxic effects of A-PBNK (but not UCB-NK) were further potentiated significantly by coating EGFR + colon cancer cells with cetuximab. Of note, a significantly higher cytotoxicity was induced by UCB-NK in EGFR - RAS wt (42 ± 8 versus 67 ± 7%), EGFR + RAS mut (20 ± 2 versus 37 ± 6%), and EGFR + BRAF mut (23 ± 3 versus 43 ± 7%) colon cancer cells compared to A-PBNK and equaled the cytotoxic efficacy of the combination of A-PBNK and cetuximab. The antitumor efficacy of UCB-NK cells against cetuximab-resistant human EGFR + RAS mut colon cancer cells was further confirmed in an in vivo preclinical mouse model where UCB-NK showed enhanced antitumor cytotoxicity against colon cancer independent of EGFR and RAS status. As UCB-NK have been proven safe in a recently conducted phase I clinical trial in acute myeloid leukemia, a fast translation into clinical proof of concept for mCRC could be considered.

  15. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    PubMed

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  16. Fungi in the healthy human gastrointestinal tract

    PubMed Central

    Hallen-Adams, Heather E.; Suhr, Mallory J.

    2017-01-01

    ABSTRACT Many species of fungi have been detected in the healthy human gut; however, nearly half of all taxa reported have only been found in one sample or one study. Fungi capable of growing in and colonizing the gut are limited to a small number of species, mostly Candida yeasts and yeasts in the family Dipodascaceae (Galactomyces, Geotrichum, Saprochaete). Malassezia and the filamentous fungus Cladosporium are potential colonizers; more work is needed to clarify their role. Other commonly-detected fungi come from the diet or environment but either cannot or do not colonize (Penicillium and Debaryomyces species, which are common on fermented foods but cannot grow at human body temperature), while still others have dietary or environmental sources (Saccharomyces cerevisiae, a fermentation agent and sometime probiotic; Aspergillus species, ubiquitous molds) yet are likely to impact gut ecology. The gut mycobiome appears less stable than the bacterial microbiome, and is likely subject to environmental factors. PMID:27736307

  17. Fungi in the healthy human gastrointestinal tract.

    PubMed

    Hallen-Adams, Heather E; Suhr, Mallory J

    2017-04-03

    Many species of fungi have been detected in the healthy human gut; however, nearly half of all taxa reported have only been found in one sample or one study. Fungi capable of growing in and colonizing the gut are limited to a small number of species, mostly Candida yeasts and yeasts in the family Dipodascaceae (Galactomyces, Geotrichum, Saprochaete). Malassezia and the filamentous fungus Cladosporium are potential colonizers; more work is needed to clarify their role. Other commonly-detected fungi come from the diet or environment but either cannot or do not colonize (Penicillium and Debaryomyces species, which are common on fermented foods but cannot grow at human body temperature), while still others have dietary or environmental sources (Saccharomyces cerevisiae, a fermentation agent and sometime probiotic; Aspergillus species, ubiquitous molds) yet are likely to impact gut ecology. The gut mycobiome appears less stable than the bacterial microbiome, and is likely subject to environmental factors.

  18. Pathogen-mediated manipulation of arthropod microbiota to promote infection

    PubMed Central

    Abraham, Nabil M.; Liu, Lei; Jutras, Brandon Lyon; Yadav, Akhilesh K.; Narasimhan, Sukanya; Gopalakrishnan, Vissagan; Ansari, Juliana M.; Jefferson, Kimberly K.; Cava, Felipe; Jacobs-Wagner, Christine; Fikrig, Erol

    2017-01-01

    Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier—critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal d-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector. PMID:28096373

  19. Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer

    PubMed Central

    Fancy, Stephen P.J.; Harrington, Emily P.; Baranzini, Sergio E.; Silbereis, John C.; Shiow, Lawrence R.; Yuen, Tracy J.; Huang, Eric J.; Lomvardas, Stavros; Rowitch, David H.

    2014-01-01

    In colon cancer, mutation of the Wnt repressor Adenomatous polyposis coli (APC) leads to a state of aberrant and unrestricted “high-activity” signaling. However, relevance of high Wnt tone in non-genetic human disease is unknown. Here we demonstrate that distinct Wnt activity functional states determine oligodendrocyte precursor (OPC) differentiation and myelination. Murine OPCs with genetic Wnt dysregulation (high tone) express multiple genes in common with colon cancer including Lef1, SP5, Ets2, Rnf43 and Dusp4. Surprisingly, we find that OPCs in lesions of hypoxic human neonatal white matter injury upregulate markers of high Wnt activity and lack expression of APC. Finally, we show lack of Wnt repressor tone promotes permanent white matter injury after mild hypoxic insult. These findings suggest a state of pathological high-activity Wnt signaling in human disease tissues that lack pre-disposing genetic mutation. PMID:24609463

  20. Diabetes-induced mechanophysiological changes in the small intestine and colon

    PubMed Central

    Zhao, Mirabella; Liao, Donghua; Zhao, Jingbo

    2017-01-01

    The disorders of gastrointestinal (GI) tract including intestine and colon are common in the patients with diabetes mellitus (DM). DM induced intestinal and colonic structural and biomechanical remodeling in animals and humans. The remodeling is closely related to motor-sensory abnormalities of the intestine and colon which are associated with the symptoms frequently encountered in patients with DM such as diarrhea and constipation. In this review, firstly we review DM-induced histomorphological and biomechanical remodeling of intestine and colon. Secondly we review motor-sensory dysfunction and how they relate to intestinal and colonic abnormalities. Finally the clinical consequences of DM-induced changes in the intestine and colon including diarrhea, constipation, gut microbiota change and colon cancer are discussed. The final goal is to increase the understanding of DM-induced changes in the gut and the subsequent clinical consequences in order to provide the clinicians with a better understanding of the GI disorders in diabetic patients and facilitates treatments tailored to these patients. PMID:28694926

  1. Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents.

    PubMed

    Schenk, John J; Rowe, Kevin C; Steppan, Scott J

    2013-11-01

    Why some clades are more species-rich than others is a central question in macroevolution. Most hypotheses explaining exceptionally diverse clades involve the emergence of an ecological opportunity caused by a major biogeographic transition or evolution of a key innovation. The radiation of muroid rodents is an ideal model for testing theories of diversification rates in relation to biogeography and ecological opportunity because the group is exceptionally species-rich (comprising nearly one-third of all mammal species), it is ecologically diverse, and it has colonized every major landmass except New Zealand and Antarctica, thus providing multiple replicate radiations. We present an extension of the conventional ecological opportunity model to include a geographic incumbency effect, develop the largest muroid phylogeny to date, and use this phylogeny to test the new model. The nearly 300-species phylogeny based on four nuclear genes is robustly resolved throughout. Consistent with the fossil record, we identified Eurasia as the most likely origin of the group and reconstructed five to seven colonizations of Africa, five of North America, four of Southeast Asia, two of South America, two of Sahul, one of Madagascar, and eight to ten recolonizations of Eurasia. We accounted for incomplete taxon sampling by using multiple statistical methods and identified three corroborated regions of the tree with significant shifts in diversification rates. In several cases, higher rates were associated with the first colonization of a continental area, but most colonizations were not followed by bursts of speciation. We found strong evidence for diversification consistent with the ecological opportunity model (initial burst followed by density-dependent slowdown) in the first colonization of South America and partial support for this model in the first colonization of Sahul. Primary colonizers appear to inhibit the ultimate diversity of secondary colonizers, a pattern of incumbency that is consistent with ecological opportunity, but they did not inhibit initial diversification rates of secondary colonizers. These results indicate that ecological opportunity may be a general but weak process in muroids and one that requires specific circumstances to lead to an adaptive radiation. The total land area, length of time between colonizations, and rank of colonizations did not influence the diversification rates of primary colonizers. Models currently employed to test ecological opportunity do a poor job of explaining muroid diversity. In addition, the various rate-shift metrics identified different clades, suggesting that caution should be used when only one is applied, and we discuss which methods are most appropriate to address different questions of diversification.

  2. Structural features of soluble cereal arabinoxylan fibers associated with a slow rate of in vitro fermentation by human fecal microbiota.

    PubMed

    Rumpagaporn, Pinthip; Reuhs, Brad L; Kaur, Amandeep; Patterson, John A; Keshavarzian, Ali; Hamaker, Bruce R

    2015-10-05

    Most soluble dietary fibers ferment rapidly in the proximal colon, potentially causing discomfort and poor tolerability. Alkali-extracted arabinoxylan isolates from corn, wheat, rice and sorghum brans were prepared, through hydrolysis (except sorghum) and ethanol fractionation, to have a broad range of initial fermentation rates, and their linkage patterns were determined to understand structural aspects related to slow fermentation rate. They were all highly branched polymers with degree of substitution greater than 64%. There was no relationship of molecular mass, arabinose:xylose ratio, or degree of substitution to fermentation rate patterns. Slow fermenting wheat and corn arabinoxylans had much higher amount of terminal xylose in branches than fast fermenting rice and sorghum arabinoxylans. The slowest fermenting wheat arabinoxylan additionally contained a complex trisaccharide side chain with two arabinoses linked at the O-2 and O-3 positions of an arabinose that is O-2 linked to the xylan backbone. Structural features were proposed for tolerable slowly fermentable arabinoxylan with possible beneficial fermentation function into the distal colon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Inactivation of the Mismatch Repair System in Pseudomonas aeruginosa Attenuates Virulence but Favors Persistence of Oropharyngeal Colonization in Cystic Fibrosis Mice▿

    PubMed Central

    Mena, Ana; Maciá, María D.; Borrell, Nuria; Moya, Bartolomé; de Francisco, Teresa; Pérez, José L.; Oliver, Antonio

    2007-01-01

    The inactivation of the mismatch repair (MMR) system of Pseudomonas aeruginosa modestly reduced in vitro fitness, attenuated virulence in murine models of acute systemic and respiratory infections, and decreased the initial oropharyngeal colonization potential. In contrast, the inactivation of the MMR system favored long-term persistence of oropharyngeal colonization in cystic fibrosis mice. These results may help in understanding the reasons for the low and high prevalences, respectively, of hypermutable P. aeruginosa strains in acute and chronic infections. PMID:17307847

  4. Radiologic Placement of Uncovered Stents for the Treatment of Malignant Colonic Obstruction Proximal to the Descending Colon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jehong; Kwon, Se Hwan, E-mail: Kwon98@khu.ac.kr; Lee, Chang-Kyun

    PurposeTo evaluate the safety, feasibility, and patency rates of radiologic placement of uncovered stents for the treatment of malignant colonic obstruction proximal to the descending colon.Materials and MethodsThis was a retrospective, single-center study. From May 2003 to March 2015, 53 image-guided placements of uncovered stents (44 initial placements, 9 secondary placements) were attempted in 44 patients (male:female = 23:21; mean age, 71.8 years). The technical and clinical success, complication rates, and patency rates of the stents were also evaluated. Technical success was defined as the successful deployment of the stent under fluoroscopic guidance alone and clinical success was defined as the relief of obstructivemore » symptoms or signs within 48 h of stent deployment.ResultsIn total, 12 (27.3 %) patients underwent preoperative decompression, while 32 (72.7 %) underwent decompression with palliative intent. The technical success rate was 93.2 % (41/44) for initial placement and 88.9 % (8/9) for secondary placement. Secondary stent placement in the palliative group was required in nine patients after successful initial stent placement due to stent obstruction from tumor ingrowth (n = 7) and stent migration (n = 2). The symptoms of obstruction were relieved in all successful cases (100 %). In the palliative group, the patency rates were 94.4 % at 1 month, 84.0 % at 3 months, 64.8 % at 6 months, and 48.6 % at 12 months.ConclusionsThe radiologic placement of uncovered stents for the treatment of malignant obstruction proximal to the descending colon is feasible and safe, and provides acceptable clinical results.« less

  5. Human disturbance and stage-specific habitat requirements influence snowy plover site occupancy during the breeding season

    PubMed Central

    Webber, Alyson F; Heath, Julie A; Fischer, Richard A

    2013-01-01

    Habitat use has important consequences for avian reproductive success and survival. In coastal areas with recreational activity, human disturbance may limit use of otherwise suitable habitat. Snowy plovers Charadrius nivosus have a patchy breeding distribution along the coastal areas on the Florida Panhandle, USA. Our goal was to determine the relative effects of seasonal human disturbance and habitat requirements on snowy plover habitat use. We surveyed 303 sites for snowy plovers, human disturbance, and habitat features between January and July 2009 and 2010. We made multiple visits during three different sampling periods that corresponded to snowy plover breeding: pre-breeding, incubation, and brood-rearing and used multi-season occupancy models to examine whether human disturbance, habitat features, or both influenced site occupancy, colonization (probability of transition from an unoccupied site to an occupied site), and extinction (probability of transition from an occupied site to an unoccupied site). Snowy plover site occupancy and colonization was negatively associated with human disturbance and site extinction was positively associated with human disturbance. Interdune vegetation had a negative effect on occupancy and colonization, indicating that plovers were less likely to use areas with uniform, dense vegetation among dunes. Also, dune shape, beach debris, and access to low-energy foraging areas influenced site occupancy, colonization, and extinction. Plovers used habitat based on beach characteristics that provided stage-specific resource needs; however, human disturbance was the strongest predictor of site occupancy. In addition, vegetation plantings used to enhance dune rehabilitation may negatively impact plover site occupancy. Management actions that decrease human disturbance, such as symbolic fencing and signage, may increase the amount of breeding habitat available to snowy plovers on the Florida Panhandle and in other areas with high human activity. The specific areas that require this protection may vary across snowy plover life history stages. PMID:23610630

  6. Influence of human milk oligosaccharides on adherence of bifidobacteria and clostridia to cell lines.

    PubMed

    Musilova, Sarka; Modrackova, Nikol; Doskocil, Ivo; Svejstil, Roman; Rada, Vojtech

    2017-12-01

    Adhesion of gut bacteria to the intestinal epithelium is the first step in their colonization of the neonatal immature gut. Bacterial colonization of the infant gut is influenced by several factors, of which the most important are the mode of delivery and breast-feeding. Breast-fed infants ingest several grams of human milk oligosaccharides (HMOs) per day, which can become receptor decoys for intestinal bacteria. The most abundant intestinal bacteria in vaginally delivered infants are bifidobacteria, whereas infants born by cesarean section are colonized by clostridia. The influence of HMOs on the adhesion of five strains of intestinal bacteria (three bifidobacterial strains and two clostridial strains) to mucus-secreting and non-mucus-secreting human epithelial cells was investigated. Bifidobacterium bifidum 1 and Bifidobacterium longum displayed almost the same level of adhesion in the presence and absence of HMOs. By contrast, adhesion of Clostridium butyricum 1 and 2 decreased from 14.41% to 6.72% and from 41.54% to 30.91%, respectively, in the presence of HMOs. The results of this study indicate that HMOs affect bacterial adhesion and are an important factor influencing bacterial colonization of the gut. Adhesion of the tested bacteria correlates with their ability to autoaggregate.

  7. Human α-amylase present in lower-genital-tract mucosal fluid processes glycogen to support vaginal colonization by Lactobacillus.

    PubMed

    Spear, Gregory T; French, Audrey L; Gilbert, Douglas; Zariffard, M Reza; Mirmonsef, Paria; Sullivan, Thomas H; Spear, William W; Landay, Alan; Micci, Sandra; Lee, Byung-Hoo; Hamaker, Bruce R

    2014-10-01

    Lactobacillus colonization of the lower female genital tract provides protection from the acquisition of sexually transmitted diseases, including human immunodeficiency virus, and from adverse pregnancy outcomes. While glycogen in vaginal epithelium is thought to support Lactobacillus colonization in vivo, many Lactobacillus isolates cannot utilize glycogen in vitro. This study investigated how glycogen could be utilized by vaginal lactobacilli in the genital tract. Several Lactobacillus isolates were confirmed to not grow in glycogen, but did grow in glycogen-breakdown products, including maltose, maltotriose, maltopentaose, maltodextrins, and glycogen treated with salivary α-amylase. A temperature-dependent glycogen-degrading activity was detected in genital fluids that correlated with levels of α-amylase. Treatment of glycogen with genital fluids resulted in production of maltose, maltotriose, and maltotetraose, the major products of α-amylase digestion. These studies show that human α-amylase is present in the female lower genital tract and elucidates how epithelial glycogen can support Lactobacillus colonization in the genital tract. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Spatiotemporal microbiota dynamics from quantitative in vitro and in silico models of the gut

    NASA Astrophysics Data System (ADS)

    Hwa, Terence

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth behaviors, which ultimately dictate the gut microbiota composition. Combining measurements of bacterial growth physiology with analysis of published data on human physiology into a quantitative modeling framework, we show how hydrodynamic forces in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla in the gut. Our model quantitatively explains the observed variation of microbiota composition among healthy adults, and predicts colonic water absorption (manifested as stool consistency) and nutrient intake to be two key factors determining this composition. The model further reveals that both factors, which have been identified in recent correlative studies, exert their effects through the same mechanism: changes in colonic pH that differentially affect the growth of different bacteria. Our findings show that a predictive and mechanistic understanding of microbial ecology in the human gut is possible, and offer the hope for the rational design of intervention strategies to actively control the microbiota. This work is supported by the Bill and Melinda Gates Foundation.

  9. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive.

    PubMed

    Thibodeau, Alexandre; Fravalo, Philippe; Yergeau, Étienne; Arsenault, Julie; Lahaye, Ludovic; Letellier, Ann

    2015-01-01

    Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 10(9) CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05). Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome.

  10. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive

    PubMed Central

    Thibodeau, Alexandre; Fravalo, Philippe; Yergeau, Étienne; Arsenault, Julie; Lahaye, Ludovic; Letellier, Ann

    2015-01-01

    Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 109 CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05). Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome. PMID:26161743

  11. Digestion of Human Milk Oligosaccharides by Bifidobacterium breve in the Premature Infant.

    PubMed

    Underwood, Mark A; Davis, Jasmine C C; Kalanetra, Karen M; Gehlot, Sanjay; Patole, Sanjay; Tancredi, Daniel J; Mills, David A; Lebrilla, Carlito B; Simmer, Karen

    2017-10-01

    The aim of this study was to measure consumption and absorption of human milk oligosaccharides (HMOs) in a cohort of premature infants treated with probiotic Bifidobacterium breve. Twenty-nine premature infants (median gestational age 28 weeks, range 23-32 weeks) cared for in the neonatal intensive care unit of the King Edward and Princess Margaret Hospital in Perth, Australia, were treated with B breve at a dose of 1.66 billion organisms per day. Samples of feces, urine, and milk were obtained at initiation of the probiotic and again 3 weeks later. 16S ribosomal RNA from the feces was analyzed by next-generation sequencing. Quantitation of HMO content of the milk, urine, and feces was performed using nano-high-performance liquid chromatography-chip/time-of-flight mass spectrometry. There was heterogeneity in colonization with bifidobacteria. "Responders" received milk with higher percentages of fucosylated HMOs and had higher percentages of bifidobacteria and lower percentages of Enterobacteriaceae in their feces than "nonresponders." Several individual HMOs in the milk were associated with changes in fecal bifidobacteria over time. Changes over time in milk, fecal, and urine HMOs suggested heterogeneity among HMO structures in consumption by microbes in the gut lumen and absorption from the intestine. Colonization of the premature infant intestinal tract with probiotic B breve is influenced by prebiotic HMOs. B breve is a selective consumer of HMOs in the premature infant.

  12. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection

    PubMed Central

    Fanning, Saranna; Hall, Lindsay J.; Cronin, Michelle; Zomer, Aldert; MacSharry, John; Goulding, David; O'Connell Motherway, Mary; Shanahan, Fergus; Nally, Kenneth; Dougan, Gordon; van Sinderen, Douwe

    2012-01-01

    Bifidobacteria comprise a significant proportion of the human gut microbiota. Several bifidobacterial strains are currently used as therapeutic interventions, claiming various health benefits by acting as probiotics. However, the precise mechanisms by which they maintain habitation within their host and consequently provide these benefits are not fully understood. Here we show that Bifidobacterium breve UCC2003 produces a cell surface-associated exopolysaccharide (EPS), the biosynthesis of which is directed by either half of a bidirectional gene cluster, thus leading to production of one of two possible EPSs. Alternate transcription of the two opposing halves of this cluster appears to be the result of promoter reorientation. Surface EPS provided stress tolerance and promoted in vivo persistence, but not initial colonization. Marked differences were observed in host immune response: strains producing surface EPS (EPS+) failed to elicit a strong immune response compared with EPS-deficient variants. Specifically, EPS production was shown to be linked to the evasion of adaptive B-cell responses. Furthermore, presence of EPS+ B. breve reduced colonization levels of the gut pathogen Citrobacter rodentium. Our data thus assigns a pivotal and beneficial role for EPS in modulating various aspects of bifidobacterial–host interaction, including the ability of commensal bacteria to remain immunologically silent and in turn provide pathogen protection. This finding enforces the probiotic concept and provides mechanistic insights into health-promoting benefits for both animal and human hosts. PMID:22308390

  13. Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-Bromopyruvate Propyl Ester

    PubMed Central

    Tang, Zhenjie; Yuan, Shuqiang; Hu, Yumin; Zhang, Hui; Wu, Wenjing; Zeng, Zhaolei; Yang, Jing; Yun, Jingping

    2012-01-01

    It has long been observed that many cancer cells exhibit increased aerobic glycolysis and rely more on this pathway to generate ATP and metabolic intermediates for cell proliferation. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in glycolysis and has been known as a housekeeping molecule. In the present study, we found that GAPDH expression was significantly up-regulated in human colorectal carcinoma tissues compared to the adjacent normal tissues, and also increased in colon cancer cell lines compared to the non-tumor colon mucosa cells in culture. The expression of GAPDH was further elevated in the liver meta-static tissues compared to the original colon cancer tissue of the same patients, suggesting that high expression of GAPDH might play an important role in colon cancer development and metastasis. Importantly, we found that 3-bromopyruvate propyl ester (3-BrOP) preferentially inhibited GAPDH and exhibited potent activity in inducing colon cancer cell death by causing severe depletion of ATP. 3-BrOP at low concentrations (1–10 μM) inhibited GAPDH and a much higher concentration (300 μM) was required to inhibit hexokinase-2. The cytotoxic effect of 3-BrOP was associated with its inhibition of GAPDH, and colon cancer cells with loss of p53 were more sensitive to this compound. Our study suggests that GAPDH may be a potential target for colon cancer therapy. PMID:22350014

  14. Aldolase A overexpression is associated with poor prognosis and promotes tumor progression by the epithelial-mesenchymal transition in colon cancer.

    PubMed

    Ye, Feng; Chen, Yixing; Xia, Lu; Lian, Jiabian; Yang, Shuyu

    2018-03-04

    There is increasing evidence that glycolysis is involved in cancer progression. Aldolase is a glycolytic enzyme that catalyzes the reversible conversion of fructose-1,6-bisphosphate to glyceraldehyde-3-phosphate and dihydroxyacetone phosphate. Disruption of the aldolase genes also plays a role in the progression of multiple types of cancer. However, the underlying mechanism of the action of aldolases in colon cancer progression remains elusive. In this study, aldolase A expression was investigated and found to be upregulated along with human colon cancer progression and metastasis at both the mRNA and protein levels in human colon cancer tissues. In addition, silencing aldolase A suppressed colon cancer cell proliferation and invasion and inhibited the EMT phenotype. Aldolase A protein expression in colon cancer was related to tumor location, tumor clinical stage and survival. Kaplan-Meier analysis showed that high aldolase A protein expression was associated with an unfavorable outcome. Moreover, aldolase A affected the development of colon cancer not only by affecting the glucose metabolism but also by interacting with the HIF-1 and other EMT-related signaling pathways; silencing aldolase A resulted in the reduced activity of these signaling pathways. These results indicate that aldolase A has additional non-glycolytic functions in transcriptional EMT regulation and may therefore have potential as a therapeutic target or a biomarker for identifying patients at risk for poorer survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Modelling the range expansion of the Tiger mosquito in a Mediterranean Island accounting for imperfect detection.

    PubMed

    Tavecchia, Giacomo; Miranda, Miguel-Angel; Borrás, David; Bengoa, Mikel; Barceló, Carlos; Paredes-Esquivel, Claudia; Schwarz, Carl

    2017-01-01

    Aedes albopictus (Diptera; Culicidae) is a highly invasive mosquito species and a competent vector of several arboviral diseases that have spread rapidly throughout the world. Prevalence and patterns of dispersal of the mosquito are of central importance for an effective control of the species. We used site-occupancy models accounting for false negative detections to estimate the prevalence, the turnover, the movement pattern and the growth rate in the number of sites occupied by the mosquito in 17 localities throughout Mallorca Island. Site-occupancy probability increased from 0.35 in the 2012, year of first reported observation of the species, to 0.89 in 2015. Despite a steady increase in mosquito presence, the extinction probability was generally high indicating a high turnover in the occupied sites. We considered two site-dependent covariates, namely the distance from the point of first observation and the estimated yearly occupancy rate in the neighborhood, as predicted by diffusion models. Results suggested that mosquito distribution during the first year was consistent with what predicted by simple diffusion models, but was not consistent with the diffusion model in subsequent years when it was similar to those expected from leapfrog dispersal events. Assuming a single initial colonization event, the spread of Ae. albopictus in Mallorca followed two distinct phases, an early one consistent with diffusion movements and a second consistent with long distance, 'leapfrog', movements. The colonization of the island was fast, with ~90% of the sites estimated to be occupied 3 years after the colonization. The fast spread was likely to have occurred through vectors related to human mobility such as cars or other vehicles. Surveillance and management actions near the introduction point would only be effective during the early steps of the colonization.

  16. Possible Protective Effects of Quercetin and Sodium Gluconate Against Colon Cancer Induction by Dimethylhydrazine in Mice.

    PubMed

    Saleem, T H; Attya, A M; Ahmed, E A; Ragab, S M M; Ali Abdallah, M A; Omar, H M

    2015-01-01

    Micronutrients in food have been found to have chemopreventive effects, supporting the conclusions from epidemiologie studies that consumption of fresh fruits and vegetables reduces cancer risk. The present study was carried out to evaluate the role of querctin (Q) and sodium gluconate (GNA) supplementation separately or in combination in ameliorating promotion of colon tumor development by dimethyl-hydrazine (DMH) in mice. Histopathological observation of colons in mice treated with DMH showed goblet cell dysplasia with inflammatory cell infiltration. This pathological finding was associated with significant alteration in oxidative stress markers in colon tissues and carcinoembryonic antigen (CEA) levels in plasma. Mice co-treated with GNA and Q showed mild changes of absorptive and goblet cells and inflammatory cell infiltration in lamina properia, with improvement in oxidative stress markers. In conclusion, findings of the present study indicate significant roles for reactive oxygen species (ROS) in pathogenesis of DMH-induced colon toxicity and initiation of colon cancer. Also, they suggest that Q, GNA or the combination of both have a positive beneficial effect against DMH induced colonic cancer induction in mice.

  17. Influence of inhibitors of serotonin uptake on intestinal epithelium and colorectal carcinomas.

    PubMed

    Tutton, P J; Barkla, D H

    1982-08-01

    Previous studies have shown that in certain tissues, including colonic carcinomas, cell proliferation may be promoted by serotonin, and indirect evidence suggests that the effects of this amine on colonic tumours involves a cellular-uptake mechanism. In the present study, two specific inhibitors of serotonin uptake, Citalopram and Fluoxetine, are examined for their effects on cell proliferation and tumour growth. Each of the agents was found to suppress cell division in dimethylhydrazine-induced colonic tumours in rats, and to retard the growth of 2 out of 3 lines of human colonic tumours propagated as xenografts in immune-deprived mice.

  18. Rice bran phytochemicals and dietary colon chemoprevention teamwork

    USDA-ARS?s Scientific Manuscript database

    A growing body of evidence supports that dietary rice bran exhibits gastrointestinal cancer control and prevention activity using carcinogen induced animal models and human colon cancer cell lines. Our laboratory has recently reported metabolomic differences in rice from globally and genetically dis...

  19. A new fractional order derivative based active contour model for colon wall segmentation

    NASA Astrophysics Data System (ADS)

    Chen, Bo; Li, Lihong C.; Wang, Huafeng; Wei, Xinzhou; Huang, Shan; Chen, Wensheng; Liang, Zhengrong

    2018-02-01

    Segmentation of colon wall plays an important role in advancing computed tomographic colonography (CTC) toward a screening modality. Due to the low contrast of CT attenuation around colon wall, accurate segmentation of the boundary of both inner and outer wall is very challenging. In this paper, based on the geodesic active contour model, we develop a new model for colon wall segmentation. First, tagged materials in CTC images were automatically removed via a partial volume (PV) based electronic colon cleansing (ECC) strategy. We then present a new fractional order derivative based active contour model to segment the volumetric colon wall from the cleansed CTC images. In this model, the regionbased Chan-Vese model is incorporated as an energy term to the whole model so that not only edge/gradient information but also region/volume information is taken into account in the segmentation process. Furthermore, a fractional order differentiation derivative energy term is also developed in the new model to preserve the low frequency information and improve the noise immunity of the new segmentation model. The proposed colon wall segmentation approach was validated on 16 patient CTC scans. Experimental results indicate that the present scheme is very promising towards automatically segmenting colon wall, thus facilitating computer aided detection of initial colonic polyp candidates via CTC.

  20. Should colon-penetrating small missiles be removed? An experimental study of retrocolic wound tracks.

    PubMed

    Edwards, D P; Brown, D; Watkins, P E

    1999-01-01

    Small-fragment injury to the colon may occur in approximately 5% of battlefield casualties. The surgical management aims to reduce the risk of retrocolic infection and provide optimal conditions for colonic wound healing. This study aimed to quantify the risk of retrocolic infection. Steel fragments were fired through exteriorized porcine colon and caught in 20% gelatin. The fragments, and resultant tracks, were extracted and subjected to quantitative bacteriological examination to determine the extent of contamination. The median bacterial count for complete tracks was 1.2 x 10(4) CFU/g (interquartile range 1.8 x 10(3) to 2.7 x 10(4)). Counts were highest in the initial 1 cm of the track and reduced along its length. This study does not support wound track excision or missile fragment removal in cases of retrocolic trauma following penetrating colonic injury. Either or both procedures will increase local trauma and are likely to prejudice colonic wound repair.

  1. Colonic casts: unexpected complications of colonic ischaemia.

    PubMed

    Mantas, D; Damaskos, C; Bamias, G; Dimitroulis, D

    2016-09-01

    Introduction Extensive colonic ischaemia can result in passage of a colonic 'cast' (CC) through the rectum. Case Study We report a 69-year-old male who initially underwent surgery to remove a sessile polyp. On postoperative day (POD)15, he was febrile, suffering from diarrhoea, and was treated conservatively. On POD18, the patient returned to our hospital with a CC that presented after defaecation. Computed tomography of the abdomen revealed a CC extending from the descending colon to the anal orifice with presentation of air between the affected colonic wall and the CC. The patient was treated conservatively and discharged on POD20 without complications having passed the CC (≈80cm) completely and becoming afebrile. Conclusions In most cases, the cause of CC passage is surgery for colorectal cancer or repair of an abdominal aortic aneurysm. A mild-to-severe presentation is dependent upon the bowel-wall layers affected by ischaemia and which therefore are included in the CC.

  2. Urinary Metabolites of the Dietary Carcinogen PhIP are Predictive of Colon DNA Adducts After a Low Dose Exposure in Humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malfatti, M; Dingley, K; Nowell, S

    2006-04-28

    Epidemiologic evidence indicates that exposure to heterocyclic amines (HAs) in the diet is an important risk factor for the development of colon cancer. Well-done cooked meats contain significant levels of HAs which have been shown to cause cancer in laboratory animals. To better understand the mechanisms of HA bioactivation in humans, the most mass abundant HA, 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was used to assess the relationship between PhIP metabolism and DNA adduct formation. Ten human volunteers were administered a dietary relevant dose of [{sup 14}C]PhIP 48-72 h prior to surgery to remove colon tumors. Urine was collected for 24 h after dosingmore » for metabolite analysis, and DNA was extracted from colon tissue and analyzed by accelerator mass spectrometry for DNA adducts. All ten subjects were phenotyped for CYP1A2, NAT2, and SULT1A1 enzyme activity. Twelve PhIP metabolites were detected in the urine samples. The most abundant metabolite in all volunteers was N-hydroxy-PhIP-N{sup 2}-glucuronide. Metabolite levels varied significantly between the volunteers. Interindividual differences in colon DNA adducts levels were observed between each individual. The data showed that individuals with a rapid CYP1A2 phenotype and high levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide, had the lowest level of colon PhIP-DNA adducts. This suggests that glucuronidation plays a significant role in detoxifying N-hydroxy-PhIP. The levels of urinary N-hydroxy-PhIP-N{sup 2}-glucuronide were negatively correlated to colon DNA adduct levels. Although it is difficult to make definite conclusions from a small data set, the results from this pilot study have encouraged further investigations using a much larger study group.« less

  3. δ- and γ-tocopherols inhibit phIP/DSS-induced colon carcinogenesis by protection against early cellular and DNA damages.

    PubMed

    Chen, Jayson X; Liu, Anna; Lee, Mao-Jung; Wang, Hong; Yu, Siyuan; Chi, Eric; Reuhl, Kenneth; Suh, Nanjoo; Yang, Chung S

    2017-01-01

    Tocopherols, the major forms of vitamin E, are a family of fat-soluble compounds that exist in alpha (α-T), beta (β-T), gamma (γ-T), and delta (δ-T) variants. A cancer preventive effect of vitamin E is suggested by epidemiological studies. However, past animal studies and human intervention trials with α-T, the most active vitamin E form, have yielded disappointing results. A possible explanation is that the cancer preventive activity of α-T is weak compared to other tocopherol forms. In the present study, we investigated the effects of δ-T, γ-T, and α-T (0.2% in diet) in a novel colon cancer model induced by the meat-derived dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by dextran sodium sulfate (DSS)-induced colitis in CYP1A-humanized (hCYP1A) mice. PhIP/DSS treatments induced multiple polypoid tumors, mainly tubular adenocarcinomas, in the middle to distal colon of the hCYP1A mice after 10 wk. Dietary supplementation with δ-T and γ-T significantly reduced colon tumor formation and suppressed markers of oxidative and nitrosative stress (i.e., 8-oxo-dG and nitrotyrosine) as well as pro-inflammatory mediators (i.e., NF-κB p65 and p-STAT3) in tumors and adjacent tissues. By administering δ-T at different time periods, we obtained results suggesting that the inhibitory effect of δ-T against colon carcinogenesis is mainly due to protection against early cellular and DNA damages caused by PhIP. α-T was found to be ineffective in inhibiting colon tumors and less effective in attenuating the molecular changes. Altogether, we demonstrated strong cancer preventive effects of δ-T and γ-T in a physiologically relevant model of human colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. δ- and γ-Tocopherols Inhibit PhIP/DSS-induced Colon Carcinogenesis by Protection against Early Cellular and DNA Damages

    PubMed Central

    Chen, Jayson X.; Liu, Anna; Lee, Mao-Jung; Wang, Hong; Yu, Siyuan; Chi, Eric; Reuhl, Kenneth; Suh, Nanjoo; Yang, Chung S.

    2017-01-01

    Tocopherols, the major forms of vitamin E, are a family of fat-soluble compounds that exist in alpha (α-T), beta (β-T), gamma (γ-T) and delta (δ-T) variants. A cancer preventive effect of vitamin E is suggested by epidemiological studies. However, past animal studies and human intervention trials with α-T, the most active vitamin E form, have yielded disappointing results. A possible explanation is that the cancer preventive activity of α-T is weak compared to other tocopherol forms. In the present study, we investigated the effects of δ-T, γ-T and α-T (0.2% in diet) in a novel colon cancer model induced by the meat-derived dietary carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and promoted by dextran sodium sulfate (DSS)-induced colitis in CYP1A-humanized (hCYP1A) mice. PhIP/DSS treatments induced multiple polypoid tumors, mainly tubular adenocarcinomas, in the middle to distal colon of the hCYP1A mice after 10 weeks. Dietary supplementation with δ-T and γ-T significantly reduced colon tumor formation and suppressed markers of oxidative and nitrosative stress (i.e., 8-oxo-dG and nitrotyrosine) as well as pro-inflammatory mediators (i.e., NF-κB p65 and p-STAT3) in tumors and adjacent tissues. By administering δ-T at different time periods, we obtained results suggesting that the inhibitory effect of δ-T against colon carcinogenesis is mainly due to protection against early cellular and DNA damages caused by PhIP. α-T was found to be ineffective in inhibiting colon tumors and less effective in attenuating the molecular changes. Altogether, we demonstrated strong cancer preventive effects of δ-T and γ-T in a physiologically relevant model of human colon cancer. PMID:27175800

  5. Increased expression of chemokine receptor CCR3 and its ligands in ulcerative colitis: the role of colonic epithelial cells in in vitro studies.

    PubMed

    Manousou, P; Kolios, G; Valatas, V; Drygiannakis, I; Bourikas, L; Pyrovolaki, K; Koutroubakis, I; Papadaki, H A; Kouroumalis, E

    2010-11-01

    Human colonic epithelial cells express T helper type 1 (Th1)-associated chemoattractants, yet little is known about the production of Th2-associated chemoattractants. CCL11/eotaxin-1, CCL24/eotaxin-2 and CCL26/eotaxin-3 are known to attract CCR3-expressing, Th2-polarized lymphocytes. We studied constitutive and inflammation-induced expression and production of CCR3 together with its ligands in the colon and peripheral blood of patients with inflammatory bowel disease (IBD) by flow cytometry, reverse transcription–polymerase chain reaction (RT–PCR) and enzyme-linked immunosorbent assay (ELISA). We further defined the regulated expression of these chemokines by RT–PCR and ELISA using cultured human epithelial cell lines. A higher fraction of peripheral T lymphocytes were found to be positive for CCR3 in patients with ulcerative colitis (UC) compared to Crohn’s disease (CD), while almost no CCR3(+) T cells were found in normal controls (NC). Similarly, higher and more frequent expression of CCR3 was observed in colonic biopsies from patients with UC, regardless of the disease activity, when compared to CD or NCs. Serum CCL11/eotaxin-1 was increased significantly in UC (306 ± 87 pg/ml) and less so in CD (257 ± 43 pg/ml), whereas CCL24/eotaxin-2, and CCL26/eotaxin-3 were increased only in UC. Colonic expression of the three chemokines was minimal in NCs but high in inflammatory bowel diseases (especially UC) and was independent of disease activity. Th2, and to a lesser extent Th1, cytokines were able to induce expression and production of all three eotaxins from colonic epithelial cells in culture. CCR3 and ligands over-expression would appear to be a characteristic of UC. The production of CCR3 ligands by human colonic epithelial cells suggests further that epithelium can play a role in modulating pathological T cell-mediated mucosal inflammation.

  6. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo.

    PubMed

    Milacic, Vesna; Banerjee, Sanjeev; Landis-Piwowar, Kristin R; Sarkar, Fazlul H; Majumdar, Adhip P N; Dou, Q Ping

    2008-09-15

    Curcumin (diferuloylmethane) is the major active ingredient of turmeric (Curcuma longa) used in South Asian cuisine for centuries. Curcumin has been shown to inhibit the growth of transformed cells and to have a number of potential molecular targets. However, the essential molecular targets of curcumin under physiologic conditions have not been completely defined. Herein, we report that the tumor cellular proteasome is most likely an important target of curcumin. Nucleophilic susceptibility and in silico docking studies show that both carbonyl carbons of the curcumin molecule are highly susceptible to a nucleophilic attack by the hydroxyl group of the NH(2)-terminal threonine of the proteasomal chymotrypsin-like (CT-like) subunit. Consistently, curcumin potently inhibits the CT-like activity of a purified rabbit 20S proteasome (IC(50) = 1.85 micromol/L) and cellular 26S proteasome. Furthermore, inhibition of proteasome activity by curcumin in human colon cancer HCT-116 and SW480 cell lines leads to accumulation of ubiquitinated proteins and several proteasome target proteins, and subsequent induction of apoptosis. Furthermore, treatment of HCT-116 colon tumor-bearing ICR SCID mice with curcumin resulted in decreased tumor growth, associated with proteasome inhibition, proliferation suppression, and apoptosis induction in tumor tissues. Our study shows that proteasome inhibition could be one of the mechanisms for the chemopreventive and/or therapeutic roles of curcumin in human colon cancer. Based on its ability to inhibit the proteasome and induce apoptosis in both HCT-116 and metastatic SW480 colon cancer cell lines, our study suggests that curcumin could potentially be used for treatment of both early-stage and late-stage/refractory colon cancer.

  7. Curcumin inhibits the proteasome activity in human colon cancer cells in vitro and in vivo

    PubMed Central

    Milacic, Vesna; Banerjee, Sanjeev; Landis-Piwowar, Kristin R.; Sarkar, Fazlul H.; Majumdar, Adhip P.N.; Dou, Q. Ping

    2008-01-01

    Curcumin (diferuloylmethane) is the major active ingredient of turmeric (curcuma longa) used in South Asian cuisine for centuries. Curcumin has been shown to inhibit the growth of transformed cells and to have a number of potential molecular targets. However, the essential molecular targets of curcumin under physiological conditions have not been completely defined. Herein, we report that the tumor cellular proteasome is most likely an important target of curcumin. Nucleophilic susceptibility and in silico docking studies show that both carbonyl carbons of the curcumin molecule are highly susceptible to a nucleophilic attack by the hydroxyl group of the N-terminal threonine of the proteasomal chymotrypsin-like subunit. Consistently, curcumin potently inhibits the chymotrypsin-like activity of a purified rabbit 20S proteasome (IC50=1.85 µM) and cellular 26S proteasome. Furthermore, inhibition of proteasome activity by curcumin in human colon cancer HCT-116 and SW480 cell lines leads to accumulation of ubiquitinated proteins and several proteasome target proteins, and subsequent induction of apoptosis. Furthermore, treatment of HCT-116 colon tumor–bearing ICR SCID mice with curcumin resulted in decreased tumor growth, associated with proteasome inhibition, proliferation suppression and apoptosis induction in tumor tissues. Our study demonstrates that proteasome inhibition could be one of the mechanisms for the chemopreventive and/or therapaeutic roles of curcumin in human colon cancer. Based on its ability to inhibit the proteasome and induce apoptosis in both HCT-116 and metastatic SW480 colon cancer cell lines, our study suggests that curcumin could potentially be used for treatment of both early stage and late stage/refractory colon cancer. PMID:18794115

  8. Recent Advances in Screening of Anti-Campylobacter Activity in Probiotics for Use in Poultry

    PubMed Central

    Saint-Cyr, Manuel J.; Guyard-Nicodème, Muriel; Messaoudi, Soumaya; Chemaly, Marianne; Cappelier, Jean-Michel; Dousset, Xavier; Haddad, Nabila

    2016-01-01

    Campylobacteriosis is the most common cause of bacterial gastroenteritis worldwide. Campylobacter species involved in this infection usually include the thermotolerant species Campylobacter jejuni. The major reservoir for C. jejuni leading to human infections is commercial broiler chickens. Poultry flocks are frequently colonized by C. jejuni without any apparent symptoms. Risk assessment analyses have identified the handling and consumption of poultry meat as one of the most important sources of human campylobacteriosis, so elimination of Campylobacter in the poultry reservoir is a crucial step in the control of this foodborne infection. To date, the use of probiotics has demonstrated promising results to reduce Campylobacter colonization. This review provides recent insights into methods used for probiotic screening to reduce the prevalence and colonization of Campylobacter at the farm level. Different eukaryotic epithelial cell lines are employed to screen probiotics with an anti-Campylobacter activity and yield useful information about the inhibition mechanism involved. These in vitro virulence models involve only human intestinal or cervical cell lines whereas the use of avian cell lines could be a preliminary step to investigate mechanisms of C. jejuni colonization in poultry in the presence of probiotics. In addition, in vivo trials to evaluate the effect of probiotics on Campylobacter colonization are conducted, taking into account the complexity introduced by the host, the feed, and the microbiota. However, the heterogeneity of the protocols used and the short time duration of the experiments lead to results that are difficult to compare and draw conclusions at the slaughter-age of broilers. Nevertheless, the combined approach using complementary in vitro and in vivo tools (cell cultures and animal experiments) leads to a better characterization of probiotic strains and could be employed to assess reduced Campylobacter spp. colonization in chickens if some parameters are optimized. PMID:27303366

  9. Curcumin inhibits growth potential by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO 320DM human colon adenocarcinoma cells.

    PubMed

    Dasiram, Jade Dhananjay; Ganesan, Ramamoorthi; Kannan, Janani; Kotteeswaran, Venkatesan; Sivalingam, Nageswaran

    2017-02-01

    Curcumin, a natural polyphenolic compound and it is isolated from the rhizome of Curcuma longa, have been reported to possess anticancer effect against stage I and II colon cancer. However, the effect of curcumin on colon cancer at Dukes' type C metastatic stage III remains still unclear. In the present study, we have investigated the anticancer effects of curcumin on p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. The cellular viability and proliferation were assessed by trypan blue exclusion assay and MTT assay, respectively. The cytotoxicity effect was examined by lactate dehydrogenase (LDH) cytotoxicity assay. Apoptosis was analyzed by DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis. Cell cycle distribution was performed by flow cytometry analysis. Here we have observed that curcumin treatment significantly inhibited the cellular viability and proliferation potential of p53 mutated COLO 320DM cells in a dose- and time-dependent manner. In addition, curcumin treatment showed no cytotoxic effects to the COLO 320DM cells. DNA fragmentation analysis, Hoechst and propidium iodide double fluorescent staining and confocal microscopy analysis revealed that curcumin treatment induced apoptosis in COLO 320DM cells. Furthermore, curcumin caused cell cycle arrest at the G1 phase, decreased the cell population in the S phase and induced apoptosis in COLO 320DM colon adenocarcinoma cells. Together, these data suggest that curcumin exerts anticancer effects and induces apoptosis in p53 mutated COLO 320DM human colon adenocarcinoma cells derived from Dukes' type C metastatic stage. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Neurotensin receptor 1 gene activation by the Tcf/beta-catenin pathway is an early event in human colonic adenomas.

    PubMed

    Souazé, Frédérique; Viardot-Foucault, Véronique; Roullet, Nicolas; Toy-Miou-Leong, Mireille; Gompel, Anne; Bruyneel, Erik; Comperat, Eva; Faux, Maree C; Mareel, Marc; Rostène, William; Fléjou, Jean-François; Gespach, Christian; Forgez, Patricia

    2006-04-01

    Alterations in the Wnt/APC (adenomatous polyposis coli) signalling pathway, resulting in beta-catenin/T cell factor (Tcf)-dependent transcriptional gene activation, are frequently detected in familial and sporadic colon cancers. The neuropeptide neurotensin (NT) is widely distributed in the gastrointestinal tract. Its proliferative and survival effects are mediated by a G-protein coupled receptor, the NT1 receptor. NT1 receptor is not expressed in normal colon epithelial cells, but is over expressed in a number of cancer cells and tissues suggesting a link to the outgrowth of human colon cancer. Our results demonstrate that the upregulation of NT1 receptor occurring in colon cancer is the result of Wnt/APC signalling pathway activation. We first established the functionality of the Tcf response element within the NT1 receptor promoter. Consequently, we observed the activation of NT1 receptor gene by agents causing beta-catenin cytosolic accumulation, as well as a strong decline of endogenous receptor when wt-APC was restored. At the cellular level, the re-establishment of wt-APC phenotype resulted in the impaired functionality of NT1 receptor, like the breakdown in NT-induced intracellular calcium mobilization and the loss of NT pro-invasive effect. We corroborated the Wnt/APC signalling pathway on the NT1 receptor promoter activation with human colon carcinogenesis, and showed that NT1 receptor gene activation was perfectly correlated with nuclear or cytoplasmic beta-catenin localization while NT1 receptor was absent when beta-catenin was localized at the cell-cell junction in early adenomas of patients with familial adenomatous polyposis, hereditary non-polyposis colorectal cancer and loss of heterozygosity tumours. In this report we establish a novel link in vitro between the Tcf/beta-catenin pathway and NT1 receptor promoter activation.

  11. Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression.

    PubMed

    Zakraoui, Ons; Marcinkiewicz, Cezary; Aloui, Zohra; Othman, Houcemeddine; Grépin, Renaud; Haoues, Meriam; Essafi, Makram; Srairi-Abid, Najet; Gasmi, Ammar; Karoui, Habib; Pagès, Gilles; Essafi-Benkhadir, Khadija

    2017-01-01

    Lebein, is an heterodimeric disintegrin isolated from Macrovipera lebetina snake venom that was previously characterized as an inhibitor of ADP-induced platelet aggregation. In this study, we investigated the effect of Lebein on the p53-dependent growth of human colon adenocarcinoma cell lines. We found that Lebein significantly inhibited LS174 (p53wt), HCT116 (p53wt), and HT29 (p53mut) colon cancer cell viability by inducing cell cycle arrest through the modulation of expression levels of the tumor suppression factor p53, cell cycle regulating proteins cyclin D1, CDK2, CDK4, retinoblastoma (Rb), CDK1, and cyclin-dependent kinase inhibitors p21 and p27. Interestingly, Lebein-induced apoptosis of colon cancer cells was dependent on their p53 status. Thus, in LS174 cells, cell death was associated with PARP cleavage and the activation of caspases 3 and 8 while in HCT116 cells, Lebein induced caspase-independent apoptosis through increased expression of apoptosis inducing factor (AIF). In LS174 cells, Lebein triggers the activation of the MAPK ERK1/2 pathway through induction of reactive oxygen species (ROS). It also decreased cell adhesion and migration to fibronectin through down regulation of α5β1 integrin. Moreover, Lebein significantly reduced the expression of two angiogenesis stimulators, Vascular Endothelial Growth Factor (VEGF) and Neuropilin 1 (NRP1). It inhibited the VEGF-induced neovascularization process in the quail embryonic CAM system and blocked the development of human colon adenocarcinoma in nude mice. Overall, our work indicates that Lebein may be useful to design a new therapy against colon cancer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Traditional Chinese Medicine Curcumin Sensitizes Human Colon Cancer to Radiation by Altering the Expression of DNA Repair-related Genes.

    PubMed

    Yang, Guangen; Qiu, Jianming; Wang, Dong; Tao, Yong; Song, Yihuan; Wang, Hongtao; Tang, Juping; Wang, Xing; Sun, Y U; Yang, Zhijian; Hoffman, Robert M

    2018-01-01

    The aim of the present study was to investigate the radio-sensitizing efficacy of curcumin, a traditional Chinese medicine (TCM) on colon cancer cells in vitro and in vivo. Human colon cancer HT-29 cells were treated with curcumin (2.5 μM), irradiation (10 Gy) and the combination of irradiation and curcumin. Cell proliferation was assessed using the MTT assay. Apoptotic cells were detected by Annexin V-PE/7-AAD analysis. PCR was performed to determine differential-expression profiling of 95 DNA-repair genes in irradiated cells and cells treated with both irradiation and curcumin. Differentially-expressed genes were confirmed by Western blotting. In vivo radio-sensitizing efficacy of curcumin was assessed in a xenograft mouse model of HT-29 colon cancer. Curcumin was administrated daily by intraperitoneal injection at 20 mg/kg/dose. Mice received irradiation (10 Gy) twice weekly. Apoptosis of the cancer cells following treatment was determined by TUNEL staining. Irradiation induced proliferation inhibition and apoptosis of HT-29 cells in vitro. Concurrent curcumin treatment sensitized the HT-29 tumor to irradiation (p<0.01). DNA repair-related genes CCNH and XRCC5 were upregulated and LIG4 and PNKP downregulated by the combination of curcumin and irradiation compared with irradiation alone (p<0.05). Combined treatment of curcumin and irradiation resulted in a significantly greater tumor-growth inhibition and apoptosis compared to irradiation treatment alone (p<0.01). Curcumin sensitizes human colon cancer in vitro and in vivo to radiation. Downregulation of LIG4 and PNKP and upregulation of XRCC5 and CCNH DNA-repair-related genes were involved in the radio-sensitizing efficacy of curcumin in colon cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. FABP4 blocker attenuates colonic hypomotility and modulates white adipose tissue-derived hormone levels in mouse models mimicking constipation-predominant IBS.

    PubMed

    Mosińska, P; Jacenik, D; Sałaga, M; Wasilewski, A; Cygankiewicz, A; Sibaev, A; Mokrowiecka, A; Małecka-Panas, E; Pintelon, I; Storr, M; Timmermans, J P; Krajewska, W M; Fichna, J

    2018-05-01

    The role of fatty acid binding protein 4 (FABP4) in lower gastrointestinal (GI) motility is unknown. We aimed to verify the effect of inhibition of FABP4 on GI transit in vivo, and to determine the expression of FABP4 in mouse and human tissues. Fatty acid binding protein 4 inhibitor, BMS309403, was administered acutely or chronically for 6 and 13 consecutive days and its effect on GI transit was assessed in physiological conditions and in loperamide-induced constipation. Intracellular recordings were made to examine the effects of BMS309403 on colonic excitatory and inhibitory junction potentials. Abdominal pain was evaluated using behavioral pain response. Localization and expression of selected adipokines were determined in the mouse colon and serum using immunohistochemistry and Enzyme-Linked ImmunoSorbent Assay respectively. mRNA expression of FABP4 and selected adipokines in colonic and serum samples from irritable bowel syndrome (IBS) patients and control group were assessed. Acute injection of BMS309403 significantly increased GI motility and reversed inhibitory effect of loperamide. BMS309403 did not change colonic membrane potentials. Chronic treatment with BMS309403 increased the number of pain-induced behaviors. In the mouse serum, level of resistin was significantly decreased after acute administration; no changes in adiponectin level were detected. In the human serum, level of adiponectin and resistin, but not of FABP4, were significantly elevated in patients with constipation-IBS (IBS-C). FABP4 mRNA expression was significantly downregulated in the human colon in IBS-C. Fatty acid binding protein 4 may be involved in IBS pathogenesis and become a novel target in the treatment of constipation-related diseases. © 2017 John Wiley & Sons Ltd.

  14. p53 Is a Key Regulator for Osthole-Triggered Cancer Pathogenesis

    PubMed Central

    Huang, Ssu-Ming; Tsai, Cheng-Fang; Wang, Min-Ying

    2014-01-01

    Osthole has been reported to have antitumor activities via the induction of apoptosis and inhibition of cancer cell growth and metastasis. However, the detailed molecular mechanisms underlying the anticancer effects of osthole in human colon cancer remain unclear. In the present study, we have assessed osthole-induced cell death in two different human colon cancer cell lines, HCT116 and SW480. Our results also showed that osthole activated proapoptotic signaling pathways in human colon cancer cells. By using cell culture insert system, osthole reduced cell motility in both human colon cancer cell lines. This study also provides evidence supporting the potential of osthole in p53 activation. Expression of p53, an apoptotic protein, was remarkably upregulated in cells treated with osthole. Importantly, the levels of phosphorylation of p53 on Ser15 (p-p53) and acetylation of p53 on Lys379 (acetyl-p53) were increased under osthole treatment. Our results also demonstrated that p53 was activated followed by generation of reactive oxygen species (ROS) and activation of c-Jun N-terminal kinase (JNK). Our study provides novel insights of p53-mediated responses under osthole treatment. Taken together, we concluded that osthole induces cancer cell death and inhibits migratory activity in a controlled manner and is a promising candidate for antitumor drug development. PMID:25013761

  15. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon[S

    PubMed Central

    Lee, Ja-Young; Arai, Hisashi; Nakamura, Yusuke; Fukiya, Satoru; Wada, Masaru; Yokota, Atsushi

    2013-01-01

    Bile acid composition in the colon is determined by bile acid flow in the intestines, the population of bile acid-converting bacteria, and the properties of the responsible bacterial enzymes. Ursodeoxycholic acid (UDCA) is regarded as a chemopreventive beneficial bile acid due to its low hydrophobicity. However, it is a minor constituent of human bile acids. Here, we characterized an UDCA-producing bacterium, N53, isolated from human feces. 16S rDNA sequence analysis identified this isolate as Ruminococcus gnavus, a novel UDCA-producer. The forward reaction that produces UDCA from 7-oxo-lithocholic acid was observed to have a growth-dependent conversion rate of 90–100% after culture in GAM broth containing 1 mM 7-oxo-lithocholic acid, while the reverse reaction was undetectable. The gene encoding 7β-hydroxysteroid dehydrogenase (7β-HSDH), which facilitates the UDCA-producing reaction, was cloned and overexpressed in Escherichia coli. Characterization of the purified 7β-HSDH revealed that the kcat/Km value was about 55-fold higher for the forward reaction than for the reverse reaction, indicating that the enzyme favors the UDCA-producing reaction. As R. gnavus is a common, core bacterium of the human gut microbiota, these results suggest that this bacterium plays a pivotal role in UDCA formation in the colon. PMID:23729502

  16. Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis

    PubMed Central

    Merriman, Joseph A.; Nemeth, Kimberly A.; Schlievert, Patrick M.

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  17. Quantitative measurement of feline colonic transit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krevsky, B.; Somers, M.B.; Maurer, A.H.

    1988-10-01

    Colonic transit scintigraphy, a method for quantitatively evaluating the movement of the fecal stream in vivo, was employed to evaluate colonic transit in the cat. Scintigraphy was performed in duplicate in five cats and repeated four times in one cat. After instillation of an 111In marker into the cecum through a surgically implanted silicone cecostomy tube, colonic movement of the instillate was quantitated for 24 h using gamma scintigraphy. Antegrade and retrograde motion of radionuclide was observed. The cecum and ascending colon emptied rapidly, with a half-emptying time of 1.68 +/- 0.56 h (mean +/- SE). After 24 h, 25.1more » +/- 5.2% of the activity remained in the transverse colon. The progression of the geometric center was initially rapid, followed later by a delayed phase. Geometric center reproducibility was found to be high when analyzed using simple linear regression (slope = 0.92; r = 0.73; P less than 0.01). Atropine (0.1 mg/kg im) was found to delay cecum and ascending colon emptying and delay progression of the geometric center. These results demonstrate both 1) the ability of colonic transit scintigraphy to detect changes in transit induced by pharmacological manipulation and 2) the fact that muscarinic blockade inhibits antegrade transit of the fecal stream. We conclude that feline colonic transit may be studied in a quantitative and reproducible manner with colonic transit scintigraphy.« less

  18. R-Spondins Are Expressed by the Intestinal Stroma and are Differentially Regulated during Citrobacter rodentium- and DSS-Induced Colitis in Mice

    PubMed Central

    Kang, Eugene; Yousefi, Mitra; Gruenheid, Samantha

    2016-01-01

    The R-spondin family of proteins has recently been described as secreted enhancers of β-catenin activation through the canonical Wnt signaling pathway. We previously reported that Rspo2 is a major determinant of susceptibility to Citrobacter rodentium-mediated colitis in mice and recent genome-wide association studies have revealed RSPO3 as a candidate Crohn’s disease-specific inflammatory bowel disease susceptibility gene in humans. However, there is little information on the endogenous expression and cellular source of R-spondins in the colon at steady state and during intestinal inflammation. RNA sequencing and qRT-PCR were used to assess the expression of R-spondins at steady state and in two mouse models of colonic inflammation. The cellular source of R-spondins was assessed in specific colonic cell populations isolated by cell sorting. Data mining from publicly available datasets was used to assess the expression of R-spondins in the human colon. At steady state, colonic expression of R-spondins was found to be exclusive to non-epithelial CD45- lamina propria cells, and Rspo3/RSPO3 was the most highly expressed R-spondin in both mouse and human colon. R-spondin expression was found to be highly dynamic and differentially regulated during C. rodentium infection and dextran sodium sulfate (DSS) colitis, with notably high levels of Rspo3 expression during DSS colitis, and high levels of Rspo2 expression during C. rodentium infection, specifically in susceptible mice. Our data are consistent with the hypothesis that in the colon, R-spondins are expressed by subepithelial stromal cells, and that Rspo3/RSPO3 is the family member most implicated in colonic homeostasis. The differential regulation of the R-spondins in different models of intestinal inflammation indicate they respond to specific pathogenic and inflammatory signals that differ in the two models and provides further evidence that this family of proteins plays a key role in linking intestinal inflammation and homeostasis. PMID:27046199

  19. Ecosystem Collapse in Pleistocene Australia and a Human Role in Megafaunal Extinction

    NASA Astrophysics Data System (ADS)

    Miller, Gifford H.; Fogel, Marilyn L.; Magee, John W.; Gagan, Michael K.; Clarke, Simon J.; Johnson, Beverly J.

    2005-07-01

    Most of Australia's largest mammals became extinct 50,000 to 45,000 years ago, shortly after humans colonized the continent. Without exceptional climate change at that time, a human cause is inferred, but a mechanism remains elusive. A 140,000-year record of dietary δ13C documents a permanent reduction in food sources available to the Australian emu, beginning about the time of human colonization; a change replicated at three widely separated sites and in the marsupial wombat. We speculate that human firing of landscapes rapidly converted a drought-adapted mosaic of trees, shrubs, and nutritious grasslands to the modern fire-adapted desert scrub. Animals that could adapt survived; those that could not, became extinct.

  20. Risk Factors for Nasal Colonization by Methicillin-Resistant Staphylococci in Healthy Humans in Professional Daily Contact with Companion Animals in Portugal.

    PubMed

    Rodrigues, Ana Catarina; Belas, Adriana; Marques, Cátia; Cruz, Luís; Gama, Luís T; Pomba, Constança

    2018-05-01

    Methicillin-resistant staphylococci (MRS), namely Staphylococcus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP), are opportunistic agents of great importance in human and veterinary medicine. The aims of this study were to investigate the frequency, persistence, and risk factors associated with nasal colonization by MRS in people in daily contact with animals in Portugal. Seventy-nine out of 129 (61.2%) participants were found to be colonized by, at least, one methicillin-resistant (MR) staphylococci species (MR Staphylococcus epidermidis [n = 68], MRSA [n = 19], MR Staphylococcus haemolyticus [n = 7], MRSP [n = 2], and other coagulase-negative staphylococci [n = 4]). Three lineages were identified among the MRSA isolates (n = 7): the major human healthcare clone in Portugal (ST22-t032-IV, n = 3), the livestock-associated MRSA (ST398-t108-V, n = 3), and the New York-/Japan-related clone (ST105-t002-II, n = 1). MRSP isolates belonged to the European clone ST71-II-III. We identified two risk factors for nasal colonization by MRS in healthy humans: (i) being a veterinary professional (veterinarian and veterinary nurse) (p < 0.0001, odds ratio [OR] = 6.369, 95% confidence interval [CI, 2.683-15.122]) and (ii) have contacted with one MRSA- or MRSP-positive animal (p = 0.0361, OR = 2.742, 95% CI [1.067-7.045]). The follow-up study revealed that the majority (85%) remain colonized. This study shows that MRS in veterinary clinical practice is a professional hazard and highlights the need to implement preventive measures to minimize spread.

Top