Sample records for initial isotopic composition

  1. Rb-Sr and Sm-Nd Ages of Zagami DML and SR Isotopic Heterogeneity in Zagami

    NASA Technical Reports Server (NTRS)

    Nyquist, L.aurenceE.; Shih, C.-Y.; Reese, Y. D.

    2010-01-01

    Zagami contains lithologic heterogeneity suggesting that it did not form in a homogeneous, thick lava flow [1]. We have previously investigated the Sr and Nd isotopic systematics of Coarse-Grained (CG) and Fine-Grained (FG) lithologies described by [2]. Both appear to belong to Normal Zagami (NZ) [1,3], but their initial Sr-isotopic compositions differ [4,5]. Here we report new analyses of the Dark Mottled Lithology (DML, [3]) that show its age and initial Sr and Nd isotopic compositions to be identical within error limits with those of CG, but Sr initial isotopic compositions differ from those of FG.

  2. Multiple stable isotope fronts during non-isothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Fekete, Szandra; Weis, Philipp; Scott, Samuel; Driesner, Thomas

    2018-02-01

    Stable isotope signatures of oxygen, hydrogen and other elements in minerals from hydrothermal veins and metasomatized host rocks are widely used to investigate fluid sources and paths. Previous theoretical studies mostly focused on analyzing stable isotope fronts developing during single-phase, isothermal fluid flow. In this study, numerical simulations were performed to assess how temperature changes, transport phenomena, kinetic vs. equilibrium isotope exchange, and isotopic source signals determine mineral oxygen isotopic compositions during fluid-rock interaction. The simulations focus on one-dimensional scenarios, with non-isothermal single- and two-phase fluid flow, and include the effects of quartz precipitation and dissolution. If isotope exchange between fluid and mineral is fast, a previously unrecognized, significant enrichment in heavy oxygen isotopes of fluids and minerals occurs at the thermal front. The maximum enrichment depends on the initial isotopic composition of fluid and mineral, the fluid-rock ratio and the maximum change in temperature, but is independent of the isotopic composition of the incoming fluid. This thermally induced isotope front propagates faster than the signal related to the initial isotopic composition of the incoming fluid, which forms a trailing front behind the zone of transient heavy oxygen isotope enrichment. Temperature-dependent kinetic rates of isotope exchange between fluid and rock strongly influence the degree of enrichment at the thermal front. In systems where initial isotope values of fluids and rocks are far from equilibrium and isotope fractionation is controlled by kinetics, the temperature increase accelerates the approach of the fluid to equilibrium conditions with the host rock. Consequently, the increase at the thermal front can be less dominant and can even generate fluid values below the initial isotopic composition of the input fluid. As kinetics limit the degree of isotope exchange, a third front may develop in kinetically limited systems, which propagates with the advection speed of the incoming fluid and is, therefore, traveling fastest. The results show that oxygen isotope signatures at thermal fronts recorded in rocks and veins that experienced isotope exchange with fluids can easily be misinterpreted, namely if bulk analytical techniques are applied. However, stable isotope microanalysis on precipitated minerals may - if later isotope exchange is kinetically limited - provide a valuable archive of the transient thermal and hydrological evolution of a system.

  3. Sm-Nd and Rb-Sr Ages for MIL 05035: Implications for Surface and Mantle Sources

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y.; Reese, Y. D.

    2007-01-01

    The Sm-Nd and Rb-Sr ages and also the initial Nd and Sr isotopic compositions of MIL 05035 are the same as those of A-881757. Comparing the radiometric ages of these meteorites to lunar surface ages as modeled from crater size-frequency distributions as well as the TiO2 abundances and initial Sr-isotopic compositions of other basalts places their likely place of origin as within the Australe or Humboldtianum basins. If so, a fundamental west-east lunar asymmetry in compositional and isotopic parameters that likely is due to the PKT is implied.

  4. Nd Isotope and U-Th-Pb Age Mapping of Single Monazite Grains by Laser Ablation Split Stream Analysis

    NASA Astrophysics Data System (ADS)

    Fisher, C. M.; Hanchar, J. M.; Miller, C. F.; Phillips, S.; Vervoort, J. D.; Martin, W.

    2015-12-01

    Monazite is a common accessory mineral that occurs in medium to high grade metamorphic and Ca-poor felsic igneous rocks, and often controls the LREE budget (including Sm and Nd) of the host rock in which it crystallizes. Moreover, it contains appreciable U and Th, making it an ideal mineral for determining U-Th-Pb ages and Sm-Nd isotopic compositions, both of which are readily determined using in situ techniques with very high spatial resolution like LA-MC-ICPMS. Here, we present the results of laser ablation split stream analyses (LASS), which allows for simultaneous determination of the age and initial Nd isotopic composition in a single analysis. Analyses were done using a 20mm laser spot that allowed for detailed Nd isotope mapping of monazite grains (~30 analyses per ~250mm sized grain). Combined with LREE ratios (e.g., Sm/Nd, Ce/Gd, and Eu anomalies) these results yield important petrogenetic constraints on the evolution of peraluminous granites from the Old Woman-Piute batholith in southeastern California. Our findings also allow an improved understanding of the causes of isotope heterogeneity in granitic rocks. U-Th-Pb age mapping across the crystals reveals a single Cretaceous age for all grains with precision and accuracy typical of laser ablation analyses (~2%). In contrast, the concurrent Nd isotope mapping yields homogeneous initial Nd isotope compositions for some grains and large initial intra-grain variations of up to 8 epsilon units in others. The grains that yield homogeneous Nd isotope compositions have REE ratios suggesting that they crystallized in a fractionally crystallizing magma. Conversely, other grains, which also record fractional crystallization of both feldspar and LREE rich minerals, demonstrate a change in the Nd isotope composition of the magma during crystallization of monazite. Comparison of inter- and intra-grain Nd isotope compositions reveals further details on the potential mechanisms responsible for isotope heterogeneity present in single rock samples. This method highlights the potential of single grain isotope mapping of LREE phases such as monazite, allanite, and titanite for understanding both igneous and metamorphic petrogenesis.

  5. Radial Mixing and Ru-Mo Isotope Systematics Under Different Accretion Scenarios

    NASA Astrophysics Data System (ADS)

    Fischer, R. A.; Nimmo, F.; O'Brien, D. P.

    2017-12-01

    The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogenous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥7-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is 3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.

  6. LU-HF Age and Isotope Systematics of ALH84001

    NASA Technical Reports Server (NTRS)

    Righter, M.; Lapen, T. J.; Brandon, A. D.; Beard, B. L.; Shafer, J. T.; Peslier, A. H.

    2009-01-01

    Allan Hills (ALH) 84001 is an orthopyroxenite that is unique among the Martian meteorites in having the oldest inferred crystallization age (approx..4.5 to 4.0 Gyr) [e.g., 1-6 and references therein 7]. Its ancient origin makes this stone a critical constraint on early history of Mars, in particular the evolution of different planetary crust and mantle reservoirs. However, because there is significant variability in reported crystallization ages, determination of initial isotope compositions is imprecise making assessment of planetary reservoirs difficult. Here we report a new Lu-Hf mineral isochron age, initial Hf-176/Hf-177 isotope composition, and inferred Martian mantle source compositions for ALH84001 that place constraints on longlived source reservoirs for the enriched shergottite suite of Martian meteorites including Shergotty, Zagami, NWA4468, NWA856, RBT04262, LAR06319, and Los Angeles. Sm-Nd isotope analyses are under way for the same mineral aliquots analyzed for Lu-Hf. The Lu-Hf system was utilized because Lu and Hf are both lithophile and refractory and are not easily redistributed during short-lived thermal pulses associated with shock metamorphism. Moreover, chromite has relatively modest Hf concentrations with very low Lu/Hf ratios [9] yielding tight constraints on initial Hf-176/Hf-177 isotope compositions

  7. Mn-53-Cr-53 Systematics of R-Chondrite NWA 753

    NASA Technical Reports Server (NTRS)

    Jogo, K.; Shih, C-Y.; Reese, Y. D.; Nyquist, L. E.

    2006-01-01

    Chondrules and chondrites are interpreted as objects formed in the early solar system, and it is important to study them in order to elucidate its evolution. Here, we report the study of the Mn-Cr systematics of the R-Chondrite NWA753 and compare the results to other chondrite data. The goal was to determine Cr isotopic and age variations among chondrite groups with different O-isotope signatures. The Mn-53-Cr-53 method as applied to individual chondrules [1] or bulk chondrites [2] is based on the assumption that 53Mn was initially homogeneously distributed in that portion the solar nebula where the chondrules and/or chondrites formed. However, different groups of chondrites formed from regions of different O-isotope compositions. So, different types of chondrites also may have had different initial Mn-53 abundances and/or Cr isotopic compositions. Thus, it is important to determine the Cr isotopic systematics among chondrites from various chondrite groups. We are studying CO-chondrite ALH83108 and Tagish Lake in addition to R-Chondrite NWA753. These meteorites have very distinct O-isotope compositions (Figure 1).

  8. Isotopic ratios D/H and 15N/14N in giant planets

    NASA Astrophysics Data System (ADS)

    Marboeuf, Ulysse; Thiabaud, Amaury; Alibert, Yann; Benz, Willy

    2018-04-01

    The determination of isotopic ratios in planets is important since it allows us to investigate the origins and initial composition of materials. The present work aims to determine the possible range of values for isotopic ratios D/H and 15N/14N in giant planets. The main objective is to provide valuable theoretical assumptions on the isotopic composition of giant planets, their internal structure, and the main reservoirs of species. We use models of ice formation and planet formation that compute the composition of ices and gas accreted in the core and the envelope of planets. Assuming a single initial value for isotopic ratios in volatile species, and disruption of planetesimals in the envelope of gaseous planets, we obtain a wide variety of D/H and 15N/14N ratios in low-mass planets (≤100 Mearth) due to the migration pathway of planets, the accretion time of gas species whose relative abundance evolves with time, and isotope exchanges among species. If giant planets with mass greater than 100 Mearth have solar isotopic ratios such as Jupiter and Saturn due to their higher envelope mass, Neptune-type planets present values ranging between one and three times the solar value. It seems therefore difficult to use isotopic ratios in the envelope of these planets to get information about their formation in the disc. For giant planets, the ratios allow us to constrain the mass fraction of volatile species in the envelope needed to reproduce the observational data by assuming initial values for isotopic ratios in volatile species.

  9. Radial mixing and Ru-Mo isotope systematics under different accretion scenarios

    NASA Astrophysics Data System (ADS)

    Fischer, Rebecca A.; Nimmo, Francis; O'Brien, David P.

    2018-01-01

    The Ru-Mo isotopic compositions of inner Solar System bodies may reflect the provenance of accreted material and how it evolved with time, both of which are controlled by the accretion scenario these bodies experienced. Here we use a total of 116 N-body simulations of terrestrial planet accretion, run in the Eccentric Jupiter and Saturn (EJS), Circular Jupiter and Saturn (CJS), and Grand Tack scenarios, to model the Ru-Mo anomalies of Earth, Mars, and Theia analogues. This model starts by applying an initial step function in Ru-Mo isotopic composition, with compositions reflecting those in meteorites, and traces compositional evolution as planets accrete. The mass-weighted provenance of the resulting planets reveals more radial mixing in Grand Tack simulations than in EJS/CJS simulations, and more efficient mixing among late-accreted material than during the main phase of accretion in EJS/CJS simulations. We find that an extensive homogeneous inner disk region is required to reproduce Earth's observed Ru-Mo composition. EJS/CJS simulations require a homogeneous reservoir in the inner disk extending to ≥3-4 AU (≥74-98% of initial mass) to reproduce Earth's composition, while Grand Tack simulations require a homogeneous reservoir extending to ≥3-10 AU (≥97-99% of initial mass), and likely to ≥6-10 AU. In the Grand Tack model, Jupiter's initial location (the most likely location for a discontinuity in isotopic composition) is ∼3.5 AU; however, this step location has only a 33% likelihood of producing an Earth with the correct Ru-Mo isotopic signature for the most plausible model conditions. Our results give the testable predictions that Mars has zero Ru anomaly and small or zero Mo anomaly, and the Moon has zero Mo anomaly. These predictions are insensitive to wide variations in parameter choices.

  10. Implications of 187Os isotopic heterogeneities in a mantle plume: evidence from Gorgona Island and Curaçao

    NASA Astrophysics Data System (ADS)

    Walker, Richard J.; Storey, Michael; Kerr, Andrew C.; Tarney, John; Arndt, Nicholas T.

    1999-03-01

    Recent work has suggested that the mafic-ultramafic volcanism in evidence throughout portions of the Caribbean, Central America, and northern South America, including the islands of Gorgona and Curaçao, was generated as part of a middle-Cretaceous, large igneous province. New Re-Os isochron results for tholeiitic basalts from Gorgona and Curaçao indicate crystallization ages of 89.2 ± 5.2 and 85.6 ± 8.1 Ma, respectively, consistent with reported Ar ages. The Gorgona ultramafic suite shows a large range in initial Os isotopic composition, with γ Os values ranging from -0.5 to +12.4. This large range reflects isotopic heterogeneities in the mantle source similar to those observed for modern ocean island basalts. In contrast to ocean island basalts, however, Os isotopic compositions do not correlate with variations in Nd, Sr, or Pb isotopic compositions, which are within the range of depleted mid-ocean ridge basalts. The processes that produced these rocks evidently resulted in the decoupling of Os isotopes from the Nd, Sr, and Pb isotopic systems. Picrites from Curaçao have very uniform, chondritic initial Os isotopic compositions, with initial γ Os values ranging only from -0.4 to ±1.4. Basalts from Curaçao, however, define an isochron with a 187Os-enriched initial isotopic composition (γ Os = +9.5). In contrast to the 187Os-enriched ultramafic rocks from Gorgona, the enrichment in these basalts could have resulted from lithospheric contamination. If the Gorgona and Curaçao rocks were derived from the same plume, Os results, combined with Sr, Nd, and Pb data indicate a heterogeneous plume, with multiple compositionally and isotopically distinct domains. The Os isotopic results require derivation of Os from a minimum of two distinct reservoirs, one with a composition very similar to the chondritic average and one with long-term enriched Re/Os. Oceanic crustal recycling has been invoked to explain most of the 187Os enrichments that have been observed in ocean island basalt sources and could potentially apply to the Gorgona suite. Crustal recycling, however, requires large proportions of very ancient recycled basaltic crust in the sources of the 187Os-enriched ultramafic rocks to explain the magnitude of 187Os enrichments observed. For example, addition of 20% oceanic crust to fertile mantle, and nearly 3 billion years are necessary to generate a reservoir with the Os isotopic composition of the most radiogenic komatiites. If the recycled oceanic crust was added to basalt-depleted mantle, as may be indicated by ɛ Nd values for the komatiites averaging about +10, even larger proportions of older crust are required. Large proportions of oceanic mafic crust in the sources of the 187Os-enriched komatiites, although petrologically conceivable under certain melting conditions, is unlikely here given the limited trace element and lithophile isotope system variations. These results raise questions about the efficacy of using Os isotopes to constrain the proportion of recycled oceanic crust in other plumes. Other possible mechanisms for generating 187Os-enriched mantle include invoking the existence of a 187Os-enriched lower mantle, and minor outer core-lower mantle interactions.

  11. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  12. Pb, Sr, and Nd isotopic compositions of a suite of Large Archean, igneous rocks, eastern Beartooth Mountains - Implications for crust-mantle evolution

    NASA Technical Reports Server (NTRS)

    Wooden, J. L.; Mueller, P. A.

    1988-01-01

    Compositionally diverse Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains (Montana and Wyoming) were studied and shown to have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial values lower than predicted for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. A model involving subduction of continental detritus and contamination of the overlying mantle is suggested.

  13. Do Hf isotopes in magmatic zircons represent those of their host rocks?

    NASA Astrophysics Data System (ADS)

    Wang, Di; Wang, Xiao-Lei; Cai, Yue; Goldstein, Steven L.; Yang, Tao

    2018-04-01

    Lu-Hf isotopic system in zircon is a powerful and widely used geochemical tracer in studying petrogenesis of magmatic rocks and crustal evolution, assuming that zircon Hf isotopes can represent initial Hf isotopes of their parental whole rock. However, this assumption may not always be valid. Disequilibrium partial melting of continental crust would preferentially melt out non-zircon minerals with high time-integrated Lu/Hf ratios and generate partial melts with Hf isotope compositions that are more radiogenic than those of its magma source. Dissolution experiments (with hotplate, bomb and sintering procedures) of zircon-bearing samples demonstrate this disequilibrium effect where partial dissolution yielded variable and more radiogenic Hf isotope compositions than fully dissolved samples. A case study from the Neoproterozoic Jiuling batholith in southern China shows that about half of the investigated samples show decoupled Hf isotopes between zircons and the bulk rocks. This decoupling could reflect complex and prolonged magmatic processes, such as crustal assimilation, magma mixing, and disequilibrium melting, which are consistent with the wide temperature spectrum from ∼630 °C to ∼900 °C by Ti-in-zircon thermometer. We suggest that magmatic zircons may only record the Hf isotopic composition of their surrounding melt during crystallization and it is uncertain whether their Hf isotopic compositions can represent the primary Hf isotopic compositions of the bulk magmas. In this regard, using zircon Hf isotopic compositions to trace crustal evolution may be biased since most of these could be originally from disequilibrium partial melts.

  14. Archival processes of the water stable isotope signal in East Antarctic ice cores

    NASA Astrophysics Data System (ADS)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean

    2018-05-01

    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  15. Isotopic modeling of the sub-cloud evaporation effect in precipitation.

    PubMed

    Salamalikis, V; Argiriou, A A; Dotsika, E

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic composition hardly changes even at high temperatures while at drier and warm conditions the enrichment of (18)Ο reaches up to 20‰, depending on the raindrop size and the initial meteorological conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Effects of mother lode-type gold mineralization on 187Os/188Os and platinum group element concentrations in peridotite: Alleghany District, California

    USGS Publications Warehouse

    Walker, R.J.; Böhlke, J.K.; McDonough, W.F.; Li, Ji

    2007-01-01

    Osmium isotope compositions and concentrations of Re, platinum group elements (PGE), and Au were determined for host peridotites (serpentinites and barzburgites) and hydrothermally altered ultramafic wall rocks associated with Mother Lode-type hydrothermal gold-quartz vein mineralization in the Alleghany district, California. The host peridotites have Os isotope compositions and Re, PGE, and Au abundances typical of the upper mantle at their presumed formation age during the late Proterozoic or early Paleozoic. The hydrothermally altered rocks have highly variable initial Os isotope compositions with ??os, values (% deviation of 187OS/188OS from the chondritic average calculated for the approx. 120 Ma time of mineralization) ranging from -1.4 to -8.3. The lowest Os isotope compositions are consistent with Re depletion of a chondritic source (e.g., the upper mantle) at ca. 1.6 Ga. Most of the altered samples are enriched in Au and have depleted and fractionated abundances of Re and PGE relative to their precursor peridotites. Geoehemical characteristics of the altered samples suggest that Re and some PGE were variably removed from the ultramafic rocks during the mineralization event. In addition to Re, the Pt and Pd abundances of the most intensely altered rocks appear to have been most affected by mineralization. The 187Os-depleted isotopic compositions of some altered rocks are interpreted to be a result of preferential 187Os loss via destruction of Re-rich phases during the event. For these rocks, Os evidently is not a useful tracer of the mineralizing fluids. The results do, however, provide evidence for differential mobility of these elements, and mobility of 187Os relative to the initial bulk Os isotope composition during hydrothermal metasomatic alteration of ultramafic rocks. ?? 2007 Society of Economic Geologists, Inc.

  17. Sr isotopic tracer study of the Samail ophiolite, Oman.

    USGS Publications Warehouse

    Lanphere, M.A.; Coleman, R.G.; Hopson, C.A.

    1981-01-01

    Rb and Sr concentrations and Sr-isotopic compositions were measured in 41 whole-rock samples and 12 mineral separates from units of the Samail ophiolite, including peridotite, gabbro, plagiogranite, diabase dykes, and gabbro and websterite dykes within the metamorphic peridotite. Ten samples of cumulate gabbro from the Wadir Kadir section and nine samples from the Wadi Khafifah section have 87Sr/86Sr ratios of 0.70314 + or - 0.00030 and 0.70306 + or - 0.00034, respectively. The dispersion in Sr- isotopic composition may reflect real heterogeneities in the magma source region. The average Sr-isotopic composition of cumulate gabbro falls in the range of isotopic compositions of modern MORB. The 87Sr/86Sr ratios of noncumulate gabbro, plagiogranite, and diabase dykes range 0.7034-0.7047, 0.7038-0.7046 and 0.7037- 0.7061, respectively. These higher 87Sr/86Sr ratios are due to alteration of initial magmatic compositions by hydrothermal exchange with sea-water. Mineral separates from dykes that cut harzburgite tectonite have Sr-isotopic compositions which agree with that of cumulate gabbro. These data indicate that the cumulate gabbro and the different dykes were derived from partial melting of source regions that had similar long-term histories and chemical compositions.-T.R.

  18. Isotopologue Distributions of Peptide Product Ions by Tandem Mass Spectrometry: Quantitation of Low Levels of Deuterium Incorporation1

    PubMed Central

    Wang, Benlian; Sun, Gang; Anderson, David R.; Jia, Minghong; Previs, Stephen; Anderson, Vernon E.

    2007-01-01

    Protonated molecular peptide ions and their product ions generated by tandem mass spectrometry appear as isotopologue clusters due to the natural isotopic variations of carbon, hydrogen, nitrogen, oxygen and sulfur. Quantitation of the isotopic composition of peptides can be employed in experiments involving isotope effects, isotope exchange, isotopic labeling by chemical reactions, and studies of metabolism by stable isotope incorporation. Both ion trap and quadrupole-time of flight mass spectrometry are shown to be capable of determining the isotopic composition of peptide product ions obtained by tandem mass spectrometry with both precision and accuracy. Tandem mass spectra obtained in profile-mode of clusters of isotopologue ions are fit by non-linear least squares to a series of Gaussian peaks (described in the accompanying manuscript) which quantify the Mn/M0 values which define the isotopologue distribution (ID). To determine the isotopic composition of product ions from their ID, a new algorithm that predicts the Mn/M0 ratios is developed which obviates the need to determine the intensity of all of the ions of an ID. Consequently a precise and accurate determination of the isotopic composition a product ion may be obtained from only the initial values of the ID, however the entire isotopologue cluster must be isolated prior to fragmentation. Following optimization of the molecular ion isolation width, fragmentation energy and detector sensitivity, the presence of isotopic excess (2H, 13C, 15N, 18O) is readily determined within 1%. The ability to determine the isotopic composition of sequential product ions permits the isotopic composition of individual amino acid residues in the precursor ion to be determined. PMID:17559791

  19. Nucleosynthetic Heterogeneity Controls Vanadium Isotope Variations in Bulk Chondrites

    NASA Technical Reports Server (NTRS)

    Nielsen, S. G.; Righter, K.; Wu, F.; Owens, J. D.; Prytulak, J.; Burton, K.; Parkinson, I.; Davis, D.

    2018-01-01

    The vanadium (V) isotope composition of early solar system materials have been hypothesized to be sensitive to high energy irradiation that originated from the young Sun. Vanadium has two isotopes with masses 50 and 51 that have (51)V/(50)V ratio of approximately 410. High energy irradiation produces (50)V from various target isotopes of Ti, Cr and Fe, which would result in light V isotope compositions (expressed as delta (51)V in per mille = 1000 x (((51)V/(50)V(sub sample)/(51)V/(50)V(sub AlfaAesar)) - 1)) relative to a presumably chondritic starting composition. Recently published V isotope data for calcium aluminium inclusions (CAIs) has revealed some very negative values relative to chondrites (by almost -4 per mille) that were indeed interpreted to reflect irradiation processes despite the fact that the studied CAIs all exhibited significant initial abundances of (10)Be, while only a few CAIs displayed light V isotope compositions. It is difficult to relate V isotope variations directly to a singular process because V only possesses two isotopes. Therefore, V isotope variations can principally be produced both mass dependent and independent processes. Mass dependent kinetic stable isotope fractionation is common in CAIs for refractory elements due to partial condensation/evaporation processes. The element strontium (Sr) has an almost identical condensation temperature to V and studies of stable Sr isotope compositions in CAIs reveal both heavy and light values relative to chondrites of several permil. These variations are similar in magnitude to those reported for V isotopes in CAIs, which suggests it is possible that some of the V isotope variation in CAIs could be due to kinetic stable isotope fractionation during condensation/evaporation processes.

  20. A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re-Os isotope systematics

    NASA Astrophysics Data System (ADS)

    Westerlund, K. J.; Shirey, S. B.; Richardson, S. H.; Carlson, R. W.; Gurney, J. J.; Harris, J. W.

    2006-09-01

    An extensive study of peridotitic sulfide inclusion bearing diamonds and their prospective harzburgitic host rocks from the 53 Ma Panda kimberlite pipe, Ekati Mine, NWT Canada, has been undertaken with the Re-Os system to establish their age and petrogenesis. Diamonds with peridotitic sulfide inclusions have poorly aggregated nitrogen (<30% N as B centers) at N contents of 200-800 ppm which differs from that of chromite and silicate bearing diamonds and indicates residence in the cooler portion of the Slave craton lithospheric mantle. For most of the sulfide inclusions, relatively low Re contents (average 0.457 ppm) and high Os contents (average 339 ppm) lead to extremely low 187Re/188Os, typically << 0.05. An age of 3.52 ± 0.17 Ga (MSWD = 0.46) and a precise initial 187Os/188Os of 0.1093 ± 0.0001 are given by a single regression of 11 inclusions from five diamonds that individually provide coincident internal isochrons. This initial Os isotopic composition is 6% enriched in 187Os over 3.5 Ga chondritic or primitive mantle. Sulfide inclusions with less radiogenic initial Os isotopic compositions reflect isotopic heterogeneity in diamond forming fluids. The harzburgites have even lower initial 187Os/188Os than the sulfide inclusions, some approaching the isotopic composition of 3.5 Ga chondritic mantle. In several cases isotopically distinct sulfides occur in different growth zones of the same diamond. This supports a model where C-O-H-S fluids carrying a radiogenic Os signature were introduced into depleted harzburgite and produced diamonds containing sulfides conforming to the 3.5 Ga isochron. Reaction of this fluid with harzburgite led to diamonds with less radiogenic inclusions while elevating the Os isotope ratios of some harzburgites. Subduction is a viable way of introducing such fluids. This implies a role for subduction in creating early continental nuclei at 3.5 Ga and generating peridotitic diamonds.

  1. Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lugmair, G.W.; Galer, S.J.G.

    1992-04-01

    Results of a wide-ranging isotopic investigation of the unique Antarctican angrite LEW-86010 (LEW) are presented, together with a reassessment of the type angrite Angra dos Reis (ADOR). The principal objectives of this study are to obtain precise radiometric ages, initial Sr isotopic compositions, and to search for the erstwhile presence of the short-lived nuclei {sup 146}Sm and {sup 26}Al via their daughter products. The isotopic compositions of Sm, U, Ca, and Ti were also measured. This allows a detailed appraisal to be made of the relations between, and the genealogy of, these two angrites.

  2. Cr Isotopes in Allende Ca-Al-rich Inclusions

    NASA Technical Reports Server (NTRS)

    Bogdanovski, O.; Papanastassiou, D. A.; Wasserburg, G. J.

    2002-01-01

    We have determined Cr isotope compositions in minerals from Allende CAI in order to address the initial 53Mn (half-life 3.7 Ma) abundance in the solar system. Additional information is contained in the original extended abstract.

  3. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  4. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data.

    PubMed

    Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew

    2017-10-01

    Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth environments and consequently in food supplies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data

    USGS Publications Warehouse

    Estrada, Nubia Luz; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua; Harvey, Greg; Burkey, Kent O.; Grantz, David A.; McGrath, Margaret T.; Anderson, Todd A.; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B.; Jackson, W. Andrew

    2017-01-01

    Natural perchlorate (ClO4−) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4− may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4−, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4− in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4− was transported from solutions into plants similarly to NO3− but preferentially to Cl− (4-fold). The ClO4− isotopic compositions of initial ClO4− reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4− uptake or accumulation. The ClO4− isotopic composition of field-grown snap beans was also consistent with that of ClO4− in varying proportions from irrigation water and precipitation. NO3− uptake had little or no effect on NO3− isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3− in hydroponic solutions and leaf extracts, consistent with partial NO3− reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4− in commercial produce, as illustrated by spinach, for which the ClO4− isotopic composition was similar to that of indigenous natural ClO4−. Our results indicate that some types of plants can accumulate and (presumably) release ClO4− to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4−and NO3− in plants may be useful for determining sources of fertilizers and sources of ClO4− in their growth environments and consequently in food supplies.

  6. Microscale determination of the spectral characteristics and carbon-isotopic compositions of porphyrins

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Hayes, J. M.; Boreham, C. J.

    1993-01-01

    Molar extinction coefficients for band III of Ni porphyrins are calculated from results of spectrophotometric and manometric analyses of individual etioporphyrins, DPEP, cyclic, and diDPEP porphyrins known to initially be pure from mass spectrometry, 1H NMR, and analytical HPLC studies. A method for determining carbon-isotopic compositions and purity of micromolar quantities of individual porphyrins using combined spectrophotometric and manometric techniques is presented.

  7. Stable-Carbon Isotopic Composition of Maple Sap and Foliage 1

    PubMed Central

    Leavitt, Steven W.; Long, Austin

    1985-01-01

    The 13C/12C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and 13C/12C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the 13C/12C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose→glucose→cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The 13C/12C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season. PMID:16664259

  8. Stable-carbon isotopic composition of maple sap and foliage.

    PubMed

    Leavitt, S W; Long, A

    1985-06-01

    The (13)C/(12)C ratios of Acer grandidentatum sap sugar collected during the dormant period are compared to those of buds, leaves, and wood developed over the following growing season. As the primary carbon source for cellulose manufacture at initiation of annual growth in deciduous trees, sap sucrose would be expected to have an isotopic composition similar to first-formed cellulose. Although constancy in concentration and (13)C/(12)C ratios of the maple sap sugar suggests any gains or losses (e.g. to maintenance metabolism) do not appreciably alter composition, the (13)C/(12)C ratios of cellulose of the enlarging buds in the spring are quite distinct from those of the sap sugar, seemingly precluding a simple direct biochemical pathway of sap sucrose-->glucose-->cellulose in favor of a more complex pathway with greater likelihood of isotopic fractionation. The (13)C/(12)C ratios of the leaves and in the growth ring were initially similar to the sap sugar but decreased steadily over the growing season.

  9. Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles

    NASA Astrophysics Data System (ADS)

    Münch, Thomas; Kipfstuhl, Sepp; Freitag, Johannes; Meyer, Hanno; Laepple, Thomas

    2017-09-01

    The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (≳ 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (≪ 1 ‰ RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, David L.; Schönbächler, Maria, E-mail: david.cook@erdw.ethz.ch

    We report non-mass-dependent Fe isotopic data for troilite (FeS) inclusions from 10 iron meteorites, representing both non-magmatic (IAB) and magmatic groups (IIAB, IIIAB, IVA). No resolvable variations are present in the most neutron-rich isotope ({sup 58}Fe), but small deficits (≈−0.1 ε ) in {sup 56}Fe were observed in several inclusions. With the exception of several Ca–Al-rich inclusions in primitive meteorites, these are the first reported non-mass-dependent variations in Fe isotopes for material formed in the early solar system. Nucleosynthetic variations in Ni isotopes were previously reported in these same samples. The effects in Fe isotopes are not correlated with thosemore » in Ni, which suggests that the origins of the isotopic variations are decoupled from one another. The {sup 56}Fe deficits may represent incomplete mixing of the precursor dust in the protoplanetary disk. Alternatively, a parent body process (e.g., irradiation by galactic cosmic rays) may have modified the Fe isotopic compositions of some inclusions, which initially had homogeneous Fe isotopic compositions.« less

  11. [Sources of Methane in the Boreal Region

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In determining the global methane budget the sources of methane must be balanced with the sinks and atmospheric inventory. The approximate contribution of the different methane sources to the budget has been establish showing the major terrestrial inputs as rice, wetlands, bogs, fens, and tundra. Measurements and modeling of production in these sources suggest that temperature, water table height and saturation along with substratum composition are important in controlling methane production and emission. The isotopic budget of 13 C and D/H in methane can be used as a tool to clarify the global budget. This approach has achieved success at constraining the inputs. Studies using the isotopic approach place constraints on global methane production from different sources. Also, the relation between the two biogenic production pathways, acetate fermentation and CO2 reduction, and the effect of substratum composition can be made using isotope measurements shows the relation between the different biogenic, thermogenic and anthropogenic sources of methane as a function of the carbon and hydrogen isotope values for each source and the atmosphere, tropospheric composition. Methane emissions from ponds and fens are a significant source in the methane budget of the boreal region. An initial study in 1993 and 1994 on the isotopic composition of this methane source and the isotopic composition in relation to oxidation of methane at the sediment surface of the ponds or fen was conducted as part of our BOREAS project. The isotopic composition of methane emitted by saturated anoxic sediment is dependent on the sediment composition and geochemistry, but will be influenced by in situ oxidation, in part, a function of rooted plant activity. The influence of oxidation mediated by rooted plant activities on the isotopic composition of methane is not well known and will depend on the plant type, sediment temperature, and numerous other variables. Information on this isotopic composition is important in both understanding the bio-geochemistry of the system and also in determining the regional and global inputs for the methane isotope budget. In determining the destruction of methane for balancing the atmospheric methane budget soil oxidation must be considered.

  12. Isotopic Equilibrium in Mature Oceanic Lithosphere: Insights From Sm-Nd Isotopes on the Corsica (France) Ophiolites

    NASA Astrophysics Data System (ADS)

    Rampone, E.; Hofmann, A. W.; Raczek, I.; Romairone, A.

    2003-12-01

    In mature oceanic lithosphere, formed at mid-ocean ridges, residual mantle peridotites and associated magmatic crust are, in principle, linked by a cogenetic relationship, because the times of asthenospheric mantle melting and magmatic crust production are assumed to be roughly coheval. This implies that oceanic peridotites and associated magmatic rocks should have similar isotopic compositions. Few isotope studies have been devoted to test this assumption. At mid-ocean ridges, similar Nd isotopic compositions in basalts and abyssal peridotites have been found by Snow et al. (1994), thus indicating that oceanic peridotites are indeed residues of MORB melting. By contrast, Salters and Dick (2002) have documented Nd isotope differences between abyssal peridotites and associated basalts, with peridotites showing higher 143Nd/144Nd values, and they concluded that an enriched pyroxenitic source component is required to explain the low end of the 143Nd/144Nd variation of the basalts. Here we present Sm/Nd isotope data on ophiolitic mantle peridotites and intruded gabbroic rocks from Mt.Maggiore (Corsica, France), interpreted as lithosphere remnants of the Jurassic Ligurian Tethys ocean. The peridotites are residual after low-degree (<10%) fractional melting. In places, spinel peridotites grade to plagioclase-rich impregnated peridotites. Clinopyroxene separates from both spinel- and plagioclase- peridotites display high 147Sm/144Nd (0.49-0.59) and 143Nd/144Nd (0.513367-0.513551) ratios, consistent with their depleted signature. The associated gabbros have Nd isotopic compositions typical of MORB (143Nd/144Nd = 0.51312-0.51314). Sm/Nd data on plag, whole rock and cpx from an olivine gabbro define an internal isochron with an age of 162 +/- 10 Ma, and an initial epsilon Nd value (9.0) indicating a MORB-type source. In the Sm-Nd isochron diagram, the peridotite data also conform to the above linear array, their initial (160 Ma) epsilon Nd values varying in the range 7.6-8.9. Sm/Nd isotopic compositions of the peridotites are therefore consistent with a Jurassic age of melting and melt impregnation, and point to isotopic compositional similarities between depleted peridotites and associated magmatic rocks. In a regional geodynamic context, Sm/Nd isotope data for the Mt.Maggiore gabbro-peridotite association represent the first record of the attainment of a mature oceanic stage of the Ligurian Tethys ocean. Also, the data presented provide striking evidence of the existence of isotopic equilibrium between melts and their mantle residue. References Snow et al. (1994), Nature 371, 57-60. Salters and Dick (2002), Nature 418,68-72.

  13. PHOTOCHEMICALLY-INDUCED ALTERATION OF STABLE CARBON ISOTOPE RATIOS (DELTA C-13) IN TERRIGENOUS DISSOLVED ORGANIC CARBON

    EPA Science Inventory

    Exposure of riverine waters to natural sunlight initiated alterations in stable carbon isotope ratios (delta C-13) of the associated dissolved organic carbon (DOC). Water samples were collected from two compositionally distinct coastal river systems in the southeastern United Sta...

  14. Isotope and trace element insights into heterogeneity of subridge mantle

    NASA Astrophysics Data System (ADS)

    Mallick, Soumen; Dick, Henry J. B.; Sachi-Kocher, Afi; Salters, Vincent J. M.

    2014-06-01

    Geochemical data for abyssal peridotites are used to determine the relationship to mid-ocean ridge basalts from several locations at ridge segments on the SW Indian Ridge (SWIR), the Mid-Cayman-Rise (MCR), and the Mid-Atlantic Ridge (MAR). Based on chemical and petrological criteria peridotites are categorized as being either dominantly impregnated with melt or being residual after recent melting. Those that are considered impregnated with melt also have isotopic compositions similar to the basalts indicating impregnation by an aggregate MORB melt. A SWIR and MCR residual peridotite Nd-isotopic compositions partly overlap the Nd-isotopic compositions of the basalts but extend to more radiogenic compositions. The differences between peridotite and basalt Nd-isotopic compositions can be explained by incorporating a low-solidus component with enriched isotopic signature in the subridge mantle: a component that is preferentially sampled by the basalts. At the MAR, peridotites and associated basalts have overlapping Nd-isotopic compositions, suggesting a more homogeneous MORB mantle. The combined chemistry and petrography indicates a complex history with several depletion and enrichment events. The MCR data indicate that a low-solidus component can be a ubiquitous component of the asthenosphere. Residual abyssal peridotites from limited geographic areas also show significant chemical variations that could be associated with initial mantle heterogeneities related to events predating the ridge-melting event. Sm-Nd model ages for possible earlier depletion events suggest these could be as old as 2.4 Ga. This article was corrected on 9 JULY 2014. See the end of the full text for details.

  15. Crystallization history of enriched shergottites from Fe and Mg isotope fractionation in olivine megacrysts

    NASA Astrophysics Data System (ADS)

    Collinet, Max; Charlier, Bernard; Namur, Olivier; Oeser, Martin; Médard, Etienne; Weyer, Stefan

    2017-06-01

    Martian meteorites are the only samples available from the surface of Mars. Among them, olivine-phyric shergottites are basalts containing large zoned olivine crystals with highly magnesian cores (Fo 70-85) and rims richer in Fe (Fo 45-60). The Northwest Africa 1068 meteorite is one of the most primitive "enriched" shergottites (high initial 87Sr/86Sr and low initial ε143Nd). It contains olivine crystals as magnesian as Fo 77 and is a major source of information to constrain the composition of the parental melt, the composition and depth of the mantle source, and the cooling and crystallization history of one of the younger magmatic events on Mars (∼180 Ma). In this study, Fe-Mg isotope profiles analyzed in situ by femtosecond-laser ablation MC-ICP-MS are combined with compositional profiles of major and trace elements in olivine megacrysts. The cores of olivine megacrysts are enriched in light Fe isotopes (δ56FeIRMM-14 = -0.6 to -0.9‰) and heavy Mg isotopes (δ26MgDSM-3 = 0-0.2‰) relative to megacryst rims and to the bulk martian isotopic composition (δ56Fe = 0 ± 0.05‰, δ26Mg = -0.27 ± 0.04‰). The flat forsterite profiles of megacryst cores associated with anti-correlated fractionation of Fe-Mg isotopes indicate that these elements have been rehomogenized by diffusion at high temperature. We present a 1-D model of simultaneous diffusion and crystal growth that reproduces the observed element and isotope profiles. The simulation results suggest that the cooling rate during megacryst core crystallization was slow (43 ± 21 °C/year), and consistent with pooling in a deep crustal magma chamber. The megacryst rims then crystallized 1-2 orders of magnitude faster during magma transport toward the shallower site of final emplacement. Megacryst cores had a forsterite content 3.2 ± 1.5 mol% higher than their current composition and some were in equilibrium with the whole-rock composition of NWA 1068 (Fo 80 ± 1.5). NWA 1068 composition is thus close to a primary melt (i.e. in equilibrium with the mantle) from which other enriched shergottites derived.

  16. The role of mantle-hybridization and crustal contamination in the petrogenesis of lithospheric mantle-derived alkaline rocks: constraints from Os and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Jung, S.; Brauns, M.; Münker, C.

    2018-06-01

    The Rhön area as part of the Central European Volcanic Province (CEVP) hosts an unusual suite of Tertiary 24-Ma old hornblende-bearing alkaline basalts that provide insights into melting and fractionation processes within the lithospheric mantle. These chemically primitive to slightly evolved and isotopically (Sr, Nd, Pb) depleted basalts have slightly lower Hf isotopic compositions than respective other CEVP basalts and Os isotope compositions more radiogenic than commonly observed for continental intraplate alkaline basalts. These highly radiogenic initial 187Os/188Os ratios (0.268-0.892) together with their respective Sr-Nd-Pb isotopic compositions are unlikely to result from crustal contamination alone, although a lack of Os data for lower crustal rocks from the area and limited data for CEVP basalts or mantle xenoliths preclude a detailed evaluation. Similarly, melting of the same metasomatized subcontinental lithospheric mantle as inferred for other CEVP basalts alone is also unlikely, based on only moderately radiogenic Os isotope compositions obtained for upper mantle xenoliths from elsewhere in the province. Another explanation for the combined Nd, Sr and Os isotope data is that the lavas gained their highly radiogenic Os isotope composition through a mantle "hybridization", metasomatism process. This model involves a mafic lithospheric component, such as an intrusion of a sublithospheric primary alkaline melt or a melt derived from subducted oceanic material, sometime in the past into the lithospheric mantle where it metasomatized the ambient mantle. Later at 24 Ma, thermal perturbations during rifting forced the isotopically evolved parts of the mantle together with the peridotitic ambient mantle to melt. This yielded a package of melts with highly correlated Re/Os ratios and radiogenic Os isotope compositions. Subsequent movement through the crust may have further altered the Os isotope composition although this effect is probably minor for the majority of the samples based on radiogenic Nd and unradiogenic Sr isotope composition of the lavas. If the radiogenic Os isotope composition can be explained by a mantle-hybridization and metasomatism model, the isotopic compositions of the hornblende basalts can be satisfied by ca. 5-25% addition of the mafic lithospheric component to an asthenospheric alkaline magma. Although a lack of isotope data for all required endmembers make this model somewhat speculative, the results show that the Re-Os isotope system in continental basalts is able to distinguish between crustal contamination and derivation of continental alkaline lavas from isotopically evolved peridotitic lithosphere that was contaminated by mafic material in the past and later remelted during rifting. The Hf isotopic compositions are slightly less radiogenic than in other alkaline basalts from the province and indicate the derivation of the lavas from low Lu-Hf parts of the lithospheric mantle. The new Os and Hf isotope data constrain a new light of the nature of such metasomatizing agents, at least for these particular rocks, which represent within the particular volcanic complex the first product of the volcanism.

  17. Re — Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle

    NASA Astrophysics Data System (ADS)

    Walker, R. J.; Echeverria, L. M.; Shirey, S. B.; Horan, M. F.

    1991-04-01

    The Re — Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155±43 Ma. Subsequent episodes of volcanism produced basalts at 88.1±3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (ɛNd+9±1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (γOs) ranged from 0 to +22, and model-initial μ values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re — Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions.

  18. Re - Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle

    USGS Publications Warehouse

    Walker, R.J.; Echeverria, L.M.; Shirey, S.B.; Horan, M.F.

    1991-01-01

    The Re - Os isotopic systematics of komatiites and spatially associated basalts from Gorgona Island, Colombia, indicate that they were produced at 155??43 Ma. Subsequent episodes of volcanism produced basalts at 88.1??3.8 Ma and picritic and basaltic lavas at ca. 58 Ma. The age for the ultramafic rocks is important because it coincides with the late-Jurassic, early-Cretaceous disassembly of Pangea, when the North- and South-American plates began to pull apart. Deep-seated mantle upwelling possibly precipitated the break-up of these continental plates and caused a tear in the subducting slab west of Gorgona, providing a rare, late-Phanerozoic conduit for the komatiitic melts. Mantle sources for the komatiites were heterogeneous with respect to Os and Pb isotopic compositions, but had homogeneous Nd isotopic compositions (??Nd+9??1). Initial 187Os/186Os normalized to carbonaceous chondrites at 155 Ma (??Os) ranged from 0 to +22, and model-initial ?? values ranged from 8.17 to 8.39. The excess radiogenic Os, compared with an assumed bulk-mantle evolution similar to carbonaceous chondrites, was likely produced in portions of the mantle with long-term elevated Re concentrations. The Os, Pb and Nd isotopic compositions, together with major-element constraints, suggest that the sources of the komatiites were enriched more than 1 Ga ago by low (<20%) and variable amounts of a basalt or komatiite component. This component was added as either subducted oceanic crust or melt derived from greater depths in the mantle. These results suggest that the Re - Os isotope system may be a highly sensitive indicator of the presence of ancient subducted oceanic crust in mantle-source regions. ?? 1991 Springer-Verlag.

  19. Experimental Determination of Isotopic Fractionation of Chromium(III) During Oxidation by Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Bain, D. J.; Bullen, T. D.

    2004-12-01

    In environmental conditions, chromium (Cr) exists in either the immobile, micronutrient trivalent form (Cr(III)) or the mobile, toxic hexavalent (Cr(VI)) form. Cr(VI) quickly reduces upon encountering Fe(II) or soil organic material (SOM). Therefore, it is often assumed that human Cr additions to terrestrial systems will impact localized areas and natural sources pose minimal threat to human or ecosystem health. However, oxidation and mobilization of Cr(III) by common manganese (Mn) oxides is less understood, especially in field settings. Moreover, Cr(VI)'s anionic form should enhance mobility through Fe- and SOM-poor soil and saprolite matrices. The variety of redox environments along a flowpath makes Cr source identification difficult with only concentration and speciation data. However, Cr has four stable isotopes (50, 52, 53, and 54), and characteristic fractionations during redox transformations might allow clarification of sources and flowpaths. For example, Cr(VI) reduction by a variety of reductants discriminates against heavy Cr, resulting in an increasingly heavy Cr(VI) fraction as reduction proceeds (α Cr(III)-Cr(VI) ˜ 0.996). Measurement of isotopic fractionation in other environmental Cr transformations, including oxidation, is necessary to understand Cr fate and transport. Recent estimates of isotopic fractionation between Cr aqueous species based on theoretical considerations indicate that at equilibrium α Cr(III)-Cr(VI) ˜ 0.994. To test this theoretical prediction, we are assessing the isotopic variability of aqueous Cr during oxidation of Cr(III) on MnO2 materials such as birnessite in laboratory experiments. Initial results indicate that the isotopic composition of the product Cr(VI) ranges from -2.50 to +0.71 ‰ δ 53Cr, suggesting an important role for kinetic isotope effects during the initial oxidation process. Large fluctuations in isotopic composition continue after dissolved Cr(VI) and Cr(III) ratios stabilize and net Cr(VI) production rates are very slow. Moreover, the Cr(VI) isotopic composition fluctuates between heavy and light compositions several times over the course of reaction. Overall, however, the long term trend appears to be toward the equilibrium fractionation predicted by theory. This adds further credence to hypothesized multiple oxidation pathways existing in the system and suggests that multiple processes with off-setting fractionations are driving the system. If these results are representative of natural systems, environmental Cr samples that have been oxidized or been oxidized/reduced multiple times along a flowpath, will have isotopic compositions that vary widely, depending predominantly on sample collection time. In turn, this suggests that Cr isotopic compositions alone will not clarify Cr fate and transport, especially at larger scales (e.g., catchments), and other geochemical and hydrologic constraints will be required.

  20. An Impaired View of Earth's Early History

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Kemp, A. I.; Bauer, A.; Bowring, S. A.; Fisher, C.

    2014-12-01

    The Hf and Nd isotope records of Earth's early history are sparse, difficult to interpret, and controversial, much like the few remnants of crust older than 4 Ga. New analytical techniques have been brought to bear on this problem but despite this recent work­-or, perhaps, because of it-the record is no clearer than it was 15 years ago. Several studies, based on highly variable calculated initial isotopic compositions, have argued for highly heterogeneous crust and mantle reservoirs in the early Earth1,2 and an ultra-depleted Eoarchean mantle3. These data come mostly from two sources: Hf-Nd isotope analyses of ultramafic rocks and Hf isotope analyses of zircons by solution or laser ablation. An important question for understanding the chemical evolution of the early Earth is: Do these data offer a unique window into the early Earth or are they artefacts not representative of crust/mantle evolution, giving an impaired view of the Earth's early history? In complex samples, measured isotopic compositions can result from open-system behavior in easily altered ultramafic compositions, in multicomponent, polymetamorphic gneisses, or in zircons with multiple generations of growth. Perhaps most importantly, accurate age assignment is often lacking, compromised, or impossible in these rocks, making calculation of initial epsilon Hf and Nd values ambiguous at best. In order to gain insight into crust mantle evolution in the early Earth we need, above all, a robust and unambiguous isotopic record to work with. This can be achieved by integrating zircon U-Pb and Hf and whole-rock Hf and Nd isotope compositions in relatively undisturbed igneous rocks with well-constrained ages. When this approach is used apparent isotopic heterogeneity decreases and a simpler model for crust-mantle evolution in the early Earth emerges. Careful screening of geological relationships, petrology, and geochemistry of samples from the early Earth should be done before interpreting isotopic data. Indiscriminate inclusion of isotope data from disturbed and multicomponent rocks and zircons will do more to obscure our understanding of the Hf-Nd isotope evolution of the Earth than to clarify it. [1] Harrison et al. 2005, Science 310, 1947-1950. [2] Blichert-Toft and Albarède, 2008, EPSL 265, 686-702. [3] Hoffmann et al., 2010, GCA, 74, 7236-7260.

  1. Re-Os systematics of komatiites and komatiitic basalts at Dundonald Beach, Ontario, Canada: Evidence for a complex alteration history and implications of a late-Archean chondritic mantle source

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Sproule, R. A.; Walker, R. J.; Lesher, C.

    2004-12-01

    Re-Os concentrations and isotopic compositions have been examined in one komatiite unit and one komatiitic basalt unit at Dundonald Beach, which is part of the spatially-extensive 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re was lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after the lava emplacement. Second, the Re-Os isotope systematics of the rocks with 187Re/188Os ratios >1 were reset at ˜2.5 Ga, most likely due to a regional metamorphic event. Finally, there is evidence for relatively recent gain and loss of Re. The variations in Os concentrations in the Dundonald komatiites yield a relative bulk distribution coefficient for Os (DOs solid/liquid) of 2-4, consistent with those obtained for stratigraphically-equivalent komatiites in the nearby Alexo area and in Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magma parental to the Kidd-Munro komatiitic rocks. Furthermore, whole-rock samples and chromite separates with low 187Re/188Os ratios (<1) yield a precise chondritic average initial 187Os/188Os ratio of 0.1083 ± 0.0006 (\\gammaOs = 0.0 ± 0.6). The chondritic initial Os isotopic composition of the mantle source for the Dundonald rocks is consistent with that determined for komatiites in the Alexo area and in Munro Township. Our Os isotope results for the Dundonald komatiitic rocks, combined with those in the Alexo and Pyke Hill areas suggest that the mantle source region for the Kidd- Munro volcanic assemblage had evolved along a long-term chondritic Os isotopic trajectory until their eruption at ˜2.7 Ga. The chondritic initial Os isotopic composition of the Kidd-Munro komatiites is indistinguishable from that of the projected contemporaneous convective upper mantle. The uniform chondritic Os isotopic composition of the ˜2.7 Ga mantle source for the Kidd-Munro komatiites contrasts with the typical large-scale Os isotopic heterogeneity in the mantle sources for komatiites from the Gorgona Island, present-day ocean island basalts or arc-related lavas. This suggests a significantly more homogeneous mantle source in the Archean compared to the presentday mantle.

  2. Isotopic Discrimination During Leaf Litter Decomposition

    NASA Astrophysics Data System (ADS)

    Ngao, J.; Rubino, M.

    2006-12-01

    Methods involving stable isotopes have been successfully applied since decades in various research fields. Tracing 13C natural abundance in ecosystem compartments greatly enhanced the understanding of the C fluxes in the plant-soil-atmosphere C exchanges when compartments present different C isotopic signatures (i.e. atmospheric CO2 vs photosynthetic leaves, C3 vs C4; etc.). However, the assumption that no isotopic discrimination occurs during respiration is commonly made in numbers of C isotope-based ecological studies. Furthermore, verifications of such assumption are sparse and not enough reliable. The aim of our study is to assess the potential isotopic discrimination that may occur during litter decomposition. Leaf litter from an Arbutus unedo (L.) stand (Tolfa, Italy) was incubated in 1L jars, under constant laboratory conditions (i.e. 25 ° C and 135% WC). During the entire incubation period, gravimetric mass loss, litter respiration rates and the isotopic composition of respired CO2 are monitored at regular intervals. Data from 7 months of incubation will be presented and discussed. After two months, the litter mass loss averaged 16% of initial dry mass. During the same time-period, the respiration rate decreased significantly by 58% of the initial respiration rate. Isotopic compositions of respired CO2 ranged between -27.95‰ and - 25.69‰. Mean values did not differ significantly among the sampling days, in spite of an apparent enrichment in 13C of respired CO2 with time. The significance of these isotopic enrichment will be determined at a longer time scale. They may reveal both/either a direct microbial discrimination during respiration processes and/or a use of different litter compounds as C source along time. Further chemical and compound-specific isotopic analysis of dry matter will be performed in order to clarify these hypotheses. This work is part of the "ALICE" project, funded by the European Union's Marie Curie Fellowship Actions that aims to implement an advanced laser spectrometry technology to measure the isotopic composition in respired CO2. The laser spectrometer will be used to investigate the isotopic discrimination during soil respiration, in laboratory and field studies.

  3. Concordant Rb-Sr and Sm-Nd Ages for NWA 1460: A 340 Ma Old Basaltic Shergottite Related to Lherzolitic Shergottites

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C-Y; Reese, Y. D.; Irving, A. J.

    2006-01-01

    Preliminary Rb-Sr and Sm-Nd ages reported by [1] for the NWA 1460 basaltic shergottite are refined to 336+/-14 Ma and 345+/-21 Ma, respectively. These concordant ages are interpreted as dating a lava flow on the Martian surface. The initial Sr and Nd isotopic compositions of NWA 1460 suggest it is an earlier melting product of a Martian mantle source region similar to those of the lherzolitic shergottites and basaltic shergottite EETA79001, lithology B. We also examine the suggestion that generally "young" ages for other Martian meteorites should be reinterpreted in light of Pb-207/Pb-206 - Pb-204/Pb-206 isotopic systematics [2]. Published U-Pb isotopic data for nakhlites are consistent with ages of approx.1.36 Ga. The UPb isotopic systematics of some Martian shergottites and lherzolites that have been suggested to be approx.4 Ga old [2] are complex. We nevertheless suggest the data are consistent with crystallization ages of approx.173 Ma when variations in the composition of in situ initial Pb as well as extraneous Pb components are considered.

  4. What is the iron isotope composition of the Moon?

    NASA Astrophysics Data System (ADS)

    Poitrasson, F.; Zambardi, T.; Magna, T.; Neal, C. R.

    2016-12-01

    It is difficult to estimate the bulk chemical and isotopic composition of the Moon because of severe limitations in our sampling. As a result, there is currently a debate on the bulk Fe isotope composition of the Moon despite the constraints on the lunar accretion modes or differentiation processes it may provide. For this, a proper mass balance estimation of essential planetary reservoirs is required. For instance, the dichotomy in δ57Fe between low- and high-Ti mare basalt varieties as a consequence of differences in degree of fractional crystallization of their respective lunar mantle sources should be rigorously tested. To investigate this, we performed new iron isotope measurements of 33 bulk lunar mare basalts and highland rocks, including KREEP-related materials. The new data show significant Fe isotope differences between high-Ti and low-Ti mare basalts, yielding mean δ57FeIRMM-014=0.277±0.020‰ and δ57FeIRMM-014=0.127±0.020‰, respectively. Assuming that lunar basalts mirror the iron isotope composition of their respective mantle protoliths, the estimated relative proportion of the low-Ti and high-Ti mantle source suggests that the lunar upper mantle should be close to δ57Fe=0.14±0.03‰. At present, it is unclear whether the bulk lunar Fe isotope composition is indistinguishable from that of the Earth (δ57FeIRMM-014=0.10±0.03‰), when estimated solely from mare basalts data, or if it is twice as heavy relative to chondrites, as initially proposed. A large scatter at δ57Fe=0.08±0.19‰ for ferroan anorthosites, Mg-suite rocks and a KREEP basalt imparts more complexities for global isotopic view of the Moon. A better understanding of the cause of Fe isotope heterogeneity among the lunar highland rocks will likely allow to better estimate the bulk Moon composition, and possibly to improve our knowledge about the genesis of the lunar crust itself.

  5. Zirconium isotope constraints on the composition of Theia and current Moon-forming theories

    NASA Astrophysics Data System (ADS)

    Akram, W.; Schönbächler, M.

    2016-09-01

    The giant impact theory is the most widely recognized formation scenario of the Earth's Moon. Giant impact models based on dynamical simulations predict that the Moon acquired a significant amount of impactor (Theia) material, which is challenging to reconcile with geochemical data for O, Si, Cr, Ti and W isotopes in the Earth and Moon. Three new giant impact scenarios have been proposed to account for this discrepancy - hit-and-run impact, impact with a fast-spinning protoEarth and massive impactors - each one reducing the proportion of the impactor in the Moon compared to the original canonical giant impact model. The validity of each theory and their different dynamical varieties are evaluated here using an integrated approach that considers new high-precision Zr isotope measurements of lunar rocks, and quantitative geochemical modelling of the isotopic composition of the impactor Theia. All analysed lunar samples (whole-rock, ilmenite and pyroxene separates) display identical Zr isotope compositions to that of the Earth within the uncertainty of 13 ppm for 96Zr/90Zr (2σ weighted average). This 13 ppm upper limit is used to infer the most extreme isotopic composition that Theia could have possessed, relative to the Earth, for each of the proposed giant impact theories. The calculated Theian composition is compared with the Zr isotope compositions of different solar system materials in order to constrain the source region of the impactor. As a first order approximation, we show that all considered models (including the canonical) are plausible, alleviating the initial requirement for the new giant impact models. Albeit, the canonical and hit-and-run models are the most restrictive, suggesting that the impactor originated from a region close to the Earth. The fast-spinning protoEarth and massive impactor models are more relaxed and increase the allowed impactor distance from the Earth. Similar calculations carried out for O, Cr, Ti and Si isotope data support these conclusions but exclude a CI- and enstatite chondrite-like composition for Theia. Thus, the impactor Theia most likely had a Zr isotope composition close to that of the Earth, and this suggests that a large part of the inner solar system (or accretion region of the Earth, Theia and enstatite chondrites) had a uniform Zr isotope composition.

  6. Elemental and isotopic abundances in the solar wind

    NASA Technical Reports Server (NTRS)

    Geiss, J.

    1972-01-01

    The use of collecting foils and lunar material to assay the isotopic composition of the solar wind is reviewed. Arguments are given to show that lunar surface correlated gases are likely to be most useful in studying the history of the solar wind, though the isotopic abundances are thought to give a good approximation to the solar wind composition. The results of the analysis of Surveyor material are also given. The conditions leading to a significant component of the interstellar gas entering the inner solar system are reviewed and suggestions made for experimental searches for this fraction. A critical discussion is given of the different ways in which the basic solar composition could be modified by fractionation taking place between the sun's surface and points of observation such as on the Moon or in interplanetary space. An extended review is made of the relation of isotopic and elemental composition of the interplanetary gas to the dynamic behavior of the solar corona, especially processes leading to fractionation. Lastly, connection is made between the subject of composition, nucleosynthesis and the convective zone of the sun, and processes leading to modification of initial accretion of certain gases on the Earth and Moon.

  7. Reassessing the stable isotope composition assigned to methane flux from natural wetlands in isotope-constrained budgets

    NASA Astrophysics Data System (ADS)

    Hornibrook, Edward; Maxfield, Peter; Gauci, Vincent; Stott, Andrew

    2013-04-01

    Stable isotope ratios in CH4 preserve information about its origin and history, and are commonly used to constrain global CH4 budgets. Wetlands are key contributors to the atmospheric burden of CH4 and typically are assigned a stable carbon isotope composition of ~-60 permil in isotope-weighted stable isotope models despite the considerable range of δ13C(CH4) values (~ -100 to -40 permil) known to occur in these diverse ecosystems. Kinetic isotope effects (KIEs) associated with the metabolism of CH4-producing microorganisms generate much of the natural variation but highly negative and positive δ13C(CH4) values generally result from secondary processes (e.g., diffusive transport or oxidation by soil methanotrophs). Despite these complexities, consistent patterns exist in the isotope composition of wetland CH4 that can be linked conclusively to trophic status and consequently, natural succession or human perturbations that impact nutrient levels. Another challenge for accurate representation of wetlands in carbon cycle models is parameterisation of sporadic CH4 emission events. Abrupt release of large volumes of CH4-rich bubbles in short periods of time can account for a significant proportion of the annual CH4 flux from a wetland but such events are difficult to detect using conventional methods. New infrared spectroscopy techniques capable of high temporal resolution measurements of CH4 concentration and stable isotope composition can readily quantify short-lived CH4 pulses. Moreover, the isotope data can be used conclusively to determine shifts in the mode of CH4 transport and provide the potential to link initiation of abrupt emission events to forcing by internal or external factors.

  8. Lead and strontium isotopic evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field, California

    USGS Publications Warehouse

    Bacon, C.R.; Kurasawa, H.; Delevaux, M.H.; Kistler, R.W.; Doe, B.R.

    1984-01-01

    The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The 2 earliest rhyolites probably were tapped from short-lived silicic reservoirs, in contrast to the other 36 rhyolite domes and lava flows which the isotopic data suggest may have been leaked from the top of a single, long-lived magmatic system. Most Coso basalts show isotopic, geochemical, and mineralogic evidence of interaction with crustal rocks, but one analyzed flow has isotopic ratios that may represent mantle values (87Sr/86Sr=0.7036,206Pb/204Pb=19.05,207Pb/204Pb=15.62,208Pb/204Pb= 38.63). The (initial) isotopic composition of typical rhyolite (87Sr/86Sr=0.7053,206Pb/204Pb=19.29,207Pb/204Pb= 15.68,208Pb/204Pb=39.00) is representative of the middle or upper crust. Andesitic inclusions in the rhyolites are evidently samples of hybrid magmas from the silicic/mafic interface in vertically zoned magma reservoirs. Silicic end-member compositions inferred for these mixed magmas, however, are not those of erupted rhyolite but reflect the zonation within the silicic part of the magma reservoir. The compositional contrast at the interface between mafic and silicic parts of these systems apparently was greater for the earlier, smaller reservoirs. ?? 1984 Springer-Verlag.

  9. Age, compositional, and isotopic evidence for crustal recycling in a Late Archean arc, Beartooth Mountains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooden, J.L.; Mueller, P.A.; Graves, M.A.

    1985-01-01

    Late Archean rocks of the eastern Beartooth Mountains range in composition from basaltic andesite to granite and were emplaced 2.73-2.80 Ga ago in a middle to early Archean terrane as indicated by U-Pb zircon studies. Although trace element abundances are extremely variable for this group of rocks, their initial Pb, Sr, and Nd isotopic compositions are remarkably homogenous. A composite Rb-Sr isochron (>30 samples) yield an age of 2.79/plus minus/0.04 Ga with an initial ratio of 0.7022/plus minus/2 while /epsilon/Nd 2.78 Ga ago ranges from -1.5 to -3.1 (av. -2.2). Whole-rock Pb data for these rocks scatter about a 2.75more » Ga isochron and feldspar Pb data suggest initial 206/204 = 13.88, 207/204 = 14.96, and 208/204 = 34.3. These values lie well above values for average crustal leads 2.78 Ga ago as modeled by Stacey and Kramer (1975) and would require development in a reservior with /mu/= 12 from 3.7-2.8 Ga (/mu/= 7.2, 4.5-3.7 Ga). The marked differences between these values and those of the late Archean mantle require that an early to middle Archean crust played a role in the genesis of these rocks. The compositional variety and isotopic homogeneity may have developed as the result of crust-mantle mixing similar to that observed in modern volcanic-plutonic arcs along continental margins where crustal materials can be subducted, and fluids derived from these materials added to the overlying mantle wedge and lower crust. During this period, contaminated mantle may have been generated on a regional scale as evidenced by the isotopic systematics of young mafic volcanics from the northwestern U.S. (e.g. Snake River Plain, Yellowstone, Columbia River).« less

  10. Primitive Mantle Nitrogen Revealed by SIMS in 3.5 Ga Harzburgitic Diamonds

    NASA Astrophysics Data System (ADS)

    Westerlund, K.; Richardson, S. H.; Shirey, S. B.; Hauri, E. H.; Gurney, J. J.

    2009-12-01

    The advent of the ion microprobe (SIMS) some 30 years ago marked the start of an exciting new approach to subcontinental lithospheric mantle (SCLM) studies. In-situ SIMS analysis of trace element zoning in mantle minerals, in combination with TIMS analysis of mineral separates, has revolutionized our understanding of equilibrium/disequilibrium relationships on a variety of time and length scales. For example, octahedral diamonds isolate mineral inclusions from diffusive exchange at mantle temperatures on a Gyr time scale, as well as preserving host diamond isotopic signatures that have long been used as indicators of the sources of diamond-forming fluids. Nitrogen, the main trace element in diamond, behaves as a compatible element during diamond growth [1] and SIMS has proved essential to determining C and N isotopic compositions on the scale of inclusions and associated diamond growth zones [2]. A suite of harzburgitic sulfide inclusion bearing diamonds from the 53 Ma Panda kimberlite, NWT, Canada, provides an ideal opportunity to characterize the source of diamond fluids in the world’s oldest macrodiamonds [3]. This suite gave a sulfide Re-Os isochron age of 3.52 ± 0.17 Ga with a radiogenic initial Os isotope signature characteristic of subduction-related fluids. The first-order variation in C (δ13C = -9 to 0‰) and N (δ15N = -25 to -7‰) isotopic composition of the host diamonds has been mapped by SIMS profiling of diamond plates. Collectively, the specimens show the following features: (i) compositional zoning/discontinuities indicating discrete growth stages and multiple fluids, (ii) overall core-to-rim decrease in N concentration variably well correlated with C and N isotopic composition, suggesting both open and closed system fractionation during diamond growth, (iii) initial N concentration correlated with N isotopic composition for different stones suggesting mixing of an ambient, isotopically light N component (<-26‰) and a heavier N component (still <0‰) introduced by the diamond-forming fluids. Given that these fluids are most likely the same as those carrying the radiogenic initial Os identified in the sulfide inclusions and host harzburgites [3], the heavier N component is probably also subduction-related. The light N component is then proposed to be primitive N in Archean SCLM that was characteristically light and resembled that of enstatite chondrites (as previously suggested by Cartigny et al [4] for undated peridotitic diamonds from Fuxian, China). The large spread in N isotopic composition of harzburgitic diamonds resulting from the reaction of multiple diamond-forming fluids with the SCLM and fractionation during diamond growth, shows that the mantle is more heterogeneous than recently claimed [5]. [1] Stachel et al (2009) doi: 10.1016/j.lithos.2009.04.017. [2] Hauri et al (2002) Chem Geol 185, 149-163. [3] Westerlund et al (2006) CMP 152, 275-294. [4] Cartigny et al (1997) Terra Nova 9, 175-179. [5] Cartigny et al (2009) doi: 10.1016/j.lithos.2009.06.007.

  11. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia

    NASA Technical Reports Server (NTRS)

    Baur, M. E.; Hayes, J. M.; Studley, S. A.; Walter, M. R.

    1985-01-01

    Several diamond drill cores from formations within the Hamersley Group of Western Australia have been studied for evidence of short-range variations in the isotopic compositions of the carbonates. For a set of 32 adjacent microbands analyzed in a specimen from the Marra Mamba Iron Formation, carbon isotope compositions of individual microbands ranged from -2.8 to -19.8 per mil compared to PDB and oxygen isotope compositions ranged from 10.2 to 20.8 per mil compared to SMOW. A pattern of alternating abundances was present, with the average isotopic contrasts between adjacent microbands being 3.0 per mil for carbon and 3.1 per mil for oxygen. Similar results were obtained for a suite of 34 microbands (in four groups) from the Bruno's Band unit of the Mount Sylvia Formation. Difficulties were experienced in preparing samples of single microbands from the Dales Gorge Member of the Brockman Iron Formation, but overall isotopic compositions were in good agreement with values reported by previous authors. Chemical analyses showed that isotopically light carbon and oxygen were correlated with increased concentrations of iron. The preservation of these millimeter-scale variations in isotopic abundances is interpreted as inconsistent with a metamorphic origin for the isotopically light carbon in the BIF carbonates. A biological origin is favored for the correlated variations in 13C and Fe, and it is suggested that the 13C-depleted carbonates may derive either from fermentative metabolism or from anaerobic respiration. A model is presented in which these processes occur near the sediment-water interface and are coupled with an initial oxidative precipitation of the iron.

  12. Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets

    NASA Astrophysics Data System (ADS)

    Aléon, J.; Engrand, C.; Leshin, L. A.; McKeegan, K. D.

    2009-08-01

    Oxygen isotopes were measured in four chondritic hydrated interplanetary dust particles (IDPs) and five chondritic anhydrous IDPs including two GEMS-rich particles (Glass embedded with metal and sulfides) by a combination of high precision and high lateral resolution ion microprobe techniques. All IDPs have isotopic compositions tightly clustered around that of solar system planetary materials. Hydrated IDPs have mass-fractionated oxygen isotopic compositions similar to those of CI and CM carbonaceous chondrites, consistent with hydration of initially anhydrous protosolar dust. Anhydrous IDPs have small 16O excesses and depletions similar to those of carbonaceous chondrites, the largest 16O variations being hosted by the two GEMS-rich IDPs. Coarse-grained forsteritic olivine and enstatite in anhydrous IDPs are isotopically similar to their counterparts in comet Wild 2 and in chondrules suggesting a high temperature inner solar system origin. The small variations in the 16O content of GEMS-rich IDPs suggest that most GEMS either do not preserve a record of interstellar processes or the initial interstellar dust is not 16O-rich as expected by self-shielding models, although a larger dataset is required to verify these conclusions. Together with other chemical and mineralogical indicators, O isotopes show that the parent-bodies of carbonaceous chondrites, of chondritic IDPs, of most Antarctic micrometeorites, and comet Wild 2 belong to a single family of objects of carbonaceous chondrite chemical affinity as distinct from ordinary, enstatite, K- and R-chondrites. Comparison with astronomical observations thus suggests a chemical continuum of objects including main belt and outer solar system asteroids such as C-type, P-type and D-type asteroids, Trojans and Centaurs as well as short-period comets and other Kuiper Belt Objects.

  13. Relationship between the trajectory of mid-latitude cyclones in the eastern Pacific Ocean and the isotopic composition of snowfall in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Vasquez, K. T.; Sickman, J. O.; Lucero, D. M.; Heard, A. M.

    2014-12-01

    Climate change has caused a change in the Sierra Nevada snowpack and the timing of its snowmelt, threatening a valuable water resource that provides for 25 million people and 5 million hectares of irrigated land. Understanding past and future variations in the snowpack is crucial in order to plan future water management. Of particular importance would be an archive of the variability of past snowfall, which can be recorded through the isotopic records found in local paleoproxies (e.g., diatoms). We propose to quantify the relationship between sources of atmospheric moisture in the Sierra Nevada and the isotopic composition of its snowpack to uncover whether isotopic variations recorded in paloearchives are a result of the isotopic composition of the precipitation, thereby showing whether these archives could serve as a reliable source of atmospheric moisture. Preliminary analysis conducted from December 2012 to March 2013 at Sequoia National Park resulted in statistically significant correlations between the isotopic composition of the winter snowfall and storm track trajectories. It was observed that storms originating from more northern latitudes had predominantly lighter isotopes (more negative δ 2H and δ18O) and sub-tropical/tropical Pacific storms showed more positive δ 2H and δ18O. This pattern reflects the isotopic gradient of the Pacific Ocean and can prove useful when interpreting the climatic significance of the δ2H and δ18O values in analyzed proxies. While our initial investigation was promising, the winter of 2012 -2013 was abnormally dry compared to long-term averages. Before directing our investigation to known paleoproxies, we aim to determine if the correlation between storm tracks and isotopic composition of precipitation holds in years with average and above average precipitation through analysis of archived samples from calendar years 2007 - 2011 from Giant Forest in Sequoia National Park (southern sierra) and Manzanita Lake in Lassen Volcanic National Park (northern sierra).

  14. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    NASA Technical Reports Server (NTRS)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane emitted from undisturbed Cape Lookout Bight sediment.

  15. Titanium isotopic evidence for felsic crust and plate tectonics 3.5 billion years ago.

    PubMed

    Greber, Nicolas D; Dauphas, Nicolas; Bekker, Andrey; Ptáček, Matouš P; Bindeman, Ilya N; Hofmann, Axel

    2017-09-22

    Earth exhibits a dichotomy in elevation and chemical composition between the continents and ocean floor. Reconstructing when this dichotomy arose is important for understanding when plate tectonics started and how the supply of nutrients to the oceans changed through time. We measured the titanium isotopic composition of shales to constrain the chemical composition of the continental crust exposed to weathering and found that shales of all ages have a uniform isotopic composition. This can only be explained if the emerged crust was predominantly felsic (silica-rich) since 3.5 billion years ago, requiring an early initiation of plate tectonics. We also observed a change in the abundance of biologically important nutrients phosphorus and nickel across the Archean-Proterozoic boundary, which might have helped trigger the rise in atmospheric oxygen. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Sr-Nd-Pb Isotope Geochemistry of Melange Formation: Implications for Identification of Fluid Sources in the Mantle Wedge and the Arc

    NASA Astrophysics Data System (ADS)

    Bebout, G. E.; King, R. L.; Moriguti, T.; Nakamura, E.

    2004-12-01

    Paramount to our ability to decipher the behavior of fluids and melts within the mantle wedge and the overall subduction system are the chemical compositions of rocks adjacent to the slab-mantle interface. Profound metamorphic and metasomatic alteration of pre-subduction lithologies to form melange along the slab-mantle interface may yield rock types inheriting mixed chemical compositions of diverse pre-subduction lithologies. Early work on melange geochemistry indicates competitive effects between mechanical mixing, metasomatism by fluids or melts, and mineral stabilities imposed by the resulting bulk composition. We have explored the Sr-Nd-Pb isotope geochemistry of low- to high-grade melange zones in the Catalina Schist, CA, to address this crucial missing component in studies of subduction-zone mass flux. The Catalina Schist contains lawsonite-albite (LA), lawsonite-blueschist (LB), and amphibolite (AM) facies melange zones, all with mineralogy dominated by talc, chlorite, and Na-Ca amphiboles, with additional minerals such as micas, rutile, zircon, and apatite stabilized based on bulk sample chemistry. Major element compositions vary, from strongly ultramafic in the AM melange, to more crustal-like compositions (i.e., more reminiscent of basaltic to sedimentary protoliths) for LA and LB melange. However, initial Sr and Nd isotope ratios for all grades of melange are essentially indistinguishable, displaying a wide variation from 87Sr/86Sr=0.703-0.709 and ɛ Nd= +15 to -15. Covariations are generally negative, similar to that of the mantle array, but with some samples extending to higher Sr ratios at constant ɛ Nd that probably reflect inheritance of seawater Sr. No clear mixing relationships between 87Sr/86Sr and 1/Sr exist, suggesting either localized buffering of Sr isotope ratios or that mixing relations are obscured by secondary devolatilization. However, a clear mixing trend for Nd indicates two end-members, one a high-concentration, positive ɛ Nd source (AOC?), the other with low-concentration and negative ɛ Nd (devolatilized sediments?). Likewise, initial Pb isotope ratios for all grades of melange form a single array independent of rock type or inferred protolith. Melange matrix of the Catalina Schist preserves initial 206Pb/204Pb of 18.95-19.59, 207Pb/204Pb of 15.61-15.68, and 208Pb/204Pb of 37.85-39.05. Such elevated Pb ratios are typical of subducting oceanic sediments, but not of MORB-like oceanic crust or peridotites of the depleted mantle. The similarity of these initial ratios suggests pervasive alteration of Pb isotope signatures within diverse rock types by fluids during subduction. As Pb concentrations decline from LA/LB to AM melange, this suggests devolatilization of Pb from the ultramafic AM melange will transfer crustal-like Pb isotope ratios. Sr-Nd-Pb isotope systematics for arc volcanic rocks are commonly used as indicators of fluid sources from the subducting slab to the arc magma source region. Our results suggest such an assumption is extremely dangerous, as hybridization processes common to melange zones are more likely to occur along the slab-mantle interface than is preservation of a pre-subduction section. Such metamorphic mediation and buffering of "slab" compositions is essentially unknown, yet our data support an interpretation where these processes impart a fundamental control on the chemistry of fluids passed to the mantle wedge.

  17. U-Th-Pb age of the Barwell chondrite - Anatomy of a 'discordant' meteorite

    NASA Technical Reports Server (NTRS)

    Unruh, D. M.; Tatsumoto, M.; Hutchison, R.

    1979-01-01

    A Pb-Pb internal isochron for the Barwell L5-6 chondrite yields an age of 4.530 plus or minus 0.005 billion years, using the measured U-238/U-235 ratio of 135.24 plus or minus .17. If the terrestrial U isotope composition is used, an age of 4.559 billion years is obtained. The Pb isotopic composition is distinctly different from that of a terrestrial contaminant found in the fusion crust of the Barwell stone. When the U-Th-Pb data are plotted on the concordia diagram, the data define a line that intersects the concordia curve at approximately 4.53 and 0 billion years, and nearly all of the data plot above the concordia curve, regardless of the initial Pb correction. This discordancy and the Pb isotopic composition of the triolite are attributed to a recent reequilibration of Pb and not to terrestrial contamination.

  18. Lead Isotopes in Olivine-Phyric Shergottite Tissint: Implications for the Geochemical Evolution of the Shergottite Source Mantle

    NASA Technical Reports Server (NTRS)

    Moriwaki, R.; Usui, T.; Simon, J. I.; Jones, J. H.; Yokoyama, T.

    2015-01-01

    Geochemically-depleted shergottites are basaltic rocks derived from a martian mantle source reservoir. Geochemical evolution of the martian mantle has been investigated mainly based on the Rb-Sr, Sm-Nd, and Lu-Hf isotope systematics of the shergottites [1]. Although potentially informative, U-Th- Pb isotope systematics have been limited because of difficulties in interpreting the analyses of depleted meteorite samples that are more susceptible to the effects of near-surface processes and terrestrial contamination. This study conducts a 5-step sequential acid leaching experiment of the first witnessed fall of the geochemically-depleted olivinephyric shergottite Tissint to minimize the effect of low temperature distrubence. Trace element analyses of the Tissint acid residue (mostly pyroxene) indicate that Pb isotope compositions of the residue do not contain either a martian surface or terrestrial component, but represent the Tissint magma source [2]. The residue has relatively unradiogenic initial Pb isotopic compositions (e.g., 206Pb/204Pb = 10.8136) that fall within the Pb isotope space of other geochemically-depleted shergottites. An initial µ-value (238U/204Pb = 1.5) of Tissint at the time of crystallization (472 Ma [3]) is similar to a time-integrated mu- value (1.72 at 472 Ma) of the Tissint source mantle calculated based on the two-stage mantle evolution model [1]. On the other hand, the other geochemically-depleted shergottites (e.g., QUE 94201 [4]) have initial µ-values of their parental magmas distinctly lower than those of their modeled source mantle. These results suggest that only Tissint potentially reflects the geochemical signature of the shergottite mantle source that originated from cumulates of the martian magma ocean

  19. Influence of uncertainties of isotopic composition of the reprocessed uranium on effectiveness of its enrichment in gas centrifuge cascades

    NASA Astrophysics Data System (ADS)

    Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.

    2017-01-01

    The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.

  20. Rb-Sr whole-rock and mineral ages, K-Ar, 40Ar/39Ar, and U-Pb mineral ages, and strontium, lead, neodymium, and oxygen isotopic compositions for granitic rocks from the Salinian Composite Terrane, California:

    USGS Publications Warehouse

    Kistler, R.W.; Champion, D.E.

    2001-01-01

    This report summarizes new and published age and isotopic data for whole-rocks and minerals from granitic rocks in the Salinian composite terrane, California. Rubidium-strontium whole-rock ages of plutons are in two groups, Early Cretaceous (122 to 100 Ma) and Late Cretaceous (95 to 82 Ma). Early Cretaceous plutons occur in all granitic rock exposures from Bodega Head in the north to those from the Santa Lucia and Gabilan Ranges in the central part of the terrane. Late Cretaceous plutons have been identified in the Point Reyes Peninsula, the Santa Lucia and the Gabilan Ranges, and in the La Panza Range in the southern part of the terrane. Ranges of initial values of isotopic compositions are 87Sr/86Sr, 0.7046-0.7147, δ18O, +8.5 to +12.5 per mil, 206Pb/204Pb, 18.901-19.860, 207Pb/204Pb, 15.618-15.814, 208Pb/204Pb, 38.569- 39.493, and εNd, +0.9 to -8.6. The initial 87Sr/86Sr=0.706 isopleth is identified in the northern Gabilan Range and in the Ben Lomond area of the Santa Cruz Mountains, in Montara Mountain, in Bodega Head, and to the west of the Farallon Islands on the Cordell Bank. This isotopic boundary is offset about 95 miles (160km) by right-lateral displacements along the San Gregorio-Hosgri and San Andreas fault systems.

  1. Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil)

    NASA Astrophysics Data System (ADS)

    Rocha-Júnior, Eduardo R. V.; Marques, Leila S.; Babinski, Marly; Nardy, Antônio J. R.; Figueiredo, Ana M. G.; Machado, Fábio B.

    2013-10-01

    There has been little research on geochemistry and isotopic compositions in tholeiites of the Northern region from the Paraná Continental Flood Basalts (PCFB), one of the largest continental provinces of the world. In order to examine the mantle sources involved in the high-Ti (Pitanga and Paranapanema) basalt genesis, we studied Sr, Nd, and Pb isotopic systematics, and major, minor and incompatible trace element abundances. The REE patterns of the investigated samples (Pitanga and Paranapanema magma type) are similar (parallel to) to those of Island Arc Basalts' REE patterns. The high-Ti basalts investigated in this study have initial (133 Ma) 87Sr/86Sr ratios of 0.70538-0.70642, 143Nd/144Nd of 0.51233-0.51218, 206Pb/204Pb of 17.74-18.25, 207Pb/204Pb of 15.51-15.57, and 208Pb/204Pb of 38.18-38.45. These isotopic compositions do not display any correlation with Nb/Th, Nb/La or P2O5/K2O ratios, which also reflect that these rocks were not significantly affected by low-pressure crustal contamination. The incompatible trace element ratios and Sr-Nd-Pb isotopic compositions of the PCFB tholeiites are different to those found in Tristan da Cunha ocean island rocks, showing that this plume did not play a substantial role in the PCFB genesis. This interpretation is corroborated by previously published osmium isotopic data (initial γOs values range from +1.0 to +2.0 for high-Ti basalts), which also preclude basalt generation by melting of ancient subcontinental lithospheric mantle. The geochemical composition of the northern PCFB may be explained through the involvement of fluids and/or small volume melts related to metasomatic processes. In this context, we propose that the source of these magmas is a mixture of sublithospheric peridotite veined and/or interlayered with mafic components (e.g., pyroxenites or eclogites). The sublithospheric mantle (dominating the osmium isotopic compositions) was very probably enriched by fluids and/or magmas related to the Neoproterozoic subduction processes. This sublithospheric mantle region may have been frozen and coupled to the base of the Parana basin lithospheric plate above which the Paleozoic subsidence and subsequent Early Cretaceous magmatism occurred.

  2. Crystal growth and disequilibrium distribution of oxygen isotopes in an igneous Ca-Al-rich inclusion from the Allende carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Kawasaki, Noriyuki; Simon, Steven B.; Grossman, Lawrence; Sakamoto, Naoya; Yurimoto, Hisayoshi

    2018-01-01

    TS34 is a Type B1 Ca-Al-rich inclusion (CAI) from the Allende CV3 chondrite, consisting of spinel, melilite, Ti-Al-rich clinopyroxene (fassaite) and minor anorthite in an igneous texture. Oxygen and magnesium isotopic compositions were measured by secondary ion mass spectrometry in spots of known chemical composition in all major minerals in TS34. Using the sequence of formation from dynamic crystallization experiments and from chemical compositions of melilite and fassaite, the oxygen isotopic evolution of the CAI melt was established. Oxygen isotopic compositions of the constituent minerals plot along the carbonaceous chondrite anhydrous mineral line. The spinel grains are uniformly 16O-rich (Δ17O = -22.7 ± 1.7‰, 2SD), while the melilite grains are uniformly 16O-poor (Δ17O = -2.8 ± 1.8‰) irrespective of their åkermanite content and thus their relative time of crystallization. The fassaite crystals exhibit growth zoning overprinting poorly-developed sector zoning; they generally grow from Ti-rich to Ti-poor compositions. The fassaite crystals also show continuous variations in Δ17O along the inferred directions of crystal growth, from 16O-poor (Δ17O ∼ -3‰) to 16O-rich (Δ17O ∼ -23‰), covering the full range of oxygen isotopic compositions observed in TS34. The early-crystallized 16O-poor fassaite and the melilite are in oxygen isotope equilibrium and formed simultaneously. The correlation of oxygen isotopic compositions with Ti content in the fassaite imply that the oxygen isotopic composition of the CAI melt evolved from 16O-poor to 16O-rich during fassaite crystallization, presumably due to oxygen isotope exchange with a surrounding 16O-rich nebular gas. Formation of spinel, the liquidus phase in melts of this composition, predates crystallization of all other phases, so its 16O-rich composition is a relic of an earlier stage. Anorthite exhibits oxygen isotopic compositions between Δ17O ∼ -2‰ and -9‰, within the range of those of fassaite, indicating co-crystallization of these two minerals during the earliest to intermediate stage of fassaite growth. The melilite and fassaite yield an 26Al-26Mg mineral isochron with an initial value of (26Al/27Al)0 = (5.003 ± 0.075) × 10-5, corresponding to a relative age of 0.05 ± 0.02 Myr from the canonical Al-Mg age of CAIs. These data demonstrate that both 16O-rich and 16O-poor reservoirs existed in the solar nebula at least ∼0.05 Myr after the birth of the Solar System.

  3. Stable Isotope Analysis of Chlorate

    NASA Astrophysics Data System (ADS)

    Brundrett, M.; Jackson, W. A.; Sturchio, N. C.; Bohlke, J. K.; Hatzinger, P.

    2016-12-01

    Studies have confirmed the presence of chlorate (ClO3-) throughout terrestrial and extraterrestrial systems generally in excess of perchlorate (ClO4-) [1, 2]. ClO3- occurrence, production, and post depositional transformation has significant implications to our understanding of atmospheric Cl cycling and potential biogeochemical reactions on Earth and Mars. The isotopic composition of oxyanions can be used to evaluate their production mechanisms and post-depositional alteration [3, 4]. However, no information is available on the natural isotopic composition of ClO3-. The objective of this study was to develop a method to measure the stable isotope composition (δ18O, δ17O and δ37Cl) of ClO3- and to determine the isotopic composition of ClO3- in natural desert salt accumulations that have been studied previously for NO3- and ClO4- isotopic composition. The process of ClO3- purification and analysis of δ18O, δ 17O and δ37Cl is problematic but has recently been resolved by adapting previously published methods for ClO4-. Competitive anions (e.g. NO3-, Cl-, ClO4-, and SO4-2) are removed through a series of processes including biological reduction, solid phase extraction, and anion or cation exchange. Initial results for control samples treated with the above method have a maximum variation of ± 2 ‰. These methods are being applied to representative samples to determine if various sources of natural and synthetic ClO3- have distinctive isotopic compositions, as reported previously for ClO4- [3, 4]. Establishing the range of isotopic composition of natural ClO3- also could provide information about atmospheric ClO3- production mechanisms and post-depositional processing, with implications for the atmospheric chemistry of oxychlorine compounds and the global biogeochemical cycling of Cl. [1] Jackson et al. (2015) EPSL 430, 470-476. [2] Rao et al. (2010) ES&T 44, 8429-8434. [3] Jackson et al. (2010) ES&T 44, 4869-4876. [4] Bao and Gu (2004) ES&T 38, 5073-5077.

  4. The evolution of Carbon isotopes in calcite in the presence of cyanobacteria

    NASA Astrophysics Data System (ADS)

    Grimm, Christian; Mavromatis, Vasileios; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2016-04-01

    Stable isotopic compositions in carbonates are widely used as indicators of environmental conditions prevailing during mineral formation. This reconstruction is substantially based on the assumption that there is no change in the mineral composition over geological time. However, recent experimental studies have shown that carbon and magnesium isotopes in hydrous Mg-carbonates undergo continuous re-equilibration with the ambient solution even after mineral precipitation stopped ([1] and [2], respectively). To verify whether this holds true for anhydrous Ca-bearing carbonates which readily form at earth's surface environments, a series of batch system calcite precipitation experiments were performed in the presence of actively growing cyanobacteria Synechococcus sp. The bacteria were grown at ambient temperature in a BG11 culture medium (SIGMA C3061) and continuous stirring, air-bubbling and illumination. Calcite precipitation was initiated by the addition of 8.5mM CaCl2 and 0-50 mM NaHCO3 or NaHCO3-Na2CO3 mixtures. The presence of cyanobacteria is on one hand promoting CaCO3 formation due to increasing pH resulting from photosynthesis. On the other hand, actively growing cyanobacteria drastically change carbon isotope signature of the aqueous fluid phase by preferably incorporating the lighter 12C isotope into biomass [1]. This study explores the effect of continuously changing carbon isotope compositions in dissolved inorganic carbon (DIC) on precipitated calcite which is in chemical equilibrium with the ambient fluid phase. [1] Mavromatis et al. (2015). The continuous re-equilibration of carbon isotope compositions of hydrous Mg-carbonates in the presence of cyanobacteria. Chem. Geol. 404, 41-51 [2] Mavromatis et al. (2012). Magnesium isotope fractionation during hydrous magnesium carbonate precipitation with and without cyanobacteria. Geochim. Cosmochim. Acta 76, 161-174

  5. Geochemical characteristics of Cretaceous carbonatites from Angola

    NASA Astrophysics Data System (ADS)

    Alberti, A.; Castorina, F.; Censi, P.; Comin-Chiaramonti, P.; Gomes, C. B.

    1999-12-01

    The Early Cretaceous (138-130 Ma) carbonatites and associated alkaline rocks of Angola belong to the Paraná-Angola-Etendeka Province and occur as ring complexes and other central-type intrusions along northeast trending tectonic lineaments, parallel to the trend of coeval Namibian alkaline complexes. Most of the Angolan carbonatite-alkaline bodies are located along the apical part of the Moçamedes Arch, a structure representing the African counterpart of the Ponta Grossa Arch in southern Brazil, where several alkaline-carbonatite complexes were also emplaced in the Early Cretaceous. Geochemical and isotopic (C, 0, Sr and Nd) characteristics determined for five carbonatitic occurrences indicate that: (1) the overall geochemical composition, including the OC isotopes, is within the range of the Early and Late Cretaceous Brazilian occurrences from the Paraná Basin; (2) the La versus {La}/{Yb} relationships are consistent with the exsolution of CO i2-rich melts from trachyphonolitic magmas; and (3) the {143Nd}/{144Nd} and {87Sr}/{86Sr} initial ratios are similar to the initial isotopic ratios (129 Ma) of alkaline complexes in northwest Namibia. In contrast, the Lupongola carbonatites have a distinctly different {143Nd}/{144Nd} initial ratio, suggesting a different source. The Angolan carbonatites have SrNd isotopic compositions ranging from bulk earth to time-integrated depleted sources. Since those from eastern Paraguay (at the western fringe of the Paraná-Angola-Etendeka Province) and Brazil appear to be related to mantle-derived melts with time-integrated enriched or B.E. isotopic characteristics, it is concluded that the carbonatites of the Paraná-Angola-Etendeka Province have compositionally distinct mantle sources. Such mantle heterogeneity is attributed to 'metasomatic processes', which would have occurred at ca 0.6-0.7 Ga (Angola, northwest Namibia and Brazil) and ca 1.8 Ga (eastern Paraguay), as suggested by Nd-model ages.

  6. Osmium Isotopic Evolution of the Mantle Sources of Precambrian Ultramafic Rocks

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Walker, R. J.

    2006-12-01

    The Os isotopic composition of the modern mantle, as recorded collectively by ocean island basalts, mid- oceanic ridge basalts (MORB) and abyssal peridotites, is evidently highly heterogeneous (γ Os(I) ranging from <-10 to >+25). One important question, therefore, is how and when the Earth's mantle developed such large-scale Os isotopic heterogeneities. Previous Os isotopic studies of ancient ultramafic systems, including komatiites and picrites, have shown that the Os isotopic heterogeneity of the terrestrial mantle can be traced as far back as the late-Archean (~ 2.7-2.8 Ga). This observation is based on the initial Os isotopic ratios obtained for the mantle sources of some of the ancient ultramafic rocks determined through analyses of numerous Os-rich whole-rock and/or mineral samples. In some cases, the closed-system behavior of these ancient ultramafic rocks was demonstrated via the generation of isochrons of precise ages, consistent with those obtained from other radiogenic isotopic systems. Thus, a compilation of the published initial ^{187}Os/^{188}Os ratios reported for the mantle sources of komatiitic and picritic rocks is now possible that covers a large range of geologic time spanning from the Mesozoic (ca. 89 Ma Gorgona komatiites) to the Mid-Archean (e.g., ca. 3.3 Ga Commondale komatiites), which provides a comprehensive picture of the Os isotopic evolution of their mantle sources through geologic time. Several Precambrian komatiite/picrite systems are characterized by suprachondritic initial ^{187}Os/^{188}Os ratios (e.g., Belingwe, Kostomuksha, Pechenga). Such long-term enrichments in ^{187}Os of the mantle sources for these rocks may be explained via recycling of old mafic oceanic crust or incorporation of putative suprachondritic outer core materials entrained into their mantle sources. The relative importance of the two processes for some modern mantle-derived systems (e.g., Hawaiian picrites) is an issue of substantial debate. Importantly, however, the high-precision initial Os isotopic compositions of the majority of ultramafic systems show strikingly uniform initial ^{187}Os/^{188}Os ratios, consistent with their derivation from sources that had Os isotopic evolution trajectory very similar to that of carbonaceous chondrites. In addition, the Os isotopic evolution trajectories of the mantle sources for most komatiites show resolvably lower average Re/Os than that estimated for the Primitive Upper Mantle (PUM), yet significantly higher than that obtained in some estimates for the modern convecting upper mantle, as determined via analyses of abyssal peridotites. One possibility is that most of the komatiites sample mantle sources that are unique relative to the sources of abyssal peridotites and MORB. Previous arguments that komatiites originate via large extents of partial melting of relatively deep upper mantle, or even lower mantle materials could, therefore, implicate a source that is different from the convecting upper mantle. If so, this source is remarkably uniform in its long-term Re/Os, and it shows moderate depletion in Re relative to the PUM. Alternatively, if the komatiites are generated within the convective upper mantle through relatively large extents of partial melting, they may provide a better estimate of the Os isotopic composition of the convective upper mantle than that obtained via analyses of MORB, abyssal peridotites and ophiolites.

  7. Silicon isotopes in angrites and volatile loss in planetesimals

    PubMed Central

    Moynier, Frédéric; Savage, Paul S.; Badro, James; Barrat, Jean-Alix

    2014-01-01

    Inner solar system bodies, including the Earth, Moon, and asteroids, are depleted in volatile elements relative to chondrites. Hypotheses for this volatile element depletion include incomplete condensation from the solar nebula and volatile loss during energetic impacts. These processes are expected to each produce characteristic stable isotope signatures. However, processes of planetary differentiation may also modify the isotopic composition of geochemical reservoirs. Angrites are rare meteorites that crystallized only a few million years after calcium–aluminum-rich inclusions and exhibit extreme depletions in volatile elements relative to chondrites, making them ideal samples with which to study volatile element depletion in the early solar system. Here we present high-precision Si isotope data that show angrites are enriched in the heavy isotopes of Si relative to chondritic meteorites by 50–100 ppm/amu. Silicon is sufficiently volatile such that it may be isotopically fractionated during incomplete condensation or evaporative mass loss, but theoretical calculations and experimental results also predict isotope fractionation under specific conditions of metal–silicate differentiation. We show that the Si isotope composition of angrites cannot be explained by any plausible core formation scenario, but rather reflects isotope fractionation during impact-induced evaporation. Our results indicate planetesimals initially formed from volatile-rich material and were subsequently depleted in volatile elements during accretion. PMID:25404309

  8. Pb evolution in the Martian mantle

    NASA Astrophysics Data System (ADS)

    Bellucci, J. J.; Nemchin, A. A.; Whitehouse, M. J.; Snape, J. F.; Bland, P.; Benedix, G. K.; Roszjar, J.

    2018-03-01

    The initial Pb compositions of one enriched shergottite, one intermediate shergottite, two depleted shergottites, and Nakhla have been measured by Secondary Ion Mass Spectrometry (SIMS). These values, in addition to data from previous studies using an identical analytical method performed on three enriched shergottites, ALH 84001, and Chassigny, are used to construct a unified and internally consistent model for the differentiation history of the Martian mantle and crystallization ages for Martian meteorites. The differentiation history of the shergottites and Nakhla/Chassigny are fundamentally different, which is in agreement with short-lived radiogenic isotope systematics. The initial Pb compositions of Nakhla/Chassigny are best explained by the late addition of a Pb-enriched component with a primitive, non-radiogenic composition. In contrast, the Pb isotopic compositions of the shergottite group indicate a relatively simple evolutionary history of the Martian mantle that can be modeled based on recent results from the Sm-Nd system. The shergottites have been linked to a single mantle differentiation event at 4504 Ma. Thus, the shergottite Pb isotopic model here reflects a two-stage history 1) pre-silicate differentiation (4504 Ma) and 2) post-silicate differentiation to the age of eruption (as determined by concordant radiogenic isochron ages). The μ-values (238U/204Pb) obtained for these two different stages of Pb growth are μ1 of 1.8 and a range of μ2 from 1.4-4.7, respectively. The μ1-value of 1.8 is in broad agreement with enstatite and ordinary chondrites and that proposed for proto Earth, suggesting this is the initial μ-value for inner Solar System bodies. When plotted against other source radiogenic isotopic variables (Sri, γ187Os, ε143Nd, and ε176Hf), the second stage mantle evolution range in observed mantle μ-values display excellent linear correlations (r2 > 0.85) and represent a spectrum of Martian mantle mixing-end members (depleted, intermediate, enriched).

  9. Re-Os systematics of komatiites and komatiitic basalts at Dundonald Beach, Ontario, Canada: Evidence for a complex alteration history and implications of a late-Archean chondritic mantle source

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Amitava; Sproule, Rebecca A.; Walker, Richard J.; Lesher, C. Michael

    2005-11-01

    Osmium isotopic compositions, and Re and Os concentrations have been examined in one komatiite unit and two komatiitic basalt units at Dundonald Beach, part of the 2.7 Ga Kidd-Munro volcanic assemblage in the Abitibi greenstone belt, Ontario, Canada. The komatiitic rocks in this locality record at least three episodes of alteration of Re-Os elemental and isotope systematics. First, an average of 40% and as much as 75% Re may have been lost due to shallow degassing during eruption and/or hydrothermal leaching during or immediately after emplacement. Second, the Re-Os isotope systematics of whole rock samples with 187Re/ 188Os ratios >1 were reset at ˜2.5 Ga, possibly due to a regional metamorphic event. Third, there is evidence for relatively recent gain and loss of Re in some rocks. Despite the open-system behavior, some aspects of the Re-Os systematics of these rocks can be deciphered. The bulk distribution coefficient for Os (D Ossolid/liquid) for the Dundonald rocks is ˜3 ± 1 and is well within the estimated D values obtained for komatiites from the nearby Alexo area and stratigraphically-equivalent komatiites from Munro Township. This suggests that Os was moderately compatible during crystal-liquid fractionation of the magmas parental to the Kidd-Munro komatiitic rocks. Whole-rock samples and chromite separates with low 187Re/ 188Os ratios (<1) yield a precise chondritic average initial 187Os/ 188Os ratio of 0.1083 ± 0.0006 (γ Os = 0.0 ± 0.6) for their well-constrained ˜2715 Ma crystallization age. The chondritic initial Os isotopic composition of the mantle source for the Dundonald rocks is consistent with that determined for komatiites in the Alexo area and in Munro Township, suggesting that the mantle source region for the Kidd-Munro volcanic assemblage had evolved with a long-term chondritic Re/Os before eruption. The chondritic initial Os isotopic composition of the Kidd-Munro komatiites is indistinguishable from that of the projected contemporaneous convective upper mantle. The uniform chondritic Os isotopic composition of the Kidd-Munro komatiites contrasts with the typical large-scale Os isotopic heterogeneity in the mantle sources for ca. 89 Ma komatiites from the Gorgona Island, arc-related rocks and present-day ocean island basalts. This suggests that the Kidd-Munro komatiites sampled a late-Archean mantle source region that was significantly more homogeneous with respect to Re/Os relative to most modern mantle-derived rocks.

  10. EasyDelta: A spreadsheet for kinetic modeling of the stable carbon isotope composition of natural gases

    NASA Astrophysics Data System (ADS)

    Zou, Yan-Rong; Wang, Lianyuan; Shuai, Yanhua; Peng, Ping'an

    2005-08-01

    A new kinetic model and an Excel © spreadsheet program for modeling the stable carbon isotope composition of natural gases is provided in this paper. The model and spreadsheet could be used to describe and predict the variances in stable carbon isotope of natural gases under both experimental and geological conditions with heating temperature or geological time. It is a user-friendly convenient tool for the modeling of isotope variation with time under experimental and geological conditions. The spreadsheet, based on experimental data, requires the input of the kinetic parameters of gaseous hydrocarbons generation. Some assumptions are made in this model: the conventional (non-isotope species) kinetic parameters represent the light isotope species; the initial isotopic value is the same for all parallel chemical reaction of gaseous hydrocarbons generation for simplicity, the re-exponential factor ratio, 13A/ 12A, is a constant, and both heavy and light isotope species have similar activation energy distribution. These assumptions are common in modeling of isotope ratios. The spreadsheet is used for searching the best kinetic parameters of the heavy isotope species to reach the minimum errors compared with experimental data, and then extrapolating isotopic changes to the thermal history of sedimentary basins. A short calculation example on the variation in δ13C values of methane is provided in this paper to show application to geological conditions.

  11. Mass-independent sulfur isotopic compositions in stratospheric volcanic eruptions.

    PubMed

    Baroni, Mélanie; Thiemens, Mark H; Delmas, Robert J; Savarino, Joël

    2007-01-05

    The observed mass-independent sulfur isotopic composition (Delta33S) of volcanic sulfate from the Agung (March 1963) and Pinatubo (June 1991) eruptions recorded in the Antarctic snow provides a mechanism for documenting stratospheric events. The sign of Delta33S changes over time from an initial positive component to a negative value. Delta33S is created during photochemical oxidation of sulfur dioxide to sulfuric acid on a monthly time scale, which indicates a fast process. The reproducibility of the results reveals that Delta33S is a reliable tracer to chemically identify atmospheric processes involved during stratospheric volcanism.

  12. U-Th-Pb isotopic systematics of lunar norite 78235

    NASA Technical Reports Server (NTRS)

    Premo, W. R.; Tatsumoto, M.

    1991-01-01

    A pristine high-Mg noritic cumulate thought to be relict deep-seated lunar crust is studied with an eye to obtaining evidence of initial Pb isotopic composition and U/Pb ratios of early lunar magma sources and possibly of a primary magma ocean. A leaching procedure was conducted on polymineralic separates to assure the removal of secondary Pb components. The Pb from leached separates do not form a linear trend on the Pb-Pb diagram, indicating open-system behavior either from mixtures of Pb or postcrystallization disturbances. Calculated initial Pb compositions and corresponding U-238/Pb-204 (mu) values are presented, with the assumption of reasonably precise radiometric ages from the literature for norite 78236. The results obtained support the contention that high-Mg suite rocks are coeval with the ferroan anorthosites, both being produced during the earliest stages of lunar evolution.

  13. Oxygen reservoirs in the early solar nebula inferred from an Allende CAI.

    PubMed

    Young, E D; Russell, S S

    1998-10-16

    Ultraviolet laser microprobe analyses of a calcium-aluminum-rich inclusion (CAI) from the Allende meteorite suggest that a line with a slope of exactly 1.00 on a plot of delta (17)O against delta (18)O represents the primitive oxygen isotope reservoir of the early solar nebula. Most meteorites are enriched in (17)O and (18)O relative to this line, and their oxygen isotope ratios can be explained by mass fractionation or isotope exchange initiating from the primitive reservoir. These data establish a link between the oxygen isotopic composition of the abundant ordinary chondrites and the primitive (16)O-rich component of CAIs.

  14. Oxygen reservoirs in the early solar nebula inferred from an allende CAI

    PubMed

    Young; Russell

    1998-10-16

    Ultraviolet laser microprobe analyses of a calcium-aluminum-rich inclusion (CAI) from the Allende meteorite suggest that a line with a slope of exactly 1.00 on a plot of delta17O against delta18O represents the primitive oxygen isotope reservoir of the early solar nebula. Most meteorites are enriched in 17O and 18O relative to this line, and their oxygen isotope ratios can be explained by mass fractionation or isotope exchange initiating from the primitive reservoir. These data establish a link between the oxygen isotopic composition of the abundant ordinary chondrites and the primitive 16O-rich component of CAIs.

  15. Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon

    NASA Astrophysics Data System (ADS)

    Snape, Joshua F.; Nemchin, Alexander A.; Bellucci, Jeremy J.; Whitehouse, Martin J.; Tartèse, Romain; Barnes, Jessica J.; Anand, Mahesh; Crawford, Ian A.; Joy, Katherine H.

    2016-10-01

    Despite more than 40 years of studying Apollo samples, the age and early evolution of the Moon remain contentious. Following the formation of the Moon in the aftermath of a giant impact, the resulting Lunar Magma Ocean (LMO) is predicted to have generated major geochemically distinct silicate reservoirs, including the sources of lunar basalts. Samples of these basalts, therefore, provide a unique opportunity to characterize these reservoirs. However, the precise timing and extent of geochemical fractionation is poorly constrained, not least due to the difficulty in determining accurate ages and initial Pb isotopic compositions of lunar basalts. Application of an in situ ion microprobe approach to Pb isotope analysis has allowed us to obtain precise crystallization ages from six lunar basalts, typically with an uncertainty of about ± 10 Ma, as well as constrain their initial Pb-isotopic compositions. This has enabled construction of a two-stage model for the Pb-isotopic evolution of lunar silicate reservoirs, which necessitates the prolonged existence of high-μ reservoirs in order to explain the very radiogenic compositions of the samples. Further, once firm constraints on U and Pb partitioning behaviour are established, this model has the potential to help distinguish between conflicting estimates for the age of the Moon. Nonetheless, we are able to constrain the timing of a lunar mantle reservoir differentiation event at 4376 ± 18 Ma, which is consistent with that derived from the Sm-Nd and Lu-Hf isotopic systems, and is interpreted as an average estimate of the time at which the high-μ urKREEP reservoir was established and the Ferroan Anorthosite (FAN) suite was formed.

  16. Copper and Zinc isotope composition of CR, CB and CH-like meteorites.

    NASA Astrophysics Data System (ADS)

    Russell, S.; Zhu, X.; Guo, Y.; Mullane, E.; Gounelle, M.; Mason, T.; Coles, B.

    2003-04-01

    Copper and zinc isotopes have recently been shown to be variable in isotopic composi-tion among terrestrial and extraterrestrial materials [1-3]. For this study, we have se-lected samples (bulk meteorite and chondrule separates) from the CR meteorite clan: Bencubbin (CB), Renazzo (CR2), NWA 801 (CR2), and HaH237 (CH-like). These meteorites were selected because meteorites from this clan have experienced very little alteration since their initial formation [4] and for their extremely high refrac-tory/volatile element ratios. The latter characteristic may allow a test of the correlation observed by [2] between element ratios and Cu isotope composition. Measurements were performed on NHM/IC Micromass Isoprobe and Oxford Nu MC-ICP-MS using techniques described elsewhere [1,5]. Each of the meteorites measured so far for Cu and Zn are isotopically light compared to the terrestrial mantle. This suggests that the terrestrial value may have been altered from the pristine solar system value, or else there were multiple early solar system components. Zinc isotopic com-positions lie on a fractionation line and range from δ66ZnNIST = -1.4±0.1ppm (bulk NWA801) to -1.9±0.1ppm (separated chondrule, NWA 801). Copper isotope compositions vary from δ65CuNIST976 = -1.5±0.1ppm (bulk Renazzo) to -3.1±0.1ppm (separated chondrule, NWA 801). Two chondrules from NWA 801 have differing Cu isotope values (-3.1±0.1 and -2.0±0.1ppm) and both are lighter than the bulk meteorite (-1.9±0.1ppm), suggesting a lack of equilibration with respect to Cu in this meteorite. The light values for the two separated chondrules, compared the bulk meteorite, hints that chondrules may be isotopically lighter than co-existing matrix, metal and sulphides with respect to Cu. The copper isotope compositions are not as isotopically light as expected for the high refractory/volatile element ratio observed in these chondrites. Thus a model to account for the Cu isotopes in chondrites may require greater com-plexity than one involving simple mixing of two primordial components. References: [1] Zhu et al., Chem. Geol. 163,139-149 (2000). [2] Luck et al., GCA 67 143 (2002). [3] Luck et al., MAPS 35 A100 (2000) [4] Krot et al., MAPS 37 1451-1490 (2002) [5] Mason et al. EOS Trans. AGU abstract V21A-0966 82 (2001)

  17. Does Oxygen Isotopic Heterogeneity in Refractory Inclusions and Their Wark-Lovering Rims Record Nebular Repressing?

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2013-01-01

    Large systematic variations in O-isotopic compositions found within individual mineral layers of rims surrounding Ca-, Al-rich inclusions (CAIs) and at the margins of some CAIs imply formation from distinct environments [e.g., 1-3]. The O-isotope compositions of many CAIs preserve a record of the Solar nebula gas believed to initially be O-16-rich (delta O-17 less than or equal to -25%0) [4-5]. Data from a recent study of the compact Type A Allende CAI, A37, preserve a diffusion profile in the outermost 70 micrometers of the inclusion and show greater than 25%0 variations in delta O-17 within its 100 micrometer-thick Wark-Lovering rim (WL-rim) [3]. This and comparable heterogeneity measured in several other CAIs have been explained by isotopic mixing between the O-16-rich Solar reservoir and a second O-16-poor reservoir (probably nebular gas) with a planetary-like isotopic composition, e.g., [1,2,3,6]. However, there is mineralogical and isotopic evidence from the interiors of CAIs, in particular those from Allende, for parent body alteration. At issue is how to distinguish the record of secondary reprocessing in the nebula from that which occurred on the parent body. We have undertaken the task to study a range of CAI types with varying mineralogies, in part, to address this problem.

  18. Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type, ore-bearing intrusions, Siberia

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Horan, M.F.; Czamanske, G.K.; Krogstad, E.J.; Fedorenko, V.A.; Kunilov, V.E.

    1994-01-01

    Magmatic Cu-Ni sulfide ores and spatially associated ultramafic and mafic rocks from the Noril'sk I, Talnakh, and Kharaelakh intrusions are examined for Re-Os isotopic systematics. Neodymium and lead isotopic data also are reported for the ultramafic and mafic rocks. The Re-Os data for most samples indicate closed-system behavior since the ca. 250 Ma igneous crystallization age of the intrusions. There are small but significant differences in the initial osmium isotopic compositions of samples from the three intrusions. Ores from the Noril'sk I intrusion have ??Os values that vary from +0.4 to +8.8, but average +5.8. Ores from the Talnakh intrusion have ??Os values that range from +6.7 to +8.2, averaging +7.7. Ores from the Kharaelakh intrusion have ??Os values that range from +7.8 to +12.9, with an average value of +10.4. The osmium isotopic compositions of the ore samples from the Main Kharaelakh orebody exhibit minimal overlap with those for the Noril'sk I and Talnakh intrusions, indicating that these Kharaelakh ores were derived from a more radiogenic source of osmium than the other ores. Combined osmium and lead data for major orebodies in the three intrusions plot in three distinct fields, indicating derivation of osmium and lead from at least three isotopically distinct sources. Some of the variation in lead isotopic compositions may be the result of minor lower-crustal contamination. However, in contrast to most other isotopic and trace element data, Os-Pb variations are generally inconsistent with significant crustal contamination or interaction with the subcontinental lithosphere. Thus, the osmium and lead isotopic compositions of these intrusions probably reflect quite closely the compositions of their mantle source, and suggest that these two isotope systems were insensitive to lithospheric interaction. Ultramafic and mafic rocks have osmium and lead isotopic compositions that range only slightly beyond the compositions of the ores. These rocks also have relatively uniform ??{lunate}Nd values that range only from -0.8 to + 1.1. This limited variation in neodymium isotopic composition may reflect the characteristics of the mantle sources of the rocks, or it may indicate that somehow similar proportions of crust contaminated the parental melts. The osmium, lead, and neodymium isotopic data for these rocks most closely resemble the mantle sources of certain ocean island basalts (OIB), such as some Hawaiian basalts. Hence, these data are consistent with derivation of primary melts from a mantle source similar to that of some types of hotspot activity. The long-term Re/Os enrichment of this and similar mantle sources, relative to chondritic upper mantle, may reflect 1. (1) incorporation of recycled oceanic crust into the source more than 1 Ga ago, 2. (2) derivation from a mantle plume that originated at the outer core-lower mantle interface, or 3. (3) persistence of primordial stratification of rhenium and osmium in the mantle. ?? 1994.

  19. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    NASA Astrophysics Data System (ADS)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the soil microbiota. The plants and microorganisms used had the isotopic signatures similar to that of the soil, whereas the δ13C of HD was -47.9‰. The HD mineralization level was assessed by determining the difference between the isotopic compositions of soil CO2 immediately after pollution and during remediation. In the unvegetated soil, about 13% of initially added HD was mineralized, the phytoremediation increased the total decomposition of the contaminant to 19%, and an additional plant inoculation with strain SR80 raised it to 33%. The GC analysis of soil demonstrated that contaminant loss in the plant treatments and in the inoculated plant treatment was 71 and 72%, respectively, whereas in the nonvegetated treatments, it was 64 and 66%, respectively. Thus, the elimination of the contaminant resulted from its total mineralization (CO2 emission) and partial chemical transformation.

  20. Distinct Chlorine Isotopic Reservoirs on Mars: Implications for Character, Extent and Relative Timing of Crustal Interaction with Mantle-Derived Magmas, Evolution of the Martian Atmosphere, and the Building Blocks of an Early Mars

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Messenger, S.; Sharp, Z. D.; Burger, P. V.; Nguyen, N.; McCubbin, F. M.

    2017-01-01

    The style, magnitude, timing, and mixing components involved in the interaction between mantle derived Martian magmas and Martian crust have long been a point of debate. Understanding this process is fundamental to deciphering the composition of the Martian crust and its interaction with the atmosphere, the compositional diversity and oxygen fugacity variations in the Martian mantle, the bulk composition of Mars and the materials from which it accreted, and the noble gas composition of Mars and the Sun. Recent studies of the chlorine isotopic composition of Martian meteorites imply that although the variation in delta (sup 37) Cl is limited (total range of approximately14 per mille), there appears to be distinct signatures for the Martian crust and mantle. However, there are potential issues with this interpretation. New Cl isotope data from the SAM (Sample Analysis at Mars) instrument on the Mars Science Lab indicate a very wide range of Cl isotopic compositions on the Martian surface. Recent measurements by [10] duplicated the results of [7,8], but placed them within the context of SAM surface data. In addition, Martian meteorite Chassigny contains trapped noble gases with isotopic ratios similar to solar abundance, and has long been considered a pristine, mantle derived sample. However, previous studies of apatite in Chassigny indicate that crustal fluids have interacted with regions interstitial to the cumulus olivine. The initial Cl isotope measurements of apatite in Chassigny suggest an addition of crustal component to this lithology, apparently contradicting the rare gas data. Here, we examine the Cl isotopic composition of multiple generations and textures of apatite in Chassigny to extricate the crustal and mantle components in this meteorite and to reveal the style and timing of the addition of crustal components to mantle-derived magmas. These data reveal distinct Martian Cl sources whose signatures have their origins linked to both the early Solar System and the evolving Martian atmosphere.

  1. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis

    NASA Astrophysics Data System (ADS)

    Sun, Jing; Liu, Chuan-Zhou; Tappe, Sebastian; Kostrovitsky, Sergey I.; Wu, Fu-Yuan; Yakovlev, Dmitry; Yang, Yue-Heng; Yang, Jin-Hui

    2014-10-01

    We report combined U-Pb ages and Sr-Nd isotope compositions of perovskites from 50 kimberlite occurrences, sampled from 9 fields across the Yakutian kimberlite province on the Siberian craton. The new U-Pb ages, together with previously reported geochronological constraints, suggest that kimberlite magmas formed repeatedly during at least 4 episodes: Late Silurian-Early Devonian (419-410 Ma), Late Devonian-Early Carboniferous (376-347 Ma), Late Triassic (231-215 Ma), and Middle/Late Jurassic (171-156 Ma). Recurrent kimberlite melt production beneath the Siberian craton - before and after flood basalt volcanism at 250 Ma - provides a unique opportunity to test existing models for the origin of global kimberlite magmatism. The internally consistent Sr and Nd isotope dataset for perovskites reveals that the Paleozoic and Mesozoic kimberlites of Yakutia have distinctly different initial radiogenic isotope compositions. There exists a notable increase in the initial 143Nd/144Nd ratios through time, with an apparent isotopic evolution that is intermediate between that of Bulk Earth and Depleted MORB Mantle. While the Paleozoic samples range between initial 87Sr/86Sr of 0.7028-0.7034 and 143Nd/144Nd of 0.51229-0.51241, the Mesozoic samples show values between 0.7032-0.7038 and 0.51245-0.51271, respectively. Importantly, perovskites from all studied Yakutian kimberlite fields and age groups have moderately depleted initial εNd values that fall within a relatively narrow range between +1.8 and +5.5. The perovskite isotope systematics of the Yakutian kimberlites are interpreted to reflect magma derivation from the convecting upper mantle, which appears to have a record of continuous melt depletion and crustal recycling throughout the Phanerozoic. The analyzed perovskites neither record highly depleted nor highly enriched isotopic components, which had been previously identified in likely plume-related Siberian Trap basalts. The Siberian craton has frequently been suggested to represent a type example of an association between kimberlite eruptions and flood basaltic volcanism within a single large igneous province (LIP), but our new extensive age and isotopic tracer constraints do not support a genetic link between these contrasting types of mantle-derived magmatism.

  2. Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust formation

    NASA Astrophysics Data System (ADS)

    Boyet, Maud; Carlson, Richard W.; Borg, Lars E.; Horan, Mary

    2015-01-01

    We have measured Sm-Nd systematics, including the short-lived 146Sm-142Nd chronometer, in lunar ferroan anorthositic suite (FAS) whole rocks (15415, 62236, 62255, 65315, 60025). At least some members of the suite are thought to be primary crystallization products formed by plagioclase flotation during crystallization of the lunar magma ocean (LMO). Most of these samples, except 62236, have not been exposed to galactic cosmic rays for a long period and thus require minimal correction to their 142Nd isotope composition. These samples all have measured deficits in 142Nd relative to the JNdi-1 terrestrial standard in the range -45 to -21 ppm. The range is -45 to -15 ppm once the 62236 142Nd/144Nd ratio is corrected from neutron-capture effects. Analyzed FAS samples do not define a single isochron in either 146Sm-142Nd or 147Sm-143Nd systematics, suggesting that they either do not have the same crystallization age, come from different sources, or have suffered isotopic disturbance. Because the age is not known for some samples, we explore the implications of their initial isotopic compositions for crystallization ages in the first 400 Ma of solar system history, a timing interval that covers all the ages determined for the ferroan anorthositic suite whole rocks as well as different estimates for the crystallization of the LMO. 62255 has the largest deficit in initial 142Nd and does not appear to have followed the same differentiation path as the other FAS samples. The large deficit in 142Nd of FAN 62255 may suggest a crystallization age around 60-125 Ma after the beginning of solar system accretion. This result provides essential information about the age of the giant impact forming the Moon. The initial Nd isotopic compositions of FAS samples can be matched either with a bulk-Moon with chondritic Sm/Nd ratio but enstatite-chondrite-like initial 142Nd/144Nd (e.g. 10 ppm below modern terrestrial), or a bulk-Moon with superchondritic Sm/Nd ratio and initial 142Nd/144Nd similar to ordinary chondrites.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyet, Maud; Carlson, Richard W.; Borg, Lars E.

    Here, we have measured Sm–Nd systematics, including the short-lived 146Sm– 142Nd chronometer, in lunar ferroan anorthositic suite (FAS) whole rocks (15415, 62236, 62255, 65315, 60025). At least some members of the suite are thought to be primary crystallization products formed by plagioclase flotation during crystallization of the lunar magma ocean (LMO). Most of these samples, except 62236, have not been exposed to galactic cosmic rays for a long period and thus require minimal correction to their 142Nd isotope composition. These samples all have measured deficits in 142Nd relative to the JNdi-1 terrestrial standard in the range –45 to –21 ppm.more » The range is –45 to –15 ppm once the 62236 142Nd/ 144Nd ratio is corrected from neutron-capture effects. Analyzed FAS samples do not define a single isochron in either 146Sm– 142Nd or 147Sm– 143Nd systematics, suggesting that they either do not have the same crystallization age, come from different sources, or have suffered isotopic disturbance. Because the age is not known for some samples, we explore the implications of their initial isotopic compositions for crystallization ages in the first 400 Ma of solar system history, a timing interval that covers all the ages determined for the ferroan anorthositic suite whole rocks as well as different estimates for the crystallization of the LMO. 62255 has the largest deficit in initial 142Nd and does not appear to have followed the same differentiation path as the other FAS samples. The large deficit in 142Nd of FAN 62255 may suggest a crystallization age around 60–125 Ma after the beginning of solar system accretion. This result provides essential information about the age of the giant impact forming the Moon. The initial Nd isotopic compositions of FAS samples can be matched either with a bulk-Moon with chondritic Sm/Nd ratio but enstatite-chondrite-like initial 142Nd/ 144Nd (e.g. 10 ppm below modern terrestrial), or a bulk-Moon with superchondritic Sm/Nd ratio and initial 142Nd/ 144Nd similar to ordinary chondrites.« less

  4. Sm-Nd systematics of lunar ferroan anorthositic suite rocks: Constraints on lunar crust

    DOE PAGES

    Boyet, Maud; Carlson, Richard W.; Borg, Lars E.; ...

    2014-09-28

    Here, we have measured Sm–Nd systematics, including the short-lived 146Sm– 142Nd chronometer, in lunar ferroan anorthositic suite (FAS) whole rocks (15415, 62236, 62255, 65315, 60025). At least some members of the suite are thought to be primary crystallization products formed by plagioclase flotation during crystallization of the lunar magma ocean (LMO). Most of these samples, except 62236, have not been exposed to galactic cosmic rays for a long period and thus require minimal correction to their 142Nd isotope composition. These samples all have measured deficits in 142Nd relative to the JNdi-1 terrestrial standard in the range –45 to –21 ppm.more » The range is –45 to –15 ppm once the 62236 142Nd/ 144Nd ratio is corrected from neutron-capture effects. Analyzed FAS samples do not define a single isochron in either 146Sm– 142Nd or 147Sm– 143Nd systematics, suggesting that they either do not have the same crystallization age, come from different sources, or have suffered isotopic disturbance. Because the age is not known for some samples, we explore the implications of their initial isotopic compositions for crystallization ages in the first 400 Ma of solar system history, a timing interval that covers all the ages determined for the ferroan anorthositic suite whole rocks as well as different estimates for the crystallization of the LMO. 62255 has the largest deficit in initial 142Nd and does not appear to have followed the same differentiation path as the other FAS samples. The large deficit in 142Nd of FAN 62255 may suggest a crystallization age around 60–125 Ma after the beginning of solar system accretion. This result provides essential information about the age of the giant impact forming the Moon. The initial Nd isotopic compositions of FAS samples can be matched either with a bulk-Moon with chondritic Sm/Nd ratio but enstatite-chondrite-like initial 142Nd/ 144Nd (e.g. 10 ppm below modern terrestrial), or a bulk-Moon with superchondritic Sm/Nd ratio and initial 142Nd/ 144Nd similar to ordinary chondrites.« less

  5. Evidence for a nonmagmatic component in potassic hydrothermal fluids of porphyry cu-Au-Mo systems, Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Selby, David; Nesbitt, Bruce E.; Creaser, Robert A.; Reynolds, Peter H.; Muehlenbachs, Karlis

    2001-02-01

    Isotopic (H, Sr, Pb, Ar) and fluid inclusion data for hydrothermal fluids associated with potassic alteration from three Late Cretaceous porphyry Cu occurrences, west central Yukon, suggest a nonmagmatic fluid component was present in these hydrothermal fluids. Potassic stage quartz veins contain a dominant assemblage of saline and vapor-rich fluid inclusions that have δD values between -120 and -180‰. Phyllic stage quartz veins are dominated by vapor-rich fluid inclusions and have δD values that overlap with but are, on average, heavier (-117 to -132‰) than those in potassic stage quartz veins. These δD values are significantly lower than those from plutonic quartz phenocrysts (-91 to -113‰), and from values typically reported for primary fluids from porphyry-style mineralization (-40 to -100‰). The initial Sr ( 87Sr/ 86Sr i) isotopic values for the plutons are 0.7055 (Casino), 0.7048 (Mt. Nansen), and 0.7055 (Cash). The 87Sr/ 86Sr i compositions of hydrothermal K-feldspar ranges from magmatic Sr i values to more radiogenic compositions (Casino: 0.70551-0.70834, n = 8; Mt. Nansen: 0.7063-0.7070, n = 4; Cash: 0.7058, n = 1). The fluid inclusion waters from potassic quartz veins have 87Sr/ 86Sr i values that are similar to those of co-existing hydrothermal K-feldspar. The Pb isotopic compositions of hydrothermal K-feldspar show a weak positive correlation with Sr i for identical samples. Fluid inclusion waters of phyllic quartz veins also have Sr i compositions more radiogenic than the plutons. The Pb isotopic composition of pyrite and bornite from phyllic alteration veins are similar to, or more radiogenic than, hydrothermal K-feldspar Pb isotopic values. Hydrothermal K-feldspar samples yield 40Ar/ 39Ar ages (Casino = 71.9 ± 0.7 to 73.4 ± 0.8 Ma; Mt. Nansen = 68.2 ± 0.7 and 69.5 ± 0.6 Ma; Cash = 68.3 ± 0.8 Ma) similar to the U-Pb zircon, K-Ar biotite and Re-Os molybdenite ages of the Late Cretaceous plutons, with the age spectra indicating no excess 40Ar or disturbance. The 40Ar/ 36Ar values (285-292) of the K-feldspar samples are similar to the atmospheric compositions (295 ± 5) during Late Cretaceous time. The H, Sr, Pb, and Ar isotopic compositions of hydrothermal K-feldspar and quartz vein fluid inclusion waters that characterize the potassic hydrothermal fluids show evidence for an exotic component in addition to magmatic water (fluid). This component has a low δD, radiogenic Sr and Pb, and an atmospheric Ar composition. The inheritance of pre-existing isotope compositions from the host rocks, postpotassic alteration isotope exchange, or the replenishment of the magma chamber with magma of different isotopic composition cannot explain the isotope data. We suggest that to generate the observed H, Sr, Pb, and Ar isotope compositions, crustal fluids must be a component (15-94%) of potassic hydrothermal fluids in porphyry mineralization in the deposits studied.

  6. Compound Specific Isotope Analysis of Fatty Acids in Southern African Aerosols

    NASA Astrophysics Data System (ADS)

    Billmark, K. A.; Macko, S. A.; Swap, R. J.

    2003-12-01

    This study, conducted as a part of the Southern African Regional Science Initiative (SAFARI 2000), applied compound specific isotope analysis to describe aerosols at source regions and rural locations. Stable carbon isotopic compositions of individual fatty acids were determined for aerosol samples collected at four sites throughout southern Africa. Mongu, Zambia and Skukuza, South Africa were chosen for their location within intense seasonal Miombo woodland savanna and bushveld savanna biomass burning source regions, respectively. Urban aerosols were collected at Johannesburg, South Africa and rural samples were collected at Sua Pan, Botswana. Fatty acid isotopic compositions varied temporally. Urban aerosols showed significant isotopic enrichment of selected short chain fatty acids (C < 20) compared to aerosols produced during biomass combustion. Sua Pan short chain fatty acid signatures were significantly different from the other non-urban sites, which suggests that sources other than biomass combustion products, such as organic eolian material, impact the Sua Pan aerosol profile. However, a high degree of correlation between Sua Pan and Skukuza long chain fatty acid δ 13C values confirm atmospheric linkages between the two areas and that isotopic signatures of combusted fatty acids are unaltered during atmospheric transport highlighting their potential for use as a conservative tracer.

  7. Containing arsenic-enriched groundwater tracing lead isotopic compositions of common arsenical pesticides in a coastal Maine watershed

    USGS Publications Warehouse

    Ayuso, Robert A.; Foley, Nora K.; Robinson, Glipin R.; Colvin, A.S.; Lipfert, G.; Reeve, A.S.

    2006-01-01

    Arsenical pesticides and herbicides were extensively used on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Lead arsenate was the most heavily used arsenical pesticide until it was officially banned. Lead arsenate, calcium arsenate, and sodium arsenate have similar Pb isotope compositions: 208Pb207Pb = 2.3839-2.4722, and 206Pb207Pb = 1.1035-1.2010. Other arsenical pesticides such as copper acetoarsenite (Paris green), methyl arsonic acid and methane arsonic acid, as well as arsanilic acid are widely variable in isotope composition. Although a complete understanding of the effects of historical use of arsenical pesticides is not available, initial studies indicate that arsenic and lead concentrations in stream sediments in New England are higher in agricultural areas that intensely used arsenical pesticides than in other areas. The Pb isotope compositions of pesticides partially overlap values of stream sediments from areas with the most extensive agricultural use. The lingering effects of arsenical pesticide use were tested in a detailed geochemical and isotopic study of soil profiles from a watershed containing arsenic-enriched ground water in coastal Maine. Acid-leach compositions of the soils represent lead adsorbed to mineral surfaces or held in soluble minerals (Fe- and Mn-hydroxides, carbonate, and some micaceous minerals), whereas residue compositions likely reflect bedrock compositions. The soil profiles contain labile Pb (acid-leach) showing a moderate range in 206Pb 207Pb (1.1870-1.2069), and 208Pb207Pb (2.4519-2.4876). Isotope values vary as a function of depth: the lowest Pb isotope ratios (e.g.,208Pb206Pb) representing labile lead are in the uppermost soil horizons. Lead contents decrease with depth in the soil profiles. Arsenic contents show no clear trend with depth. A multi-component mixing scheme that included lead from the local parent rock (Penobscot Formation), lead derived from combustion of fossil fuels, and possibly lead from other anthropogenic sources (e.g., pesticides), could account for Pb isotope variations in the soil profiles. In agricultural regions, our preliminary data show that the extensive use of arsenical pesticides and herbicides can be a significant anthropogenic source of arsenic and lead to stream sediments and soils.

  8. Osmium Isotope Compositions of Komatiite Sources Through Time

    NASA Astrophysics Data System (ADS)

    Walker, R. J.

    2001-12-01

    Extending Os isotopic measurements to ancient plume sources may help to constrain how and when the well-documented isotopic heterogeneities in modern systems were created. Komatiites and picrites associated with plume-related volcanism are valuable tracers of the Os isotopic composition of plumes because of their typically high Os concentrations and relatively low Re/Os. Re-Os data are now available for a variety of Phanerozoic, Proterozoic and Archean komatiites and picrites. As with modern plumes, the sources of Archean and Proterozoic komatiites exhibit a large range of initial 187Os/188Os ratios. Most komatiites are dominated by sources with chondritic Os isotopic compositions (e.g. Song La; Norseman-Wiluna; Pyke Hill; Alexo), though some (e.g. Gorgona) derive from heterogeneous sources. Of note, however, two ca. 2.7 Ga systems, Kostomuksha (Russia) and Belingwe (Zimbabwe), have initial ratios enriched by 2-3% relative to the contemporary convecting upper mantle. These results suggest that if the 187Os enrichment was due to the incorporation of minor amounts of recycled crust into the mantle source of the rocks, the crust formed very early in Earth history. Thus, the Os results could reflect derivation of melt from hybrid mantle whose composition was modified by the addition of mafic crustal material that would most likely have formed between 4.2 and 4.5 Ga. Alternately, the mantle sources of these komatiites may have derived a portion of their Os from the putative 187Os - and 186Os -enriched outer core. For this hypothesis to be applicable to Archean rocks, an inner core of sufficient mass would have to have crystallized sufficiently early in Earth history to generate an outer core with 187Os enriched by at least 3% relative to the chondritic average. Using the Pt-Re-Os partition coefficients espoused by our earlier work, and assuming linear growth of the inner core started at 4.5 Ga and continued to present, would yield an outer core at 2.7 Ga with a gamma Os value of only +1.2 and a 186Os/188Os enrichment relative to the contemporary upper mantle of only +13 ppm. Greater isotopic enrichments could have been achieved by 2.7 Ga if either the inner core comprised >2.8% of the mass of the core by 2.7 Ga, or if Re and Os solid metal-liquid metal D's for core crystallization were greater that those applied in the initial calculation.

  9. Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution

    USGS Publications Warehouse

    Wooden, J.L.; Mueller, P.A.

    1988-01-01

    A series of compositionally diverse, Late Archean rocks (2.74-2.79 Ga old) from the eastern Beartooth Mountains, Montana and Wyoming, U.S.A., have the same initial Pb, Sr, and Nd isotopic ratios. Lead and Sr initial ratios are higher and Nd initial ratios lower than would be expected for rocks derived from model mantle sources and strongly indicate the involvement of an older crustal reservoir in the genesis of these rocks. Crustal contamination during emplacement can be ruled out for a variety of reasons. Instead a model involving subduction of continental detritus and contamination of the overlying mantle as is often proposed for modern subduction environments is preferred. This contaminated mantle would have all the isotopic characteristics of mantle enriched by internal mantle metasomatism but would require no long-term growth or changes in parent to daughter element ratios. This contaminated mantle would make a good source for some of the Cenozoic mafic volcanics of the Columbia River, Snake River Plain, and Yellowstone volcanic fields that are proposed to come from ancient, enriched lithospheric mantle. The isotopic characteristics of the 2.70 Ga old Stillwater Complex are a perfect match for the proposed contaminated mantle which provides an alternative to crustal contamination during emplacement. The Pb isotopic characteristics of the Late Archean rocks of the eastern Beartooth Mountains are similar to those of other Late Archean rocks of the Wyoming Province and suggest that Early Archean, upper crustal rocks were common in this terrane. The isotopic signatures of Late Archean rocks in the Wyoming Province are distinctive from those of other Archean cratons in North America which are dominated by a MORB-like, Archean mantle source (Superior Province) and/or a long-term depleted crustal source (Greenland). ?? 1988.

  10. Metasomatism-induced magnesium isotope fractionation in ultramafic rocks: Evidence from the Franciscan Complex, California

    NASA Astrophysics Data System (ADS)

    Li, W. Y.; Teng, F. Z.; Xiao, Y.

    2016-12-01

    To investigate the behaviour of Mg isotopes during metasomatic reactions between peridotites and infiltrating fluids along the slab-mantle interface, we analyzed Mg isotopic compositions of a set of well-characterized samples from the ultramafic blocks in the Franciscan Complex of California [1]. The Group 1 and Group 2 samples that were defined by the initial serpentinization and complete serpentinization of peridotites at temperatures of 450-500 ºC, respectively [1], have δ26Mg values (from -0.26 to -0.14‰) clustered around the mantle value. This suggests that Mg isotope fractionation during serpentinization by slab-derived fluids, if any, is small. By contrast, the Group 3 samples that were defined by the replacement of serpentine by talc [1], are enriched in heavy Mg isotopes (δ26Mg of -0.13 to -0.01‰). This may reflect the loss of light Mg isotopes into fluids during the dehydration reaction that produced talc from serpentine, which is consistent with previous observations that secondary clay minerals preferentially incorporate heavy Mg isotopes during water-rock interactions [2, 3]. The Group 4 samples that were defined by the further replacement of talc by tremolite [1], however, have light Mg isotopic compositions (δ26Mg of -0.50 to -0.41‰). Such a shift towards light Mg isotopic compositions likely results from metasomatism by fluids that derived from isotopically light carbonates, which is supported by the remarkably higher CaO content of Group 4 samples (from 6.9 to 9.2 wt%) than Group 3 ones (from 1.1 to 1.4 wt%). Collectively, significant Mg isotopic variations occur during metasomatism of peridotites in the mantle wedge, which would potentially lead to heterogeneous Mg isotopic compositions in arc lavas [4]. Therefore, Mg isotopes can be used as a powerful tracer of crust-mantle interaction at subduction zones. [1] King et al. (2003) Geol. Soc. Am. Bull. 115, 1097-1109. [2] Teng et al. (2010) Earth Planet. Sci. Lett. 300, 63-71. [3] Wimpenny et al. (2014) Geochim. Cosmochim. Acta 128, 178-194. [4] Teng et al. (2016) Proc. Natl. Acad. Sci. 113, 7082-7087. et al. (2016) Proc. Natl. Acad. Sci. 113, 7082-7087.

  11. Global Links to Local Carbon Cycling Perturbation

    NASA Astrophysics Data System (ADS)

    Chen, J.; Montanez, I. P.; Wang, X.; Qi, Y.

    2016-12-01

    Carbon cycle perturbations recorded by stable carbon isotope excursions (CIEs) play an important role in understanding climate, oceanography, and the biosphere through time. Recent studies, however, reveal the influence of regional processes on apparent global CIEs. Deconvolving local/regional from global processes imprinted in the carbon isotopic records of sedimentary successions requires integrated sedimentologic, stratigraphic, and geochemical study. Here we present coupled C and Sr isotopic records of diagenetically screened micrite and brachiopods from late Mississippian shallow-marine, carbonate platform and contemporaneous carbonate slope successions from the east Paleotethys Ocean region (South China). These records reveal distinctly different signatures of the depositional response to the onset of Carboniferous glaciation. C and Sr isotopic compositions of the platform carbonates exhibit systematic fluctuations in step with inferred sea-level changes captured by depositional cycles. CIEs in the platform succession can be correlated to the contemporaneous C isotope record from the Antler carbonate ramp (Idaho, USA). In contrast, slope carbonate and conodont isotopic records exhibit minimal variability interpreted to record the open-ocean seawater composition. The isotopic disparity between successions is interpreted to record the influence of local depositional, but not diagenetic, processes operating on the carbonate platform in response to glacioeustasy. Variability in the nature of coupled isotopic and inferred sea level fluctuations is interpreted to record stepwise onset of the late Paleozoic ice age in the late Mississippian. Initial large magnitude shifts in C and Sr isotopic compositions of late Visean to early Serpukhovian carbonates correspond to 1 to 2 myr-scale cycles driven by the buildup of continental glaciers. Subsequent decreased magnitude of isotopic shifts coincident with a shift to shorter duration and smaller magnitude sea-level fluctuations in the middle to late Serpukhovian interval is interpreted to record temporary retraction of the ice sheets in response to late Serpukhovian warming. Overall, the coupled stratigraphic and isotopic records indicate stepwise ice buildup prior to widespread glaciation across the mid-Carboniferous boundary.

  12. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    NASA Astrophysics Data System (ADS)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked to explain the reason for this decoupling. Our current work that also includes leaf water isotopic measurements will provide further details regarding the role of transpiration in controlling the deltaD values of leaf lipids.

  13. Chemical and isotopic composition of secondary organic aerosol generated by α-pinene ozonolysis

    NASA Astrophysics Data System (ADS)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.; Holzinger, Rupert; Rosenørn, Thomas; Sperlich, Peter; Julien, Maxime; Remaud, Gerald S.; Bilde, Merete; Röckmann, Thomas; Johnson, Matthew S.

    2017-05-01

    Secondary organic aerosol (SOA) plays a central role in air pollution and climate. However, the description of the sources and mechanisms leading to SOA is elusive despite decades of research. While stable isotope analysis is increasingly used to constrain sources of ambient aerosol, in many cases it is difficult to apply because neither the isotopic composition of aerosol precursors nor the fractionation of aerosol forming processes is well characterised. In this paper, SOA formation from ozonolysis of α-pinene - an important precursor and perhaps the best-known model system used in laboratory studies - was investigated using position-dependent and average determinations of 13C in α-pinene and advanced analysis of reaction products using thermal-desorption proton-transfer-reaction mass spectrometry (PTR-MS). The total carbon (TC) isotopic composition δ13C of the initial α-pinene was measured, and the δ13C of the specific carbon atom sites was determined using position-specific isotope analysis (PSIA). The PSIA analysis showed variations at individual positions from -6.9 to +10. 5 ‰ relative to the bulk composition. SOA was formed from α-pinene and ozone in a constant-flow chamber under dark, dry, and low-NOx conditions, with OH scavengers and in the absence of seed particles. The excess of ozone and long residence time in the flow chamber ensured that virtually all α-pinene had reacted. Product SOA was collected on two sequential quartz filters. The filters were analysed offline by heating them stepwise from 100 to 400 °C to desorb organic compounds that were (i) detected using PTR-MS for chemical analysis and to determine the O : C ratio, and (ii) converted to CO2 for 13C analysis. More than 400 ions in the mass range 39-800 Da were detected from the desorbed material and quantified using a PTR-MS. The largest amount desorbed at 150 °C. The O : C ratio of material from the front filter increased from 0.18 to 0.25 as the desorption temperature was raised from 100 to 250 °C. At temperatures above 250 °C, the O : C ratio of thermally desorbed material, presumably from oligomeric precursors, was constant. The observation of a number of components that occurred across the full range of desorption temperatures suggests that they are generated by thermal decomposition of oligomers. The isotopic composition of SOA was more or less independent of desorption temperature above 100 °C. TC analysis showed that SOA was enriched in 13C by 0.6-1.2 ‰ relative to the initial α-pinene. According to mass balance, gas-phase products will be depleted relative to the initial α-pinene. Accordingly, organic material on the back filters, which contain adsorbed gas-phase compounds, is depleted in 13C in TC by 0.7 ‰ relative to the initial α-pinene, and by 1.3 ‰ compared to SOA collected on the front filter. The observed difference in 13C between the gas and particle phases may arise from isotope-dependent changes in the branching ratios in the α-pinene + O3 reaction. Alternatively, some gas-phase products involve carbon atoms from highly enriched and depleted sites, as shown in the PSIA analysis, giving a non-kinetic origin to the observed fractionations. In either case, the present study suggests that the site-specific distribution of 13C in the source material itself governs the abundance of 13C in SOA.

  14. Iron speciation and isotope fractionation during silicate weathering and soil formation in an alpine glacier forefield chronosequence

    NASA Astrophysics Data System (ADS)

    Kiczka, Mirjam; Wiederhold, Jan G.; Frommer, Jakob; Voegelin, Andreas; Kraemer, Stephan M.; Bourdon, Bernard; Kretzschmar, Ruben

    2011-10-01

    The chemical weathering of primary Fe-bearing minerals, such as biotite and chlorite, is a key step of soil formation and an important nutrient source for the establishment of plant and microbial life. The understanding of the relevant processes and the associated Fe isotope fractionation is therefore of major importance for the further development of stable Fe isotopes as a tracer of the biogeochemical Fe cycle in terrestrial environments. We investigated the Fe mineral transformations and associated Fe isotope fractionation in a soil chronosequence of the Swiss Alps covering 150 years of soil formation on granite. For this purpose, we combined for the first time stable Fe isotope analyses with synchrotron-based Fe-EXAFS spectroscopy, which allowed us to interpret changes in Fe isotopic composition of bulk soils, size fractions, and chemically separated Fe pools over time in terms of weathering processes. Bulk soils and rocks exhibited constant isotopic compositions along the chronosequence, whereas soil Fe pools in grain size fractions spanned a range of 0.4‰ in δ 56Fe. The clay fractions (<2 μm), in which newly formed Fe(III)-(hydr)oxides contributed up to 50% of the total Fe, were significantly enriched in light Fe isotopes, whereas the isotopic composition of silt and sand fractions, containing most of the soil Fe, remained in the range described by biotite/chlorite samples and bulk soils. Iron pools separated by a sequential extraction procedure covered a range of 0.8‰ in δ 56Fe. For all soils the lightest isotopic composition was observed in a 1 M NH 2OH-HCl-25% acetic acid extract, targeting poorly-crystalline Fe(III)-(hydr)oxides, compared with easily leachable Fe in primary phyllosilicates (0.5 M HCl extract) and Fe in residual silicates. The combination of the Fe isotope measurements with the speciation data obtained by Fe-EXAFS spectroscopy permitted to quantitatively relate the different isotope pools forming in the soils to the mineral weathering reactions which have taken place at the field site. A kinetic isotope effect during the Fe detachment from the phyllosilicates was identified as the dominant fractionation mechanism in young weathering environments, controlling not only the light isotope signature of secondary Fe(III)-(hydr)oxides but also significantly contributing to the isotope signature of plants. The present study further revealed that this kinetic fractionation effect can persist over considerable reaction advance during chemical weathering in field systems and is not only an initial transient phenomenon.

  15. An unmetasomatized source for the Malaitan alnoeite (Solomon Islands): Petrogenesis involving zone refining, megacryst fractionation, and assimilation of oceanic lithosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, C.R.; Davidson, J.P.

    The Malaitan alnoite contains a rich and varied megacryst suite of unprecedented compositional range. The authors have undertaken trace element and isotope modeling in order to formulate a petrogenetic scheme which links the host alnoeite to its entrained megacrysts. This requires that a proto-alnoeite magma is the product of zone refining initiated by diapiric upwelling (where the initial melt passes through 200 times its volume of mantle). Isotopic evidence indicates the source of the proto-alnoeite contains a time-integrated LREE-depleted signature. Impingement upon the rigid lithosphere halts or dramatically slows the upward progress of the mantle diapir. At this point, themore » magma cools and megacryst fractionation begins with augites crystallizing first, followed by subcalcic diopsides and finally phlogopites. Garnet probably crystallizes over the entire range of clinopyroxene fractionation. Estimated proportions of fractionating phases are 30% augite, 24.5% subcalcic diopside, 27% garnet, 12.9% phlogopite, 5% bronzite, 0.5% ilmenite, and 0.1% zircon. As this proto-alnoeite magma crystallizes, it assimilates a subducted component of seawater-altered basalt which underplates the Ontong Java Plateau. This is witnessed in the isotopic composition of the megacrysts and alnoeite.« less

  16. The initial Hf isotopic composition of the Earth

    NASA Astrophysics Data System (ADS)

    Bouvier, A.; Boyet, M. M.; Vervoort, J. D.; Patchett, P. J.

    2011-12-01

    One area of considerable activity in trying to understand the formation and evolution of Earth's crust is the isotopic analysis of Hf in parallel with Sm-Nd and U-Pb zircon studies, either to constrain early crustal growth and evolution [1], or as a complement to detrital zircon studies [2]. The 176Lu decay constant deduced from early planetary and Earth materials have different values. It has been suggested that a period of irradiation in the early Solar System affected the 176Hf production rate in meteoritic and planetary materials [3,4]. In this scenario, the initial Hf isotopic composition of the Solar System and the Earth would be ~4 ∈Hf units lower, affecting tremendously the interpretation of the differentiation history of the early Earth. We investigated Lu-Hf compositions of calcium-aluminum-rich inclusions, the oldest known objects of the Solar System dated at 4568 Ma [5], to assess the possibility of neutrino irradiation in the solar nebula. Here we report high-precision 176Lu-176Hf systematics of leached and unleached, and spiked and unspiked, bulk fractions and mineral separates of 6 individual CAIs from 2 CV3 chondrites. Isotopic analyses were carried out by Neptune MC-ICPMS at ASU. Analytical details are in [6,7]. The unspiked Hf fractions reveal stable isotope anomalies of μ178Hf= 20 ± 6 and μ180Hf= 31 ± 9 (2SD) for the CAI B4 fractions (n=3) and μ178Hf= -4 ± 10 and μ180Hf= 2 ± 10 (n=2) for BCR-2 relative to the JMC 475 Hf standard. Further high-precision analysis of unspiked Sm and Nd fractions of the samples will be made to correct from nucleosynthetic or neutron capture anomalies [8]. Such Hf stable isotopic anomalies predict no more than 50ppm correction on 176Hf/177Hf. At this stage, we have thus regressed together the spiked and unspiked Hf compositions of CAI fractions (n=13) for isochron calculations. The slope of the Lu-Hf isochron is 0.0882 ± 0.0026 (2SD) which corresponds to a 176Lu decay constant value of 1.852 (± 0.052) ×10-11×y-1 consistent with the "terrestrial" determination [9,10]. We do not find evidence of 176Hf excesses in the CAI Lu-Hf systematics which excludes the possibility of neutrino irradiation to explain the anomalous Lu-Hf isochron ages of eucrite and angrite meteorites [3]. The initial 176Hf/177Hf of the CAIs and thus of the Solar System is 0.28286 ± 0.00011 which is consistent with the estimates of 0.28279 ± 0.00002 obtained using the modern CHUR composition [6] and the terrestrial decay constant [9,10]. This last composition remains the best estimate for the initial 176Hf/177Hf of the Earth. [1] Harrison. AREP Sci. 2009 37, 479. [2] Sun et al. Prec. Res. 2009 172, 99. [3] Albarède et al. GCA 2006 70, 1261. [4] Thrane et al. Astrophys. J. 2010 717, 861-867. [5] Bouvier & Wadhwa. Nat. Geosci. 2010 3, 637. [6] Bouvier et al. EPSL 2008 273, 48. [7] Münker et al. G3 2001 2. [8] Sprung et al. EPSL 2010 295, 1. [9] Scherer et al. Science 2001 293, 683. [10] Söderlund et al. EPSL 2004 219, 311.

  17. PHOTOCHEMICALLY-INDUCED TRANSFORMATIONS OF DISSOLVED ORGANIC MATTER IN RIVERINE WATERS

    EPA Science Inventory

    We demonstrated that exposure of riverine water to natural sunlight initiated degradation and corresponding alteration to the stable carbon isotope ratio and biochemical composition of the associated dissolved organic carbon (DOC). Water samples were collected from two distinct ...

  18. What Hf isotopes in zircon tell us about crust-mantle evolution

    NASA Astrophysics Data System (ADS)

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Itano, Keita; Hibiya, Yuki; Suzuki, Kazue

    2017-03-01

    The 176Lu-176Hf radioactive decay system has been widely used to study planetary crust-mantle differentiation. Of considerable utility in this regard is zircon, a resistant mineral that can be precisely dated by the U-Pb chronometer and record its initial Hf isotope composition due to having low Lu/Hf. Here we review zircon U-Pb age and Hf isotopic data mainly obtained over the last two decades and discuss their contributions to our current understanding of crust-mantle evolution, with emphasis on the Lu-Hf isotope composition of the bulk silicate Earth (BSE), early differentiation of the silicate Earth, and the evolution of the continental crust over geologic history. Meteorite zircon encapsulates the most primitive Hf isotope composition of our solar system, which was used to identify chondritic meteorites best representative of the BSE (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Hadean-Eoarchean detrital zircons yield highly unradiogenic Hf isotope compositions relative to the BSE, providing evidence for the development of a geochemically enriched silicate reservoir as early as 4.5 Ga. By combining the Hf and O isotope systematics, we propose that the early enriched silicate reservoir has resided at depth within the Earth rather than near the surface and may represent a fractionated residuum of a magma ocean underlying the proto-crust, like urKREEP beneath the anorthositic crust on the Moon. Detrital zircons from world major rivers potentially provide the most robust Hf isotope record of the preserved granitoid crust on a continental scale, whereas mafic rocks with various emplacement ages offer an opportunity to trace the Hf isotope evolution of juvenile continental crust (from εHf[4.5 Ga] = 0 to εHf[present] = + 13). The river zircon data as compared to the juvenile crust composition highlight that the supercontinent cycle has controlled the evolution of the continental crust by regulating the rates of crustal generation and intra-crustal reworking processes and the preservation potential of granitoid crust. We use the data to explore the timing of generation of the preserved continental crust. Taking into account the crustal residence times of continental crust recycled back into the mantle, we further propose a model of net continental growth that stable continental crust was firstly established in the Paleo- and Mesoarchean and significantly grew in the Paleoproterozoic.

  19. Osmium, tungsten, and chromium isotopes in sediments and in Ni-rich spinel at the K-T boundary: Signature of a chondritic impactor

    NASA Astrophysics Data System (ADS)

    Quitté, Ghylaine; Robin, Eric; Levasseur, Sylvain; Capmas, Françoise; Rocchia, Robert; Birck, Jean-Louis; Allègre, Claude Jean

    It is now established that a large extraterrestrial object hit the Earth at the end of the Cretaceous period, about 65 Ma ago. We have investigated Re-Os, Hf-W, and Mn-Cr isotope systems in sediments from the Cretaceous and the Paleogene in order to characterize the type of impactor. Within the Cretaceous-Tertiary (K-T) boundary layer, extraterrestrial material is mixed with terrestrial material, causing a dilution of the extraterrestrial isotope signature that is difficult to quantify. A phase essentially composed of Ni-rich spinel, formed in the atmosphere mainly from melted projectile material, is likely to contain the extraterrestrial isotopic signature of the impactor. We show that the analysis of spinel is indeed the best approach to determine the initial isotope composition of the impactor, and that W and Cr isotopes confirm that the projectile was a carbonaceous chondrite.

  20. Fast chemical and isotopic exchange of nitrogen during reaction with hot molybdenum

    NASA Astrophysics Data System (ADS)

    Yokochi, Reika; Marty, Bernard

    2006-07-01

    Molybdenum crucibles are commonly used to extract nitrogen from geological samples by induction heating. Because nitrogen is known to be reactive with certain metals (e.g., Ti and Fe), we have tested the reactivity of gaseous nitrogen with a Mo crucible held at 1800°C. The consumption of nitrogen, determined by monitoring the N2/40Ar ratio of the gas phase, varied between 25 and 100%, depending on the reaction duration. Nitrogen of the reacted gas was found to be systematically enriched in 15N relative to 14N by 10‰ compared to the initial isotopic composition, without any correlation with nitrogen consumption. We propose that a rapid isotopic exchange occurs between nitrogen originally trapped in the crucible and nitrogen from the gas phase, which modifies the isotopic composition of the reacted gas. This process can significantly bias the isotopic determination of nitrogen in rocks and minerals when a Mo furnace is used for gas extraction. Meanwhile, the rate of N-Mo chemical bonding may be controlled by the formation of nitride (rather than solid solution), a process slower than the isotopic exchange. The use of a Mo furnace for the extraction of trace nitrogen from rocks and minerals should therefore be avoided.

  1. Mg isotope fractionation during microbe-mineral interactions

    NASA Astrophysics Data System (ADS)

    Kim, Insu; Ryu, Jong-sik; Lee, Kwang-sik; Lee, Dongho

    2014-05-01

    Magnesium is involved in various biogeochemical processes important to the global climate change over geological time-scale. Mg isotopes allow us to directly trace the Mg cycle in the Earth's surface but the factors controlling Mg isotopic compositions have not fully understood yet. Here, we conducted a batch experiment using two bacterial species (Shewanella putrefaciens and Burkholderia fungorum) and three major Mg-bearing minerals (biotite, dolomite and hornblende). All elemental concentrations increased by 336 h and then reached to steady-state values, of which Mg concentrations varied depending on minerals and bacterial species. This result indicates that the mineral dissolution is affect by the presence of microbes, which either provide organic acids or attach onto mineral surface. The Mg isotopic compositions of initial minerals biotite, dolomite and hornblende are -0.35o of biotite, -0.99o of dolomite, and -0.24o of hornblende, in δ26Mg. Similarly, δ26Mg values increased by 336 h and reached to steady-state values, which also varied with minerals and microbes. During dissolution of three minerals, the light isotope of Mg is preferentially incorporated into the dissolved phases and then the dissolved δ26Mg values become consistent with those of minerals with the time.

  2. High-Precision Plutonium Isotopic Compositions Measured on Los Alamos National Laboratory’s General’s Tanks Samples: Bearing on Model Ages, Reactor Modelling, and Sources of Material. Further Discussion of Chronometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Khalil J.; Rim, Jung Ho; Porterfield, Donivan R.

    2015-06-29

    In this study, we re-analyzed late-1940’s, Manhattan Project era Plutonium-rich sludge samples recovered from the ''General’s Tanks'' located within the nation’s oldest Plutonium processing facility, Technical Area 21. These samples were initially characterized by lower accuracy, and lower precision mass spectrometric techniques. We report here information that was previously not discernable: the two tanks contain isotopically distinct Pu not only for the major (i.e., 240Pu, 239Pu) but trace ( 238Pu , 241Pu, 242Pu) isotopes. Revised isotopics slightly changed the calculated 241Am- 241Pu model ages and interpretations.

  3. A Lithospheric Origin for the Elk Creek Carbonatite Complex, SE Nebraska?

    NASA Astrophysics Data System (ADS)

    Farmer, G. L.

    2015-12-01

    The Elk Creek carbonatite complex in southeastern Nebraska is part of a widespread Cambrian-Ordovician alkali igneous event that affected much of North America during and after the break-up of the Rodinian supercontinent. We conducted whole rock and mineral Nd, Sr, Pb and Hf isotopic analyses of drill cores obtained from this complex in order to assess the source regions of the parental carbonatite magma. Low precision laser ablation U-Pb age determinations from individual zircon grains separated from carbonate-rich "syenites" range from 480 +/- 20 Ma to 540+/- 14 Ma. Whole rock Nd, Sr and Pb isotopic compositions all plot on Cambrian (~550 Ma) isochrons, implying that the carbonatites crystallized from melts with homogeneous radiogenic isotopic compositions. Initial ɛNd and ɛHf are well defined at ~+2 and ~0, respectively, while initial 87Sr/86Sr values are more variable and range from 0.7028 to 0.7058. The contemporaneously emplaced State Line kimberlites in the Front Range of north central Colorado share the same Nd and Sr isotopic compositions imply that sources of these rocks were similar and geographically widespread. Overall, the isotopic compositions are those expected from "Group 1" alkaline igneous rocks, usually interpreted as derivates from the sublithospheric mantle. Cretaceous-Tertiary alkaline rocks in North America generally belong to "Group 1" and may have originated in this fashion (Genet et al., 2014, Earth Planet. Sci. Lett.). An alternative possibility is that the Cambrian-Ordovician carbonatites and kimberlites were derived from underlying, carbonated portions of the lithospheric mantle that formed after the original stabilization of the latter in the Paleoproterozoic. Nd and Hf depleted mantle model ages for the Elk Creek and State Line alkaline rocks range from ~0.8 Ga to ~1.1 Ga and allow the possibility that both sets of intrusive rocks represent melting of mantle metasomatized either during or after the assembly of Rodinia. Widespread thinning and heating of the metasomatized mantle during the subsequent breakup of Rodinia could have led to the widespread kimberlite and carbonatite magmatism observed in North America during the Cambrian.

  4. Ag Isotopic Evolution of the Mantle During Accretion: New Constraints from Pd and Ag Metal-Silicate Partitioning

    NASA Technical Reports Server (NTRS)

    Righter, K.; Schonbachler, M.

    2018-01-01

    Decay of (sup 107) Pd to (sup 107) Ag has a half-life of 6.5 times 10 (sup 6) mega-annums. Because these elements are siderophile but also volatile, they offer potential constraints on the timing of core formation as well as volatile addition. Initial modelling has shown that the Ag isotopic composition of the bulk silicate Earth (BSE) can be explained if accretion occurs with late volatile addition. These arguments were tested for sensitivity for pre-cursor Pd/Ag contents, and for a fixed Pd/Ag ratio of the BSE of 0.1. New Ag and Pd partitioning data has allowed a better understanding of the partitioning behavior of Pd and Ag during core formation. The effects of S, C and Si, and the effect of high temperature and pressure has been evaluated. We can now calculate D(Ag) and D(Pd) over the wide range of PT conditions and variable metallic liquid compositions that are known during accretion. We then use this new partitioning information to revisit the Ag isotopic composition of the BSE during accretion.

  5. Stable isotope and petrologic evidence for open-system degassing during the climactic and pre-climactic eruptions of Mt. Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Mandeville, C.W.; Webster, J.D.; Tappen, C.; Taylor, B.E.; Timbal, A.; Sasaki, A.; Hauri, E.; Bacon, C.R.

    2009-01-01

    Evaluation of the extent of volatile element recycling in convergent margin volcanism requires delineating likely source(s) of magmatic volatiles through stable isotopic characterization of sulfur, hydrogen and oxygen in erupted tephra with appropriate assessment of modification by degassing. The climactic eruption of Mt. Mazama ejected approximately 50 km3 of rhyodacitic magma into the atmosphere and resulted in formation of a 10-km diameter caldera now occupied by Crater Lake, Oregon (lat. 43??N, long. 122??W). Isotopic compositions of whole-rocks, matrix glasses and minerals from Mt. Mazama climactic, pre-climactic and postcaldera tephra were determined to identify the likely source(s) of H2O and S. Integration of stable isotopic data with petrologic data from melt inclusions has allowed for estimation of pre-eruptive dissolved volatile concentrations and placed constraints on the extent, conditions and style of degassing. Sulfur isotope analyses of climactic rhyodacitic whole rocks yield ??34S values of 2.8-14.8??? with corresponding matrix glass values of 2.4-13.2???. ??34S tends to increase with stratigraphic height through climactic eruptive units, consistent with open-system degassing. Dissolved sulfur concentrations in melt inclusions (MIs) from pre-climactic and climactic rhyodacitic pumices varies from 80 to 330 ppm, with highest concentrations in inclusions with 4.8-5.2 wt% H2O (by FTIR). Up to 50% of the initial S may have been lost through pre-eruptive degassing at depths of 4-5 km. Ion microprobe analyses of pyrrhotite in climactic rhyodacitic tephra and andesitic scoria indicate a range in ??34S from -0.4??? to 5.8??? and from -0.1??? to 3.5???, respectively. Initial ??34S values of rhyodacitic and andesitic magmas were likely near the mantle value of 0???. Hydrogen isotope (??D) and total H2O analyses of rhyodacitic obsidian (and vitrophyre) from the climactic fall deposit yielded values ??f -103 to -53??? and 0.23-1.74 wt%, respectively. Values of ??D and wt% H2O of obsidian decrease towards the top of the fall deposit. Samples with depleted ??D, and mantle ??18O values, have elevated ??34S values consistent with open-system degassing. These results imply that more mantle-derived sulfur is degassed to the Earth's atmosphere/hydrosphere through convergent margin volcanism than previously attributed. Magmatic degassing can modify initial isotopic compositions of sulfur by >14??? (to ??34S values of 14??? or more here) and hydrogen isotopic compositions by 90??? (to ??D values of -127??? in this case). ?? 2009 Elsevier Ltd.

  6. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Hauff, F.; Hoernle, K.; Tilton, G.; Graham, D. W.; Kerr, A. C.

    2000-01-01

    Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ˜3×10 6 km 2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96±0.16, n=64 out of 79 samples, 2σ) and initial Nd-Pb isotopic compositions (e.g. 143Nd/ 144Nd in=0.51291±3, ɛNdi=7.3±0.6, 206Pb/ 204Pb in=18.86±0.12, n=54 out of 66, 2σ). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/ 4He in olivines of enriched picrites at Quepos are ˜12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on isochron diagrams suggests that the age of separation of enriched and depleted components from the depleted MORB source mantle could have been ≤500 Ma before CLIP formation and interpreted to reflect the recycling time of the CLIP source. Mantle plume heads may provide a mechanism for transporting large volumes of possibly young recycled oceanic lithosphere residing in the lower mantle back into the shallow MORB source mantle.

  7. An Approach for Validating Actinide and Fission Product Burnup Credit Criticality Safety Analyses-Isotopic Composition Predictions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radulescu, Georgeta; Gauld, Ian C; Ilas, Germina

    2011-01-01

    The expanded use of burnup credit in the United States (U.S.) for storage and transport casks, particularly in the acceptance of credit for fission products, has been constrained by the availability of experimental fission product data to support code validation. The U.S. Nuclear Regulatory Commission (NRC) staff has noted that the rationale for restricting the Interim Staff Guidance on burnup credit for storage and transportation casks (ISG-8) to actinide-only is based largely on the lack of clear, definitive experiments that can be used to estimate the bias and uncertainty for computational analyses associated with using burnup credit. To address themore » issues of burnup credit criticality validation, the NRC initiated a project with the Oak Ridge National Laboratory to (1) develop and establish a technically sound validation approach for commercial spent nuclear fuel (SNF) criticality safety evaluations based on best-available data and methods and (2) apply the approach for representative SNF storage and transport configurations/conditions to demonstrate its usage and applicability, as well as to provide reference bias results. The purpose of this paper is to describe the isotopic composition (depletion) validation approach and resulting observations and recommendations. Validation of the criticality calculations is addressed in a companion paper at this conference. For isotopic composition validation, the approach is to determine burnup-dependent bias and uncertainty in the effective neutron multiplication factor (keff) due to bias and uncertainty in isotopic predictions, via comparisons of isotopic composition predictions (calculated) and measured isotopic compositions from destructive radiochemical assay utilizing as much assay data as is available, and a best-estimate Monte Carlo based method. This paper (1) provides a detailed description of the burnup credit isotopic validation approach and its technical bases, (2) describes the application of the approach for representative pressurized water reactor and boiling water reactor safety analysis models to demonstrate its usage and applicability, (3) provides reference bias and uncertainty results based on a quality-assurance-controlled prerelease version of the Scale 6.1 code package and the ENDF/B-VII nuclear cross section data.« less

  8. Correlated nanoscale characterization of a unique complex oxygen-rich stardust grain: Implications for circumstellar dust formation

    NASA Astrophysics Data System (ADS)

    Leitner, J.; Hoppe, P.; Floss, C.; Hillion, F.; Henkel, T.

    2018-01-01

    We report the light to intermediate-mass element abundances as well as the oxygen, magnesium, silicon, and titanium isotope compositions of a unique and unusually large (0.8 μm × 3.75 μm) presolar O-rich grain from the Krymka LL3.2 chondrite. The O-, Al-, and Ti-isotopic compositions are largely compatible with an origin from an asymptotic giant branch (AGB) star of 1.5 solar masses with a metallicity that is 15% higher than the solar metallicity. The grain has an elevated 17O/16O ratio (8.40 ± 0.16 × 10-4) compared to solar, and slightly sub-solar 18O/16O ratio (1.83 ± 0.03 × 10-3). It shows evidence for the presence of initial 26Al, suggesting formation after the first dredge-up, during one of the early third dredge-up (TDU) episodes. Titanium isotopic data indicate condensation of the grain before significant amounts of material from the He-burning shell were admixed to the stellar surface with progressive TDUs. We observed a small excess in 30Si (δ30Si = 41 ± 5‰), which most likely is inherited from the parent star's initial Si-isotopic composition. For such stars stellar models predict a C/O-ratio < 1 even after the onset of TDU, thus allowing the condensation of O-rich dust. The grain is an unusual complex presolar grain, consisting of an Al-Ca-Ti-oxide core, surrounded by an Mg-Ca-silicate mantle, and resembles the condensation sequence for a cooling gas of solar composition at pressures and dust/gas ratios typically observed for circumstellar envelopes around evolved stars. We also report the first observation of phosphorus in a presolar grain, although the origin of the P-bearing phase remains ambiguous.

  9. Solvent isotope-induced equilibrium perturbation for isocitrate lyase.

    PubMed

    Quartararo, Christine E; Hadi, Timin; Cahill, Sean M; Blanchard, John S

    2013-12-23

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacterium's life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage ((D₂O)V = 2.0 ± 0.1, and (D₂O)[V/K(isocitrate)] = 2.2 ± 0.3) arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of the succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate, and succinate prepared in D₂O would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by ¹H NMR spectroscopy shows a clear equilibrium perturbation in D₂O. The final equilibrium isotopic composition of reactants in D₂O revealed dideuterated succinate, protiated glyoxylate, and monodeuterated isocitrate, with the transient appearance and disappearance of monodeuterated succinate. A model for the equilibrium perturbation of substrate species and their time-dependent isotopic composition is presented.

  10. Early Solar System Alkali Fractionation Events Recorded by K-Ca Isotopes in the Yamato-74442 LL-Chondritic Breccia

    NASA Technical Reports Server (NTRS)

    Tatsunori, T.; Misawa, K.; Okano, O.; Shih, C.-Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.

    2015-01-01

    Radiogenic ingrowth of Ca-40 due to decay of K-40 occurred early in the solar system history causing the Ca-40 abundance to vary within different early-former reservoirs. Marshall and DePaolo ] demonstrated that the K-40/Ca-40 decay system could be a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [3,4] determined 40K/40Ca ages of lunar granitic rock fragments and discussed the chemical characteristics of their source materials. Recently, Yokoyama et al. [5] showed the application of the K-40/Ca-40 chronometer for high K/Ca materials in ordinary chondrites (OCs). High-precision calcium isotopic data are needed to constrain mixing processes among early solar system materials and the time of planetesimal formation. To better constrain the solar system calcium isotopic compositions among astromaterials, we have determined the calcium isotopic compositions of OCs and an angrite. We further estimated a source K/Ca ratio for alkali-rich fragments in a chondritic breccia using the estimated solar system initial Ca-40/Ca-44.

  11. Oxygen Isotopic Compositions of Solar Corundum Grains

    NASA Astrophysics Data System (ADS)

    Makide, Kentaro; Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.

    2009-11-01

    Oxygen is one of the major rock-forming elements in the solar system and the third most abundant element of the Sun. Oxygen isotopic composition of the Sun, however, is not known due to a poor resolution of astronomical spectroscopic measurements. Several Δ17O values have been proposed for the composition of the Sun based on (1) the oxygen isotopic measurements of the solar wind implanted into metallic particles in lunar soil (< -20‰ by Hashizume & Chaussidon and ~ +26‰ by Ireland et al.), (2) the solar wind returned by the Genesis spacecraft (-27‰ ± 6‰ by McKeegan et al.), and (3) the mineralogically pristine calcium-aluminum-rich inclusions (CAIs) (-23.3‰ ± 1.9‰ by Makide et al. and -35‰ by Gounelle et al.). CAIs are the oldest solar system solids, and are believed to have formed by evaporation, condensation, and melting processes in hot nebular region(s) when the Sun was infalling (Class 0) or evolved (Class 1) protostar. Corundum (Al2O3) is thermodynamically the first condensate from a cooling gas of solar composition. Corundum-bearing CAIs, however, are exceptionally rare, suggesting either continuous reaction of the corundum condensates with a cooling nebular gas and their replacement by hibonite (CaAl12O19) or their destruction by melting together with less refractory condensates during formation of igneous CAIs. In contrast to the corundum-bearing CAIs, isolated micrometer-sized corundum grains are common in the acid-resistant residues from unmetamorphosed chondrites. These grains could have avoided multistage reprocessing during CAI formation and, therefore, can potentially provide constraints on the initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Here we report oxygen isotopic compositions of ~60 micrometer-sized corundum grains in the acid-resistant residues from unequilibrated ordinary chondrites (Semarkona (LL3.0), Bishunpur (LL3.1), Roosevelt County 075 (H3.2)) and unmetamorphosed carbonaceous chondrites (Orgueil (CI1), Murray (CM2), and Alan Hills A77307 (CO3.0)) measured with a Cameca ims-1280 ion microprobe. All corundum grains, except two, are 16O-rich (Δ17O = -22.7‰ ± 8.5‰, 2σ), and compositionally similar to the mineralogically pristine CAIs from the CR carbonaceous chondrites (-23.3‰ ± 1.9‰, 2σ), and solar wind returned by the Genesis spacecraft (-27‰ ± 6‰, 2σ). One corundum grain is highly 17O-enriched (δ17O ~ +60‰, δ18O ~ -40‰) and is probably of the presolar origin; the origin of another 17O-rich grain (δ17O ~ -15‰, δ18O ~ -35‰) is unclear. We conclude that the 16O-rich corundum grains in the acid-resistant residues from unequilibrated ordinary and unmetamorphosed carbonaceous chondrites recorded initial oxygen isotopic composition of the solar nebula, and, hence, of the Sun. Our inferred oxygen isotopic composition of the Sun is inconsistent with the more extreme 16O-rich value (Δ17O ~ -35‰) proposed by Gounelle et al. on the basis of two extremely 16O-rich CAIs from the CH/CB-like chondrite Isheyevo and with the 16O-poor value observed as a component of the solar wind implanted into the metallic particles in lunar soil (Ireland et al.).

  12. Chlorine Isotopes: As a Possible Tracer of Fluid/Bio-Activities on Mars and a Progress Report on Chlorine Isotope Analysis by TIMs

    NASA Technical Reports Server (NTRS)

    Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.

    2009-01-01

    Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.

  13. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Wang, Hao; Li, Zhenggang; Yu, Xing; Bi, Dongwei; He, Yongsheng

    2018-04-01

    Significant Fe isotopic fractionation occurs during the precipitation and oxidative weathering of modern seafloor hydrothermal sulfides, which has an important impact on the cycling of Fe isotopes in the ocean. This study reports the Fe-isotope compositions of whole-rock sulfides and single-mineral pyrite collected from hydrothermal fields at the South Mid-Atlantic Ridge (SMAR) and the East Pacific Rise (EPR) and discusses the impacts of precipitation and late-stage oxidative weathering of sulfide minerals on Fe isotopic fractionation. The results show large variation in the Fe-isotope compositions of the sulfides from the different hydrothermal fields on the mid-oceanic ridges, indicating that relatively significant isotope fractionation occurs during the sulfide precipitation and oxidative weathering processes. The Fe-isotope compositions of the sulfides from the study area at the SMAR vary across a relatively small range, with an average value of 0.01‰. This Fe-isotope composition is similar to the Fe-isotope composition of mid-oceanic ridge basalt, which suggests that Fe was mainly leached from basalt. In contrast, the Fe-isotope composition of the sulfides from the study area at the EPR are significantly enriched in light Fe isotopes (average value - 1.63‰), mainly due to the kinetic fractionation during the rapid precipitation process of hydrothermal sulfide. In addition, the pyrite from different hydrothermal fields is enriched in light Fe isotopes, which is consistent with the phenomenon in which light Fe isotopes are preferentially enriched during the precipitation of pyrite. The red oxides have the heaviest Fe-isotope compositions (up to 0.80‰), indicating that heavy Fe isotopes are preferentially enriched in the oxidation product during the late-stage oxidation process. The data obtained from this study and previous studies show a significant difference between the Fe-isotope compositions of the sulfides from the SMAR and EPR. The relatively heavy Fe isotopes compositions of the sulfides from the SMAR may suggest the equilibrium fractionation process under high temperature conditions. The red Fe oxides are enriched in heavy Fe isotopes, indicating that the oxidative weathering processes result in the occurrence of significant Fe-isotope fractionation and the preferential enrichment of heavy Fe isotopes in the oxidation product.

  14. Isotopy of the hydrosphere

    NASA Astrophysics Data System (ADS)

    Ferronskii, V. I.; Poliakov, V. A.

    This book is concerned with the natural relations regarding the distribution of the stable isotopes of hydrogen and oxygen in the hydrosphere, taking into account the most important problems with respect to the dynamics and the origin of waters. The solution of these problems on an isotopic basis is considered. The physicochemical principles of isotope separation are discussed along with the isotopic composition of atmospheric moisture, the isotopic composition of surface continental waters, the hydrogen and oxygen isotopic composition of minerals of magmatic and metamorphic rocks and fluid inclusions, the isotopic composition of groundwaters of modern volcanic regions, and the origin of the earth's hydrosphere in the light of isotopic, cosmochemical, and theoretical studies. Attention is also given to the separation of hydrogen and oxygen isotopes of waters in the underground cycle, the isotopic composition of the deep-formation waters of sedimentary basins, the relationship between surface and ground waters, and the groundwater residence time in an aquifer.

  15. Neodymium, strontium, and oxygen isotopic variations in the crust of the western United States: Origin of Proterozoic continental crust and tectonic implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, V.C.

    1989-01-01

    Initial Nd isotopic ratios of crystalline rocks from an area of about 1.5 {times} 10{sup 6} km{sup 2} of the western United States have been determined in order to map Precambrian age province boundaries and thus document the growth and modification of the North American continent in the Proterozoic. Three age provinces have been delineated. It is demonstrated that large regions of Early Proterozoic continental crust were formed with anomalous isotopic compositions ({sup 143}Nd/{sup 144}Nd ratios lower than Early Proterozoic depleted-mantle). The variations in the initial {epsilon}{sub Nd} and {delta}{sup 18}O values correlate with each other, and correspond to themore » previously determined Nd isotopic provinces. The Pelona, Rand, Chocolate Mountain and Orocopia Schists are represented by 15 lithologically and structurally similar schist bodies exposed along the San Andreas and Garlock faults in southern California. The grayschists have measured {epsilon}{sub Nd} values from -1.7 to -11.7 with depleted-mantle model ages of 0.9 to 1.7 Ga. The Nd isotopic compositions can be modeled as variable mixtures of Early Proterozoic continental crust with a Mesozoic are component. The measured {sup 87}Sr/{sup 86}Sr ratios are from 0.7087 to 0.7129 and reflect the presence of an old continental source. Independent of age, the high initial {epsilon}{sub Nd} values ({sup +}9 {plus minus} 1.5) are consistent with derivation at an oceanic spreading center, either at a MORB or in a back-arc basin environment. The presence of both Early Proterozoic continental detritus and a younger sedimentary component in the grayschist protolith, and the MORB affinity of the metabasalts are compatible with formation of the protoliths of the Pelona and related schists in a Mesozoic basin adjacent to the southwestern United States continental margin.« less

  16. Iron isotope biogeochemistry of Neoproterozoic marine shales

    NASA Astrophysics Data System (ADS)

    Kunzmann, Marcus; Gibson, Timothy M.; Halverson, Galen P.; Hodgskiss, Malcolm S. W.; Bui, Thi Hao; Carozza, David A.; Sperling, Erik A.; Poirier, André; Cox, Grant M.; Wing, Boswell A.

    2017-07-01

    Iron isotopes have been widely applied to investigate the redox evolution of Earth's surface environments. However, it is still unclear whether iron cycling in the water column or during diagenesis represents the major control on the iron isotope composition of sediments and sedimentary rocks. Interpretation of isotopic data in terms of oceanic redox conditions is only possible if water column processes dominate the isotopic composition, whereas redox interpretations are less straightforward if diagenetic iron cycling controls the isotopic composition. In the latter scenario, iron isotope data is more directly related to microbial processes such as dissimilatory iron reduction. Here we present bulk rock iron isotope data from late Proterozoic marine shales from Svalbard, northwestern Canada, and Siberia, to better understand the controls on iron isotope fractionation in late Proterozoic marine environments. Bulk shales span a δ 56Fe range from -0.45 ‰ to +1.04 ‰ . Although δ 56Fe values show significant variation within individual stratigraphic units, their mean value is closer to that of bulk crust and hydrothermal iron in samples post-dating the ca. 717-660 Ma Sturtian glaciation compared to older samples. After correcting for the highly reactive iron content in our samples based on iron speciation data, more than 90% of the calculated δ 56Fe compositions of highly reactive iron falls in the range from ca. -0.8 ‰ to +3 ‰ . An isotope mass-balance model indicates that diagenetic iron cycling can only change the isotopic composition of highly reactive iron by < 1 ‰ , suggesting that water column processes, namely the degree of oxidation of the ferrous seawater iron reservoir, control the isotopic composition of highly reactive iron. Considering a long-term decrease in the isotopic composition of the iron source to the dissolved seawater Fe(II) reservoir to be unlikely, we offer two possible explanations for the Neoproterozoic δ 56Fe trend. First, a decreasing supply of Fe(II) to the ferrous seawater iron reservoir could have caused the reservoir to decrease in size, allowing a higher degree of partial oxidation, irrespective of increasing environmental oxygen levels. Alternatively, increasing oxygen levels would have led to a higher proportion of Fe(II) being oxidized, without decreasing the initial size of the ferrous seawater iron pool. We consider the latter explanation as the most likely. According to this hypothesis, the δ 56Fe record reflects the redox evolution of Earth's surface environments. δ 56Fe values in pre-Sturtian samples significantly heavier than bulk crust and hydrothermal iron imply partial oxidation of a ferrous seawater iron reservoir. In contrast, mean δ 56Fe values closer to that of hydrothermal iron in post-Sturtian shales reflects oxidation of a larger proportion of the ferrous seawater iron reservoir, and by inference, higher environmental oxygen levels. Nevertheless, significant iron isotopic variation in post-Sturtian shales suggest redox heterogeneity and possibly a dominantly anoxic deep ocean, consistent with results from recent studies using iron speciation and redox sensitive trace metals. However, the interpretation of generally increasing environmental oxygen levels after the Sturtian glaciation highlights the need to better understand the sensitivity of different redox proxies to incremental changes in oxygen levels to enable us to reconcile results from different paleoredox proxies.

  17. Tracing subduction zone fluid-rock interactions using trace element and Mg-Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Teng, Fang-Zhen; Li, Shu-Guang; Zhang, Li-Fei; Du, Jin-Xue; He, Yong-Sheng; Niu, Yaoling

    2017-10-01

    Slab-derived fluids play a key role in mass transfer and elemental/isotopic exchanges in subduction zones. The exhumation of deeply subducted crust is achieved via a subduction channel where fluids from various sources are abundant, and thus the chemical/isotopic compositions of these rocks could have been modified by subduction-zone fluid-rock interactions. Here, we investigate the Mg isotopic systematics of eclogites from southwestern Tianshan, in conjunction with major/trace element and Sr-Nd isotopes, to characterize the source and nature of fluids and to decipher how fluid-rock interactions in subduction channel might influence the Mg isotopic systematics of exhumed eclogites. The eclogites have high LILEs (especially Ba) and Pb, high initial 87Sr/86Sr (up to 0.7117; higher than that of coeval seawater), and varying Ni and Co (mostly lower than those of oceanic basalts), suggesting that these eclogites have interacted with metamorphic fluids mainly released from subducted sediments, with minor contributions from altered oceanic crust or altered abyssal peridotites. The positive correlation between 87Sr/86Sr and Pb* (an index of Pb enrichment; Pb* = 2*PbN/[CeN + PrN]), and the decoupling relationships and bidirectional patterns in 87Sr/86Sr-Rb/Sr, Pb*-Rb/Sr and Pb*-Ba/Pb spaces imply the presence of two compositionally different components for the fluids: one enriched in LILEs, and the other enriched in Pb and 87Sr/86Sr. The systematically heavier Mg isotopic compositions (δ26Mg = - 0.37 to + 0.26) relative to oceanic basalts (- 0.25 ± 0.07) and the roughly negative correlation of δ26Mg with MgO for the southwestern Tianshan eclogites, cannot be explained by inheritance of Mg isotopic signatures from ancient seafloor alteration or prograde metamorphism. Instead, the signatures are most likely produced by fluid-rock interactions during the exhumation of eclogites. The high Rb/Sr and Ba/Pb but low Pb* eclogites generally have high bulk-rock δ26Mg values, whereas high Pb* and 87Sr/86Sr eclogites have mantle-like δ26Mg values, suggesting that the two fluid components have diverse influences on the Mg isotopic systematics of these eclogites. The LILE-rich fluid component, possibly derived from mica-group minerals, contains a considerable amount of isotopically heavy Mg that has shifted the δ26Mg of the eclogites towards higher values. By contrast, the 87Sr/86Sr- and Pb-rich fluid component, most likely released from epidote-group minerals in metasediments, has little Mg so as not to modify the Mg isotopic composition of the eclogites. In addition, the influence of talc-derived fluid might be evident in a very few eclogites that have low Rb/Sr and Ba/Pb but slightly heavier Mg isotopic compositions. These findings represent an important step toward a broad understanding of the Mg isotope geochemistry in subduction zones, and contributing to understanding why island arc basalts have averagely heavier Mg isotopic compositions than the normal mantle.

  18. Petrogenesis and origin of the Upper Jurassic-Lower Cretaceous magmatism in Central High Atlas (Morocco): Major, trace element and isotopic (Sr-Nd) constraints

    NASA Astrophysics Data System (ADS)

    Essaifi, Abderrahim; Zayane, Rachid

    2018-01-01

    During an uplift phase, which lasted ca. 40 Ma, from the Late Jurassic (165 Ma) to the Early Cretaceous (125 Ma), transitional to moderately alkaline magmatic series were emplaced in the Central High Atlas. The corresponding magmatic products include basaltic lava flows erupted within wide synclines and intrusive complexes composed of layered mafic intrusions and monzonitic to syenitic dykes emplaced along narrow anticlinal ridges. The igneous rock sequence within the intrusive complexes is composed of troctolites, olivine-gabbros, oxide-gabbros, monzonites and syenites. The chemical compositions of the various intrusive rocks can be accounted for by crystal accumulation, fractional crystallization and post-magmatic remobilization. The evolution from the troctolites to the syenites was mainly controlled by a fractional crystallization process marked by early fractionation of olivine, plagioclase and clinopyroxene, followed by separation of biotite, amphibole, apatite, and Ti-magnetite. Hydrothermal activity associated with emplacement of the intrusions within the Jurassic limestones modified the elemental and the Sr isotopic composition of the hydrothermally altered rocks In particular the monzonitic to syenitic dykes underwent an alkali metasomatism marked by depletion in K and Rb and enrichment in Na and Sr. As a result, their Sr isotopic composition was shifted towards higher initial Sr isotopic ratios (0.7067-0.7075) with respect to the associated gabbros (0.7036-0.7046). On the contrary, the Nd isotopic compositions were preserved from isotope exchange with the limestones and vary in a similar range to those of the gabbros (+1.6 < εNdi < +4.1). The isotopic and the trace element ratios of the uncontaminated samples were used to constrain the source characteristics of this magmatism. The Sr-Nd isotopic data and the incompatible element ratios (e.g. La/Nb, Zr/Nb, Th/U, Ce/Pb) are consistent with generation from an enriched upper mantle similar to an ocean island basalt source. Melting of the subcontinental metasomatized lithosphere is tentatively related to small-scale shallow mantle upwelling and asthenospheric uprise at the triple junction between the western High Atlas, the Middle Atlas and the eastern High Atlas domains during a period of relative tectonic quiescence.

  19. Northwest Africa 8159: An approximately 2.3 Billion Year Old Martian Olivine-Bearing Augite Basalt

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Peters, T. J.; Tappa, M. J.; Agee, C. B.

    2014-01-01

    Based on petrology, mineralogy, and bulk composition, the new NWA 8159 martian meteorite is distinct from all known samples from Mars. In particular, the augite compositional trends are unique, but most similar to those of nakhite intercumulus. Whether NWA 8159 represents a new lithology or is related to a known meteorite group remains to be determined. Sr and Nd isotopic analyses will allow comparison of source characteristics with SNC and other new ungrouped meteorites (e.g., NWA 7635). Here we report initial Rb-Sr and Sm-Nd isotopic results for NWA 8159 with the objective to determine its formation age and to potentially identify similarities and potential source affinities with other martian rocks.

  20. Kinetically Controlled Alteration of the Chemical Record During Diagenesis: An Experimental Study on Hydrothermal Carbonate Replacement

    NASA Astrophysics Data System (ADS)

    Mueller, T.; Dohmen, R.; Jonas, L.; Immenhauser, A.

    2016-12-01

    The geological record stored in the geochemical composition of carbonates provides a direct source of information on the Earth systems. However, the robustness and accuracy of these key records can be compromised by post-depositional alteration of sediments, such as dolomitization during diagenesis or low temperature metamorphism. Hence, knowledge on the mechanisms and rates of these processes hold the key to evaluate the robustness of proxies or to evaluate the extent of geochemical alteration. Previously, we presented experimental results of hydrothermal alteration of single calcite crystals and aragonitic coral fragments leading to replacement of the original carbonate by a Ca-Mg carbonate phase of variable composition. The experiments revealed the formation of a multiphase reaction rim with multiple replacement fronts [1]. Here, the reaction rate as well as composition of the reaction products is controlled by element transport in the pore fluid. In this study we focus on the reaction path of the replacement reaction and its effect on the recorded Mg-isotope composition. XRD diffraction patterns suggest the initial precipitation of non-ordered protodolomite that is subsequently continuously recrystallizing over the duration of the experiments to form an ordered, albeit non-stoichiometric dolomite. These observations are in agreement with Mg-isotope composition measured of the bulk reaction rim showing a systematic evolution over time that cannot be explained by simple Rayleigh or equilibrium fractionation. We interpret these findings as additional, but delayed reaction fronts affecting the microstructure and chemical composition of the newly formed carbonate rim that are essentially decoupled from the initial replacement front. Our results highlight the need to quantitatively understand alteration processes during diagenesis in order to accurately interpret the preserved geochemical record stored in element and isotope ratios of carbonates. [1] Jonas L., Mueller T., Dohmen R., Baumgartner L., and Putlitz B. (2015): Transport-controlled hydrothermal replacement of calcite by Mg-carbonates, Geology, 43, 779-782.

  1. Stable isotopic indicators of nitrous oxide and methane sources in Los Angeles, California

    NASA Astrophysics Data System (ADS)

    Townsend-Small, A.; Pataki, D.; Tyler, S.; Trumbore, S.

    2008-12-01

    As urbanization increasingly encroaches upon agricultural landscapes, there are greater potential sources of greenhouse gases and other atmospheric contaminants. Measurements of the isotopic composition of trace gases have the potential to distinguish between pollutant sources and quantify the proportional contribution of agricultural activities to the total atmospheric pool. In this study, we are measuring the isotopic composition of greenhouse gases N2O and CH4 emitted from cropland, animal feeding operations, and urban activities in the South Coast Air Basin in southern California. The ultimate goal of our project is to utilize atmospheric measurements of the isotopic composition of N2O and CH4 combined with studies of source signatures to determine the proportional contributions of cropland, animal operations, and urban sources of greenhouse gases to the atmosphere. Measurements of the δ13C of methane show excellent separation between urban sources, such as vehicle emissions, power plants, oil refineries, landfills, and sewage treatment plants and agricultural sources like cows, biogas, and cattle feedlots. For nitrous oxide, soil N2O sources showed good separation from wastewater treatment facilities using δ15N and δ18O. Within soil N2O sources, the isotopic composition of N2O from cropland soils was similar to N2O emissions from urban turfgrass. These data indicate that nitrification may be as important a source of N2O as denitrification in urban soils. We are also measuring N2O fluxes from soils and from sewage treatment processes, and preliminary data indicate that urban N2O fluxes are higher than initially assumed by managers and regulatory agencies.

  2. Mantle heterogeneity and crustal recycling in Archean granite-greenstone belts - Evidence from Nd isotopes and trace elements in the Rainy Lake area, Superior Province, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Shirey, Steven B.; Hanson, Gilbert N.

    1986-01-01

    Crustal evolution in the Rainy Lake area, Ontario is studied in terms of geochemical characteristics. The Nd isotope data are examined for heterogeneity of the Archean mantle, and the Sm/Nd depletion of the mantle is analyzed. The Nd isotope systematics of individual rock suites is investigated in order to understand the difference between crust and mantle sources; the precursors and petrogenetic processes are discussed. The correlation between SiO2 content and Nd values is considered. Rapid recycling of crustal components, which were previously derived from depleted mantle sources, is suggested based on the similarity of the initial Nd isotopic composition for both mantle-derived and crustally-derived rocks.

  3. Asymptotic Analysis of Time-Dependent Neutron Transport Coupled with Isotopic Depletion and Radioactive Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brantley, P S

    2006-09-27

    We describe an asymptotic analysis of the coupled nonlinear system of equations describing time-dependent three-dimensional monoenergetic neutron transport and isotopic depletion and radioactive decay. The classic asymptotic diffusion scaling of Larsen and Keller [1], along with a consistent small scaling of the terms describing the radioactive decay of isotopes, is applied to this coupled nonlinear system of equations in a medium of specified initial isotopic composition. The analysis demonstrates that to leading order the neutron transport equation limits to the standard time-dependent neutron diffusion equation with macroscopic cross sections whose number densities are determined by the standard system of ordinarymore » differential equations, the so-called Bateman equations, describing the temporal evolution of the nuclide number densities.« less

  4. High-Resolution Spectroscopy of Mars: Recent Results and Implications for Atmospheric Evolution

    NASA Technical Reports Server (NTRS)

    Krasnopolsky, V. A.; Owen, T. C.; Maillard, J. P.

    1999-01-01

    It is believed that Earth, Venus, and Mars were formed by the same rocky and icy planetesimals, which resembled meteorites and comets in their composition, respectively. These planets are thus expected to have initially had the same chemical and isotope composition. Scaling the mass of the terrestrial ocean by the planetary mass ratio, the expected initial H2O abundance on Mars is a layer of about 1 km thick. Scaling the abundance of CO2 on Venus, the expected initial CO2 abundance on Mars is 15 bars. Evidently, significant parts of the initial H2O and CO2 abundances have been lost. Intense meteorite impact erosion and hydrodynamic escape of hydrogen (which could drag to escape more heavy species) were dominant loss processes in the first 0.8 Byr. Later, atmospheric sputtering by O+ ions resulted in the dissociation of CO2 and massive losses of O, C, and H. Formation of carbonates also reduced CO2 to its present abundance which currently exists in the atmosphere, on the polar caps, and is absorbed by regolith. Water loss is currently due to thermal escape of H and nonthermal escape of O, both formed by photodissociation of H2O. All loss processes resulted in fractionation of the H, O, and C isotopes. Therefore, the current isotope ratios in H2O and CO2 are clues to the history of volatiles on Mars. There are three tools to study H2O and CO2 isotopes in the martian atmosphere: (i) mass spectrometry from landing probes, (ii) analyses of Mars' gases trapped in the SNC meteorites which were ejected from Mars, and (iii) high-resolution spectroscopy of the H2O andCO2 bands. Method (i) is the best but is the most expensive. Mass spectrometers to be used should be designed for high-precision isotope measurements. Method (ii) makes it possible to reach an uncertainty +/- 0.1%. However, the obtained results are affected by some uncontrolled interactions: isotope fractionations of (1) trapped gases and (2) those released in pyrolysis, (3) contribution of the impactor, isotope exchanges (4) in the terrestrial environment and (5) with the host rock during pyrolysis. Therefore, the spectroscopic data are of great interest, though their formal accuracy is lower. High-resolution spectroscopy is also a tool to study the current atmosphere of Mars by mapping of some photochemically important species and searching for some minor constituents and their variations. Additional information is contained in the original extended abstract.

  5. Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans

    NASA Technical Reports Server (NTRS)

    Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.

    2004-01-01

    Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.

  6. Lu-Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: Evidence for Paleoproterozoic subduction beneath the Slave craton, Canada

    NASA Astrophysics Data System (ADS)

    Schmidberger, Stefanie S.; Simonetti, Antonio; Heaman, Larry M.; Creaser, Robert A.; Whiteford, Sean

    2007-02-01

    Lu-Hf, Sm-Nd and in-situ clinopyroxene Sr and Pb isotope systematics, and mineral major and in-situ trace element compositions were obtained for a suite of non-diamond and diamond-bearing eclogites from the Diavik kimberlites (A154; 55 Ma old), Slave craton (Canada). Temperature estimates of last equilibration in the lithosphere for the non-diamond-bearing Diavik eclogites define two groups; low-temperature (800-1050 °C) and high-temperature eclogites (1100-1300 °C). Most diamond-eclogites indicate temperatures similar to those of the high-temperature eclogites. Isotopic and major and trace element systematics for the non-diamond- and diamond-bearing eclogites indicate overlapping chemical compositions suggesting similar rock formational histories. Calculated whole rock major and trace element abundances using chemical and modal abundances for constituent minerals exhibit broad similarities with mafic cumulates from ophiolite sequences. Most importantly the calculated whole rock eclogite compositions display positive Sr and Eu anomalies, typically interpreted as the result of plagioclase accumulation in cumulate rocks of oceanic crust sequences. Initial whole rock Hf isotopic values and in-situ Sr isotope data from clinopyroxene grains provide evidence that the eclogites were derived from precursor rocks with depleted mantle isotope characteristics. These combined results support the interpretation that the eclogites from Diavik represent remnants of subducted oceanic crust. Lu-Hf isotope systematics indicate that the oceanic protolith for the eclogites formed in the Paleoproterozoic at ˜ 2.1 Ga, which is in agreement with the in-situ Pb isotope data from clinopyroxene. This result also corroborates the ˜ 2.1 Ga Lu-Hf model ages recorded by mantle zircons from eclogite found within the Jericho kimberlite in the northern Slave Province (˜ 200 km northwest of Diavik). The results from both studies indicate a link between eclogite formation and Paleoproterozoic subduction of oceanic lithosphere along the present-day western margin of the Archean Slave craton.

  7. U-Pb Isotope Systematic of SNC Meteorites

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.; Jotter, R.; Kubny, A.; Zartman, R.

    2005-12-01

    A stepwise dissolution technique was applied to several nakhlite meteorites that were heavily contaminated by terrestrial Pb. Pulverized samples were subjected to three acid leaches of increasing strength followed by HF-HNO3 digestion of the remaining residue. Using this procedure the major portion of the terrestrial contamination was removed in Leaches 1 and 2, while essentially uncontaminated Pb was recovered in Leach 3 and the Residue. We give further details here about some of the insights gained from this improved ability to distinguish between the primary and terrestrial Pb components in meteorites. Firstly, we ran one sample of Nakhla as a test of the procedure. The result showed L1 and L2 to be mainly dominated by terrestrial Pb while L3 yielded Pb close to the initial Pb of other Nakhlites. The Pb in the Res, however, was very radiogenic and had a 206Pb/204Pb relative to 207Pb/204Pb indicating a drastic increase of the U/Pb at 1.3 Ga. Furthermore, the relatively unradiogenic 208Pb/204Pb suggested that there might be zircon or other high U/Th mineral in the Res. We made an in-depth study on a thin-section using an electron microscope and found indeed tiny 10 m grains of Baddeleyeite. The same dissolution technique was then applied to other Nakhlites from the Antarctic NIPR collection and NASA (MIL) with similar results, indicating that all Nakhlites may have the same age. In addition, an identical initial Pb isotopic composition indicates that all of these meteorites were derived from the same homogeneous source. Moreover, it is strongly suggested by their initial Pb that the "olivine Shergottites", like SAU, DAG, Que, and Y, likewise come from this Nakhla source. While "normal" Shergottites like Shergotty, LA are from sources having a more evolved Pb isotopic composition. "Olivine Shergottites" are clearly younger than Nakhlites. Their Sm Nd and Rb Sr isotopic systems are highly disturbed. Analyzing the existing data we favor an age of 800 my for the "olivine Shergottites" which is also suggested by Ar-Ar systematic. The Nakhla reservoir were sampled at least 2 times: at 1300my (Nakhlites) and at 800 my (olivine Shergottites). However, the Pb isotopic composition plot close to the Geochrone at a 238U/204Pb of about 2. This gives interesting implications for the evolution of this reservoir and their parent body.

  8. Ages and Nd, Sr isotopic systematics in the Sierran foothills ophiolite belt, CA: the Smartville and Feather River complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, H.F.; Niemeyer, S.

    1985-01-01

    Sm-Nd dating has shown the Kings-Kaweah ophiolite to be approx. 480 My old. Its Nd, Sr, and Pb isotopic compositions require an unusually old depleted mantle source. Samples from the Smartville and Feather River complexes have been analyzed in a search for similar highly depleted, early Paleozoic ophiolites in the northern foothills ophiolite belt. Six whole rocks from Smartville, encompassing representative lithologies, plus plagioclase and pyroxene mineral separates define a 183 +/- 22 My Sm-Nd isochron. This age, interpreted as the igneous age, is older than, but within error of, approx. 160 My U-Pb ages previously obtained from plagiogranite zirconmore » analyses. One diabase with unusually high Rb/Sr yields a depleted mantle Sr model age of 200 +/- 25 My, consistent with the Sm-ND age. These compositions are clearly oceanic in character but do not discriminate among possible tectonic settings for the formation of the Smartville complex. Sm-Nd data for flaser gabbros and related rocks from Feather River scatter about an approx. 230 My errorchron with element of/sub Nd/(T) = +6.3 to +8.7. Initial /sup 87/Sr//sup 86/Sr ranges from 0.7028 to 0.7031. These results indicate a complex history with initial isotopic heterogeneities and/or disturbances of the isotopic systems. If primary, the element of/sub Nd/ (T) values are somewhat low, suggesting a possible arc origin for these rocks. Neither the Smartville nor Feather R. complexes appear to be related to the Kings-Kaweah ophiolite which, so far, is unique among foothill ophiolites in having an early Paleozoic age and a clear MORB, as opposed to arc or marginal basin, isotopic signature.« less

  9. The temporal evolution of magnesium isotope fractionation during hydromagnesite dissolution, precipitation, and at equilibrium

    NASA Astrophysics Data System (ADS)

    Oelkers, Eric H.; Berninger, Ulf-Niklas; Pérez-Fernàndez, Andrea; Chmeleff, Jérôme; Mavromatis, Vasileios

    2018-04-01

    This study provides experimental evidence of the resetting of the magnesium (Mg) isotope signatures of hydromagnesite in the presence of an aqueous fluid during its congruent dissolution, precipitation, and at equilibrium at ambient temperatures over month-long timescales. All experiments were performed in batch reactors in aqueous sodium carbonate buffer solutions having a pH from 7.8 to 9.2. The fluid phase in all experiments attained bulk chemical equilibrium within analytical uncertainty with hydromagnesite within several days, but the experiments were allowed to continue for up to 575 days. During congruent hydromagnesite dissolution, the fluid first became enriched in isotopically light Mg compared to the dissolving hydromagnesite, but this Mg isotope composition became heavier after the fluid attained chemical equilibrium with the mineral. The δ26Mg composition of the fluid was up to ∼0.35‰ heavier than the initial dissolving hydromagnesite at the end of the dissolution experiments. Hydromagnesite precipitation was provoked during one experiment by increasing the reaction temperature from 4 to 50 °C. The δ26Mg composition of the fluid increased as hydromagnesite precipitated and continued to increase after the fluid attained bulk equilibrium with this phase. These observations are consistent with the hypothesis that mineral-fluid equilibrium is dynamic (i.e. dissolution and precipitation occur at equal, non-zero rates at equilibrium). Moreover the results presented in this study confirm (1) that the transfer of material from the solid to the fluid phase may not be conservative during stoichiometric dissolution, and (2) that the isotopic compositions of carbonate minerals can evolve even when the mineral is in bulk chemical equilibrium with its coexisting fluid. This latter observation suggests that the preservation of isotopic signatures of carbonate minerals in the geological record may require a combination of the isolation of fluid-mineral system from external chemical input and/or the existence of a yet to be defined dissolution/precipitation inhibition mechanism.

  10. Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes

    NASA Astrophysics Data System (ADS)

    Jiang, Fuqing; Frank, Martin; Li, Tiegang; Chen, Tian-Yu; Xu, Zhaokai; Li, Anchun

    2013-05-01

    The radiogenic strontium (Sr) and neodymium (Nd) isotope compositions of the detrital fraction of surface and subsurface sediments have been determined to trace sediment provenance and contributions from Asian dust off the east coast of Luzon Islands in the western Philippine Sea. The Sr and Nd isotope compositions have been very homogenous near the east coast of the Luzon Islands during the latest Quaternary yielding relatively least radiogenic Sr (87Sr/86Sr = 0.70453 to 0.70491) and more radiogenic Nd isotope compositions (ɛNd(0) = +5.3 to +5.5). These isotope compositions are similar to Luzon rocks and show that these sediments were mainly derived from the Luzon Islands. In contrast, the Sr and Nd isotope compositions of sediments on the Benham Rise and in the Philippine Basin are markedly different in that they are characterized by overall more variable and more radiogenic Sr isotope compositions (87Sr/86Sr = 0.70452 to 0.70723) and less radiogenic Nd isotope compositions (ɛNd(0) = -5.3 to +2.4). The Sr isotope composition in the Huatung Basin is intermediate between those of the east coast of Luzon and Benham Rise, but shows the least radiogenic Nd isotope compositions. The data are consistent with a two end-member mixing relationship between Luzon volcanic rocks and eolian dust from the Asian continent, which is characterized by highly radiogenic Sr and unradiogenic Nd isotope compositions. The results show that Asian continental dust contributes about 10-50% of the detrital fraction of the sediments on Benham Rise in the western Philippine Sea, which offers the potentials to reconstruct the climatic evolution of eastern Asia from these sediments and compare this information to the records from the central and northern Pacific.

  11. Continuous spectroscopic measurement of methane isotopes and ethane made on board an aircraft: instrument configuration and characterisation

    NASA Astrophysics Data System (ADS)

    Pitt, Joseph; Young, Stuart; Hopkins, James; Lee, James; Bauguitte, Stéphane; Dorsey, James; Allen, Grant; Gallagher, Martin; Yacovitch, Tara; Zahniser, Mark; Fisher, Rebecca; Lowry, Dave; Nisbet, Euan

    2017-04-01

    We describe the configuration of two commercially available absorption spectrometers for use on board the UK Facility for Airborne Atmospheric Research (FAAM) aircraft. A dual laser instrument has been used to make continuous measurements of the atmospheric 13CH4:12CH4 ratio and ethane mole fraction, using an interband cascade laser (ICL) and a recently developed type of diode laser respectively. Simultaneous measurements of atmospheric ethane have also been made using a single laser instrument employing an ICL, enabling instrument inter-comparison. Instrument performance is evaluated over a series of test flights, and initial results from the MOYA (Methane Observations and Yearly Assessments) campaign, targeting biomass burning plumes in west Africa, are also presented. We describe the calibration procedure and data analysis approaches for methane isotope measurement, involving calibration over a range of methane isotopic composition and methane mole fraction. We assess the effectiveness of this calibration technique during the first MOYA campaign period using measurements of a target cylinder of known composition.

  12. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    PubMed Central

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  13. Lunar and Planetary Science XXXVI, Part 1

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: Observations with Near Infrared Spectrometer for Hayabusa Mission in the Cruising Phase. First Results of Quadrantid Meteor Spectrum. Compositional Investigation of Binary Near-Earth Asteroid 66063 (1998 RO1): A Potentially Undifferentiated Assemblage. Impact-induced Hydrothermal Activity on Early Mars. HRTEM and EFTEM Studies of Phyllosilicate-Organic Matter Associations in Matrix and Dark Inclusions in the EET92042 CR2 Carbonaceous Chondrite. Volumetric Analysis of Martian Rampart Craters. High Pressure Melting of H-Chondrite: A Match for the Martian Basalt Source Mantle. MERView: A New Computer Program for Easy Display of MER-acquired M ssbauer Data. Distribution, Exchange, and Topographic Control of Subsurface Ice on Mars. Shock-induced Damage Beneath Normal and Oblique Impact Craters. Amphitrites Patera Studied from the Mars Express HRSC Data. Oxygen Isotope Microanalysis of Enveloping Compound Chondrules in CV3 and LL3 Chondrites. Gamma-Ray Irradiation in the Early Solar System and the Conundrum of the Lu-176 Decay Constant. Magnesium Isotope Mapping of Silica-rich Grains Having. Extreme Oxygen Isotope Anomalies Extreme Oxygen Isotopic Anomalies from Irradiation in the Early Solar System, Re-Examining the Role of Chondrules in Producing the Elemental Fractionations in Chondrites. Meteorite Data on the Solar Modulation of Galactic Cosmic Rays and an Inference on the Solar Activity Influence on Climate of the Earth. Volatiles Enrichments and Composition of Jupiter. Thinking Like a Wildcatter Prospecting for Methane in Arabia Terra, Mars. Size Distribution of Genesis Solar Wind Array Collector Fragments. Initial Subdivision of Genesis Early Science Polished Aluminum Collector. Presolar Graphite and Its Noble Gases. Young Pb-Isotopic Ages of Chondrules in CB Carbonaceous Chondrites. Fe Isotopic Composition of Martian Meteorites. Petrology and Geochemistry of Nakhlite MIL 03346: A New Martian Meteorite from Antarctica.

  14. Osmium isotope evidence for uniform distribution of s- and r-process components in the early solar system

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tetsuya; Rai, Vinai K.; Alexander, Conel M. O'D.; Lewis, Roy S.; Carlson, Richard W.; Shirey, Steven B.; Thiemens, Mark H.; Walker, Richard J.

    2007-07-01

    We have precisely measured Os isotopic ratios in bulk samples of five carbonaceous, two enstatite and two ordinary chondrites, as well as the acid-resistant residues of three carbonaceous chondrites. All bulk meteorite samples have uniform 186Os/ 188Os, 188Os/ 189Os and 190Os/ 189Os ratios, when decomposed by an alkaline fusion total digestion technique. These ratios are also identical to estimates for Os in the bulk silicate Earth. Despite Os isotopic homogeneity at the bulk meteorite scale, acid insoluble residues of three carbonaceous chondrites are enriched in 186Os, 188Os and 190Os, isotopes with major contributions from stellar s-process nucleosynthesis. Conversely, these isotopes are depleted in acid soluble portions of the same meteorites. The complementary enriched and depleted fractions indicate the presence of at least two types of Os-rich components in these meteorites, one enriched in Os isotopes produced by s-process nucleosynthesis, the other enriched in isotopes produced by the r-process. Presolar silicon carbide is the most probable host for the s-process-enriched Os present in the acid insoluble residues. Because the enriched and depleted components present in these meteorites are combined in proportions resulting in a uniform chondritic/terrestrial composition, it requires that disparate components were thoroughly mixed within the solar nebula at the time of the initiation of planetesimal accretion. This conclusion contrasts with evidence from the isotopic compositions of some other elements (e.g., Sm, Nd, Ru, Mo) that suggests heterogeneous distribution of matter with disparate nucleosynthetic sources within the nebula.

  15. Sulfur Isotope Composition of Putative Primary Troilite in Chondrules

    NASA Technical Reports Server (NTRS)

    Tachibana, Shogo; Huss, Gary R.

    2002-01-01

    Sulfur isotope compositions of putative primary troilites in chondrules from Bishunpur were measured by ion probe. These primary troilites have the same S isotope compositions as matrix troilites and thus appear to be isotopically unfractionated. Additional information is contained in the original extended abstract.

  16. Hydrogen isotope composition of leaf wax n-alkanes in glaucous and non-glaucous varieties of wheat (Triticum spp.)

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Eley, Yvette; Frizell-Armitage, Amelia; Uauy, Cristobal

    2015-04-01

    The use of the 2H/1H composition of terrestrial plants in climate and ecology studies depends on fundamental understanding of the processes within the plant that control fractionation of these two isotopes. Little is currently known about the extent of 2H/1H fractionation at different steps of biosynthesis, after the initial H uptake following leaf water photolysis. Knowing this effect is particularly important when seeking to interpret the 2H/1H composition of leaf wax biomarkers from plants that differ in the amount and type of individual compound classes in their leaf waxes. The purpose of this study was to investigate the link between the quantity and distribution of n-alkyl lipids in leaf waxes and their isotopic composition. We used a genetic approach to suppress glaucousness in 2 varieties of wheat (Alchemy and Malacca), which resulted in glaucous and non-glaucous phenotypes of both varieties. Both phenotypes were then grown outdoors under identical environmental conditions in central Norfolk, UK. At the end of the growing season, the plants were sampled for soil water, leaf water, and leaf wax isotopic measurements. Comparison of the leaf wax composition of the non-glaucous and glaucous phenotypes revealed that the non-glaucous varieties were characterised by the absence of diketones and a greater concentration of n-alkanes and primary alcohols.. Our results showed very small differences between glaucous and non-glaucous varieties with regard to soil (mean values, <2 per mil) and leaf (<1 per mil) water 2H/1H. Conversely, there was 15-20 and 10-15 per mil 2H-depletion in the C29 and C31 n-alkanes, respectively, from the non-glaucous phenotype. This 2H-depletion in the non-glaucous phenotype demonstrated that the suppression of diketone production and the increase in n-alkane and primary alcohol concentrations are linked with a shift in the 2H/1H composition of n-alkanes. The initial results of this work suggest that plants using the same environmental water, subjected to the same effects of evapotranspiration, but which differ in the amount and composition of leaf wax compounds, can exhibit large variation in their n-alkane 2H/1H. Our current work on determining the 2H/1H composition of other n-alkyl lipids from these plants will provide further details regarding the role of biosynthesis in controlling 2H/1H fractionation within leaf waxes.

  17. Laurentide Ice-Sheet Meltwater Sources to the Gulf of Mexico During the Last Deglaciation: Assessing Data Reconstructions Using Water Isotope Enabled Simulations

    NASA Astrophysics Data System (ADS)

    Vetter, L.; LeGrande, A. N.; Ullman, D. J.; Carlson, A. E.

    2017-12-01

    Sediment cores from the Gulf of Mexico show evidence of meltwater derived from the Laurentide Ice Sheet during the last deglaciation. Recent studies using geochemical measurements of individual foraminifera suggest changes in the oxygen isotopic composition of the meltwater as deglaciation proceeded. Here we use the water isotope enabled climate model simulations (NASA GISS ModelE-R) to investigate potential sources of meltwater within the ice sheet. We find that initial melting of the ice sheet from the southern margin contributed an oxygen isotope value reflecting a low-elevation, local precipitation source. As deglacial melting proceeded, meltwater delivered to the Gulf of Mexico had a more negative oxygen isotopic value, which the climate model simulates as being sourced from the high-elevation, high-latitude interior of the ice sheet. This study demonstrates the utility of combining stable isotope analyses with climate model simulations to investigate past changes in the hydrologic cycle.

  18. Petrogenesis of Late Jurassic granodiorites from Gutian, Fujian Province, South China: Implications for multiple magma sources and origin of porphyry Cu-Mo mineralization

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong; Lu, An-Huai; Lai, Jian-Qing; Zhao, Kui-Dong; Yang, Tao

    2016-11-01

    The Gutian porphyry Cu-Mo deposit is a newly proved porphyry copper deposit in the coastal South China associated with granodioritic porphyries. In this study, zircon U-Pb ages and Hf isotope data, as well as geochemical and Sr-Nd-Pb-Re-Os isotopic compositions, are reported for these intrusions and minerals. Both zircon U-Pb and molybdenite Re-Os dating suggest that the Gutian granodiorite porphyries and related mineralization formed at 160 Ma. The Gutian granodiorites show a low-Mg adakitic geochemical affinity, with relatively high K2O but low Cr and Ni contents. These rocks have initial (87Sr/86Sr)i ratios of 0.7085 to 0.7097, negative εNd(t) values (- 12.5 to - 7.8), (206Pb/204Pb)t ratios of 18.048 to 18.241, (207Pb/204Pb)t ratios of 15.609 to 15.628, and (208Pb/204Pb)t ratios of 38.494 to 38.667. Zircons from the granodiorites have negative εHf(t) values of - 15.7 to - 8.5, which are close to those of Cathaysia crust-derived melts. Geochemical and Sr-Nd-Pb-Hf isotopic compositions suggest that they may be derived from Late Jurassic thickened juvenile lower crust. These lower crustal magma sources may not only contain pre-Proterozoic basement rocks, but also involve Triassic and Middle-Late Jurassic arc magmas within the lower crust, which were likely derived from an enriched mantle source associated with paleo-Pacific Plate subduction from the Middle to Late Jurassic. The Gutian ore-related granodiorites represent a new example for significant contributions of ancient subduction melts and enriched mantle-derived sources for porphyry-type magmatism and Cu-Mo mineralization, which occurred in response to an arc regime during the Middle to Late Jurassic in South China. Supplemental Table S2. Hf isotopic compositions of zircons from the studied rocks from the Gutian porphyry deposit in South China. Supplemental Table S3. Statistics for zircon U-Pb ages and Hf isotope compositions from Gutian granodiorites in South China Supplemental Table S4. Major element (wt.%) and trace element (ppm) concentrations of Gutian intrusions in Fujian Province, South China. Supplemental Table S5. Sr and Nd isotopic compositions of the studied rocks from the Gutian porphyry deposit in Fujian Province, South China. Supplemental Table S6. Pb isotopic compositions of the studied rocks from the Gutian porphyry deposit in South China. Supplemental Table S7. Re-Os isotopic compositions of molybdenite from the Gutian porphyry deposit in South China.

  19. Neodymium Isotopic Compositions of the Titanite Reference Materials Used in U-Pb Geochronology

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Yang, Y.; Zhao, Z.

    2017-12-01

    Titanite (CaTiSiO5) is a widespread mineral and preferentially incorporates considerable uranium and significant light rare earth elements (LREEs) in its structure. Geochronology based upon U-Pb and Pb-Pb analyses of titanite has proven to be useful for understanding the P-T-t evolution of many igneous, metamorphic and hydrothermally altered rock samples (Scott and St-Onge, 1995). In the meantime, Sm-Nd isotopic composition in single titanite can be used to obtain initial Nd isotope composition at the time of titanite crystallization when combined with its U-Pb age, making titanite the most versatile mineral for dating metamorphism and tracing hydrothermal source (Amelin et al., 2009). The widely utilized in situ analyses by SIMS and LA-(MC)-ICP-MS have emphasized the significance for uniform and homogeneous reference materials for external correction (Liu et al., 2012, Sun et al., 2012, Yang et al., 2014). Here, we present U-Pb ages and Sm-Nd isotope analyses of twelve natural titanite crystals (12YQ82, T004, Ontario, BLR-1, OLT1, Khan, Qinghu, TLS-36, NW-IOA, C253, Pakistan and MKED1) acquired by Agilent 7500a Q-ICP-MS and Neptune MC-ICP-MS, respectively, combined a 193 nm ArF excimer laser ablation system. For U-Pb dating, elemental fractionation and instrumental drift were externally corrected using MKED1 titanite standard, showing results of U-Pb analyses all within error of those recommended values. With respect to Sm-Nd isotopes, we employed the interference-free 147Sm/149Sm to deduct 144Sm isobaric interference on 144Nd, and the fractionation between 147Sm and 144Nd was calibrated using BLR-1 titanite, which is proved homogenous in Sm-Nd isotopic system. The obtained Sm-Nd isotopic compositions for natural titanite samples are all consistent with those values determined by isotope dilution (ID) MC-ICP-MS, demonstrating the precision and accuracy currently available for in situ Sm-Nd analyses. Our results demonstrate that BLR-1, OLT1 and Ontario titanites are relatively uniform and homogeneous in Sm-Nd isotopic system and thus can serve as ideal reference materials for external calibration during in situ Sm-Nd analysis.

  20. SrNdPb isotopic and trace element evidence for crustal contamination of plume-derived flood basalts: Oligocene flood volcanism in western Yemen

    NASA Astrophysics Data System (ADS)

    Baker, J. A.; Thirlwall, M. F.; Menzies, M. A.

    1996-07-01

    Oligocene flood basalts from western Yemen have a relatively limited range in initial isotopic composition compared with other continental flood basalts: 87Sr/86Sr = 0.70365-0.70555 ; 143Nd/144Nd = 0.5129-0.51248 ( ɛNd = +6.0 to -2.4) ; 206pb/204Pb = 17.9-19.3 . Most compositions lie outside the isotopic ranges of temporally and spatially appropriate mantle source compositions observed in this area, i.e., Red Sea/Gulf of Aden MORB mantle, the Afar plume, and Pan-African lithospheric mantle Correlations between indices of fractionation, silica, and isotope ratios suggest that crustal contamination has substantially modified the primary isotopic and incompatible trace element characteristics of the flood basalts. However, significant scatter in these correlations was produced by: (a) the heterogeneous isotopic composition of Pan-African crust; (b) the difference in susceptibility of magmas to contamination as a result of variable incompatible trace element contents in primary melts produced by differing degrees of partial melting; (c) the presence or absence of plagioclase as a fractionating phase generating complex contamination trajectories for Sr; (d) sampling over a wide area not representing a single coherent magmatic system; and (e) variation in contamination mechanisms from assimilation associated with fractionation (AFC) to assimilation by hot mafic magmas with little concomitant fractionation. The presence of plagioclase as a fractionating phase in some suites that were undergoing AFC requires assimilation to have taken place within the crust and, coupled with the limited LREE-enrichment accompanying isotopic variations, excludes the possibility that an AFC-type process took place during magma transfer through the lithospheric mantle. Isotopic compositions of some of the inferred crustal assimilants are similar to those postulated by other workers for an enriched lithospheric mantle source of many flood basalts in southwestern Yemen, Ethiopia, and Djibouti. The western Yemen flood basalts contain 0-30% crust which largely swamps their primary lead isotopic signature, but the primary SrNd isotopic signature is close to that of the least contaminated and isotopically most depleted flood basalts. LREE/HFSE and LILE/HFSE ratios also correlate with isotopic data as a result of crustal contamination. However, Nb/La and K/Nb ratios of >1.1 and <150, respectively, in least contaminated samples require an OIB-like source. The pre-contamination isotopic signature is estimated to be: 87Sr/86Sr ˜ 0.7036; 143Nd/144Nd ˜ 0.51292 ; 206Pb/204Pb ˜ 18.4-19.0 . This, coupled with low LILE/HFSE ratios, suggest the source has characteristics akin to the Afar plume. A mantle source isotopically more depleted than Bulk Earth, but not as depleted as MORB, coupled with LILE depletion, also characterises other examples of plume-derived flood volcanism. This mantle reservoir is responsible for the second largest outbursts of volcanism on Earth and has radiogenic isotopic characteristics akin to PREMA mantle, but the incompatible trace element signature of HIMU mantle.

  1. Atomic Weights and Isotopic Compositions

    National Institute of Standards and Technology Data Gateway

    SRD 144 Atomic Weights and Isotopic Compositions (Web, free access)   The atomic weights are available for elements 1 through 111, and isotopic compositions or abundances are given when appropriate.

  2. Magnesium isotopic composition of the Earth and chondrites

    NASA Astrophysics Data System (ADS)

    Teng, Fang-Zhen; Li, Wang-Ye; Ke, Shan; Marty, Bernard; Dauphas, Nicolas; Huang, Shichun; Wu, Fu-Yuan; Pourmand, Ali

    2010-07-01

    To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ 25Mg and ±0.07‰ on δ 26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL). Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ 25Mg = -0.13 ± 0.05 (2SD) and δ 26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts ( n = 110) and δ 25Mg = -0.13 ± 0.03 (2SD) and δ 26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths ( n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ 25Mg = -0.15 ± 0.04 (2SD) and δ 26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes. Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ 25Mg and -0.25 ± 0.07 for δ 26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites. The chondritic composition of the Earth implies that Mg isotopes were well mixed during accretion of the inner solar system.

  3. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian

    2006-08-01

    The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions, and concentrations, could be directly related to contamination by the steel (mortar/pestle) used to process the materials. Contamination also accounts for the high concentrations of certain other trace elements (e.g., Li, Mo, Cd, Sn, Sb, W) in various USGS reference materials.

  4. Isotopic Zonation Within Sulfate Evaporite Mineral Crystals Reveal Quantitative Paleoenvironment Details

    NASA Astrophysics Data System (ADS)

    Coleman, M.; Rhorssen, M.; Mielke, R. E.

    2008-12-01

    Isotopic variations measured within a single crystal of hydrated magnesium sulfate are greater than 30 permil for delta 2-H, almost 10 permil for δ18O in water of hydration; and greater than 3 permil in sulfate oxygen. These results are interpreted to indicate the relative humidity of the system during evaporation (15 to 20 percent in this test case) and constrain the volume of water involved. The theoretical basis of this system is the isotopic fractionation between the species in solution and those precipitated as evaporite salts. Precipitation preferentially accumulates more of the heavy isotopes of sulfur and oxygen in mineral sulfate, relative to sulfate in solution. During the course of mineral growth this leads to successive depletion of the respective heavier isotopes in the residual brine reflected in a parallel trend in successive precipitates or even in successive zones within a single crystal. The change in isotopic composition at any one time during the process, relative to the initial value, can be described by an isotopic version of the Rayleigh Fractionation equation, depending only on the extent of the completion of the process and the relevant fractionation factor. Evaporation preferentially removes isotopically lighter hydrogen and oxygen leading to successive extents of enrichment in the respective heavier isotopes in the residual water. However, the relative effects on hydrogen and oxygen isotopes differs as function of relative humidity [1]. ALL OF THESE CHANGES ARE PRESERVED IN THE MINERAL ISOTOPE COMPOSITIONS. We precipitated barium sulfate from epsomite or gypsum samples, which was reduced at 1450°C in the presence of graphite and glassy carbon in a Finnigan TC/EA to produce CO for O isotopic analysis in a Finnigan 253 mass spectrometer, while a separate subsample was oxidized to SO2 in a Costech Elemental Analyzer. However, to make progress with this approach we needed to make a large number of measurements of hydration water and so we developed a new analytical method [2]. We use a modification of the standard TC/EA continuous-flow protocol to measure both hydrogen and oxygen of water of hydration from the same small sample. We have proved the concept of this new approach by analyzing zones within crystals and individual grains, growing epsomite (magnesium sulfate heptahydrate) in the laboratory and by analysis of natural gypsum evaporites. We are now exploring the effects of varying the controlling parameters. Eventual application to Martian sulfates will reveal amount of water involved in sulfate formation, its isotopic composition(s) and details of the paleo-atmospheric humidity. [1] Gat JR and Gonfiantini R, (Eds) (1981) IAEA Technical Report Series. [2] Rohrssen MK, Brunner B Mielke RE and Coleman M (2008) Analyt. Chem. (in press).

  5. Determining the isotopic compositions of uranium and fission products in radioactive environmental microsamples using laser ablation ICP-MS with multiple ion counters.

    PubMed

    Boulyga, Sergei F; Prohaska, Thomas

    2008-01-01

    This paper presents the application of a multicollector inductively coupled plasma mass spectrometer (MC-ICP-MS)--a Nu Plasma HR--equipped with three ion-counting multipliers and coupled to a laser ablation system (LA) for the rapid and sensitive determination of the 235U/238U, 236U/238U, 145Nd/143Nd, 146Nd/143Nd, 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios in microsamples collected in the vicinity of Chernobyl. Microsamples with dimensions ranging from a hundred mum to about 1 mm and with surface alpha activities of 3-38 mBq were first identified using nuclear track radiography. U, Nd and Ru isotope systems were then measured sequentially for the same microsample by LA-MC-ICP-MS. The application of a zoom ion optic for aligning the ion beams into the ion counters allows fast switching between different isotope systems, which enables all of the abovementioned isotope ratios to be measured for the same microsample within a total analysis time of 15-20 min (excluding MC-ICP-MS optimization and calibration). The 101Ru/(99Ru+99Tc) and 102Ru/(99Ru+99Tc) isotope ratios were measured for four microsamples and were found to be significantly lower than the natural ratios, indicating that the microsamples were contaminated with the corresponding fission products (Ru and Tc). A slight depletion in 146Nd of about 3-5% was observed in the contaminated samples, but the Nd isotopic ratios measured in the contaminated samples coincided with natural isotopic composition within the measurement uncertainty, as most of the Nd in the analyzed samples originates from the natural soil load of this element. The 235U/238U and 236U/238U isotope ratios were the most sensitive indicators of irradiated uranium. The present work yielded a significant variation in uranium isotope ratios in microsamples, in contrast with previously published results from the bulk analysis of contaminated samples originating from the vicinity of Chernobyl. Thus, the 235U/238U ratios measured in ten microsamples varied in the range from 0.0073 (corresponding to the natural uranium isotopic composition) to 0.023 (corresponding to initial 235U enrichment in reactor fuel). An inverse correlation was observed between the 236U/238U and 235U/238U isotope ratios, except in the case of one sample with natural uranium. The heterogeneity of the uranium isotope composition is attributed to the different burn-up grades of uranium in the fuel rods from which the microsamples originated.

  6. Converting isotope ratios to diet composition - the use of mixing models - June 2010

    EPA Science Inventory

    One application of stable isotope analysis is to reconstruct diet composition based on isotopic mass balance. The isotopic value of a consumer’s tissue reflects the isotopic values of its food sources proportional to their dietary contributions. Isotopic mixing models are used ...

  7. Hf isotope evidence for effective impact melt homogenisation at the Sudbury impact crater, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Kenny, Gavin G.; Petrus, Joseph A.; Whitehouse, Martin J.; Daly, J. Stephen; Kamber, Balz S.

    2017-10-01

    We report on the first zircon hafnium-oxygen isotope and trace element study of a transect through one of the largest terrestrial impact melt sheets. The differentiated melt sheet at the 1.85 Ga, originally ca. 200 km in diameter Sudbury impact crater, Ontario, Canada, yields a tight range of uniform zircon Hf isotope compositions (εHf(1850) of ca. -9 to -12). This is consistent with its well-established crustal origin and indicates differentiation from a single melt that was initially efficiently homogenised. We propose that the heterogeneity in other isotopic systems, such as Pb, in early-emplaced impact melt at Sudbury is associated with volatility-related depletion during the impact cratering process. This depletion leaves the isotopic systems of more volatile elements more susceptible to contamination during post-impact assimilation of country rock, whereas the systems of more refractory elements preserve initial homogeneities. Zircon oxygen isotope compositions in the melt sheet are also restricted in range relative to those in the impacted target rocks. However, they display a marked offset approximately one-third up the melt sheet stratigraphy that is interpreted to be a result of post-impact assimilation of 18O-enirched rocks into the base of the cooling impact melt. Given that impact cratering was a more dominant process in the early history of the inner Solar System than it is today, and the possibility that impact melt sheets were sources of ex situ Hadean zircon grains, these findings may have significance for the interpretation of the early zircon Hf record. We speculate that apparent εHf-time arrays observed in the oldest terrestrial and lunar zircon datasets may be related to impact melting homogenising previously more diverse crust. We also show that spatially restricted partial melting of rocks buried beneath the superheated impact melt at Sudbury provided a zircon crystallising environment distinct to the impact melt sheet itself.

  8. Major and Trace Element Geochemistry and Os Isotopic Compositions of Komatiites From Dundonald Beach, Abitibi Greenstone Belt, Canada

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A.; Walker, R. J.; Sproule, R. A.; Lesher, C.

    2003-12-01

    We have examined the major and trace elements, and Os isotopic compositions of a suite of cumulate and spinifex textured komatiitic rocks from the Dundonald Beach area, part of the ˜2.7 Ga Abitibi greenstone Belt, Ontario, Canada. This suite of rocks forms a series from peridotitic komatiites (MgO ˜ 42 wt.% on a volatile-free basis) to komatiitic basalts (MgO ˜8 wt.%). Based on major element oxide ratios (e.g. Al2O3/TiO2 ˜21-26 and CaO/Al2O3 typically <= 1) and unfractionated HREE characteristics (e.g. (Gd/Yb)N ˜0.9-1.1), these rocks are similar to the spatially associated Al-undepleted komatiites from Alexo and Munro Townships. Also, these rocks are strongly LREE-depleted ((La/Sm)N = 0.41-0.67; (Ce/Yb)N = 0.41-0.70)) and have variable total REE (4-22 ppm). A strong negative correlation between Mg# and total REEs suggests that the REE patterns of these rocks are primary features of their mantle source. The Re-Os isotope results for whole-rock komatiites and chromite separates from a single flow yield a model 3 isochron age of 2606 +/- 55 Ma. This age is slightly younger ( ˜50 Ma) compared to the U-Pb zircon ages of the associated volcanics reported from the presumed extension of the same Kidd-Munro assemblage in Alexo and Munro Townships. The initial 187Os/188Os ratio (0.1090 +/- 0.0019) obtained from the regression is essentially chondritic (γ Os(T) = -0.2 +/- 1.7). The peridotitic komatiites have the highest Os concentrations and low 187Re/188Os ratios (up to ˜4.2 ppb and < 0.5, respectively) among the whole rocks, whereas the komatiitic basalts have relatively low Os concentrations ( ˜0.3 ppb) and high 187Re/188Os ratios ( ˜3.1-11.9). For these komatiites, Os was compatible with the mantle residue (DOsmantle-melt ˜7.6), whereas Re was moderately incompatible (DRe ˜0.6), typical of most komatiitic magmas. The absence of a strong correlation between Os and Ni concentrations in the whole-rocks suggests that the distribution of Os in these rocks is not primarily controlled by fractionation of olivine. The apparent DReol+chmt/liq. ( ˜0.7), on the other hand, suggests that Re was moderately incompatible in olivine and/or chromite during the differentiation of komatiitic magmas. A chondritic initial Os isotopic composition for the mantle source for these komatiites is consistent with that previously reported for the komatiites from Alexo and Munro Townships. Our Os isotopic results for Dundonald komatiites, combined with those reported for Alexo and Pyke Hill komatiites, therefore, suggest that a major portion of the ˜2.7 Ga mantle source for the komatiites in the Abitibi greenstone belt was dominated by Os with chondritic isotopic compositions. Also, the LREE-depleted, yet chondritic Os isotopic composition for the mantle source of these komatiites is indistinguishable from the projected chondritic composition of the contemporaneous depleted convective upper mantle.

  9. The origin of inner Solar System water

    NASA Astrophysics Data System (ADS)

    Alexander, Conel M. O'D.

    2017-04-01

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt (`classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today. This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'.

  10. Seawater and Detrital Marine Pb Isotopes as Monitors of Antarctic Weathering Following Ice Sheet Development

    NASA Astrophysics Data System (ADS)

    Fenn, C.; Martin, E. E.; Basak, C.

    2011-12-01

    Comparisons of seawater and detrital Pb isotopes from sites proximal to Antarctica at the Eocene/Oligocene transition (EOT) are being used to understand variations in continental weathering associated with the development of the East Antarctic Ice Sheet (EAIS). Previous work has shown that seawater and detrital archives yield similar isotopic values during Eocene warmth, which is interpreted to record congruent chemical weathering of the continent. In contrast, distinct isotopic values for the two phases at the EOT represents increased incongruent mechanical weathering during growth of the ice sheet. For this study we expanded beyond the initial glaciation at the EOT to determine whether less dramatic changes in ice volume and climate also produce variations in weathering and intensity that are recorded by seawater and detrital Pb isotopes. We collected Nd and Pb isotope data from extractions of Fe-Mn oxide coatings of bulk decarbonated marine sediments, which preserve seawater isotopic values, and from complete dissolutions of the remaining silicate fraction for Ocean Drilling Program Site 748 on Kerguelen Plateau (1300 m modern water depth). The data spans an interval of deglaciation from ~23.5-27 Ma documented by δ18O that has been equated to a ~30% decrease in ice volume on Antarctica (Pekar and Christie-Blick, 2008, Palaeogeogr., Palaeoclim., Palaeoecol.). Initial results from Site 748 include the first ɛNd values for intermediate waters in the Oligocene Southern Ocean and reveal a value of ~-8 over the entire 3.5 my interval, which is consistent with values reported for deep Indian Ocean sites at this time and similar to deeper Southern Ocean sites. Corresponding detrital ɛNd values are less radiogenic and decrease from -9 to -13 during the study interval. Detrital 206Pb/204Pb values also decrease during the warming interval, while seawater 206Pb/204Pb values increase. The decrease in detrital values indicates the composition of source materials entering the ocean changed as the ice sheet waned. Increasing seawater 206Pb/204Pb may record enhanced chemical weathering under conditions of greater water availability and warmer temperatures combined with abundant rock flour created during the preceding glacial advance. As previous studies have documented initial weathering leachates tend to be more radiogenic than the parent rock composition. Alternatively, seawater values during warming in the late Oligocene approach values recorded during initial ice sheet expansion at the EOT in Site 738, which may suggest Pb isotope variations in seawater and detrital residues are not sensitive to less dramatic intervals of climate change and ice sheet dynamics. We plan to continue this study into the Pliocene to see if we can identify the timing of the transition from a wet-based to dry-based EAIS, an event that is likely to have profound consequences for weathering on Antarctica and the offset between the two Pb isotope archives.

  11. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the generated CO2 has been analyzed with respect to its stable carbon isotope composition by mass spectrometry. All samples exhibited a similar trend: The ^13C signatures of initially produced CO2 revealed to be relatively light and linearly increasing with temperature until approaching the bulk stable carbon isotope composition of the coal at a certain temperature, where the isotope signature kept virtually constant during further temperature increase. The temperature introducing the range of constant isotope compositions of the produced gas increased with coal rank. Additionally, all coal samples were treated by Rock Eval pyrolysis up to 550 ˚ C in order to investigate temperature dependent generation of CO and CO2. The results exhibited a linear decrease of the CO2/CO ratio at increasing temperature. Both experimental approaches demonstrated dependencies between the qualitative and the isotope composition of the generated syngas on the one hand and the applied combustion temperature on the other hand and, consequently, the principal applicability of the considered geochemical parameters as temperature proxies for coals of significantly different rank and origin. Although the investigated samples revealed similar trends, the absolute characteristics of the correlation functions (e.g. linear gradients) between geochemical parameters and combustion temperatures differed on an individual sample base, implying a significant additional dependence of the considered geochemical parameters on the coal composition. As a consequence, corresponding experimental approaches are currently continued and refined by involving multi component compound specific isotope analysis, high temperature Rock Eval pyrolysis as well as an enforced consideration of initial coal and oxidant compositions.

  12. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian snowball Earth.

    PubMed

    Rooney, Alan D; Macdonald, Francis A; Strauss, Justin V; Dudás, Francis Ö; Hallmann, Christian; Selby, David

    2014-01-07

    After nearly a billion years with no evidence for glaciation, ice advanced to equatorial latitudes at least twice between 717 and 635 Mya. Although the initiation mechanism of these Neoproterozoic Snowball Earth events has remained a mystery, the broad synchronicity of rifting of the supercontinent Rodinia, the emplacement of large igneous provinces at low latitude, and the onset of the Sturtian glaciation has suggested a tectonic forcing. We present unique Re-Os geochronology and high-resolution Os and Sr isotope profiles bracketing Sturtian-age glacial deposits of the Rapitan Group in northwest Canada. Coupled with existing U-Pb dates, the postglacial Re-Os date of 662.4 ± 3.9 Mya represents direct geochronological constraints for both the onset and demise of a Cryogenian glaciation from the same continental margin and suggests a 55-My duration of the Sturtian glacial epoch. The Os and Sr isotope data allow us to assess the relative weathering input of old radiogenic crust and more juvenile, mantle-derived substrate. The preglacial isotopic signals are consistent with an enhanced contribution of juvenile material to the oceans and glacial initiation through enhanced global weatherability. In contrast, postglacial strata feature radiogenic Os and Sr isotope compositions indicative of extensive glacial scouring of the continents and intense silicate weathering in a post-Snowball Earth hothouse.

  13. Experimental Constraints on Reconstruction of Archean Seawater Ni Isotopic Composition from Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Wang, S.; Wasylenki, L.

    2016-12-01

    Ni isotope systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater during the Precambrian Eon[1]. The use of BIFs as seawater proxies requires knowing how Ni isotopes fractionated during initial incorporation into iron-rich sediments and during early diagenesis. We conducted experiments to investigate Ni isotope behavior during coprecipitation with ferrihydrite and transformation of ferrihydrite to hematite. Ferrihydrite synthesis at neutral pH demonstrated that dissolved Ni was variably heavier than coprecipitated Ni (Δ60/58Ni = +0.08 to +0.50 ‰), in contrast to the constant offset observed earlier during adsorption to pre-existing ferrihydrite[2]. Experiments at lower pH (<7) yielded negative values of Δ60/58Ni ( -0.18 ‰), suggesting enrichment in heavier isotopes of structurally incorporated Ni relative to dissolved and adsorbed Ni, possibly due to the presence of a small amount of highly fractionated tetrahedral Ni2+ in the ferrihydrite structure. We model our results as equilibrium fractionation among three pools of Ni with systematically varied proportions. We synthesized hematite by transforming Ni-bearing ferrihydrite in aqueous solution at 100 °C and observed significant Ni release from solids (up to 60 %) as pH dropped from 7 to 4.5 - 5.5 during phase transformation. Rinsing hematite with acetic acid released very little Ni (presumably surface-adsorbed) compared to the amounts remaining in solid residues (presumably incorporated). We infer that Δ60/58Ni values (-0.04 to +0.77 ‰) observed in hematite experiments likely reflect Rayleigh fractionation between incorporated and dissolved Ni. The final hematite was slightly lighter than the ferrihydrite had been (by 0.08 ‰), indicating that this phase transformation results in very limited change in Ni isotopic composition, given current analytical uncertainty of ± 0.09 ‰. [1] Wasylenki and Wang (2016) Goldschmidt; [2] Wasylenki et al. (2015) ChemGeol.

  14. Natural-abundance stable carbon isotopes of small-subunit ribosomal RNA (SSU rRNA) from Guaymas Basin (Mexico)

    NASA Astrophysics Data System (ADS)

    MacGregor, B. J.; Mendlovitz, H.; Albert, D.; Teske, A. P.

    2012-12-01

    Small-subunit ribosomal RNA (SSU rRNA) is a phylogenetically informative molecule found in all species. Because it is poorly preserved in most environments, it is a useful marker for active microbial populations. We are using the natural-abundance stable carbon isotopic composition of specific microbial groups to help identify the carbon substrates contributing to microbial biomass in a variety of marine environments. At Guaymas Basin, hydrothermal fluids interact with abundant sedimentary organic carbon to produce natural gas and petroleum. Where this reaches the sediment surface, it can support dense patches of seafloor life, including Beggiatoa mats. We report here on the stable carbon isotopic composition of SSU rRNA from a Beggiatoa mat transect, a cold background site, a warm site with high oil concentration, and a second Beggiatoa mat. The central part of the transect mat overlay the steepest temperature gradient, and was visually dominated by orange Beggiatoa. This was fringed by white Beggiatoa mat and bare, but still warm, sediment. Methane concentrations were saturating beneath the orange and white mats and at the oily site, lower beneath bare sediment, and below detection at the background site. Our initial hypotheses were that rRNA isotopic composition would be strongly influenced by methane supply, and that archaeal rRNA might be lighter than bacterial due to contributions from methanogens and anaerobic methane oxidizers. We used biotin-labeled oligonucleotides to capture Bacterial and Archaeal SSU rRNA for isotopic determination. Background-site rRNA was isotopically heaviest, and bacterial RNA from below 2 cm at the oily site was lightest, consistent with control by methane. Within the transect mat, however, the pattern was more complicated; at some sediment depths, rRNA from the mat periphery was isotopically lightest. Part of this may be due to the spatially and temporally variable paths followed by hydrothermal fluid, which can include horizontal flow. There was no consistent isotopic difference between rRNAs captured by the two probes, although RNA recoveries were too low for isotopic determinations at depths where methanogens and methane oxidizers are expected. Our prediction that rRNA stable carbon isotopic composition would correlate with methane supply was borne out by the comparison between background and mat sediments, but may be an oversimplification for sites within hydrothermal features. Future work will include the isotopic characterization of other potential carbon substrates, such as acetate. We are also investigating cold-seep sediments and brine pools in the Gulf of Mexico, where methane is significantly more 13C-depleted than at Guaymas Basin and may therefore leave a stronger imprint on microbial biomass.table carbon isotopes of rRNA captured with Bacterial and Archaeal probes at mat transect and background sites.

  15. Effects of climatic seasonality on the isotopic composition of evaporating soil waters

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Volkmann, Till H. M.; von Freyberg, Jana; Frentress, Jay; Penna, Daniele; Dawson, Todd E.; Kirchner, James W.

    2018-05-01

    Stable water isotopes are widely used in ecohydrology to trace the transport, storage, and mixing of water on its journey through landscapes and ecosystems. Evaporation leaves a characteristic signature on the isotopic composition of the water that is left behind, such that in dual-isotope space, evaporated waters plot below the local meteoric water line (LMWL) that characterizes precipitation. Soil and xylem water samples can often plot below the LMWL as well, suggesting that they have also been influenced by evaporation. These soil and xylem water samples frequently plot along linear trends in dual-isotope space. These trend lines are often termed "evaporation lines" and their intersection with the LMWL is often interpreted as the isotopic composition of the precipitation source water. Here we use numerical experiments based on established isotope fractionation theory to show that these trend lines are often by-products of the seasonality in evaporative fractionation and in the isotopic composition of precipitation. Thus, they are often not true evaporation lines, and, if interpreted as such, can yield highly biased estimates of the isotopic composition of the source water.

  16. Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling?

    NASA Astrophysics Data System (ADS)

    Carilli, J. E.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2013-06-01

    Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.

  17. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina

    NASA Astrophysics Data System (ADS)

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.

    2017-07-01

    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  18. A Combined Molecular and Isotopic Study of Anoxygenic Photosynthesis in Meromictic Lakes of the Northwestern United States

    NASA Astrophysics Data System (ADS)

    Harris, J. H., IV; Gilhooly, W., III; Crane, E. J., III; Steinman, B.; Shelton, M. R.

    2014-12-01

    Sulfur isotope fractionations within the chemocline can be an indication of green and purple sulfur photosynthetic activity. This isotopic signal is, however, small and variable, on the order of +2-6‰ (Zerkle et al. 2009). It is therefore advantageous to investigate the environmental and ecological effects on this signal so that these influences can be taken into account when estimating the contribution of anoxygenic phototrophs to the sulfur cycle in aquatic environments. This project aims to investigate the ways in which anoxygenic phototroph community structure and lake water geochemistry impact the sulfur isotope fractionation expressed during anoxygenic photosynthesis in meromictic lakes. During the summer of 2013, water column profile analysis of six lakes in the Pacific Northwest (located in eastern Washington and western Montana) were conducted to assess photosynthetically available radiation, salinity, pH, temperature, dissolved solids, and specific conductivity. Water column samples were obtained to determine the sulfur isotopic composition of dissolved sulfate and sulfide, major ion and sulfide concentrations. Microbial samples were also collected for genetic sequencing. Initial results found green (e.g., Chlorobiaceae sp.) and purple (e.g., Lamprocystis purpurea) bacteria at the same depth in one of the study lakes. These data, in addition to the same suite of samples collected in the summer of 2014, provide insight into relationships between the isotopic composition of sulfur (in H2S, S0, and SO4), lake water chemistry, and the presence or absence of green and purple sulfur bacteria.

  19. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects

    NASA Astrophysics Data System (ADS)

    Markowski, A.; Quitté, G.; Halliday, A. N.; Kleine, T.

    2006-02-01

    High-precision W isotopic compositions are presented for 35 iron meteorites from 7 magmatic groups (IC, IIAB, IID, IIIAB, IIIF, IVA, and IVB) and 3 non-magmatic groups (IAB, IIICD, and IIE). Small but resolvable isotopic variations are present both within and between iron meteorite groups. Variations in the 182W/ 184W ratio reflect either time intervals of metal-silicate differentiation, or result from the burnout of W isotopes caused by a prolonged exposure to galactic cosmic rays. Calculated apparent time spans for some groups of magmatic iron meteorites correspond to 8.5 ± 2.1 My (IID), 5.1 ± 2.3 My (IIAB), and 5.3 ± 1.3 My (IVB). These time intervals are significantly longer than those predicated from models of planetesimal accretion. It is shown that cosmogenic effects can account for a large part of the W isotopic variation. No simple relationship exists with exposure ages, compromising any reliable method of correction. After allowance for maximum possible cosmogenic effects, it is found that there is no evidence that any of the magmatic iron meteorites studied here have initial W isotopic compositions that differ from those of Allende CAIs [ ɛ182W = - 3.47 ± 0.20; [T. Kleine, K. Mezger, H. Palme, E. Scherer and C. Münker, Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf- 182W in CAIs, metal-rich chondrites and iron meteorites, Geochim. Cosmochim. Acta (in press)]. Cosmogenic corrections cannot yet be made with sufficient accuracy to obtain highly precise ages for iron meteorites. Some of the corrected ages nevertheless require extremely early metal-silicate segregation no later than 1 My after formation of CAIs. Therefore, magmatic iron meteorites appear to provide the best examples yet identified of material derived from the first planetesimals that grew by runaway growth, as modelled in dynamic simulations. Non-magmatic iron meteorites have a more radiogenic W isotopic composition than magmatic ones, even without cosmogenic corrections. This indicates that most of the IAB irons formed between 5 ± 3 and 11 ± 6 My after Allende CAIs. Similarly, the IIE irons formed between 9 ± 4 and 14 ± 5 My after the start of the solar system. Unlike IABs and IIEs, IIICDs do not show any resolvable W isotopic differences relative to Allende CAIs.

  20. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Freeman, K. H.; Popp, B. N.; Hoham, C. H.

    1990-01-01

    Patterns of isotopic fractionation in biogeochemical processes are reviewed and it is suggested that isotopic fractionations will be small when substrates are large. If so, isotopic compositions of biomarkers will reflect those of their biosynthetic precursors. This prediction is tested by consideration of results of analyses of geoporphyrins and geolipids from the Greenhorn Formation (Cretaceous, Western Interior Seaway of North America) and the Messel Shale (Eocene, lacustrine, southern Germany). It is shown (i) that isotopic compositions of porphyrins that are related to a common source, but which have been altered structurally, cluster tightly and (ii) that isotopic differences between geolipids and porphyrins related to a common source are equal to those observed in modern biosynthetic products. Both of these observations are consistent with preservation of biologically controlled isotopic compositions during diagenesis. Isotopic compositions of individual compounds can thus be interpreted in terms of biogeochemical processes in ancient depositional environments. In the Cretaceous samples, isotopic compositions of n-alkanes are covariant with those of total organic carbon, while delta values for pristane and phytane are covariant with those of porphyrins. In this unit representing an open marine environment, the preserved acyclic polyisoprenoids apparently derive mainly from primary material, while the extractable, n-alkanes derive mainly from lower levels of the food chain. In the Messel Shale, isotopic compositions of individual biomarkers range from -20.9 to -73.4% vs PDB. Isotopic compositions of specific compounds can be interpreted in terms of origin from methylotrophic, chemautotrophic, and chemolithotrophic microorganisms as well as from primary producers that lived in the water column and sediments of this ancient lake.

  1. Seasonality of Oxygen isotope composition in cow (Bos taurus) hair and its model interpretation

    NASA Astrophysics Data System (ADS)

    Chen, Guo; Schnyder, Hans; Auerswald, Karl

    2017-04-01

    Oxygen isotopes in animal and human tissues are expected to be good recorders of geographical origin and migration histories based on the isotopic relationship between hair oxygen and annual precipitation and the well-known spatial pattern of oxygen isotope composition in meteoric water. However, seasonal variation of oxygen isotope composition may diminish the origin information in the tissues. Here the seasonality of oxygen isotope composition in tail hair was investigated in a domestic suckler cow (Bos taurus) that underwent different ambient conditions, physiological states, and keeping and feeding strategies during five years. A detailed mechanistic model involving in ambient conditions, soil properties and animal physiology was built to explain this variation. The measured oxygen isotope composition in hair was significantly related (p<0.05) to the isotope composition in meteoric water in a regression analysis. Modelling suggested that this relation was only partly derived from the direct influence of feed moisture. Ambient conditions (temperature, moisture) did not only influence the isotopic signal of precipitation but also affected the animal itself (drinking water demand, transcutaneous vapor etc.). The clear temporal variation thus resulted from complex interactions with multiple influences. The twofold influence of ambient conditions via the feed and via the animal itself is advantageous for tracing the geographic origin because the oxygen isotope composition is then less influenced by variations in moisture uptake; however, it is unfavorable for indicating the production system, e.g. to distinguish between milk produced from fresh grass or from silage.

  2. Diffusion of multi-isotopic chemical species in molten silicates

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Liang, Yan; Richter, Frank; Ryerson, Frederick J.; DePaolo, Donald J.

    2014-08-01

    Diffusion experiments in a simplified Na2O-CaO-SiO2 liquid system are used to develop a general formulation for the fractionation of Ca isotopes during liquid-phase diffusion. Although chemical diffusion is a well-studied process, the mathematical description of the effects of diffusion on the separate isotopes of a chemical element is surprisingly underdeveloped and uncertain. Kinetic theory predicts a mass dependence on isotopic mobility, but it is unknown how this translates into a mass dependence on effective binary diffusion coefficients, or more generally, the chemical diffusion coefficients that are housed in a multicomponent diffusion matrix. Our experiments are designed to measure Ca mobility, effective binary diffusion coefficients, the multicomponent diffusion matrix, and the effects of chemical diffusion on Ca isotopes in a liquid of single composition. We carried out two chemical diffusion experiments and one self-diffusion experiment, all at 1250 °C and 0.7 GPa and using a bulk composition for which other information is available from the literature. The self-diffusion experiment is used to determine the mobility of Ca in the absence of diffusive fluxes of other liquid components. The chemical diffusion experiments are designed to determine the effect on Ca isotope fractionation of changing the counter-diffusing component from fast-diffusing Na2O to slow-diffusing SiO2. When Na2O is the main counter-diffusing species, CaO diffusion is fast and larger Ca isotopic effects are generated. When SiO2 is the main counter-diffusing species, CaO diffusion is slow and smaller Ca isotopic effects are observed. In both experiments, the liquid is initially isotopically homogeneous, and during the experiment Ca isotopes become fractionated by diffusion. The results are used as a test of a new general expression for the diffusion of isotopes in a multicomponent liquid system that accounts for both self diffusion and the effects of counter-diffusing species. Our results show that (1) diffusive isotopic fractionations depend on the direction of diffusion in composition space, (2) diffusive isotopic fractionations scale with effective binary diffusion coefficient, as previously noted by Watkins et al. (2011), (3) self-diffusion is not decoupled from chemical diffusion, (4) self diffusion can be faster than or slower than chemical diffusion and (5) off-diagonal terms in the chemical diffusion matrix have isotopic mass-dependence. The results imply that relatively large isotopic fractionations can be generated by multicomponent diffusion even in the absence of large concentration gradients of the diffusing element. The new formulations for isotope diffusion can be tested with further experimentation and provide an improved framework for interpreting mass-dependent isotopic variations in natural liquids.

  3. Magnesium isotopic composition of the mantle

    NASA Astrophysics Data System (ADS)

    Teng, F.; Li, W.; Ke, S.; Marty, B.; Huang, S.; Dauphas, N.; Wu, F.; Helz, R. L.

    2009-12-01

    Studies of Mg isotopic composition of the Earth not only are important for understanding its geochemistry but also can shed light on the accretion history of the Earth as well as the evolution of the Earth-Moon system. However, to date, the Mg isotopic composition of the Earth is still poorly constrained and highly debated. There is uncertainty in the magnitude of Mg isotope fractionation at mantle temperatures and whether the Earth has a chondritic Mg isotopic composition or not. To constrain further the Mg isotopic composition of the mantle and investigate the behavior of Mg isotopes during igneous differentiation, we report >200 high-precision (δ26Mg < 0.1‰, 2SD) analyses of Mg isotopes on 1) global mid-ocean ridge basalts covering major ridge segments of the world and spanning a broad range in latitudes, chemical and radiogenic isotopic compositions; 2) ocean island basalts from Hawaiian (Koolau, Kilauea and Loihi) and French Polynesian volcanoes (Society island and Cook Austral chain); 3) olivine grains from Hawaiian volcanoes (Kilauea, Koolau and Loihi) and 4) peridotite xenoliths from Australia, China, France, Tanzania and USA. Global oceanic basalts and peridotite xenoliths have a limited (<0.2 ‰) variation in Mg isotopic composition, with an average δ26Mg = -0.25 relative to DSM3. Olivines from Hawaiian lavas have δ26Mg ranging from -0.43 to +0.03, with most having compositions identical to basalts and peridotites. Therefore, the mantle’s δ26Mg value is estimated to be ~ -0.25 ± 0.1 (2SD), different from that reported by Wiechert and Halliday (2007; δ26Mg = ~ 0) but similar to more recent studies (δ26Mg = -0.27 to -0.33) (Teng et al. 2007; Handler et al. 2009; Yang et al., 2009). Moreover, we suggest the Earth, as represented by the mantle, has a Mg isotopic composition similar to chondrites (δ26Mg = ~-0.33). The need for a model such as that of Wiechert and Halliday (2007) that involves sorting of chondrules and calcium-aluminum-rich inclusions in the proto planetary disc is thus not required to explain the Mg isotopic composition of the Earth.

  4. ISOTOPE CONVERSION DEVICE

    DOEpatents

    Wigner, E.P.; Young, G.J.; Ohlinger, L.A.

    1957-12-01

    This patent relates to nuclear reactors of tbe type utilizing a liquid fuel and designed to convert a non-thermally fissionable isotope to a thermally fissionable isotope by neutron absorption. A tank containing a reactive composition of a thermally fissionable isotope dispersed in a liquid moderator is disposed within an outer tank containing a slurry of a non-thermally fissionable isotope convertible to a thermally fissionable isotope by neutron absorption. A control rod is used to control the chain reaction in the reactive composition and means are provided for circulating and cooling the reactive composition and slurry in separate circuits.

  5. MAST - A mass spectrometer telescope for studies of the isotopic composition of solar, anomalous, and galactic cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Cook, Walter R.; Cummings, Alan C.; Cummings, Jay R.; Garrard, Thomas L.; Kecman, Branislav; Mewaldt, Richard A.; Selesnick, Richard S.; Stone, Edward C.; Von Rosenvinge, T. T.

    1993-01-01

    The Mass Spectrometer Telescope (MAST) on SAMPEX is designed to provide high resolution measurements of the isotopic composition of energetic nuclei from He to Ni (Z = 2 to 28) over the energy range from about 10 to several hundred MeV/nuc. During large solar flares MAST will measure the isotopic abundances of solar energetic particles to determine directly the composition of the solar corona, while during solar quiet times MAST will study the isotopic composition of galactic cosmic rays. In addition, MAST will measure the isotopic composition of both interplanetary and trapped fluxes of anomalous cosmic rays, believed to be a sample of the nearby interstellar medium.

  6. Long-term data set analysis of stable isotopic composition in German rivers

    NASA Astrophysics Data System (ADS)

    Reckerth, Anne; Stichler, Willibald; Schmidt, Axel; Stumpp, Christine

    2017-09-01

    Stable isotopes oxygen-18 (18O) and deuterium (2H) are commonly used to investigate hydrological processes in catchments. However, only a few isotope studies have been conducted on a large scale and rarely over long time periods. The objective of this study was to identify the spatial and seasonal variability of isotopic composition in river water and how it is affected by geographical and hydrological factors. The stable isotopic composition of river water has been measured in nine large river catchments in Germany for a time period of 12 years or 26 years. We conducted time series and correlation analyses to identify spatial and temporal patterns of the isotopic composition in the rivers. Further, we compared it to isotopic composition in local precipitation and catchments characteristics. In the majority of the rivers, the spatial and temporal patterns of precipitation were directly reflected in river water. The isotopic signals of the river water were time shifted and show attenuated amplitudes. Further deviations from isotopic compositions in local precipitation were observed in catchments with complex flow systems. These deviations were attributed to catchment processes and influences like evaporation, damming and storage. The seasonality of the isotopic composition was mainly determined by the discharge regimes of the rivers. We found correlations between isotopic long-term averages and catchment altitude as well as latitude and longitude, resulting in a northwest-southeast gradient. Furthermore, it was shown that long-term averages of d-excess were inversely related to flow length and catchment size, which indicates that evaporation enrichment has an impact on the isotopic composition even in catchments of humid climates. This study showed that isotopic composition in rivers can serve as a proxy for the local precipitation and can be utilized as an indicator for hydrological processes even in large river basins. In future, such long time series will help to also understand the impact of changes in the hydrological cycle on the larger scales. They can also be used for calibration and validation of flow and transport models at catchment and sub-catchment scale.

  7. Biogeochemical cycling in an organic-rich coastal marine basin. 8. A sulfur isotopic budget balanced by differential diffusion across the sediment-water interface

    USGS Publications Warehouse

    Chanton, J.P.; Martens, C.S.; Goldhaber, M.B.

    1987-01-01

    The sulfur isotopic composition of the sulfur fluxes occurring in the anoxic marine sediments of Cape Lookout Bight, N.C., U.S.A., was determined, and the result of isotopic mass balance was obtained via the differential diffusion model. Seasonal pore water sulfate ??34S measurements yielded a calculated sulfate input of 0.6%.. Sulfate transported into the sediments via diffusion appeared to be enriched in the lighter isotope because its concentration gradient was steeper, due to the increase in the measured isotopic composition of sulfate with depth. Similarly, the back diffusion of dissolved sulfide towards the sediment-water interface appeared enriched in the heavier isotope. The isotopic composition of this flux was calculated from measurements of the ??34S of dissolved sulfide and was determined to be 15.9%.. The isotopic composition of buried sulfide was determined to be -5.2%. and the detrital sulfur input was estimated to be -6.2%.. An isotope mass balance equation based upon the fluxes at the sediment-water interface successfully predicted the isotopic composition of the buried sulfur flux within 0.5%., thus confirming that isotopes diffuse in response to their individual concentration gradients. ?? 1987.

  8. Molybdenum Isotopic Composition of Iron Meteorites, Chondrites and Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Becker, H.; Walker, R. J.

    2003-01-01

    Recent Mo isotopic studies of meteorites reported evidence for differences in isotopic compositions for whole rocks of some primitive and differentiated meteorites relative to terrestrial materials. Enrichments of r- and p-process isotopes of up to 3-4 units (e unit = parts in 10(exp 4) over s-process dominated isotopes are the most prominent features. Certain types of presolar grains show large enrichments in s-process isotopes, however, it was concluded on grounds of mass balance that incomplete digestion of such grains cannot explain the enrichments of r- and p-process isotopes in whole rocks of primitive chondrites. If the reported variability in r- and p-process isotope enrichments reflects the true isotopic characteristics of the whole rocks, the implications are quite profound. It would suggest the presence of large scale Mo isotopic heterogeneity within the solar accretion disk with likely collateral effects for other elements. However, such effects were not found for Ru isotopes, nor for Zr isotopes. Another recent Mo isotopic study by multi collector ICP-MS could not confirm the reported deviations in Allende, Murchison or iron meteorites. Here, we present new results for the Mo isotopic composition of iron meteorites, chondrites and CAIs obtained by negative thermal ionization mass spectrometry (NTIMS). We discuss analytical aspects and the homogeneity of Mo isotopic compositions in solar system materials.

  9. Ca Isotopes Fingerprinting the Earliest Crustal Evolution

    NASA Astrophysics Data System (ADS)

    Kreissig, K.; Elliott, T. R.

    2001-12-01

    The mechanisms of continent formation remain unclear and can be explained in two contrasting ways, using either a steady state crustal growth model involving massive crustal recycling or continuous crustal growth models. Recent developments in mass spectrometry manifest in the new Finnigan-Triton allow Ca isotopic measurements precise enough to use the K-Ca isotope system to address the problem of early Archaean crustal evolution. Due to a strong fractionation of 40K and 40Ca during continent formation and a non-linear growth of 40Ca, Archaean continental crust should show radiogenic initial Ca isotopic composition if large volumes of it have already been existed 3.6 Ga ago. Simple 15-step calculations predict a difference in 40Ca /44Ca of 9 epsilon units at 3.6 Ga between the two crustal growth models. To test this, as well as to study the earliest crust formation processes, plagioclase separates from Archaean provinces reflecting the initial Ca isotopic composition and a range of different whole rock samples have been analysed. Preliminary data for ~ 3.6 Ga old TTGs from Zimbabwe show 40Ca /44Ca indistinguishable from the mantle. This is in agreement with rather chondritic initial Sr and Nd data and might reflect a short residence time of the juvenile mafic oceanic crust before partial melting forming the first continental crust. In contrast, the first results for 3.65 Ga old samples from the Itsaq Gneiss Complex of southern West Greenland yield a more evolved radiogenic Ca signature. This can be interpreted in two different ways. Either as partial melting of juvenile mafic crust shortly after its formation but incorporating already existing crust as also suggested by the existence of older inherited zircons in these rocks and negative ɛ Hf values. Partial melting of mafic oceanic crust long after its formation so that 40K and 40Ca had time to evolve would be an alternative explanation. Importantly, there is no evidence so far for high growth and recycling rates prior to 3.6 Ga as required by the most extreme 'big bang' model.

  10. In situ isotopic studies of the U-depleted Allende CAI Curious Marie: Pre-accretionary alteration and the co-existence of 26Al and 36Cl in the early solar nebula

    NASA Astrophysics Data System (ADS)

    Tang, Haolan; Liu, Ming-Chang; McKeegan, Kevin D.; Tissot, Francois L. H.; Dauphas, Nicolas

    2017-06-01

    The isotopic composition of oxygen as well as 26Al-26Mg and 36Cl-36S systematics were studied in Curious Marie, an aqueously altered Allende CAI characterized by a Group II REE pattern and a large 235U excess produced by the decay of short-lived 247Cm. Oxygen isotopic compositions in the secondary minerals of Curious Marie follow a mass-dependent fractionation line with a relatively homogenous depletion in 16O (Δ17O of -8‰) compared to unaltered minerals of CAI components. Both Mg and S show large excesses of radiogenic isotopes (26Mg∗ and 36S∗) that are uniformly distributed within the CAI, independent of parent/daughter ratio. A model initial 26Al/27Al ratio [(6.2 ± 0.9) × 10-5], calculated using the bulk Al/Mg ratio and the uniform δ26Mg∗ ∼ +43‰, is similar to the canonical initial solar system value within error. The exceptionally high bulk Al/Mg ratio of this CAI (∼95) compared to other inclusions is presumably due to Mg mobilization by fluids. Therefore, the model initial 26Al/27Al ratio of this CAI implies not only the early condensation of the CAI precursor but also that aqueous alteration occurred early, when 26Al was still at or near the canonical value. This alteration event is most likely responsible for the U depletion in Curious Marie and occurred at most 50 kyr after CAI formation, leading to a revised estimate of the early solar system 247Cm/235U ratio of (5.6 ± 0.3) × 10-5. The Mg isotopic composition in Curious Marie was subsequently homogenized by closed-system thermal processing without contamination by chondritic Mg. The large, homogeneous 36S excesses (Δ36S∗ ∼ +97‰) detected in the secondary phases of Curious Marie are attributed to 36Cl decay (t1/2 = 0.3 Myr) that was introduced by Cl-rich fluids during the aqueous alteration event that led to sodalite formation. A model 36Cl/35Cl ratio of (2.3 ± 0.6) × 10-5 is calculated at the time of aqueous alteration, translating into an initial 36Cl/35Cl ratio of ∼1.7-3 × 10-5 at solar system birth. The Mg and S radiogenic excesses suggest that 26Al and 36Cl co-existed in the early solar nebula, raising the possibility that, in addition to an irradiation origin, 36Cl could have also been derived from a stellar source.

  11. Secuencias evolutivas e isocronas para estrellas de baja masa e intermedia

    NASA Astrophysics Data System (ADS)

    Panei, J.; Baume, G.

    2016-08-01

    We present theoretical evolutionary sequences for low- and intermediate-mass stars. The masses calculated range from 1.7 to 10 M. The initial chemical composition is . In addition, we have taken into account a nuclear network with 17 isotopes and 34 nuclear reactions. With respect to the mix, we considered overshooting with a parameter . The evolutionary calculations were initialized from the region of instability of Hayashi, in order to calculate isochrones of pre-sequence, too.

  12. Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project

    USGS Publications Warehouse

    Lassiter, J.C.; DePaolo, D.J.; Tatsumoto, M.

    1996-01-01

    We have examined the Sr, Nd, and Pb isotopic compositions of Mauna Kea lavas recovered by the first drilling phase of the Hawaii Scientific Drilling Project. These lavas, which range in age from ???200 to 400 ka, provide a detailed record of chemical and isotopic changes in basalt composition during the shied/postshield transition and extend our record of Mauna Kea volcanism to a late-shield period roughly equivalent to the last ???100 ka of Mauna Loa activity. Stratigraphic variations in isotopic composition reveal a gradual shift over time toward a more depleted source composition (e.g., higher 143Nd/144Nd, lower 87Sr/86Sr, and lower 3He/4He). This gradual evolution is in sharp contrast with the abrupt appearance of alkalic lavas at ???240 ka recorded by the upper 50 m of Mauna Kea lavas from the core. Intercalated tholeiitic and alkalic lavas from the uppermost Mauna Kea section are isotopically indistinguishable. Combined with major element evidence (e.g., decreasing SiO2 and increasing FeO) that the depth of melt segregation increased during the transition from tholeiitic to alkalic volcanism, the isotopic similarity of tholeiitic and alkalic lavas argues against significant lithosphere involvement during melt generation. Instead, the depleted isotopic signatures found in late shield-stage lavas are best explained by increasing the proportion of melt generated from a depleted upper mantle component entrained and heated by the rising central plume. Direct comparison of Mauna Kea and Mauna Loa lavas erupted at equivalent stages in these volcanoes' life cycles reveals persistent chemical and isotopic differences independent of the temporal evolution of each volcano. The oldest lavas recovered from the drillcore are similar to modern Kilauea lavas, but are distinct from Mauna Loa lavas. Mauna Kea lavas have higher 143Nd/144Nd and 206Pb/204Pb and lower 87Sr/86Sr. Higher concentrations of incompatible trace elements in primary magmas, lower SiO2, and higher FeO also indicate that Mauna Kea lavas formed through smaller degrees of partial melting at greater depth than Mauna Loa lavas. These chemical and isotopic differences are consistently found between volcanoes along the western "Loa" and eastern "Kea" trends and reflect large-scale variations in source composition and melting environment. We propose a simple model of a radially zoned plume centered beneath the Loa trend. Loa trend lavas generated from the hot plume axis reflect high degrees of partial melting from a source containing a mixture of enriched plume-source material and entrained lower mantle. Kea trend lavas, in contrast, are generated from the cooler, peripheral portions of the plume, record lower degrees of partial melting, and tap a source containing a greater proportion of depleted upper mantle.

  13. Oxygen Isotope Measurements of a Rare Murchison Type A CAI and Its Rim

    NASA Technical Reports Server (NTRS)

    Matzel, J. E. P.; Simon, J. I.; Hutcheon, I. D.; Jacobsen, B.; Simon, S. B.; Grossman, L.

    2013-01-01

    Ca-, Al-rich inclusions (CAIs) from CV chondrites commonly show oxygen isotope heterogeneity among different mineral phases within individual inclusions reflecting the complex history of CAIs in both the solar nebula and/or parent bodies. The degree of isotopic exchange is typically mineral-specific, yielding O-16-rich spinel, hibonite and pyroxene and O-16-depleted melilite and anorthite. Recent work demonstrated large and systematic variations in oxygen isotope composition within the margin and Wark-Lovering rim of an Allende Type A CAI. These variations suggest that some CV CAIs formed from several oxygen reservoirs and may reflect transport between distinct regions of the solar nebula or varying gas composition near the proto-Sun. Oxygen isotope compositions of CAIs from other, less-altered chondrites show less intra-CAI variability and 16O-rich compositions. The record of intra-CAI oxygen isotope variability in CM chondrites, which commonly show evidence for low-temperature aqueous alteration, is less clear, in part because the most common CAIs found in CM chondrites are mineralogically simple (hibonite +/- spinel or spinel +/- pyroxene) and are composed of minerals less susceptible to O-isotopic exchange. No measurements of the oxygen isotope compositions of rims on CAIs in CM chondrites have been reported. Here, we present oxygen isotope data from a rare, Type A CAI from the Murchison meteorite, MUM-1. The data were collected from melilite, hibonite, perovskite and spinel in a traverse into the interior of the CAI and from pyroxene, melilite, anorthite, and spinel in the Wark-Lovering rim. Our objectives were to (1) document any evidence for intra-CAI oxygen isotope variability; (2) determine the isotopic composition of the rim minerals and compare their composition(s) to the CAI interior; and (3) compare the MUM-1 data to oxygen isotope zoning profiles measured from CAIs in other chondrites.

  14. Zn isotopes in hydrothermal sulfides and their oxidation products along the south mid-Atlantic ridge: evidence of hydrothermal fluid deposition

    NASA Astrophysics Data System (ADS)

    Li, Xiaohu; Wang, Jianqiang; Chu, Fengyou; Lei, Jijiang; Wang, Hao; Li, Zhenggang

    2018-04-01

    Significant Zn isotope fractionation occurs during seafloor hydrothermal activities. Therefore, exploring variations in Zn isotope composition affected by hydrothermal fluids and oxidative processes would help to better understand hydrothermal fluid cycling and sulfide deposition on mid-ocean ridges. In this paper, the Zn isotope compositions of different types of sulfides and their oxidation products obtained from hydrothermal fields on the South Mid-Atlantic Ridge (13-15°S) were analyzed using a Neptune plus MC-ICP-MS. The δ66Zn ratios range from -0.14‰ to +0.38‰, and the average δ66Zn ratio is +0.12±0.06‰ ( n=21, 2 SD) for all the studied sulfides and oxidation products. The Cu-rich sulfides have a slightly heavier Zn isotope composition (average δ66Zn=+0.19±0.07‰, n=6) than the Zn-rich sulfides (average δ66Zn=-0.02±0.06‰, n=5). The Zn isotope compositions of the oxidation products are similar to those of the Cu-rich sulfides, with an average δ66Zn ratio of 0.14±0.06‰ ( n=10, 2 SD). The Zn isotope compositions of all the samples are generally within the ranges of sulfides from hydrothermal fields on other mid-ocean ridges, such as the East Pacific Rise (9°N, 21°N) and the Trans-Atlantic Geotraverse. However, the average Zn isotope composition indicates the presence of significantly lighter Zn isotopes relative to those reported in the literature (average δ66Zn=+0.39‰). The significant enrichment of the Zn-rich sulfides with light Zn isotopes reveals that kinetic fractionation likely occurs during mineral deposition. Furthermore, the Zn isotope compositions of the sulfides and their oxidation products (average δ66Zn=+0.12‰) are significantly lighter than the average Zn isotope composition of the ocean (δ66Zn=+0.5‰), which could further constrain the modern Zn isotope cycle in the ocean by serving as a sink for light Zn isotopes.

  15. Nitrogen Isotopic Composition of Organic Matter in a Pristine Collection IDP

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Walker, Robert M.

    2012-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) are probable cometary materials that show primitive characteristics, such as unequilibrated mineralogy, fragile structure, and abundant presolar grains and organic matter [1-3]. CP IDPs are richer in aliphatic species and N-bearing aromatic hydrocarbons than meteoritic organics and commonly exhibit highly anomalous H and N isotopic compositions [4,5]. Cometary organic matter is of interest in part because it has escaped the hydrothermal processing experienced by meteorites. However, IDPs are collected using silicon oil that must be removed with strong organic solvents such as hexane. This procedure is likely to have removed some fraction of soluble organic phases in IDPs. We recently reported the first stratospheric collection of IDPs without the use of silicone oil [6]. Here we present initial studies of the carbonaceous material in an IDP from this collection.

  16. Magnesium isotopic evidence for chemical disequilibrium among cumulus minerals in layered mafic intrusion

    NASA Astrophysics Data System (ADS)

    Chen, Lie-Meng; Teng, Fang-Zhen; Song, Xie-Yan; Hu, Rui-Zhong; Yu, Song-Yue; Zhu, Dan; Kang, Jian

    2018-04-01

    Magnesium isotopic compositions of olivine, clinopyroxene, and ilmenite from the Baima intrusion, SW China, for the first time, are investigated to constrain the magnitude and mechanisms of Mg isotope fractionation among cumulus minerals in layered mafic intrusions and to evaluate their geological implications. Olivine and clinopyroxene have limited Mg isotope variations, with δ26Mg ranging from -0.33 to +0.05‰ and from -0.29 to -0.13‰, respectively, similar to those of mantle xenolithic peridotites. By contrast, ilmenites display extremely large Mg isotopic variation, with δ26Mg ranging from -0.50 to +1.90‰. The large inter-mineral fractionations of Mg isotopes between ilmenite and silicates may reflect both equilibrium and kinetic processes. A few ilmenites have lighter Mg isotopic compositions than coexisting silicates and contain high MgO contents without compositional zoning, indicating equilibrium fractionation. The implication is that the light Mg isotopic compositions of lunar high-Ti basalts may result from an isotopically light source enriched in cumulate ilmenites. On the other hand, most ilmenites have heavy Mg isotopic compositions, coupled with high MgO concentration and chemical zoning, which can be quantitatively modeled by kinetic Mg isotope fractionations induced by subsolidus Mg-Fe exchange between ilmenite and ferromagnesian silicates during the cooling of the Baima intrusion. The extensive occurrence of kinetic Mg isotope fractionation in ilmenites implies the possibility of widespread compositional disequilibrium among igneous minerals in magma chambers. Consequently, disequilibrium effects need to be considered in studies of basaltic magma evolution, magma chamber processes, and magmatic Fe-Ti oxide ore genesis.

  17. Heterogenous Oxygen Isotopic Composition of a Complex Wark-Lovering Rim and the Margin of a Refractory Inclusion from Leoville

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2014-01-01

    Wark-Lovering (WL) rims [1] surrounding many refractory inclusions represent marker events in the early evolution of the Solar System in which many inclusions were exposed to changes in pressure [2], temperature [3], and isotopic reservoirs [4-7]. The effects of these events can be complex, not only producing mineralogical variability of WL rims [2], but also leading to mineralogical [8-10] and isotopic [7, 11, 12] changes within inclusion interiors. Extreme oxygen isotopic heterogeneity measured in CAIs has been explained by mixing between distinct oxygen gas reservoirs in the nebula [13]. Some WL rims contain relatively simple mineral layering and/or are isotopically homogeneous [14, 15]. As part of a larger effort to document and understand the modifications observed in some CAIs, an inclusion (L6) with a complex WL rim from Leoville, a member of the reduced CV3 subgroup was studied. Initial study of the textures and mineral chemistry was presented by [16]. Here we present NanoSIMS oxygen isotopic measurements to complement these petrologic observations.

  18. Tracing subducted crustal materials in the mantle by using magnesium isotopes

    NASA Astrophysics Data System (ADS)

    Teng, F. Z.

    2016-12-01

    Recent studies show that some continental basalt, mantle-metasomatised peridotite and cratonic eclogite have heterogeneous Mg isotopic compositions. These isotopically distinct Mg isotopic compositions have been explained by the incorporation of subducted materials in their mantle sources though the detailed mechanisms are still not well understood. In particular, how Mg-poor crustal materials can modify Mg isotopic systematics of Mg-rich mantle is unknown. Subduction zones are the most efficient sites for crust and mantle interactions, hence should be where the most prominent Mg isotopic variation occurs. However, to date, little is known on Mg isotope systematics in the subduction factory. Here I first review and report new Mg isotopic data for arc lava, subarc peridotite and the subducted slab (marine sediment, altered basalt and abyssal peridotite), then use them to constrain the origins of mantle Mg isotopic heterogeneity and lay the foundation for using Mg isotopes as new tools for tracing crust-mantle interactions. The main conclusions are 1) fluid-rock interactions can modify Mg isotopic systematics of abyssal peridotites; 2) island arc lavas have non-MORB Mg isotopic compositions, reflecting distinct surbarc mantle Mg isotopic signature; 3) continental arcs have non-MORB Mg isotopic compositions, likely resulting from crustal contamination and 4) the isotopically heterogeneous continental basalts are mainly produced by mixing of isotopically distinct magmas instead of being partial melting products of metasomatised mantle peridotites.

  19. A new method of tree xylem water extraction for isotopic analysis

    NASA Astrophysics Data System (ADS)

    Gierke, C.; Newton, B. T.

    2011-12-01

    The Sacramento Mountain Watershed Study in the southern Sacramento Mountains of New Mexico is designed to assess the forest restoration technique of tree thinning in mountain watersheds as an effective method of increasing local and regional groundwater recharge. The project is using a soil water balance approach to quantify the partitioning of local precipitation within this watershed before and after thinning trees. Understanding what sources trees extract their water from (e.g. shallow groundwater, unsaturated fractured bedrock, and soils) is difficult due to a complex hydrologic system and heterogeneous distribution of soil thicknesses. However, in order to accurately quantify the soil water balance and to assess how thinning trees will affect this water balance, it is important determine the sources from which trees extract their water. We plan to use oxygen and hydrogen stable isotopic analysis of various end member waters to identify these different sources. We are in the process of developing a new method of determining the isotopic composition of tree water that has several advantages over conventional methods. Within the tree there is the xylem which transports water from the roots to the leaves and the phloem which transports starches and sugars in a water media throughout the tree. Previous studies have shown that the isotopic composition of xylem water accurately reflects that of source water, while phloem water has undergone isotopic fractionation during photosynthesis and metabolism. The distillation of water from twigs, which is often used to extract tree water for isotopic analysis, is very labor intensive. Other disadvantages to distillation methods include possible fractionation due to phase changes and the possible extraction of fractionated phloem waters. Employing a new mixing method, the composition of the twig water (TW) can be determined by putting twigs of unknown isotopic water composition into waters of known compositions or initial waters (IW), allowing diffusive processes to proceed to equilibrium, measuring the composition of the resulting mixture or final water (FW) then, solving a simple mixing equation. To evaluate this method, we collected several twig samples from Douglas Firs in the Sacramento Mountains. Twig water was prepared for isotopic analysis both by cryogenic distillation and the mixing method. Soil in close proximity to these trees was also sampled and water was extracted by cryogenic distillation. Preliminary results show that the isotopic composition of distilled twig water and soil waters plot to the right of the local meteoric water line (LMWL) suggesting that trees are extracting shallow evaporated soil water. Twig water obtained from the mixing method plot near the LMWL within the range expected for local snow melt, suggesting a possibly deeper non-evaporated source. In general, distillation values are approximately 4% heavier with respect to delta 18O than waters obtained from the mixing method. It is possible that this difference is due to the contribution of the fractionated water of the twig phloem that is released during the distillation process. This difference is quite significant and can lead to very different interpretations. These results are being addressed with additional experiments.

  20. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method

    NASA Astrophysics Data System (ADS)

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13C NMR spectrometry (irm-13C NMR) provides the complete 13C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13C natural abundance values (50‰), irm-13C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13C NMR. Until now, the conventional strategy to determine the position-specific abundance xi relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1H NMR pulse sequence (named DWET) with a 13C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T1, which forms a serious limitation for irm-13C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T1 variations. Their performance is evaluated on the determination of the 13C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm-13C NMR since it is now possible to perform isotopic analysis with high relaxing agent concentrations, leading to a strong reduction of the overall experiment time.

  1. High Precision Iron Isotope Compositions in Components From the Allende CV3 Meteorite by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Mullane, E.; Russell, S. S.; Weiss, D.; Mason, T. F.; Gounelle, M.

    2001-12-01

    Four chondrules and one matrix sample of Allende were examined for Fe-isotope frac-tionation, using multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS). Iron is the most volatile major constituent of chondrules and a recent study [1] suggested that solar system Fe was initially isotopically homogeneous. Thus, any isotopic variation is likely due to mass fractionation during nebular process-ing. The chondrule samples were split. One portion was subject to a standard acid dis-solution whilst the other was polished, ena-bling textural and compositional characteri-zation. Fe, Cu and Zn are separated from the remaining matrix elements [2], removing potential interfering ions from the solution. 100 % elemental recovery (within error) is achieved, ensuring that chromatographic fractionation does not occur [2]. Hydrogen is bled into the collision cell, minimising Ar polyatomic species interferences. Typical precisions of 0.1‰ (2σ ) for 54Fe/56Fe ratios are achieved for 75 replicates. Instrumental mass bias is assessed using (1) sample-standard brack-eting and (2) doping with Cu. A variation of 0.8‰ /amu is observed, which is approximately 18 times the analyti-cal uncertainty at the 2σ level. Our high precision data show that: (1) Allende chondrules and matrix exhibit clear isotopic variation in iron. (2) δ 54Fe val-ues appear to be correlated to the bulk FeO content, with the more iron rich samples enriched in the lighter 54Fe isotope. (3) δ 54Fe values appear to be unre-lated to texture, and consequently to the temperature of chondrule formation. Bulk Fe-content may be a proxy for the amount of volatilisation experienced, and volatilisation of Fe in chondrule precursor material has resulted in a residue of the heavier Fe isotopes. Chondrules are known to have often experienced several heating events, and their texture primarily reflects the nature of the last event. Thus, the lack of correlation between the δ 54Fe value and chondrule texture suggests that Fe-isotope composi-tion was derived from chondrule precursor material. [1] Zhu et al. (2001) Nature 412, p.311 [2] Mullane et al. (2001) LPS XXXII, No.1545.

  2. The silicon isotope composition of the upper continental crust

    NASA Astrophysics Data System (ADS)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Halliday, Alex N.

    2013-05-01

    The upper continental crust (UCC) is the major source of silicon (Si) to the oceans and yet its isotopic composition is not well constrained. In an effort to investigate the degree of heterogeneity and provide a robust estimate for the average Si isotopic composition of the UCC, a representative selection of well-characterised, continentally-derived clastic sediments have been analysed using high-precision MC-ICPMS. Analyses of loess samples define a narrow range of Si isotopic compositions (δ30Si = -0.28‰ to -0.15‰). This is thought to reflect the primary igneous mineralogy and predominance of mechanical weathering in the formation of such samples. The average loess δ30Si is -0.22 ± 0.07‰ (2 s.d.), identical to average granite and felsic igneous compositions. Therefore, minor chemical weathering does not resolvably affect bulk rock δ30Si, and loess is a good proxy for the Si isotopic composition of unweathered, crystalline, continental crust. The Si isotopic compositions of shales display much more variability (δ30Si = -0.82‰ to 0.00‰). Shale Si isotope compositions do not correlate well with canonical proxies for chemical weathering, such as CIA values, but do correlate negatively with insoluble element concentrations and Al/Si ratios. This implies that more intensive or prolonged chemical weathering of a sedimentary source, with attendant desilicification, is required before resolvable negative Si isotopic fractionation occurs. Shale δ30Si values that are more positive than those of felsic igneous rocks most likely indicate the presence of marine-derived silica in such samples. Using the data gathered in this study, combined with already published granite Si isotope analyses, a weighted average composition of δ30Si = -0.25 ± 0.16‰ (2 s.d.) for the UCC has been calculated.

  3. Controls on the barium isotope compositions of marine sediments

    NASA Astrophysics Data System (ADS)

    Bridgestock, Luke; Hsieh, Yu-Te; Porcelli, Donald; Homoky, William B.; Bryan, Allison; Henderson, Gideon M.

    2018-01-01

    The accumulation of barium (Ba) in marine sediments is considered to be a robust proxy for export production, although this application can be limited by uncertainty in BaSO4 preservation and sediment mass accumulation rates. The Ba isotope compositions of marine sediments could potentially record insights into past changes in the marine Ba cycle, which should be insensitive to these limitations, enabling more robust interpretation of sedimentary Ba as a proxy. To investigate the controls on the Ba isotope compositions of marine sediments and their potential for paleo-oceanographic applications, we present the first Ba isotope compositions results for sediments, as well as overlying seawater depth profiles collected in the South Atlantic. Variations in Ba isotope compositions of the sediments predominantly reflect changes in the relative contributions of detrital and authigenic Ba sources, with open-ocean sediments constraining the isotope composition of authigenic Ba to be δ 138/134Ba ≈ + 0.1 ‰. This value is consistent with the average isotope composition inferred for sinking particulate Ba using simple mass balance models of Ba in the overlying water column and is hypothesized to reflect the removal of Ba from the upper water column with an associated isotopic fractionation of Δ diss-part 138/134Ba ≈ + 0.4 to +0.5. Perturbations to upper ocean Ba cycling, due to changes in export production and the supply of Ba via upwelling, should therefore be recorded by the isotope compositions of sedimentary authigenic Ba. Such insights will help to improve the reliable application of Ba accumulation rates in marine sediments as a proxy for past changes in export production.

  4. The origin of inner Solar System water.

    PubMed

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  5. Diel variations in carbon isotopic composition and concentration of organic acids and their impact on plant dark respiration in different species.

    PubMed

    Lehmann, M M; Wegener, F; Werner, R A; Werner, C

    2016-09-01

    Leaf respiration in the dark and its C isotopic composition (δ(13) CR ) contain information about internal metabolic processes and respiratory substrates. δ(13) CR is known to be less negative compared to potential respiratory substrates, in particular shortly after darkening during light enhanced dark respiration (LEDR). This phenomenon might be driven by respiration of accumulated (13) C-enriched organic acids, however, studies simultaneously measuring δ(13) CR during LEDR and potential respiratory substrates are rare. We determined δ(13) CR and respiration rates (R) during LEDR, as well as δ(13) C and concentrations of potential respiratory substrates using compound-specific isotope analyses. The measurements were conducted throughout the diel cycle in several plant species under different environmental conditions. δ(13) CR and R patterns during LEDR were strongly species-specific and showed an initial peak, which was followed by a progressive decrease in both values. The species-specific differences in δ(13) CR and R during LEDR may be partially explained by the isotopic composition of organic acids (e.g., oxalate, isocitrate, quinate, shikimate, malate), which were (13) C-enriched compared to other respiratory substrates (e.g., sugars and amino acids). However, the diel variations in both δ(13) C and concentrations of the organic acids were generally low. Thus, additional factors such as the heterogeneous isotope distribution in organic acids and the relative contribution of the organic acids to respiration are required to explain the strong (13) C enrichment in leaf dark-respired CO2 . © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Tracing Altiplano-Puna plateau surface uplift via radiogenic isotope composition of Andean arc lavas

    NASA Astrophysics Data System (ADS)

    Scott, E. M.; Allen, M. B.; Macpherson, C.; McCaffrey, K. J. W.; Davidson, J.; Saville, C.

    2016-12-01

    We have compiled published geochemical data for Jurassic to Holocene Andean arc lavas from 5oN to 47oS, covering the current extent of the northern, central and southern volcanic zones. Using this dataset we evaluate the spatial and temporal evolution of age corrected Sr- and Nd-radiogenic isotopes in arc lavas at a continental-scale, in order to understand the tectonic and surface uplift histories of the Andean margin. It has long been noted that baseline 87Sr/86Sr and 143Nd/144Nd ratios of Quaternary lavas from the central volcanic zone, located within the Altiplano-Puna plateau, are distinct from volcanic rocks to the north and south. This is commonly attributed to greater crustal thickness, which increases to roughly twice that of the average continental crust within the Altiplano-Puna plateau. By comparing 87Sr/86Sr and 143Nd/144Nd ratios in Quaternary lavas to published crustal thickness models, present day topography and the compositions of basement terranes, we note that Sr- and Nd-isotope values of Quaternary lavas are an effective proxy for present day regional elevation. In contrast, variation in basement terranes has only a small, second order effect on isotopic composition at the scale of our study. Using this isotopic proxy, we infer the spatial extent of the plateau and its surface uplift history from the Jurassic to the present. Our results concur with a crustal thickening model of continued surface uplift, which initiated in the Altiplano, with deformation propagating southwards into the Puna throughout the Neogene and then continuing in central Chile and Argentina up to the present day.

  7. Isotopic signals of denitrification in a northern hardwood forested catchment

    NASA Astrophysics Data System (ADS)

    Wexler, Sarah; Goodale, Christine

    2013-04-01

    Water samples from streams, groundwater and precipitation were collected during summer from the hydrologic reference watershed (W3) at Hubbard Brook Experimental Forest in the White Mountains, New Hampshire, and analysed for d15N-NO3 and d18O-NO3. Despite very low nitrate concentrations (<0.5 to 8.8 uM NO3-) dual-isotopic signals of sources and processes were clearly distinguishable. The isotopic composition of nitrate from shallow groundwater showed evidence of dual isotopic fractionation in line with denitrification, with a positive relationship between nitrogen and oxygen isotopic composition, a regression line slope of 0.76 (r2 = 0.68), and an empirical isotope enrichment factor of ɛP-S 15N-NO3 -12.7%. The isotopic composition of riparian groundwater nitrate from time-series samples showed variation in processes over a small spatial scale. The expected isotopic composition of nitrate sources in the watershed was used to distinguish nitrate in rain and nitrate from nitrification of both rainfall ammonium and ammonium from mineralised soil organic nitrogen. Evidence of oxygen exchange with water during nitrification was seen in the isotopic composition of stream and shallow groundwater nitrate. The isotopic composition of streamwater nitrate following a period of storms indicated that 25% of nitrate in the streamwater was of atmospheric origin. This suggests rapid infiltration of rainfall via vertical bypass flow to the saturated zone, enabling transport of atmospheric nitrate to the stream channels. Across the Hubbard Brook basin, the isotopic composition of nitrate from paired samples from watersheds 4-7 indicated a switch between a nitrification and assimilation dominated system, to a system influenced by rainfall nitrogen inputs and denitrification. The dual isotope approach has revealed evidence of denitrification of nitrate from different sources at low concentrations at Hubbard Brook during summer. This isotopic evidence deepens our understanding of the significance and spatial variability of denitrification in environments with low levels of nitrate, represented by this northern hardwood forested catchment.

  8. Origins of water and solutes in and north of the Norris-Mammoth Corridor, Yellowstone National Park

    USGS Publications Warehouse

    Kharaka, Yousif; Mariner, Robert; Ambats, Gil; Evans, William; White, Lloyd; Bullen, Thomas; Kennedy, B. Mack

    1990-01-01

    This study was initiated to investigate the impacts of geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA) on the hydrothermal features of Yellowstone National Park. To determine possible hydrogeochemical connections, we used the diagnostic stable and radioactive isotopes of several elements, and the chemical and gas compositions of thermal and cold waters from the Norris-Mammoth Corridor and areas north of the Park. The investigations were particularly comprehensive in the Mammoth Hot Springs area, Corwin Springs KGRA, and Chico Hot Springs. The geochemical tools used are still subject to uncertainties of 1 - 5%. Preliminary interpretation of the data, especially the ??D and ??18O values of water, 87Sr/86Sr ratios, ??11B values, composition and isotopes of noble gases and several conservative chemical species would indicate that the waters from Mammoth Hot Springs and La Duke Spring area have evolved chemically and isotopically by reactions with different rock types, and are probably not directly connected. These data indicate that a component (<20%) of water in Bear Creek Springs may be derived from the Mammoth system.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valysaev, B.M.; Erokhin, V.E.; Grinchenko, Y.I.

    A study has been made of the isotopic composition of the carbon in methane and carbon dioxide, as well as hydrogen in the methane, in the gases of mud volcanoes, for all main mud volcano areas in the USSR. The isotopic composition of carbon and hydrogen in methane shows that the gases resemble those of oil and gas deposits, while carbon dioxide of these volcanoes has a heavier isotopic composition with a greater presence of ''ultraheavy'' carbon dioxide. By the chemical and isotopic composition of gases, Azerbaidzhan and South Sakhalin types of mud volcano gases have been identified, as wellmore » as Bulganak subtypes and Akhtala and Kobystan varieties. Correlations are seen between the isotopic composition of gases and the geological build of mud volcano areas.« less

  10. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    NASA Astrophysics Data System (ADS)

    Barth, Andrew P.; Tosdal, R. M.; Wooden, J. L.

    1990-11-01

    Triassic magmatism in the southwest U.S. Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and we suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited data for associated Triassic(?) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic(?) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to alkalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.

  11. A petrologic comparison of Triassic plutonism in the San Gabriel and Mule Mountains, southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barth, A.P.; Tosdal, R.M.; Wooden, J.L.

    1990-11-10

    Triassic magmatism in the southwest US Cordillera forms a semicontinuous magmatic arc extending from northwestern Nevada to southeastern California. Quartz monzodioritic and quartz monzonitic rocks and associated diorites and granites are widespread in southeastern California, and the authors suggest that these rocks represent exposure of a structurally deeper part of the Triassic arc, where it was emplaced into comparatively thick Proterozoic crust. Elemental and isotopic data suggest that Triassic quartz monzodiorites and quartz monzonites in the Mule and San Gabriel Mountains were derived from a relatively undepleted, nonradiogenic mafic lithospheric source, with virtually no upper crustal interaction. Very limited datamore » for associated Triassic ( ) diorites indicate a wide range in composition and a surprisingly radiogenic isotopic signature. Younger Triassic( ) granites record a strong geochemical signature of interaction with continental crust, including inherited zircon and high initial Sr ratios but comparatively less radiogenic Pb isotopic compositions. The major and trace element geochemistry of Late Triassic plutonic rocks in southeastern California is similar in many respects to akalic components of the Triassic arc in the Mojave Desert. However, contemporaneous rocks farther north have a calc-alkalic signature, perhaps reflecting the variation in age and composition of lithosphere across which the Triassic arc was constructed.« less

  12. Impact-induced devolatilization and hydrogen isotopic fractionation of serpentine: Implications for planetary accretion

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Krishnamurthy, R. V.; Epstein, Samuel; Ahrens, Thomas J.

    1988-01-01

    Impact-induced devolatilization of porous serpentine was investigated using two independent experimental methods, the gas recovery and the solid recovery method, each yielding nearly identical results. For shock pressures near incipient devolatilization, the hydrogen isotopic composition of the evolved H2O is very close to that of the starting material. For shock pressures at which up to 12 percent impact-induced devolatilization occurs, the bulk evolved gas is significantly lower in deuterium than the starting material. There is also significant reduction of H2O to H2 in gases recovered at these higher shock pressures, probably caused by reaction of evolved H2O with the metal gas recovery fixture. Gaseous H2O-H2 isotopic fractionation suggests high temperature isotopic equilibrium between the gaseous species, indicating initiation of devolatilization at sites of greater than average energy deposition. Bulk gas-residual solid isotopic fractionations indicate nonequilibrium, kinetic control of gas-solid isotopic ratios. Impact-induced hydrogen isotopic fractionation of hydrous silicates during accretion can strongly affect the long-term planetary isotopic ratios of planetary bodies, leaving the interiors enriched in deuterium. Depending on the model used for extrapolation of the isotopic fractionation to devolatilization fractions greater than those investigated experimentally can result from this process.

  13. Tracing Cd, Zn and Pb pollution sources in bivalves using isotopes

    NASA Astrophysics Data System (ADS)

    Shiel, A. E.; Weis, D. A.; Orians, K. J.

    2010-12-01

    In a multi-tracer study, Cd, Zn and Pb isotopes (MC-ICP-MS) and elemental concentrations (HR-ICP-MS) are evaluated as tools to distinguish between natural and anthropogenic sources of these metals in bivalves from western Canada (British Columbia), the eastern USA, Hawaii and France. High Cd concentrations found in BC oysters have elicited economic and health concerns. The source of these high Cd levels is unknown but thought to be largely natural. High Cd levels in BC oysters are largely attributed to the natural upwelling of Cd-rich intermediate waters in the North Pacific as the δ114/110Cd (-0.69 to -0.09‰) and δ66/64Zn (0.28 to 0.36‰) values of BC oysters fall within the range reported for North Pacific seawater. Different contributions from anthropogenic sources account for the variability of Cd isotopic compositions of BC oysters; the lightest of these oysters are from the BC mainland. These oysters also have Pb isotopic compositions that reflect primarily anthropogenic sources (e.g., leaded and unleaded automotive gasoline and smelting of Pb ores, potentially historical). On the contrary, USA East Coast bivalves exhibit relatively light Cd isotopic compositions (δ114/110Cd = -1.20 to -0.54‰; lighter than reported for North Atlantic seawater) due to the high prevalence of industry on this coast. The Pb isotopic compositions of these bivalves indicate contributions from the combustion of coal. The large variability of environmental health among coastal areas in France is reflected in the broad range of Cd isotopic compositions exhibited by French bivalves (δ114/110Cd = -1.08 to -0.20‰). Oysters and mussels from the Marennes-Oléron basin and Gironde estuary have the lightest Cd isotopic compositions of the French oysters consistent with significant historical Cd emissions from the now-closed proximal Zn smelter. In these bivalves, significant declines in the Cd levels between 1984/7 and 2004/5 are not accompanied by a significant shift in the Cd isotopic composition toward natural values. The Mediterranean samples have isotopic compositions within error of the lighter end of the range reported for Mediterranean seawater. The Zn isotopic compositions of French oysters and mussels (δ66/64Zn = 0.39 to 0.46‰) are identical to those reported for North Atlantic seawater, with the exception of the much heavier compositions of oysters (δ66/64Zn = 1.03 to 1.15‰) from the polluted Gironde estuary. In agreement with Cd and Zn isotopic compositions, the Pb isotopic compositions of the French bivalves indicate primarily industrial (as opposed to automotive) sources; this is consistent with the collection of most of the French bivalve samples in 2004, after the complete phase-out of leaded gasoline in France. This study demonstrates the effective use of Cd and Zn isotopes to trace anthropogenic sources in the environment and the benefit of combining these tools with Pb isotope “fingerprinting” techniques to identify processes contributing metals. Use of these new geochemical tools requires site-specific knowledge of potential metal sources and their isotopic compositions.

  14. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    PubMed

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  15. Hadean Oceanography: Experimental Constraints on the Development of the Terrestrial Hydrosphere and the Origin of Life on Earth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryerson, F J

    The oxygen isotopic compositions of the world's oldest mineral grains, zircon, have recently been used to infer the compositions of the rocks from which they crystallized. The results appear to require a source that had once experienced isotopic fractionation between clay minerals and liquid water, thereby implying the presence of liquid water at the Earth's surface prior to 4.4 billion years ago, less than 2 million years after accretion. This observation has important implications for the development of the Earth's continental crust. The inferred composition of the zircon source rock is directly dependent upon the oxygen isotopic fractionation between zirconmore » and melt, and zircon and water. These fractionation factors have not been determined experimentally, however, constituting the weak link in this argument. A series of experiments to measure these fractionation factors has been conducted. The experiments consist of finely powdered quartz, a polished single crystal of zircon and isotopically-enriched or isotopically normal water to provide a range of isotopic compositions. The experiments will be run until quartz is in isotopic equilibrium with water. Zircon was expected to partially equilibrate producing an oxygen isotopic diffusion profile perpendicular to the surface. Ion probe spot analysis of quartz and depth profiling of zircon will determine the bulk and surface isotopic compositions of the phases, respectively. The well-known quartz-water isotopic fractionation factors can be used to calculate the oxygen isotopic composition of the fluid, and with the zircon surface composition, the zircon-water fractionation factor. Run at temperatures up to 1000 C for as long as 500 hours have not produced diffusion profiles longer than 50 nm. The steep isotopic gradient at the samples surface precludes use of the diffusion profile for estimation on the surface isotopic composition. The short profiles may be the result of surface dissolution, although such dissolution cannot be resolved in SEM images. The sluggish nature of diffusion in zircon may require that fractionation factors be determined by direct hydrothermal synthesis of zircon rather than by mineral-fluid exchange.« less

  16. Iron and nickel isotope compositions of presolar silicon carbide grains from supernovae

    NASA Astrophysics Data System (ADS)

    Kodolányi, János; Stephan, Thomas; Trappitsch, Reto; Hoppe, Peter; Pignatari, Marco; Davis, Andrew M.; Pellin, Michael J.

    2018-01-01

    We report the carbon, silicon, iron, and nickel isotope compositions of twenty-five presolar SiC grains of mostly supernova (SN) origin. The iron and nickel isotope compositions were measured with the new Chicago Instrument for Laser Ionization, CHILI, which allows the analysis of all iron and nickel isotopes without the isobaric interferences that plagued previous measurements with the NanoSIMS. Despite terrestrial iron and nickel contamination, significant isotopic anomalies in 54Fe/56Fe, 57Fe/56Fe, 60Ni/58Ni, 61Ni/58Ni, 62Ni/58Ni, and 64Ni/58Ni were detected in nine SN grains (of type X). Combined multi-isotope data of three grains with the largest nickel isotope anomalies (>100‰ or <-100‰ in at least one isotope ratio, when expressed as deviation from the solar value) are compared with the predictions of two SN models, one with and one without hydrogen ingestion in the He shell prior to SN explosion. One grain's carbon-silicon-iron-nickel isotope composition is consistent with the prediction of the model without hydrogen ingestion, whereas the other two grains' isotope anomalies could not be reproduced using either SN models. The discrepancies between the measured isotope compositions and model predictions may indicate element fractionation in the SN ejecta prior to or during grain condensation, and reiterate the need for three-dimensional SN models.

  17. Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Tongwei; Krooss, Bernhard M.

    2001-08-01

    Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated. Compared with the carbon isotopic composition of the source methane (δ13C1 = -39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff -δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed. The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous ;semi-infinite; shale caprock over a period of 10 Ma. In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope fractionation effects. The examples demonstrate that methane losses by molecular diffusion are small in comparison with the contents of commercial size gas accumulations. The degree of isotopic fractionation is related inversely to the quantity of diffused gas so that strong fractionation effects are only observed for relatively small portions of gas. The experimental data can be readily used in numerical basin analysis to examine the effects of diffusion-related isotopic fractionation on the composition of natural gas reservoirs.

  18. Radioactive cesium isotope ratios as a tool for determining dispersal and re-dispersal mechanisms downwind from the Nevada Nuclear Security Site.

    PubMed

    Snyder, Darin C; Delmore, James E; Tranter, Troy; Mann, Nick R; Abbott, Michael L; Olson, John E

    2012-08-01

    Fractionation of the two longer-lived radioactive cesium isotopes ((135)Cs and (137)Cs) produced by above ground nuclear tests have been measured and used to clarify the dispersal mechanisms of cesium deposited in the area between the Nevada Nuclear Security Site and Lake Mead in the southwestern United States. Fractionation of these isotopes is due to the 135-decay chain requiring several days to completely decay to (135)Cs, and the 137-decay chain less than one hour decay to (137)Cs. Since the Cs precursors are gases, iodine and xenon, the (135)Cs plume was deposited farther downwind than the (137)Cs plume. Sediment core samples were obtained from the Las Vegas arm of Lake Mead, sub-sampled and analyzed for (135)Cs/(137)Cs ratios by thermal ionization mass spectrometry. The layers proved to have nearly identical highly fractionated isotope ratios. This information is consistent with a model where the cesium was initially deposited onto the land area draining into Lake Mead and the composite from all of the above ground shots subsequently washed onto Lake Mead by high intensity rain and wind storms producing a layering of Cs activity, where each layer is a portion of the composite. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Novel stable isotope laser spectrometry elucidates changing mechanisms of CH4 production and consumption across a climate change sequence in an arctic wetland

    NASA Astrophysics Data System (ADS)

    McCalley, C. K.; Wehr, R.; Crill, P. M.; Chanton, J.; Hodgkins, S. B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Rich, V.; Tyson, G.; Mondav, R.; Frolking, S.; Li, C.; Saleska, S. R.

    2011-12-01

    Methane flux from high latitude wetlands is both a critical component of the global CH4 budget, and highly sensitive to global climate change, with expected increases in emissions as permafrost thaws. Gaps in our understanding of the mechanisms driving changing CH4 production and consumption dynamics under permafrost thaw, however, limit our ability to predict the magnitude of this response under future climate conditions. To address these gaps, we quantified the isotopic composition of carbon gas fluxes (δ13C of CH4 and CO2) from a high latitude (68° N) wetland in Sweden (Stordalen Mire) to partition net CH4 emissions into its component parts, methanogenesis (including both acetoclastic, and CO2-reductive pathways) and methanotrophy (which consumes CH4 primarily via aerobic metabolism). We used newly developed quantum cascade laser technology, linked to automated chambers, to quantify isotopes at high frequency. Our measurements across a permafrost thaw gradient, going from permafrost-dominated, well-drained palsas to intermediate permafrost sites dominated by Sphagnum spp. to wet sites with no underlying permafrost, dominated by Eriophorum angustifolium, show both large increases in productivity and CH4 emissions as well as shifts in the CH4 production pathway. Across this permafrost thaw gradient the isotopic composition of CH4 becomes 13C enriched, due to increased acetoclastic CH4 production. While the palsa sites have no detectable CH4 emissions, fluxes in the Sphagnum site have an average isotopic composition of -79%, a value indicative of CH4 production dominated by CO2 reduction, in contrast the isotopic composition of CH4 produced in the Eriophorum sites ranged from -71 to -57%, showing increased CH4 production via the acetate pathway. We also observed an increase in acetoclastic methanogenesis as the growing season progressed. Together, these initial results suggest that thaw induced changes in hydrology and plant community composition increase peat lability, stimulating acetate fermentation and yielding increased methane emissions. We conclude that the biological controls on metabolic pathways of methanogenesis, though poorly represented in most ecosystem models, may nonetheless be important, in interaction with permafrost thaw dynamics, in determining future CH4 emissions under changing climate.

  20. Reconstruction of the Nd isotope composition of seawater on epicontinental seas: Testing the potential of Fe-Mn oxyhydroxide coatings on foraminifera tests for deep-time investigations

    NASA Astrophysics Data System (ADS)

    Charbonnier, Guillaume; Pucéat, Emmanuelle; Bayon, Germain; Desmares, Delphine; Dera, Guillaume; Durlet, Christophe; Deconinck, Jean-François; Amédro, Francis; Gourlan, Alexandra T.; Pellenard, Pierre; Bomou, Brahimsamba

    2012-12-01

    The Fe-Mn oxide fraction leached from deep-sea sediments has been increasingly used to reconstruct the Nd isotope composition of deep water masses, that can be used to track changes in oceanic circulation with a high temporal resolution. Application of this archive to reconstruct the Nd isotope composition of bottom seawater in shallow shelf environments remained however to be tested. Yet as the Nd isotope composition of seawater on continental margins is particularly sensitive to changes in erosional inputs, establishment of neritic seawater Nd isotope evolution around areas of deep water formation would be useful to discriminate the influence of changes in oceanic circulation and in isotopic composition of erosional inputs on the Nd isotope record of deep waters. The purpose of this study is to test the potential of Fe-Mn coatings leached from foraminifera tests to reconstruct the Nd isotope composition of seawater in shelf environments for deep-time intervals. Albian to Turonian samples from two different outcrops have been recovered, from the Paris Basin (Wissant section, northern France) and from the Western Interior Seaway (Hot Spring, South Dakota, USA), that were deposited in epicontinental seas. Rare Earth Element (REE) spectra enriched in middle REEs in the foraminifera leach at Wissant highlight the presence of Fe-Mn oxides. The similarity of the Nd isotopic signal of the Fe-Mn oxide fraction leached from foraminifera tests with that of fish teeth suggests that Fe-Mn oxides coating foraminifera can be good archives of shelf bottom seawater Nd isotopic composition. Inferred bottom shelf water Nd isotope compositions at Wissant range from -8.5 to -9.7 ɛ-units, about 1.5-2 ɛ-units higher than that of the contemporaneous local detrital fraction. At Hot Spring, linear REE spectra characterizing foraminifera leach may point to an absence of authigenic marine Fe-Mn oxide formation in this area during the Late Cenomanian-Early Turonian, consistent with dysoxic to anoxic conditions at Hot Spring, contemporaneous to an Oceanic Anoxic Event. The similarity of the Nd isotopic signal of the carbonate matrix of foraminifera with that of fish teeth suggests that it records the Nd isotope composition of bottom shelf seawater as well. Inferred bottom shelf water Nd isotope compositions at Hot Spring are quite radiogenic, between -7 and -6 ɛ-units, about 2.5-4 ɛ-units higher than that of the contemporaneous local detrital fraction. In contrast, in both sections Fe-Mn oxides leached directly from the decarbonated sediment tend to yield a less radiogenic Nd isotopic composition, typically between 0.2 and 0.8 ɛ-units lower, that is intermediate between that of fish teeth and of the detrital fraction. This suggests the contribution of pre-formed continental Fe-Mn oxides to the Nd isotopic signal, along with authigenic marine oxides, or a detrital contamination during leaching.

  1. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    NASA Astrophysics Data System (ADS)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  2. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile - Marine sources and diagenetic effects.

    PubMed

    Lucassen, Friedrich; Pritzkow, Wolfgang; Rosner, Martin; Sepúlveda, Fernando; Vásquez, Paulina; Wilke, Hans; Kasemann, Simone A

    2017-01-01

    Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture.

  3. The stable isotope composition of nitrogen and carbon and elemental contents in modern and fossil seabird guano from Northern Chile – Marine sources and diagenetic effects

    PubMed Central

    Pritzkow, Wolfgang; Rosner, Martin; Sepúlveda, Fernando; Vásquez, Paulina; Wilke, Hans; Kasemann, Simone A.

    2017-01-01

    Seabird excrements (guano) have been preserved in the arid climate of Northern Chile since at least the Pliocene. The deposits of marine organic material in coastal areas potentially open a window into the present and past composition of the coastal ocean and its food web. We use the stable isotope composition of nitrogen and carbon as well as element contents to compare the principal prey of the birds, the Peruvian anchovy, with the composition of modern guano. We also investigate the impact of diagenetic changes on the isotopic composition and elemental contents of the pure ornithogenic sediments, starting with modern stratified deposits and extending to fossil guano. Where possible, 14C systematics is used for age information. The nitrogen and carbon isotopic composition of the marine prey (Peruvian anchovy) of the birds is complex as it shows strong systematic variations with latitude. The detailed study of a modern profile that represents a few years of guano deposition up to present reveals systematic changes in nitrogen and carbon isotopic composition towards heavier values that increase with age, i.e. depth. Only the uppermost, youngest layers of modern guano show compositional affinity to the prey of the birds. In the profile, the simultaneous loss of nitrogen and carbon occurs by degassing, and non-volatile elements like phosphorous and calcium are passively enriched in the residual guano. Fossil guano deposits are very low in nitrogen and low in carbon contents, and show very heavy nitrogen isotopic compositions. One result of the study is that the use of guano for tracing nitrogen and carbon isotopic and elemental composition in the marine food web of the birds is restricted to fresh material. Despite systematic changes during diagenesis, there is little promise to retrieve reliable values of marine nitrogen and carbon signatures from older guano. However, the changes in isotopic composition from primary marine nitrogen isotopic signatures towards very heavy values generate a compositionally unique material. These compositions trace the presence of guano in natural ecosystems and its use as fertilizer in present and past agriculture. PMID:28594902

  4. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    NASA Astrophysics Data System (ADS)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  5. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    PubMed

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  6. Stable Isotope Systematics in Grasshopper Assemblages Along an Elevation Gradient, Colorado

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Evans, S.; Dean, J.; Nufio, C.

    2012-12-01

    Insects comprise over three quarters of all animal species, yet studies of body water isotopic composition are limited to only the cockroach, the hoverfly, and chironomid flies. These studies suggest that oxygen and hydrogen isotopic compositions in body water are primarily controlled by dietary water sources, with modification from respiratory and metabolic processes. In particular, outward diffusion of isotopically depleted water vapor through insect spiracles at low humidity enriches residual body water in 18O and 2H (D). Stable isotope compositions (δ18O and δD) also respond to gradients in elevation and humidity, but these influences remain poorly understood. In this study, we measured grasshopper body water and local vegetation isotopic compositions along an elevation gradient in Colorado to evaluate three hypotheses: 1) Insect body water isotopic composition is directly related to food source water composition 2) Water vapor transport alters body water isotopic compositions relative to original diet sources, and 3) Elevation gradients influence isotopic compositions in insect body water. Thirty-five species of grasshopper were collected from 14 locations in Colorado grasslands, ranging in elevation from 450 to 800 meters (n=131). Body water was distilled from previously frozen grasshopper specimens using a vacuum extraction line, furnaces (90 °C), and liquid nitrogen traps. Water samples were then analyzed for δ18O and δD on an LGR Liquid Water Isotope Analyzer, housed in the Department of Geosciences, Boise State University. Grasshopper body water isotopic compositions show wide variation, with values ranging between -76.64‰ to +42.82‰ in δD and -3.06‰ to +26.78‰ in δ18O. Precipitation δ18O values over the entire Earth excluding the poles vary by approximately 30‰, comparable to the total range measured in our single study area. Most grasshopper values deviate from the global meteoric water line relating δ18O and δD in precipitation, consistent with evaporative enrichment in food (plants) due to plant transpiration. However, grasshopper body water from any given location is further enriched in 18O and D relative to food. Isotopic values decrease slightly with increasing elevation, but some specific grasshopper species appear more sensitive to elevation. Overall, evaporative enrichment of 18O and D in this relatively dry environment appears the strongest factors influencing grasshopper compositions.

  7. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    NASA Astrophysics Data System (ADS)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  8. Nitrogen Isotope Evidence for a Shift in Eastern Beringian Nitrogen Cycle after the Terminal Pleistocene

    NASA Astrophysics Data System (ADS)

    Tahmasebi, F.; Longstaffe, F. J.; Zazula, G.

    2016-12-01

    The loess deposits of eastern Beringia, a region in North America between 60° and 70°N latitude and bounded by Chukchi Sea to the west and the Mackenzie River to the east, are a magnificent repository of Late Pleistocene megafauna fossils. The stable carbon and nitrogen isotope compositions of these fossils are measured to determine the paleodiet of these animals, and hence the paleoenvironment of this ecosystem during the Quaternary. For this approach to be most successful, however, requires consideration of possible changes in nutrient cycling and hence the carbon and nitrogen isotopic compositions of vegetation in this ecosystem. To test for such a shift following the terminal Pleistocene, we analyzed the stable carbon and nitrogen isotope compositions of modern plants and bone collagen of Arctic ground squirrels from Yukon Territory, and fossil plants and bones recovered from Late Pleistocene fossil Arctic ground squirrel nests. The data for modern samples provided a measure of the isotopic fractionation between ground squirrel bone collagen and their diet. The over-wintering isotopic effect of decay on typical forage grasses was also measured to evaluate its role in determining fossil plant isotopic compositions. The grasses showed only a minor change ( 0-1 ‰) in carbon isotope composition, but a major change ( 2-10 ‰) in nitrogen isotope composition over the 317-day experiment. Based on the modern carbon isotope fractionation between ground squirrel bone collagen and their diet, the modern vegetation carbon isotopic baseline provides a suitable proxy for the Late Pleistocene of eastern Beringia, after accounting for the Suess effect. However, the predicted nitrogen isotope composition of vegetation comprising the diet of fossil ground squirrels remains 2.5 ‰ higher than modern grasslands in this area, even after accounting for possible N-15 enrichment during decay. This result suggests a change in N cycling in this region since the Late Pleistocene.

  9. Thallium isotope composition of the upper continental crust and rivers - An investigation of the continental sources of dissolved marine thallium

    USGS Publications Warehouse

    Nielsen, S.G.; Rehkamper, M.; Porcelli, D.; Andersson, P.; Halliday, A.N.; Swarzenski, P.W.; Latkoczy, C.; Gunther, D.

    2005-01-01

    The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols. The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ??205Tl = -2.0 ?? 0.3 (??205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ??1.5 ??205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ?? 4 ng/kg and ??205Tl = -2.5 ?? 1.0, respectively. In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. Copyright ?? 2005 Elsevier Ltd.

  10. Report on Initial Direct Soil Leaching Experiments Using Post-Detonation Debris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gostic, R.; Knight, K. B.; Borg, L.

    2011-08-01

    A key challenge of nuclear forensics is reducing the time and manpower effort required to measure nuclear debris compositions. The overall motivation for this work is to explore development of a robust, automated system that can be used to concurrently analyze several elements/isotopes associated with the forensic signature of nuclear materials. The primary focus of this research has been to methodically investigate if rapid partial leaching of post-detonation debris can yield usable elemental and isotopic information for interpretation. The unique requirements of post-detonation nuclear forensics have not been fully adapted to or fully incorporated contemporary chemical separation techniques. Challenges includemore » addressing the range of material matrices or mixed fission product and actinide compositions and concentrations that might be encountered. These include, but are not limited to, puddle melt glass, urban debris, seawater, air filters, iron-rich urban debris, asphalt, and silica sand. Separation of these elements and their subsequent measurement is a key element of related laboratory analysis activity. Existing practices at LLNL rely on proven but time-consuming and labor intensive processes. Significant time and labor savings are possible in chemical separations, however, if rapid processing methods can be adapted to post-detonation debris. Development of a simple and reliable leaching technique could shorten analytical times and would be useful as a field deployable method for the preliminary characterization of actinide isotopic ratios in soils. Measurement of isotopic ratios in the field using modern mass spectrometry capabilities such as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is desirable, taking advantage of the extended range of isotopic systems measureable using such instruments. Sample introduction to these types of mass spectrometry instruments requires partial leaching or full dissolution of a sample to remove isobaric (same mass) interferences, and, in some cases, to concentrate the elements(s) of interest. To develop a field-deployable mass spectrometry capability, therefore, automated and robust leaching of likely debris samples (ranging from silicates and oxides to metals and urban materials such as concrete and asphalt), followed by separation/purification through cation exchange column chemistry is necessary. In a post-detonation environment, analysis of melt glasses via rapid leaching and ICP-MS could be a viable route to the same goal. This report presents initial leaching experiments on ‘uncontaminated’ soils, as well as data from melt glass from a single nuclear weapons test. Samples were characterized by gamma spectrometry, then aliquoted for rapid leaching experiments. Experiments were conducted using two different rapid acid treatments to leach the soils. Following leaching, the leachate solutions were analyzed by ICP-MS to determine if U isotopic composition. We present these data to address the question as to whether or not rapid (~1 hr) leaching techniques have the potential to yield meaningful U isotopic compositions, without the need for a complete (time consuming) sample dissolution and separation.« less

  11. Deciphering the iron isotope message of the human body

    NASA Astrophysics Data System (ADS)

    Walczyk, Thomas; von Blanckenburg, Friedhelm

    2005-04-01

    Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.

  12. Iron isotopes in ancient and modern komatiites: Evidence in support of an oxidised mantle from Archean to present

    NASA Astrophysics Data System (ADS)

    Hibbert, K. E. J.; Williams, H. M.; Kerr, A. C.; Puchtel, I. S.

    2012-03-01

    The mantle of the modern Earth is relatively oxidised compared to the initially reducing conditions inferred for core formation. The timing of the oxidation of the mantle is not conclusively resolved but has important implications for the timing of the development of the hydrosphere and atmosphere. In order to examine the timing of this oxidation event, we present iron isotope data from three exceptionally well preserved komatiite localities, Belingwe (2.7 Ga), Vetreny (2.4 Ga) and Gorgona (0.089 Ga). Measurements of Fe isotope compositions of whole-rock samples are complemented by the analysis of olivine, spinel and pyroxene separates. Bulk-rock and olivine Fe isotope compositions (δ57Fe) define clear linear correlations with indicators of magmatic differentiation (Mg#, Cr#). The mean Fe isotope compositions of the 2.7-2.4 Ga and 0.089 Ga samples are statistically distinct and this difference can be explained by greater extent of partial melting represented by the older samples and higher mantle ambient temperatures in the Archean and early Proterozoic relative to the present day. Significantly, samples of all ages define continuous positive linear correlations between bulk rock δ57Fe and V/Sc and δ57Fe and V, and between V/Sc and V with TiO2, providing evidence for the incompatible behaviour of V (relative to Sc) and of isotopically heavy Fe. Partial melting models calculated using partition coefficients for V at oxygen fugacities (fO2s) of 0 and + 1 relative to the fayalite-magnetite-quartz buffer (FMQ) best match the data arrays, which are defined by all samples, from late Archean to Tertiary. These data, therefore, provide evidence for komatiite generation under moderately oxidising conditions since the late Archean, and argue against a change in mantle fO2 concomitant with atmospheric oxygenation at ~ 2.4 Ga.

  13. Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA

    DOE PAGES

    Demers, Jason D.; Blum, Joel D.; Brooks, Scott C.; ...

    2018-03-01

    In this paper, natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ 202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ 199Hg. On average, particulate fraction δ 202Hg values increased downstream by 0.53‰, while Δ 199Hg decreased by -0.10‰, converging with themore » Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ 199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ 202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ 202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ 202Hg values, respectively, compared to dissolved Hg in stream water. Finally, variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.« less

  14. Hg isotopes reveal in-stream processing and legacy inputs in East Fork Poplar Creek, Oak Ridge, Tennessee, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demers, Jason D.; Blum, Joel D.; Brooks, Scott C.

    In this paper, natural abundance stable Hg isotope measurements were used to place new constraints on sources, transport, and transformations of Hg along the flow path of East Fork Poplar Creek (EFPC), a point-source contaminated headwater stream in Oak Ridge, Tennessee. Particulate-bound Hg in the water column of EFPC within the Y-12 National Security Complex, was isotopically similar to average metallic Hg(0) used in industry, having a mean δ 202Hg value of -0.42 ± 0.09‰ (1SD) and near-zero Δ 199Hg. On average, particulate fraction δ 202Hg values increased downstream by 0.53‰, while Δ 199Hg decreased by -0.10‰, converging with themore » Hg isotopic composition of the fine fraction of streambed sediment along the 26 km flow path. The dissolved fraction behaved differently. Although initial Δ 199Hg values of the dissolved fraction were also near-zero, these values increased transiently along the flow path. Initial δ 202Hg values of the dissolved fraction were more variable than in the particulate fraction, ranging from -0.44 to 0.18‰ among three seasonal sampling campaigns, but converged to an average δ 202Hg value of 0.01 ± 0.10‰ (1SD) downstream. Dissolved Hg in the hyporheic and riparian pore water had higher and lower δ 202Hg values, respectively, compared to dissolved Hg in stream water. Finally, variations in Hg isotopic composition of the dissolved and suspended fractions along the flow path suggest that: (1) physical processes such as dilution and sedimentation do not fully explain decreases in total mercury concentrations along the flow path; (2) in-stream processes include photochemical reduction, but microbial reduction is likely more dominant; and (3) additional sources of dissolved mercury inputs to EFPC at baseflow during this study predominantly arise from the hyporheic zone.« less

  15. Impact investigation of reactor fuel operating parameters on reactivity for use in burnup credit applications

    NASA Astrophysics Data System (ADS)

    Sloma, Tanya Noel

    When representing the behavior of commercial spent nuclear fuel (SNF), credit is sought for the reduced reactivity associated with the net depletion of fissile isotopes and the creation of neutron-absorbing isotopes, a process that begins when a commercial nuclear reactor is first operated at power. Burnup credit accounts for the reduced reactivity potential of a fuel assembly and varies with the fuel burnup, cooling time, and the initial enrichment of fissile material in the fuel. With regard to long-term SNF disposal and transportation, tremendous benefits, such as increased capacity, flexibility of design and system operations, and reduced overall costs, provide an incentive to seek burnup credit for criticality safety evaluations. The Nuclear Regulatory Commission issued Interim Staff Guidance 8, Revision 2 in 2002, endorsing burnup credit of actinide composition changes only; credit due to actinides encompasses approximately 30% of exiting pressurized water reactor SNF inventory and could potentially be increased to 90% if fission product credit were accepted. However, one significant issue for utilizing full burnup credit, compensating for actinide and fission product composition changes, is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters can have a significant effect on the isotopic inventory of the fuel, and thus the residual reactivity. This research seeks to quantify the reactivity impact on a system from dominant depletion parameters (i.e., fuel temperature, moderator density, burnable poison rod, burnable poison rod history, and soluble boron concentration). Bounding depletion parameters were developed by statistical evaluation of a database containing reactor operating histories. The database was generated from summary reports of commercial reactor criticality data. Through depletion calculations, utilizing the SCALE 6 code package, several light water reactor assembly designs and in-core locations are analyzed in establishing a combination of depletion parameters that conservatively represent the fuel's isotopic inventory as an initiative to take credit for fuel burnup in criticality safety evaluations for transportation and storage of SNF.

  16. Tooth enamel maturation reequilibrates oxygen isotope compositions and supports simple sampling methods

    NASA Astrophysics Data System (ADS)

    Trayler, Robin B.; Kohn, Matthew J.

    2017-02-01

    Oxygen isotope and major element zoning patterns of several disparate ungulate teeth were collected to evaluate the timing and geometry of enamel formation, records of isotope zoning, and tooth enamel sampling strategies. Isotopic zoning in mammalian tooth enamel encodes a sub-annual time series of isotopic variation of an animal's body water composition, with a damping factor that depends on the specifics of how enamel mineralizes. Enamel formation comprises two stages: precipitation of appositional enamel with a high CO3:PO4 ratio, followed by precipitation of maturational enamel with a lower CO3:PO4. If appositional and maturational enamel both contribute to isotope compositions (but with different CO3:PO4), and if isotope compositions vary seasonally, paired δ18O values from CO3 and PO4 profiles should show a spatial separation. CO3 isotope patterns should be shifted earlier seasonally than PO4 isotope patterns. Such paired profiles for new and published data show no resolvable shifts, i.e. CO3 and PO4 δ18O profiles show coincident maxima and minima. This coincidence suggests that enamel maturation reequilibrates appositional isotope compositions. If enamel maturation establishes enamel isotope compositions, the geometry of maturation, not apposition, should be considered when devising sampling protocols. X-ray maps of Ca zoning show that the majority of enamel (inner and middle layers) mineralizes heavily at a high angle to the external tooth surface and the enamel-dentine junction over length scales of 2-4 mm, while the outer enamel surface mineralizes more slowly. These data suggest that isotopic sampling strategies should parallel maturational geometry and focus on interior enamel to improve data fidelity. The magnitude of isotopic damping is also smaller than implied in previous studies, so tooth enamel zoning more closely reflects original body water isotopic variations than previously assumed.

  17. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and lower model Th/U. These Pb isotope differences are inferred to result from differences in their respective post-1.7 Ga magmatic histories. Throughout Arizona, Pb isotope compositions of Late Cretaceous and early Tertiary plutons and associated sulfide minerals are distinct from those of Jurassic plutons and also middle Tertiary igneous rocks and sulfide minerals. These differences most likely reflect changes in tectonic setting and magmatic sources. Within Late Cretaceous and early Tertiary igneous complexes that host economic porphyry copper deposits, there is commonly a decrease in Pb isotope composition from older to younger plutons. This decrease in Pb isotope values with time suggests an increasing involvement of crust with lower U/Pb than average crust in the source(s) of Late Cretaceous and early Tertiary magmas. Lead isotope compositions of the youngest porphyries in the igneous complexes are similar to those in most sulfide minerals within the associated porphyry copper deposit. This Pb isotope similarity argues for a genetic link between them. However, not all Pb in the sulfide minerals in porphyry copper deposits is magmatically derived. Some sulfide minerals, particularly those that are late stage, or distal to the main orebody, or in Proterozoic or Paleozoic rocks, have elevated Pb isotope compositions displaced toward the gross average Pb isotope composition of the local country rocks. The more radiogenic isotopic compositions argue for a contribution of Pb from those rocks at the site of ore deposition. Combining the Pb isotope data with available geochemical, isotopic, and petrologic data suggests derivation of the young porphyry copper-related plutons, most of their Pb, and other metals from a hybridized lower continental crustal source. Because of the likely involvement of subduction-related mantle-derived basaltic magma in the hybridized lower crustal source, an indiscernible mantle contribution is probable in the porphyry magmas. Clearly, in addition

  18. Isotopic Compositions of the Elements, 2001

    NASA Astrophysics Data System (ADS)

    Böhlke, J. K.; de Laeter, J. R.; De Bièvre, P.; Hidaka, H.; Peiser, H. S.; Rosman, K. J. R.; Taylor, P. D. P.

    2005-03-01

    The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the "best measurement" of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E) and its uncertainty U[Ar(E)] recommended by CAWIA in 2001.

  19. Sr Isotopes and Migration of Prairie Mammoths (Mammuthus columbi) from Laguna de las Cruces, San Luis Potosi, Mexico

    NASA Astrophysics Data System (ADS)

    Solis-Pichardo, G.; Perez-Crespo, V.; Schaaf, P. E.; Arroyo-Cabrales, J.

    2011-12-01

    Asserting mobility of ancient humans is a major issue for anthropologists. For more than 25 years, Sr isotopes have been used as a resourceful tracer tool in this context. A comparison of the 87Sr/86Sr ratios found in tooth enamel and in bone is performed to determine if the human skeletal remains belonged to a local or a migrant. Sr in bone approximately reflects the isotopic composition of the geological region where the person lived before death; whereas the Sr isotopic system in tooth enamel is thought to remain as a closed system and thus conserves the isotope ratio acquired during childhood. Sr isotope ratios are obtained through the geologic substrate and its overlying soil, from where an individual got hold of food and water; these ratios are in turn incorporated into the dentition and skeleton during tissue formation. In previous studies from Teotihuacan, Mexico we have shown that a three-step leaching procedure on tooth enamel samples is important to assure that only the biogenic Sr isotope contribution is analyzed. The same Sr isotopic tools can function concerning ancient animal migration patterns. To determine or to discard the mobility of prairie mammoths (Mammuthus columbi) found at Laguna de las Cruces, San Luis Potosi, México the leaching procedure was applied on six molar samples from several fossil remains. The initial hypothesis was to use 87Sr/86Sr values to verify if the mammoth population was a mixture of individuals from various herds and further by comparing their Sr isotopic composition with that of plants and soils, to confirm their geographic origin. The dissimilar Sr results point to two distinct mammoth groups. The mammoth population from Laguna de Cruces was then not a family unit because it was composed by individuals originated from different localities. Only one individual was identified as local. Others could have walked as much as 100 km to find food and water sources.

  20. S- and Sr-isotopic compositions in barite-silica chimney from the Franklin Seamount, Woodlark Basin, Papua New Guinea: constraints on genesis and temporal variability of hydrothermal fluid

    NASA Astrophysics Data System (ADS)

    Ray, Durbar; Banerjee, Ranadip; Balakrishnan, S.; Paropkari, Anil L.; Mukhopadhyay, Subir

    2017-07-01

    Isotopic ratios of strontium and sulfur in six layers across a horizontal section of a hydrothermal barite-silica chimney from Franklin Seamount of western Woodlark Basin have been investigated. Sr-isotopic ratios in barite samples (87Sr/86Sr = 0.70478-0.70493) are less radiogenic than seawater (87Sr/86Sr = 0.70917) indicating that substantial leaching of sub-seafloor magma was involved in the genesis of hydrothermal fluid. The SO2 of magma likely contributed a considerable amount of lighter S-isotope in fluid and responsible for the formation of barite, which is isotopically lighter (δ34S = 19.4-20.5 ‰) than modern seawater (δ34S 21 ‰). The systematic changes in isotopic compositions across the chimney wall suggest temporal changes in the mode of mineral formation during the growth of the chimney. Enrichment of heavy S- and Sr-isotopes (δ34S = 20.58 ‰; 87Sr/86Sr = 0.70493) in the outermost periphery of the chimney indicates that, at the initial stage of chimney development, there was a significant contribution of seawater sulfate during barite mineralization. Thereafter, thickening of chimney wall occurred due to precipitation of fluid carrying more magmatic components relative to seawater. This led to a gradual enrichment of lighter isotopes (δ34S = 20.42-19.48 ‰; 87Sr/86Sr = 0.70491-0.704787) toward the inner portion of the chimney wall. In contrast, the innermost layer surrounding the fluid conduit is characterized by heavier and more radiogenic isotopes (δ34S = 20.3 ‰; 87Sr/86Sr = 0.7049). This suggests there was increasing influence of percolating seawater on the mineral paragenesis at the waning phase of the chimney development.

  1. H, O, Sr, Nd, and Pb isotope geochemistry of the Latir volcanic field and cogenetic intrusions, New Mexico, and relations between evolution of a continental magmatic center and modifications of the lithosphere

    USGS Publications Warehouse

    Johnson, C.M.; Lipman, P.W.; Czamanske, G.K.

    1990-01-01

    Over 200 H, O, Sr, Nd, and Pb isotope analyses, in addition to geologic and petrologic constraints, document the magmatic evolution of the 28.5-19 Ma Latir volcanic field and associated intrusive rocks, which includes multiple stages of crustal assimilation, magma mixing, protracted crystallization, and open- and closed-system evolution in the upper crust. In contrast to data from younger volcanic centers in northern New Mexico, relatively low and restricted primary ??18O values (+6.4 to +7.4) rule out assimilation of supracrustal rocks enriched in 18O. Initial 87Sr/86Sr ratios (0.705 to 0.708), ??18O values (-2 to-7), and 206Pb/204Pb ratios (17.5 to 18.4) of metaluminous precaldera volcanic rocks and postcaldera plutonic rocks suggest that most Latir rocks were generated by fractional crystallization of substantial volumes of mantle-derived basaltic magma that had near-chondritic Nd isotope ratios, accompanied by assimilation of crustal material in two main stages: 1) assimilation of non-radiogenic lower crust, followed by 2) assimilation of middle and upper crust by inter-mediate-composition magmas that had been contaminated during the first stage. Magmatic evolution in the upper crust peaked with eruption of the peralkaline Amalia Tuff (???26 Ma), which evolved from metaluminous parental magmas. A third stage of late, roofward assimilation of Proterozoic rocks in the Amalia Tuff magma is indicated by trends in initial 87Sr/86Sr and 206Pb/204Pb ratios from 0.7057 to 0.7098 and 19.5 to 18.8, respectively, toward the top of the pre-eruptive magma chamber. Highly evolved postcaldera plutons are generally fine grained and are zoned in initial 87Sr/86Sr and 206Pb/204Pb ratios, varying from 0.705 to 0.709 and 17.8 to 18.6, respectively. In contrast, the coarser-grained Cabresto Lake (???25 Ma) and Rio Hondo (???21 Ma) plutons have relatively homogeneous initial 87Sr/86Sr and 206Pb/204Pb ratios of approximately 0.7053 and 17.94 and 17.55, respectively. ??18O values for all the postcaldera plutons overlap those of the precaldera rocks and Amalia Tuff, except for those for two late-stage rhyolite dikes associated with the Rio Hondo pluton that have ??18O values of-8.6 and-9.5; these dikes are the only Latir rocks which may be largely crustal melts. Chemical and isotopic data from the Latir field suggest that large fluxes of mantle-derived basaltic magma are necessary for developing and sustaining large-volume volcanic centers. Development of a detailed model suggests that 6-15 km of new crust may have been added beneath the volcanic center; such an addition may result in significant changes in the chemical and Sr and Nd isotopic compositions of the crust, although Pb isotope ratios will remain relatively unchanged. If accompanied by assimilation, crystallization of pooled basaltic magma near the MOHO may produce substantial cumulates beneath the MOHO that generate large changes in the isotopic composition of the upper mantle. The Latir field may be similar to other large-volume, long-lived intracratonal volcanic fields that fundamentally owe their origins to extensive injection of basaltic magma into the lower parts of their magmatic systems. Such fields may overlie areas of significant crustal growth and hybridization. ?? 1990 Springer-Verlag.

  2. [High-precision in situ analysis of the lead isotopic composition in copper using femtosecond laser ablation MC-ICP-MS and the application in ancient coins].

    PubMed

    Chen, Kai-Yun; Fan, Chao; Yuan, Hong-Lin; Bao, Zhi-An; Zong, Chun-Lei; Dai, Meng-Ning; Ling, Xue; Yang, Ying

    2013-05-01

    In the present study we set up a femtosecond laser ablation MC-ICP-MS method for lead isotopic analysis. Pb isotopic composition of fifteen copper (brass, bronze) standard samples from the National Institute of Standards Material were analyzed using the solution method (MC-ICP-MS) and laser method (fLA-MC-ICPMS) respectively, the results showed that the Pb isotopic composition in CuPb12 (GBW02137) is very homogeneous, and can be used as external reference material for Pb isotopic in situ analysis. On CuPb12 112 fLA-MC-ICPMS Pb isotope analysis, the weighted average values of the Pb isotopic ratio are in good agreement with the results analyzed by bulk solution method within 2sigma error, the internal precision RSEs of the 208 Pb/204 Pb ratio and 207 Pb/206 Pb ratio are less than 90 and 40 ppm respectively, and the external precision RSDs of them are less than 60 and 30 ppm respectively. Pb isotope of thirteen ancient bronze coins was analyzed via fLA-MC-ICPMS, the results showed that the Pb isotopic composition of ancient coins of different dynasties is significantly different, and not all the Pb isotopic compositions in the coins even from the same dynasty are in agreement with each other.

  3. Improved sample utilization in thermal ionization mass spectrometry isotope ratio measurements: refined development of porous ion emitters for nuclear forensic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baruzzini, Matthew Louis

    The precise and accurate determination of isotopic composition in nuclear forensic samples is vital for assessing origin, intended use and process history. Thermal ionization mass spectrometry (TIMS) is widely accepted as the gold standard for high performance isotopic measurements and has long served as the workhorse in the isotopic ratio determination of nuclear materials. Nuclear forensic and safeguard specialists have relied heavily on such methods for both routine and atypical e orts. Despite widespread use, TIMS methods for the assay of actinide systems continue to be hindered by poor ionization e ciency, often less than tenths of a percent; themore » majority of a sample is not measured. This represents a growing challenge in addressing nextgeneration nuclear detection needs by limiting the ability to analyze ultratrace quantities of high priority elements that could potentially provide critical nuclear forensic signatures. Porous ion emitter (PIE) thermal ion sources were developed in response to the growing need for new TIMS ion source strategies for improved ionization e ciency, PIEs have proven to be simple to implement, straightforward approach to boosting ion yield. This work serves to expand the use of PIE techniques for the analysis of trace quantities of plutonium and americium. PIEs exhibited superior plutonium and americium ion yields when compared to direct lament loading and the resin bead technique, one of the most e cient methods for actinide analysis, at similar mass loading levels. Initial attempts at altering PIE composition for the analysis of plutonium proved to enhance sample utilization even further. Preliminary investigations of the instrumental fractionation behavior of plutonium and uranium analyzed via PIE methods were conducted. Data collected during these initial trial indicate that PIEs fractionate in a consistent, reproducible manner; a necessity for high precision isotope ratio measurements. Ultimately, PIEs methods were applied for the age determination of various uranium isotopic standards. PIEs did not exhibit signi cant advantages for the determination of model ages when compared to traditional laments; however, this trial was able to provide valuable insight for guiding future investigations.« less

  4. In situ strontium and sulfur isotope investigation of the Ni-Cu-(PGE) sulfide ore-bearing Kevitsa intrusion, northern Finland

    NASA Astrophysics Data System (ADS)

    Luolavirta, Kirsi; Hanski, Eero; Maier, Wolfgang; Lahaye, Yann; O'Brien, Hugh; Santaguida, Frank

    2018-01-01

    The 2.06-Ga Kevitsa mafic-ultramafic intrusion in northern Finland hosts a large disseminated Ni-Cu-PGE deposit. The deposit occurs in the ultramafic olivine-pyroxene cumulates and shows a range in Ni tenors varying from 4-7 wt% (regular ore) to > 10 wt% (Ni-PGE ore). There are also a metal-poor sulfide mineralization (false ore) and contact mineralization that are uneconomic (Ni tenor < 4 wt%). The obtained 87Sr/86Sr(i) values of the Kevitsa ultramafic cumulates are highly radiogenic (> 0.7045) in comparison to the estimated depleted mantle Sr isotope ratio of 0.702 at 2.06 Ga. The sulfur δ 34S values are generally higher than + 2‰, which together with the Sr isotope data imply involvement of crustal material in the genesis of the Kevitsa intrusion and its ores. The 87Sr/86Sr(i) values obtained from the ore-bearing domain of the intrusion show stratigraphic variation and exceed 0.7050, with the maximum value reaching up to 0.7109. In contrast, in rocks around the ore domain, the initial Sr isotope compositions remain more or less constant (0.7047-0.7060) throughout the intrusive stratigraphy. The isotope data suggest that the ore-bearing domain of the intrusion represents a dynamic site with multiple injections of variably contaminated magma, whereas the surrounding part of the intrusion experienced a less vigorous emplacement history. No correlation is observed between the strontium and sulfur isotope compositions. This is explained by bulk assimilation of the silicate magma in a deeper staging magma chamber and variable assimilation of sulfur during magma transport into the Kevitsa magma chamber. The low level of metals in false ore and the Ni-depleted nature of its olivine suggest that some sulfides may have precipitated and deposited in the feeder conduit during the initial stage of magma emplacement. Cannibalization of early-formed sulfides by later magma injections may have been important in the formation of the economic ore deposit.

  5. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    Treesearch

    Scott T. Allen; Richard F. Keim; Jeffrey J. McDonnell

    2015-01-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability...

  6. The Effects of Core Composition on Iron Isotope Fractionation During Planetary Differentiation

    NASA Astrophysics Data System (ADS)

    Elardo, S. M.; Shahar, A.; Caracas, R.; Mock, T. D.; Sio, C. K. I.

    2018-05-01

    High pressure and temperature isotope exchange experiments and density functional theory calculations show how the composition of planetary cores affects the fractionation of iron isotopes during planetary differentiation.

  7. Weathering and vegetation controls on nickel isotope fractionation in surface ultramafic environments (Albania)

    NASA Astrophysics Data System (ADS)

    Estrade, Nicolas; Cloquet, Christophe; Echevarria, Guillaume; Sterckeman, Thibault; Deng, Tenghaobo; Tang, YeTao; Morel, Jean-Louis

    2015-08-01

    The dissolved nickel (Ni) isotopic composition of rivers and oceans presents an apparent paradox. Even though rivers represent a major source of Ni in the oceans, seawater is more enriched in the heavier isotopes than river-water. Additional sources or processes must therefore be invoked to account for the isotopic budget of dissolved Ni in seawater. Weathering of continental rocks is thought to play a major role in determining the magnitude and sign of isotopic fractionation of metals between a rock and the dissolved product. We present a study of Ni isotopes in the rock-soil-plant systems of several ultramafic environments. The results reveal key insights into the magnitude and the control of isotopic fractionation during the weathering of continental ultramafic rocks. This study introduces new constraints on the influence of vegetation during the weathering process, which should be taken into account in interpretations of the variability of Ni isotopes in rivers. The study area is located in a temperate climate zone within the ophiolitic belt area of Albania. The serpentinized peridotites sampled present a narrow range of heavy Ni isotopic compositions (δ60Ni = 0.25 ± 0.16 ‰, 2SD n = 2). At two locations, horizons within two soil profiles affected by different degrees of weathering all presented light isotopic compositions compared to the parent rock (Δ60Nisoil-rock up to - 0.63 ‰). This suggests that the soil pool takes up the light isotopes, while the heavier isotopes remain in the dissolved phase. By combining elemental and mineralogical analyses with the isotope compositions determined for the soils, the extent of fractionation was found to be controlled by the secondary minerals formed in the soil. The types of vegetation growing on ultramafic-derived soils are highly adapted and include both Ni-hyperaccumulating species, which can accumulate several percent per weight of Ni, and non-accumulating species. Whole-plant isotopic compositions were found to be isotopically heavier than the soil (Δ60Niwhole plant-soil up to 0.40‰). Fractions of Ni extracted by DTPA (diethylenetriaminepentaacetic acid) presented isotopically heavy compositions compared to the soil (Δ60NiDTPA-soil up to 0.89‰), supporting the hypothesis that the dissolved Ni fraction controlled by weathering has a heavy isotope signature. The non-hyperaccumulators (n = 2) were inclined to take up and translocate light Ni isotopes with a large degree of fractionation (Δ60Nileaves-roots up to - 0.60 ‰). For Ni-hyperaccumulators (n = 7), significant isotopic fractionation was observed in the plants in their early growth stages, while no fractionation occurred during later growth stages, when plants are fully loaded with Ni. This suggests that (i) the high-efficiency translocation process involved in hyperaccumulators does not fractionate Ni isotopes, and (ii) the root uptake process mainly controls the isotopic composition of the plant. In ultramafic contexts, vegetation composed of hyperaccumulators can significantly influence isotopic compositions through its remobilization in the upper soil horizon, thereby influencing the isotopic balance of Ni exported to rivers.

  8. Influences on the stable oxygen and carbon isotopes in gerbillid rodent teeth in semi-arid and arid environments: Implications for past climate and environmental reconstruction

    NASA Astrophysics Data System (ADS)

    Jeffrey, Amy; Denys, Christiane; Stoetzel, Emmanuelle; Lee-Thorp, Julia A.

    2015-10-01

    The stable isotope composition of small mammal tissues has the potential to provide detailed information about terrestrial palaeoclimate and environments, because their remains are abundant in palaeontological and archaeological sites, and they have restricted home ranges. Applications to the Quaternary record, however, have been sparse and limited by an acute lack of understanding of small mammal isotope ecology, particularly in arid and semi-arid environments. Here we document the oxygen and carbon isotope composition of Gerbillinae (gerbil) tooth apatite across a rainfall gradient in northwestern Africa, in order to test the relative influences of the 18O/16O in precipitation or moisture availability on gerbil teeth values, the sensitivity of tooth apatite 13C/12C to plant responses to moisture availability, and the influence of developmental period on the isotopic composition of gerbil molars and incisors. The results show that the isotopic composition of molars and incisors from the same individuals differs consistent with the different temporal periods reflected by the teeth; molar teeth are permanently rooted and form around the time of birth, whereas incisors grow continuously. The results indicate that tooth choice is an important consideration for applications as proxy Quaternary records, but also highlights a new potential means to distinguish seasonal contexts. The oxygen isotope composition of gerbil tooth apatite is strongly correlated with mean annual precipitation (MAP) below 600 mm, but above 600 mm the teeth reflect the oxygen isotope composition of local meteoric water instead. Predictably, the carbon isotope composition of the gerbil teeth reflected C3 and C4 dietary inputs, however arid and mesic sites could not be distinguished because of the high variability displayed in the carbon isotope composition of the teeth due to the microhabitat and short temporal period reflected by the gerbil. We show that the oxygen isotope composition of small mammal teeth strongly reflects moisture availability in semi-arid and arid environments and would provide an excellent record of palaeo-aridity in a terrestrial setting. The results illustrate that an understanding of an animal's physiology is essential for interpreting the animal's isotopic responses to external contexts, especially in arid zones.

  9. Stable lead isotopic analyses of historic and contemporary lead contamination of San Francisco Bay estuary

    USGS Publications Warehouse

    Ritson, P.I.; Bouse, R.M.; Flegal, A.R.; Luoma, S.N.

    1999-01-01

    Variations in stable lead isotopic composition (240Pb, 206Pb, 207Pb, 208Pb) in three sediment cores from the San Francisco Bay estuary document temporal changes in sources of lead during the past two centuries. Sediment, with lead from natural geologic sources, and relatively homogeneous lead isotopic compositions are overlain by sediments whose isotopic compositions indicate change in the sources of lead associated with anthropogenic modification of the estuary. The first perturbations of lead isotopic composition in the cores occur in the late 1800s concordant with the beginning of industrialization around the estuary. Large isotopic shifts, toward lower 206Pb/207Pb, occur after the turn of the century in both Richardson and San Pablo Bays. A similar relationship among lead isotopic compositions and lead concentrations in both Bays suggest contamination from the same source (a lead smelter). The uppermost sediments (post 1980) of all cores also have a relatively homogenous lead isotopic composition distinct from pre-anthropogenic and recent aerosol signatures. Lead isotopic compositions of leachates from fourteen surface sediments and five marsh samples from the estuary were also analyzed. These analyses suggest that the lead isotopic signature identified in the upper horizons of the cores is spatially homogeneous among recently deposited sediments throughout the estuary. Current aerosol lead isotopic compositions [Smith, D.R., Niemeyer, S., Flegal, A.R., 1992. Lead sources to California sea otters: industrial inputs circumvent natural lead biodepletion mechanisms. Environmental Research 57, 163-175] are distinct from the isotopic compositions of the surface sediments, suggesting that the major source of lead is cycling of historically contaminated sediments back through the water column. Both the upper core sediments and surface sediments apparently derive their lead predominantly from sources internal to the estuary. These results support the idea that geochemical cycling of lead between sediments and water accounts for persistently elevated lead concentrations in the water column despite 10-fold reduction of external source inputs to San Francisco Bay [Flegal, A.R., Rivera-Duarte, I., Ritson, P.I., Scelfo, G., Smith, G.J., Gordon, M., Sanudo-Wilhelmy, S.A., 1996. Metal contamination in San Francisco Waters: historic perturbations, contemporary concentrations, and future considerations in San Francisco Bay. In: Hollobaugh, J.T. (Ed.), The Ecosystem. AAAS, pp. 173-188].

  10. Calcium-aluminum-rich inclusions with fractionation and unidentified nuclear effects (FUN CAIs): II. Heterogeneities of magnesium isotopes and 26Al in the early Solar System inferred from in situ high-precision magnesium-isotope measurements

    NASA Astrophysics Data System (ADS)

    Park, Changkun; Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.; Davis, Andrew M.; Bizzarro, Martin

    2017-03-01

    Calcium-aluminum-rich inclusions with isotopic mass fractionation effects and unidentified nuclear isotopic anomalies (FUN CAIs) have been studied for more than 40 years, but their origins remain enigmatic. Here we report in situ high precision measurements of aluminum-magnesium isotope systematics of FUN CAIs by secondary ion mass spectrometry (SIMS). Individual minerals were analyzed in six FUN CAIs from the oxidized CV3 carbonaceous chondrites Axtell (compact Type A CAI Axtell 2271) and Allende (Type B CAIs C1 and EK1-4-1, and forsterite-bearing Type B CAIs BG82DH8, CG-14, and TE). Most of these CAIs show evidence for excess 26Mg due to the decay of 26Al. The inferred initial 26Al/27Al ratios [(26Al/27Al)0] and the initial magnesium isotopic compositions (δ26Mg0) calculated using an exponential law with an exponent β of 0.5128 are (3.1 ± 1.6) × 10-6 and 0.60 ± 0.10‰ (Axtell 2271), (3.7 ± 1.5) × 10-6 and -0.20 ± 0.05‰ (BG82DH8), (2.2 ± 1.1) × 10-6 and -0.18 ± 0.05‰ (C1), (2.3 ± 2.4) × 10-5 and -2.23 ± 0.37‰ (EK1-4-1), (1.5 ± 1.1) × 10-5 and -0.42 ± 0.08‰ (CG-14), and (5.3 ± 0.9) × 10-5 and -0.05 ± 0.08‰ (TE) with 2σ uncertainties. We infer that FUN CAIs recorded heterogeneities of magnesium isotopes and 26Al in the CAI-forming region(s). Comparison of 26Al-26Mg systematics, stable isotope (oxygen, magnesium, calcium, and titanium) and trace element studies of FUN and non-FUN igneous CAIs indicates that there is a continuum among these CAI types. Based on these observations and evaporation experiments on CAI-like melts, we propose a generic scenario for the origin of igneous (FUN and non-FUN) CAIs: (i) condensation of isotopically normal solids in an 16O-rich gas of approximately solar composition; (ii) formation of CAI precursors by aggregation of these solids together with variable abundances of isotopically anomalous grains-possible carriers of unidentified nuclear (UN) effects; and (iii) melt evaporation of these precursors accompanied by crystallization under different temperatures and gas pressures, leading to the observed variations in mass-dependent isotopic fractionation (F) effects.

  11. Isotopic compositions of the elements, 2001

    USGS Publications Warehouse

    Böhlke, J.K.; De Laeter, J. R.; De Bievre, P.; Hidaka, H.; Peiser, H.S.; Rosman, K.J.R.; Taylor, P.D.P.

    2005-01-01

    The Commission on Atomic Weights and Isotopic Abundances of the International Union of Pure and Applied Chemistry completed its last review of the isotopic compositions of the elements as determined by isotope-ratio mass spectrometry in 2001. That review involved a critical evaluation of the published literature, element by element, and forms the basis of the table of the isotopic compositions of the elements (TICE) presented here. For each element, TICE includes evaluated data from the “best measurement” of the isotope abundances in a single sample, along with a set of representative isotope abundances and uncertainties that accommodate known variations in normal terrestrial materials. The representative isotope abundances and uncertainties generally are consistent with the standard atomic weight of the element Ar(E)">Ar(E)Ar(E) and its uncertainty U[Ar(E)]">U[Ar(E)]U[Ar(E)] recommended by CAWIA in 2001.

  12. Calcium Isotopic Compositions of Forearc Sediments from DSDP Site 144

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhu, H.; Nan, X.; Li, X.; Huang, F.

    2016-12-01

    It is important to investigate calcium isotopic compositions of reservoirs of the Earth for better application of Ca isotopes into studies of a variety of geochemical problems. Because Ca isotopic compositions for igneous rocks and carbonates are increasingly reported, this maybe bring new requirements on carefully understanding the isotopic compositions of subducted marine sediments. Marine sediments mainly contains carbonates and clays, controlling the compositions of slab-derived materials which are added to the mantle wedge. Obviously, it could have different elemental and calcium isotopic compositions with marine carbonate. Thus, it could also put biases on calcium isotopic signatures of basalts resulted from recycling oceanic carbonate into the mantle. Here, we report calcium isotopic compositions of 17 sediment samples from Deep Sea Drilling Project (DSDP) site 144 (09°27.23' N, 54°20.52' W) which is located about 400 km north of Surinam on the northern flank of the Demerara Rise with a water depth of 2957 meters. These samples have CaO contents ranging from 14.56 wt.% to 41.46 wt.% with an average of 29.61 ± 18.21 (2SD), δ44/40Ca ranges from 0.19 to 0.58 (relative to SRM915a) with an average of 0.40 ± 0.22 (2SD). These carbonate-rich sediments can be used to represent an endmember with high CaO content and low δ44/40Ca, which could modify chemical composition of the upper mantle and subduction zone lavas if they are recycled to the convective mantle during subduction. The positive linear correlation between CaO and δ44/40Ca in the sediments cannot be explained by a simple mixing between marine carbonate and clay. Instead, δ44/40Ca of these samples roughly increase from the Upper Cretaceous to the Early Oligocene, which might reflect the evolution of calcium isotopic compositions of seawater through time.

  13. Isotope Biogeochemistry of Sulfur in a Cold-Water Carbonate Mound (IODP Site 1317)

    NASA Astrophysics Data System (ADS)

    Ferdelman, T. G.; Boettcher, M. E.

    2007-12-01

    To establish a depositional model for cold-water carbonate mounds, Challenger Mound and adjacent continental slope sites were drilled during IODP Expedition 307 in May 2005. Although a role for methane seepage and subsequent anaerobic oxidation was discounted both as a hard-round substrate for mound initiation and as a principal source of carbonate within the mound succession, interstitial water profiles of sulfate, alkalinity, Mg, and Sr indicated a tight coupling between carbonate diagenesis and mircrobial sulfate reduction. The reaction of sulfide with siliciclastic iron-bearing minerals to form pyrite was proposed to account for enhanced diagenetic carbonate precipitation (Ferdelman et al., 2006; Proc. IODP, vol. 307; doi:10.2204/iodp.proc.307.2006). To characterize these geomicrobial sulfur transformations in the carbonate mound sediments, the inorganic and stable isotope geochemical compositions of pore water sulfate and solid phase reduced sulfur compounds were performed. Acid-volatile sulfur (AVS) and pyrite del 34S compositions were usually similar and exhibited an increasing trend of from -40 per mil near surface to -20 per mil at the mound base at 132 mbsf. However, several excursions to more 34S sulfur enriched pyrite to values >0 per mil were observed in the deeper sections of the mound sequence. These excursions may be linked transitory changes in the depth of the methane-sulfate transition zone during mound build-up. The oxygen isotopic composition of residual dissolved sulfate indicates intracellular isotope exchange processes within the cells of SRBs, leading to increasing equilibration between extracellular pore water and sulfate.

  14. Petrology and Physics of Magma Ocean Crystallization

    NASA Technical Reports Server (NTRS)

    Elkins-Tanton, Linda T.; Parmentier, E. M.; Hess, P. C.

    2003-01-01

    Early Mars is thought to have been melted significantly by the conversion of kinetic energy to heat during accretion of planetesimals. The processes of solidification of a magma ocean determine initial planetary compositional differentiation and the stability of the resulting mantle density profile. The stability and compositional heterogeneity of the mantle have significance for magmatic source regions, convective instability, and magnetic field generation. Significant progress on the dynamical problem of magma ocean crystallization has been made by a number of workers. The work done under the 2003 MFRP grant further explored the implications of early physical processes on compositional heterogeneity in Mars. Our goals were to connect early physical processes in Mars evolution with the present planet's most ancient observable characteristics, including the early, strong magnetic field, the crustal dichotomy, and the compositional characteristics of the SNC meteorite's source regions as well as their formation as isotopically distinct compositions early in Mars's evolution. We had already established a possible relationship between the major element compositions of SNC meteorite sources and processes of Martian magma ocean crystallization and overturn, and under this grant extended the analysis to the crucial trace element and isotopic SNC signatures. This study then demonstrated the ability to create and end the magnetic field through magma ocean cumulate overturn and subsequent cooling, as well as the feasibility of creating a compositionally- and volumetrically-consistent crustal dichotomy through mode-1 overturn and simultaneous adiabatic melting.

  15. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    NASA Astrophysics Data System (ADS)

    Amelin, Yuri V.; Ritsk, Eugeni Yu.; Neymark, Leonid A.

    1997-04-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/ 144Nd- 143Nd/ 144Nd and 238U/ 204Pb- 206Pb/ 204Pb mineral isochrons, corresponding to ages of 640 ± 58 Ma (95% confidence level) and 620 ± 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ± 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites withɛ Nd = +6.6 to +7.1 andɛ Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit:ɛ Nd = +4.6 to +6.1 andɛ Sr = -8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/ 204Pb= 16.994 ± 0.023 and 207Pb/ 204Pb= 15.363 ± 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic magma during formation of the mafic crustal sequence. The isotopic data agree with a hypothesized formation of the Chaya Massif in a suprasubduction-zone environment.

  16. Effects of interaction between ultramafic tectonite and mafic magma on Nd-Pb-Sr isotopic systems in the Neoproterozoic Chaya Massif, Baikal-Muya ophiolite belt

    USGS Publications Warehouse

    Amelin, Y.V.; Ritsk, E. Yu; Neymark, L.A.

    1997-01-01

    Sm-Nd, Rb-Sr and U-Pb isotopic systems have been studied in minerals and whole rocks of harzburgites and mafic cumulates from the Chaya Massif, Baikal-Muya ophiolite belt, eastern Siberia, in order to determine the relationship between mantle ultramafic and crustal mafic sections. Geological relations in the Chaya Massif indicate that the mafic magmas were emplaced into, and interacted with older solid peridotite. Hand picked, acid-leached, primary rock-forming and accessory minerals (olivine, orthopyroxene, clinopyroxene and plagioclase) from the two harzburgite samples show coherent behavior and yield 147Sm/144Nd- 143Nd/144Nd and 238U/204Pb-206Pb/204Pb mineral isochrons, corresponding to ages of 640 ?? 58 Ma (95% confidence level) and 620 ?? 71 Ma, respectively. These values are indistinguishable from the crystallization age of the Chaya mafic units of 627 ?? 25 Ma (a weighted average of internal isochron Sm-Nd ages of four mafic cumulates). The Rb-Sr and Sm-Nd isotopic systems in the harzburgite whole-rock samples were disturbed by hydrothermal alteration. These alteration-related isotopic shifts mimic the trend of variations in primary isotopic compositions in the mafic sequence, thus emphasizing that isotopic data for ultramafic rocks should be interpreted with great caution. On the basis of initial Sr and Nd values, ultramafic and mafic rocks of the Chaya Massif can be divided into two groups: (1) harzburgites and the lower mafic unit gabbronorites with ??Nd = +6.6 to +7.1 and ??Sr = -11 to -16; and (2) websterite of the lower unit and gabbronorites of the upper mafic unit: ??Nd = + 4.6 to + 6.1 and ??Sr = - 8 to -9. Initial Pb isotopic ratios are identical in all rocks studied, with mean values of 206Pb/204Pb = 16.994 ?? 0.023 and 207Pb/204Pb = 15.363 ?? 0.015. The similarity of ages and initial isotopic ratios within the first group indicates that the isotopic systems in the pre-existing depleted peridotite were reset by extensive interaction with basaltic magma during formation of the mafic crustal sequence. The isotopic data agree with a hypothesized formation of the Chaya Massif in a suprasubduction-zone environment.

  17. Isotopic Composition of the Neolithic Alpine Iceman's Tooth Enamel and Clues to his Origin

    NASA Astrophysics Data System (ADS)

    Muller, W.; Muller, W.; Halliday, A. N.

    2001-12-01

    Five small enamel fragments from three teeth of the upper right jaw from the mummy of the Neolithic Alpine Iceman have been investigated for their isotopic composition in order to shed light on his geographic origins. Soils from approximately contemporaneous sites were sampled for comparison. Tooth enamel forms ontogenetically very early and is not re-mineralized during later lifetime (unlike with bone material). Therefore, unique insights into the Iceman's childhood can be acquired. Enamel also is the densest tissue of a human body and is thus less susceptible to post-mortem alteration. Both radiogenic (Sr, Pb, Nd) and stable isotopes (O, C) are investigated. Radiogenic isotopes allow reconstruction of the local geological background, because humans incorporate Sr, Pb and Nd from their local environment by eating local food. Stable isotopes provide information about altitude and/or position relative to the main Alpine watershed. High spatial-resolution laser-ablation ICPMS profiles reveal that most elements are distributed in a manner that is essentially similar to modern human teeth except of that La, Ce, Nd (LREE) show up to a 100-fold enrichment towards the outer enamel surface. These uptake-profiles may reflect interaction with melt water, consistent with data for the composition of samples of the Iceman's skin. Biogenic apatites (enamel, bone) have very low in-vivo LREE concentrations, but take up LREEs post-mortem from the burial environment. Ice core samples from the finding site show concentrations up to 400 ppt Ce. Such high uptake of the LREEs precludes the derivation of an in-vivo Nd isotopic signal, but both other radiogenic tracers, Sr and Pb, show pristine (in-vivo) concentrations of 87 ppm and 0.1 ppm, respectively. Strontium isotopic compositions were determined on fragments from the canine, the first and second premolar (1 - 9 mg) and two hip bone samples, utilizing three sequential leaching steps for each sample to detect possible alteration-related disturbance. Enamel fragments from three teeth are characterized by virtually similar and high 87Sr/^{86}Sr ratios of 0.7203-0.7206, consistent with the compositions of crystalline gneisses and schists close to the finding site. Sites overlying bedrock built up by limestone from further south or north can clearly be excluded as the Iceman's childhood area. Among the three teeth, enamel mineralized approximately during a 2-3 year interval starting with the canine at the age of ~2 years. Hence, during this period, the food source for the Iceman must have remained essentially constant. Two compact bone samples from the damaged hip region have 87Sr/^{86}Sr ratios of 0.7175 and 0.7181, significantly lower than that of the enamel. The internal variation in the Iceman's bone Sr isotopic composition argues for somewhat different Sr turnover times within the skeleton, but it is evident that during the last 1-3 decades of his life, food from a different region was utilized. The 87Sr/^{86}Sr ratios of the initial bone leachates point towards post-mortem alteration with water having 87Sr/^{86}Sr ratios higher than ~0.718, consistent with that measured for contemporaneous ice samples (0.720-0.723). These Sr isotopic variations among ice samples may have implications for the post depositional (climate) history of the Iceman's finding site, since it appears unlikely that substantial compositional differences among adjacent ice samples would be preserved if the site had thawed near completely during e.g. the Roman warm period.

  18. Oxygen Isotopic Analyses of Water Extracted from the Martian Meteorite NWA 7034

    NASA Astrophysics Data System (ADS)

    Nunn, M.; Agee, C. B.; Thiemens, M. H.

    2012-12-01

    Introduction: The NWA 7034 meteorite has been identified as Martian, but it is distinct from the Shergottite-Nakhlite-Chassignite (SNC) grouping of meteorites in its petrology (it is the only known Martian basaltic breccia) and bulk silicate oxygen isotopic composition (Δ17O = 0.56 ± 0.06 ‰, where Δ17O = δ17O - 0.528 x δ18O, compared to the average SNC Δ17O ≈ 0.3 ‰) [e.g., 1-2]. We report here measurements of the oxygen isotopic composition of water extracted from NWA 7034 by stepwise heating. Methods: A piece (~1.2g) of NWA 7034 was pumped to vacuum until outgassing had stopped before heating to 50, 150, 320, 500, and 1000°C. The sample was maintained at each temperature step for at least one hour while collecting evolved volatiles in a liquid nitrogen cold trap. Water was selectively converted to molecular oxygen, the oxygen isotopic composition of which was then measured on a double collecting isotope ratio mass spectrometer. Results: Our stepwise heating experiments indicate NWA 7034 contains 3330ppm water, and this water has an average oxygen isotopic composition of Δ17O = 0.330 ± 0.011‰. The oxygen isotopic composition of water in NWA 7034 is unlike that of the silicates from which it is extracted (Δ17O = 0.56 ± 0.06 ‰) but is comparable to the average SNC silicate composition (Δ17O ≈ 0.3 ‰). However, there is no consensus on the oxygen isotopic composition of water in SNCs because aliquots of water extracted from different samples (separate pieces of a single meteorite or from different meteorites) have different oxygen isotopic compositions [3]. Furthermore, carbonates and sulfates extracted from SNCs also possess distinct oxygen isotopic compositions [4]. The variation in oxygen isotopic composition among these phases most likely results from the existence of isotopically distinct oxygen reservoirs on Mars that were not equilibrated. On Earth, interaction of ozone (O3) and carbon dioxide (CO2) leads to a mass independent oxygen isotopic composition of atmospheric CO2 [5]. This anomaly is transferred by exchange from CO2 to water and subsequently to secondary minerals. The much larger CO2 to water ratio on Mars could allow this process to introduce a measurable oxygen isotopic anomaly to sulfates, carbonates, and water. The magnitude and variability of this anomaly would depend on the formation mechanism of the species (particularly the source of oxygen), as is consistent with measurements to date of phases in SNCs. References: [1] Franchi, I.A., et al. (1999) MAPS 34, 657-661. [2] Rumble, D. and Irving, A.J. (2009) LPSC XXXX, #2293 [3] Karlsson, H.R., et al. (1992) Science 255, 1409-1411. [4] Farquhar, J. and Thiemens, M.H. (2000) J. Geophys. Res. 105, 11991-11997. [5] Yung, Y.L., et al. (1991) Geophys. Res. Lett. 18, 13-16.

  19. Increasing influence of exotic terranes as sources of shales from the Sevier and Taconic Foreland basins : Evidence from Nd isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samson, S.D.; Andersen, C.B.

    1994-03-01

    The influence of outboard tectonostratigraphic terranes as a source of sediment to Ordovician foreland basins is unknown. To determine if there were changes in provenance, or changes in the importance of a given source region, the authors have analyzed shales from two foreland basins, the Tactonic Foreland basin of central New York and the Sevier Foreland basin of Tennessee, for their Nd isotopic compositions. Shales from the Taconic basin include those from the lower portion of Utica shale, Corynoides americanus graptolite Zone, and the uppermost portion of the Utica shale, including the Geniculograptus pygmaeus graptolite Zone. Initial [epsilon][sub Nd] valuesmore » for the oldest Taconic basin shales are [minus]12. Initial [epsilon][sub Nd] values for the younger Taconic basin shales range from [minus]9.7 to [minus]8.4. This increase in [epsilon][sub Nd] may reflect an increased influence of terranes outboard of the Laurentian margin. Samples from the Sevier basin include those from the Blockhouse and Tellico Formations. A sample of the lower Blockhouse Fm. has an initial [epsilon][sub Nd] of [minus]9.4, while mid-formation levels have [epsilon][sub Nd] = [minus]8.8. Initial [epsilon][sub Nd] ranges from [minus]8.0 to [minus]7.2 from Tellico Formation shales. Thus a trend towards increasing [epsilon][sub Nd] with decreasing age is also seen in the Sevier basin. This again suggests the possibility of an increasing influence from nearby terranes. The fact that the [epsilon][sub Nd] values are higher in the Sevier basin than in the Taconic basin indicates that the Sevier shales received detritus with a less evolved isotopic composition. This may reflect fundamentally different sources, such as a more juvenile terrane as an important source of Sevier basin shales.« less

  20. Isotopic Resonance Hypothesis: Experimental Verification by Escherichia coli Growth Measurements

    NASA Astrophysics Data System (ADS)

    Xie, Xueshu; Zubarev, Roman A.

    2015-03-01

    Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some ``resonance'' isotopic compositions, the kinetics increases, while at ``off-resonance'' compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error +/-0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p << 10-15). This phenomenon has numerous implications for the origin of life studies and astrobiology, and possible applications in agriculture, biotechnology, medicine, chemistry and other areas.

  1. Iron isotopic composition of blood serum in anemia of chronic kidney disease.

    PubMed

    Anoshkina, Yulia; Costas-Rodríguez, Marta; Speeckaert, Marijn; Van Biesen, Wim; Delanghe, Joris; Vanhaecke, Frank

    2017-05-24

    Chronic kidney disease (CKD) is a general term for disorders that affect the structure and function of the kidneys. Iron deficiency (ID) and anemia occur in the vast majority of CKD patients, most of whom are elderly. However, establishing the cause of anemia in CKD, and therefore making an informed decision concerning the corresponding therapeutic treatment, is still a challenge. High-precision Fe isotopic analysis of blood serum samples of CKD patients with and without ID/anemia was performed via multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) for such a purpose. Patients with CKD and/or iron disorders showed a heavier serum Fe isotopic composition than controls. Many clinical parameters used for the diagnosis and follow-up of anemia correlated significantly with the serum Fe isotopic composition. In contrast, no relation was observed between the serum Fe isotopic composition and the estimated glomerular filtration rate as a measure of kidney function. Among the CKD patients, the serum Fe isotopic composition was substantially heavier in the occurrence of ID anemia, while erythropoietin-related anemia did not exert this effect. The Fe isotopic composition can thus be useful for distinguishing these different types of anemias in CKD patients, i.e. ID anemia vs. erythropoietin-related anemia.

  2. Processes affecting the stable isotope composition of calcite during precipitation on the surface of stalagmites: Laboratory experiments investigating the isotope exchange between DIC in the solution layer on top of a speleothem and the CO2 of the cave atmosphere

    NASA Astrophysics Data System (ADS)

    Dreybrodt, Wolfgang; Hansen, Maximilian; Scholz, Denis

    2016-02-01

    We present a theoretical derivation of the exchange time, τex, needed to establish isotopic equilibrium between atmospheric CO2 in a cave and HCO3- dissolved in a thin water film covering the surface of a speleothem. The result is τex = τredex · [HCO3-]/ (KH · pCO2cave) , where τredex depends on the depth, a, of the water film and on temperature. [HCO3-] is the concentration of bicarbonate, pCO2cave the partial pressure of CO2, and KH is Henry's constant. To test the theory we prepared stagnant or flowing thin films of a NaHCO3 solution and exposed them at 20 °C to an CO2 containing atmosphere of pCO2 500, 12,500, or 25,000 ppmV and defined isotope composition. The δ13C and δ18O values of the DIC in the solution were measured as a function of the exposure time. For stagnant films with depths between 0.06 and 0.2 cm the δ13C values exhibit an exponential approach towards isotope equilibrium with the atmospheric CO2 with exchange time, τex. The δ18O values first evolve towards isotopic equilibrium with atmospheric CO2, reach a minimum value and then drift away from the isotopic equilibrium with atmospheric CO2 approaching a steady state caused by isotopic exchange of oxygen with water. The experimental findings are in satisfactory agreement with the theoretical predictions. To further investigate isotope evolution in cave analogue conditions, a water film containing 5 mmol/L of NaHCO3 with a depth of 0.013 cm flowing down an inclined borosilicate glass plate was exposed to an atmosphere with pCO2 = 500 ppmV at a temperature of 20 °C. The δ13C and δ18O values were measured as a function of flow (exposure) time, t. The isotope compositions in the DIC of the water film decrease linear in time by δDIC (t) =δDIC (0) - (δDIC (0) -δDIC (∞)) · t /τex where δDIC (0) is the initial isotope composition of dissolved inorganic carbon (DIC) in the water film and δDIC (∞) its final value. From these data an exchange time τex of ca. 7000 s was obtained, in satisfactory agreement with the theoretical predictions. The exchange times can be calculated by τex = τredex · [HCO3-]/ (KH · pCO2cave), where τredex is given by the theory as function of temperature and the depth, a, of the water film. This way it is possible to obtain exchange times for various conditions of stalagmite growth as they occur in caves.

  3. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Leistert, Hannes; Gimbel, Katharina; Weiler, Markus

    2016-09-01

    Water stable isotopes (18O and 2H) are widely used as ideal tracers to track water through the soil and to separate evaporation from transpiration. Due to the technical developments in the last two decades, soil water stable isotope data have become easier to collect. Thus, the application of isotope methods in soils is growing rapidly. Studies that make use of soil water stable isotopes often have a multidisciplinary character since an interplay of processes that take place in the vadose zone has to be considered. In this review, we provide an overview of the hydrological processes that alter the soil water stable isotopic composition and present studies utilizing pore water stable isotopes. The processes that are discussed include the water input as precipitation or throughfall, the output as evaporation, transpiration, or recharge, and specific flow and transport processes. Based on the review and supported by additional data and modeling results, we pose a different view on the recently proposed two water world hypothesis. As an alternative to two distinct pools of soil water, where one pool is enriched in heavy isotopes and used by the vegetation and the other pool does not undergo isotopic fractionation and becomes recharge, the water gets successively mixed with newly introduced rainwater during the percolation process. This way, water initially isotopically enriched in the topsoil loses the fractionation signal with increasing infiltration depth, leading to unfractionated isotopic signals in the groundwater.

  4. Xenon isotopic composition of the Mid Ocean Ridge Basalt (MORB) source

    NASA Astrophysics Data System (ADS)

    Peto, M. K.; Mukhopadhyay, S.

    2012-12-01

    Although convection models do not preclude preservation of smaller mantle regions with more pristine composition throughout Earth's history, it has been widely assumed that the moon forming giant impact likely homogenizes the whole mantle following a magma ocean that extended all the way to the bottom of the mantle. Recent findings of tungsten and xenon heterogeneities in the mantle [1,2,3,4], however, imply that i) the moon forming giant impact may not have homogenized the whole mantle and ii) plate tectonics was inefficient in erasing early formed compositional differences, particularly for the xenon isotopes. Therefore, the xenon isotope composition in the present day mantle still preserves a memory of early Earth processes. However, determination of the xenon isotopic composition of the mantle source is still scarce, since the mantle composition is overprinted by post-eruptive atmospheric contamination in basalts erupted at ocean islands and mid ocean ridges. The xenon composition of the depleted upper mantle has been defined by the gas rich sample, 2πD43 (also known as "popping rock"), from the North Atlantic (13° 469`N). However, the composition of a single sample is not likely to define the composition of the upper mantle, especially since popping rock has an "enriched" trace element composition. We will present Ne, Ar and Xe isotope data on MORB glass samples with "normal" helium isotope composition (8±1 Ra) from the Southeast Indian Ridge, the South Atlantic Ridge, the Sojourn Ridge, the Juan de Fuca, the East Pacific Rise, and the Gakkel Ridge. Following the approach of [1], we correct for syn- and post-eruptive atmosphere contamination, and determine the variation of Ar and Xe isotope composition of the "normal" MORB source. We investigate the effect of atmospheric recycling in the variation of MORB mantle 40Ar/36Ar and 129Xe/130Xe ratios, and attempt to constrain the average upper mantle argon and xenon isotopic compositions. [1] Mukhopadhyay, Nature 2012; [2] Tucker et al., EPSL (in review); [3] Moreira et al., Nature 1998 [4] Touboul et al., Science 2012.

  5. Modelling and intepreting the isotopic composition of water vapour in convective updrafts

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2012-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, droplet size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  6. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    NASA Astrophysics Data System (ADS)

    Bolot, M.; Legras, B.; Moyer, E. J.

    2013-08-01

    The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener-Bergeron-Findeisen process). As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  7. Isotope effects on the optical spectra of semiconductors

    NASA Astrophysics Data System (ADS)

    Cardona, Manuel; Thewalt, M. L. W.

    2005-10-01

    Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.

  8. Determination of lithium isotopes at natural abundance levels by atomic absorption spectrometry

    USGS Publications Warehouse

    Meier, A.L.

    1982-01-01

    The relationships of the absorption of 6Li and 7Li hollow cathode lamp emissions are used to determine lithium isotopic composition in the natural abundance range of geologic materials. Absorption was found to have a nonlinear dependence upon total lithium concentration and isotopic composition. A method using nonlinear equations to describe the relationship of the absorption of 6Li and 7Li lamp radiation is proposed as a means of calculating isotopic composition that is independent of total lithium concentration.

  9. Latitudinal change in precipitation and water vapor isotopes over Southern ocean

    NASA Astrophysics Data System (ADS)

    Rahul, P.

    2015-12-01

    The evaporation process over ocean is primary source of water vapor in the hydrological cycle. The Global Network of Isotopes in Precipitation (GNIP) dataset of rainwater and water vapor isotopes are predominantly based on continental observations, with very limited observation available from the oceanic area. Stable isotope ratios in precipitation provide valuable means to understand the process of evaporation and transport of water vapor. This is further extended in the study of past changes in climate from the isotopic composition of ice core. In this study we present latitudinal variability of water vapor and rainwater isotopic composition and compared it with factors like physical condition of sea surface water from near equator (1°S) to the polar front (56°S) during the summer time expedition of the year 2013. The water vapor and rainwater isotopes showed a sharp depletion in isotopes while progressively move southward from the tropical regions (i.e. >30°S), which follows the pattern recorded in the surface ocean water isotopic composition. From the tropics to the southern latitudes, the water vapor d18O varied between -11.8‰ to -14.7‰ while dD variation ranges between -77.7‰ to -122.2‰. Using the data we estimated the expected water vapor isotopic composition under kinetic as well as equilibrium process. Our observation suggests that the water vapor isotopic compositions are in equilibrium with the sea water in majority of cases. At one point of observation, where trajectory of air parcel originated from the continental region, we observed a large deviation from the existing trend of latitudinal variability. The deduced rainwater composition adopting equilibrium model showed a consistent pattern with observed values at the tropical region, while role of kinetic process become dominant on progressive shift towards the southern latitudes. We will draw comparison of our observation with other data available in the literature together with isotope model data during the presentation.

  10. Stable Isotope Anatomy of Tropical Cyclone Ita, North-Eastern Australia, April 2014

    PubMed Central

    Munksgaard, Niels C.; Zwart, Costijn; Kurita, Naoyuki; Bass, Adrian; Nott, Jon; Bird, Michael I.

    2015-01-01

    The isotope signatures registered in speleothems during tropical cyclones (TC) provides information about the frequency and intensity of past TCs but the precise relationship between isotopic composition and the meteorology of TCs remain uncertain. Here we present continuous δ18O and δ2H data in rainfall and water vapour, as well as in discrete rainfall samples, during the passage of TC Ita and relate the evolution in isotopic compositions to local and synoptic scale meteorological observations. High-resolution data revealed a close relationship between isotopic compositions and cyclonic features such as spiral rainbands, periods of stratiform rainfall and the arrival of subtropical and tropical air masses with changing oceanic and continental moisture sources. The isotopic compositions in discrete rainfall samples were remarkably constant along the ~450 km overland path of the cyclone when taking into account the direction and distance to the eye of the cyclone at each sampling time. Near simultaneous variations in δ18O and δ2H values in rainfall and vapour and a near-equilibrium rainfall-vapour isotope fractionation indicates strong isotopic exchange between rainfall and surface inflow of vapour during the approach of the cyclone. In contrast, after the passage of spiral rainbands close to the eye of the cyclone, different moisture sources for rainfall and vapour are reflected in diverging d-excess values. High-resolution isotope studies of modern TCs refine the interpretation of stable isotope signatures found in speleothems and other paleo archives and should aim to further investigate the influence of cyclone intensity and longevity on the isotopic composition of associated rainfall. PMID:25742628

  11. Elemental and iron isotopic composition of aerosols collected in a parking structure.

    PubMed

    Majestic, Brian J; Anbar, Ariel D; Herckes, Pierre

    2009-09-01

    The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM)<2.5 microm in diameter (the fine fraction) and PM>2.5 microm were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m(-3)) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be +0.15+/-0.03 per thousand and +0.18+/-0.03 per thousand for the PM<2.5 microm and PM>2.5 microm fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average=+0.02 per thousand) and the ceramic brake linings (average=+0.65 per thousand). Differences in isotopic composition were also observed between the metallic (average=+0.18 per thousand) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.

  12. Intramolecular Isotopic Studies: Chemical Enhancements and Alternatives

    NASA Astrophysics Data System (ADS)

    Hayes, J. M.

    2016-12-01

    As mass spectroscopic and NMR-based methods now appropriately flourish, chemical techniques should not be forgotten. First, the methods developed by pioneering intramolecular analysts can be reapplied to new samples. Second, they can be extended. The synthesis of intramolecular isotopic standards is particularly important and straightforward. It requires only that a chemical reaction has no secondary products. An example is provided by the addition of carbon dioxide to a Grignard reagent. The reaction proceeds with an isotope effect. The isotopic composition of the carboxyl group in the acid which is produced is thus not equal to that of the starting carbon dioxide but the unconsumed CO2 can be recovered and analyzed. A simple titration can show that all the rest of the CO2 is in the product acid. The isotopic composition of the carboxyl group can then be calculated by difference. The product is an intramolecular isotopic standard, an organic molecule in which the isotopic composition of a specific carbon position is known accurately. Both analysts and reviewers can thus gain invaluable confidence in the accuracy of instrumental results. A second example: the haloform reaction quantitatively degrades methyl ketones, producing a carboxylic acid which can be decarboxylated to determine the isotopic composition of the parent carbonyl and a haloform (CHI3, for example) that can be combusted to determine the isotopic composition of the methyl group. Ketones thus analyzed can be combined with Grignard reagents to yield carbon skeletons in which the isotopic compositions of internal and terminal -CH2- and -CH3 groups are known accurately. In general, analysts accustomed to demanding quantitative reactions should remember the power of mass balances and recognize that many organic-chemical reactions, while not quantitative, lack side products and can be driven to the total consumption of at least one reactant.

  13. Testing the chondrule-rich accretion model for planetary embryos using calcium isotopes

    NASA Astrophysics Data System (ADS)

    Amsellem, Elsa; Moynier, Frédéric; Pringle, Emily A.; Bouvier, Audrey; Chen, Heng; Day, James M. D.

    2017-07-01

    Understanding the composition of raw materials that formed the Earth is a crucial step towards understanding the formation of terrestrial planets and their bulk composition. Calcium is the fifth most abundant element in terrestrial planets and, therefore, is a key element with which to trace planetary composition. However, in order to use Ca isotopes as a tracer of Earth's accretion history, it is first necessary to understand the isotopic behavior of Ca during the earliest stages of planetary formation. Chondrites are some of the oldest materials of the Solar System, and the study of their isotopic composition enables understanding of how and in what conditions the Solar System formed. Here we present Ca isotope data for a suite of bulk chondrites as well as Allende (CV) chondrules. We show that most groups of carbonaceous chondrites (CV, CI, CR and CM) are significantly enriched in the lighter Ca isotopes (δ 44 / 40 Ca = + 0.1 to + 0.93 ‰) compared with bulk silicate Earth (δ 44 / 40 Ca = + 1.05 ± 0.04 ‰, Huang et al., 2010) or Mars, while enstatite chondrites are indistinguishable from Earth in Ca isotope composition (δ 44 / 40 Ca = + 0.91 to + 1.06 ‰). Chondrules from Allende are enriched in the heavier isotopes of Ca compared to the bulk and the matrix of the meteorite (δ 44 / 40 Ca = + 1.00 to + 1.21 ‰). This implies that Earth and Mars have Ca isotope compositions that are distinct from most carbonaceous chondrites but that may be like chondrules. This Ca isotopic similarity between Earth, Mars, and chondrules is permissive of recent dynamical models of planetary formation that propose a chondrule-rich accretion model for planetary embryos.

  14. Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Wasylenki, Laura E.

    2017-06-01

    The Ni isotopic systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater over Precambrian geological history. However, the utility of BIFs as proxies requires quantitative knowledge of how Ni isotopes fractionated as dissolved Ni was initially incorporated into iron-rich sediments and how diagenesis may have affected the Ni isotopic systematics. Here we report results of synthesis experiments to investigate the behavior of Ni isotopes during Ni coprecipitation with ferrihydrite and then transformation of ferrihydrite to hematite. Ferrihydrite coprecipitation experiments at neutral pH demonstrated that the dissolved Ni was variably heavier than coprecipitated Ni (likely a mixture of surface-adsorbed and structurally incorporated Ni), with the isotope fractionation becoming larger as the fraction of Ni associated with solid increased (Δ60/58Nisolution-solid = +0.08 to +0.50‰). Further experiments at lower pH (3.7-6.7), in which structurally incorporated Ni likely dominated in solids, documented a decrease in Δ60/58Nisolution-solid from +0.44‰ to -0.18‰ as the pH decreased. The negative value for Δ60/58Nisolution-solid at low pH indicates the enrichment of heavier isotopes in incorporated Ni relative to dissolved and adsorbed Ni, possibly as a result of the presence of a small amount of tetrahedral Ni2+ in addition to octahedral Ni2+ in the ferrihydrite structure. The results of the ferrihydrite experiments thus reflect equilibrium isotope fractionation between three pools of Ni, with δ60/58Ni values in the order of incorporated > dissolved > adsorbed. Hematite was synthesized by transformation of Ni-bearing ferrihydrite in aqueous solution at ∼100 °C. A significant amount of Ni (up to 60%) was released (desorbed) from solids into solutions as pH dropped from ∼7 to 4.5-5.5 upon phase transformation. Rinsing of the synthesized hematite in 2 M acetic acid released only very small amounts of Ni (<4% of total Ni, presumably surface-adsorbed) that were isotopically heavier (δ60/58Ni = +0.11 ± 0.06‰) than the residues (presumably dominated by incorporated Ni), which had δ60/58Ni of -0.26 ± 0.07‰. The preference of lighter isotopes for the incorporated Ni relative to the surface-adsorbed Ni after phase transformation (most had been released into solution) is probably due to distortion of Nisbnd O octahedra in the hematite structure, with weaker Nisbnd O bond strengths on average. Hence, the more variable Δ60/58Nisolution-solid values (-0.04 to +0.77‰) observed in hematite experiments most likely reflect thermodynamically driven Rayleigh fractionation, with incorporated Ni unavailable to exchange with dissolved Ni due to continuous reduction in size of the highly reactive surface pool of Ni, through which all solid-solution exchange must occur. Overall, the synthesized hematite was isotopically lighter than the ferrihydrite by ∼0.08‰ in δ60/58Ni, which is however within the current analytical uncertainties (±0.09‰). This implies that earliest diagenesis of BIFs results in very limited change in the isotopic composition of solid-associated Ni. Our experimental results, although conducted in a very simple system that differs from Archean seawater, represent an important step toward reconstruction of the Ni isotopic composition of ancient seawater from Ni isotopic signatures in BIFs.

  15. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    NASA Astrophysics Data System (ADS)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the oxygen isotope composition of ambient CO2. This non-destructive approach was tested through laboratory incubations of air-dried soils that were re-wetted with water of known isotopic composition. Performance was assessed by comparing estimates of the soil water oxygen isotope composition derived from open chamber flux measurements with those measured in the irrigation water and soil water extracted following incubations. The influence of soil pH and bovine carbonic anhydrase additions on these estimates was also investigated. Coherent values were found between the soil water composition estimates obtained from the dual steady state approach and those measured for irrigation waters. Estimates of carbonic anhydrase activity made using this approach also reflected well artificial increases to the concentration of carbonic anhydrase and indicated that this activity was sensitive to soil pH.

  16. Using multiple isotopes to understand the source of ingredients used in golden beverages

    NASA Astrophysics Data System (ADS)

    Wynn, J. G.

    2011-12-01

    Traditionally, beer contains 4 simple ingredients: water, barley, hops and yeast. Each of these ingredients used in the brewing process contributes some combination of a number of "traditional" stable isotopes (i.e., isotopes of H, C, O, N and S) to the final product. As an educational exercise in an "Analytical Techniques in Geology" course, a group of students analyzed the isotopic composition of the gas, liquid and solid phases of a variety of beer samples collected from throughout the world (including other beverages). The hydrogen and oxygen isotopic composition of the water followed closely the isotopic composition of local meteoric water at the source of the brewery, although there is a systematic offset from the global meteoric water line that may be due to the effects of CO2-H2O equilibration. The carbon isotopic composition of the CO2 reflected that of the solid residue (the source of carbon used as a fermentation substrate), but may potentially be modified by addition of gas-phase CO2 from an inorganic source. The carbon isotopic composition of the solid residue similarly tracks that of the fermentation substrate, and may indicate some alcohol fermented from added sugars in some cases. The nitrogen isotopic composition of the solid residue was relatively constant, and may track the source of nitrogen in the barley, hops and yeast. Each of the analytical methods used is a relatively standard technique used in geological applications, making this a "fun" exercise for those involved, and gives the students hands-on experience with a variety of analytes from a non-traditional sample material.

  17. The ruthenium isotopic composition of the oceanic mantle

    NASA Astrophysics Data System (ADS)

    Bermingham, K. R.; Walker, R. J.

    2017-09-01

    The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.

  18. The influence of diet on the δ 13C of shell carbon in the pulmonate snail Helix aspersa

    NASA Astrophysics Data System (ADS)

    Stott, Lowell D.

    2002-02-01

    The influence of diet and atmospheric CO 2 on the carbon isotope composition of shell aragonite and shell-bound organic carbon in the pulmonate snail Helix aspersa raised in the laboratory was investigated. Three separate groups of snails were raised on romaine lettuce (C3 plant, δ 13C=-25.8‰), corn (C4 plant, δ 13C=-10.5‰), and sour orange ( 12C-enriched C3 plant, δ 13C=-39.1‰). The isotopic composition of body tissues closely tracked the isotopic composition of the snail diet as demonstrated previously. However, the isotopic composition of the acid insoluble organic matrix extracted from the aragonite shells does not track diet in all groups. In snails that were fed corn the isotopic composition of the organic matrix was more negative than the body by as much as 5‰ whereas the matrix was approximately 1‰ heavier than the body tissues in snails fed a diet of C3 plant material. These results indicate that isotopic composition of the organic matrix carbon cannot be used as an isotopic substrate for paleodietary reconstructions without first determining the source of the carbon and any associated fractionations. The isotopic composition of the shell aragonite is offset from the body tissues by 12.3‰ in each of the culture groups. This offset was not influenced by the consumption of carbonate and is not attributable to the diffusion of atmospheric CO 2 into the hemolymph. The carbon isotopic composition of shell aragonite is best explained in terms of equilibrium fractionations associated with exchange between metabolic CO 2 and HCO 3 in the hemolymph and the fractionation associated with carbonate precipitation. These results differ from previous studies, based primarily on samples collected in the field, that have suggested atmospheric carbon dioxide contributes significantly to the shell δ 13C. The culture results indicate that the δ 13C of aragonite is a good recorder of the isotopic composition of the snail body tissue, and therefore a better recorder of diet than is the insoluble shell organic carbon. Because the systematic fractionation of carbon isotopes within the snail is temperature dependent, the δ 13C of the shell could provide an independent technique for estimating paleotemperature changes.

  19. Strontium and neodymium isotopes in hot springs on the East Pacific Rise and Guaymas Basin

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.

    1985-01-01

    Solutions collected from 21 deg N, East Pacific Rise (Epr) and Guaymas Basin, Gulf of California, are analyzed for Nd isotopic composition and Sm and Nd concentrations. The results indicate extensive but not complete isotopic exchange with Sr in the depleted oceanic crust and that Sr concentrations in these solutions are buffered. In contrast, the Nd data exhibit a wide range in isotopic composition and concentration between vents. Many samples show substantial contributions from MORB, but all have isotopic compositions below MORB, in spite of enrichments in Nd up to 100 times seawater. It is shown that the fluids must exchange Nd with a sedimentary reservoir having an isotopic composition less than Pacific seawater. Low-temperature reactions with metalliferous sediments on the flanks of the EPR may provide such a source. Using a simple box method, estimates of the hydrothermal fluxes of Nd are compared to fluxes which are necessary to maintain a radiogenic isotopic composition of about -3 in the Pacific against the influx of Antarctic waters. It is concluded that erosion from island arcs is the main source of radiogenic Nd in the Pacific.

  20. Measurement of natural carbon isotopic composition of acetone in human urine.

    PubMed

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

  1. Heavy noble gases in solar wind delivered by Genesis mission.

    PubMed

    Meshik, Alex; Hohenberg, Charles; Pravdivtseva, Olga; Burnett, Donald

    2014-02-15

    One of the major goals of the Genesis Mission was to refine our knowledge of the isotopic composition of the heavy noble gases in solar wind and, by inference, the Sun, which represents the initial composition of the solar system. This has now been achieved with permil precision: 36 Ar/ 38 Ar = 5.5005 ± 0.0040, 86 Kr/ 84 Kr = .3012 ± .0004, 83 Kr/ 84 Kr = .2034 ± .0002, 82 Kr/ 84 Kr = .2054 ± .0002, 80 Kr/ 84 Kr = .0412 ± .0002, 78 Kr/ 84 Kr = .00642 ± .00005, 136 Xe/ 132 Xe = .3001 ± .0006, 134 Xe/ 132 Xe = .3691 ± .0007, 131 Xe/ 132 Xe = .8256 ± .0012, 130 Xe/ 132 Xe = .1650 ± .0004, 129 Xe/ 132 Xe = 1.0405 ± .0010, 128 Xe/ 132 Xe = .0842 ± .0003, 126 Xe/ 132 Xe = .00416 ± .00009, and 124 Xe/ 132 Xe = .00491 ± .00007 (error-weighted averages of all published data). The Kr and Xe ratios measured in the Genesis solar wind collectors generally agree with the less precise values obtained from lunar soils and breccias, which have accumulated solar wind over hundreds of millions of years, suggesting little if any temporal variability of the isotopic composition of solar wind krypton and xenon. The higher precision for the initial composition of the heavy noble gases in the solar system allows (1) to confirm that, exept 136 Xe and 134 Xe, the mathematically derived U-Xe is equivalent to Solar Wind Xe and (2) to provide an opportunity for better understanding the relationship between the starting composition and Xe-Q (and Q-Kr), the dominant current "planetary" component, and its host, the mysterious phase-Q.

  2. Heavy noble gases in solar wind delivered by Genesis mission

    PubMed Central

    Meshik, Alex; Hohenberg, Charles; Pravdivtseva, Olga; Burnett, Donald

    2017-01-01

    One of the major goals of the Genesis Mission was to refine our knowledge of the isotopic composition of the heavy noble gases in solar wind and, by inference, the Sun, which represents the initial composition of the solar system. This has now been achieved with permil precision: 36Ar/38Ar = 5.5005 ± 0.0040, 86Kr/84Kr = .3012 ± .0004, 83Kr/84Kr = .2034 ± .0002, 82Kr/84Kr = .2054 ± .0002, 80Kr/84Kr = .0412 ± .0002, 78Kr/84Kr = .00642 ± .00005, 136Xe/132Xe = .3001 ± .0006, 134Xe/132Xe = .3691 ± .0007, 131Xe/132Xe = .8256 ± .0012, 130Xe/132Xe = .1650 ± .0004, 129Xe/132Xe = 1.0405 ± .0010, 128Xe/132Xe = .0842 ± .0003, 126Xe/132Xe = .00416 ± .00009, and 124Xe/132Xe = .00491 ± .00007 (error-weighted averages of all published data). The Kr and Xe ratios measured in the Genesis solar wind collectors generally agree with the less precise values obtained from lunar soils and breccias, which have accumulated solar wind over hundreds of millions of years, suggesting little if any temporal variability of the isotopic composition of solar wind krypton and xenon. The higher precision for the initial composition of the heavy noble gases in the solar system allows (1) to confirm that, exept 136Xe and 134Xe, the mathematically derived U–Xe is equivalent to Solar Wind Xe and (2) to provide an opportunity for better understanding the relationship between the starting composition and Xe-Q (and Q-Kr), the dominant current “planetary” component, and its host, the mysterious phase-Q. PMID:29151613

  3. An interactive code (NETPATH) for modeling NET geochemical reactions along a flow PATH, version 2.0

    USGS Publications Warehouse

    Plummer, Niel; Prestemon, Eric C.; Parkhurst, David L.

    1994-01-01

    NETPATH is an interactive Fortran 77 computer program used to interpret net geochemical mass-balance reactions between an initial and final water along a hydrologic flow path. Alternatively, NETPATH computes the mixing proportions of two to five initial waters and net geochemical reactions that can account for the observed composition of a final water. The program utilizes previously defined chemical and isotopic data for waters from a hydrochemical system. For a set of mineral and (or) gas phases hypothesized to be the reactive phases in the system, NETPATH calculates the mass transfers in every possible combination of the selected phases that accounts for the observed changes in the selected chemical and (or) isotopic compositions observed along the flow path. The calculations are of use in interpreting geochemical reactions, mixing proportions, evaporation and (or) dilution of waters, and mineral mass transfer in the chemical and isotopic evolution of natural and environmental waters. Rayleigh distillation calculations are applied to each mass-balance model that satisfies the constraints to predict carbon, sulfur, nitrogen, and strontium isotopic compositions at the end point, including radiocarbon dating. DB is an interactive Fortran 77 computer program used to enter analytical data into NETPATH, and calculate the distribution of species in aqueous solution. This report describes the types of problems that can be solved, the methods used to solve problems, and the features available in the program to facilitate these solutions. Examples are presented to demonstrate most of the applications and features of NETPATH. The codes DB and NETPATH can be executed in the UNIX or DOS1 environment. This report replaces U.S. Geological Survey Water-Resources Investigations Report 91-4078, by Plummer and others, which described the original release of NETPATH, version 1.0 (dated December, 1991), and documents revisions and enhancements that are included in version 2.0. 1 The use of trade, brand or product names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

  4. Oxygen and U-Th isotopes and the timescales of hydrothermal exchange and melting in granitoid wall rocks at Mount Mazama, Crater Lake, Oregon

    USGS Publications Warehouse

    Ankney, Meagan E.; Bacon, Charles R.; Valley, John W.; Beard, Brian L.; Johnson, Clark M.

    2017-01-01

    We report new whole rock U-Th and in-situ oxygen isotope compositions for partially melted (0–50 vol% melt), low-δ18O Pleistocene granitoid blocks ejected during the ∼7.7 ka caldera-forming eruption of Mt. Mazama (Crater Lake, Oregon). The blocks are interpreted to represent wall rocks of the climactic magma chamber that, prior to eruption, experienced variable amounts of exchange with meteoric hydrothermal fluids and subsequent partial melting. U-Th and oxygen isotope results allow us to examine the timescales of hydrothermal circulation and partial melting, and provide an “outside in” perspective on the buildup to the climactic eruption of Mt. Mazama. Oxygen isotope compositions measured in the cores and rims of individual quartz (n = 126) and plagioclase (n = 91) crystals, and for transects across ten quartz crystals, document zonation in quartz (Δ18OCore-Rim ≤ 0.1–5.5‰), but show homogeneity in plagioclase (Δ18OCore-Rim ≤ ±0.8‰). We propose that oxygen isotope zonation in quartz records hydrothermal exchange followed by high-temperature exchange in response to partial melting caused by injection of basaltic to andesitic recharge magma into the deeper portions of the chamber. Results of modeling of oxygen diffusion in quartz indicates that hydrothermal exchange in quartz occurred over a period of ∼1000–63,000 years. Models also suggest that the onset of melting of the granitoids occurred a minimum of ∼10–200 years prior to the Mazama climactic eruption, an inference which is broadly consistent with results for magnetite homogenization and for Zr diffusion in melt previously reported by others.Uranium-thorium isotope compositions of most granitoid blocks are in 238U excess, and are in agreement with a 238U enriched array previously measured for volcanic rocks at Mt. Mazama. Uranium excess in the granitoids is likely due to enrichment via hydrothermal circulation, given their low δ18O values. The sample with the highest U excess (≥5.8%) also has the most 18O isotope depletion (average δ18Oplag = −4.0‰). The granitoids are a probable assimilant and source of U excess in volcanic rocks from Mt. Mazama. Two granitoids have Th excess and low δ18O values, interpreted to record leaching of U during hydrothermal alteration. A U-Th isochron based on the U excess array of the granitoids and volcanic rocks indicates that hydrothermal circulation initiated ∼40–75 kyrs before the climactic eruption, potentially marking the initiation of a persistent upper-crustal magma chamber. The U-Th ages are consistent with the maximum timescales inferred for hydrothermal alteration based on oxygen isotope zoning in quartz.

  5. Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.

    1987-01-01

    The relationship between the Nd isotopic composition in the Atlantic waters and the origin and circulation of the water masses was investigated. Samples were collected in the western North Atlantic between 7 and 54 deg N. The isotopic composition (Nd-143/Nd-144 ratios) showed extensive vertical structure at all locations. In regions where a thermocline was well-developed, large isotopic shifts were observed across the base of the thermocline, while regions without a thermocline were characterized by much more gradual shifts in isotopic composition with depth. The data reveal an excellent correlation between the Nd isotopic distribution in the western North Atlantic water column and the distribution of water masses identified from temperature and salinity measurements.

  6. Re-Os and Lu-Hf isotopic constraints on the formation and age of mantle pyroxenites from the Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Ackerman, Lukáš; Bizimis, Michael; Haluzová, Eva; Sláma, Jiří; Svojtka, Martin; Hirajima, Takao; Erban, Vojtěch

    2016-07-01

    We report on the Lu-Hf and Re-Os isotope systematics of a well-characterized suite of spinel and garnet pyroxenites from the Gföhl Unit of the Bohemian Massif (Czech Republic, Austria). Lu-Hf mineral isochrons of three pyroxenites yield undistinguishable values in the range of 336-338 Ma. Similarly, the slope of Re-Os regression for most samples yields an age of 327 ± 31 Ma. These values overlap previously reported Sm-Nd ages on pyroxenites, eclogites and associated peridotites from the Gföhl Unit, suggesting contemporaneous evolution of all these HT-HP rocks. The whole-rock Hf isotopic compositions are highly variable with initial εHf values ranging from - 6.4 to + 66. Most samples show a negative correlation between bulk rock Sm/Hf and εHf and, when taking into account other characteristics (e.g., high 87Sr/86Sr), this may be explained by the presence of recycled oceanic sediments in the source of the pyroxenite parental melts. A pyroxenite from Horní Kounice has decoupled Hf-Nd systematics with highly radiogenic initial εHf of + 66 for a given εNd of + 7.8. This decoupling is consistent with the presence of a melt derived from a depleted mantle component with high Lu/Hf. Finally, one sample from Bečváry plots close to the MORB field in Hf-Nd isotope space consistent with its previously proposed origin as metamorphosed oceanic gabbro. Some of the websterites and thin-layered pyroxenites have variable, but high Os concentrations paralleled by low initial γOs. This reflects the interaction of the parental pyroxenitic melts with a depleted peridotite wall rock. In turn, the radiogenic Os isotope compositions observed in most pyroxenite samples is best explained by mixing between unradiogenic Os derived from peridotites and a low-Os sedimentary precursor with highly radiogenic 187Os/188Os. Steep increase of 187Os/188Os at nearly uniform 187Re/188Os found in a few pyroxenites may be connected with the absence of primary sulfides, but the presence of minor late stage sulfide-bearing veinlets likely associated with HT-HP metamorphism at crustal conditions.

  7. Sm-Nd in marine carbonates and phosphates - Implications for Nd isotopes in seawater and crustal ages

    NASA Technical Reports Server (NTRS)

    Shaw, H. F.; Wasserburg, G. J.

    1985-01-01

    The possibility of establishing a record of variations in the isotopic composition of Nd in seawater over geologic time is explored. To construct such a record, a phase must be identified which incorporated Nd with the same isotopic composition as seawater at the time of its formation, preserves that composition, and which is relatively common in sediments. To evaluate the suitability of carbonates and phosphates, the Rb, Sr, Sm, and Nd concentrations and the Nd and Sr isotopic composition of a variety of modern and ancient marine calcite, aragonite, and apatite samples have been measured and the results are presented and discussed.

  8. Fingerprints of carbon, nitrogen, and silicon isotopes in small interstellar SiC grains from the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Geiss, Johannes; Buehler, Fritz; Neuenschwander, Juerg; Amari, Sachiko; Lewis, Roy S.

    1993-01-01

    We report ion microprobe determinations of the carbon, nitrogen, and silicon isotopic compositions of small SiC grains from the Murchison CM2 chondrite. Analyses were made on samples containing variable numbers of grains and on 14 individual grains. In some cases the multiple-grain sample compositions were probably dominated by only one or two grains. Total ranges observed are given. Only a few grains show values near the range limits. Both the total ranges of carbon and nitrogen isotopic compositions, and even the narrower ranges typical for the majority of the grains, are similar to those observed for larger SiC grains. Two rare components appear to be present in the smaller-size fraction, one characterized by C-12/C-13 about 12-16 and the other by very heavy nitrogen. The carbon and nitrogen isotopic compositions qualitatively may reflect hydrostatic H-burning via the CNO cycle and He-burning in red giants, as well as explosive H-burning in novae. The silicon isotopic compositions of most grains qualitatively show what is the signature of He-burning. The silicon isotopic composition of one grain, however, suggests a different process.

  9. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    NASA Astrophysics Data System (ADS)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Meyer, Bradley S.; O’D. Alexander, Conel M.; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.

    2018-03-01

    We report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB (14N/15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains (14N/15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likely originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars’ pre-SN evolution rather than from an explosive neutron-capture process. In addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.

  10. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    DOE PAGES

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...

    2018-03-16

    In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less

  11. Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick

    In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less

  12. Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite

    NASA Technical Reports Server (NTRS)

    Hoppe, Peter; Amari, Sachiko; Zinner, Ernst; Ireland, Trevor; Lewis, Roy S.

    1994-01-01

    Seven hundred and twenty SiC grains from the Murchison CM2 chondrite, ranging in size from 1 to 10 micrometers, were analyzed by ion microprobe mass spectrometry for their C-isotopic compositions. Subsets of the grains were also analyzed for N (450 grains), Si (183 grains), Mg (179 grains), and Ti (28 grains) isotopes. These results are compared with previous measurements on 41 larger SiC grains (up to 15 x 26 micrometers) from a different sample of Murchison analyzed by Virag et al. (1992) and Ireland, Zinner, & Amari (1991a). All grains of the present study are isotopically anomalous with C-12/C-13 ratios ranging from 0.022 to 28.4 x solar, N-14/N-15 ratios from 0.046 to 30 x solar, Si-29/Si-28 from 0.54 to 1.20 x solar, Si-30/Si-28 from 0.42 to 1.14 x solar, Ti-49/Ti-48 from 0.96 to 1.95 x solar, and Ti-50/Ti-48 from 0.94 to 1.39 x solar. Many grains have large Mg-26 excesses from the decay of Al-26 with inferred Al-26/Al-27 ratios ranging up to 0.61, or 12,200 x the ratio of 5 x 10(exp -5) inferred for the early solar system. Several groups can be distinguished among the SiC grains. Most of the grains have C-13 and N-14 excesses, and their Si isotopic compositions (mostly excesses in Si-29 and Si-30) plot close to a slope 1.34 line on a Delta Si-29/Si-28 versus Delta Si-30/Si-28 three-isotope plot. Grains with small C-12/C-13 ratios (less than 10) tend to have smaller or no N-14 excesses and high Al-26/Al-27 ratios (up to 0.01). Grains with C-12/C-13 greater than 150 fall into two groups: grains X have N-15 excesses and Si-29 and Si-30 deficits and the highest (0.1 to 0.6) Al-26/Al-27 ratios; grains Y have N-14 excesses and plot on a slope 0.35 line on a Si three-isotope plot. In addition, large SiC grains of the Virag et al. (1992) study fall into three-distinct clusters according to their C-, Si-, and Ti-isotopic compositions. The isotopic diversity of the grains and the clustering of their isotopic compositions imply distinct and multiple stellar sources. The C- and N-isotopic compositions of most grains are consistent with H-burning in the CNO cycle. These and s-process Kr, Xe, Ba, and Nd suggest asymptotic giant branch (AGB) or Wolf-Rayet stars as likely sources for the grains, but existing models of nucleosynthesis in these stellar sites fail to account in detail for all the observed isotopic compositions. Special problems are posed by grains with C-12/C-13 less than 10 and almost normal and heavy N-isotopic compositions. Also the Si- and Ti-isotopic compositions, with excesses in Si-29 and Si-30 relative to Si-28 and excesses in all Ti isotopes relative to Ti-48, do not precisely conform with the compositions predicted for slow neutron capture. Additional theoretical efforts are needed to achieve an understanding of the isotopic composition of the SiC grains and their stellar sources.

  13. Geochemistry of the Neoproterozoic metabasic rocks from the Negele area, southern Ethiopia: Tectonomagmatic implications

    NASA Astrophysics Data System (ADS)

    Yihunie, Tadesse; Adachi, Mamoru; Yamamoto, Koshi

    2006-03-01

    Neoproterozoic metabasic rocks along with metasediments and ultramafic rocks constitute the Kenticha and Bulbul lithotectonic domains in the Negele area. They occur as amphibolite and amphibole schist in the Kenticha, and amphibole schist and metabasalt in the Bulbul domains. These rocks are dominantly basaltic in composition and exhibit low-K tholeiitic characteristics. They are slightly enriched in large ion lithophile (LIL) and light rare earth (LRE) elements and depleted in high field strength (HFS) and heavy rare earth (HRE) elements. They exhibit chemical characteristics similar to back-arc basin and island-arc basalts, but include a few samples with slightly higher Y, Zr and Nb contents. Initial Sr isotopic ratios and ɛNd values for the Kenticha metabasic rocks range from 0.7048 to 0.7051 and from 4.7 to 9.6 whereas for the Bulbul metabasic rocks they range from 0.7032 to 0.7055 and from -0.1 to 5.5, respectively. The trace elements and Sr-Nd isotope compositions of samples from the Kenticha and Bulbul domains suggest similar, but isotopically heterogeneous magma sources. The magma is inferred to have derived from depleted source with a contribution from an enriched mantle source component.

  14. Sulphur tracer experiments in laboratory animals using 34S-labelled yeast.

    PubMed

    Martínez-Sierra, J Giner; Moreno Sanz, F; Herrero Espílez, P; Marchante Gayón, J M; Rodríguez Fernández, J; García Alonso, J I

    2013-03-01

    We have evaluated the use of (34)S-labelled yeast to perform sulphur metabolic tracer experiments in laboratory animals. The proof of principle work included the selection of the culture conditions for the preparation of sulphur labelled yeast, the study of the suitability of this labelled yeast as sulphur source for tracer studies using in vitro gastrointestinal digestion and the administration of the (34)S-labelled yeast to laboratory animals to follow the fate and distribution of (34)S in the organism. For in vitro gastrointestinal digestion, the combination of sodium dodecyl sulphate-polyacrylamide gel electrophoresis and high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) showed that labelled methionine, cysteine and other low molecular weight sulphur-containing biomolecules were the major components in the digested extracts of the labelled yeast. Next, in vivo kinetic experiments were performed in healthy Wistar rats after the oral administration of (34)S-labelled yeast. The isotopic composition of total sulphur in tissues, urine and faeces was measured by double-focusing inductively coupled plasma mass spectrometry after microwave digestion. It was observed that measurable isotopic enrichments were detected in all samples. Finally, initial investigations on sulphur isotopic composition of serum and urine samples by HPLC-ICP-MS have been carried out. For serum samples, no conclusive data were obtained. Interestingly, chromatographic analysis of urine samples showed differential isotope enrichment for several sulphur-containing biomolecules.

  15. Lead isotopes in the western North Atlantic: Transient tracers of pollutant lead inputs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veron, A.J.; Church, T.M.; Flegal, A.R.

    1998-08-01

    In the early 1980s, Patterson and colleagues demonstrated that most lead in oceanic surface waters had an anthropogenic origin. Their discovery occurred during the phasing out of leaded gasoline in North America initiated in the previous decade. The corresponding decrease in anthropogenic lead emissions, verified by Pb/{sup 210}Pb ratios, accounted for the systematic decline in lead concentrations in surface waters of the western Sargasso Sea. Subsequent changes in anthropogenic lead inputs to the western Sargasso Sea surface waters have been documented by measurements of lead concentrations, isotopic compositions ({sup 206}Pb/{sup 207}Pb, {sup 208}Pb/{sup 206}Pb), and Pb/{sup 210}Pb ratios in precipitationmore » and seawater for the period of 1981 to 1994. These data indicate the easterly trade winds are now the primary source of atmospheric lead in Bermuda, and they confirm that the decline of lead concentrations in the North Atlantic is associated with the phasing out of leaded gasoline in North America and western Europe over the past decade. Moreover, temporal variations in the relative contribution of industrial lead inputs from the two sides of the North Atlantic over that period can be quantified based on differences in their isotopic composition. The transient character of those isotopic signatures also allows calculations of pollutant lead penetration rates into the mixed layer and upper thermocline of the western Sargasso Sea.« less

  16. Optimized slice-selective 1H NMR experiments combined with highly accurate quantitative 13C NMR using an internal reference method.

    PubMed

    Jézéquel, Tangi; Silvestre, Virginie; Dinis, Katy; Giraudeau, Patrick; Akoka, Serge

    2018-04-01

    Isotope ratio monitoring by 13 C NMR spectrometry (irm- 13 C NMR) provides the complete 13 C intramolecular position-specific composition at natural abundance. It represents a powerful tool to track the (bio)chemical pathway which has led to the synthesis of targeted molecules, since it allows Position-specific Isotope Analysis (PSIA). Due to the very small composition range (which represents the range of variation of the isotopic composition of a given nuclei) of 13 C natural abundance values (50‰), irm- 13 C NMR requires a 1‰ accuracy and thus highly quantitative analysis by 13 C NMR. Until now, the conventional strategy to determine the position-specific abundance x i relies on the combination of irm-MS (isotopic ratio monitoring Mass Spectrometry) and 13 C quantitative NMR. However this approach presents a serious drawback since it relies on two different techniques and requires to measure separately the signal of all the carbons of the analyzed compound, which is not always possible. To circumvent this constraint, we recently proposed a new methodology to perform 13 C isotopic analysis using an internal reference method and relying on NMR only. The method combines a highly quantitative 1 H NMR pulse sequence (named DWET) with a 13 C isotopic NMR measurement. However, the recently published DWET sequence is unsuited for samples with short T 1 , which forms a serious limitation for irm- 13 C NMR experiments where a relaxing agent is added. In this context, we suggest two variants of the DWET called Multi-WET and Profiled-WET, developed and optimized to reach the same accuracy of 1‰ with a better immunity towards T 1 variations. Their performance is evaluated on the determination of the 13 C isotopic profile of vanillin. Both pulse sequences show a 1‰ accuracy with an increased robustness to pulse miscalibrations compared to the initial DWET method. This constitutes a major advance in the context of irm- 13 C NMR since it is now possible to perform isotopic analysis with high relaxing agent concentrations, leading to a strong reduction of the overall experiment time. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Role of deep-Earth water cycling in the growth and evolution of continental crust: Constraints from Cretaceous magmatism in southeast China

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Wang, Xuan-Ce; Wilde, Simon A.; Liu, Liang; Li, Wu-Xian; Yang, Xuemei

    2018-03-01

    The late Mesozoic igneous province in southeast China provides an excellent opportunity to understand the processes that controlled the growth and evolution of Phanerozoic continental crust. Here we report petrological, whole-rock geochemical and isotopic data, and in situ zircon U-Pb-Lu-Hf isotopic data from granitoids and associated gabbros in the Pingtan and Tong'an complexes, southeast China. Through combining the new results with published datasets in southeast China, we show that the Early Cretaceous magmatic rocks are dominated by juvenile Nd-Hf isotopic compositions, whereas the Late Cretaceous ones display less radiogenic Nd-Hf isotope signatures. Furthermore, Nd-Hf isotope systematics are coupled with decreasing abundance of hydrous minerals and an increase of zircon saturation temperatures. Compiled zircon Hf-O data indicates that the 117-116 Ma granites have zircon δ18O values ranging from mantle values (close to 5.3‰) to as low as 3.9‰, but with dominantly positive initial epsilon Hf (εHf(t)) values. Zircon grains from 105 to 98 Ma rocks have δ18O values plotting within the mantle-like range (6.5‰ - 4.5‰), but mainly with negative εHf(t) values. Zircon grains from ca. 87 Ma rocks have positive εHf(t) values (+ 9.8 to + 0.7) and a large range of δ18O values (6.3‰ - 3.5‰). The variations in Hf-Nd-O isotopic compositions are correlated with decreasing abundance of magma water contents, presenting a case that water-fluxed melting generated large-scale granitic magmatism. Deep-Earth water cycling provides an alternative or additional mechanism to supply volatiles (e.g., H2O) for hydrous basaltic underplating, continental crustal melting, and magmatic differentiation.

  18. Pb-Pb systematics of lunar rocks: differentiation, magmatic and impact history of the Moon

    NASA Astrophysics Data System (ADS)

    Nemchin, A.; Martin, W.; Norman, M. D.; Snape, J.; Bellucci, J. J.; Grange, M.

    2016-12-01

    Two independent decay chains in U-Pb system allow the determination of both ages and initial isotope compositions by analyzing only Pb in the samples. A typical Pb analysis represents a mixture of radiogenic Pb produced from the in situ U decay, initial Pb and laboratory contamination. Utilizing the ability of ion probes to analyse 10-30 micrometer-sized spots in the samples while avoiding fractures and other imperfections that commonly host contamination, permits extraction of pure lunar Pb compositions from the three component mixtures. This results in both accurate and precise ages of the rocks and their initial compositions. Lunar Mare and KREEP basalts postdating the major lunar bombardment are likely to represent such three component mixtures and are therefore appropriate for this approach, also giving an opportunity to investigate Pb evolution in their sources. A source evolution model constrained using available data indicates a major differentiation on the Moon at 4376±18 Ma and very radiogenic lunar mantle at this time. This age is likely to reflect the mean time of KREEP formation during the last stage of Magma Ocean differentiation. Rocks older than about 3.9 Ga are more complex than basalts and may include an extra Pb component, if modified by impacts. An example of this is presented by Pb-Pb data obtained for the anorthosite sample 62236, where the age of the rock is determined as 4367±29 Ma from analyses of CPx lamellae inside the large Opx grains: however large plagioclase crystals do not contain Pb in quantities sufficient for ion probe analysis, precluding determination of the initial Pb composition of the sample. Most of Pb is found in the brecciated parts of the anorthosite between the large grains. The composition of this Pb is similar to the initial Pb of 3909±17 Ma Apollo 16 breccia 66095, suggesting that is was injected into the anorthosite during a 3.9 Ga impact. Similar ca 3.9 Ga ages were determined for 1-2 millimeter size feldspathic clasts from several Apollo 14 breccias, where they are likely to date Pb homogenization during the Imbrium impact. Combined with U-Pb data obtained previously using U-bearing minerals such as zircon and phosphates, the new Pb-Pb data sets open an opportunity for a detailed chronological and isotopic investigation of lunar differentiation, magmatic evolution and impact history.

  19. Constraints on the magmatic evolution of the oceanic crust from plagiogranite intrusions in the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Haase, Karsten M.; Freund, Sarah; Beier, Christoph; Koepke, Jürgen; Erdmann, Martin; Hauff, Folkmar

    2016-05-01

    We present major and trace element as well as Sr, Nd, and Hf isotope data on a suite of 87 plutonic rock samples from 27 felsic crustal intrusions in seven blocks of the Oman ophiolite. The rock compositions of the sample suite including associated more mafic rocks range from 48 to 79 wt% SiO2, i.e. from gabbros to tonalites. The samples are grouped into a Ti-rich and relatively light rare earth element (LREE)-enriched P1 group [(Ce/Yb) N > 0.7] resembling the early V1 lavas, and a Ti-poor and LREE-depleted P2 group [(Ce/Yb) N < 0.7] resembling the late-stage V2 lavas. Based on the geochemical differences and in agreement with previous structural and petrographic models, we define phase 1 (P1) and phase 2 (P2) plutonic rocks. Felsic magmas in both groups formed by extensive fractional crystallization of olivine, clinopyroxene, plagioclase, apatite, and Ti-magnetite from mafic melts. The incompatible element compositions of P1 rocks overlap with those from mid-ocean ridges but have higher Ba/Nb and Th/Nb trending towards the P2 rock compositions and indicating an influence of a subducting slab. The P2 rocks formed from a more depleted mantle source but show a more pronounced slab signature. These rocks also occur in the southern blocks (with the exception of the Tayin block) of the Oman ophiolite implying that the entire ophiolite formed above a subducting slab. Initial Nd and Hf isotope compositions suggest an Indian-MORB-type mantle source for the Oman ophiolite magmas. Isotope compositions and high Th/Nb in some P2 rocks indicate mixing of a melt from subducted sediment into this mantle.

  20. Assessing the isotopic evolution of S-type granites of the Carlos Chagas Batholith, SE Brazil: Clues from U-Pb, Hf isotopes, Ti geothermometry and trace element composition of zircon

    NASA Astrophysics Data System (ADS)

    Melo, Marilane G.; Lana, Cristiano; Stevens, Gary; Pedrosa-Soares, Antônio C.; Gerdes, Axel; Alkmin, Leonardo A.; Nalini, Hermínio A.; Alkmim, Fernando F.

    2017-07-01

    The Carlos Chagas batholith (CCB) is a very large ( 14,000 km2) S-type granitic body formed during the syn-collisional stage of the Araçuaí orogen (southeastern Brazil). Zircons extracted from the CCB record a wide range of U-Pb ages (from 825 to 490 Ma), indicating a complex history of inheritance, magmatic crystallization and partial melting during the evolution of the orogeny. Magmatic zircons (ca. 578-588 Ma) are marked by similar Hf isotope compositions and REE patterns to those of inherited cores (ca. 825-600 Ma), indicating that these aspects of the chemical signature of the magmatic zircons have likely been inherited from the source. The U-Pb ages and initial 176Hf/177Hf ratios from anatectic and metamorphic zircon domains are consistent with a two-stage metamorphic evolution marked by contrasting mechanisms of zircon growth and recrystallization during the orogeny. Ti-in-zircon thermometry is consistent with the findings of previous metamorphic work and indicates that the two metamorphic events in the batholith reached granulite facies conditions (> 800 °C) producing two generations of garnet via fluid-absent partial melting reactions. The oldest metamorphic episode (ca. 570-550 Ma) is recorded by development of thin anatectic overgrowths on older cores and by growth of new anatectic zircon crystals. Both domains have higher initial 176Hf/177Hf values compared to relict cores and display REE patterns typical of zircon that grew contemporaneously with peritectic garnet through biotite-absent fluid partial melting reactions. Hf isotopic and chemical evidences indicate that a second anatectic episode (ca. 535-500 Ma) is only recorded in parts from the CCB. In these rocks, the growth of new anatectic zircon and/or overgrowths is marked by high initial 176Hf/177Hf values and also by formation of second generation of garnet, as indicated by petrographic observations and REE patterns. In addition, some rocks contain zircon crystals formed by solid-state recrystallization of pre-existing zircon, which exhibit similar Hf isotope composition to those of inherited/magmatic core domains. The first anatectic event is interpreted as result of crustal thickening after the intrusion of the batholith. This introduced the batholith to a depth in excess of 30 km and produced widespread anatexis throughout the batholith. The second event was associated with asthenospheric upwelling during extensional thinning and gravitational collapse of the orogen, this produced anatexis in parts from the CCB that had been re-fertilized for anatexis by retrogression along shear zones following the first granulite facies event.

  1. Behaviour of Structural Carbonate Stable Carbon and Oxygen Isotope Compositions in Bioapatite During Burning of Bone

    NASA Astrophysics Data System (ADS)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-12-01

    Bioapatite, the principal inorganic phase comprising bone, commonly contains a small fraction of carbonate, which has been substituted into the phosphate structure during bone formation. The isotopic compositions of both the phosphate oxygen and the structural carbonate oxygen are now commonly used in palaeoclimatological and bioarchaeological investigations. The potential for post-mortem alteration of these isotopic compositions, therefore, is of interest, with the behaviour of structural carbonate being of most concern. In bioarchaeological studies, alteration of bone isotopic compositions has the potential to occur not only during low-temperature processes associated with burial but also during food preparation involving heating (burning, boiling). Here, we examine the stable isotopic behaviour of structural carbonate oxygen and carbon, and coexisting phosphate oxygen during the burning of bone. Freshly deceased (6<8 months) white-tailed deer leg bones (Odocoileus virginianus) were collected from Pinery Provincial Park, Ontario, Canada. Each long bone was sectioned and incrementally heated from 25 to 900° C, in 25° intervals. The samples were then ground to a standardized grain-size (45<63μ m), and changes in bioapatite crystallinity (CI) were determined using powder X-ray diffraction (pXRD), and Fourier transform infra-red spectroscopy (FTIR). Combined differential thermal and thermogravimetric analyses (DTA/TG) were used to evaluate weight loss and associated reactions during heating. Stable carbon isotope compositions of the bioapatite remain relatively constant (+/-1‰ ) during heating to 650° C. A 4‰ increase in stable carbon isotopic composition then occurs between 650-750° C, accompanied by an increase in CI, followed by a 10‰ decline at temperatures above 800° C, as carbonate carbon is lost. Carbonate and phosphate oxygen isotopic compositions are correlated over the entire heating range, with carbonate being enriched relative to phosphate by about 8-10‰ below 500° C, 5-6‰ between 500-700° C, and 8-10‰ above 700° C. CI and oxygen isotopic compositions of carbonate and phosphate are not well correlated. Only modest CI changes are recorded from 25-675° C, compared with much larger changes in oxygen isotopic composition, especially above 300° C. On average, original isotopic compositions are largely preserved for both phosphate (+/-1‰ ) and carbonate (+/-2‰ ) oxygen at <300° C. At higher temperatures, however, both phosphate and carbonate oxygen in the bioapatite are systematically depleted of oxygen-18 relative to original values.

  2. Oxygen isotope analysis of fossil organic matter by secondary ion mass spectrometry

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Chaussidon, Marc; Gurenko, Andrey; Delarue, Frédéric; Robert, François

    2016-06-01

    We have developed an analytical procedure for the measurement of oxygen isotope composition of fossil organic matter by secondary ion mass spectrometry (SIMS) at the sub-per mill level, with a spatial resolution of 20-30 μm. The oxygen isotope composition of coal and kerogen samples determined by SIMS are on average consistent with the bulk oxygen isotope compositions determined by temperature conversion elemental analysis - isotope ratio mass spectrometry (TC/EA-IRMS), but display large spreads of δ18O of ∼5-10‰, attributed to mixing of remnants of organic compounds with distinct δ18O signatures. Most of the δ18O values obtained on two kerogen residues extracted from the Eocene Clarno and Early Devonian Rhynie continental chert samples and on two immature coal samples range between ∼10‰ and ∼25‰. Based on the average δ18O values of these samples, and on the O isotope composition of water processed by plants that now constitute the Eocene Clarno kerogen, we estimated δ18Owater values ranging between around -11‰ and -1‰, which overall correspond well within the range of O isotope compositions for present-day continental waters. SIMS analyses of cyanobacteria-derived organic matter from the Silurian Zdanow chert sample yielded δ18O values in the range 12-20‰. Based on the O isotope composition measured on recent cyanobacteria from the hypersaline Lake Natron (Tanzania), and on the O isotope composition of the lake waters in which they lived, we propose that δ18O values of cyanobacteria remnants are enriched by about ∼18 ± 2‰ to 22 ± 2‰ relative to coeval waters. This relationship suggests that deep ocean waters in which the Zdanow cyanobacteria lived during Early Silurian times were characterised by δ18O values of around -5 ± 4‰. This study, establishing the feasibility of micro-analysis of Phanerozoic fossil organic matter samples by SIMS, opens the way for future investigations of kerogens preserved in Archean cherts and of the O isotopic composition of ocean water at that period in time.

  3. Rainfall Type as a Dominant Control of the Isotopic Composition of Precipitation in the South Central United States

    NASA Astrophysics Data System (ADS)

    Sun, C.; Shanahan, T. M.; Partin, J. W.

    2017-12-01

    The processes that control the isotopic composition of precipitation in the mid-latitudes are understudied compared to the high and low latitudes, but are critical for interpreting paleo records using isotope proxies. To better understand these processes, we investigated changes of isotopic composition of rainwater in Central Texas using 20 months of event-based rainwater collection. We find that in both the event-based data and the monthly data from the Waco GNIP station, the dominant control on the isotopic composition of precipitation is the proportion that is derived from convective systems. This finding is consistent with previously reported data largely from tropical localities (Aggarwal et al., 2016), where large organized convective systems lead to high rainfall amounts and isotopically depleted precipitation. Although there are seasonal differences in the dominant rainfall types over the South Central US, with winter precipitation almost entirely stratiform, seasonality plays very little role in the net isotopic composition of precipitation because the total contribution during winter is small compared with spring, summer and fall. We also find that changes of source have little effect on the isotopic composition of rainfall, as the majority of the moisture is derived from the Gulf of Mexico with little influence of reevaporation or mixing. The majority of the warm season precipitation in the South Central US occurs in association with mesoscale convective systems (MCSs) and the development of these systems plays a critical role in the overall isotopic signature of precipitation. MCSs are characterized by a combination of intense, organized convection at their leading edges and trailing stratiform precipitation. Larger MCSs tend to contain higher proportions of stratiform rainfall and as a result, have isotopically depleted values. Proxy records from this region displaying more negative isotope values in the past should therefore be interpreted with caution as they could reflect either increases in cool versus warm season precipitation or changes in the intensity of warm season MCSs.

  4. Silicon Isotopic Fractionation of CAI-like Vacuum Evaporation Residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, K; Kita, N; Mendybaev, R

    2009-06-18

    Calcium-, aluminum-rich inclusions (CAIs) are often enriched in the heavy isotopes of magnesium and silicon relative to bulk solar system materials. It is likely that these isotopic enrichments resulted from evaporative mass loss of magnesium and silicon from early solar system condensates while they were molten during one or more high-temperature reheating events. Quantitative interpretation of these enrichments requires laboratory determinations of the evaporation kinetics and associated isotopic fractionation effects for these elements. The experimental data for the kinetics of evaporation of magnesium and silicon and the evaporative isotopic fractionation of magnesium is reasonably complete for Type B CAI liquidsmore » (Richter et al., 2002, 2007a). However, the isotopic fractionation factor for silicon evaporating from such liquids has not been as extensively studied. Here we report new ion microprobe silicon isotopic measurements of residual glass from partial evaporation of Type B CAI liquids into vacuum. The silicon isotopic fractionation is reported as a kinetic fractionation factor, {alpha}{sub Si}, corresponding to the ratio of the silicon isotopic composition of the evaporation flux to that of the residual silicate liquid. For CAI-like melts, we find that {alpha}{sub Si} = 0.98985 {+-} 0.00044 (2{sigma}) for {sup 29}Si/{sup 28}Si with no resolvable variation with temperature over the temperature range of the experiments, 1600-1900 C. This value is different from what has been reported for evaporation of liquid Mg{sub 2}SiO{sub 4} (Davis et al., 1990) and of a melt with CI chondritic proportions of the major elements (Wang et al., 2001). There appears to be some compositional control on {alpha}{sub Si}, whereas no compositional effects have been reported for {alpha}{sub Mg}. We use the values of {alpha}Si and {alpha}Mg, to calculate the chemical compositions of the unevaporated precursors of a number of isotopically fractionated CAIs from CV chondrites whose chemical compositions and magnesium and silicon isotopic compositions have been previously measured.« less

  5. Re-assessing the Molybdenum Isotope Composition of Pre-GOE Seawater: Evidence for Dynamic Ocean Redox

    NASA Astrophysics Data System (ADS)

    Ostrander, C. M.; Kendall, B.; Roy, M.; Romaniello, S. J.; Nunn, S. J.; Gordon, G. W.; Olson, S. L.; Lyons, T. W.; Zheng, W.; Anbar, A. D.

    2016-12-01

    Molybdenum (Mo) isotope compositions of Archean shales can provide important insights into ocean and atmosphere redox dynamics prior to the Great Oxidation Event (GOE). Unfortunately, the relatively limited Mo isotope database and small number of sample sets for Archean shales do not allow for in-depth reconstructions and specifically make it difficult to differentiate global from local effects. To accurately estimate the Mo isotope composition of Archean seawater and better investigate the systematics of local and global redox, more complete sample sets are needed. We carried out a Mo isotope analysis of the euxinic 2.65 Ga Roy Hill Shale sampled in two stratigraphically correlated cores, and revisited the well-studied euxinic 2.5 Ga Mt. McRae Shale in higher resolution. Our data show contrasting Mo isotope values in the 2.65 Ga Roy Hill Shale between near- and offshore depositional environments, with systematically heavier isotope values in the near-shore environment. High-resolution analysis of the Mt. McRae Shale yields oscillating Mo concentrations and isotope values at the cm- to dm-scale during the well-characterized "whiff of O2" interval, with the heaviest isotope values measured during euxinic deposition. Variations in the measured isotope values within each section are primarily associated with redox changes in the local depositional environment and amount of detrital content. Both non-quantitative removal of Mo associated with incorporation into non-euxinic sediments and large detrital Mo contributions shift some measured isotopic compositions toward lighter values. This is readily apparent in the near-shore Roy Hill Shale section and the Mt. McRae Shale, but may not fully explain variations observed in the offshore Roy Hill Shale deposit. Here, euxinic deposition is not accompanied by Mo enrichments or isotopic compositions as heavy as the near-shore equivalent, even after detrital correction. This disparity between the near- and offshore environment could signify spatial variation in the Mo isotope composition of 2.65 Ga seawater and highlights the need for multi-site and high-resolution studies in order to best assess paleoenvironmental conditions.

  6. Cryogenic Calcite: A Morphologic and Isotopic Analog to the ALH84001 Carbonates

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Leshin, L. A.; Socki, R. A.; Guan, Y.; Ming, D. W.; Gibson, E. K.

    2004-01-01

    Martian meteorite ALH84001 carbonates preserve large and variable microscale isotopic compositions, which in some way reflect their formation environment. These measurements show large variations (>20%) in the carbon and oxygen isotopic compositions of the carbonates on a 10-20 micron scale that are correlated with chemical composition. However, the utilization of these data sets for interpreting the formation conditions of the carbonates is complex due to lack of suitable terrestrial analogs and the difficulty of modeling under non-equilibrium conditions. Thus, the mechanisms and processes are largely unknown that create and preserve large microscale isotopic variations in carbonate minerals. Experimental tests of the possible environments and mechanisms that lead to large microscale isotopic variations can help address these concerns. One possible mechanism for creating large carbon isotopic variations in carbonates involves the freezing of water. Carbonates precipitate during extensive CO2 degassing that occurs during the freezing process as the fluid s decreasing volume drives CO2 out. This rapid CO2 degassing results in a kinetic isotopic fractionation where the CO2 gas has a much lighter isotopic composition causing an enrichment of 13C in the remaining dissolved bicarbonate. This study seeks to determine the suitability of cryogenically formed carbonates as analogs to ALH84001 carbonates. Specifically, our objective is to determine how accurately models using equilibrium fractionation factors approximate the isotopic compositions of cryogenically precipitated carbonates. This includes determining the accuracy of applying equilibrium fractionation factors during a kinetic process, and determining how isotopic variations in the fluid are preserved in microscale variations in the precipitated carbonates.

  7. Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus

    NASA Astrophysics Data System (ADS)

    Leuzinger, L.; Kocsis, L.; Billon-Bruyat, J.-P.; Spezzaferri, S.; Vennemann, T.

    2015-12-01

    Chondrichthyan teeth (sharks, rays, and chimaeras) are mineralized in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition (δ18Op) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are generally consistent with marine conditions, unusually low δ18Op values were measured for the hybodont shark Asteracanthus. These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low-18O isotopic compositions for Asteracanthus. The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the hybodont shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).

  8. Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus

    NASA Astrophysics Data System (ADS)

    Leuzinger, L.; Kocsis, L.; Billon-Bruyat, J.-P.; Spezzaferri, S.; Vennemann, T.

    2015-08-01

    Chondrichthyan teeth (sharks, rays and chimaeras) are mineralised in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition (δ18Op) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are consistent with marine conditions, unusually low δ18Op values were measured for the hybodont shark Asteracanthus. These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low-18O isotopic compositions for Asteracanthus. The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered as a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the primitive shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).

  9. Genesis of ultra-high pressure garnet pyroxenites in orogenic peridotites and its bearing on the compositional heterogeneity of the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Marchesi, Claudio; Bosch, Delphine; Hidas, Károly

    2018-07-01

    We present an integrated geochemical study of ultra-high pressure (UHP) garnet pyroxenites from the Ronda and Beni Bousera peridotite massifs (Betic-Rif Belt, westernmost Mediterranean). Based on their Sr-Nd-Pb-Hf isotopic systematics, we classify UHP garnet pyroxenites into three groups: Group A pyroxenites (Al2O3: 15-17.5 wt.%) have low initial 87Sr/86Sr, relatively high εNd, εHf and 206Pb/204Pb ratios, and variable 207Pb/204Pb and 208Pb/204Pb. Group B pyroxenites (Al2O3 < 14 wt.%) are characterized by high initial 87Sr/86Sr and relatively low εNd, εHf and 206Pb/204Pb ratios. Group C pyroxenites (Al2O3 ∼ 15 wt.%) have depleted radiogenic signatures with relatively low initial 87Sr/86Sr and 206Pb/204Pb, high εNd and εHf, and their 207Pb/204Pb and 208Pb/204Pb ratios are similar to those of Group B pyroxenites. The major and trace element and isotopic compositions of UHP garnet pyroxenites support their derivation from ancient (1.5-3.5 Ga) oceanic crust recycled into the mantle and intimately stirred with peridotites by convection. However, the genesis of these pyroxenites requires also the involvement of recycled continental lower crust with an isotopic composition akin to the lower crustal section of the lithosphere where these UHP garnet pyroxenites now reside in. These oceanic and continental crustal components were stirred in different proportions in the convective mantle, originating pyroxenites with a more marked geochemical imprint of either oceanic (Group A) or continental lower crust (Group B), or hybrid compositions (Group C). The pyroxenite protoliths likely underwent several melting events, one of them related to the formation of the subcontinental lithospheric mantle and continental crust, generating restitic UHP garnet pyroxenites now preserved in the Ronda and Beni Bousera orogenic peridotites. The extent of melting was mostly controlled by the bulk Mg-number (Mg#) of the pyroxenite protoliths, where protoliths with low Mg# experienced higher degrees of partial melting than sources with higher Mg#. Positive Eu and Sr anomalies in bulk rocks, indicative of their origin from cumulitic crustal gabbros, are preserved mostly in high Mg# pyroxenites due to their higher melting temperatures and consequent lower partial melting degrees. The results of this study show that the genesis of UHP garnet pyroxenites in orogenic peridotites requires a new recipe for the marble cake mantle hypothesis, combining significant recycling and stirring of both oceanic and continental lower crust in the Earth's mantle. Furthermore, this study establishes a firm connection between the isotopic signatures of UHP pyroxenite heterogeneities in the mantle and the continental lower crust.

  10. The earliest Lunar Magma Ocean differentiation recorded in Fe isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Jacobsen, Stein B.; Sedaghatpour, Fatemeh; Chen, Heng; Korotev, Randy L.

    2015-11-01

    Recent high-precision isotopic measurements show that the isotopic similarity of Earth and Moon is unique among all known planetary bodies in our Solar System. These observations provide fundamental constraints on the origin of Earth-Moon system, likely a catastrophic Giant Impact event. However, in contrast to the isotopic composition of many elements (e.g., O, Mg, Si, K, Ti, Cr, and W), the Fe isotopic compositions of all lunar samples are significantly different from those of the bulk silicate Earth. Such a global Fe isotopic difference between the Moon and Earth provides an important constraint on the lunar formation - such as the amount of Fe evaporation as a result of a Giant Impact origin of the Moon. Here, we show through high-precision Fe isotopic measurements of one of the oldest lunar rocks (4.51 ± 0.10 Gyr dunite 72 415), compared with Fe isotope results of other lunar samples from the Apollo program, and lunar meteorites, that the lunar dunite is enriched in light Fe isotopes, complementing the heavy Fe isotope enrichment in other lunar samples. Thus, the earliest olivine accumulation in the Lunar Magma Ocean may have been enriched in light Fe isotopes. This new observation allows the Fe isotopic composition of the bulk silicate Moon to be identical to that of the bulk silicate Earth, by balancing light Fe in the deep Moon with heavy Fe in the shallow Moon rather than the Moon having a heavier Fe isotope composition than Earth as a result of Giant Impact vaporization.

  11. The role of stable isotopes in understanding rainfall interception processes: a review

    EPA Science Inventory

    The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects important hydrologic processes occurring in the canopy. A synthesis of the literature shows that complex spatiotemporal variations of isotopic composition are created by canopy interce...

  12. Metal stable isotopes in weathering and hydrology: Chapter 10

    USGS Publications Warehouse

    Bullen, Thomas D.; Holland, Heinrich; Turekian, K.

    2014-01-01

    This chapter highlights some of the major developments in the understanding of the causes of metal stable isotope compositional variability in and isotope fractionation between natural materials and provides numerous examples of how that understanding is providing new insights into weathering and hydrology. At this stage, our knowledge of causes of stable isotope compositional variability among natural materials is greatest for the metals lithium, magnesium, calcium, and iron, the isotopes of which have already provided important information on weathering and hydrological processes. Stable isotope compositional variability for other metals such as strontium, copper, zinc, chromium, barium, molybdenum, mercury, cadmium, and nickel has been demonstrated but is only beginning to be applied to questions related to weathering and hydrology, and several research groups are currently exploring the potential. And then there are other metals such as titanium, vanadium, rhenium, and tungsten that have yet to be explored for variability of stable isotope composition in natural materials, but which may hold untold surprises in their utility. This impressive list of metals having either demonstrated or potential stable isotope signals that could be used to address important unsolved questions related to weathering and hydrology, constitutes a powerful toolbox that will be increasingly utilized in the coming decades.

  13. New insight from noble gas and stable isotopes of geothermal/hydrothermal fluids at Caviahue-Copahue Volcanic Complex: Boiling steam separation and water-rock interaction at shallow depth

    NASA Astrophysics Data System (ADS)

    Roulleau, Emilie; Tardani, Daniele; Sano, Yuji; Takahata, Naoto; Vinet, Nicolas; Bravo, Francisco; Muñoz, Carlos; Sanchez, Juan

    2016-12-01

    We measured noble gas and stable isotopes of the geothermal and hydrothermal fluids of the Caviahue-Copahue Volcanic Complex (CCVC), one of the most important geothermal systems in Argentina/Chile, in order to provide new insights into fluid circulation and origin. With the exception of Anfiteatro and Chancho-co geothermal systems, mantle-derived helium dominates in the CCVC fluids, with measured 3He/4He ratios up to 7.86Ra in 2015. Their positive δ15N is an evidence for subducted sediment-derived nitrogen, which is commonly observed in subduction settings. Both He-N2-Ar composition and positive correlation between δD-H2O and δ18O-H2O suggest that the fluids from Anfiteatro and Chancho-co (and partly from Pucon-Mahuida as well, on the southern flank of Copahue volcano) represent a meteoric water composition with a minor magmatic contribution. The Ne, Kr and Xe isotopic compositions are entirely of atmospheric origin, but processes of boiling and steam separation have led to fractionation of their elemental abundances. We modeled the CCVC fluid evolution using Rayleigh distillation curves, considering an initial air saturated geothermal water (ASGW) end-member at 250 and 300 °C, followed by boiling and steam separation at lower temperatures (from 200 °C to 150 °C). Between 2014 and 2015, the CCVC hydrogen and oxygen isotopes shifted from local meteoric water-dominated to andesitic water-dominated signature. This shift is associated with an increase of δ13C values and Stotal, HCl and He contents. These characteristics are consistent with a change in the gas ascent pathway between 2014 and 2015, which in turn induced higher magmatic-hydrothermal contribution in the fluid signature. The composition of the magmatic source of the CCVC fluids is: 3He/4He = 7.7Ra, δ15N = + 6‰, and δ13C = - 6.5‰. Mixing models between air-corrected He and N suggest the involvement of 0.5% to 5% of subducted sediments in the magmatic source. The magmatic sulfur isotopic composition is estimated at - 2.38‰ (from COP-2), but most samples show elemental fractionation due to boiling and steam separation followed by various degrees of atmospheric contamination. All these geochemical and isotopic characteristics are the direct consequence of tectonic particularities of the CCVC: NE faults promote the ascent of hydrothermal fluids in the geothermal area whereas WNW faults serve as preferential channels for meteoric water infiltration.

  14. Quality assurance and quality control in light stable isotope laboratories: A case study of Rio Grande, Texas, water samples

    USGS Publications Warehouse

    Coplen, T.B.; Qi, H.

    2009-01-01

    New isotope laboratories can achieve the goal of reporting the same isotopic composition within analytical uncertainty for the same material analysed decades apart by (1) writing their own acceptance testing procedures and putting them into their mass spectrometric or laser-based isotope-ratio equipment procurement contract, (2) requiring a manufacturer to demonstrate acceptable performance using all sample ports provided with the instrumentation, (3) for each medium to be analysed, prepare two local reference materials substantially different in isotopic composition to encompass the range in isotopic composition expected in the laboratory and calibrated them with isotopic reference materials available from the International Atomic Energy Agency (IAEA) or the US National Institute of Standards and Technology (NIST), (4) using the optimum storage containers (for water samples, sealing in glass ampoules that are sterilised after sealing is satisfactory), (5) interspersing among sample unknowns local laboratory isotopic reference materials daily (internationally distributed isotopic reference materials can be ordered at three-year intervals, and can be used for elemental analyser analyses and other analyses that consume less than 1 mg of material) - this process applies to H, C, N, O, and S isotope ratios, (6) calculating isotopic compositions of unknowns by normalising isotopic data to that of local reference materials, which have been calibrated to internationally distributed isotopic reference materials, (7) reporting results on scales normalised to internationally distributed isotopic reference materials (where they are available) and providing to sample submitters the isotopic compositions of internationally distributed isotopic reference materials of the same substance had they been analysed with unknowns, (8) providing an audit trail in the laboratory for analytical results - this trail commonly will be in electronic format and might include a laboratory information management system, (9) making at regular intervals a complete backup of laboratory analytical data (both of samples logged into the laboratory and of mass spectrometric analyses), being sure to store one copy of this backup offsite, and (10) participating in interlaboratory comparison exercises sponsored by the IAEA and other agencies at regular intervals. ?? Taylor & Francis.

  15. Using Redwood Tree Ring Chronologies to Obtain the Long-View on California's Coastal Climate

    NASA Astrophysics Data System (ADS)

    Dawson, T. E.; Roden, J. S.; Voelker, S. L.; Johnstone, J. A.; Ambrose, A.

    2014-12-01

    Coast redwood (Sequoia sempervirens) occupies a long and narrow range at the land-sea interface from the southern Big Bur region to the California-Oregon boarder. Since mature trees can live in excess of 2000 years, using the interannual variability in the oxygen and carbon stable isotope composition of tree rings obtained from trees growing in different parts of the redwood range holds the potential for obtaining a long-term record of California's coastal climate, including the history of temperatures, low cloud / fog, rainfall and associated climatic drivers of their variation. We analyzed the oxygen and carbon stable isotope composition of tree ring cellulose from both tree cores and whole cross-sectional slabs and compared these data to several regional climate indicies and to published growth chronologies to obtain the long-view on California's coastal climate. Several highlights will be presented and discussed. These include: (1) redwoods faithfully record water sources they use in the oxygen stable isotope composition of their tree ring cellulose; (2) these is both strong watershed- and regional-scale coherence; (3) redwood tree ring carbon isotope composition shows its strongest correlations to tree water status, stand-scale humidity, and at the regional scale to what we term "summer precipitation" anomalies (lack of rain with presence of fog); also (4) that carbon stable isotope composition is very sensitive to within tree and stand microclimate while oxygen stable isotope composition seems to be sensitive to topographic site factors like slope position and proximity to riparian / gully habitats; (5) multivariate climatic analyses reveal that summertime drought recorded in the isotope excursions are most strongly linked to atmospheric circulation anomalies; and (6) that redwood tree rings and their isotope composition provide great potential for reconstructing high-resolution paleo-climate along the California coast.

  16. Formation and Evolution of the Continental Lithospheric Mantle: Perspectives From Radiogenic Isotopes of Silicate and Sulfide Inclusions in Macrodiamonds

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.; Richardson, S. H.

    2007-12-01

    Silicate and sulfide inclusions that occur in diamonds comprise the oldest (>3 Ga), deepest (>140 km) samples of mantle-derived minerals available for study. Their relevance to the evolution of the continental lithosphere is clear because terrestrial macrodiamonds are confined to regions of the Earth with continental lithospheric mantle keels. The goals of analytical work on inclusions in diamond are to obtain paragenesis constraints, radiogenic ages, and initial isotopic compositions. The purpose is to place diamond formation episodes into the broader framework of the geological processes that create and modify the continental lithosphere and to relate the source of the C and N in diamond-forming fluids to understanding the Earth's C and N cycles in the Archean. Although sulfide and silicate inclusions rarely occur in the same diamond, they both can be grouped according to their geochemical similarity with the chief rock types that comprise the mantle keel: peridotite and eclogite. Silicate inclusions are classified as harzburgitic (depleted; olivine > Fo91, garnet Cr2O3 > 3 wt% and CaO from 0 to 5 wt%), lherzolitic (fertile), or eclogitic (basaltic; garnet Cr2O3 < 2 wt% and CaO from 3 to 15 wt%, clinopyroxene with higher Na2O, Al2O3, and FeO); they are amenable for trace element study by SIMS and for Sm-Nd and Rb-Sr analysis by conventional P-TIMS after grouping by mineralogical similarity. Sulfide inclusions (chiefly FeS with lesser Ni, Cu, and Co) are classified as peridotitic (Ni > 14 wt%; Os > 2 ppm) versus eclogitic (Ni < 10 wt%; Os < 200 ppb); single sulfides are amenable for S isotopic study by SIMS or TIMS, and Re-Os analysis by N-TIMS. Work on inclusions in diamonds depends on the distribution of mined, diamond-bearing kimberlites, and the generosity of mining companies because of the extreme rarity of inclusions in suites of mostly gem-quality diamonds. Most isotopic work has been on the Kaapvaal-Zimbabwe craton with lesser work on the Slave, Siberian, and Australian cratons. Sm-Nd ages on silicate suites and Re-Os ages on sulfide suites confirm diamond formation from the Mesoarchean though the Neoproterozoic. Most important are the systematics across cratons in the context of crustal geology that lead to generalities about craton evolution. Inclusion suites date mantle keels as Mesoarchean and clearly point to subduction as the major process to form the earliest continental nuclei and to amalgamate the cratons in their present form. This is evident from the elevated initial Os isotopic compositions in 3.5 Ga Slave (Panda) and 2.9 Ga Kaapvaal (Kimberley) sulfides, the low Sm/Nd and elevated initial Sr isotopic compositions of 3.4 Ga Kaapvaal (Kimberley) harzburgitic garnets, the preponderance of 2.9 Ga eclogitic sulfides in every western Kaapvaal craton locality, and the occurrence of surficial, volcanogenic S in Kaapvaal (Orapa) sulfides. The continental lithosphere was accessible to melts and fluids from the asthenosphere throughout the Proterozoic as evident from silicate and sulfide inclusion suites of 0.9 to 2.0 Ga age in every locality studied in the Kaapvaal craton. The correspondence of silicate inclusion type with current seismic velocity structure of the Kaapvaal mantle keel shows that its structure is at least Bushveld age (2 Ga) and due to compositional differences. Seismic velocity structures of continental mantle keels may be more a function of their geologic history than current temperature distribution.

  17. Evidence for ancient atmospheric xenon in Archean rocks and implications for the early evolution of the atmosphere

    NASA Astrophysics Data System (ADS)

    Pujol, M.; Marty, B.; Burnard, P.; Hofmann, A.

    2012-12-01

    The initial atmospheric xenon isotopic composition has been much debated over the last 4 decades. A Non radiogenic Earth Atmospheric xenon (NEA-Xe) composition has been proposed to be the best estimate of the initial signature ([1]). NEA-Xe consists of modern atmospheric Xe without fission (131-136Xe) or radioactive decay (129Xe) products. However, the isotope composition of such non-radiogenic xenon is very different to that of potential cosmochemical precursors such as solar or meteoritic Xe, as it is mass-fractionated by up to 3-4 % per amu relative to the potential precursors, and it is also elementally depleted relative to other noble gases. Because the Xe isotopic composition of the Archean appears to be intermediate between that of these cosmochemical end-members and that of the modern atmosphere, we argued that isotopic fractionation of atmospheric xenon did not occur early in Earth's history by hydrodynamic escape, as postulated by all other models ([1], [2], [3]), but instead was a continuous, long term process that lasted during at least the Hadean and Archean eons. Taken at face value, the decrease of the Xe isotopic fractionation from 1.6-2.1 % amu-1 3.5 Ga ago ([4]) to 1 % amu-1 3.0 Ga ago (Ar-Ar age in fluid inclusions trapped in quartz from the same Dresser Formation, [5]) could reflect a secular variation of the atmospheric Xe signature. Nevertheless, up until now, all data showing an isotopic mass fractionation have been measured in rocks and fluids from the same formation (Dresser Formation, Western Australia, aged 3.5 Ga), and have yet to be confirmed in rocks from different locations. In order to better constrain xenon isotopic fractionation of the atmosphere through time, we decided to analyze barites from different ages, geological environments and metamorphism grade. We started this study with barite from the Fig Tree Formation (South Africa, aged 3.26 Ga). This barite was sampled in old mines so have negligible modern exposure time. It is well preserved (no apparent metamorphism) and was deposited in a shallow submarine environment ("Finger type" barites) associated with hydrothermal circulation (white smokers). Compared to barite from the Dresser formation, Fig Tree barite had a long ancient exposure time in the subsurface (under shallow water for example) resulting in huge excesses of 131Xe (131Xe/130Xe ratio ~38 compared to 5.213 for the modern atmosphere one) due to 130Ba(n,γ) reactions. Fissiogenic products (132 to 136Xe) are also more present than in barites from the Dresser Formation and are compatible with the age of the Fig Tree formation. Despite corrections for secondary productions that are hard to constrain, the Fig Tree barite still shows an isotopic mass fractionation of about 1% amu-1, consistent with our expected atmospheric fractionation evolution. [1] Pepin R. O. (1991) Icarus 92(1), 2-79. [2] Dauphas N. (2003) Icarus 165, 326-339. [3] Tolstikhin I. and O'Nions R.K. (1994) Chem. Geol. 115, 1-6. [4] Pujol M., Marty B., Burnard P. and Philippot P. (2009) Geochim. Cosmochim. Acta 73, 6834-46. [5] Pujol M., Marty B. and Burgess R. (2011) Earth Planet. Sci. Lett. 308, 298-306

  18. Hf-Nd Isotopes in West Philippine Basin Basalts: Results from International Ocean Discovery Program (IODP) Site U1438 and Implications for the Early History of the Izu-Bonin-Mariana (IBM) Subduction System

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Hocking, B.; Bizimis, M.; Hickey-Vargas, R.; Ishizuka, O.; Bogus, K.; Arculus, R. J.

    2015-12-01

    Drilling at IODP Site U1438, located immediately west of Kyushu-Palau Ridge (KPR), the site of IBM subduction initiation, penetrated 1460 m of volcaniclastic sedimentary rock and 150 m of underlying basement. Biostratigraphic controls indicate a probable age for the oldest sedimentary rocks at around 55 Ma (51-64 Ma - Arculus et al., Nat Geosci in-press). This is close to the 48-52 Ma time period of IBM subduction initiation, based on studies in the forearc. There, the first products of volcanism are tholeiitic basalts termed FAB (forearc basalt), which are more depleted than average MORB and show subtle indicators of subduction geochemical enrichment (Reagan et al., 2010 - Geochem Geophy Geosy). Shipboard data indicate that Site U1438 basement basalts share many characteristics with FABs, including primitive major elements (high MgO/FeO*) and strongly depleted incompatible element patterns (Ti, Zr, Ti/V and Zr/Y below those of average MORB). Initial results thus indicate that FAB geochemistry may have been produced not only in the forearc, but also in backarc locations (west of the KPR) at the time of subduction initiation. Hf-Nd isotopes for Site 1438 basement basalts show a significant range of compositions from ɛNd of 7.0 to 9.5 and ɛHf of 14.5 to 19.8 (present-day values). The data define a well-correlated and steep array in Hf-Nd isotope space. Relatively radiogenic Hf compared to Nd indicates an Indian Ocean-type MORB source, but the dominant signature, with ɛHf >16.5, is more radiogenic than most Indian MORB. The pattern through time is from more-to-less radiogenic and more variable Hf-Nd isotopes within the basement section. This pattern culminates in basaltic andesite sills, which intrude the lower parts of the sedimentary section. The sills have the least radiogenic compositions measured so far (ɛNd ~6.6, ɛHf ~13.8), and are similar to those of boninites of the IBM forearc and modern IBM arc and reararc rocks. The pattern within the basement suggests modest enrichment of a depleted Indian MORB source over time.

  19. Titanium stable isotope investigation of magmatic processes on the Earth and Moon

    NASA Astrophysics Data System (ADS)

    Millet, Marc-Alban; Dauphas, Nicolas; Greber, Nicolas D.; Burton, Kevin W.; Dale, Chris W.; Debret, Baptiste; Macpherson, Colin G.; Nowell, Geoffrey M.; Williams, Helen M.

    2016-09-01

    We present titanium stable isotope measurements of terrestrial magmatic samples and lunar mare basalts with the aims of constraining the composition of the lunar and terrestrial mantles and evaluating the potential of Ti stable isotopes for understanding magmatic processes. Relative to the OL-Ti isotope standard, the δ49Ti values of terrestrial samples vary from -0.05 to +0.55‰, whereas those of lunar mare basalts vary from -0.01 to +0.03‰ (the precisions of the double spike Ti isotope measurements are ca. ±0.02‰ at 95% confidence). The Ti stable isotope compositions of differentiated terrestrial magmas define a well-defined positive correlation with SiO2 content, which appears to result from the fractional crystallisation of Ti-bearing oxides with an inferred isotope fractionation factor of ΔTi49oxide-melt = - 0.23 ‰ ×106 /T2. Primitive terrestrial basalts show no resolvable Ti isotope variations and display similar values to mantle-derived samples (peridotite and serpentinites), indicating that partial melting does not fractionate Ti stable isotopes and that the Earth's mantle has a homogeneous δ49Ti composition of +0.005 ± 0.005 (95% c.i., n = 29). Eclogites also display similar Ti stable isotope compositions, suggesting that Ti is immobile during dehydration of subducted oceanic lithosphere. Lunar basalts have variable δ49Ti values; low-Ti mare basalts have δ49Ti values similar to that of the bulk silicate Earth (BSE) while high-Ti lunar basalts display small enrichment in the heavy Ti isotopes. This is best interpreted in terms of source heterogeneity resulting from Ti stable isotope fractionation associated with ilmenite-melt equilibrium during the generation of the mantle source of high-Ti lunar mare basalts. The similarity in δ49Ti between terrestrial samples and low-Ti lunar basalts provides strong evidence that the Earth and Moon have identical stable Ti isotope compositions.

  20. The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Takigiku, R.; Hayes, J. M.; Louda, J. W.; Baker, E. W.

    1989-01-01

    Carbon-isotopic compositions of geoporphyrins have been measured from marine sediments of Mesozoic and Cenozoic age in order to elucidate the timing and extent of depletion of 13C in marine primary producers. These results indicate that the difference in isotopic composition of coeval marine carbonates and marine primary photosynthate was approximately 5 to 7 permil greater during the Mesozoic and early Cenozoic than at present. In contrast to the isotopic record of marine primary producers, isotopic compositions of terrestrial organic materials have remained approximately constant for this same interval of time. This difference in the isotopic records of marine and terrestrial organic matter is considered in terms of the mechanisms controlling the isotopic fractionation associated with photosynthetic fixation of carbon. We show that the decreased isotopic fractionation between marine carbonates and organic matter from the Early to mid-Cenozoic may record variations in the abundance of atmospheric CO2.

  1. Picrite "Intelligence" from the Middle-Late Triassic Stikine arc: Composition of mantle wedge asthenosphere

    NASA Astrophysics Data System (ADS)

    Milidragovic, D.; Zagorevski, A.; Weis, D.; Joyce, N.; Chapman, J. B.

    2018-05-01

    Primitive, near-primary arc magmas occur as a volumetrically minor ≤100 m thick unit in the Canadian Cordillera of northwestern British Columbia, Canada. These primitive magmas formed an olivine-phyric, picritic tuff near the base of the Middle-Late Triassic Stuhini Group of the Stikine Terrane (Stikinia). A new 40Ar/39Ar age on hornblende from a cross-cutting basaltic dyke constrains the tuff to be older than 221 ± 2 Ma. An 87Sr/86Sr isochron of texturally-unmodified tuff samples yields 212 ± 25 Ma age, which is interpreted to represent syn-depositional equilibration with sea-water. Parental trace element magma composition of the picritic tuff is strongly depleted in most incompatible trace elements relative to MORB and implies a highly depleted ambient arc mantle. High-precision trace element and Hf-Nd-Pb isotopic analyses indicate an origin by mixing of a melt of depleted ambient asthenosphere with ≤2% of subducted sediment melt. Metasomatic addition of non-conservative incompatible elements through melting of subducted Panthalassa Ocean floor sediments accounts for the arc signature of the Stuhini Group picritic tuff, enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and high field strength elements (HFSE), and anomalous enrichment in Pb. The inferred Panthalassan sediments are similar in composition to the Neogene-Quaternary sediments of the modern northern Cascadia Basin. The initial Hf isotopic composition of the picritic tuff closely approximates that of the ambient Middle-Late Triassic asthenosphere beneath Stikinia and is notably less radiogenic than the age-corrected Hf isotopic composition of the Depleted (MORB) Mantle reservoir (DM or DMM). This suggests that the ambient asthenospheric mantle end-member experienced melt depletion (F ≤ 0.05) a short time before picrite petrogenesis. The mantle end-member in the source of the Stuhini Group picritic tuff is isotopically similar to the mantle source of enriched mid-ocean ridge basalts (E-MORB) erupted today at the southern end of the Explorer Ridge in northeastern Pacific Ocean. The isotopic similarity between the Middle-Late Triassic ambient mantle under Stikinia, and mantle presently tapped at the southern Explorer Ridge suggests that enriched domains in the northeastern Pacific mantle are long-lived (≥222 million years).

  2. The Role of Fog in Ecosystem Hydrology: Initial Results from Investigations Using Stable Isotopes of Water in Hawaiian Cloud Forests

    NASA Astrophysics Data System (ADS)

    Scholl, M. A.; Gingerich, S. B.; Giambelluca, T. W.; Nullet, M. A.; Loope, L. L.

    2002-05-01

    The role of fog drip in cloud forest ecosystems is being investigated at two sites, one each on the windward and leeward sides of East Maui, Hawaii. The study involves using the different isotopic signatures of fog (cloud water) and rain to trace fog through the forest water cycle, as well as comparing relative amounts of fog, rain, and throughfall. At each site, volume of rain, fog plus rain, and throughfall is recorded hourly. Stable isotope samples of rain, fog, soil water, stream water, and tree sap are collected monthly, and each site has a visibility sensor and weather station. The windward site, at 1950 m altitude, is enveloped by orographic clouds under trade wind conditions almost every day. This site is near the upper boundary of extensive forested mountain slopes that are a major watershed for the island. Volume data suggest that fog drip (compared to rain as measured by a standard gage) contributes substantially to the forest water budget on the windward side. Tree sap deuterium composition was consistently similar to fog composition for samples analyzed thus far, while soil water was isotopically lighter, possibly reflecting a mixture of fog with rain or shallow groundwater. The leeward site, at 1220 m, is often in a cloud bank under trade wind conditions. During the summer the major source of precipitation is cloud water; rainfall generally occurs during winter storms. Scattered cloud forest remnants persist at this site despite degradation of extensive native forest by ungulate browsing, plant invasion, and fire. Here, fog drip was a smaller proportion of the total precipitation than at the windward site, but exceeded rainfall for some precipitation events. Unlike the windward site, tree sap and soil water had similar isotopic composition. The information gained from this study underscores the importance of trees and shrubs in extracting cloud water that contributes to soil moisture, groundwater recharge, and stream flow in watersheds.

  3. Isotopic compositions of cometary matter returned by Stardust.

    PubMed

    McKeegan, Kevin D; Aléon, Jerome; Bradley, John; Brownlee, Donald; Busemann, Henner; Butterworth, Anna; Chaussidon, Marc; Fallon, Stewart; Floss, Christine; Gilmour, Jamie; Gounelle, Matthieu; Graham, Giles; Guan, Yunbin; Heck, Philipp R; Hoppe, Peter; Hutcheon, Ian D; Huth, Joachim; Ishii, Hope; Ito, Motoo; Jacobsen, Stein B; Kearsley, Anton; Leshin, Laurie A; Liu, Ming-Chang; Lyon, Ian; Marhas, Kuljeet; Marty, Bernard; Matrajt, Graciela; Meibom, Anders; Messenger, Scott; Mostefaoui, Smail; Mukhopadhyay, Sujoy; Nakamura-Messenger, Keiko; Nittler, Larry; Palma, Russ; Pepin, Robert O; Papanastassiou, Dimitri A; Robert, François; Schlutter, Dennis; Snead, Christopher J; Stadermann, Frank J; Stroud, Rhonda; Tsou, Peter; Westphal, Andrew; Young, Edward D; Ziegler, Karen; Zimmermann, Laurent; Zinner, Ernst

    2006-12-15

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.

  4. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  5. Can Lightning Produce Significant Levels of Mass-Independent Oxygen Isotopic Fractionation in Nebular Dust?

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.; Paquette, John A.; Farquhar, Adam

    2012-01-01

    Based on recent evidence that oxide grains condensed from a plasma will contain oxygen that is mass independently fractionated compared to the initial composition of the vapor, we present a first attempt to evaluate the potential magnitude of this effect on dust in the primitive solar nebula. This assessment relies on previous studies of nebular lightning to provide reasonable ranges of physical parameters to form a very simple model to evaluate the plausibility that lightning could affect a significant fraction of nebular dust and that such effects could cause a significant change in the oxygen isotopic composition of solids in the solar nebula over time. If only a small fraction of the accretion energy is dissipated as lightning over the volume of the inner solar nebula, then a large fraction of nebular dust will be exposed to lightning. If the temperature of such bolts is a few percent of the temperatures measured in terrestrial discharges, then dust will vaporize and recondense in an ionized environment. Finally, if only a small average decrease is assumed in the O-16 content of freshly condensed dust, then over the last 5 million years of nebular accretion the average delta O-17 of the dust could increase by more than 30 per mil. We conclude that it is possible that the measured " slope 1" oxygen isotope line measured in meteorites and their components represents a time-evolution sequence of nebular dust over the last several million years of nebular evolution O-16-rich materials formed first, then escaped further processing as the average isotopic composition of the dust graduaUy became increasingly depleted in O-16 .

  6. Approaches to Plant Hydrogen and Oxygen Isoscapes Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Jason B.; Kreuzer-Martin, Helen W.; Ehleringer, James

    2009-12-01

    Plant hydrogen and oxygen isoscapes have been utilized to address important and somewhat disparate research goals. The isotopic composition of leaf water affects the isotopic composition of atmospheric CO2 and O2 and is a logical starting point for understanding the isotopic composition of plant organic compounds since photosynthesis occurs in the leaf water environment. Leaf water isoscapes have been produced largely as part of efforts to understand atmospheric gas isotopic composition. The isotopic composition of plant organic matter has also been targeted for its potential to serve as a proxy for past environmental conditions. Spatially distributed sampling and modeling ofmore » modern plant H & O isoscapes can improve our understanding of the controls of the isotope ratios of compounds such as cellulose or n-alkanes from plants and therefore their utility for paleoreconstructions. Spatially varying plant hydrogen and oxygen isotopes have promise for yielding geographic origin information for a variety of plant products, including objects of criminal forensic interest or food products. The future has rich opportunities for the continued development of mechanistic models, methodologies for the generation of hydrogen and oxygen isoscapes, and cross-disciplinary interactions as these tools for understanding are developed, shared, and utilized to answer large-scale questions.« less

  7. Relating carbon and nitrogen isotope effects to reaction mechanisms during aerobic or anaerobic degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by pure bacterial cultures

    USGS Publications Warehouse

    Fuller, Mark E.; Heraty, Linnea J.; Condee, Charles W.; Vainberg, Simon; Sturchio, Neil C.; Böhlke, John Karl; Hatzinger, Paul B.

    2016-01-01

    Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in 15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰). 13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2− released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2− production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2− values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2− formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted.

  8. The evolution of 13C and 18O isotope composition of DIC in a calcite depositing film of water with isotope exchange between the DIC and a CO2 containing atmosphere, and simultaneous evaporation of the water. Implication to climate proxies from stalagmites: A theoretical model

    NASA Astrophysics Data System (ADS)

    Dreybrodt, Wolfgang; Romanov, Douchko

    2016-12-01

    The most widely applied climate proxies in speleothems are the isotope compositions of carbon and oxygen expressed by δ13C and δ18O values. However, mechanisms, which are not related to climate changes, overlay the climate signal. One is the temporal increase of both, δ13C and δ18O values by kinetic processes during precipitation of calcite. Isotope exchange between DIC in the water and the CO2 in the surrounding cave atmosphere can also change isotope composition. Here we present a theoretical model of the temporal isotope evolution of DIC in a thin water layer during precipitation of calcite and simultaneous isotope exchange with the cave atmosphere, and simultaneous evaporation of water. The exchange of oxygen isotopes in the DIC with those in the water is also considered.

  9. Rb-Sr and Sm-Nd chronology and genealogy of mare basalts from the Sea of Tranquility

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Depaolo, D. J.; Wasserburg, G. J.

    1977-01-01

    Rb-Sr and Sm-Nd ages of two Apollo 11 mare basalts, high-K basalt 10072 and low-K basalt 10062, are reported. Rb-Sr, Sm-Nd, and Ar-40-Ar-39 ages are in good agreement and indicate an extensive time interval for filling of the Sea of Tranquility, presumably by thin lava flows, in agreement with similar observations for the Ocean of Storms. Initial Sr and Nd isotopic compositions on Apollo 11 basalts reveal at least two parent sources producing basalts. The Sm-Nd isotopic data demonstrate that low-K and high-Ti basalts from Apollo 11 and 17 derived from distinct reservoirs, while low-Ti Apollo 15 mare basalt sources have Sm/Nd similar to the sources of Apollo 11 basalts. Groupings of mare basalt based on Ti content and on isotopic data do not coincide.

  10. Experimental evaporation of hyperacid brines: Effects on chemical composition and chlorine isotope fractionation

    NASA Astrophysics Data System (ADS)

    Rodríguez, Alejandro; van Bergen, Manfred J.; Eggenkamp, H. G. M.

    2018-02-01

    Hyperacid brines from active volcanic lakes are some of the chemically most complex aqueous solutions on Earth. Their compositions provide valuable insights into processes of elemental transfer from a magma body to the surface and interactions with solid rocks and the atmosphere. This paper describes changes in chemical and δ37Cl signatures observed in a 1750 h isothermal evaporation experiment on hyperacid (pH 0.1) sulphate-chloride brine water from the active lake of Kawah Ijen volcano (Indonesia). Although gypsum was the only evaporite mineral identified in the evolving brine, decreasing Si concentrations may ultimately result in amorphous silica precipitation. Geochemical simulations predict the additional formation of elemental sulphur at lower water activities (aH2O ≤ 0.65) that were not reached in the experiment. Absence of other sulphates and halides despite the high load of dissolved elements (initial TDS ca. 100 g/kg) can be attributed to increased solubility of metals, promoted by extensive formation of complexes between the variety of cations and the major anions (HSO4-, Cl-, F-) present. Chlorine deviations from a conservative behaviour point to losses of gaseous hydrogen chloride (HCl(g)) and consequently an increase in Br/Cl ratios. Chlorine isotope fractionation that accompanied the escape of HCl(g) showed a marked change in sign and magnitude in the course of progressive evaporation of the brine. The calculated factor of fractionation between HCl(g) and dissolved Cl for the initial interval (before 500 h) is positive (1000lnαHCl(g)-Cldiss. = + 1.55 ± 0.49‰to + 3.37 ± 1.11‰), indicating that, at first, the escaping HCl(g) was isotopically heavier than the dissolved Cl remaining in the brine. Conversely, fractionation shifted to the opposite direction in the subsequent interval (1000lnαHCl(g)-Cldiss. = 5.67 ± 0.17‰to - 5.64 ± 0.08‰), in agreement with values reported in literature. It is proposed that Cl isotopic fractionation in highly acidic brines is controlled by the distribution of dissolved chlorine species, which changes from Cl- to HClo dominance with the progressive pH decline. The Kawah Ijen lake acquired its extreme composition through influx of sulphur and halogen-rich magmatic gas components and extensive rock dissolution. If hyperacid brines with comparable chemical composition existed on Mars, evaporation processes up to the extent reported here (aH2O = 0.85), were likely accompanied by losses of gaseous HCl. The resulting changes in Cl isotope compositions, Br/Cl, S/Cl and other ratios in the residual brine might be potentially recorded in assemblages of halogen-bearing secondary evaporation minerals. Also, volcanic-hydrothermal brines as these would extend the stability of liquid water on the Martian surface down to a temperature of -90 °C.

  11. Heterogeneity of the Caribbean plateau mantle source: Sr, O and He isotopic compositions of olivine and clinopyroxene from Gorgona Island

    NASA Astrophysics Data System (ADS)

    Révillon, S.; Chauvel, C.; Arndt, N. T.; Pik, R.; Martineau, F.; Fourcade, S.; Marty, B.

    2002-12-01

    The composition of the mantle plumes that created large oceanic plateaus such as Ontong Java or the Caribbean is still poorly known. Geochemical and isotopic studies on accreted portions of the Caribbean plateau have shown that the plume source was heterogeneous and contained isotopically depleted and relatively enriched portions. A distinctive feature of samples from the Caribbean plateau is their unusual Sr isotopic compositions, which, at a given Nd isotopic ratio, are far higher than in samples from other oceanic plateaus. Sr, O and He isotopic compositions of whole rocks and magmatic minerals (clinopyroxene or olivine) separated from komatiites, gabbros and peridotites from Gorgona Island in Colombia were determined to investigate the origin of these anomalously radiogenic compositions. Sequentially leached clinopyroxenes have Sr isotopic compositions in the range 87Sr/ 86Sr=0.70271-0.70352, systematically lower than those of leached and unleached whole rocks. Oxygen isotopic ratios of clinopyroxene vary within the range δ 18O=5.18-5.35‰, similar to that recorded in oceanic island basalts. He isotopic ratios are high ( R/ Ra=8-19). The lower 87Sr/ 86Sr ratios of most of the clinopyroxenes shift the field of the Caribbean plateau in Nd-Sr isotope diagrams toward more 'normal' values, i.e. a position closer to the field defined by mid-ocean ridge basalts and oceanic-island basalts. Three clinopyroxenes have slightly higher 87Sr/ 86Sr ratios that cannot be explained by an assimilation model. The high 87Sr/ 86Sr and variations of 143Nd/ 144Nd are interpreted as a source characteristic. Trace-element ratios, however, are controlled mainly by fractionation during partial melting. We combine these isotopic data in a heterogeneous plume source model that accounts for the diversity of isotopic signatures recorded on Gorgona Island and throughout the Caribbean plateau. The heterogeneities are related to old recycled oceanic lithosphere in the plume source; the high 3He/ 4He ratios may indicate that the source material once resided in the lower mantle.

  12. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  13. Stable Chlorine Isotope Study: Application to Early Solar System Materials

    NASA Technical Reports Server (NTRS)

    Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2010-01-01

    A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the 37Cl/35Cl ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For eample, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. In order to clarify the stable chlorine isotope features of early solar system materials, we have initiated development of the TIMS technique at NASA JSC applicable to analysis of small amounts of meteoritic and planetary materials. We report here the current status of chlorine isotope analysis at NASA JSC.

  14. Isotopic compositions of the elements 2013 (IUPAC Technical Report)

    USGS Publications Warehouse

    Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas

    2016-01-01

    The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the “best measurement” of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.

  15. Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountain/Oasis Valley Caldera, Complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies

    USGS Publications Warehouse

    Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W.

    1991-01-01

    Nd, Sr and O isotopic data were obtained from silicic ash-flow tuffs and lavas at the Tertiary age (16-9 Ma) Timber (Mountain/Oasis Valley volcanic center (TMOV) in southern Nevada, to assess models for the origin and evolution of the large-volume silicic magma bodies generated in this region. The large-volume (>900 km3), chemically-zoned, Topopah Spring (TS) and Tiva Canyon (TC) members of the Paintbrush Tuff, and the Rainier Mesa (RM) and Ammonia Tanks (AT) members of the younger Timber Mountain Tuff all have internal Nd and Sr isotopic zonations. In each tuff, high-silica rhyolites have lower initial e{open}Nd values (???1 e{open}Nd unit), higher87Sr/86Sr, and lower Nd and Sr contents, than cocrupted trachytes. The TS, TC, and RM members have similar e{open}Nd values for high-silica rhyolites (-11.7 to -11.2) and trachytes (-10.5 to -10.7), but the younger AT member has a higher e{open}Nd for both compositional types (-10.3 and -9.4). Oxygen isotope data confirm that the TC and AT members were derived from low e{open}Nd magmas. The internal Sr and Nd isotopic variations in each tuff are interpreted to be the result of the incorporation of 20-40% (by mass) wall-rock into magmas that were injected into the upper crust. The low e{open}Nd magmas most likely formed via the incorporation of low ??18O, hydrothermally-altered, wall-rock. Small-volume rhyolite lavas and ash-flow tuffs have similar isotopic characteristics to the large-volume ash-flow tuffs, but lavas erupted from extracaldera vents may have interacted with higher ??18O crustal rocks peripheral to the main magma chamber(s). Andesitic lavas from the 13-14 Ma Wahmonie/Salyer volcanic center southeast of the TMOV have low e{open}Nd (-13.2 to -13.8) and are considered on the basis of textural evidence to be mixtures of basaltic composition magmas and large proportions (70-80%) of anatectic crustal melts. A similar process may have occurred early in the magmatic history of the TMOV. The large-volume rhyolites may represent a mature stage of magmatism after repeated injection of basaltic magmas, crustal melting, and volcanism cleared sufficient space in the upper crust for large magma bodies to accumulate and differentiate. The TMOV rhyolites and 0-10 Ma old basalts that erupted in southern Nevada all have similar Nd and Sr isotopic compositions, which suggests that silicic and mafic magmatism at the TMOV were genetically related. The distinctive isotopic compositions of the AT member may reflect temporal changes in the isotopic compositions of basaltic magmas entering the upper crust, possibly as a result of increasing "basification" of a lower crustal magma source by repeated injection of mantle-derived mafic magmas. ?? 1991 Springer-Verlag.

  16. Application of Sr and O isotope relations to the petrogenesis of the alkaline rocks of the Red Hill complex, New Hampshire, USA

    USGS Publications Warehouse

    Foland, K.A.; Friedman, I.

    1977-01-01

    The Red Hill ring complex in central New Hampshire is composed of apparently cogenetic syenites, nepheline-sodalite syenite, and granite. The ages and petrogenetic relations among five of the six recognized units have been investigated by rubidiumstrontium and oxygen isotope analysis of whole rocks and separated minerals. Whole-rock samples from three syenite units are consistent with a single Rb-Sr isochron which gives an age of 198??3 m.y. and an initial (87Sr/86Sr)o ratio of 0.70330??0.00016 (??2 sigma; ??=1.42?? 10-11y-1). However, Sr isotope data for two other units, nepheline syenite and granite, are not consistent with this isochron but rather indicate higher initial ratios which range from 0.7033 to about 0.707. Whole-rock O isotope analyses give ??18O values which range from+6.2 to+9.3??? Sr and O isotope analyses on mineral separates indicate that observed whole-rock variations in (87Sr/86Sr)o are primary and are not due to any secondary process. The fact that the isotope systematics correlate with rock type, suggests that crustal interaction is likely to have played a significant role in the development of this over-and undersaturated association. Such process(es), while still not fully delineated, could be of fundamental importance to the genesis of associations of critically undersaturated and oversaturated intrusives. The data support the idea that interaction between magmas and crustal materials strongly influenced the compositional relations of similar complexes elsewhere including those of the White Mountain magma series. ?? 1977 Springer-Verlag.

  17. Relationship between the trajectory of mid-latitude cyclones in the eastern Pacific Ocean and the isotopic composition of snowfall in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Vasquez, K. T.; Sickman, J. O.; Heard, A.; Lucero, D.

    2013-12-01

    Diatoms, preserved in lake sediments, provide a potential archive of snowfall variability in the Sierra Nevada through their sensitivity to changes in water chemistry (a proxy for runoff volume) and by recording the isotopic composition of snow-melt (potentially a proxy for sources of atmospheric moisture). In the Sierra Nevada, we hypothesize that the oxygen isotopic composition of diatom silica is principally controlled by snow and that the isotopic composition of snow varies as a function of the tracks of mid-latitude cyclonic storms in the eastern Pacific Ocean. Snow samples from discrete storms were collected from December 2012 to March 2013 at 2042 meters a.s.l. in Sequoia National Park. The δ18O and δ2H values of the snow samples were measured using a temperature-conversion elemental analyzer coupled to a Delta V isotope ratio mass spectrometer. The isotopic measurements were then coupled to 3, 5 and 7-day air mass back trajectories using the NOAA HYSPLIT model. The measured δ18O values ranged from -17.6 to -7.8 per mil and the δ2H ranged from -119.8 to -73.3 per mil. Both δ18O and δ2H were inversely related to the latitude of the storm origin (R^2 values of 0.67 and 0.57, respectively). Winter storms from the Gulf of Alaska were the most isotopically depleted while storms originating in the subtropical/tropical Pacific were the most isotopically enriched, reflecting the overall latitudinal pattern of ocean-water isotope composition in the Pacific Ocean. Our results suggest that the isotopic composition of Sierra Nevada snowfall is influenced by storm track trajectory and this relationship could be useful in interpreting the climatic significance of δ18O of diatom silica preserved in lake cores.

  18. Overview and Brief History of the Boron Isotope Proxy for Past Seawater pH

    NASA Astrophysics Data System (ADS)

    Hoenisch, B.; Hemming, G.

    2007-05-01

    In 1992 Hemming and Hanson (GCA, vol. 56, p. 537-543) showed that a variety of modern marine carbonates revealed a boron isotopic composition close to the isotopic composition of dissolved borate at modern seawater pH, suggesting this was the boron species preferentially adsorbed and incorporated into marine carbonates. With a constant offset between the trigonal and tetrahedrally coordinated boron species and a pH-dependent variation in their fractions, it appeared that this system would be sensitive to pH changes in the natural range of seawater. Accordingly, it was suggested that the boron isotope composition of marine carbonates is a proxy for past seawater pH. Subsequent culture studies with living planktic foraminifers and corals, as well as synthetic precipitation experiments confirmed that the boron isotopic composition follows the isotopic composition of borate across a wide range of seawater pH. In order to use the proxy with confidence, however, all other controls apart from pH need to be thoroughly understood. Recent laboratory and sediment experiments have demonstrated that vital effects and partial shell dissolution have the potential to modify the primary seawater pH signal recorded in the boron isotopic composition of planktic foraminifers. However it has also been shown that careful sample selection allows for avoiding these potential complications. A record of reconstructed surface seawater pH and estimated aqueous PCO2 shows a remarkable match between boron isotope based atmospheric pCO2 estimates and the Vostok ice core CO2 record. This convincingly demonstrates that boron isotopes in planktic foraminifers allow quantitative estimates of atmospheric pCO2 in the past, and confirms that glacial surface ocean pH was ~0.2 units higher compared to interglacial periods. We are going to review and discuss the achievements generated in Gil Hanson's lab over the past 15 years in the light of recent empirical measurements of the boron isotope fractionation between boric acid and borate in seawater.

  19. Core formation conditons in planetesimals: constraints from isotope fractionation experiments.

    NASA Astrophysics Data System (ADS)

    Guignard, J.; Quitté, G.; Toplis, M. J.; Poitrasson, F.

    2016-12-01

    Planetesimals are small objects (10 to 1000 km) early accreted in the history of the solar system which show a wide variety of thermal history due to the initial amount of radiogenic elements [1] (26Al and 60Fe), from a simple metamorphism to a complete metal-silicate differentiation. Moreover, isotope compositions of siderophile element, e.g. Fe, Ni, and W in meteorites spread on a range that can be attributed to the process of core-mantle segregation. We therefore performed isotope fractionation experiments of nickel and tungsten between metal and silicate in a gas-mixing (CO-CO2) vertical furnace, at different temperatures (from 1270°C to 1600°C), oxygen fugacity (from IW+2 to IW-6) and annealing times (from 20 minutes to 48 hours). The starting silicate is an anorthite-diopside eutectic composition glass, synthesize from the respective oxides. The starting metal is either a nickel or tungsten wire according to the element to study. After each experiment, metal and silicate are mechanically separated and digested in acids. Nickel and Tungsten separation have been made according to the methods developed by [2] and [3] and isotopes measurements have been made using a high resolution MC-ICP-MS (Neptune; Thermofisher©). Results show evidence for a strong kinetic isotope fractionation during the first annealing times with a faster diffusion of lightest isotopes than heaviest. Similar mechanism has been already highlighted for iron isotope fractionation between silicate and metal [4]. Chemical and isotopic equilibrium is also reached in our experiments but the time required dependent on the conditions of temperature and oxygen fugacity. Therefore, at equilibrium, metal-silicate isotope fractionation has also been quantified as well its temperature dependence. These experimental data can be used in order to bring new constraints on the metal silicate segregation in the planetesimals early accreted. [1] Lee T., et al., GRL, 3, 41-44 (1976) [2] Quitté G., and Oberli F., JAAS, 21, 1249-1255 (2006) [3] Breton T., and Quitté G., JAAS, 29, 2284-2293 (2014) [4] Roskosz M., et al., EPSL, 248, 851-867 (2006)

  20. Calibrating NIST SRM 683 as A New International Reference Standard for Zn Isotopes

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Zhang, X.; Yu, H.; Huang, F.

    2017-12-01

    Zinc isotopes have been widely applied in the cosmochemical, geochemical, and environmental studies (Moynier et al. 2017). Obtaining precise Zn isotopic data for inter-laboratory comparison is a prerequisite to these applications. Currently, the JMC3-0749L is the primary reference standard for Zn isotopes (Albarède 2004), but it is not commercially available now. Thus, it is necessary to calibrate a new international primary reference standard for Zn isotopic analysis. Chen et al. (2016) showed that NIST SRM 683 (a pure Zn metal nugget of 140 grams) has a δ66ZnJMC of 0.12‰, which is falling within the range of natural Zn isotopic compositions, and it may a good candidate for the next generation of international reference standard (Chen et al. 2016). In order to further examine whether NIST SRM 683 has a homogeneous Zn isotopic composition, we measured more NIST SRM 683 by double-spike methods using MC-ICPMS (Conway et al. 2013). The metal nuggets of NIST SRM 683 were intensively sampled by micro-drilling. Zinc isotope analyses for two nuggets show that they have δ66Zn of 0.14 ± 0.02‰ (2SD, N = 32) and 0.13 ± 0.02‰ (2SD, N = 33), respectively. These values are similar to those of two Zn metal nuggets (0.11 ± 0.02‰ vs. 0.12 ± 0.02‰) reported previously by Chen et al. (2016). We fully dissolved one nugget, producing pure Zn solution with identical Zn isotopic composition with the drilling samples. All results strongly support that NIST SRM 683 is homogeneous in Zn isotopic compositions which could be an ideal candidate for the next reference for Zn isotopes. Tests on more metal nuggets will be performed in a few months for further confirming the Zn isotope compositions and homogeneity. Reference: Albarède et al., 2004. 'The stable isotope geochemistry of copper and zinc', Reviews in Mineralogy and Geochemistry, 55: 409-27. Chen et al., 2016. 'Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials', Geostandards and Geoanalytical Research, 40: 417-32. Conway et al., 2013. 'A new method for precise determination of iron, zinc and cadmium stable isotope ratios in seawater by double-spike mass spectrometry', Analytica chimica acta, 793: 44-52. Moynier et al., 2017. 'The isotope geochemistry of zinc and copper', Reviews in Mineralogy and Geochemistry, 82: 543-600.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conroy, Jessica L; Cobb, Kim M; Noone, David

    The objective of this field campaign was to investigate climatic controls on the stable isotopic composition of water vapor, precipitation, and seawater in the western tropical Pacific. Simultaneous measurements of the stable isotopic composition of vapor and precipitation from April 28 to May 8, 2013, at the Manus Tropical Western Pacific Atmospheric Radiation Measurement site, provided several key insights into the nature of the climate signal archived in precipitation and vapor isotope ratios. We observed a large shift from lower to higher isotopic values in vapor and precipitation because of the passage of a mesoscale convective system west of themore » site and a transition from a regional stormy period into a more quiescent period. During the quiescent period, the stable isotopic composition of vapor and precipitation indicated the predominance of oceanic evaporation in determining the isotopic composition of boundary-layer vapor and local precipitation. There was not a consistent relationship between intra-event precipitation amount at the site and the stable isotopic composition of precipitation, thus challenging simplified assumptions about the isotopic “amount effect” in the tropics on the time scale of individual storms. However, some storms did show an amount effect, and deuterium excess values in precipitation had a significant relationship with several meteorological variables, including precipitation, temperature, relative humidity, and cloud base height across all measured storms. The direction of these relationships points to condensation controls on precipitation deuterium excess values on intra-event time scales. The relationship between simultaneous measurements of vapor and precipitation isotope ratios during precipitation events indicates the ratio of precipitation-to-vapor isotope ratios can diagnose precipitation originating from a vapor source unique from boundary-layer vapor and rain re-evaporation.« less

  2. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective

    NASA Astrophysics Data System (ADS)

    Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang

    2017-12-01

    The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.

  3. High-precision 87Sr/86Sr analyses in wines and their use as a geological fingerprint for tracing geographic provenance.

    PubMed

    Marchionni, Sara; Braschi, Eleonora; Tommasini, Simone; Bollati, Andrea; Cifelli, Francesca; Mulinacci, Nadia; Mattei, Massimo; Conticelli, Sandro

    2013-07-17

    The radiogenic isotopic compositions of inorganic heavy elements such as Sr, Nd, and Pb of the food chain may constitute a reliable geographic fingerprint, their isotopic ratios being inherited by the geological substratum of the territory of production. The Sr isotope composition of geomaterials (i.e., rocks and soils) is largely variable, and it depends upon the age of the rocks and their nature (e.g., genesis, composition). In this study we developed a high-precision analytical procedure for determining Sr isotopes in wines at comparable uncertainty levels of geological data. With the aim of verifying the possibility of using Sr isotope in wine as a reliable tracer for geographic provenance, we performed Sr isotope analyses of 45 bottled wines from four different geographical localities of the Italian peninsula. Their Sr isotope composition has been compared with that of rocks from the substrata (i.e., rocks) of their vineyards. In addition wines from the same winemaker but different vintage years have been analyzed to verify the constancy with time of the (87)Sr/(86)Sr. Sr isotope compositions have been determined by solid source thermal ionization mass spectrometry following purification of Sr in a clean laboratory. (87)Sr/(86)Sr of the analyzed wines is correlated with the isotopic values of the geological substratum of the vineyards, showing little or no variation within the same vineyard and among different vintages. Large (87)Sr/(86)Sr variation is observed among wines from the different geographical areas, reinforcing the link with the geological substratum of the production territory. This makes Sr isotopes a robust geochemical tool for tracing the geographic authenticity and provenance of wine.

  4. ``Smoking From The Same Pipe": Developement of an 40Ar/39Ar Datting Intercalibration PIpette System (Invited)

    NASA Astrophysics Data System (ADS)

    Turrin, B. D.; Swisher, C. C.; Deino, A.; Hemming, S. R.; Hodges, K.; Renne, P. R.

    2010-12-01

    The precision and accuracy of Ar isotope ratio measurements is one of the main limiting factors in the uncertainties of an 40Ar/39Ar age. Currently, it is relatively common to measure Ar isotopic ratios to a precision of 1-2‰ or better on an intralaboratory basis. This level of analytical precision equates to a comparable level of precision (1-3‰) in the calculated age, depending on the extent of atmospheric Ar contamination, importance of nucleogenic interference corrections, and other factors. However, it has become clear that improving the precision of mass spectrometry is not the only bottleneck towards improving the accuracy and precision of 40Ar/39Ar dating in general. Rather, the most urgent issue is interlaboratory reproducibility. This became obvious in a recent EARTHTIME initiative undertaken to intercalibrate two commonly used 40Ar/39Ar standards [the Fish Canyon sanidine (FCs) and the Alder Creek sanidine (ACs)]. This effort revealed variations amongst laboratories (at the 1-2% level), an order of magnitude greater than the internal analytical precisions. To address these issues, we have proposed (to NSF) to construct two identical pipette systems loaded to identical starting pressures and with identical isotopic compositions. One pipette system will travel between participating 40Ar/39Ar labs and the second system will not travel and serve as the “Master” system to test for any fractionation or undocumented depletion of the traveling pipette system. In order to ensure delivery of uniform amounts of homogenous gas, the pipette system will be computer-controlled with preprogrammed routines and lockouts to prevent compromising the reservoirs. The pipette systems will deliver three gas samples with different isotopic ratios at two different pressures/concentrations. One pipette bulb will be of atmospheric isotopic composition, and the other two pipette bulbs will have 40Ar*/39ArK ratios corresponding to co-irradiated ACs and FCs fixed by their relative ages at ~1:23.6. A pipette system will permit the participating labs to measure gas samples with exactly the same isotopic composition(s) and similar gas volumes. Measuring the same gas controls the variables such as 1) sample heterogeneity or experimental artifacts arising from neutron dosage; 2) incomplete degassing and the possibility of isotopic fractionation of Ar; and 3) problems related to isobaric interferences from e.g. hydrocarbons or HCl. By fixing these variables, the influence of different data reduction protocols can be assessed. In addition, measuring gas samples with fixed isotopic ratios at different pressures/concentrations will also test the pressure effects on ion source and/or detector linearity.

  5. Effect Of Substrates On The Fractionation Of Hydrogen Isotopes During Lipid-Biosynthesis By Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, S. S.; Pagani, M.

    2010-12-01

    Lipids form an important class of proxies for paleoclimatological research, and hydrogen isotope ratios of lipids are being increasingly used for understanding changes in the hydrological system. Proper understanding of hydrogen isotope fractionation during lipid biosynthesis is therefore important and attention has been directed toward understanding the magnitude of hydrogen isotope fractionation that occurs during lipid biosynthesis in various organisms. Hydrogen isotope ratios of lipids depend on the hydrogen isotopic composition of the ambient water, hydrogen isotopic composition of NADPH used during biosynthesis, growth conditions, pathways of lipid biosynthesis, and substrates in the case of heterotrophic organisms. Recently it has been observed that NADPH contributes a significant part of the hydrogen in fatty acids synthesized by bacteria during heterotrophic growth (Zhang et al, 2009). As NADPH is formed by reduction of NADP+ during metabolism of substrates, different metabolic pathways form NADPH with different D/H ratios, which in turn results in variation in D/H ratios of lipids (Zhang et al, 2009). Therefore, substrates play a significant role in hydrogen isotopic compositions of lipids. For this study, we are investigating the effects of substrates on hydrogen isotope fractionation during biosynthesis of isoprenoidal lipids by heterotrophically growing halophilic archaea. Haloarcula marismortui is a halophilic archaea which synthesizes Archaeol (a diether lipid) and other isoprenoidal lipids. We have grown Haloarcula marismortui in pure cultures on three different substrates and are in the process of evaluating isotopic variability of Archaeol and other lipids associated with substrate and the D/H composition of ambient water. Our results will be helpful for a better understanding of hydrogen isotope fractionations during lipid synthesis by archaea. Also, halophilic archaea are the only source of archaeol in hypersaline environments. Therefore, our results will also indicate whether archaeol can be used as a proxy of ambient water hydrogen isotopic compositions in hypersaline environments.

  6. Spacecraft measurements of the elemental and isotopic composition of solar energetic particles

    NASA Technical Reports Server (NTRS)

    Mewaldt, R. A.

    1980-01-01

    Within the past few years, instruments flown on satellites and space probes have made significant progress in measuring the elemental and isotopic composition of energetic heavy nuclei accelerated in solar flares. These new observations are discussed, focusing on: (1) the energy dependence of the elemental composition at energies not greater than 1 MeV/nucleon; (2) flare to flare variations in the composition; and (3) comparisons of the average solar particle abundances (Z not less than 2 and not greater than 28) with other measures of the solar composition, including photospheric, coronal, and solar wind observations. These comparisons have led to the suggestion that solar flares sample the composition of the corona. Isotopic measurements of heavy solar flare nuclei have recently added a new dimension to these studies. In particular, the isotopic composition of solar flare neon has been found to be significantly different from that measured in the solar wind, but consistent with the meteoritic component neon-A.

  7. Origin of petroporphyrins. 2. Evidence from stable carbon isotopes

    NASA Technical Reports Server (NTRS)

    Boreham, C. J.; Fookes, C. J.; Popp, B. N.; Hayes, J. M.

    1990-01-01

    Compared with the carbon-13 isotopic composition of the ubiquitous C32DPEP (DPEP, deoxophylloerythroetioporphyrin) the heavy but equivalent carbon-13 isotopic composition for the porphyrin structures 15(2)-methyl-15,17-ethano-17-nor-H-C30DPEP and 15,17-butano-, 13,15-ethano-13(2),17-propano-, and 13(1)-methyl-13,15-ethano-13(2),17-propanoporphyrin suggests a common precursor, presumably chlorophyll c, for these petroporphyrins isolated from the marine Julia Creek oil shale and the lacustrine Condor oil shale. Similarly, the heavy but variable carbon-13 isotopic composition of 7-nor-H-C31DPEP compared with C32DPEP is consistent with an origin from both chlorophyll b and chlorophyll c3. The equivalent carbon-13 isotopic composition for 13(2)-methyl-C33DPEP compared with C32DPEP suggests a common origin resulting from a weighted average of chlorophyll inputs.

  8. New technique for study on isotopic fractionation between sea water and foraminiferal growing processes

    NASA Astrophysics Data System (ADS)

    Cang, Shuxi; Shackleton, N. J.

    1990-12-01

    The stable isotopic δ18O and δ13C composition of foraminiferal shell calcite varies as a function of many factors including temperature and salinity. In order to understand and interpret the variations in the isotopic composition of foraminiferal shell calcite, research has been recently focused on the role of the “vital effects”. Our examination of the lamella structure of several recent planktonic foraminifera indicates that the secretion of sequential lamellae results in multiple lamillae on earlier chambers and a single lamella on the final chamber. We used a very simple procedure to separate the individual whole test of foraminifera into several chambers and measured the isotopic composition of each growth stage chamber. The results indicate that the stable isotopic composition (carbon and oxygen), particularly that of the last two chambers, of the foraminiferal test varies as a function of the individual growing process.

  9. Hafnium isotope stratigraphy of ferromanganese crusts

    PubMed

    Lee; Halliday; Hein; Burton; Christensen; Gunther

    1999-08-13

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  10. A Sr and Mg isotopic study of soil and stream waters along an erosional gradient, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Rosen, V. B.; Maher, K.; Kouba, C. M.; Weinman, B. A.; Yoo, K.; Mudd, S. M.

    2012-12-01

    Since chemical weathering rates are proposed to regulate atmospheric CO2 concentrations and by extension global temperature over geologic timescales, understanding the relationship between chemical weathering rates and physical erosion is crucial to accurately interpreting Earth's climate history. The rate of supply of fresh minerals to the weathering zone is known to be an important control on chemical weathering rates. However, the consequences of physical erosion on the isotopic composition of weathering-derived solutes are more difficult to assess. This study capitalizes on a series of granitic hillslope transects with different erosion rates but similar climate, vegetation, and bedrock, in order to assess the consequences of erosion on the Sr and Mg isotopic composition of solutes. Reactive transport model simulations of varying complexity have been used to complement the field measurements and to analyze the sensitivity of fluid isotopic compositions to changes in key parameters such as erosion rate, flow rate, and biological cycling. The three hillslopes in the Feather River Basin, California reflect different degrees of channel erosion at their bases—BRC is a hillslope with active channel incision (60% average slope, below the knickpoint), FTA is a hillslope reflecting the transition between the relict and modern-day incising areas (50% average slope, at the knickpoint), and POMD is a 30% average hillslope in the relict landscape above the knickpoint. We measured the major element compositions, as well as the Sr and Mg isotopic compositions of soil water leaches (deionized water leaches), lysimeters, stream waters, and groundwaters by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The 87Sr/86Sr values of soil and stream waters show minimal variation (0.7042 to 0.7046) as a function of soil depth, erosion rate, or sampling season despite abundant radiogenic biotite in the profiles. These results agree with the reactive transport model predictions at high erosion rates, and suggest that soil residence times and isotopic equilibrium times are too short for biotite weathering to influence the solute isotopic composition. In contrast, model results for δ26Mg of the soil waters and minerals suggest that the Mg isotopic composition of the solute changes as a function of erosion rate because of shorter isotopic equilibrium length scales at higher erosion rates. The isotopic reactive transport modeling, combined with hillslope depth profiles and stream water analyses, provides a useful approach for linking the isotopic composition of solutes to erosion rates. This study may provide insights into past and present riverine isotopic compositions, and contribute to our understanding of how surface processes have influenced past atmospheric conditions.

  11. Importance of depth and intensity of convection on the isotopic composition of water vapor as seen from IASI and TES δD observations

    NASA Astrophysics Data System (ADS)

    Lacour, Jean-Lionel; Risi, Camille; Worden, John; Clerbaux, Cathy; Coheur, Pierre-François

    2018-01-01

    We use tropical observations of the water vapor isotopic composition, derived from IASI and TES spaceborne measurements, to show that the isotopic composition of water vapor in the free troposphere is sensitive to both the depth and the intensity of convection. We find that for any given precipitation intensity, vapor associated with deep convection is isotopically depleted relative to vapor associated with shallow convection. The intensity of precipitation also plays a role as for any given depth of convection, the relative enrichment of water vapor decreases as the intensity of precipitation increases. Shallow convection, via the uplifting of enriched boundary layer air into the free troposphere and the convective detrainment, enriches the free troposphere. In contrast, deep convection is associated with processes that deplete the water vapor in the free troposphere, such as rain re-evaporation. The results of this study allow for a better identification of the parameters controlling the isotopic composition of the free troposphere and indicate that the isotopic composition of water vapor can be used to evaluate the relative contributions of shallow and deep convection in global models.

  12. Magnesium isotope evidence that accretional vapour loss shapes planetary compositions

    PubMed Central

    Hin, Remco C.; Coath, Christopher D.; Carter, Philip J.; Nimmo, Francis; Lai, Yi-Jen; Pogge von Strandmann, Philip A.E.; Willbold, Matthias; Leinhardt, Zoë M.; Walter, Michael J.; Elliott, Tim

    2017-01-01

    It has long been recognised that Earth and other differentiated planetary bodies are chemically fractionated compared to primitive, chondritic meteorites and by inference the primordial disk from which they formed. An important question has been whether the notable volatile depletions of planetary bodies are a consequence of accretion1, or inherited from prior nebular fractionation2. The isotopic compositions of the main constituents of planetary bodies can contribute to this debate3–6. Using a new analytical approach to address key issues of accuracy inherent in conventional methods, we show that all differentiated bodies have isotopically heavier magnesium compositions than chondritic meteorites. We argue that possible magnesium isotope fractionation during condensation of the solar nebula, core formation and silicate differentiation cannot explain these observations. However, isotopic fractionation between liquid and vapour followed by vapour escape during accretionary growth of planetesimals generates appropriate residual compositions. Our modelling implies that the isotopic compositions of Mg, Si and Fe and the relative abundances of the major elements of Earth, and other planetary bodies, are a natural consequence of substantial (~40% by mass) vapour loss from growing planetesimals by this mechanism. PMID:28959965

  13. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    NASA Astrophysics Data System (ADS)

    Allen, Scott T.; Keim, Richard F.; McDonnell, Jeffrey J.

    2015-03-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability in event-scale samples, (2) to determine if there are persistent controls over the variability and how these affect variability of seasonally accumulated throughfall, and (3) to analyze the distribution of measured throughfall isotopic composition associated with varying sampling regimes. We measured throughfall over two, three-month periods in western Oregon, USA under a Douglas-fir canopy. The mean spatial range of δ18O for each event was 1.6‰ and 1.2‰ through Fall 2009 (11 events) and Spring 2010 (7 events), respectively. However, the spatial pattern of isotopic composition was not temporally stable causing season-total throughfall to be less variable than event throughfall (1.0‰; range of cumulative δ18O for Fall 2009). Isotopic composition was not spatially autocorrelated and not explained by location relative to tree stems. Sampling error analysis for both field measurements and Monte-Carlo simulated datasets representing different sampling schemes revealed the standard deviation of differences from the true mean as high as 0.45‰ (δ18O) and 1.29‰ (d-excess). The magnitude of this isotopic variation suggests that small sample sizes are a source of substantial experimental error.

  14. What controls silicon isotope fractionation during dissolution of diatom opal?

    NASA Astrophysics Data System (ADS)

    Wetzel, F.; de Souza, G. F.; Reynolds, B. C.

    2014-04-01

    The silicon isotope composition of opal frustules from photosynthesising diatoms is a promising tool for studying past changes in the marine silicon cycle, and indirectly that of carbon. Dissolution of this opal may be accompanied by silicon isotope fractionation that could disturb the pristine silicon isotope composition of diatom opal acquired in the surface ocean. It has previously been shown that dissolution of fresh and sediment trap diatom opal in seawater does fractionate silicon isotopes. However, as the mechanism of silicon isotope fractionation remained elusive, it is uncertain whether opal dissolution in general is associated with silicon isotope fractionation considering that opal chemistry and surface properties are spatially and temporally (i.e. opal of different age) diverse. In this study we dissolved sediment core diatom opal in 5 mM NaOH and found that this process is not associated with significant silicon isotope fractionation. Since no variability of the isotope effect was observed over a wide range of dissolution rates, we can rule out the suggestion that back-reactions had a significant influence on the net isotope effect. Similarly, we did not observe an impact of temperature, specific surface area, or degree of undersaturation on silicon isotope partitioning during dissolution, such that these can most likely also be ruled out as controlling factors. We discuss the potential impacts of the chemical composition of the dissolution medium and age of diatom opal on silicon isotope fractionation during dissolution. It appears most likely that the controlling mechanism of silicon isotope fractionation during dissolution is related to the reactivity, or potentially, aluminium content of the opal. Such a dependency would imply that silicon isotope fractionation during dissolution of diatom opal is spatially and temporally variable. However, since the isotope effects during dissolution are small, the silicon isotope composition of diatom opal appears to be robust against dissolution in the deep sea sedimentary environment.

  15. Characteristics of Martian Crustal Materials and Implications for Magmatic Assimilation: Preliminary Re-Os Isotope and Highly Siderophile Element Abundance Data for Nakhlites and Tissint

    NASA Astrophysics Data System (ADS)

    Mari, N.; Riches, A. J. V.; Hallis, L. J.; Lee, M. R.

    2017-07-01

    This project, for the first time, aims to integrate nakhlite Os-isotope compositions and HSE abundance data with S-isotope compositions for sample fractions for which textural information is constrained prior to destructive analyses.

  16. Isotopic Composition of Barium in Single Presolar Silicon Carbide Grains

    NASA Technical Reports Server (NTRS)

    Savina, M. R.; Tripa, C. E.; Pellin, M. J.; Davis, A. M.; Clayton, R. N.; Lewis, R. S.; Amari, S.

    2002-01-01

    We have measured Ba isotope distributions in individual presolar SiC grains. We find that the Ba isotopic composition in mainstream SiC grains is consistent with models of nucleosynthesis in low to intermediate mass asymptotic giant branch (AGB) stars. Additional information is contained in the original extended abstract.

  17. Soil drying effects on the carbon isotope composition of soil respiration

    EPA Science Inventory

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opp...

  18. Condensation and mixing in supernova ejecta

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Meyer, B. S.; Grossman, L.

    2010-06-01

    Low-density graphite spherules from the Murchison carbonaceous chondrite contain TiC grains and possess excess 28Si and 44Ca (from decay of short-lived 44Ti). These and other isotopic anomalies indicate that such grains formed by condensation from mixtures of ejecta from the interior of a core-collapse supernova with those from the exterior. Using homogenized chemical and isotopic model compositions of the eight main burning zones as end-members, Travaglio et al. (1999) attempted to find mixtures whose isotopic compositions match those observed in the graphite spherules, subject to the condition that the atomic C/O ratio = 1. They were partially successful, but this chemical condition does not guarantee condensation of TiC at a higher temperature than graphite, which is indicated by the spherule textures. In the present work, model compositions of relatively thin layers of ejecta within the main burning zones computed by Rauscher et al. (2002) for Type II supernovae of 15, 21 and 25 M ʘ are used to construct mixtures whose chemical compositions cause equilibrium condensation of TiC at a higher temperature than graphite in an attempt to match the textures and isotopic compositions of the spherules simultaneously. The variation of pressure with temperature and the change in elemental abundances with time due to radioactive decay were taken into account in the condensation calculations. Layers were found within the main Ni, O/Ne, He/C and He/N zones that, when mixed together, simultaneously match the carbon, nitrogen and oxygen isotopic compositions, 44Ti/ 48Ti ratios and inferred initial 26Al/ 27Al ratios of the low-density graphite spherules, even at subsolar 12C/ 13C ratios. Due to the relatively large proportion of material from the Ni zone and the relative amounts of the two layers of the Ni zone required to meet these conditions, predicted 28Si excesses are larger than observed in the low-density graphite spherules, and large negative δ46Ti/ 48Ti, δ47Ti/ 48Ti, δ49Ti/ 48Ti and δ50Ti/ 48Ti are produced, in contrast to the observed normal δ46Ti/ 48Ti and δ47Ti/ 48Ti, large positive δ49Ti/ 48Ti and smaller positive δ50Ti/ 48Ti. Although better matches to the observed δ46Ti/ 48Ti, δ47Ti/ 48Ti and 28Si excesses can be found using much smaller amounts of Ni zone material and some Si/S zone material, it is very difficult to match simultaneously the Ti and Si isotopic compositions in any mixtures of material from these deep layers with He/C and He/N zone material, regardless of the condensation sequence. The occurrence of Fe-rich, Si-poor metal grains inside the graphite spherules does not have a satisfactory explanation.

  19. Iron isotope behavior during fluid/rock interaction in K-feldspar alteration zone - A model for pyrite in gold deposits from the Jiaodong Peninsula, East China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhi-Yong; Jiang, Shao-Yong; Mathur, Ryan; Cook, Nigel J.; Yang, Tao; Wang, Meng; Ma, Liang; Ciobanu, Cristiana L.

    2018-02-01

    Mechanisms for Fe isotope fractionation in hydrothermal mineral deposits and in zones of associated K-feldspar alteration remain poorly constrained. We have analyzed a suite of bulk samples consisting of granite displaying K-feldspar alteration, Precambrian metamorphic rocks, and pyrite from gold deposits of the Jiaodong Peninsula, East China, by multi-collector inductively-coupled plasma mass spectrometry. Pyrites from disseminated (J-type) ores show a δ56Fe variation from +0.01 to +0.64‰, overlapping with the signature of the host granites (+0.08 to +0.39‰). In contrast, pyrites from quartz veins (L-type ores) show a wide range of Fe-isotopic composition from -0.78 to +0.79‰. Negative values are never seen in the J-type pyrites. The Fe isotope signature of the host granite with K-feldspar alteration is significantly heavier than that of the bulk silicate Earth. The Fe isotopic compositions of Precambrian metamorphic rocks across the district display a narrow range between -0.16‰ and +0.19‰, which is similar to most terrestrial rocks. Concentrations of major and trace elements in bulk samples were also determined, so as to evaluate any correlation between Fe isotope composition and degree of alteration. We note that during progressive K-feldspar alteration to rocks containing >70 wt% SiO2, >75 ppm Rb, and <1.2 wt% total Fe2O3, the Fe isotope composition of the granite changes systematically. The Fe isotope signature becomes heavier as the degree of alteration increases. The extremely light Fe isotopic compositions in L-type gold deposits may be explained by Rayleigh fractionation during pyrite precipitation in an open fracture system. We note that the sulfur isotopic compositions of pyrite in the two types of ores are also different. Pyrite from J-type ores has a systematically 3.5‰-higher δ34S value (11.2‰) than those of pyrite from the L-type ores (7.7‰). There is, however, no correlation between Fe and S isotope signatures. The isotopic fractionation of sulfur is used to constrain a change in the fO2 of the hydrothermal fluids from which pyrite precipitated. This work demonstrates that the Fe isotope composition of pyrite displays a significant response to the process of pyrite precipitation in hydrothermal systems, and that systematic fractionation of iron isotopes occurs during fluid/rock reaction in the K-feldspar alteration zone of the Linglong granite. The implications of the results are that processes of mineralization and associated fluid-rock interaction, which are ubiquitously observed in porphyry-style Cu-Au-Mo and other hydrothermal deposits, may be readily traceable using Fe isotopes.

  20. Isotopic anomalies - Chemical memory of Galactic evolution

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.

    1988-01-01

    New mechanisms for the chemical memory of isotopic anomalies are proposed which are based on the temporal change during the chemical evolution of the Galaxy of the isotopic composition of the mean ejecta from stars. Because of the differing temporal evolution of primary and secondary products of nucleosynthesis, the isotopic composition of the bulk interstellar medium changes approximately linearly with time, and thus any dust component having an age different from that of average dust will be isotopically anomalous. Special attention is given to C, O, Mg, Si, and isotopically heavy average-stellar condensates of SiC.

  1. Continental sedimentary processes decouple Nd and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Garçon, Marion; Chauvel, Catherine; France-Lanord, Christian; Huyghe, Pascale; Lavé, Jérôme

    2013-11-01

    The neodymium and hafnium isotopic compositions of most crustal and mantle rocks correlate to form the "Terrestrial Array". However, it is now well established that whereas coarse detrital sediments follow this trend, fine-grained oceanic sediments have high Hf ratios relative to their Nd isotopic ratios. It remains uncertain whether this "decoupling" of the two isotopic systems only occurs in the oceanic environment or if it is induced by sedimentary processes in continental settings. In this study, the hafnium and neodymium isotopic compositions of sediments in large rivers is expressly used to constrain the behavior of the two isotopic systems during erosion and sediment transport from continent to ocean. We report major and trace element concentrations together with Nd and Hf isotopic compositions of bedloads, suspended loads and river banks from the Ganges River and its tributaries draining the Himalayan Range i.e. the Karnali, the Narayani, the Kosi and the Marsyandi Rivers. The sample set includes sediments sampled within the Himalayan Range in Nepal, at the Himalayan mountain front, and also downstream on the floodplain and at the outflow of the Ganges in Bangladesh. Results show that hydrodynamic sorting of minerals explains the entire Hf isotopic range, i.e. more than 10 εHf units, observed in the river sediments but does not affect the Nd isotopic composition. Bedloads and bank sediments have systematically lower εHf values than suspended loads sampled at the same location. Coarse-grained sediments lie below or on the Terrestrial Array in an εHf vs. εNd diagram. In contrast, fine-grained sediments, including most of the suspended loads, deviate from the Terrestrial Array toward higher εHf relative to their εNd, as is the case for oceanic terrigenous clays. The observed Nd-Hf decoupling is explained by mineralogical sorting processes that enrich bottom sediments in coarse and dense minerals, including unradiogenic zircons, while surface sediments are enriched in fine material with radiogenic Hf signatures. The data also show that Nd-Hf isotopic decoupling increases with sediment transport in the floodplain to reach its maximum at the river mouth. This implies that the Nd-Hf isotopic decoupling observed in worldwide oceanic clays and river sediments is likely to have the same origin. Finally, we estimated the Nd-Hf isotopic composition of the present-day mantle if oceanic sediments had never been subducted and conclude that the addition of oceanic sediments with their anomalous Nd-Hf isotopic compositions has slowly shifted the composition of the Earth's mantle towards more radiogenic Hf values through time.

  2. On the Origin of GEMS

    NASA Technical Reports Server (NTRS)

    Keller, L. P.; Messenger, S.

    2004-01-01

    GEMS (glass with embedded metal and sulfides) are a major component of anhydrous interplanetary dust particles (IDPs) their physical and chemical characteristics show marked similarities to contemporary interstellar dust. Recent oxygen isotopic measurements confirm that at least a small fraction (less than 5%) of GEMS are demonstrably presolar, while the remainder have ratios that are indistinguishable from solar values. GEMS with solar oxygen isotopic compositions either (1) had their isotopic compositions homogenized through processing in the interstellar medium (ISM), or (2) formed in the early solar system. Isotopic homogenization necessarily implies chemical homogenization, so (interstellar) GEMS compositions should reflect the average composition of dust in the local ISM. We performed a systematic examination of the bulk chemistry of GEMS in primitive IDPs in order to test this hypothesis.

  3. Cu isotopic signature in blood serum of liver transplant patients: a follow-up study

    NASA Astrophysics Data System (ADS)

    Lauwens, Sara; Costas-Rodríguez, Marta; van Vlierberghe, Hans; Vanhaecke, Frank

    2016-07-01

    End-stage liver disease (ESLD) is life-threatening and liver transplantation (LTx) is the definitive treatment with good outcomes. Given the essential role of hepatocytes in Cu homeostasis, the potential of the serum Cu isotopic composition for monitoring a patient’s condition post-LTx was evaluated. For this purpose, high-precision Cu isotopic analysis of blood serum of ESLD patients pre- and post-LTx was accomplished via multi-collector ICP-mass spectrometry (MC-ICP-MS). The Cu isotopic composition of the ESLD patients was fractionated in favour of the lighter isotope (by about -0.50‰). Post-LTx, a generalized normalization of the Cu isotopic composition was observed for the patients with normal liver function, while it remained light when this condition was not reached. A strong decrease in the δ65Cu value a longer term post-LTx seems to indicate the recurrence of liver failure or cancer. The observed trend in favour of the heavier Cu isotopic composition post-LTx seems to be related with the restored biosynthetic capacity of the liver, the restored hepatic metabolism and/or the restored biliary secretion pathways. Thus, Cu isotopic analysis could be a valuable tool for the follow-up of liver transplant patients and for establishing the potential recurrence of liver failure.

  4. Cu isotopic signature in blood serum of liver transplant patients: a follow-up study

    PubMed Central

    Lauwens, Sara; Costas-Rodríguez, Marta; Van Vlierberghe, Hans; Vanhaecke, Frank

    2016-01-01

    End-stage liver disease (ESLD) is life-threatening and liver transplantation (LTx) is the definitive treatment with good outcomes. Given the essential role of hepatocytes in Cu homeostasis, the potential of the serum Cu isotopic composition for monitoring a patient’s condition post-LTx was evaluated. For this purpose, high-precision Cu isotopic analysis of blood serum of ESLD patients pre- and post-LTx was accomplished via multi-collector ICP-mass spectrometry (MC-ICP-MS). The Cu isotopic composition of the ESLD patients was fractionated in favour of the lighter isotope (by about −0.50‰). Post-LTx, a generalized normalization of the Cu isotopic composition was observed for the patients with normal liver function, while it remained light when this condition was not reached. A strong decrease in the δ65Cu value a longer term post-LTx seems to indicate the recurrence of liver failure or cancer. The observed trend in favour of the heavier Cu isotopic composition post-LTx seems to be related with the restored biosynthetic capacity of the liver, the restored hepatic metabolism and/or the restored biliary secretion pathways. Thus, Cu isotopic analysis could be a valuable tool for the follow-up of liver transplant patients and for establishing the potential recurrence of liver failure. PMID:27468898

  5. Cu isotopic signature in blood serum of liver transplant patients: a follow-up study.

    PubMed

    Lauwens, Sara; Costas-Rodríguez, Marta; Van Vlierberghe, Hans; Vanhaecke, Frank

    2016-07-29

    End-stage liver disease (ESLD) is life-threatening and liver transplantation (LTx) is the definitive treatment with good outcomes. Given the essential role of hepatocytes in Cu homeostasis, the potential of the serum Cu isotopic composition for monitoring a patient's condition post-LTx was evaluated. For this purpose, high-precision Cu isotopic analysis of blood serum of ESLD patients pre- and post-LTx was accomplished via multi-collector ICP-mass spectrometry (MC-ICP-MS). The Cu isotopic composition of the ESLD patients was fractionated in favour of the lighter isotope (by about -0.50‰). Post-LTx, a generalized normalization of the Cu isotopic composition was observed for the patients with normal liver function, while it remained light when this condition was not reached. A strong decrease in the δ(65)Cu value a longer term post-LTx seems to indicate the recurrence of liver failure or cancer. The observed trend in favour of the heavier Cu isotopic composition post-LTx seems to be related with the restored biosynthetic capacity of the liver, the restored hepatic metabolism and/or the restored biliary secretion pathways. Thus, Cu isotopic analysis could be a valuable tool for the follow-up of liver transplant patients and for establishing the potential recurrence of liver failure.

  6. Molecular and isotopic composition of lipids in modern and fossil bivalve shells: Records of paleoenvironmental change?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CoBabe, E.A.

    1995-12-31

    Suites of lipids residing in situ in modern and fossil bivalve shells offer new possibilities for the study of paleoecology and paleoclimatology. Distributions of carbon isotopic compositions of modem shell lipids suggests that many of these compounds, including alkanes, sterols, fatty acids, ketones and phytadienes, are derived from the bivalves and not directly from the surrounding environment. The occurrence of fatty acids in modem and fossil shell material opens up the possibility that saturation levels of these compounds may be used as paleothermometers. To date, the utility of fatty acids in paleoclimate studies has been limited because of the swiftmore » breakdown of these compounds in sediment. However, initial results indicate that fatty acids in bivalve shells retain their original structure for at least several million years. Comparison of modem bivalve shell fatty acids from tropical, temperate and polar nearshore marine systems will be presented, along with analogous fossil data.« less

  7. Clumped Isotope Composition of Cold-Water Corals: A Role for Vital Effects?

    NASA Astrophysics Data System (ADS)

    Spooner, P.; Guo, W.; Robinson, L. F.

    2014-12-01

    Measurements on a set of cold-water corals (mainly Desmophyllum dianthus) have suggested that their clumped isotope composition could serve as a promising proxy for reconstructing paleocean temperatures. Such measurements have also offered support for certain isotope models of coral calcification. However, there are differences in the clumped isotope compositions between warm-water and cold-water corals, suggesting that different kinds of corals could have differences in their biocalcification processes. In order to understand the systematics of clumped isotope variations in cold-water corals more fully, we present clumped isotope data from a range of cold-water coral species from the tropical Atlantic and the Southern Ocean.Our samples were either collected live or recently dead (14C ages < 1,000 yrs) with associated temperature data. They include a total of 11 solitary corals and 1 colonial coral from the Atlantic, and 8 solitary corals from the Southern Ocean. The data indicate that coral clumped isotope systematics may be more complicated than previously thought. For example, for the genus Caryophyllia we observe significant variations in clumped isotope compositions for corals which grew at the same temperature with an apparent negative correlation between Δ47 and δ18O, different to patterns previously observed in Desmophyllum. These results indicate that existing isotope models of biocalcification may not apply equally well to all corals. Clumped isotope vital effects may be present in certain cold-water corals as they are in warm-water corals, complicating the use of this paleoclimate proxy.

  8. Feeding strategies for groundwater enhanced biodenitrification in an alluvial aquifer: chemical, microbial and isotope assessment of a 1D flow-through experiment.

    PubMed

    Vidal-Gavilan, G; Carrey, R; Solanas, A; Soler, A

    2014-10-01

    Nitrate-removal through enhanced in situ biodenitrification (EISB) is an existing alternative for the recovery of groundwater quality, and is often suggested for use in exploitation wells pumping at small flow-rates. Innovative approaches focus on wider-scale applications, coupling EISB with water-management practices and new monitoring tools. However, before this approach can be used, some water-quality issues such as the accumulation of denitrification intermediates and/or of reduced compounds from other anaerobic processes must be addressed. With such a goal, a flow-through experiment using 100mg-nitrate/L groundwater was built to simulate an EISB for an alluvial aquifer. Heterotrophic denitrification was induced through the periodic addition of a C source (ethanol), with four different C addition strategies being evaluated to improve the quality of the denitrified water. Chemical, microbial and isotope analyses of the water were performed. Biodenitrification was successfully stimulated by the daily addition of ethanol, easily achieving drinking water standards for both nitrate and nitrite, and showing an expected linear trend for nitrogen and oxygen isotope fractionation, with a εN/εO value of 1.1. Nitrate reduction to ammonium was never detected. Water quality in terms of remaining C, microbial counts, and denitrification intermediates was found to vary with the experimental time, and some secondary microbial respiration processes, mainly manganese reduction, were suspected to occur. Carbon isotope composition from the remaining ethanol also changed, from an initial enrichment in (13)C-ethanol compared to the value of the injected ethanol (-30.6‰), to a later depletion, achieving δ(13)C values well below the initial isotope composition (to a minimum of -46.7‰). This depletion in the heavy C isotope follows the trend of an inverse fractionation. Overall, our results indicated that most undesired effects on water quality may be controlled through the optimization of the C/N ratio determined from the amounts of injected ethanol vs. the amount of nitrate in groundwater, with a smaller C/N ratio causing a lower level of undesired impurities. Furthermore, the authors suggest that the biofilm life-time has a direct effect on microbial population and hence affects biodenitrification performance, influencing the accumulation of nitrite over time. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Role of melting process and melt-rock reaction in the formation of Jurassic MORB-type basalts (Alpine ophiolites)

    NASA Astrophysics Data System (ADS)

    Renna, Maria Rosaria; Tribuzio, Riccardo; Sanfilippo, Alessio; Thirlwall, Matthew

    2018-04-01

    This study reports a geochemical investigation of two thick basalt sequences, exposed in the Bracco-Levanto ophiolite (northern Apennine, Italy) and in the Balagne ophiolite (central-northern Corsica, France). These ophiolites are considered to represent an oceanward and a continent-near paleogeographic domain of the Jurassic Liguria-Piedmont basin. Trace elements and Nd isotopic compositions were examined to obtain information about: (1) mantle source and melting process and (2) melt-rock reactions during basalt ascent. Whole-rock analyses revealed that the Balagne basalts are slightly enriched in LREE, Nb, and Ta with respect to the Bracco-Levanto counterparts. These variations are paralleled by clinopyroxene chemistry. In particular, clinopyroxene from the Balagne basalts has higher CeN/SmN (0.4-0.3 vs. 0.2) and ZrN/YN (0.9-0.6 vs. 0.4-0.3) than that from the Bracco-Levanto basalts. The basalts from the two ophiolites have homogeneous initial Nd isotopic compositions (initial ɛ Nd from + 8.8 to + 8.6), within typical depleted mantle values, thereby excluding an origin from a lithospheric mantle source. These data also reject the involvement of contaminant crustal material, as associated continent-derived clastic sediments and radiolarian cherts have a highly radiogenic Nd isotopic fingerprint ( ɛ Nd at the time of basalt formation = - 5.5 and - 5.2, respectively). We propose that the Bracco-Levanto and the Balagne basalts formed by partial melts of a depleted mantle source, most likely containing a garnet-bearing enriched component. The decoupling between incompatible elements and Nd isotopic signature can be explained either by different degrees of partial melting of a similar asthenospheric source or by reaction of the ascending melts with a lower crustal crystal mush. Both hypotheses are reconcilable with the formation of these two basalt sequences in different domains of a nascent oceanic basin.

  10. Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments

    USGS Publications Warehouse

    Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.

    2004-01-01

    Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic emanations. Alternatively, the Tl isotope trends may reflect the increasing importance of Tl fluxes to altered ocean crust through time. ?? 2004 Elsevier B.V. All rights reserved.

  11. Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 1. Amphibolite experiments

    NASA Astrophysics Data System (ADS)

    Minitti, Michelle E.; Rutherford, Malcolm J.; Taylor, Bruce E.; Dyar, M. Darby; Schultz, Peter H.

    2008-02-01

    Kaersutitic amphiboles found within a subset of the Martian meteorites have low water contents and variably heavy hydrogen isotope compositions. In order to assess if impact shock-induced devolatilization and hydrogen isotope fractionation were determining factors in these water and isotopic characteristics of the Martian kaersutites, we conducted impact shock experiments on samples of Gore Mountain amphibolite in the Ames Vertical Gun Range (AVGR). A parallel shock experiment conducted on an anorthosite sample indicated that contamination of shocked samples by the AVGR hydrogen propellant was unlikely. Petrographic study of the experimental amphibolite shock products indicates that only ˜ 10% of the shock products experienced levels of damage equivalent to those found in the most highly shocked kaersutite-bearing Martian meteorites (30-35 GPa). Ion microprobe studies of highly shocked hornblende from the amphibolite exhibited elevated water contents (ΔH 2O ˜ 0.1 wt.%) and enriched hydrogen isotope compositions (Δ D ˜ + 10‰) relative to unshocked hornblende. Water and hydrogen isotope analyses of tens of milligrams of unshocked, moderately shocked, and highly shocked hornblende samples by vacuum extraction/uranium reduction and isotope ratio mass spectrometry (IRMS), respectively, are largely consistent with analyses of single grains from the ion microprobe. The mechanisms thought to have produced the excess water in most of the shocked hornblendes are shock-induced reduction of hornblende Fe and/or irreversible adsorption of hydrogen. Addition of the isotopically enriched Martian atmosphere to the Martian meteorite kaersutites via these mechanisms could explain their enriched and variable isotopic compositions. Alternatively, regrouping the water extraction and IRMS analyses on the basis of isotopic composition reveals a small, but consistent, degree of impact-induced devolatilization (˜ 0.1 wt.% H 2O) and H isotope enrichment (Δ D ˜ + 10‰). Extrapolating the shock signature of the regrouped data to grains that experienced Martian meteorite-like shock pressures suggests that shock-induced water losses and hydrogen isotope enrichments could approach 1 wt.% H 2O and Δ D = + 100‰, respectively. If these values are valid, then impact shock effects could explain a substantial fraction of the low water contents and variable hydrogen isotope compositions of the Martian meteorite kaersutites.

  12. FE and MG Isotopic Analyses of Isotopically Unusual Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.; Ito, M.; Rahman, Z.

    2011-01-01

    Interstellar and circumstellar silicate grains are thought to be Mg-rich and Fe-poor, based on astronomical observations and equilibrium condensation models of silicate dust formation in stellar outflows. On the other hand, presolar silicates isolated from meteorites have surprisingly high Fe contents and few Mg-rich grains are observed. The high Fe contents in meteoritic presolar silicates may indicate they formed by a non-equilibrium condensation process. Alternatively, the Fe in the stardust grains could have been acquired during parent body alteration. The origin of Fe in presolar silicates may be deduced from its isotopic composition. Thus far, Fe isotopic measurements of presolar silicates are limited to the Fe-54/Fe-56 ratios of 14 grains. Only two slight anomalies (albeit solar within error) were observed. However, these measurements suffered from contamination of Fe from the adjacent meteorite matrix, which diluted any isotopic anomalies. We have isolated four presolar silicates having unusual O isotopic compositions by focused ion beam (FIB) milling and obtained their undiluted Mg and Fe isotopic compositions. These compositions help to identify the grains stellar sources and to determine the source of Fe in the grains.

  13. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.

    PubMed

    Simonin, Kevin A; Roddy, Adam B; Link, Percy; Apodaca, Randy; Tu, Kevin P; Hu, Jia; Dawson, Todd E; Barbour, Margaret M

    2013-12-01

    During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of (18)O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents. © 2013 John Wiley & Sons Ltd.

  14. Analysis on Reactor Criticality Condition and Fuel Conversion Capability Based on Different Loaded Plutonium Composition in FBR Core

    NASA Astrophysics Data System (ADS)

    Permana, Sidik; Saputra, Geby; Suzuki, Mitsutoshi; Saito, Masaki

    2017-01-01

    Reactor criticality condition and fuel conversion capability are depending on the fuel arrangement schemes, reactor core geometry and fuel burnup process as well as the effect of different fuel cycle and fuel composition. Criticality condition of reactor core and breeding ratio capability have been investigated in this present study based on fast breeder reactor (FBR) type for different loaded fuel compositions of plutonium in the fuel core regions. Loaded fuel of Plutonium compositions are based on spent nuclear fuel (SNF) of light water reactor (LWR) for different fuel burnup process and cooling time conditions of the reactors. Obtained results show that different initial fuels of plutonium gives a significant chance in criticality conditions and fuel conversion capability. Loaded plutonium based on higher burnup process gives a reduction value of criticality condition or less excess reactivity. It also obtains more fuel breeding ratio capability or more breeding gain. Some loaded plutonium based on longer cooling time of LWR gives less excess reactivity and in the same time, it gives higher breeding ratio capability of the reactors. More composition of even mass plutonium isotopes gives more absorption neutron which affects to decresing criticality or less excess reactivity in the core. Similar condition that more absorption neutron by fertile material or even mass plutonium will produce more fissile material or odd mass plutonium isotopes to increase the breeding gain of the reactor.

  15. Volatile transfer and recycling at convergent margins: Mass-balance and insights from high-P/T metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Bebout, Gray E.

    The efficiency with which volatiles are deeply subducted is governed by devolatilization histories and the geometries and mechanisms of fluid transport deep in subduction zones. Metamorphism along the forearc slab-mantle interface may prevent the deep subduction of many volatile components (e.g., H2O, Cs, B, N, perhaps As, Sb, and U) and result in their transport in fluids toward shallower reservoirs. The release, by devolatilization, and transport of such components toward the seafloor or into the forearc mantle wedge, could in part explain the imbalances between the estimated amounts of subducted volatiles and the amounts returned to Earth's surface. The proportion of the initially subducted volatile component that is retained in rocks subducted to depths greater than those beneath magmatic arcs (>100 km) is largely unknown, complicating assessments of deep mantle volatile budgets. Isotopic and trace element data and volatile contents for the Catalina Schist, the Franciscan Complex, and eclogite-facies complexes in the Alps (and elsewhere) provide insight into the nature and magnitude of fluid production and transport deep in subduction zones and into the possible effects of metamorphism on the compositions of subducting rocks. Compatibilities of the compositions of the subduction-related rocks and fluids with the isotopic and trace element compositions of various mantle-derived materials (igneous rocks, xenoliths, serpentinite seamounts) indicate the potential to trace the recycling of rock and fluid reservoirs chemically and isotopically fractionated during subduction-zone metamorphism.

  16. Late quaternary history and uranium isotopic compositions of ground water discharge deposits, Crater Flat, Nevada

    USGS Publications Warehouse

    Paces, James B.; Taylor, Emily M.; Bush, Charles

    1993-01-01

    Three carbonate-rich spring deposits are present near the southern end of Crater Flat, NV, approximately 18 km southwest of the potential high-level waste repository at Yucca Mountain. We have analyzed five samples of carbonate-rich material from two of the deposits for U and Th isotopic compositions. Resulting U-series disequilibrium ages indicate that springs were active at 18 ?? 1, 30 ?? 3, 45 ?? 4 and >70 ka. These ages are consistent with a crude internal stratigraphy at one site. Identical ages for two samples at two separate sites suggest that springs were contemporaneous, at least in part, and were most likely part of the same hydrodynamic system. In addition, initial U isotopic compositions range from 2.8 to 3.8 and strongly suggest that ground water from the regional Tertiary-volcanic aquifer provided the source for these hydrogenic deposits. This interpretation, along with water level data from near-by wells suggest that the water table rose approximately 80 to 115 m above present levels during the late Quaternary and may have fluctuated repeatedly. Current data are insufficient to allow reconstruction of a detailed depositional history, however geochronological data are in good agreement with other paleoclimatic proxy records preserved throughout the region. Since these deposits are down gradient from the potential repository site, the possibility of higher ground water levels in the future dramatically shortens both vertical and lateral ground water pathways and reduces travel times of transported radionuclides to potential discharge sites.

  17. Modes of planetary-scale Fe isotope fractionation

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; von Blanckenburg, Friedhelm

    2006-12-01

    A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the Fe isotope composition of lithospheric mantle xenoliths are representative for an undisturbed melt source, and second, HED and SNC meteorites, representing melting products of 4Vesta and Mars silicate mantles would be expected to show a similar fractionation towards heavy isotope compositions. This is not observed. Four international granitoid standards with SiO 2 contents between 60 and 70 wt.% yield δ56Fe/ 54Fe values between 0.118‰ and 0.132‰. An investigation of the alpine Bergell igneous rock suite revealed a positive correlation between Fe isotope compositions and SiO 2 contents — from gabbros and tonalites ( δ56Fe/ 54Fe ≈ 0.03 to 0.09‰) to granodiorites and silicic dykes ( δ56Fe/ 54Fe ≈ 0.14 to 0.23‰). Although in this suite δ56Fe/ 54Fe correlates with δ18O values and radiogenic isotopes, open-system behavior to explain the heavy iron is not undisputed. This is because an obvious assimilant with the required heavy Fe isotope composition has so far not been identified. Alternatively, the relatively heavy granite compositions might be obtained by fractional crystallisation of the melt. Ultimately, further detailed studies on natural rocks and the experimental determination of mineral/melt fractionation factors at magmatic conditions are required to unravel whether or not iron isotope fractionation takes place during partial mantle melting and crystal fractionation.

  18. Oxygen isotope corrections for online δ34S analysis

    USGS Publications Warehouse

    Fry, B.; Silva, S.R.; Kendall, C.; Anderson, R.K.

    2002-01-01

    Elemental analyzers have been successfully coupled to stable-isotope-ratio mass spectrometers for online measurements of the δ34S isotopic composition of plants, animals and soils. We found that the online technology for automated δ34S isotopic determinations did not yield reproducible oxygen isotopic compositions in the SO2 produced, and as a result calculated δ34S values were often 1–3‰ too high versus their correct values, particularly for plant and animal samples with high C/S ratio. Here we provide empirical and analytical methods for correcting the S isotope values for oxygen isotope variations, and further detail a new SO2-SiO2 buffering method that minimizes detrimental oxygen isotope variations in SO2.

  19. Chromium isotope heterogeneity in the mantle

    NASA Astrophysics Data System (ADS)

    Xia, Jiuxing; Qin, Liping; Shen, Ji; Carlson, Richard W.; Ionov, Dmitri A.; Mock, Timothy D.

    2017-04-01

    To better constrain the Cr isotopic composition of the silicate Earth and to investigate potential Cr isotopic fractionation during high temperature geological processes, we analyzed the Cr isotopic composition of different types of mantle xenoliths from diverse geologic settings: fertile to refractory off-craton spinel and garnet peridotites, pyroxenite veins, metasomatised spinel lherzolites and associated basalts from central Mongolia, spinel lherzolites and harzburgites from North China, as well as cratonic spinel and garnet peridotites from Siberia and southern Africa. The δ53CrNIST 979 values of the peridotites range from - 0.51 ± 0.04 ‰ (2SD) to + 0.75 ± 0.05 ‰ (2SD). The results show a slight negative correlation between δ53Cr and Al2O3 and CaO contents for most mantle peridotites, which may imply Cr isotopic fractionation during partial melting of mantle peridotites. However, highly variable Cr isotopic compositions measured in Mongolian peridotites cannot be caused by partial melting alone. Instead, the wide range in Cr isotopic composition of these samples most likely reflects kinetic fractionation during melt percolation. Chemical diffusion during melt percolation resulted in light Cr isotopes preferably entering into the melt. Two spinel websterite veins from Mongolia have extremely light δ53Cr values of - 1.36 ± 0.04 ‰ and - 0.77 ± 0.06 ‰, respectively, which are the most negative Cr isotopic compositions yet reported for mantle-derived rocks. These two websterite veins may represent crystallization products from the isotopically light melt that may also metasomatize some peridotites in the area. The δ53Cr values of highly altered garnet peridotites from southern Africa vary from - 0.35 ± 0.04 ‰ (2SD) to + 0.12 ± 0.04 ‰ (2SD) and increase with increasing LOI (Loss on Ignition), reflecting a shift of δ53Cr to more positive values by secondary alteration. The Cr isotopic composition of the pristine, fertile upper mantle is estimated as δ53Cr = - 0.14 ± 0.12 ‰, after corrections for the effects of partial melting and metasomatism. This value is in line with that estimated for the BSE (- 0.12 ± 0.10 ‰) previously.

  20. Reassessment of the NH4 NO3 thermal decomposition technique for calibration of the N2 O isotopic composition.

    PubMed

    Mohn, Joachim; Gutjahr, Wilhelm; Toyoda, Sakae; Harris, Eliza; Ibraim, Erkan; Geilmann, Heike; Schleppi, Patrick; Kuhn, Thomas; Lehmann, Moritz F; Decock, Charlotte; Werner, Roland A; Yoshida, Naohiro; Brand, Willi A

    2016-09-08

    In the last few years, the study of N 2 O site-specific nitrogen isotope composition has been established as a powerful technique to disentangle N 2 O emission pathways. This trend has been accelerated by significant analytical progress in the field of isotope-ratio mass-spectrometry (IRMS) and more recently quantum cascade laser absorption spectroscopy (QCLAS). Methods The ammonium nitrate (NH 4 NO 3 ) decomposition technique provides a strategy to scale the 15 N site-specific (SP ≡ δ 15 N α - δ 15 N β ) and bulk (δ 15 N bulk  = (δ 15 N α  + δ 15 N β )/2) isotopic composition of N 2 O against the international standard for the 15 N/ 14 N isotope ratio (AIR-N 2 ). Within the current project 15 N fractionation effects during thermal decomposition of NH 4 NO 3 on the N 2 O site preference were studied using static and dynamic decomposition techniques. The validity of the NH 4 NO 3 decomposition technique to link NH 4 + and NO 3 - moiety-specific δ 15 N analysis by IRMS to the site-specific nitrogen isotopic composition of N 2 O was confirmed. However, the accuracy of this approach for the calibration of δ 15 N α and δ 15 N β values was found to be limited by non-quantitative NH 4 NO 3 decomposition in combination with substantially different isotope enrichment factors for the conversion of the NO 3 - or NH 4 + nitrogen atom into the α or β position of the N 2 O molecule. The study reveals that the completeness and reproducibility of the NH 4 NO 3 decomposition reaction currently confine the anchoring of N 2 O site-specific isotopic composition to the international isotope ratio scale AIR-N 2 . The authors suggest establishing a set of N 2 O isotope reference materials with appropriate site-specific isotopic composition, as community standards, to improve inter-laboratory compatibility. This article is protected by copyright. All rights reserved.

  1. Mechanisms controlling the silicon isotopic compositions of river waters

    NASA Astrophysics Data System (ADS)

    Georg, R. B.; Reynolds, B. C.; Frank, M.; Halliday, A. N.

    2006-09-01

    It has been proposed that silicon (Si) isotopes are fractionated during weathering and biological activity leading to heavy dissolved riverine compositions. In this study, the first seasonal variations of stable isotope compositions of dissolved riverine Si are reported and compared with concomitant changes in water chemistry. Four different rivers in Switzerland were sampled between March 2004 and July 2005. The unique high-resolution multi-collector ICP-MS Nu1700, has been used to provide simultaneous interference-free measurements of 28Si, 29Si and 30Si abundances with an average limiting precision of ± 0.04‰ on δ 30Si. This precision facilitates the clarification of small temporal variations in isotope composition. The average of all the data for the 40 samples is δ 30Si = + 0.84 ± 0.19‰ (± 1σ SD). Despite significant differences in catchment lithologies, biomass, climate, total dissolved solids and weathering fluxes the averaged isotopic composition of dissolved Si in each river is strikingly similar with means of + 0.70 ± 0.12‰ for the Birs,+ 0.95 ± 0.22‰ for the Saane,+ 0.93 ± 0.12‰ for the Ticino and + 0.79 ± 0.19‰ for the Verzasca. However, the δ 30Si undergoes seasonal variations of up to 0.6‰. Comparisons between δ 30Si and physico-chemical parameters, such as the concentration of dissolved Si and other cations, the discharge of the rivers, and the resulting weathering fluxes, permits an understanding of the processes that control the Si budget and the fate of dissolved Si within these rivers. The main mechanism controlling the Si isotope composition of the mountainous Verzasca River appears to be a two component mixing between the seepage of soil/ground waters, with heavier Si produced by clay formation and superficial runoff associated with lighter Si during high discharge events. A biologically-mediated fractionation can be excluded in this particular river system. The other rivers display increasing complexity with increases in the proportion of forested and cultivated landscapes as well as carbonate rocks in the catchment. In these instances it is impossible to resolve the extent of the isotopic fractionation and contributed flux of Si contributed by biological processes as opposed to abiotic weathering. The presence of seasonal variations in Si isotope composition in mountainous rivers provides evidence that extreme changes in climate affect the overall composition of dissolved Si delivered to the oceans. The oceanic Si isotope composition is very sensitive to even small changes in the riverine Si isotope composition and this parameter appears to be more critical than plausible changes in the Si flux. Therefore, concurrent changes in weathering style may need to be considered when using the Si isotopic compositions of diatoms, sponges and radiolaria as paleoproductivity proxies.

  2. Effect of 13C enrichment and sugar type on analysis of sugars by gas chromatography/combustion/isotope ratio mass spectrometry.

    PubMed

    Baumann, Karen; Dignac, Marie-France; Bardoux, Gérard; Rumpel, Cornelia

    2012-09-15

    The objective of this investigation was to test gas-chromatographic compound-specific analysis for studies on the isotopic composition of (13)C-enriched sugar molecules. The effects of (13)C enrichment and type of sugar (C5, C6) will provide valuable information on isotopic correction for future studies employing (13)C-enriched sugars. Five sugar solutions of xylose, mannose and glucose with (13)C enrichments ranging between 1.1 and 1.5 atom-% were prepared. The (13)C enrichments of the initial sugars were measured by elemental analyser/isotope ratio mass spectrometry (EA/IRMS); (13)C enrichments for derivatised sugars were obtained by gas chromatography/combustion/IRMS (GC/C/IRMS). The linear relationships between the (13)C enrichments of the initial sugars and the values for the derivatised sugars were sugar-type dependent. Corrections for GC/C/IRMS values took into account the kinetic isotope effect (KIE) of the derivatising agent associated with the coefficient (K(d)) and a newly introduced second coefficient (K(c)) associated with the KIE of the sugar. While K(d) was constant, K(c) varied with sugar type. During derivatisation acetate groups with (12)C and sugars with more (13)C reacted faster. Coefficients for the specific ranges of (13)C enrichments under study have to be assessed and the reactions of different sugar types have to be taken into account to avoid underestimation of (13)C enrichment of up to 9% (C5) or overestimation of up to 4% (C6). Copyright © 2012 John Wiley & Sons, Ltd.

  3. Tracing mantle processes with Fe isotopes

    NASA Astrophysics Data System (ADS)

    Weyer, S.; Ionov, D.

    2006-12-01

    High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched rocks) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. Pimitive peridotites (Mg# = 0.894) yield delta56Fe = 0.02 and are significantly lighter than the basalts (average delta56Fe = 0.11). Furthermore, the peridotites display a negative correlation of iron isotopes with Mg#. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt [1, 2]. A particularly good correlation of the Fe isotope composition and Mg# shown by poorly metasomatised spinel lherzolites of three localities (Horoman, Kamchatka and Lherz) was used to model Fe isotope fractionation during partial melting, resulting in alphamantle-melt = 1.0003. This value implies higher Fe isotope fractionation between residual mantle and mantle-derived melts (i.e. Delta56Femantle-melt = 0.2-0.3) than the observed difference between the peridotites and the basalts in this study. Our data on plagioclase lherzolites from Horoman and spinel lherzolites from other localities indicate that the difference in Fe isotope composition between mantle and basalts may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. Besides partial melting, the Fe isotope composition of mantle peridotites can also be significantly modified by metasomatic events. At two localities (Tok, Siberia and Tariat, Mongolia) Fe isotopes correlates with the Fe concentration of the peridotites, which was increased up to 14.5% FeO by melt percolation. Such processes can be accompanied by chromatographic effects and produce a range of Fe isotope compositions in the percolation columns, from extremely light to heavy (delta56Fe = -0.42 to +0.17). We propose that Fe isotopes can be used as a sensitive tracer to identify such metasomatic processes in the mantle. [1] Weyer et al. (2005) EPSL 240: 251-264 [2] Williams et al. (2005) EPSL 235 : 435-452

  4. The Molybdenum Isotope System as a Tracer of Slab Input in Subduction Zones: An Example From Martinique, Lesser Antilles Arc

    NASA Astrophysics Data System (ADS)

    Gaschnig, Richard M.; Reinhard, Christopher T.; Planavsky, Noah J.; Wang, Xiangli; Asael, Dan; Chauvel, Catherine

    2017-12-01

    Molybdenum isotopes are fractionated by Earth-surface processes and may provide a tracer for the recycling of crustal material into the mantle. Here, we examined the Mo isotope composition of arc lavas from Martinique in the Lesser Antilles arc, along with Cretaceous and Cenozoic Deep Sea Drilling Project sediments representing potential sedimentary inputs into the subduction zone. Mo stable isotope composition (defined as δ98Mo in ‰ deviation from the NIST 3134 standard) in lavas older than ˜7 million years (Ma) exhibits a narrow range similar to and slightly higher than MORB, whereas those younger than ˜7 Ma show a much greater range and extend to unusually low δ98Mo values. Sediments from DSDP Leg 78A, Site 543 have uniformly low δ98Mo values whereas Leg 14, Site 144 contains both sediments with isotopically light Mo and Mo-enriched black shales with isotopically heavy Mo. When coupled with published radiogenic isotope data, Mo isotope systematics of the lavas can be explained through binary mixing between a MORB-like end-member and different sedimentary compositions identified in the DSDP cores. The lavas older than ˜7 Ma were influenced by incorporation of isotopically heavy black shales into the mantle wedge. The younger lavas are the product of mixing isotopically light sedimentary material into the mantle wedge. The change in Mo isotope composition of the lavas at ˜7 Ma is interpreted to reflect the removal of the Cretaceous black shale component due to the arrival of younger ocean crust where the age-equivalent Cretaceous sediments were deposited in shallower oxic waters. Isotopic fractionation of Mo during its removal from the slab is not required to explain the observed systematics in this system.

  5. Trihalomethanes formed from natural organic matter isolates: Using isotopic and compositional data to help understand sources

    USGS Publications Warehouse

    Bergamaschi, Brian A.; Fram, Miranda S.; Fujii, Roger; Aiken, George R.; Kendall, Carol; Silva, Steven R.

    2000-01-01

    Over 20 million people drink water from the Sacramento-San Joaquin Delta despite problematic levels of natural organic matter (NOM) and bromide in Delta water, which can form trihalomethanes (THMs) during the treatment process. It is widely believed that NOM released from Delta peat islands is a substantial contributor to the pool of THM precursors present in Delta waters. Dissolved NOM was isolated from samples collected at five channel sites within the Sacramento-San Joaquin Rivers and Delta, California, USA, and from a peat island agricultural drain. To help understand the sources of THM precursors, samples were analyzed to determine their chemical and isotopic composition, their propensity to form THMs, and the isotopic composition of the THMs.The chemical composition of the isolates was quite variable, as indicated by significant differences in carbon-13 nuclear magnetic resonance spectra and carbon-to-nitrogen concentration ratios. The lowest propensity to form THMs per unit of dissolved organic carbon was observed in the peat island agricultural drain isolate, even though it possessed the highest fraction of aromatic material and the highest specific ultraviolet absorbance. Changes in the chemical and isotopic composition of the isolates and the isotopic composition of the THMs suggest that the source of the THMs precursors was different between samples and between isolates. The pattern of variability in compositional and isotopic data for these samples was not consistent with simple mixing of river- and peat-derived organic material.

  6. Coordinated Petrography and Oxygen Isotopic Compositions of Al-Rich Chondrules from CV3 Chondrites

    NASA Astrophysics Data System (ADS)

    Zhang, M. M.; Lin, Y. T.; Tang, G. Q.; Li, X. H.

    2017-07-01

    In this study, we coordinated the petrology, bulk compositions and oxygen isotope compositions of 12 ARCs from Allende and Leoville and Ningqiang chondrites in order to elucidate any potential genetic relationships between ARCs, CAIs and FMCs.

  7. Paleoclimate Reconstruction at Lamanai, Belize Using Oxygen-Isotope Tropical Dendrochronology

    NASA Astrophysics Data System (ADS)

    Prentice, A.; Webb, E. A.; White, C. D.; Graham, E.

    2009-05-01

    Tropical dendrochronology can be complicated because many trees growing in these areas lack distinct visible annual rings. However, the oxygen-isotope composition of wood growing in tropical regions can provide a record of seasonal fluctuations in the amount of precipitation even when visible rings are absent. Variations in the oxygen-isotope compositions of cellulose as the trees grow can be related to the relative timing of wet and dry seasons and used to identify periods of drought. In this study, the oxygen-isotope composition was determined for cellulose extracted from living trees at the site of Lamanai, Belize to assess the variation in oxygen-isotope values that result from heterogeneity within individual tree rings and seasonal fluctuations in amount of precipitation. In temperate regions, the latewood rings that form during periods of reduced growth are traditionally selected for oxygen-isotope analysis of cellulose because their oxygen-isotope compositions are more directly influenced by climate and precipitation during the growing season. However, in tropical isotope dendrochronology, when visible rings are present, detailed sampling of both the light coloured earlywood and the denser latewood is required. At Lamanai, a seasonal signal was evident in the oxygen- isotope composition of the cellulose when tree rings were sectioned in very small increments (approximately every mm), sub-sampling both earlywood and latewood. However, the visible rings did not always correspond with minimum or maximum oxygen-isotope values. As a result, the amplitude of the oxygen-isotope signal obtained by considering only latewood samples is smaller than that obtained from fine-increment sampling. Hence, the oxygen-isotope values of latewood samples alone did not provide accurate data for climate reconstruction. Multiple series of latewood samples extracted from different cross-sections of the same tree did not consistently show the same trends in oxygen isotope values, which can differ by up to 2 permil around the circumference of the same ring. This indicates that even when visible rings are present in tropical trees, the rings may not be annual or continuous. However, the amplitude of variation in the oxygen-isotope values of cellulose from both early and latewood can be related to seasonal signals across the modern tree rings. These signals will be compared to the oxygen-isotope composition of tree ring cellulose extracted from a wood sample excavated from an ancient tomb at the site of Lamanai to assess the preservation of the cellulose- isotope signal in this artefact. If similar oxygen-isotope patterns are preserved in ancient cellulose they can be used as a proxy to determine past climate conditions, such as those experienced by the ancient Maya populations in Belize.

  8. Boron Isotopic Composition Correlates with Ultra-Structure in a - Sea Coral Lophelia Pertusa: Implications for Biomineralization and - PH

    NASA Astrophysics Data System (ADS)

    Blamart, D.; Rollion-Bard, C.; Meibom, A.; Cuif, J.; Juillet-Leclerc, A.; Dauphin, Y.; Douarin, M.

    2007-12-01

    The geochemistry (stable isotopes and trace elements) of biogenic carbonates has been widely used for more than fifty years to reconstruct past climatic variability. During this time, the studies were mainly based on bulk sampling limiting sometimes the interpretations of the geochemical data as paleoclimatic proxies. Recently, high spatial resolution sampling techniques, such as micro-mill and SIMS, have been employed in the study of C, O and B isotopic compositions and trace elements (Mg, Sr) in the skeletons of a variety of (deep-sea) coral species. These studies have documented dramatic 'vital effects' and uncovered a systematic relationship between skeletal ultra-structure and stable isotopic composition. The formation of skeleton corals follows a universal two-step growth process. At the tips of the skeletal structures, the mineralizing cell layer produces centers of calcification (COC) or, equivalently, Early Mineralization Zone (EMZ). These EMZ are subsequently overgrown by fibrous aragonite(FA) consisting of cyclically added layers. The EMZ are characterized by systematically lighter C and O isotopic compositions compared with the adjacent FA. A number of geochemical models have been proposed, in which this systematic stable isotopic difference between EMZ and FA is ascribed to a biologically induced variation in the pH of a proposed Extra-cytoplasmic Calcifying Fluid (ECF) reservoir. In these models, relatively high pH conditions during the formation of EMZ result in relatively light C and O isotopic compositions compared with FA, which form under generally lower pH conditions. A direct test of such models would be possible if the Boron isotopic composition, which is pH sensitive, of EMZ and FA could be measured. We performed ion microprobe d11B measurements for EMZ and FA in Lophelia pertusa, a deep-sea coral common in the North-East Atlantic Ocean. We observe a systematic difference in B isotopic composition between the EMZ and FA skeleton. In EMZ, the measured δ11B values are consistently low. Fibrous aragonite is characterized by systematically higher d11B values, but also display B isotopic heterogeneity associated with specific growth bands in the calyx wall. The magnitude of the observed B isotopic variations cannot be explained by changes in environmental conditions and are likely caused by biological processes involved in the biomineralization of new skeleton; i.e. 'vital' effects. The observed B isotopic variations are opposite to the predictions of geochemical models for vital effects. Our data indicate that pH variations are not responsible for the observed stable isotopic fractionations. Geochemical models therefore do not provide an adequate framework within which to understand coral skeletal formation. Without a better understanding of these processes, which require experiments, the use of B isotopic composition to reconstruct paleo-pH variations in the oceans must be considered problematic - at least as far as Lophelia pertusa is concerned.

  9. Chapter 16Tracing Nitrogen Sources and Cycling in Catchments

    USGS Publications Warehouse

    Kendall, Carol

    1998-01-01

    This chapter focuses on the uses of isotopes to understand water chemistry.I Isotopic compositions generally cannot be interpreted successfully in the absence of other chemical and hydrologic data. The chapter focusses on uses of isotopes in tracing sources and cycling of nitrogen in the water-component of forested catchment, and on dissolved nitrate in shallow waters, nutrient uptake studies in agricultural areas, large-scale tracer experiments, groundwater contamination studies, food-web investigations, and uses of compound-specific stable isotope techniques. Shallow waters moving along a flowpath through a relatively uniform material and reacting with minerals probably do not achieve equilibrium but gradually approach some steady-state composition. The chapter also discusses the use of isotopic techniques to assess impacts of changes in land-management practices and land use on water quality. The analysis of individual molecular components for isotopic composition has much potential as a method for tracing the source, biogeochemistry, and degradation of organic liquids and gases because different materials have characteristic isotope spectrums or biomarkers.

  10. Tracing fluid transfer across subduction zones using iron and zinc stable isotopes

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Debret, B.; Pons, M. L.; Bouilhol, P.

    2016-12-01

    In subduction zones, serpentinite devolatilization within the downgoing slab and the fluids released play a fundamental role in volatile transfer as well as the redox evolution of the sub-arc mantle. Constraining subduction-related serpentinite devolatilisation is essential in order to better understand of the nature and composition of slab-derived fluids and fluid/rock interactions. Fe and Zn stable isotopes can trace fluid composition and speciation as isotope partitioning is driven by changes in oxidation state, coordination, and bonding environment. In the case of serpentinite devolatilisation, Fe isotope fractionation should reflect changes in Fe redox state and the formation of Fe-Cl- and SO42- complexes (Hill et al., GCA 2010); Zn isotope fractionation should be sensitive to complexation with CO32-, HS- and SO42- anions (Fujii et al., GCA 2011). We targeted samples from Western Alps ophiolite complexes, interpreted as remnants of serpentinized oceanic lithosphere metamorphosed and devolatilized during subduction (Hattori and Guillot, G3 2007; Debret et al., Chem. Geol. 2013). A striking negative correlation is present between bulk serpentinite Fe isotope composition and Fe3+/Fetot, with the highest grade samples displaying the heaviest Fe isotope compositions and lowest Fe3+/Fetot (Debret et al., Geology, 2016). The same samples also display a corresponding variation in Zn isotopes, with the highest grade samples displaying isotopically light compositions (Pons et al., in revision). The negative correlation between Fe and Zn isotopes and decrease in Fe3+/Fetot can explained by serpentinite sulfide breakdown and the release of fluids enriched in isotopically light Fe and heavy Zn sulphate complexes. The migration of these SOX-bearing fluids from the slab to the slab-mantle interface or mantle wedge has important implications for the redox evolution of the sub-arc mantle and the transport of metals from the subducting slab.

  11. Improvement of 2,4-dinitrophenylhydrazine derivatization method for carbon isotope analysis of atmospheric acetone.

    PubMed

    Wen, Sheng; Yu, Yingxin; Guo, Songjun; Feng, Yanli; Sheng, Guoying; Wang, Xinming; Bi, Xinhui; Fu, Jiamo; Jia, Wanglu

    2006-01-01

    Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented. Copyright 2006 John Wiley & Sons, Ltd.

  12. Determination of chemical purity and isotopic composition of natural and carbon-13-labeled arsenobetaine bromide standards by quantitative(1)H-NMR.

    PubMed

    Le, Phuong-Mai; Ding, Jianfu; Leek, Donald M; Mester, Zoltan; Robertson, Gilles; Windust, Anthony; Meija, Juris

    2016-10-01

    In this study, we report the characterization of three arsenobetaine-certified reference materials by quantitative NMR. We have synthesized an arsenobetaine bromide high-purity standard of natural isotopic composition (ABET-1) and two carbon-13-labeled isotopic standards (BBET-1 and CBET-1). Assignments of the chemical purity and isotopic composition are not trivial in the case of arsenobetaine, and in this study we utilized quantitative(1)H-NMR techniques for the determination of the mass fractions (chemical purity). The isotopic purity of all three standards was also assessed by NMR from the carbon-13 satellite signals. The standards are non-hygroscopic, high-purity (ca. 0.99 g/g), and the carbon-13 enrichment for both isotopic standards is x((13)C)≈0.99. These standards are designed for use as primary calibrators for mass spectrometric determination of arsenobetaine in environmental samples.

  13. Isotopic Analysis of Fingernails as a USGS Open House Demonstration of the Use of Stable Isotopes in Foodweb Studies

    NASA Astrophysics Data System (ADS)

    Silva, S. R.; Kendall, C.; Young, M. B.; Choy, D.

    2011-12-01

    The USGS Isotope Tracers Project uses stable isotopes and tritium to add a unique dimension of chemical information to a wide range of environmental investigations. The use and application of isotopes is usually an unfamiliar and even esoteric topic to the general public. Therefore during three USGS open house events, as a public outreach effort, we demonstrated the use of stable isotopes by analyzing nitrogen and carbon isotopes from very small fragments of fingernail from willing participants. We titled the exhibit "You Are What You Eat". The results from all participants were plotted on a graph indicating the general influence of different food groups on the composition of body tissues as represented by fingernails. All participants were assigned a number and no personal-identification information was collected. A subset of participants provided us with an estimate of the number of days a week various foods were eaten and if they were vegetarians, vegans or non-vegetarians. Volunteers from our research group were on hand to explain and discuss fundamental concepts such as how foods attain their isotopic composition, the difference between C3 and C4 plants, the effects of assimilation, trophic enrichment, and the various uses of stable isotopes in environmental studies. The results of the fingernail analyses showed the variation of the range of isotopic compositions among about 400 people at each event, the distinct influence of C4 plants (mainly corn and cane sugar) on our carbon isotopic composition, and the isotopic differences between vegetarians and non vegetarians among other details (http://wwwrcamnl.wr.usgs.gov/isoig/projects/fingernails/). A poll of visitors attending the open house event in 2006 indicated that "You Are What You Eat" was among the most popular exhibits. Following the first two open house events we were contacted by a group of researchers from Brazil who had completed a very similar study. Our collaboration resulted in a publication in the American Journal of Physical Anthropology (Nardoto et al., 2006). This study found that despite global trends toward dietary homogenization, regional differences in food resources and dietary preferences were recorded in the carbon and nitrogen isotopic compositions of fingernails.

  14. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    NASA Astrophysics Data System (ADS)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of the surface waters can be deduced from the isotopic composition of the diols, we can calculate the degree of mixing between freshwater (isotopically light) and seawater (isotopically heavy) in the surface waters. This way we quantify Eocene Arctic surface water salinity, which in turn will shed light on the degree of (seasonal) mixing and stratification.

  15. Long-term variations of fluxes of solar protons and helium isotopes

    NASA Astrophysics Data System (ADS)

    Anufriev, G. S.

    2012-11-01

    The fluxes of hydrogen and helium isotopes in the solar wind are reconstructed over a long time scale since the present time up to 600 million years back. Abundances of helium isotopes, obtained in the helium isotopic analysis made for 8 lunar soil samples, were used as initial data in the reconstruction procedure. Samples were taken off from various levels of the 1.6-m core of lunar soil delivered by the automatic Luna-24 station in 1976. The data on modern hydrogen and helium fluxes were used as well. The developed reconstruction procedure allowed one to select various solar wind components in a "gross" composition. Proton flux variations over the interval of 600 million years do not exceed a value of 40 %. Helium flux variations reach a value of 1.5-2 relative to the average value. Most likely, this circumstance is caused by considerable variations of a number of coronal mass ejections ( CME) enriched by helium. The arguments in favor of solar activity polycyclicity on a long time scale are discussed.

  16. Return to the Strangelove Ocean?: Preliminary results of carbon and oxygenisotope compositions of post-impact sediments, IODP Expedition 364 "Chicxulub Impact Crater"

    NASA Astrophysics Data System (ADS)

    Yamaguchi, K. E.; Ikehara, M.; Hayama, H.; Takiguchi, S.; Masuda, S.; Ogura, C.; Fujita, S.; Kurihara, E.; Matsumoto, T.; Oshio, S.; Ishihata, K.; Fuchizawa, Y.; Noda, H.; Sakurai, U.; Yamane, T.; Morgan, J. V.; Gulick, S. P. S.

    2017-12-01

    The Chicxulub crater in the northern Yucatan Peninsula, Mexico was formed by the asteroid impact at the Cretaceous-Paleogene boundary (66.0 Ma). In early 2016 the IODP Exp. 364 successfully drilled the materials from the topographic peak ring within the crater that was previously identified by seismological observations. A continuous core was recovered. The 112m-thick uppermost part of the continuous core (505.7-1334.7 mbsf) is post-impact sediments, including the PETM, that are mainly composed of carbonate with intercalation of siliciclastics and variable contents of organic carbon. More than 300 samples from the post-impact section were finely powdered for a variety of geochemical analysis. Here we report their carbon and oxygen isotope compositions of the carbonate fraction (mostly in the lower part of the analyzed section) and carbon and nitrogen isotope compositions of organic matter (mostly in the middle-upper part of the analyzed section). Isotope mass spectrometer Isoprime was used for the former analysis, and EA-irMS (elemental analyzer - isotope ratio mass spectrometer) was used for the latter analysis, both at CMCR, Kochi Univ. Depth profile of oxygen isotope compositions of carbonate fraction is variable and somewhat similar to those of Zachos et al. (2001; Science). Carbon isotope compositions of carbonate and organic carbon in the lower part of the analyzed section exhibit some excursions that could correspond to the hyperthemals in the early Paleogene. Their variable nitrogen isotope compositions reflect temporal changes in the style of biogeochemical cycles involving denitrification and nitrogen fixation. Coupled temporal changes in the carbon isotope compositions of organic and carbonate carbon immediately after the K-Pg boundary might support a Strangelove ocean (Kump, 1991; Geology), however high export production (Ba/Ti, nannoplankton and calcisphere blooms, high planktic foram richness, and diverse and abundant micro- and macrobenthic organisms) at the base of the Danian limestone cored during Exp. 364 contradict a Strangelove Ocean.

  17. Nickel isotopic composition of the mantle

    NASA Astrophysics Data System (ADS)

    Gall, Louise; Williams, Helen M.; Halliday, Alex N.; Kerr, Andrew C.

    2017-02-01

    This paper presents a detailed high-precision study of Ni isotope variations in mantle peridotites and their minerals, komatiites as well as chondritic and iron meteorites. Ultramafic rocks display a relatively large range in δ60 Ni (permil deviation in 60 Ni /58 Ni relative to the NIST SRM 986 Ni isotope standard) for this environment, from 0.15 ± 0.07‰ to 0.36 ± 0.08‰, with olivine-rich rocks such as dunite and olivine cumulates showing lighter isotope compositions than komatiite, lherzolite and pyroxenite samples. The data for the mineral separates shed light on the origin of these variations. Olivine and orthopyroxene display light δ60 Ni whereas clinopyroxene and garnet are isotopically heavy. This indicates that peridotite whole-rock δ60 Ni may be controlled by variations in modal mineralogy, with the prediction that mantle melts will display variable δ60 Ni values due to variations in residual mantle and cumulate mineralogy. Based on fertile peridotite xenoliths and Phanerozoic komatiite samples it is concluded that the upper mantle has a relatively homogeneous Ni isotope composition, with the best estimate of δ60Nimantle being 0.23 ± 0.06‰ (2 s.d.). Given that >99% of the Ni in the silicate Earth is located in the mantle, this also defines the Ni isotope composition of the Bulk Silicate Earth (BSE). This value is nearly identical to the results obtained for a suite of chondrites and iron meteorites (mean δ60 Ni 0.26 ± 0.12‰ and 0.29 ± 0.10‰, respectively) showing that the BSE is chondritic with respect to its Ni isotope composition, with little to no Ni mass-dependent isotope fractionation resulting from core formation.

  18. In Situ Carbon Isotope Analysis by Laser Ablation MC-ICP-MS.

    PubMed

    Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Zhao, Kui-Dong; Duan, Deng-Fei

    2017-12-19

    Carbon isotopes have been widely used in tracing a wide variety of geological and environmental processes. The carbon isotope composition of bulk rocks and minerals was conventionally analyzed by isotope ratio mass spectrometry (IRMS), and, more recently, secondary ionization mass spectrometry (SIMS) has been widely used to determine carbon isotope composition of carbon-bearing solid materials with good spatial resolution. Here, we present a new method that couples a RESOlution S155 193 nm laser ablation system with a Nu Plasma II MC-ICP-MS, with the aim of measuring carbon isotopes in situ in carbonate minerals (i.e., calcite and aragonite). Under routine operating conditions for δ 13 C analysis, instrumental bias generally drifts by 0.8‰-2.0‰ in a typical analytical session of 2-3 h. Using a magmatic calcite as the standard, the carbon isotopic composition was determined for a suite of calcite samples with δ 13 C values in the range of -6.94‰ to 1.48‰. The obtained δ 13 C data are comparable to IRMS values. The combined standard uncertainty for magmatic calcite is <0.3‰ (1s). No significant matrix effects have been identified in calcite with the amplitude of chemical composition variation (i.e., MnO, SrO, MgO, or FeO) up to 2.5 wt %. Two modern corals were investigated using magmatic calcite as the calibration standard, and the average δ 13 C values for both corals are similar to the bulk IRMS values. Moreover, coral exhibits significant heterogeneity in carbon isotope compositions, with differences up to 4.85‰ within an individual coral. This study indicates that LA-MC-ICP-MS can serve as an appropriate method to analyze carbon isotopes of carbonate minerals in situ.

  19. Compound-specific Isotope Analysis of Cyanobacterial Pure cultures and Microbial Mats: Effects of Photorespiration?

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Summons, R. E.

    2006-01-01

    Microbial mats are considered modern homologs of Precambrian stromatolites. The carbon isotopic compositions of organic matter and biomarker lipids provide clues to the depositional environments of ancient mat ecosystems. As the source of primary carbon fixation for over two billion years, an understanding of cyanobacterial lipid biosynthesis, associated isotopic discriminations, and the influence of physiological factors on growth and isotope expression is essential to help us compare modern microbial ecosystems to their ancient counterparts. Here, we report on the effects of photorespiration (PR) on the isotopic composition of cyanobacteria and biomarker lipids, and on potential PR effects associated with the composition of various microbial mats. The high light, high O2 and limiting CO2 conditions often present at the surface of microbial mats are known to support PR in cyanobacteria. The oxygenase function of ribulose bisphosphate carboxylase/oxygenase can result in photoexcretion of glycolate and subsequent degration by heterotrophic bacteria. We have found evidence which supports an isotopic depletion (increased apparent E) scaled to O2 level associated with growth of Phormidium luridum at low CO2 concentrations (less than 0.04%). Similar to previous studies, isotopic differences between biomass and lipid biomarkers, and between lipid classes were positively correlated with overall fractionation, and should provide a means of estimating the influence of PR on overall isotopic composition of microbial mats. Several examples of microbial mats growing in the hydrothermal waters of Yellowstone National Park and the hypersaline marine evaporation ponds at Guerrero Negro, Baja Sur Mexico will be compared with a view to PR as a possible explanation of the relatively heavy C-isotope composition of hypersaline mats.

  20. Long-Term Geochemical and Geodynamic Segmentation of the Paleo-Pacific Margin of Gondwana: Insight From the Antarctic and Adjacent Sectors

    NASA Astrophysics Data System (ADS)

    Nelson, D. A.; Cottle, J. M.

    2017-12-01

    Combined zircon geochemistry and geochronology of Mesozoic volcaniclastic sediments of the central Transantarctic Mountains, Antarctica, yield a comprehensive record of both the timing and geochemical evolution of the magmatic arc along the Antarctic sector of the paleo-Pacific margin of Gondwana. Zircon age populations at 266-183 Ma, 367-328 Ma, and 550-490 Ma correspond to episodic arc activity from the Ediacaran to the Jurassic. Zircon trace element geochemistry indicates a temporal shift from granitoid-dominated source(s) during Ediacaran to Early Ordovician times to mafic sources in the Devonian through Early Jurassic. Zircon initial ɛHf shifts to more radiogenic Hf isotope compositions following the Ross Orogeny and is inferred to reflect juvenile crustal growth within an extensional arc system during progressive slab rollback. These new ages and Hf isotopic record are similar to those from the Australian sector, indicating that these regions constituted an 3,000 km laterally continuous extensional arc from at least the Carboniferous to the Permian. Conversely, the South American sector records enriched zircon Hf isotopic compositions and compressional/advancing arc tectonics during the same time period. Our new data constrain the location of this profound along-arc geochemical and geodynamic "switch" to the vicinity of the Thurston Island block of West Antarctica.

  1. Bunburra Rockhole: Exploring the Geology of a New Differentiated Basaltic Asteroid

    NASA Technical Reports Server (NTRS)

    Benedix, G.K.; Bland, P. A.; Friedrich, J. M.; Mittlefehldt, D.; Sanborn, M. E.; Yin, Q.-Z.; Greenwood, R. C; Franchi, L. A.; Bevan, A. W. R.; Towner, M. C.; hide

    2014-01-01

    Bunburra Rockhole (BR) is the first recovered meteorite of the Desert Fireball Network. It was initially classified as a basaltic eucrite, based on texture, mineralogy, and mineral chemistry but subsequent O isotopic analyses showed that BR's composition lies significantly far away from the HED group of meteorites. This suggested that BR was not a piece of the HED parent body (4 Vesta), but other explanations could also account for the observed oxygen signatures. Possible scenarios include contamination by components from other bodies (chondrites or other achondrites) or that 4 Vesta may not be as equilibrated as hypothesized. After examining multiple pieces with different instruments (CT scans and x-ray maps), no obvious evidence of contamination was found. If BR is not from Vesta, a conundrum exists as no unusual features were found in mineral and bulk trace element chemistry as exist for other anomalous basaltic achondrites such as Ibitira or Asuka 881394. These meteorites have distinct petrological and geochemical characteristics, in addition to their anomalous O isotope compositions, that set them apart from eucrites. Thus, early results provided a somewhat ambiguous picture of BR's petrogenesis and parentage. To clarify the nature of the relationship, if any, between BR and eucrites, we have performed a correlated stable isotope and bulk chemical study of several lithologic fragments.

  2. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    PubMed Central

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2014-01-01

    We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season. PMID:24366178

  3. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    NASA Technical Reports Server (NTRS)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates the quantitative interpretation of ice core signals but also makes the stable ice isotope signal a more robust regional indicator of climate, speakers noted. Meeting participants agreed that to further our understanding of these relationships, we need more process-focused field and laboratory campaigns.

  4. Zircon U-Pb geochronology, Sr-Nd-Hf isotopic composition and geological significance of the Late Triassic Baijiazhuang and Lvjing granitic plutons in West Qinling Orogen

    NASA Astrophysics Data System (ADS)

    Duan, Meng; Niu, Yaoling; Kong, Juanjuan; Sun, Pu; Hu, Yan; Zhang, Yu; Chen, Shuo; Li, Jiyong

    2016-09-01

    The Qinling Orogen was a consequence of continental collision of the South China Craton with the North China Craton in the Triassic and caused widespread granitoid magmatism. However, the petrogenesis of these granitoids remains controversial. In this paper, we choose the Baijiazhuang (BJZ) and Lvjing (LJ) plutons in the West Qinling Orogen for a combined study of the zircon U-Pb geochronology, whole-rock major and trace element compositions and Sr-Nd-Hf isotopic characteristics. We obtained zircon crystallization ages of 216 Ma and 212 Ma for the BJZ and the LJ plutons, respectively. The granitoid samples from both plutons have high K2O metaluminous to peraluminous compositions. They are enriched in large ion lithophile elements (LILEs), light rare earth elements (LREEs) and depleted in high field-strength elements (HFSEs) with significant negative Eu anomalies. The BJZ samples have initial Sr isotopic ratios of 0.7032 to 0.7078, εNd(t) of - 10.99 to - 8.54 and εHf (t) of - 10.22 to - 6.41. The LJ granitoids have initial Sr isotopic ratios of 0.7070 to 0.7080, εNd(t) of - 5.37 to - 4.58 and εHf(t) of - 3.64 to - 1.78. The enriched isotopic characteristics of the two plutons are consistent with their source being dominated by ancient continental crust. However, two BJZ samples show depleted Sr isotope compositions, which may infer possible involvement of mantle materials. Mantle-derived melt, which formed from partial melting of mantle wedge peridotite facilitated by dehydration of the subducted/subducting Mianlue ocean crust, provide the required heat for the crustal melting while also contributing to the compositions of these granitoids. That is, the two granitic plutons are magmatic responses to the closure of the Mianlue ocean basin and the continental collision between the Yangtze and South Qinling crustal terranes. (143Nd/144Nd)i = (143Nd/144Nd) - (147Sm/144Nd) × (eλt - 1), εNd(t) = [(143Nd/144Nd) / (143Nd/144Nd)CHUR(t) - 1] × 104, (143Nd/144Nd)CHUR(t) = 0.512638-0.1967 × (eλt - 1), TDM = 1/λ × ln{1 + [((143Nd/144Nd) - 0.51315) / ((147Sm/144Nd) - 0.21317)]}, λ Sm-Nd = 6.54 × 10- 12a- 1. (176Hf/177Hf)i = [(176Hf/177Hf) - (176Lu/177Hf) × (eλt - 1), εHf(t) = [(176Hf/177Hf) / (176Hf/177Hf)CHUR(t) - 1] × 104, TDM1 = 1/λ × ln[1 + ((176Hf/177Hf)Sample - (176Hf/177Hf)DM)/((176Lu/177Hf)Sample - (176Lu/177Hf)DM)], TDM2 = TDM1 - (TDM1 - t)((fCC - fSample) / (fCC - fDM)), fLu-Hf = (176Lu/177Hf)Sample / (176Lu/177Hf)CHUR-1, (176Lu/177Hf)CHUR = 0.0332, (176Hf/177Hf)CHUR, 0 = 0.282785, (176Lu/177Hf)DM = 0.0384, (176Hf/177Hf)DM = 0.28325, fCC, fSample, fDM are their own fLu-Hf, λ = 1.867 × 10- 11a- 1.

  5. Petrology of Anomalous Eucrites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Peng, Z. X.; Ross, D. K.

    2015-01-01

    Most mafic achondrites can be broadly categorized as being "eucritic", that is, they are composed of a ferroan low-Ca clinopyroxene, high-Ca plagioclase and a silica phase. They are petrologically distinct from angritic basalts, which are composed of high-Ca, Al-Ti-rich clinopyroxene, Carich olivine, nearly pure anorthite and kirschsteinite, or from what might be called brachinitic basalts, which are composed of ferroan orthopyroxene and high-Ca clinopyroxene, intermediate-Ca plagioclase and ferroan olivine. Because of their similar mineralogy and composition, eucrite-like mafic achondrites formed on compositionally similar asteroids under similar conditions of temperature, pressure and oxygen fugacity. Some of them have distinctive isotopic compositions and petrologic characteristics that demonstrate formation on asteroids different from the parent of the HED clan (e.g., Ibitira, Northwest Africa (NWA) 011). Others show smaller oxygen isotopic distinctions but are otherwise petrologically and compositionally indistinguishable from basaltic eucrites (e.g., Pasamonte, Pecora Escarpment (PCA) 91007). The degree of uniformity in delta O-17 of eucrites and diogenites is one piece of evidence considered to favor of a magma-ocean scenario for their petrogenesis. Given that the O isotopic differences separating Pasamonte and PCA 91007 from other eucrites are small, and that there is an absence of other distinguishing characteristics, a legitimate question is: Did the HED parent asteroid fail to homogenize via a magma-ocean stage, thus explaining outliers like Pasamonte? We are initiating a program of study of anomalous eucrite-like achondrites as one part of our effort to seek a resolution of this issue. Here we present preliminary petrologic information on Asuka (A-) 881394, Elephant Moraine (EET) 87520 and EET 87542. We will have studied several more by conference time.

  6. High-precision Mg isotopic systematics of bulk chondrites

    NASA Astrophysics Data System (ADS)

    Schiller, Martin; Handler, Monica R.; Baker, Joel A.

    2010-08-01

    Variations of the mass-independent abundance of 26Mg ( δ26Mg*) and stable Mg ( δ25Mg) isotope composition of chondrites are important because they constrain the homogeneity of 26Al and Mg isotopes in the proto-planetary disc and the validity of the short-lived 26Al-to- 26Mg chronometer applied to meteorites. We present high-precision Mg isotope data and Al/Mg ratios of chondrites representing nearly all major chondrite classes, including a step-leaching experiment on the CM2 chondrite Murchison. δ26Mg* variations in leachates of Murchison representing acid soluble material are ≤ 30 times smaller than reported for neutron-rich isotopes of Ti and Cr and do not reveal resolvable deficits in δ26Mg* (-0.002 to + 0.118‰). Very small variations in δ26Mg* anomalies in bulk chondrites (-0.006 to + 0.019‰) correlate with increasing 27Al/ 24Mg ratios and δ50Ti, reflecting the variable presence of calcium-aluminium-rich inclusions (CAIs) in some types of carbonaceous chondrites. Similarly, release of radiogenic 26Mg produced by 26Al decay from CAI material in the step-leaching of Murchison best explains the high δ26Mg* observed in the last, aggressive, leaching steps of this experiment. Overall, the observed variations in δ26Mg* are small and potential differences beyond that which result from the presence of CAI-like material cannot be detected within the analytical uncertainties of this study (± 0.004‰). The results do not allow radical heterogeneity of 26Al (≥±30%) or measurable Mg nucleosynthetic heterogeneity (≥±0.005‰) to have existed on a planetesimal scale in the proto-planetary disc. Combined with published δ26Mg* data for CAIs, the bulk chondrite data yield a precise initial ( 26Al/ 27Al) 0 = (5.21 ± 0.06) × 10 -5 and δ26Mg* = -0.0340 ± 0.0016‰ for the Solar System. However, it is not possible with the currently available data to determine with certainty whether CAIs and the material from which planetesimals accreted including chondrite parent bodies had precisely the same initial levels of 26Al, although planetesimals and planets appear to have accreted from material with a mean initial ( 26Al/ 27Al) 0 in the range of 2.1 to 6.7 × 10 - 5 . The average stable Mg isotope composition of all analysed chondrites, with the exception of a chondrule from the CBa chondrite Gujba ( δ25Mg DSM-3 = -0.032 ± 0.035‰), is δ25Mg DSM-3 = -0.152 ± 0.079‰ (2 sd) and is indistinguishable from that of the Earth's mantle.

  7. A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: Further evidence for early differentiation of the Moon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edmunson, J; E.Borg, L; Nyquist, L E

    2008-11-17

    Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 {+-} 37 Ma and an initial {var_epsilon}{sub Nd}{sup 143} value of -0.27 {+-} 0.74. The age-initial {var_epsilon}{sub Nd}{sup 143} (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiationmore » was completed by 4492 {+-} 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 {+-} 53 Ma. The other is 4003 {+-} 95 Ma and is concordant with an Ar-Ar age for 78236. The {sup 207}Pb-{sup 206}Pb age of 4333 {+-} 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged {mu} ({sup 238}U/{sup 204}Pb) value of the source can be estimated at 27 {+-} 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low {mu} value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high {mu} value.« less

  8. Triple Oxygen Isotope Constraints on Seawater δ18O and Temperature

    NASA Astrophysics Data System (ADS)

    Hayles, J.; Shen, B.; Homann, M.; Yeung, L.

    2017-12-01

    One point of contention among geoscientists is whether the 18O/16O ratio of seawater is roughly constant, or if it varies considerably throughout geologic time. On one hand, the oxygen isotope composition of the ocean is thought to be well buffered by high- and low-temperature interactions between seawater and seafloor rocks. If these interactions do not vary on billion-year timescales, the oxygen-isotope compositions of marine sedimentary rocks mostly relate to changes in seawater temperature and global ice volume. On the other hand, long-term cooling of the planetary interior would alter these water-rock interactions leading to a secular change in the oxygen isotope composition of seawater. Models suggest that this secular change would enrich seawater with heavy oxygen isotopes over time. In this study, we present new, high precision, triple-oxygen-isotope (18O/16O, 17O/16O) analyses of marine chert samples from 3.45 Ga to 460Ma. The results of these analyses are paired with a new theoretical quartz-water equilibrium curve and a simplified seawater model to provide possible pairings of δ'18O and Δ'17O for the water which these samples could have formed in equilibrium with. Analysis of the new sample data, in addition to published chert triple oxygen isotope compositions, shows a general trend of older chert samples being progressively incompatible with waters possessing a modern-like seawater triple oxygen isotope composition. Implications on constraining the secular evolution of seawater δ18O and temperature will be discussed.

  9. Geochemical and isotopic investigation of the Laiwu-Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source

    NASA Astrophysics Data System (ADS)

    Ying, Jifeng; Zhou, Xinhua; Zhang, Hongfu

    2004-08-01

    Major and trace element and Nd-Sr isotope data of the Mesozoic Laiwu-Zibo carbonatites (LZCs) from western Shandong Province, China, provide clues to the petrogenesis and the nature of their mantle source. The Laiwu-Zibo carbonatites can be petrologically classified as calcio-, magnesio- and ferro-carbonatites. All these carbonatites show a similarity in geochemistry. On the one hand, they are extremely enriched in Ba, Sr and LREE and markedly low in K, Rb and Ti, which are similar to those global carbonatites, on the other hand, they have extremely high initial 87Sr/ 86Sr (0.7095-0.7106) and very low ɛNd (-18.2 to -14.3), a character completely different from those global carbonatites. The small variations in Sr and Nd isotopic ratios suggest that crustal contamination can not modify the primary isotopic compositions of LZC magmas and those values are representatives of their mantle source. The Nd-Sr isotopic compositions of LZCs and their similarity to those of Mesozoic Fangcheng basalts imply that they derived from an enriched lithospheric mantle. The formation of such enriched lithospheric mantle is connected with the major collision between the North China Craton (NCC) and the Yangtze Craton. Crustal materials from the Yangtze Craton were subducted beneath the NCC and melts derived from the subducted crust of the Yangtze Craton produced an enriched Mesozoic mantle, which is the source for the LZCs and Fangcheng basalts. The absence of alkaline silicate rocks, which are usually associated with carbonatites suggest that the LZCs originated from the mantle by directly partial melting.

  10. Impact of topography, climate and moisture sources on isotopic composition (δ18O &δD) of rivers in the Pyrenees: Implications for topographic reconstructions in small orogens

    NASA Astrophysics Data System (ADS)

    Huyghe, Damien; Mouthereau, Frédéric; Sébilo, Mathieu; Vacherat, Arnaud; Ségalen, Loïc; Richard, Patricia; Biron, Philippe; Bariac, Thierry

    2018-02-01

    Understanding how orogenic topography controls the spatial distribution and isotopic composition of precipitation is critical for paleoaltitudinal reconstructions. Here, we determine the isotopic composition (δ18O and δD) of 82 small rivers and springs from small catchments in the Pyrenees. Calculation of the deuterium excess (d-excess) parameter allows the distinction of four distinct isotopic provinces with d-excess values of between 15 and 22‰ in the northwest, between 7 and 14‰ in the central northern Pyrenees and between 3 and 11‰ in the northeast. The southern Pyrenees have a homogenous d-excess signature ranging from 7 to 14‰. Our results show significant local moisture recycling and/or rain amount effect in the northwestern Pyrenees, and control by evaporation processes during rainfall events in the southern Pyrenees and for low elevated samples of the northeast of the range. Based on the distribution of d-excess values, we estimate contrasting isotope lapse rates of -2.9/-21.4‰/km (δ18O/δD) in the northwest, -2.7/-21.4‰/km (δ18O/δD) in the north central and -3.7/-31.7‰/km (δ18O/δD) in the northeastern Pyrenees. The southern Pyrenees show distinctly higher lapse rates of -9.5/-77.5‰/km (δ18O/δD), indicating that in this area the altitudinal effect in not the only parameter driving isotopic composition of rivers. Despite their relatively low topographic gradient, the Pyrenees exert a direct control on the isotopic composition of river waters, especially on their northern side. The variations in isotopic composition-elevation relationships documented along the strike of the range are interpreted to reflect an increasing continentality effect driven by wind trajectories parallel to the range, and mixing with Mediterranean air masses. Despite these effects, the measurable orographic effect on precipitation in the Pyrenees proves that the isotopic composition approach for reconstructing past topography is applicable to low-elevation orogens.

  11. Kuiper Prize Lecture - Escape of atmospheres, ancient and modern

    NASA Astrophysics Data System (ADS)

    Hunten, D. M.

    1990-05-01

    A development history is presented for theories concerning planetary atmosphere gas-escape phenomena, which although firmly grounded in the kinetics of gases achieved truly productive results only after spacecraft remote sensing data for both the earth atmosphere and the planets became widely available. The most significant initial advances, encompassing diffusion-limited flow, nonthermal escape mechanisms, bound nonthermal coronas, and mass fractionation during early blowoff, followed from sounding rocket studies of the earth upper atmosphere, Mariner 5 results on hydrogen near Venus, and the nitrogen isotopic composition discovered by Viking in Mars. Attention has more recently been given to the xenon isotopic patterns in various atmospheres, as well as to the puzzling behavior of the Io atmosphere and plasma torus.

  12. Hydrogen Isotope Measurements of Organic Acids and Alcohols by Pyrolysis-GC-MS-TC-IRMS

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2011-01-01

    One possible process responsible for methane generation on Mars is abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions. Measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane by tracing the geochemical pathway during formation. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible hydrogen isotope measurements. Reported here are results of experiments to characterize the hydrogen isotope composition of low molecular weight organic acids and alcohols. The presence of these organic compounds has been suggested by others as intermeadiary products made during mineral surface catalyzed reactions. This work compliments our previous study characterizing the carbon isotope composition of similar low molecular weight intermediary organic compounds (Socki, et al, American Geophysical Union Fall meeting, Abstr. #V51B-2189, Dec., 2010). Our hydrogen isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-High Temperature Conversion-Isotope Ratio Mass Spectrometry (Py-GC-MS-TC-IRMS). Our technique is unique in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II? quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of separated organic compounds, therefore both chemical and isotopic measurements can be carried out simultaneously on the same sample.

  13. Isotopic coherence of refractory inclusions from CV and CK meteorites: Evidence from multiple isotope systems

    NASA Astrophysics Data System (ADS)

    Shollenberger, Quinn R.; Borg, Lars E.; Render, Jan; Ebert, Samuel; Bischoff, Addi; Russell, Sara S.; Brennecka, Gregory A.

    2018-05-01

    Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials in the Solar System and numerous previous studies have revealed nucleosynthetic anomalies relative to terrestrial rock standards in many isotopic systems. However, most of the isotopic data from CAIs has been limited to the Allende meteorite and a handful of other CV3 chondrites. To better constrain the isotopic composition of the CAI-forming region, we report the first Sr, Mo, Ba, Nd, and Sm isotopic compositions of two CAIs hosted in the CK3 desert meteorites NWA 4964 and NWA 6254 along with two CAIs from the CV3 desert meteorites NWA 6619 and NWA 6991. After consideration of neutron capture processes and the effects of hot-desert weathering, the Sr, Mo, Ba, Nd, and Sm stable isotopic compositions of the samples show clearly resolvable nucleosynthetic anomalies that are in agreement with previous results from Allende and other CV meteorites. The extent of neutron capture, as manifested by shifts in the observed 149Sm-150Sm isotopic composition of the CAIs is used to estimate the neutron fluence experienced by some of these samples and ranges from 8.40 × 1013 to 2.11 × 1015 n/cm2. Overall, regardless of CAI type or host meteorite, CAIs from CV and CK chondrites have similar nucleosynthetic anomalies within analytical uncertainty. We suggest the region that CV and CK CAIs formed was largely uniform with respect to Sr, Mo, Ba, Nd, and Sm isotopes when CAIs condensed and that CAIs hosted in CV and CK meteorites are derived from the same isotopic reservoir.

  14. Large Carbonate Associated Sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata

    NASA Astrophysics Data System (ADS)

    Present, Theodore M.; Paris, Guillaume; Burke, Andrea; Fischer, Woodward W.; Adkins, Jess F.

    2015-12-01

    Carbonate Associated Sulfate (CAS) is trace sulfate incorporated into carbonate minerals during their precipitation. Its sulfur isotopic composition is often assumed to track that of seawater sulfate and inform global carbon and oxygen budgets through Earth's history. However, many CAS sulfur isotope records based on bulk-rock samples are noisy. To determine the source of bulk-rock CAS variability, we extracted CAS from different internal sedimentary components micro-drilled from well-preserved Late Ordovician and early Silurian-age limestones from Anticosti Island, Quebec, Canada. Mixtures of these components, whose sulfur isotopic compositions vary by nearly 25‰, can explain the bulk-rock CAS range. Large isotopic variability of sedimentary micrite CAS (34S-depleted from seawater by up to 15‰) is consistent with pore fluid sulfide oxidation during early diagenesis. Specimens recrystallized during burial diagenesis have CAS 34S-enriched by up to 9‰ from Hirnantian seawater, consistent with microbial sulfate reduction in a confined aquifer. In contrast to the other variable components, brachiopods with well-preserved secondary-layer fibrous calcite-a phase independently known to be the best-preserved sedimentary component in these strata-have a more homogeneous isotopic composition. These specimens indicate that seawater sulfate remained close to about 25‰ (V-CDT) through Hirnantian (end-Ordovician) events, including glaciation, mass extinction, carbon isotope excursion, and pyrite-sulfur isotope excursion. The textural relationships between our samples and their CAS isotope ratios highlight the role of diagenetic biogeochemical processes in setting the isotopic composition of CAS.

  15. Bioconversion of Coal: Hydrologic indicators of the extent of coal biodegradation under different redox conditions and coal maturity, Velenje Basin case study, Slovenia

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Grassa, Fausto; Lazar, Jerneja; Jamnikar, Sergej; Zavšek, Simon; McIntosh, Jennifer

    2014-05-01

    Underground mining of coal and coal combustion for energy has significant environmental impacts. In order to reduce greenhouse gas emissions, other lower -carbon energy sources must be utilized. Coalbed methane (CBM) is an important source of relatively low-carbon energy. Approximately 20% of world's coalbed methane is microbial in origin (Bates et al., 2011). Interest in microbial CBM has increased recently due to the possibility of stimulating methanogenesis. Despite increasing interest, the hydrogeochemical conditions and mechanisms for biodegradation of coal and microbial methane production are poorly understood. This project aims to examine geochemical characteristics of coalbed groundwater and coalbed gases in order to constrain biogeochemical processes to better understand the entire process of coal biodegradation of coal to coalbed gases. A better understanding of geochemical processes in CBM areas may potentially lead to sustainable stimulation of microbial methanogenesis at economical rates. Natural analogue studies of carbon dioxide occurring in the subsurface have the potential to yield insights into mechanisms of carbon dioxide storage over geological time scales (Li et al., 2013). In order to explore redox processes related to methanogenesis and determine ideal conditions under which microbial degradation of coal is likely to occur, this study utilizes groundwater and coalbed gas samples from Velenje Basin. Determination of the concentrations of methane, carbondioxide, nitrogen, oxygen, argon was performed with homemade NIER mass spectrometer. Isotopic composition of carbon dioxide, isotopic composition of methane, isotopic composition of deuterium in methane was determined with Europa-Scientific IRMS with an ANCA-TG preparation module and Thermo Delta XP GC-TC/CF-IRMS coupled to a TRACE GC analyzer. Total alkalinity of groundwater was measured by Gran titration. Major cations were analyzed by ICP-OES and anions by IC method. Isotopic composition of dissolved inorganic carbon was determined by MultiflowBio preparation module. The stable isotope composition of sulphur was determined with a Europa Scientific 20-20 continuous flow IRMS ANCA-SL preparation module. Concentrations of tritium were determined with the electrolytic enrichment method. PHREEQC for Windows was used to perform thermodynamic modelling. The average coalbed gas composition in the coalbed seam is approximately carbon dioxide: methane > 2:1, where a high proportion of CO2 is adsorbed on the lignite structure, while methane is present free in coal fractures. It can be concluded that isotopic composition of carbon in methane from -70.4‰ to -50.0‰ is generated via acetate fermentation and via reduction of carbon dioxide, while isotopic composition of carbon in methane values range from -50.0‰ to -18.8‰, thermogenic methane can be explained by secondary processes, causing enrichment of residual methane with the heavier carbon isotope. Isotopic composition of deuterium in methane range from -343.9‰ to -223.1‰. Isotopic composition of carbon in carbon dioxide values at excavation fields range from -11.0‰ to +5‰ and are endogenic and microbial in origin. The major ion chemistry, redox conditions, stable isotopes and tritium measured in groundwater from the Velenje Basin, suggest that the Pliocene and Triassic aquifers contain distinct water bodies. Groundwater in the Triassic aquifer is dominated by hydrogen carbonate, calcium, magnesium and isotopic composition of dissolved inorganic carbon indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has isotopic composition of oxygen and isotopic composition of deuterium values which plot near surface waters on the local and global meteoric water lines and detectable tritium reflects recent recharge. In contrast, groundwater in the Pliocene aquifers is enriched in magnesium, sodium, calcium, potassium, and silica and has alkalinity and isotopic composition of dissolved inorganic carbon values with low sulphate and nitrate concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and magnesium-rich clay minerals. Pliocene aquifer waters are also depleted in heavier oxygen isotope and heavier deuterium isotope and have tritium concentrations near the detection limit, suggesting these waters are older. References Bates, B.L., McIntosh J.C., Lohse K.A., Brooks P.D. 2011: Influence of groundwater flowpaths, residence times, and nutrients on the extent of microbial methanogenesis in coal beds: Powder River Basin, USA, Chemical geology, 284, 45-61. Li, W., Cheng Y., Wang L., Zhou H., Wang H., Wang L. 2013: Evaluating the security of geological coalbed sequestration of supercritical CO2 reservoirs: The Haishiwan coalfield, China as a natural analogue, International Journal of Greenhouse Gas Control, 13, 102-111.

  16. Isotope effects in photo dissociation of ozone with visible light

    NASA Astrophysics Data System (ADS)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  17. SULFUR ISOTOPIC COMPOSITIONS OF SUBMICROMETER SiC GRAINS FROM THE MURCHISON METEORITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuchen; Zinner, Ernst; Gallino, Roberto

    2015-02-01

    We report C, Si, N, S, Mg-Al, and Ca-Ti isotopic compositions of presolar silicon carbide (SiC) grains from the SiC-rich KJE size fraction (0.5-0.8 μm) of the Murchison meteorite. One thousand one hundred thirteen SiC grains were identified based on their C and Si isotopic ratios. Mainstream, AB, C, X, Y, and Z subtypes of SiC, and X-type silicon nitride (Si{sub 3}N{sub 4}) account for 81.4%, 5.7%, 0.1%, 1.5%, 5.8%, 4.9%, and 0.4%, respectively. Twenty-five grains with unusual Si isotopic ratios, including one C grain, 16 X grains, 1 Y grain, 5 Z grains, and 2 X-type Si{sub 3}N{sub 4} grainsmore » were selected for N, S, Mg-Al, and Ca-Ti isotopic analysis. The C grain is highly enriched in {sup 29}Si and {sup 30}Si (δ{sup 29}Si = 1345‰ ± 19‰, δ{sup 30}Si = 1272‰ ± 19‰). It has a huge {sup 32}S excess, larger than any seen before, and larger than that predicted for the Si/S supernova (SN) zone, providing evidence against the elemental fractionation model by Hoppe et al. Two SN models investigated here present a more satisfying explanation in terms of a radiogenic origin of {sup 32}S from the decay of short-lived {sup 32}Si (τ{sub 1/2} = 153 yr). Silicon-32 as well as {sup 29}Si and {sup 30}Si can be produced in SNe by short neutron bursts; evidence for initial {sup 44}Ti (τ{sub 1/2} = 60 yr) in the C grain is additional evidence for an SN origin. The X grains have marginal {sup 32}S excesses, much smaller than expected from their large {sup 28}Si excesses. Similarly, the Y and Z grains do not show the S-isotopic anomalies expected from their large Si isotopic anomalies. Low intrinsic S contents and contamination with isotopically normal S are the most likely explanations.« less

  18. Noble gases in the moon

    NASA Technical Reports Server (NTRS)

    Manuel, O. K.; Srinivasan, B.; Hennecke, E. W.; Sinclair, D. E.

    1972-01-01

    The abundance and isotopic composition of helium, neon, argon, krypton, and xenon which were released by stepwise heating of lunar fines (15601.64) and (15271.65) were measured spectrometrically. The results of a composition of noble gases released from the lunar fines with noble gases in meteorites and in the earth are presented along with the isotopic composition of noble gases in lunar fines, in meteorites, and in the atmosphere. A study of two isotopically distinct components of trapped xenon in carbonaceous chondrites is also included.

  19. Stable Isotope Characteristics of Jarosite: The Acidic Aqueous History of Mars

    NASA Technical Reports Server (NTRS)

    Earl, Lyndsey D.

    2005-01-01

    The Mars Rover Opportunity found jarosite (Na(+) or K(+))Fe3SO4(OH)6 at the Meridiani Planum site. This mineral forms from the evaporation of an aqueous acidic sulfate brine. Oxygen isotope compositions may characterize formation conditions but subsequent isotope exchange may have occurred between the sulfate and hydroxide of jarosite and water. The rate of oxygen isotope exchange depends on the acidity and temperature of the brine, but it has not been investigated in detail. We performed laboratory experiments to determine the rate of oxygen isotope exchange under varying acidities and temperatures to learn more about this process. Barium sulfate samples were precipitated weekly from acidic sodium sulfate brines. The oxygen isotope composition of the precipitated sulfate was obtained using a Finnigan MAT253 Isotope Ratio Mass-Spectrometer. The results show that water was trapped in barium sulfate during precipitation. Trapped water may exchange with sulfate when exposed to high temperatures, thus changing the isotope composition of sulfate and the observed fractionation factor of oxygen isotope exchange between sulfate and water. The results of our research will contribute to the understanding of oxygen isotope exchange rates between water and sulfate under acidic conditions and provide experimental knowledge for the dehydration of barium sulfate samples.

  20. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial

    NASA Astrophysics Data System (ADS)

    Owens, Jeremy D.; Nielsen, Sune G.; Horner, Tristan J.; Ostrander, Chadlin M.; Peterson, Larry C.

    2017-09-01

    Thallium (Tl) isotopes are a new and potentially powerful paleoredox proxy that may track bottom water oxygen conditions based on the global burial flux of manganese oxides. Thallium has a residence time of ∼20 thousand years, which is longer than the ocean mixing time, and it has been inferred that modern oxic seawater is conservative with respect to both concentration and isotopes. Marine sources of Tl have nearly identical isotopic values. Therefore, the Tl sinks, adsorption onto manganese oxides and low temperature oceanic crust alteration (the dominant seawater output), are the primary controls of the seawater isotopic composition. For relatively short-term, ∼million years, redox events it is reasonable to assume that the dominant mechanism that alters the Tl isotopic composition of seawater is associated with manganese oxide burial because large variability in low temperature ocean crust alteration is controlled by long-term, multi-million years, average ocean crust production rates. This study presents new Tl isotope data for an open ocean transect in the South Atlantic, and depth transects for two euxinic basins (anoxic and free sulfide in the water column), the Cariaco Basin and Black Sea. The Tl isotopic signature of open ocean seawater in the South Atlantic was found to be homogeneous with ε205Tl = -6.0 ± 0.3 (±2 SD, n = 41) while oxic waters from Cariaco and the Black Sea are -5.6 and -2.2, respectively. Combined with existing data from the Pacific and Arctic Oceans, our Atlantic data establish the conservatism of Tl isotopes in the global ocean. In contrast, partially- and predominantly-restricted basins reveal Tl isotope differences that vary between open-ocean (-6) and continental material (-2) ε205Tl, scaling with the degree of restriction. Regardless of the differences between basins, Tl is quantitatively removed from their euxinic waters below the chemocline. The burial of Tl in euxinic sediments is estimated to be an order of magnitude less than each of the modern ocean outputs and imparts no isotopic fractionation. Thallium removal into pyrite appears to be associated with a small negative fractionation between -1 and -3 ε205Tl, which renders Tl-depleted waters below the chemocline enriched in isotopically-heavy Tl. Due to the quantitative removal of Tl from euxinic seawater, Tl isotope analyses of the authigenic fraction of underlying euxinic sediments from both the Black Sea and Cariaco Basin capture the Tl isotope value of the oxic portion of their respective water column with no net isotope fractionation. Since the Tl isotope composition of seawater is largely dictated by the relative fraction of Mn-oxide burial versus oceanic crust alteration, we contend that the Tl isotope composition of authigenic Tl in black shales, deposited under euxinic conditions but well-connected to the open ocean, can be utilized to reconstruct the Tl isotope composition of seawater, and thus to reconstruct the global history of Mn-oxide burial.

  1. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    PubMed

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  2. On the equilibrium isotopic composition of the thorium-uranium-plutonium fuel cycle

    NASA Astrophysics Data System (ADS)

    Marshalkin, V. Ye.; Povyshev, V. M.

    2016-12-01

    The equilibrium isotopic compositions and the times to equilibrium in the process of thorium-uranium-plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.

  3. On the equilibrium isotopic composition of the thorium–uranium–plutonium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshalkin, V. Ye., E-mail: marshalkin@vniief.ru; Povyshev, V. M.

    2016-12-15

    The equilibrium isotopic compositions and the times to equilibrium in the process of thorium–uranium–plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.

  4. Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake

    NASA Technical Reports Server (NTRS)

    Chanton, Jeffrey P.; Martens, Christopher S.; Kelley, Cheryl A.; Crill, Patrick M.; Showers, William J.

    1992-01-01

    The stable carbon isotopic composition of methane associated with and emitted by the two dominant emergent macrophytes abundant in the many Alaskan tundra lakes, Carex rostrata and Arctophila fulva, is determined. The carbon isotopic composition of the methane was -58.6 +/- 0.5 (n=2) for Arctophila and -66.6 +/- 2.5 (n=6) for Carex. The methane emitted by these species is depleted in C-13 by 12 per mil for Arctophila and 18 per mil for Carex relative to methane withdrawn from plant stems 1-2 cm below the waterline. The results suggest more rapid transport of (C-12)H4 relative to (C-13)H4 through plants to the atmosphere. Plant stem methane concentrations ranged from 0.2 to 4.0 percent in Arctophila, with an isotopic composition of -46.1 +/- 4.3 percent (n=8). Carex stem methane concentrations ranged from 150 to 1200 ppm, with an isotopic composition of -48.3 +/- 1.4 per mil (n=3).

  5. U-Pb systematics in iron meteorites - Uniformity of primordial lead

    NASA Astrophysics Data System (ADS)

    Gopel, C.; Manhes, G.; Allegre, C. J.

    1985-08-01

    Pb isotopic compositions and U-Pb abundances were determined in the metal phase of six iron meteorites: Canyon Diablo IA, Toluca IA, Odessa IA, Youndegin IA, Deport IA, and Mundrabilla An. Prior to complete dissolution, samples were subjected to a series of leachings and partial dissolutions. Isotopic compositions and abundances of the etched Pb indicate a contamination by terrestrial Pb which is attributable to previous cutting of the meteorite. Pb isotopic compositions measured in the decontaminated samples are identical within 0.2 percent and essentially confirm the primordial Pb value defined by Tatsumoto et al. (1973). These data invalidate more radiogenic Pb isotopic compositions published for iron meteorites, which are the result of terrestrial Pb contamination introduced mainly by analytical procedure. The results of this study support the idea of a solar nebula which was isotopically homogeneous for Pb 4.55 Ga ago. The new upper limit for U-abundance in iron meteorites, 0.001 ppb, is in agreement with its expected thermodynamic solubility in the metal phase.

  6. The Chlorine Isotopic Composition Of Lunar UrKREEP

    NASA Technical Reports Server (NTRS)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-01-01

    Since the long standing paradigm of an anhydrous Moon was challenged there has been a renewed focus on investigating volatiles in a variety of lunar samples. However, the current models for the Moon’s formation have yet to fully account for its thermal evolution in the presence of H2O and other volatiles. When compared to chondritic meteorites and terrestrial rocks, lunar samples have exotic chlorine isotope compositions, which are difficult to explain in light of the abundance and isotopic composition of other volatile species, especially H, and the current estimates for chlorine and H2O in the bulk silicate Moon. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed a comprehensive in situ high precision study of chlorine isotopes, using NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) of lunar apatite from a suite of Apollo samples covering a range of geochemical characteristics and petrologic types.

  7. Hydrogen isotope fractionation during lipid biosynthesis by Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, Sitindra S.; Pagani, Mark

    2013-10-01

    We studied the controls on the fractionation of hydrogen isotopes during lipid biosynthesis by Haloarcula marismortui, a halophilic archaea, in pure culture experiments by varying organic substrate, the hydrogen isotope composition (D/H) of water, temperature, and salinity. Cultures were grown on three substrates: succinate, pyruvate and glycerol with known hydrogen isotope compositions, and in water with different hydrogen isotopic compositions. All culture series grown on a particular substrate show strong correlations between δDarchaeol and δDwater. However, correlations are distinctly different for cultures grown on different substrates. Our results indicate that the metabolic pathway of substrate exerts a fundamental influence on the δD value of lipids, likely by influencing the D/H composition of NADPH (nicotinamide adenine dinucleotide phosphate), the reducing agent that contributes hydrogen to carbon atoms during lipid biosynthesis. Temperature and salinity have smaller, but similar effects on δDlipid, primarily due to the way temperature and salinity influence growth rate, as well as temperature effects on the activity of enzymes.

  8. Fe isotope composition of bulk chondrules from Murchison (CM2): Constraints for parent body alteration, nebula processes and chondrule-matrix complementarity

    NASA Astrophysics Data System (ADS)

    Hezel, Dominik C.; Wilden, Johanna S.; Becker, Daniel; Steinbach, Sonja; Wombacher, Frank; Harak, Markus

    2018-05-01

    Chondrules are a major constituent of primitive meteorites. The formation of chondrules is one of the most elusive problems in cosmochemistry. We use Fe isotope compositions of chondrules and bulk chondrites to constrain the conditions of chondrule formation. Iron isotope compositions of bulk chondrules are so far only known from few studies on CV and some ordinary chondrites. We studied 37 chondrules from the CM chondrite Murchison. This is particularly challenging, as CM chondrites contain the smallest chondrules of all chondrite groups, except for CH chondrites. Bulk chondrules have δ56Fe between -0.62 and +0.24‰ relative to the IRMM-014 standard. Bulk Murchison has as all chondrites a δ56Fe of 0.00‰ within error. The δ56Fe distribution of the Murchison chondrule population is continuous and close to normal. The width of the δ56Fe distribution is narrower than that of the Allende chondrule population. Opaque modal abundances in Murchison chondrules is in about 67% of the chondrules close to 0 vol.%, and in 33% typically up to 6.5 vol.%. Chondrule Al/Mg and Fe/Mg ratios are sub-chondritic, while bulk Murchison has chondritic ratios. We suggest that the variable bulk chondrule Fe isotope compositions were established during evaporation and recondensation prior to accretion in the Murchison parent body. This range in isotope composition was likely reduced during aqueous alteration on the parent body. Murchison has a chondritic Fe isotope composition and a number of chondritic element ratios. Chondrules, however, have variable Fe isotope compositions and chondrules and matrix have complementary Al/Mg and Fe/Mg ratios. In combination, this supports the idea that chondrules and matrix formed from a single reservoir and were then accreted in the parent body. The formation in a single region also explains the compositional distribution of the chondrule population in Murchison.

  9. Isotope Geochemistry for Comparative Planetology of Exoplanets

    NASA Technical Reports Server (NTRS)

    Mandt, K. E.; Atreya, S.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.

    2017-01-01

    Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system.

  10. Stable-isotope fingerprints of biological agents as forensic tools.

    PubMed

    Horita, Juske; Vass, Arpad A

    2003-01-01

    Naturally occurring stable isotopes of light elements in chemical and biological agents may possess unique "stable-isotope fingerprints" depending on their sources and manufacturing processes. To test this hypothesis, two strains of bacteria (Bacillus globigii and Erwinia agglomerans) were grown under controlled laboratory conditions. We observed that cultured bacteria cells faithfully inherited the isotopic composition (hydrogen, carbon, and nitrogen) of media waters and substrates in predictable manners in terms of bacterial metabolism and that even bacterial cells of the same strain, which grew in media water and substrates of different isotopic compositions, have readily distinguishable isotopic signatures. These "stable-isotopic fingerprints" of chemical and biological agents can be used as forensic tools in the event of biochemical terrorist attacks.

  11. Magnesium isotope compositions of Solar System materials determined by double spiking

    NASA Astrophysics Data System (ADS)

    Hin, R.; Lai, Y. J.; Coath, C.; Elliott, T.

    2015-12-01

    As a major element, magnesium is of interest for investigating large scale processes governing the formation and evolution of rocky planetary bodies. Determining the Mg isotope composition of the Earth and other planetary bodies has hence been a topic of interest ever since mass-dependent fractionation of 'non-traditional' stable isotopes has been used to study high-temperature processes. Published results, however, suffer from disagreement on the Mg isotope compositions of the Earth and chondrites [1-5], which is attributed to residual matrix effects. Nonetheless, most recent studied have converged towards a homogeneous (chondritic) Mg isotope composition in the Solar System [2-5]. However, in several of the recent studies there is a hint of a systematic difference of about 0.02-0.06‰ in the 26Mg/24Mg isotope compositions of chondrites and Earth. Such difference, however, is only resolvable by taking standard errors, which assumes robust data for homogenous sample sets. The discrepancies between various studies unfortunately undermine the confidence in such robustness and homogeneity. The issues with matrix effects during isotopic analyses can be overcome by using a double spike approach. Such methodology generally requires three isotope ratios to solve for three unknowns, a requirement that cannot be met for Mg. However, using a newly developed approach, we present Mg isotope compositions obtained by critical mixture double spiking. This new approach should allow greater confidence in the robustness of the data and hence enable improvement of. Preliminary data indicate that chondrites have a resolvable ~0.04‰ lighter 26Mg/24Mg than (ultra)mafic rocks from Earth, Mars and the eucrite parent body, which appear indistinguishable from each other. It seems implausible that this difference is caused by magmatic process such as partial melting or crystallisation. More likely, Mg isotopes are fractionated by a non-magmatic process during the formation of planets, e.g. by vapour-condensate fractionation. [1] Wiechert and Halliday, 2007. EPSL 256, 360-371. [2] Bourdon et al., 2010. GCA 74, 5069-5083. [3] Teng et al., 2010. GCA 74, 4150-4166. [4] Chakrabarti and Jacobsen, 2010. EPSl 293, 349-358. [5] Von Strandmann, 2011. GCA 75, 5247-5268.

  12. Equilibrium and non-equilibrium controls on the abundances of clumped isotopologues of methane during thermogenic formation in laboratory experiments: Implications for the chemistry of pyrolysis and the origins of natural gases

    NASA Astrophysics Data System (ADS)

    Shuai, Yanhua; Douglas, Peter M. J.; Zhang, Shuichang; Stolper, Daniel A.; Ellis, Geoffrey S.; Lawson, Michael; Lewan, Michael D.; Formolo, Michael; Mi, Jingkui; He, Kun; Hu, Guoyi; Eiler, John M.

    2018-02-01

    Multiply isotopically substituted molecules ('clumped' isotopologues) can be used as geothermometers because their proportions at isotopic equilibrium relative to a random distribution of isotopes amongst all isotopologues are functions of temperature. This has allowed measurements of clumped-isotope abundances to be used to constrain formation temperatures of several natural materials. However, kinetic processes during generation, modification, or transport of natural materials can also affect their clumped-isotope compositions. Herein, we show that methane generated experimentally by closed-system hydrous pyrolysis of shale or nonhydrous pyrolysis of coal yields clumped-isotope compositions consistent with an equilibrium distribution of isotopologues under some experimental conditions (temperature-time conditions corresponding to 'low,' 'mature,' and 'over-mature' stages of catagenesis), but can have non-equilibrium (i.e., kinetically controlled) distributions under other experimental conditions ('high' to 'over-mature' stages), particularly for pyrolysis of coal. Non-equilibrium compositions, when present, lead the measured proportions of clumped species to be lower than expected for equilibrium at the experimental temperature, and in some cases to be lower than a random distribution of isotopes (i.e., negative Δ18 values). We propose that the consistency with equilibrium for methane formed by relatively low temperature pyrolysis reflects local reversibility of isotope exchange reactions involving a reactant or transition state species during demethylation of one or more components of kerogen. Non-equilibrium clumped-isotope compositions occur under conditions where 'secondary' cracking of retained oil in shale or wet gas hydrocarbons (C2-5, especially ethane) in coal is prominent. We suggest these non-equilibrium isotopic compositions are the result of the expression of kinetic isotope effects during the irreversible generation of methane from an alkyl precursor. Other interpretations are also explored. These findings provide new insights into the chemistry of thermogenic methane generation, and may provide an explanation of the elevated apparent temperatures recorded by the methane clumped-isotope thermometer in some natural gases. However, it remains unknown if the laboratory experiments capture the processes that occur at the longer time and lower temperatures of natural gas formation.

  13. Evaluating climate model performance in the tropics with retrievals of water isotopic composition from Aura TES

    NASA Astrophysics Data System (ADS)

    Field, Robert; Kim, Daehyun; Kelley, Max; LeGrande, Allegra; Worden, John; Schmidt, Gavin

    2014-05-01

    Observational and theoretical arguments suggest that satellite retrievals of the stable isotope composition of water vapor could be useful for climate model evaluation. The isotopic composition of water vapor is controlled by the same processes that control water vapor amount, but the observed distribution of isotopic composition is distinct from amount itself . This is due to the fractionation that occurs between the abundant H216O isotopes (isotopologues) and the rare and heavy H218O and HDO isotopes during evaporation and condensation. The fractionation physics are much simpler than the underlying moist physics; discrepancies between observed and modeled isotopic fields are more likely due to problems in the latter. Isotopic measurements therefore have the potential for identifying problems that might not be apparent from more conventional measurements. Isotopic tracers have existed in climate models since the 1980s but it is only since the mid 2000s that there have been enough data for meaningful model evaluation in this sense, in the troposphere at least. We have evaluated the NASA GISS ModelE2 general circulation model over the tropics against water isotope (HDO/H2O) retrievals from the Aura Tropospheric Emission Spectrometer (TES), alongside more conventional measurements. A small ensemble of experiments was performed with physics perturbations to the cumulus and planetary boundary layer schemes, done in the context of the normal model development process. We examined the degree to which model-data agreement could be used to constrain a select group of internal processes in the model, namely condensate evaporation, entrainment strength, and moist convective air mass flux. All are difficult to parameterize, but exert strong influence over model performance. We found that the water isotope composition was significantly more sensitive to physics changes than precipitation, temperature or relative humidity through the depth of the tropical troposphere. Among the processes considered, this was most closely, and fairly exclusively, related to mid-tropospheric entrainment strength. This demonstrates that water isotope retrievals have considerable potential alongside more conventional measurements for climate model evaluation and development.

  14. Triple oxygen isotope composition of photosynthetic oxygen

    NASA Astrophysics Data System (ADS)

    van der Meer, Anne; Kaiser, Jan

    2013-04-01

    The measurement of biological production rates is essential for our understanding how marine ecosystems are sustained and how much CO2 is taken up through aquatic photosynthesis. Traditional techniques to measure marine production are laborious and subject to systematic errors. A biogeochemical approach based on triple oxygen isotope measurements in dissolved oxygen (O2) has been developed over the last few years, which allows the derivation of gross productivity integrated over the depth of the mixed layer and the time-scale of O2 gas exchange (Luz and Barkan, 2000). This approach exploits the relative 17O/16O and 18O/16O isotope ratio differences of dissolved O2 compared to atmospheric O2 to work out the rate of biological production. Two parameters are key for this calculation: the isotopic composition of dissolved O2 in equilibrium with air and the isotopic composition of photosynthetic oxygen. Recently, a controversy has emerged in the literature over these parameters (Kaiser, 2011) and one of the goals of this research is to provide additional data to resolve this controversy. In order to obtain more information on the isotopic signature of biological oxygen, laboratory experiments have been conducted to determine the isotopic composition of oxygen produced by different phytoplankton cultures.

  15. Magnesium Isotopes as a Tracer of Crustal Materials in Volcanic Arc Magmas in the Northern Cascade Arc

    NASA Astrophysics Data System (ADS)

    Brewer, Aaron W.; Teng, Fang-Zhen; Mullen, Emily

    2018-03-01

    Fifteen North Cascade Arc basalts and andesites were analyzed for Mg isotopes to investigate the extent and manner of crustal contributions to this magmatic system. The δ26Mg of these samples vary from within the range of ocean island basalts (the lightest being -0.33 ± 0.07‰) to heavier compositions (as heavy as -0.15 ± 0.06‰). The observed range in chemical and isotopic composition is similar to that of other volcanic arcs that have been assessed to date in the circum-pacific subduction zones and in the Caribbean. The heavy Mg isotope compositions are best explained by assimilation and fractional crystallization within the deep continental crust with a possible minor contribution from the addition of subducting slab-derived fluids to the primitive magma. The bulk mixing of sediment into the primitive magma or mantle source and the partial melting of garnet-rich peridotite are unlikely to have produced the observed range of Mg isotope compositions. The results show that Mg isotopes may be a useful tracer of crustal input into a magma, supplementing traditional methods such as radiogenic isotopic and trace element data, particularly in cases in which a high fraction of crustal material has been added.

  16. Coupling Thermal and Chemical Signatures of Crustal Magma Bodies: Energy-Constrained Eruption, Recharge, Assimilation, and Fractional Crystallization (E'RAχFC)

    NASA Astrophysics Data System (ADS)

    Bohrson, W. A.; Spera, F. J.

    2004-12-01

    Energy-Constrained Eruption, Recharge, Assimilation and Fractional Crystallization (E'RAχFC) tracks the evolution of an open-system magmatic system by coupling conservation equations governing energy, mass and species (isotopes and trace elements). By linking the compositional characteristics of a composite magmatic system (host magma, recharge magma, wallrock, eruptive reservoir) to its mass and energy fluxes, predictions can be made about the chemical evolution of systems characterized by distinct compositional and thermal characteristics. An interesting application of E'RAχFC involves documenting the influence distinct thermal regimes have on the chemical evolution of magmatic systems. Heat transfer between a magma-country rock system at epizonal depths can be viewed as a conjugate heat transfer problem in which the average country rock-magma boundary temperature, Tb, is governed by the relative vigor of hydrothermal convection in the country rock vs. magma convection. For cases where hydrothermal circulation is vigorous and magmatic heat is efficiently transported away from the boundary, contact aureole temperatures (~Tb) are low. In cases where magmatic heat can not be efficiently transported away from the boundary and hydrothermal cells are absent or poorly developed, Tb is relatively high. Simultaneous solution of the differential equations governing momentum and energy conservation and continuity for the coupled hydrothermal-magmatic conjugate heat transfer system enables calculation of the characteristic timescale for EC-RAFC evolution and development of hydrothermal deposits as a function of material and medium properties, sizes of systems and relative efficiency of hydrothermal vs. magmatic heat transfer. Characteristic timescales lie in the range 102-106 yr depending on system size, magma properties and permeability among other parameters. In E'RAχFC, Tb is approximated by the user-defined equilibration temperature, Teq, which is the temperature at which all parts of the composite magmatic system achieve thermal equilibrium. Comparison of the results of three EC-AFC simulations at different Teq (1150° C, 1050° C, 1000° C) for a mafic magma intruding middle-upper crust of mafic-intermediate composition illustrate the distinctions that can be imparted by a range of thermal regimes. Model parameters relevant to the following results include: initial Sr concentration, isotope composition and bulk D for host magma are 700 ppm, 0.7035, and 1.5, respectively; those for wallrock are 230 ppm, 0.7100, 0.05. The 1150° C case (i.e., high Tb) yields the least crust-like Sr isotope signatures. The mass of wallrock that reaches thermal equilibrium is relatively small (0.26, normalized to the mass of initial host magma), although the degree of melting is high (97%). In contrast, the 1000° C case (i.e., low Tb) yields the most crust-like Sr isotope signatures. This case is also characterized by the largest mass of wallrock (0.98, normalized to the mass of initial host magma) that achieves thermal equilibrium, but the degree to which this wallrock melts is small (10%). A fundamental issue that derives from these results is the relationship between the chemical evolution of the hydrothermal system and the chemical evolution of associated melt and cumulates. In particular, to what extent can predictions be made from the thermal interactions between magma and wallrock on the chemical signatures of the associated magmatic rocks and hydrothermal deposits?

  17. Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zumberge, J.E.; Macko, S.

    1996-01-01

    Two of the largest gas fields in the world, Hasi R'Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have beenmore » generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.« less

  18. Planetary and meteoritic Mg/Si and δ30 Si variations inherited from solar nebula chemistry

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Poitrasson, Franck; Burkhardt, Christoph; Kobayashi, Hiroshi; Kurosawa, Kosuke

    2015-10-01

    The bulk chemical compositions of planets are uncertain, even for major elements such as Mg and Si. This is due to the fact that the samples available for study all originate from relatively shallow depths. Comparison of the stable isotope compositions of planets and meteorites can help overcome this limitation. Specifically, the non-chondritic Si isotope composition of the Earth's mantle was interpreted to reflect the presence of Si in the core, which can also explain its low density relative to pure Fe-Ni alloy. However, we have found that angrite meteorites display a heavy Si isotope composition similar to the lunar and terrestrial mantles. Because core formation in the angrite parent-body (APB) occurred under oxidizing conditions at relatively low pressure and temperature, significant incorporation of Si in the core is ruled out as an explanation for this heavy Si isotope signature. Instead, we show that equilibrium isotopic fractionation between gaseous SiO and solid forsterite at ∼1370 K in the solar nebula could have produced the observed Si isotope variations. Nebular fractionation of forsterite should be accompanied by correlated variations between the Si isotopic composition and Mg/Si ratio following a slope of ∼1, which is observed in meteorites. Consideration of this nebular process leads to a revised Si concentration in the Earth's core of 3.6 (+ 6.0 / - 3.6) wt% and provides estimates of Mg/Si ratios of bulk planetary bodies.

  19. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    PubMed

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  20. Silurian shale origin for light oil, condensate, and gas in Algeria and the Middle East

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zumberge, J.E.; Macko, S.

    Two of the largest gas fields in the world, Hasi R`Mel, Algeria and North Dome, Qatar, also contain substantial condensate and light oil reserves. Gas to source rock geochemical correlation is difficult due to the paucity of molecular parameters in the former although stable isotope composition is invaluable. However, by correlating source rocks with light oils and condensates associated with gas production using traditional geochemical parameters such as biomarkers and isotopes, a better understanding of the origin of the gas is achieved. Much of the crude oil in the Ghadames/Illizi Basins of Algeria has long been thought to have beenmore » generated from Silurian shales. New light oil discoveries in Saudi Arabia have also been shown to originate in basal euxinic Silurian shales. Key sterane and terpane biomarkers as well as the stable carbon isotopic compositions of the C15+ saturate and aromatic hydrocarbon fractions allow for the typing of Silurian-sourced, thermally mature light oils in Algeria and the Middle East. Even though biomarkers are often absent due to advanced thermal maturity, condensates can be correlated to the light oils using (1) carbon isotopes of the residual heavy hydrocarbon fractions, (2) light hydrocarbon distributions (e.g., C7 composition), and (3) compound specific carbon isotopic composition of the light hydrocarbons. The carbon isotopes of the C2-C4 gas components ran then be compared to the associated condensate and light oil isotopic composition.« less

  1. Interactions between surface waters in King George Island, Antarctica - a stable isotope perspective

    NASA Astrophysics Data System (ADS)

    Perşoiu, Aurel; Bădăluşă, Carmen

    2017-04-01

    In this paper we present a first study of the isotopic composition of surface waters in the southern peninsulas (Barton, Fildes, Weaver and Potter) of King George Island, Antarctica. We have collected > 200 samples of snow and snowmelt, water (lake, river and spring), ice (glacier ice and permafrost) from the four peninsulas in February 2016 and analyzed them for their oxygen and hydrogen stable isotopic composition. Samples from lake water (50+) indicate a clear west-east depletion trend, suggesting a rain-out process as air masses are moving westward (and are progressively depleted in heavy isotopes) from their origin in the Drake Passage. In both Fildes and Barton Peninsulas, permafrost samples have the heaviest isotopic composition, most probably due to preferential incorporation of heavy isotopes in the ice during freezing (and no fractionation during melting). As permafrost melts, the resulting water mixes with isotopically lighter infiltrated snowmelt, and thus the groundwater has a lower isotopic composition. Further, lake and river (the later fed by lakes) water has the lightest isotopic composition, being derived mostly from the melting of light snow and glacier ice. It seems feasible to separate isotopically water in lakes/rivers (largely fed by melting multi-year glaciers and snow) and water from melting of snow/ground ice This preliminary study suggests that it is possible to separate various water sources in the southern peninsulas of King George Island, and this separation could be used to study permafrost degradation, as well as feeding and migration patterns in the bird fauna, with implications for protection purposes. Acknowledgments. The National Institute of Research and Development for Biological Sciences (Bucharest, Romania) and the Korean polar institute financially supported fieldwork in King George Island. We thank the personal at King Sejong (South Korea), Belingshaussen (Russia) and Carlini (Argentina) stations in King George Island for logistic supports.

  2. PALOMA : an isotope analyzer using static mass spectrometry, coupled with cryogenic and chemical trapping, for the MSL mission to Mars

    NASA Astrophysics Data System (ADS)

    Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Goulpeau, G.; Leblanc, F.; Montmessin, F.; Sarda, P.; Agrinier, P.; Fouchet, T.; Waite, H.

    The technique of GCMS analysis has to be completed by static mass spectrometry for precise in-situ measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation and gettering, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. Such an instrument (PALOMA) is presently developed in our laboratories, and it will be coupled with a Pyr-GCMS analyzer (MACE), built by a US consortium of science laboratories and industrials (University of Michigan, Southwest Research Institute, JPL, Ball Aerospace). The MACE/PALOMA experiment will be proposed on the NASA Mars Science Laboratory mission, planned to be launched in 2009. The scientific objectives of PALOMA, coupled with MACE, may be listed as follows : (i) search for isotopic signatures of past life in atmosphere, rock, dust and ice samples, with emphasis on carbon, nitrogen and hydrogen; (ii) accurately measure isotopic composition of atmospheric noble gases, and stable isotopes, in order to better constrain past escape, surface interaction, outgassing history and climate evolution; (iii) precisely measure diurnal/ seasonal variations of isotopic ratios of H2O, CO2, and N2, for improving our understanding of present and past climate, and of the role of water cycle. Main measurement objectives are : (i) C, H, O, N isotopic composition in both organic evolved samples (provided by MACE pyrolysis system) and atmosphere with high accuracy (a few per mil at 1-s level); (ii) noble gas (He, Ne, Ar, Kr, Xe) and stable (C, H, O, N) isotope composition in atmosphere with high accuracy (a few per mil at 1-s level); (iii) molecular and isotopic composition of inorganic evolved samples (salts, hydrates, nitrates, {ldots}), including ices; (iv) diurnal and seasonal monitoring of D/H in water vapor, and water ice.

  3. Spatiotemporal patterns of plant water isotope values from a continental-scale sample network in Europe as a tool to improve hydroclimate proxies

    NASA Astrophysics Data System (ADS)

    Nelson, D. B.; Kahmen, A.

    2016-12-01

    The hydrogen and oxygen isotopic composition of water available for biosynthetic processes in vascular plants plays an important role in shaping the isotopic composition of organic compounds that these organisms produce, including leaf waxes and cellulose in leaves and tree rings. Characterizing changes in large scale spatial patterns of precipitation, soil water, stem water, and leaf water isotope values over time is therefore useful for evaluating how plants reflect changes in the isotopic composition of these source waters in different environments. This information can, in turn, provide improved calibration targets for understanding the environmental signals that plants preserve. The pathway of water through this continuum can include several isotopic fractionations, but the extent to which the isotopic composition of each of these water pools varies under normal field conditions and over space and time has not been systematically and concurrently evaluated at large spatial scales. Two season-long sampling campaigns were conducted at nineteen sites throughout Europe over the 2014 and 2015 growing seasons to track changes in the isotopic composition of plant-relevant waters. Samples of precipitation, soil water, stem water, and leaf water were collected over more than 200 field days and include more than 500 samples from each water pool. Measurements were used to validate continent-wide gridded estimates of leaf water isotope values derived from a combination of mechanistic and statistical modeling conducted with temperature, precipitation, and relative humidity data. Data-model comparison shows good agreement for summer leaf waters, and substantiates the incorporation of modeled leaf waters in evaluating how plants respond to hydroclimate changes at large spatial scales. These results also suggest that modeled leaf water isotope values might be used in future studies in similar ecosystems to improve the coverage density of spatial or temporal data.

  4. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; Merdian, Alexandra; Holmden, Chris; Kleinhanns, Ilka C.; Haßler, Kathrin; Wille, Martin; Reitter, Elmar

    2016-06-01

    The depletion of chromium in Earth's mantle (∼2700 ppm) in comparison to chondrites (∼4400 ppm) indicates significant incorporation of chromium into the core during our planet's metal-silicate differentiation, assuming that there was no significant escape of the moderately volatile element chromium during the accretionary phase of Earth. Stable Cr isotope compositions - expressed as the ‰-difference in 53Cr/52Cr from the terrestrial reference material SRM979 (δ53/52CrSRM979 values) - of planetary silicate reservoirs might thus yield information about the conditions of planetary metal segregation processes when compared to chondrites. The stable Cr isotopic compositions of 7 carbonaceous chondrites, 11 ordinary chondrites, 5 HED achondrites and 2 martian meteorites determined by a double spike MC-ICP-MS method are within uncertainties indistinguishable from each other and from the previously determined δ53/52CrSRM979 value of -0.124 ± 0.101‰ for the igneous silicate Earth. Extensive quality tests support the accuracy of the stable Cr isotope determinations of various meteorites and terrestrial silicates reported here. The uniformity in stable Cr isotope compositions of samples from planetary silicate mantles and undifferentiated meteorites indicates that metal-silicate differentiation of Earth, Mars and the HED parent body did not cause measurable stable Cr isotope fractionation between these two reservoirs. Our results also imply that the accretionary disc, at least in the inner solar system, was homogeneous in its stable Cr isotopic composition and that potential volatility loss of chromium during accretion of the terrestrial planets was not accompanied by measurable stable isotopic fractionation. Small but reproducible variations in δ53/52CrSRM979 values of terrestrial magmatic rocks point to natural stable Cr isotope variations within Earth's silicate reservoirs. Further and more detailed studies are required to investigate whether silicate differentiation processes, such as partial mantle melting and crystal fractionation, can cause stable Cr isotopic fractionation on Earth and other planetary bodies.

  5. Absolute Isotopic Abundance Ratios and the Accuracy of Δ47 Measurements

    NASA Astrophysics Data System (ADS)

    Daeron, M.; Blamart, D.; Peral, M.; Affek, H. P.

    2016-12-01

    Conversion from raw IRMS data to clumped isotope anomalies in CO2 (Δ47) relies on four external parameters: the (13C/12C) ratio of VPDB, the (17O/16O) and (18O/16O) ratios of VSMOW (or VPDB-CO2), and the slope of the triple oxygen isotope line (λ). Here we investigate the influence that these isotopic parameters exert on measured Δ47 values, using real-world data corresponding to 7 months of measurements; simulations based on randomly generated data; precise comparisons between water-equilibrated CO2 samples and between carbonate standards believed to share quasi-identical Δ47 values; reprocessing of two carbonate calibration data sets with different slopes of Δ47 versus T. Using different sets of isotopic parameters generally produces systematic offsets as large as 0.04 ‰ in final Δ47 values. What's more, even using a single set of isotopic parameters can produce intra- and inter-laboratory discrepancies in final Δ47 values, if some of these parameters are inaccurate. Depending on the isotopic compositions of the standards used for conversion to "absolute" values, these errors should correlate strongly with either δ13C or δ18O, or more weakly with both. Based on measurements of samples expected to display identical Δ47 values, such as 25°C water-equilibrated CO2 with different carbon and oxygen isotope compositions, or high-temperature standards ETH-1 and ETH-2, we conclude that the isotopic parameters used so far in most clumped isotope studies produces large, systematic errors controlled by the relative bulk isotopic compositions of samples and standards, which should be one of the key factors responsible for current inter-laboratory discrepancies. By contrast, the isotopic parameters of Brand et al. [2010] appear to yield accurate Δ47 values regardless of bulk isotopic composition. References:Brand, Assonov and Coplen [2010] http://dx.doi.org/10.1351/PAC-REP-09-01-05

  6. Mass dependent fractionation of stable chromium isotopes in mare basalts: Implications for the formation and the differentiation of the Moon

    NASA Astrophysics Data System (ADS)

    Bonnand, Pierre; Parkinson, Ian J.; Anand, Mahesh

    2016-02-01

    We present the first stable chromium isotopic data from mare basalts in order to investigate the similarity between the Moon and the Earth's mantle. A double spike technique coupled with MC-ICP-MS measurements was used to analyse 19 mare basalts, comprising high-Ti, low-Ti and KREEP-rich varieties. Chromium isotope ratios (δ53Cr) for mare basalts are positively correlated with indices of magmatic differentiation such as Mg# and Cr concentration which suggests that Cr isotopes were fractionated during magmatic differentiation. Modelling of the results provides evidence that spinel and pyroxene are the main phases controlling the Cr isotopic composition during fractional crystallisation. The most evolved samples have the lightest isotopic compositions, complemented by cumulates that are isotopically heavy. Two hypotheses are proposed to explain this fractionation: (i) equilibrium fractionation where heavy isotopes are preferentially incorporated into the spinel lattice and (ii) a difference in isotopic composition between Cr2+ and Cr3+ in the melt. However, both processes require magmatic temperatures below 1200 °C for appreciable Cr3+ to be present at the low oxygen fugacities found in the Moon (IW -1 to -2 log units). There is no isotopic difference between the most primitive high-Ti, low-Ti and KREEP basalts, which suggest that the sources of these basalts were homogeneous in terms of stable Cr isotopes. The least differentiated sample in our sample set is the low-Ti basalt 12016, characterised by a Cr isotopic composition of -0.222 ± 0.025‰, which is within error of the current BSE value (-0.124 ± 0.101‰). The similarity between the mantles of the Moon and Earth is consistent with a terrestrial origin for a major fraction of the lunar Cr. This similarity also suggests that Cr isotopes were not fractionated by core formation on the Moon.

  7. Using semi-continuous, in-situ measurements of nitrous oxide isotopic composition at a suburban site to track emission processes

    NASA Astrophysics Data System (ADS)

    Harris, Eliza; Henne, Stephan; Christoph, Hüglin; Christoph, Zellweger; Béla, Tuzson; Erkan, Ibraim; Lukas, Emmenegger; Joachim, Mohn

    2017-04-01

    Nitrous oxide (N2O) is a potent greenhouse gas and the strongest ozone-destroying substance emitted this century. The atmospheric N2O mole fraction has been increasing at a rate of 0.2-0.3% per year over the past decades due to anthropogenic emissions; in addition, recent results suggest that the rate of increase is rising - therefore effective mitigation of N2O emissions is a critical point for environmental policy. However, N2O sources are poorly defined and disperse, complicating the development of targeted mitigation strategies. Online isotopic measurements using preconcentration and laser spectroscopy [1,2,3] have great potential to unravel spatial and temporal variations in sources, sinks and chemistry of trace gases such as N2O. Semi-continuous, real-time measurements of N2O isotopic composition (δ18O, site preference [SP = 14N15N16O - 15N14N16O] and δ15Nbulk) were performed at the suburban site of Dübendorf, Switzerland, for 19 months between July 2014 and February 2016. The data precision reached 0.1‰ in the final months, thus the results could clearly identify nocturnal build-up of N2O, with a corresponding decrease in δ18O, SP and δ15Nbulk due to isotopically depleted anthropogenic sources. Daily mean source isotopic composition was calculated by considering the measured and the background mole fraction and isotopic composition. Delta values of the mean emission source were highest in winter, with a seasonal cycle of 12, 8 and 5‰ for δ18O, SP and δ15Nbulk respectively. The chemical and meteorological parameters controlling source isotopic composition were considered using data from the Swiss National Air Pollution Monitoring Network (NABEL) as well as a transport regime cluster analysis. A clear spatial distribution for source isotopic composition was observed for δ18O, as well as a significant relationship with the level of urban pollution, indicating δ18O may be a strong indicator of combustion/industrial vs. agricultural N2O. In contrast, δ15Nbulk and particularly SP appear to vary too strongly in response to other factors affecting emission processes to provide a useful distinction between source categories on a regional scale - these isotopocules may however be useful to distinguish emission pathways on a local scale. For comparison, FLEXPART-COSMO transport simulations [4] were combined with emissions from the EDGAR inventory and estimates of source isotopic composition from literature, to simulate N2O isotopic composition at the sampling site. The model was able to capture variability in N2O mole fraction adequately (R2 = 0.34; p <<0.01). However, the measured variability in source isotopic composition was 1-2 orders of magnitude larger than simulated, illustrating that our knowledge of isotopic source signatures - in particular technical N2O sources - is still too limited to successfully model variations in ambient N2O isotopic composition. [1] Mohn et al. (2012) Atmospheric Measurement Techniques, doi:10.5194/amt-5-1601-2012 [2] Harris et al. (2014) Analytical Chemistry, doi: 10.1021/ac403606u. [3] Röckmann et al. (2016) Atmospheric Chemistry and Physics, doi:10.5194/acp-16-10469-2016. [4] Henne et al. (2016) Atmospheric Chemistry and Physics, doi:10.5194/acp-16-3683-2016.

  8. Open system models of isotopic evolution in Earth's silicate reservoirs: Implications for crustal growth and mantle heterogeneity

    NASA Astrophysics Data System (ADS)

    Kumari, Seema; Paul, Debajyoti; Stracke, Andreas

    2016-12-01

    An open system evolutionary model of the Earth, comprising continental crust (CC), upper and lower mantle (UM, LM), and an additional isolated reservoir (IR) has been developed to study the isotopic evolution of the silicate Earth. The model is solved numerically at 1 Myr time steps over 4.55 Gyr of Earth history to reproduce both the present-day concentrations and isotope ratios of key radioactive decay systems (Rb-Sr, Sm-Nd, and U-Th-Pb) in these terrestrial reservoirs. Various crustal growth scenarios - continuous versus episodic and early versus late crustal growth - and their effect on the evolution of Sr-Nd-Pb isotope systematics in the silicate reservoirs have been evaluated. Modeling results where the present-day UM is ∼60% of the total mantle mass and a lower mantle that is non-primitive reproduce the estimated geochemical composition and isotope ratios in Earth's silicate reservoirs. The isotopic evolution of the silicate Earth is strongly affected by the mode of crustal growth; only an exponential crustal growth pattern with crustal growth since the early Archean satisfactorily explains the chemical and isotopic evolution of the crust-mantle system and accounts for the so-called Pb paradoxes. Assuming that the OIB source is located in the deeper mantle, our model could, however, not reproduce its target ɛNd of +4.6 for the UM, which has been estimated from the average isotope ratios of 32 individual ocean island localities. Hence, either mantle plumes sample the LM in a non-representative way, or the simplified model set-up does not capture the full complexity of Earth's lower mantle (Nd isotope) evolution. Compared to the results obtained for a 4.55 Ga Earth, a model assuming a protracted U-Pb evolution of silicate Earth by ca. 100 Myr reproduces a slightly better fit for the Pb isotope ratios in Earth's silicate reservoirs. One notable feature of successful models is the early depletion of incompatible elements (as well as rapid decrease in Th/U) in the UM within the initial 500 Myr, as a result of early formation of CC, which supports other evidence in favor of the presence of Hadean continental crust. Therefore, a chondritic Th/U ratio (4 ± 0.2) in the UM until 2 Gyr appears rather unlikely. We find that the κ conundrum - the observation that measured Th/U ratios and those deduced from 208Pb-206Pb isotope systematics differ - is a natural outcome of an open system evolution in which preferential recycling of U for the past 2 Gyr has played a dominant role. Overall, our simulations strongly favor exponential crustal growth, starting in the early Hadean, the transient preservation of compositionally distinct mantle reservoirs over billion year time periods, and a generally less incompatible element depleted, but non-primitive composition of the lower mantle.

  9. Osmium uptake, distribution, and 187Os/188Os and 187Re/188Os compositions in Phaeophyceae macroalgae, Fucus vesiculosus: Implications for determining the 187Os/188Os composition of seawater

    NASA Astrophysics Data System (ADS)

    Racionero-Gómez, B.; Sproson, A. D.; Selby, D.; Gannoun, A.; Gröcke, D. R.; Greenwell, H. C.; Burton, K. W.

    2017-02-01

    The osmium isotopic composition (187Os/188Os) of seawater reflects the balance of input from mantle-, continental- and anthropogenic-derived sources. This study utilizes the Phaeophyceae, Fucus vesiculosus, to analyse its Os abundance and uptake, as well as to assess if macroalgae records the Os isotope composition of the seawater in which it lives. The data demonstrates that Os is not located in one specific biological structure within macroalgae, but is found throughout the organism. Osmium uptake was measured by culturing F. vesiculosus non-fertile tips with different concentrations of Os with a known 187Os/188Os composition (∼0.16), which is significantly different from the background isotopic composition of local seawater (∼0.94). The Os abundance of cultured non-fertile tips show a positive correlation to the concentration of the Os doped seawater. Moreover, the 187Os/188Os composition of the seaweed equalled that of the culture medium, strongly confirming the possible use of macroalgae as a biological proxy for the Os isotopic composition of the seawater.

  10. Optimizing isotope substitution in graphene for thermal conductivity minimization by genetic algorithm driven molecular simulations

    NASA Astrophysics Data System (ADS)

    Davies, Michael; Ganapathysubramanian, Baskar; Balasubramanian, Ganesh

    2017-03-01

    We present results from a computational framework integrating genetic algorithm and molecular dynamics simulations to systematically design isotope engineered graphene structures for reduced thermal conductivity. In addition to the effect of mass disorder, our results reveal the importance of atomic distribution on thermal conductivity for the same isotopic concentration. Distinct groups of isotope-substituted graphene sheets are identified based on the atomic composition and distribution. Our results show that in structures with equiatomic compositions, the enhanced scattering by lattice vibrations results in lower thermal conductivities due to the absence of isotopic clusters.

  11. Revising Estimates of the Methane Production Pathway in Peatland Porewater Using Intramolecular Isotopic Analyses of Acetate

    NASA Astrophysics Data System (ADS)

    Thomas, B.; Arthur, M. A.; Freeman, K. H.

    2007-12-01

    Stable isotopic measurements of methane and carbon dioxide are routinely applied to environmental samples to assess the relative importance of methane production by either aceticlastic or hydrogenotrophic methanogenesis. Such estimates rely upon assumptions about isotopic fractionation during methane production and oxidation. Rigorous isotope-based pathway estimates require knowledge of the carbon isotopic composition of both carbon dioxide and acetate. In practice, technical barriers have limited measurements of the isotopic composition of whole acetate in natural samples. Yet, the estimate of whole acetate isotopic values, even when available, may not represent accurately the composition of the methyl carbon, which is, in fact, the precursor to methane. It is exceedingly rare to find carbon isotopic measurements of acetate-methyl in the literature, and, to our knowledge, the d13C of the acetate-methyl precursor to methane has never before been reported from peatland porewater samples. Extremely 13C-depleted methane, -70 permil VPDB, and 13C-enriched carbon dioxide from acidic northern peat bogs are typically interpreted as signatures of hydrogenotrophic methanogenesis. The hypothesized dominance of methane production from hydrogen in acidic bogs contrasts with the vast majority of freshwater wetlands in which aceticlastic methanogenesis dominates. Using a new technique for the online analysis of the intramolecular carbon isotopic composition of acetate in natural samples, we find the acetate-methyl in peat porewaters can be significantly depleted relative to bulk organic matter. In porewater profiles from both winter and summer, acetate is as much as 15 permil depleted relative to bulk carbon. We hypothesize that acetate- methyl isotopic depletion results from conditions that favor autotrophic acetogenesis and subsequent acetate consumption by aceticlastic methanogens. Porewater depth profiles during winter and summer illustrate depth- dependent increases in the fraction of methane derived from carbon dioxide, with deeper peat dominated by hydrogenotrophic methanogenesis, but shallow peat dominated by aceticlastic methanogens. Significant aceticlastic methane production from autotrophically produced acetate challenges the ability of hydrogen isotopic measurements of methane to represent the pathway of methanogenesis. Supplementing our field observations, intramolecular acetate measurements of incubation experiments confirm that an aceticlastic methanogen can facilitate significant acetate-carboxyl exchange with DIC. This novel technique confirms two caveats associated with whole acetate carbon isotopic data: 1, the carboxyl carbon isotopic composition may not accurately reflect the composition of the parent molecule, and 2, the acetate methyl may be derived from inorganic carbon or the fractionation effect of fermentation in acidic porewaters may be significant.

  12. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here wemore » present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.« less

  13. Archean Pb Isotope Evolution: Implications for the Early Earth.

    NASA Astrophysics Data System (ADS)

    Vervoort, J. D.; Thorpe, R.; Albarede, F.; Blichert-Toft, J.

    2008-12-01

    The U-Pb isotope system provides us with a powerful tool for understanding the chemical evolution of the Earth. Pb isotopes in Archean rocks, however, have not been widely utilized because U mobility makes initial Pb isotope ratios from old silicate rocks difficult, if not impossible, to determine. Galenas in syngenetic volcanogenic massive sulfide (VMS) deposits, however, provide snapshots of initial Pb ratios because their Pb isotopic composition is time invariant at their formation (U/Pb=0). The Pb isotopic record from galenas from rocks of all age have been utilized for over 70 years to answer a wide range of scientific problems beginning with Al Nier's pioneering work analyzing Pb isotopes in the 1930's but are no longer widely used by the isotopic community because they have been produced by older TIMS techniques. We have begun a re-examination of Archean Pb by an extensive analysis of over 100 galena samples from Archean VMS deposits throughout the Superior and Slave Provinces in Canada as well as from other VMS deposits in Finland, South Africa and Western Australia. The goal of this work is to provide modern, high precision measurements and update an old, but venerable, Pb isotopic data set. We feel these data provide important constraints on not only the Pb isotopic evolution of the Earth, but planetary differentiation and recycling processes operating in the first 2 b.y. of Earth's history. Our analytical techniques include dissolving the Pb sulfide minerals, purifying them with ion chromatography, and analyzing them using MC-ICPMS at both Washington State University (Neptune) and Ecole Normale Superieure in Lyon, France (Nu). All Pb solutions are doped with Tl in order to correct for mass fractionation. In this abstract we report preliminary galena Pb isotope data from 6 VMS deposits in the Abitibi greenstone belt: Chibougamu, Matagami, Noranda, Normetal, Timmins, and Val d"Or. These deposits are all approximately 2.7 Ga in age but in detail vary from 2.728 Ga (Normetal) to 2.70 Ga (Noranda). The Pb isotopic compositions from these galenas, when normalized to a common age of 2.7 Ga, define a highly linear array in 207Pb/204Pb vs. 206Pb/204Pb. This array is nearly coincident with the 2.7 Ga geochron with a slope that corresponds to an age of ~4.4 Ga and with an extraordinary large range of 207Pb/204Pb, about the same magnitude as modern MORB. These data have important implications for the evolution of the Archean mantle. First, the slope of the Abitibi Pb-Pb array and its coincidence with the 2.7 Ga geochron suggests widespread U-Pb differentiation within the first hundred million years of Earth's history. This may have been due to either core formation or silicate/melt differentiation due to widespread melting of the mantle (e.g., formation of a magma ocean). Second, variations in μ in the Abitibi mantle and the subsequent Pb isotopic heterogeneities, whatever their cause, have not been significantly changed from 4.4 until 2.7 Ga. This implies that changes in μ in the Abitibi mantle source between 4.4 and 2.7 Ga, such as would be caused by crust extraction or recycling of older crust into this region of the mantle, were insufficient to destroy the original μ variations created at 4.4 Ga. Therefore, it appears that this portion of the mantle had essentially remained isolated and undisturbed from the early Hadean until the late Archean.

  14. Oxygen-isotope, X-ray-diffraction and scanning-electron-microscope examinations of authigenic-layer-silicate minerals from Mississippian and Pennsylvanian sandstones in the Michigan Basin

    USGS Publications Warehouse

    Zacharias, K.F.; Sibley, D.F.; Westjohn, D.B.; Weaver, T. L.

    1993-01-01

    Oxygen-isotope compositions of authigenic-layer silicates (<2-micrometer fraction) extracted from Mississippian and Pennsylvanian sandstones in the Lower Peninsula of Michigan were determined. Petrographic and scanning-electron-microscope examinations, and X-ray diffractograms show that chlorite and kaolinite are the most common authigenic-layer silicates in Mississippian sandstones. The range of oxygen-isotope compositions of chlorite and kaolinite are +10.3 to +11.9 and +12.9 to +19.3 pars per thousand (per mil) (relative to Standard Mean Ocean Water), respectively. Kaolinite is the only authigenic-isotopic compositions of kaolinite range from +16.8 to +19.0 per mil.

  15. Development of particle induced gamma-ray emission methods for nondestructive determination of isotopic composition of boron and its total concentration in natural and enriched samples.

    PubMed

    Chhillar, Sumit; Acharya, Raghunath; Sodaye, Suparna; Pujari, Pradeep K

    2014-11-18

    We report simple particle induced gamma-ray emission (PIGE) methods using a 4 MeV proton beam for simultaneous and nondestructive determination of the isotopic composition of boron ((10)B/(11)B atom ratio) and total boron concentrations in various solid samples with natural isotopic composition and enriched with (10)B. It involves measurement of prompt gamma-rays at 429, 718, and 2125 keV from (10)B(p,αγ)(7)Be, (10)B(p, p'γ)(10)B, and (11)B(p, p'γ)(11)B reactions, respectively. The isotopic composition of boron in natural and enriched samples was determined by comparing peak area ratios corresponding to (10)B and (11)B of samples to natural boric acid standard. An in situ current normalized PIGE method, using F or Al, was standardized for total B concentration determination. The methods were validated by analyzing stoichiometric boron compounds and applied to samples such as boron carbide, boric acid, carborane, and borosilicate glass. Isotopic compositions of boron in the range of 0.247-2.0 corresponding to (10)B in the range of 19.8-67.0 atom % and total B concentrations in the range of 5-78 wt % were determined. It has been demonstrated that PIGE offers a simple and alternate method for total boron as well as isotopic composition determination in boron based solid samples, including neutron absorbers that are important in nuclear technology.

  16. Stalagmite geochemistry and the timing of the last interglacial-glacial transition in Central Europe (NE Hungary)

    NASA Astrophysics Data System (ADS)

    Siklosy, Z.; Demeny, A.; Pilet, S.; Leel-Ossy, Sz.; Lin, K.; Shen, C.-C.

    2009-04-01

    Speleothems can provide accurate chronologies for reconstructions of climate change by combination of U/Th dating and climate-related geochemical compositions. Geochemical studies of speleothems from Central Europe are mostly based on stable C and O isotope analyses, thus, complex geochemical studies combining isotope and trace element measurements are needed for more reliable climate models for this transitional area between oceanic and continental regions. We present stable H-C-O isotope and trace element records obtained on speleothems covering the Last Interglacial (MIS 5e) and the transition to MIS 5d. A stalagmite from Baradla Cave grew from 127.5 to 110 ka. Accelerated growth rates have been detected by U/Th age data in the 127 to 126 ka and 119 to 117 ka parts. Trace element compositions and 230Th/232Th ratios suggest changes in the hydrological regime, whereby early calcite precipitates formed in fissures during the dry and cold glacial period were dissolved by the starting flux of infiltrating meteoric water (producing elevated dissolved ion concentration but low detrital Th component), then the increasing amount of dripwater during the interglacial period resulted in trace element dilution. Temperature and precipitation amount variations are also reflected by the stable isotope compositions. Oxygen isotope composition shows a continuous increase from 127.5 ka until about 118 ka most probably related to temperature rise, whereas C isotope values are shifted in negative direction suggesting increasing humidity in accordance with trace element contents. The presumably warmest period at ca. 118 ka is associated with rather arid climate as indicated by peak d18O values coinciding with the highest dD values of fluid inclusion water. This is followed by a pronounced negative shift in both O and H isotope values, similarly to recent Alpine studies (Meyer et al., 2008), most probably related to cooling. Hydrogen isotope compositions of fluid inclusion water evaluated together with calculated oxygen isotope compositions of water indicate warming and increasing significance of summer precipitation at the latest period of the last interglacial, then increasing importance of winter precipitation and/or changes in oceanic source composition during the cooling phase. The good agreement with other (Alpine and marine) records indicate a synchronous climate change. However, after a negative shift in the wet/warm phase (increasing soil activity), C isotope values start to increase already at about 119 ky BP, warning to the use of the two isotope systems as event correlation tools. In conclusion, our combined isotope and trace element study indicate a complex pattern of temperature and humidity variations during and right after the Last Interglacial. Acknowledgements — This study was financially supported by the Hungarian Scientific Research Fund (OTKA T 049713). Measurements of U-Th isotopic compositions and and 230Th dates were supported by the National Science Council grants (94-2116-M002-012, 97-2752-M002-004-PAE & -005-PAE to C.C.S.). [Meyer, M.; Spötl, C.; Mangini, A. (2008): The demise of the Last Interglacial recorded in isotopically dated speleothems from the Alps. Quaternary Science Reviews, 27, 476-496.

  17. Carbon isotope geochemistry and geobiology

    NASA Technical Reports Server (NTRS)

    Desmarais, D.

    1985-01-01

    Carbon isotope fractionation values were used to understand the history of the biosphere. For example, plankton analyses confirmed that marine extinctions at the end of the Cretaceous period were indeed severe (see Hsu's article in Sundquist and Broeker, 1984). Variations in the isotopic compositions of carbonates and evaporitic sulfates during the Paleozoic reflect the relative abundances of euxinic (anoxic) marine environments and organic deposits from terrestrial flora. The carbon isotopic composition of Precambrian sediments suggest that the enzyme ribulose bisphosphate carboxylase has existed for perhaps 3.5 billion years.

  18. Calcium and Titanium Isotope Fractionation in CAIS: Tracers of Condensation and Inheritance in the Early Solar Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Jordan, M. K.; Tappa, M. J.; Kohl, I. E.; Young, E. D.

    2016-01-01

    The chemical and isotopic compositions of calcium-aluminum-rich inclusions (CAIs) can be used to understand the conditions present in the protoplantary disk where they formed. The isotopic compositions of these early-formed nebular materials are largely controlled by chemical volatility. The isotopic effects of evaporation/sublimation, which are well explained by both theory and experimental work, lead to enrichments of the heavy isotopes that are often exhibited by the moderately refractory elements Mg and Si. Less well understood are the isotopic effects of condensation, which limits our ability to determine whether a CAI is a primary condensate and/or retains any evidence of its primordial formation history.

  19. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA

    USGS Publications Warehouse

    Landwehr, Jurate M.; Coplen, Tyler B.; Stewart, David W.

    2013-01-01

    To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at-site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap’s surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  20. On the origin and composition of Theia: Constraints from new models of the Giant Impact

    NASA Astrophysics Data System (ADS)

    Meier, M. M. M.; Reufer, A.; Wieler, R.

    2014-11-01

    Knowing the isotopic composition of Theia, the proto-planet which collided with the Earth in the Giant Impact that formed the Moon, could provide interesting insights on the state of homogenization of the inner Solar System at the late stages of terrestrial planet formation. We use the known isotopic and modeled chemical compositions of the bulk silicate mantles of Earth and Moon and combine them with different Giant Impact models, to calculate the possible ranges of isotopic composition of Theia in O, Si, Ti, Cr, Zr and W in each model. We compare these ranges to the isotopic composition of carbonaceous chondrites, Mars, and other Solar System materials. In the absence of post-impact isotopic re-equilibration, the recently proposed high angular momentum models of the Giant Impact ("impact-fission", Cúk, M., Stewart, S.T. [2012]. Science 338, 1047; and "merger", Canup, R.M. [2012]. Science 338, 1052) allow - by a narrow margin - for a Theia similar to CI-chondrites, and Mars. The "hit-and-run" model (Reufer, A., Meier, M.M.M., Benz, W., Wieler, R. [2012]. Icarus 221, 296-299) allows for a Theia similar to enstatite-chondrites and other Earth-like materials. If the Earth and Moon inherited their different mantle FeO contents from the bulk mantles of the proto-Earth and Theia, the high angular momentum models cannot explain the observed difference. However, both the hit-and-run as well as the classical or "canonical" Giant Impact model naturally explain this difference as the consequence of a simple mixture of two mantles with different FeO. Therefore, the simplest way to reconcile the isotopic similarity, and FeO dissimilarity, of Earth and Moon is a Theia with an Earth-like isotopic composition and a higher (∼20%) mantle FeO content.

  1. Multiple enrichment of the Carpathian-Pannonian mantle: Pb-Sr-Nd isotope and trace element constraints

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Jeffrey M.; Wilson, Marjorie; Downes, Hilary

    1997-07-01

    Pb isotope compositions of acid-leached clinopyroxene and amphibole mineral separates from spinel peridotite mantle xenoliths entrained in Tertiary-Quaternary alkali basalts from the Carpathian-Pannonian Region of eastern Europe provide important constraints on the processes of metasomatic enrichment of the mantle lithosphere in an extensional tectonic setting associated with recent subduction. Principal component analysis of Pb-Sr-Nd isotope and rare earth element compositions of the pyroxenes is used to identify the geochemical characteristics of the original lithospheric mantle protolith and a spectrum of infiltrating metasomatic agents including subduction-related aqueous fluids and silicate melts derived from a subduction-modified mantle wedge which contains a St. Helena-type (HIMU) plume component. The mantle protolith is highly depleted relative to mid-ocean ridge basalt-source mantle with Pb-Nd-Sr isotope compositions consistent with an ancient depletion event. Silicate melt infiltration into the protolith accounts for the primary variance in the Pb-Sr-Nd isotope compositions of the xenoliths and has locally generated metasomatic amphibole. Infiltration of aqueous fluids has introduced radiogenic Pb and Sr without significantly perturbing the rare earth element signature of the protolith. The Pb isotope compositions of the fluid-modified xenoliths suggest that they reacted with aqueous fluids released from a subduction zone which had equilibrated with sediment derived from an ancient basement terrain. We propose a model for mantle lithosphere evolution consistent with available textural and geochemical data for the xenolith population. The Pb-Sr-Nd isotope compositions of both alkaline mafic magmas and rare, subduction-related, calc-alkaline basaltic andesites from the region provide important constraints for the nature of the asthenospheric mantle wedge and confirm the presence of a HIMU plume component. These silicate melts contribute to the metasomatism of the mantle lithosphere rather than being derived therefrom.

  2. Stable Isotopes as Indicators of Groundwater Recharge Mechanisms in Arid and Semi-arid Australia

    NASA Astrophysics Data System (ADS)

    Harrington, G. A.; Herczeg, A. L.

    2001-05-01

    The isotopic compositions of soil water and groundwaters in arid and semi-arid zones are always different from the mean composition of rainfall. Although evaporative processes always remove the lighter isotopes (1H and 16O) to the vapour phase, arid zone groundwaters are invariably depleted in the heavy isotopes (2H and 18O) relative to mean present day rainfall. We compare two sites, one in semi-arid South Australia and the other in arid Central Australia that have a similar mean annual rainfall (250 to 300 mm/a), very high potential evapotranspiration (2500 and 3500 mm/a respectively) but very different rainfall patterns (winter dominated versus summer monsoonal). We aim to evaluate whether inferences from groundwater \\delta2H and \\delta18O reveal information about palaeorecharge, or recharge mechanisms or a combination of both. Recharge to the unconfined limestone aquifer in the Mallee area of South Australia occurs annually via widespread (diffuse) infiltration of winter dominant rainfall. This process is reflected in soil and groundwater isotopic compositions that plot relatively close to both the Local Meteoric Water Line and the volume-weighted mean composition of winter rainfall, and have a deuterium excess (\\delta2H-8.\\delta18O) of between +2 and +8 for the freshest samples. Groundwater recharge to the arid Ti-Tree Basin occurs predominantly by inputs of partially-evaporated surface water from ephemeral rivers and flood-plains following rare, high-intensity storms that are derived from monsoonal activity to the north of Australia. These extreme events result in groundwater and soil water stable isotope compositions being significantly depleted in the heavy isotopes relative to the mean composition of rainfall and a deuterium excess of between minus 8 and +3 in the freshest groundwaters.

  3. Large-scale drivers of Caucasus climate variability in meteorological records and Mt El'brus ice cores

    NASA Astrophysics Data System (ADS)

    Kozachek, Anna; Mikhalenko, Vladimir; Masson-Delmotte, Valérie; Ekaykin, Alexey; Ginot, Patrick; Kutuzov, Stanislav; Legrand, Michel; Lipenkov, Vladimir; Preunkert, Susanne

    2017-05-01

    A 181.8 m ice core was recovered from a borehole drilled into bedrock on the western plateau of Mt El'brus (43°20'53.9'' N, 42°25'36.0'' E; 5115 m a.s.l.) in the Caucasus, Russia, in 2009 (Mikhalenko et al., 2015). Here, we report on the results of the water stable isotope composition from this ice core with additional data from the shallow cores. The distinct seasonal cycle of the isotopic composition allows dating by annual layer counting. Dating has been performed for the upper 126 m of the deep core combined with 20 m from the shallow cores. The whole record covers 100 years, from 2013 back to 1914. Due to the high accumulation rate (1380 mm w.e. year-1) and limited melting, we obtained isotopic composition and accumulation rate records with seasonal resolution. These values were compared with available meteorological data from 13 weather stations in the region and also with atmosphere circulation indices, back-trajectory calculations, and Global Network of Isotopes in Precipitation (GNIP) data in order to decipher the drivers of accumulation and ice core isotopic composition in the Caucasus region. In the warm season (May-October) the isotopic composition depends on local temperatures, but the correlation is not persistent over time, while in the cold season (November-April), atmospheric circulation is the predominant driver of the ice core's isotopic composition. The snow accumulation rate correlates well with the precipitation rate in the region all year round, which made it possible to reconstruct and expand the precipitation record at the Caucasus highlands from 1914 until 1966, when reliable meteorological observations of precipitation at high elevation began.

  4. Plutonium isotopic signatures in soils and their variation (2011-2014) in sediment transiting a coastal river in the Fukushima Prefecture, Japan.

    PubMed

    Jaegler, Hugo; Pointurier, Fabien; Onda, Yuichi; Hubert, Amélie; Laceby, J Patrick; Cirella, Maëva; Evrard, Olivier

    2018-05-04

    The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in a significant release of radionuclides that were deposited on soils in Northeastern Japan. Plutonium was detected at trace levels in soils and sediments collected around the FDNPP. However, little is known regarding the spatial-temporal variation of plutonium in sediment transiting rivers in the region. In this study, plutonium isotopic compositions were first measured in soils (n = 5) in order to investigate the initial plutonium deposition. Then, plutonium isotopic compositions were measured on flood sediment deposits (n = 12) collected after major typhoon events in 2011, 2013 and 2014. After a thorough radiochemical purification, isotopic ratios ( 240 Pu/ 239 Pu, 241 Pu/ 239 Pu and 242 Pu/ 239 Pu) were measured with a Multi-Collector Inductively Coupled Mass Spectrometer (MC ICP-MS), providing discrimination between plutonium derived from global fallout, from atmospheric nuclear weapon tests, and plutonium derived from the FDNPP accident. Results demonstrate that soils with the most Fukushima-derived plutonium were in the main radiocaesium plume and that there was a variable mixture of plutonium sources in the flood sediment samples. Plutonium concentrations and isotopic ratios generally decreased between 2011 and 2014, reflecting the progressive erosion and transport of contaminated sediment in this coastal river during flood events. Exceptions to this general trend were attributed to the occurrence of decontamination works or the remobilisation of contaminated material during typhoons. The different plutonium concentrations and isotopic ratios obtained on three aliquots of a single sample suggest that the Fukushima-derived plutonium was likely borne by discrete plutonium-containing particles. In the future, these particles should be isolated and further characterized in order to better understand the fate of this long-lived radionuclide in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. [Effect of microorganisms and seasonal factors on the isotope composition of organic carbon from Black Sea suspensions].

    PubMed

    Ivanov, M V; Lein, A Iu; Miller, Iu M; Iusunov, S K; Pimenov, N V; Wehrli, B; Rusanov, I I; Zehnder, A

    2000-01-01

    The isotopic composition of particulate organic carbon (POC) from the Black Sea deep-water zone was studied during a Russian-Swiss expedition in May 1998. POC from the upper part of the hydrogen sulfide zone (the C-layer) was found to be considerably enriched with the 12C isotope, as compared to the POC of the oxycline and anaerobic zone. In the C-layer waters, the concurrent presence of dissolved oxygen and hydrogen sulfide and an increased rate of dark CO2 fixation were recorded, suggesting that the change in the POC isotopic composition occurs at the expense of newly formed isotopically light organic matter of the biomass of autotrophic bacteria involved in the sulfur cycle. In the anaerobic waters below the C-layer, the organic matter of the biomass of autotrophs is consumed by the community of heterotrophic microorganisms; this results in weighting of the POC isotopic composition. Analysis of the data obtained and data available in the literature allows an inference to be made about the considerable seasonable variability of the POC delta 13C value, which depends on the ratio of terrigenic and planktonogenic components in the particulate organic matter.

  6. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: Insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments

    NASA Astrophysics Data System (ADS)

    Cumming, Vivien M.; Selby, David; Lillis, Paul G.; Lewan, Michael D.

    2014-08-01

    Rhenium-osmium (Re-Os) geochronology of marine petroleum systems has allowed the determination of the depositional age of source rocks as well as the timing of petroleum generation. In addition, Os isotopes have been applied as a fingerprinting tool to correlate oil to its source unit. To date, only classic marine petroleum systems have been studied. Here we present Re-Os geochronology and Os isotope fingerprinting of different petroleum phases (oils, tar sands and gilsonite) derived from the lacustrine Green River petroleum system in the Uinta Basin, USA. In addition we use an experimental approach, hydrous pyrolysis experiments, to compare to the Re-Os data of naturally generated petroleum in order to further understand the mechanisms of Re and Os transfer to petroleum. The Re-Os geochronology of petroleum from the lacustrine Green River petroleum system (19 ± 14 Ma - all petroleum phases) broadly agrees with previous petroleum generation basin models (∼25 Ma) suggesting that Re-Os geochronology of variable petroleum phases derived from lacustrine Type I kerogen has similar systematics to Type II kerogen (e.g., Selby and Creaser, 2005a,b; Finlay et al., 2010). However, the large uncertainties (over 100% in some cases) produced for the petroleum Re-Os geochronology are a result of multiple generation events occurring through a ∼3000-m thick source unit that creates a mixture of initial Os isotope compositions in the produced petroleum phases. The 187Os/188Os values for the petroleum and source rocks at the time of oil generation vary from 1.4 to 1.9, with the mode at ∼1.6. Oil-to-source correlation using Os isotopes is consistent with previous correlation studies in the Green River petroleum system, and illustrates the potential utility of Os isotopes to characterize the spatial variations within a petroleum system. Hydrous pyrolysis experiments on the Green River Formation source rocks show that Re and Os transfer are mimicking the natural system. This transfer from source to bitumen to oil does not affect source rock Re-Os systematics or Os isotopic compositions. This confirms that Os isotope compositions are transferred intact from source to petroleum during petroleum generation and can be used as a powerful correlation tool. These experiments further confirm that Re-Os systematics in source rocks are not adversely affected by petroleum maturation. Overall this study illustrates that the Re-Os petroleum geochronometer and Os isotope fingerprinting tools can be used on a wide range of petroleum types sourced from variable kerogen types.

  7. Re-Os geochronology and Os isotope fingerprinting of petroleum sourced from a Type I lacustrine kerogen: insights from the natural Green River petroleum system in the Uinta Basin and hydrous pyrolysis experiments

    USGS Publications Warehouse

    Cumming, Vivien M.; Selby, David; Lillis, Paul G.; Lewan, Michael D.

    2014-01-01

    Rhenium–osmium (Re–Os) geochronology of marine petroleum systems has allowed the determination of the depositional age of source rocks as well as the timing of petroleum generation. In addition, Os isotopes have been applied as a fingerprinting tool to correlate oil to its source unit. To date, only classic marine petroleum systems have been studied. Here we present Re–Os geochronology and Os isotope fingerprinting of different petroleum phases (oils, tar sands and gilsonite) derived from the lacustrine Green River petroleum system in the Uinta Basin, USA. In addition we use an experimental approach, hydrous pyrolysis experiments, to compare to the Re–Os data of naturally generated petroleum in order to further understand the mechanisms of Re and Os transfer to petroleum. The Re–Os geochronology of petroleum from the lacustrine Green River petroleum system (19 ± 14 Ma – all petroleum phases) broadly agrees with previous petroleum generation basin models (∼25 Ma) suggesting that Re–Os geochronology of variable petroleum phases derived from lacustrine Type I kerogen has similar systematics to Type II kerogen (e.g., Selby and Creaser, 2005a, Selby and Creaser, 2005b and Finlay et al., 2010). However, the large uncertainties (over 100% in some cases) produced for the petroleum Re–Os geochronology are a result of multiple generation events occurring through a ∼3000-m thick source unit that creates a mixture of initial Os isotope compositions in the produced petroleum phases. The 187Os/188Os values for the petroleum and source rocks at the time of oil generation vary from 1.4 to 1.9, with the mode at ∼1.6. Oil-to-source correlation using Os isotopes is consistent with previous correlation studies in the Green River petroleum system, and illustrates the potential utility of Os isotopes to characterize the spatial variations within a petroleum system. Hydrous pyrolysis experiments on the Green River Formation source rocks show that Re and Os transfer are mimicking the natural system. This transfer from source to bitumen to oil does not affect source rock Re–Os systematics or Os isotopic compositions. This confirms that Os isotope compositions are transferred intact from source to petroleum during petroleum generation and can be used as a powerful correlation tool. These experiments further confirm that Re–Os systematics in source rocks are not adversely affected by petroleum maturation. Overall this study illustrates that the Re–Os petroleum geochronometer and Os isotope fingerprinting tools can be used on a wide range of petroleum types sourced from variable kerogen types.

  8. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage

    PubMed Central

    Balci, Nurgul; Brunner, Benjamin; Turchyn, Alexandra V.

    2017-01-01

    Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62−) and elemental sulfur (S°) to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4−S4O6) by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4−S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4) from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2). During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between −1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4−S0 of −0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4−H2O) of −4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4), acid production, and mixed valence state sulfur species generated by the oxidation of the two different substrates suggests a metabolic flexibility in response to sulfur substrate availability. Our results demonstrate that microbial processing of mixed-valence-state sulfur species generates a significant sulfur isotope fractionation in acidic environments and oxidation of mixed-valence state sulfur species may produce sulfate with characteristic sulfur and oxygen isotope signatures. Elemental sulfur and tetrathionate are not only intermediate-valence state sulfur compounds that play a central role in sulfur oxidation pathways, but also key factors in shaping these isotope patterns. PMID:28861071

  9. Uniformity in sulfur isotope composition in the orogenic gold deposits from the Dharwar Craton, southern India

    NASA Astrophysics Data System (ADS)

    Sakthi Saravanan, C.; Mishra, B.

    2009-07-01

    The sulfur isotope composition of sulfides (mainly pyrite and arsenopyrite) from gold deposits/prospects of the Dharwar Craton such as Hutti, Hira-Buddini, Uti, Kolar (Chigargunta), Ajjanahalli, and Jonnagiri has a narrow range (δ34S = +1.1 to +7.1‰). Such craton-scale uniformity of the above gold camps is noteworthy, in spite of the wide diversity in host rock compositions and their metamorphic conditions, and suggests a magmatic or average crustal source of sulfur for all deposits studied. In addition, our study points towards gold precipitation from reduced ore fluids, with near-homogeneous sulfur isotope compositions.

  10. The first investigation of Wilms' tumour atomic structure-nitrogen and carbon isotopic composition as a novel biomarker for the most individual approach in cancer disease

    PubMed Central

    Taran, Katarzyna; Frączek, Tomasz; Sikora-Szubert, Anita; Sitkiewicz, Anna; Młynarski, Wojciech; Kobos, Józef; Paneth, Piotr

    2016-01-01

    The paper describes a novel approach to investigating Wilms' tumour (nephroblastoma) biology at the atomic level. Isotope Ratio Mass Spectrometry (IRMS) was used to directly assess the isotope ratios of nitrogen and carbon in 84 Wilms' tumour tissue samples from 28 cases representing the histological spectrum of nephroblastoma. Marked differences in nitrogen and carbon isotope ratios were found between nephroblastoma histological types and along the course of cancer disease, with a breakout in isotope ratio of the examined elements in tumour tissue found between stages 2 and 3. Different isotopic compositions with regard to nitrogen and carbon content were observed in blastemal Wilms' tumour, with and without focal anaplasia, and in poorly- and well-differentiated epithelial nephroblastoma. This first assessment of nitrogen and carbon isotope ratio reveals the previously unknown part of Wilms' tumour biology and represents a potential novel biomarker, allowing for a highly individual approach to treating cancer. Furthermore, this method of estimating isotopic composition appears to be the most sensitive tool yet for cancer tissue evaluation, and a valuable complement to established cancer study methods with prospective clinical impact. PMID:27732932

  11. U-Pb geochronology and Hf-Nd isotope compositions of the oldest Neoproterozoic crust within the Cadomian orogen: new evidence for a unique juvenile terrane

    NASA Astrophysics Data System (ADS)

    Samson, S. D.; D'Lemos, R. S.; Blichert-Toft, J.; Vervoort, J.

    2003-03-01

    New U-Pb dates, combined with Nd and Hf isotopic data, from rocks within the Port Morvan area of the Baie de St Brieuc region of Brittany identify a unique portion of the Neoproterozoic Cadomia terrane. Two gneisses near Port Morvan yielded U-Pb dates of 754.6±0.8 Ma and 746.0±0.9 Ma, ages that are more than 130 Myr older than the oldest units formed during the main phase of early Cadomian magmatism. Two trondhjemite boulders from the monogenetic facies of the Cesson conglomerate yielded identical ages of 665.2±0.5 Ma and 665.5±0.7 Ma, and a cobble from the polygenetic facies yields a 207Pb- 206Pb date of 637±2 Ma. Individual detrital zircons from a sandstone associated with the Cesson conglomerates yield concordant U-Pb dates ranging from 650±3 Ma to 624.1±0.6 Ma. Initial ɛNd values for the rocks in this region range from +5.0 to +6.6, indicative of a substantial input from depleted mantle. Initial ɛHf values determined on zircons from these Neoproterozoic rocks, including the detrital zircons, range from +6.7 to +14.5, consistent with the Nd isotopic results. Maximum initial ɛHf values for two 2 Ga Icartian gneisses, considered basement to Cadomia, average +8.4 and +8.7. In contrast to the results of the Port Morvan rocks, 616-608 Ma syn-tectonic intrusions from Normandy and the British Channel Islands all have negative initial ɛNd values (-10.4 to -8.3) consistent with significant contamination by ancient crust such as the 2 Ga gneisses. The oldest arc-related magmas should have interacted most extensively with Cadomian basement, buffering younger mantle-derived magmas that were generated in subsequent magmatic episodes. The rocks within the Port Morvan region are thus inconsistent as examples of the earliest Cadomian intrusions as they show no evidence of interaction with 2 Ga basement. Instead, the older ages and mantle-like isotopic composition of these rocks suggest they are part of an independent terrane that formed prior to, and independently from, the Cadomian arc. Possible terrane-scale structural boundaries have recently been identified, including the newly recognized Port Morvan thrust fault and the NW-dipping Main Cadomian thrust.

  12. Stardust in STARDUST - the C, N, and O Isotopic Compositions of Wild 2 Cometary Matter in Al Foil Impacts

    NASA Technical Reports Server (NTRS)

    Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Heck, Philipp R.; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.; hide

    2007-01-01

    In January 2006, the Stardust mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at the Stardust encounter velocity of 6.1 kilometers per second into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used two NanoSIMS ion microprobes to perform C, N, and O isotope imaging measurements on four large (59-295 micrometer diameter) and on 47 small (0.32-1.9 micrometer diameter) Al foil impact craters as part of the Stardust Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average N-15 enrichment of approx. 450%o, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles and to components of some primitive meteorites. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the Stardust mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.

  13. Stardust in STARDUST - the C, N, and O Isotopic Compositions of Wild 2 Cometary Matter in Al foil Impacts

    NASA Technical Reports Server (NTRS)

    Stadermann, Frank J.; Hoppe, Peter; Floss, Christine; Hoerz, Friedrich; Huth, Joachim; Kearsley, Anton T.; Leitner, Jan; Marhas, Kuljeet K.; McKeegan, Kevin D.; Stephan, Thomas; hide

    2007-01-01

    In January 2006, the STARDUST mission successfully returned dust samples from the tail of comet 81P/Wild 2 in two principal collection media, low density silica aerogel and Al foil. While hypervelocity impacts at 6.1 km/s, the encounter velocity of STARDUST, into Al foils are generally highly disruptive for natural, silicate-dominated impactors, previous studies have shown that many craters retain sufficient residue to allow a determination of the elemental and isotopic compositions of the original projectile. We have used the NanoSIMS to perform C, N, and O isotope imaging measurements on four large (59-370 microns diameter) and on 47 small (0.32-1.9 microns diameter) Al foil impact craters as part of the STARDUST Preliminary Examination. Most analyzed residues in and around these craters are isotopically normal (solar) in their C, N, and O isotopic compositions. However, the debris in one large crater shows an average 15N enrichment of approx. 450 %, which is similar to the bulk composition of some isotopically primitive interplanetary dust particles. A 250 nm grain in another large crater has an O-17 enrichment with approx. 2.65 times the solar O-17/O-16 ratio. Such an O isotopic composition is typical for circumstellar oxide or silicate grains from red giant or asymptotic giant branch stars. The discovery of this circumstellar grain clearly establishes that there is authentic stardust in the cometary samples returned by the STARDUST mission. However, the low apparent abundance of circumstellar grains in Wild 2 samples and the preponderance of isotopically normal material indicates that the cometary matter is a diverse assemblage of presolar and solar system materials.

  14. Using nitrate dual isotopic composition (δ15N and δ18O) as a tool for exploring sources and cycling of nitrate in an estuarine system: Elkhorn Slough, California

    USGS Publications Warehouse

    Wankel, Scott D.; Kendall, Carol; Paytan, Adina

    2009-01-01

    Nitrate (NO-3 concentrations and dual isotopic composition (??15N and ??18O) were measured during various seasons and tidal conditions in Elkhorn Slough to evaluate mixing of sources of NO-3 within this California estuary. We found the isotopic composition of NO-3 was influenced most heavily by mixing of two primary sources with unique isotopic signatures, a marine (Monterey Bay) and terrestrial agricultural runoff source (Old Salinas River). However, our attempt to use a simple two end-member mixing model to calculate the relative contribution of these two NO-3 sources to the Slough was complicated by periods of nonconservative behavior and/or the presence of additional sources, particularly during the dry season when NO-3 concentrations were low. Although multiple linear regression generally yielded good fits to the observed data, deviations from conservative mixing were still evident. After consideration of potential alternative sources, we concluded that deviations from two end-member mixing were most likely derived from interactions with marsh sediments in regions of the Slough where high rates of NO-3 uptake and nitrification result in NO-3 with low ?? 15N and high ??18O values. A simple steady state dual isotope model is used to illustrate the impact of cycling processes in an estuarine setting which may play a primary role in controlling NO -3 isotopic composition when and where cycling rates and water residence times are high. This work expands our understanding of nitrogen and oxygen isotopes as biogeochemical tools for investigating NO -3 sources and cycling in estuaries, emphasizing the role that cycling processes may play in altering isotopic composition. Copyright 2009 by the American Geophysical Union.

  15. Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2002-01-01

    Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.

  16. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    USGS Publications Warehouse

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  17. Analysis of the interdecadal variability of summer precipitation in central Japan using a reconstructed 106 year long oxygen isotope record from tree ring cellulose

    NASA Astrophysics Data System (ADS)

    Kurita, Naoyuki; Nakatsuka, Takeshi; Ohnishi, Keiko; Mitsutani, Takumi; Kumagai, Tomo'omi

    2016-10-01

    We present a unique proxy for reconstructing the interannual variability of summer precipitation associated with the quasi-stationary front (Baiu front) in central Japan. The rainfall from the Baiu front has a relatively lower oxygen isotopic composition than other types of nonfrontal precipitation. The variability in the oxygen isotopes in summer rainfall is closely related to the Baiu frontal activity. In this study we used a mechanistic tree ring isotope model to reconstruct a 106 year long oxygen isotopic composition of precipitation during the early rainy season (June) based on the oxygen isotopic compositions of the annual rings of Chamaecyparis obtusa Endl trees from central Japan. The year-to-year variations of the isotopes over the most recent 25 years are associated with several teleconnection patterns that often lead to the Baiu precipitation anomalies in central Japan (such as the Pacific-Japan (PJ) pattern, Silk Road pattern, and wave train pattern along the polar jet). Yet none of these external forcing mechanisms apply further back in time. From the 1950s to 1980s, the interannual isotopic variability is predominantly related to local factors such as anomalous intensification/weakening of the Bonin High. Before the 1950s, the variability of the oxygen isotopic composition of precipitation is mainly associated with a wave train pattern along the polar jet. The isotopic variability is predominantly linked to the PJ pattern, while the PJ index is correlated with El Niño-Southern Oscillation. These findings suggest that the teleconnection patterns influencing Baiu precipitation variability vary according to interdecadal time scales during the twentieth century.

  18. Forest Fires as a Possible Source of Isotopically Light Marine Fe Aerosols

    NASA Astrophysics Data System (ADS)

    Tegler, L. A.; Sherry, A. M.; Romaniello, S. J.; Anbar, A. D.

    2016-12-01

    Iron (Fe) is an important limiting micronutrient for primary productivity in many high-nutrient, low-chlorophyll (HNLC) regions of the ocean. These marine systems receive a significant fraction of their Fe from atmospheric deposition, which is thought to be dominated by mineral dust with an Fe isotopic composition at or above 0‰. However, Mead et al. (2013) observed isotopically light Fe in marine aerosols smaller than 2.5 μm, which is difficult to reconcile with known sources of marine aerosols. Based on previous experimental work, we hypothesize that biomass burning is the source of isotopically light Fe in atmospheric particles and suggest that biomass burning might represent an underappreciated source of Fe to marine ecosystems. While Guelke et al (2007) demonstrated that Fe in agricultural plants is isotopically light, few studies have examined the Fe isotope composition of naturally occurring forests likely to be a significant source of Fe during forest fires. To address this question, we measured the isotopic composition of Ponderosa pine growing in northern Arizona. Ponderosa pine is one the most common forest types in the western US and thus representative of an important North American fire region. Pine needles were chosen because they are susceptible to complete combustion during biomass burning events. To determine the Fe isotopic composition of pine trees, pine needles were sampled at various tree heights. We found that these samples had δ56Fe values between -1.5 and 0‰, indicating that pine needles can be isotopically light compared to local grasses and soil. These results support the hypothesis that biomass burning may contribute isotopically light Fe to marine aerosols.

  19. Hydrogen and Oxygen Isotope Ratios in Body Water and Hair: Modeling Isotope Dynamics in Nonhuman Primates

    PubMed Central

    O’Grady, Shannon P.; Valenzuela, Luciano O.; Remien, Christopher H.; Enright, Lindsey E.; Jorgensen, Matthew J.; Kaplan, Jay R.; Wagner, Janice D.; Cerling, Thure E.; Ehleringer, James R.

    2012-01-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water (2H/1H, 18O/16O expressed as δ2H and δ18O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ2H and δ18O values of body water and a second model to predict the δ2H and δ18O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ2H and δ18O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ2H and δ18O values of gut water and the 18O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (αow). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of αow was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. PMID:22553163

  20. Evidence for rapid climate change in North America during the latest Paleocene thermal maximum: oxygen isotope compositions of biogenic phosphate from the Bighorn Basin (Wyoming)

    NASA Astrophysics Data System (ADS)

    Fricke, Henry C.; Clyde, William C.; O'Neil, James R.; Gingerich, Philip D.

    1998-07-01

    Oxygen isotope records of Cenozoic sea water temperatures indicate that a rapid warming event known as the Latest Paleocene Thermal Maximum (LPTM) occurred during the otherwise gradual increase in world temperatures during the Late Paleocene and Early Eocene. Oxygen isotope analysis of the carbonate and phosphate components of hydroxyapatite found in mammalian tooth enamel and body scales of river-dwelling fish from the Bighorn Basin in Wyoming were made to investigate corresponding changes in the terrestrial climate. A comparison of carbonate and phosphate isotope data from modern and fossil material indicates that some diagenetic alteration of the fossil material has occurred, although systematically larger intra-tooth ranges in the oxygen isotope composition of carbonate indicate that it is more likely to have been affected than phosphate. Carbonate and phosphate from the ecologically diverse mammals and fishes both record a shift to higher oxygen isotope ratios at the same time and of the same duration as the LPTM. These shifts reflect a change in the isotopic composition of regional precipitation, which in turn provides the first evidence for continental climate change during the LPTM. Assuming the present-day relation between the oxygen isotope composition of precipitation and temperature applies to conditions in the past, and that animal physiology and behavior is relatively invariant over time, the isotopic shift is equivalent to an increase of surface temperature in western North America of several degrees. This result is consistent with the magnitude of high-latitude ocean warming, and provides a basis for relating marine and terrestrial oxygen isotope records to records of terrestrial biotic change.

  1. Variation in the isotopic composition of striped weakfish Cynoscion guatucupa of the Southwest Atlantic Ocean in response to dietary shifts.

    PubMed

    Viola, M N Paso; Riccialdelli, L; Jaureguizar, A; Panarello, H O; Cappozzo, H L

    2018-05-01

    The aim of this study was to analyze the isotopic composition in muscle of striped weakfish Cynoscion guatucupa from Southwest Atlantic Ocean in order to evaluate a possible variation in δ13C and δ15N in response to dietary shifts that occur as animals grow. We also explored for isotopic evidence of differences between sample locations. The results showed an agreement between isotope analysis and previous conventional studies. Differences in the isotope composition between sampling location were not observed. A positive relation exists between isotope values and total body length of the animals. The Cluster analysis defined three groups of size classes, validated by the MDS. Differences in the relative consumption of prey species in each size class were also observed performing isotope mixing models (SIAR). Variation in δ15N among size classes would be associated with the consumption of a different type of prey as animals grow. Small striped weakfish feed on small crustaceans and progressively increase their consumption of fish (anchovy, Engraulis anchoita), increasing by this way their isotope values. On the other hand, differences in δ13C values seemed to be related to age-class specific spatial distribution patterns. Therefore, large and small striped weakfish remain specialized but feeding on different prey at different trophic levels. These results contribute to the study of the diet of striped weakfish, improve the isotopic ecology models and highlight on the importance of accounting for variation in the isotopic composition in response to dietary shifts with the size of one of the most important fishery resources in the region.

  2. Hydrogen and oxygen isotope ratios in body water and hair: modeling isotope dynamics in nonhuman primates.

    PubMed

    O'Grady, Shannon P; Valenzuela, Luciano O; Remien, Christopher H; Enright, Lindsey E; Jorgensen, Matthew J; Kaplan, Jay R; Wagner, Janice D; Cerling, Thure E; Ehleringer, James R

    2012-07-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water ((2)H/(1)H, (18)O/(16)O expressed as δ(2) H and δ(18)O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ(2)H and δ(18)O values of body water and a second model to predict the δ(2)H and δ(18)O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ(2)H and δ(18)O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ(2)H and δ(18)O values of gut water and the (18)O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (α(ow)). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of α(ow) was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. © 2012 Wiley Periodicals, Inc.

  3. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis

    PubMed Central

    Brennecka, Gregory A.; Borg, Lars E.; Wadhwa, Meenakshi

    2013-01-01

    The isotopic composition of our Solar System reflects the blending of materials derived from numerous past nucleosynthetic events, each characterized by a distinct isotopic signature. We show that the isotopic compositions of elements spanning a large mass range in the earliest formed solids in our Solar System, calcium–aluminum-rich inclusions (CAIs), are uniform, and yet distinct from the average Solar System composition. Relative to younger objects in the Solar System, CAIs contain positive r-process anomalies in isotopes A < 140 and negative r-process anomalies in isotopes A > 140. This fundamental difference in the isotopic character of CAIs around mass 140 necessitates (i) the existence of multiple sources for r-process nucleosynthesis and (ii) the injection of supernova material into a reservoir untapped by CAIs. A scenario of late supernova injection into the protoplanetary disk is consistent with formation of our Solar System in an active star-forming region of the galaxy. PMID:24101483

  4. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis.

    PubMed

    Brennecka, Gregory A; Borg, Lars E; Wadhwa, Meenakshi

    2013-10-22

    The isotopic composition of our Solar System reflects the blending of materials derived from numerous past nucleosynthetic events, each characterized by a distinct isotopic signature. We show that the isotopic compositions of elements spanning a large mass range in the earliest formed solids in our Solar System, calcium-aluminum-rich inclusions (CAIs), are uniform, and yet distinct from the average Solar System composition. Relative to younger objects in the Solar System, CAIs contain positive r-process anomalies in isotopes A < 140 and negative r-process anomalies in isotopes A > 140. This fundamental difference in the isotopic character of CAIs around mass 140 necessitates (i) the existence of multiple sources for r-process nucleosynthesis and (ii) the injection of supernova material into a reservoir untapped by CAIs. A scenario of late supernova injection into the protoplanetary disk is consistent with formation of our Solar System in an active star-forming region of the galaxy.

  5. Verification of the isotopic composition of precipitation simulated by a regional isotope circulation model over Japan.

    PubMed

    Tanoue, Masahiro; Ichiyanagi, Kimpei; Yoshimura, Kei

    2016-01-01

    The isotopic composition (δ(18)O and δ(2)H) of precipitation simulated by a regional isotope circulation model with a horizontal resolution of 10, 30 and 50 km was compared with observations at 56 sites over Japan in 2013. All simulations produced reasonable spatio-temporal variations in δ(18)O in precipitation over Japan, except in January. In January, simulated δ(18)O values in precipitation were higher than observed values on the Pacific side of Japan, especially during an explosively developing extratropical cyclone event. This caused a parameterisation of precipitation formulation about the large fraction of precipitated water to liquid detrained water in the lower troposphere. As a result, most water vapour that transported from the Sea of Japan precipitated on the Sea of Japan side. The isotopic composition of precipitation was a useful verification tool for the parameterisation of precipitation formulation as well as large-scale moisture transport processes in the regional isotope circulation model.

  6. Late Mesozoic-Cenozoic intraplate magmatism in Central Asia and its relation with mantle diapirism: Evidence from the South Khangai volcanic region, Mongolia

    NASA Astrophysics Data System (ADS)

    Yarmolyuk, Vladimir V.; Kudryashova, Ekaterina A.; Kozlovsky, Alexander M.; Lebedev, Vladimir A.; Savatenkov, Valery M.

    2015-11-01

    The South Khangai volcanic region (SKVR) comprises fields of Late Mesozoic-Cenozoic volcanic rocks scattered over southern and central Mongolia. Evolution of the region from the Late Jurassic to the Late Cenozoic includes 13 successive igneous episodes that are more or less evenly distributed in time. Major patterns in the distribution of different-aged volcanic complexes were controlled by a systematic temporal migration of volcanic centers over the region. The total length of their trajectory exceeds 1600 km. Principle characteristics of local magmatism are determined. The composition of igneous rocks varies from basanites to rhyolites (predominantly, high-K rocks), with geochemistry close to that of OIB. The rock composition, however, underwent transformations in the Mesozoic-Cenozoic. Rejuvenation of mafic rocks is accompanied by decrease in the contents of HREE and increase of Nb and Ta. According to isotope data, the SKVR magmatic melts were derived from three isotope sources that differed in the Sr, Nd, and Pb isotopic compositions and successively alternated in time. In the Early Cretaceous, the predominant source composition was controlled by interaction of the EMII- and PREMA-type mantle materials. The PREMA-type mantle material dominated quantitatively in the Late Cretaceous and initial Early Cenozoic. From the latest Early Cenozoic to Late Cenozoic, the magma source also contained the EMI-type material along with the PREMA-type. The structural fabric, rock composition, major evolutionary pattern, and inner structure of SKVR generally comply with the criteria used to distinguish the mantle plume-related regions. Analogous features can be seen in other regions of recent volcanism in Central Asia (South Baikal, Udokan, Vitim, and Tok Stanovik). The structural autonomy of these regions suggests that distribution of the Late Mesozoic-Cenozoic volcanism in Central Asia was controlled by a group of relatively small hot finger-type mantle plumes associated with the common hot mantle field of Central Asia.

  7. Magma source evolution beneath the Caribbean oceanic plateau: New insights from elemental and Sr-Nd-Pb-Hf isotopic studies of ODP Leg 165, Site 1001 basalts

    NASA Astrophysics Data System (ADS)

    Kerr, A. C.; Pearson, G.; Nowell, G.

    2008-12-01

    Ocean Drilling Project Leg 165 sampled 38m of the basaltic basement of the Caribbean plate at Site 1001 on the Hess Escarpment. The recovered section consists of 12 basaltic flow units which yield a weighted mean Ar-Ar age of 80.9±0.9 Ma (Sinton et al., 2000). The basalts (6.4-8.5 wt.% MgO) are remarkably homogeneous in composition and are more depleted in incompatible trace elements than N-MORB. Markedly, depleted initial radiogenic isotope ratios reveal a long-term history of depletion. Although the Site 1001 basalts are superficially similar to N-MORB, radiogenic isotopes in conjunction with incompatible trace element ratios show that the basalts have more similarity to the depleted basalts and komatiites of Gorgona Island. This chemical composition strongly implies that the Site 1001 basalts are derived from a depleted mantle plume component and not from depleted ambient upper mantle. Therefore the Site 1001 basalts are, both compositionally and tectonically, a constituent part of the Caribbean oceanic plateau. Mantle melt modelling suggests that the Site 1001 lavas have a composition which is consistent with second-stage melting of compositionally heterogeneous mantle plume source material which had already been melted, most likely to form the 90Ma basalts of the plateau. The prolonged residence (>10m.y.) of residual mantle plume source material below the region, confirms computational model predictions and places significant constraints on tectonic models of Caribbean evolution in the late Cretaceous, and the consequent environmental impact of oceanic plateau volcanism. Reference Sinton, C.W., et al., 2000. Geochronology and petrology of the igneous basement at the lower Nicaraguan Rise, Site 1001. Proceedings of the Ocean Drilling Program, Scientific Results. Leg 165. pp. 233-236.

  8. Modern U-Pb chronometry of meteorites: advancing to higher time resolution reveals new problems

    USGS Publications Warehouse

    Amelin, Y.; Connelly, J.; Zartman, R.E.; Chen, J.-H.; Gopel, C.; Neymark, L.A.

    2009-01-01

    In this paper, we evaluate the factors that influence the accuracy of lead (Pb)-isotopic ages of meteorites, and may possibly be responsible for inconsistencies between Pb-isotopic and extinct nuclide timescales of the early Solar System: instrumental mass fractionation and other possible analytical sources of error, presence of more than one component of non-radiogenic Pb, migration of ancient radiogenic Pb by diffusion and other mechanisms, possible heterogeneity of the isotopic composition of uranium (U), uncertainties in the decay constants of uranium isotopes, possible presence of "freshly synthesized" actinides with short half-life (e.g. 234U) in the early Solar System, possible initial disequilibrium in the uranium decay chains, and potential fractionation of radiogenic Pb isotopes and U isotopes caused by alpha-recoil and subsequent laboratory treatment. We review the use of 232Th/238U values to assist in making accurate interpretations of the U-Pb ages of meteorite components. We discuss recently published U-Pb dates of calcium-aluminum-rich inclusions (CAIs), and their apparent disagreement with the extinct nuclide dates, in the context of capability and common pitfalls in modern meteorite chronology. Finally, we discuss the requirements of meteorites that are intended to be used as the reference points in building a consistent time scale of the early Solar System, based on the combined use of the U-Pb system and extinct nuclide chronometers.

  9. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.

  10. Memories of Earth Formation in the Modern Mantle: W Isotopic Composition of Flood Basalt Lavas

    NASA Astrophysics Data System (ADS)

    Rizo Garza, H. L.; Walker, R. J.; Carlson, R.; Horan, M. F.; Mukhopadhyay, S.; Francis, D.; Jackson, M. G.

    2015-12-01

    Four and a half billion years of geologic activity has overprinted much of the direct evidence for processes involved in Earth's formation and its initial chemical differentiation. Xenon isotopic ratios [1] and 3He/22Ne ratios [2] suggest that heterogeneities formed during Earth's accretion have been preserved to the present time. New opportunities to learn about early Earth history have opened up with the development of analytical techniques that allow high precision analysis of short-lived isotopic systems. The Hf-W system (t½ = 8.9 Ma) is particularly valuable for studying events that occurred during the first ~50 Ma of Solar System history. Here we report new data for ~ 60 Ma Baffin Bay and ~ 120 Ma Ontong Java Plateau lava samples. Both are large igneous provinces that may have sampled a primitive, less degassed deep mantle reservoir that has remained isolated since shortly after Earth formation [3,4]. Three samples analyzed have 182W/184W ratios that are 10 to 48 ppm higher than our terrestrial standard. These excesses in 182W are the highest ever measured in terrestrial rocks, and may reflect 182W ingrowth in an early-formed high Hf/W mantle domain that was produced by magma ocean differentiation [5]. Long and short-lived Sm-Nd systematics in these samples, however, are inconsistent with this hypothesis. The 182W excessses could rather reflect the derivation of these lavas from a mantle reservoir that was isolated from late accretionary additions [6]. The chondritic initial Os isotopic compositions and highly siderophile element abundances of these samples, however, are inconsistent with this interpretation. Tungsten concentrations for the Baffin Bay and Ontong Java Plateau samples range from 23 ppb to 62 ppb, and are negatively correlated with their 182W/184W ratios. We propose that the source reservoirs for these flood basalts likely formed through Hf/W fractionation caused by core-forming events occuring over a protacted time interval during Earth's initial growth, and seem to have survived in the mantle to the present. [1] Mukhopadhyay, 2012, Nature. [2] Tucker and Mukhopadhyay, 2014, EPSL. [3] Starkey et al., 2009, EPSL [4] Jackson and Carlson, 2011, Nature. [5] Touboul et al., 2012, Science. [6] Willbold et al., 2011, Nature.

  11. Influence of the balance of the intertropical front on seasonal variations of the isotopic composition in rainfall at Kisiba Masoko (Rungwe Volcanic Province, SW, Tanzania).

    PubMed

    Nivet, Fantine; Bergonzini, Laurent; Mathé, Pierre-Etienne; Noret, Aurélie; Monvoisin, Gaël; Majule, Amos; Williamson, David

    2018-08-01

    Tropical rainfall isotopic composition results from complex processes. The climatological and environmental variability in East Africa increases this complexity. Long rainfall isotope datasets are needed to fill the lack of observations in this region. At Kisiba Masoko, Tanzania, rainfall and rain isotopic composition have been monitored during 6 years. Mean year profiles allow to analyse the seasonal variations. The mean annual rainfall is 2099 mm with a rain-weighted mean composition of -3.2 ‰ for δ 18 O and -11.7 ‰ for δ 2 H. The results are consistent with available data although they present their own specificity. Thus, if the local meteoric water line is δ 2 H = 8.6 δ 18 O + 14.8, two seasonal lines are observed. The seasonality of the isotopic composition in rain and deuterium excess has been compared with precipitating air masses backtracking trajectories to characterize a simple scheme of vapour histories. The three major oceanic sources have two moisture signatures with their own trajectory histories: one originated from the tropical Indian Ocean at the beginning of the rainy season and one from the Austral Ocean at its end. The presented isotopic seasonality depends on the balance of the intertropical front and provides a useful dataset to improve the knowledge about local processes.

  12. SIMSISH Technique Does Not Alter the Apparent Isotopic Composition of Bacterial Cells

    PubMed Central

    Chapleur, Olivier; Wu, Ting-Di; Guerquin-Kern, Jean-Luc; Mazéas, Laurent; Bouchez, Théodore

    2013-01-01

    In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS) measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine – iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific 13C uptake during labelled methanol anaerobic degradation. PMID:24204855

  13. The uranium-isotopic composition of Saharan dust collected over the central Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Aciego, Sarah M.; Aarons, Sarah M.; Sims, Kenneth W. W.

    2015-06-01

    Uranium isotopic compositions, (234U/238U)activity , are utilized by earth surface disciplines as chronometers and source tracers, including in soil science where aeolian dust is a significant source to the total nutrient pool. However, the (234U/238U)activity composition of dust is under characterized due to material and analytical constraints. Here we present new uranium isotope data measured by high precision MC-ICP-MS on ten airborne dust samples collected on the M55 trans-Atlantic cruise in 2002. Two pairs of samples are presented with different size fractions, coarse (1-30 μm) and fine (<1 μm), and all samples were processed to separate the water soluble component in order to assess the controls on the (234U/238U)activity of mineral aerosols transported from the Sahara across the Atlantic. Our results indicate (234U/238U)activity above one for both the water soluble (1.13-1.17) and the residual solid (1.06-1.18) fractions of the dust; no significant correlation is found between isotopic composition and travel distance. Residual solids indicate a slight dependance of (234U/238U)activity on particle size. Future modeling work that incorporates dust isotopic compositions into mixing or isotopic fractionation models will need to account for the wide variability in dust (234U/238U)activity .

  14. Lead isotope exchange between dissolved and fluvial particulate matter: a laboratory study from the Johor River estuary

    NASA Astrophysics Data System (ADS)

    Chen, Mengli; Boyle, Edward A.; Lee, Jong-Mi; Nurhati, Intan; Zurbrick, Cheryl; Switzer, Adam D.; Carrasco, Gonzalo

    2016-11-01

    Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 (206Pb/207Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206Pb/207Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206Pb/207Pb isotopic composition of 1.161, but within a week, the 206Pb/207Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple Kd model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The Kd model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  15. Evaluating the provenance of Permian-Triassic and Palaeocene-Eocene ash beds by high precision U-Pb and Lu-Hf isotopic analyses of zircons: linking local sedimentary records to global events

    NASA Astrophysics Data System (ADS)

    Eivind Augland, Lars; Jones, Morgan; Planke, Sverre; Svensen, Henrik; Tegner, Christian

    2016-04-01

    Zircons are a powerful tool in geochronology and isotope geochemistry, as their affinity for U and Hf in the crystal structure and the low initial Pb and Lu allow for precise and accurate dating by U-Pb ID-TIMS and precise and accurate determination of initial Hf isotopic composition by solution MC-ICP-MS analysis. The U-Pb analyses provide accurate chronostratigraphic controls on the sedimentary successions and absolute age frames for the biotic evolution across geological boundaries. Moreover, the analyses of Lu-Hf by solution MC-ICP-MS after Hf-purification column chemistry provide a powerful and robust fingerprinting tool to test the provenance of individual ash beds. Here we focus on ash beds from Permian-Triassic and Palaeocene successions in Svalbard and from the Palaeocene-Eocene Thermal Maximum (PETM) in Fur, Denmark. Used in combination with whole rock geochemistry from the ash layers and the available geochemical and isotopic data from potential source volcanoes, these data are used to evaluate the provenance of the Permian-Triassic and Palaeocene ashes preserved in Svalbard and PETM ashes in Denmark. If explosive eruptions from volcanic centres such as the Siberian Traps and the North Atlantic Igneous Province (NAIP) can be traced to distal basins as ash layers, they provide robust tests of hypotheses of global synchronicity of environmental changes and biotic crises. In addition, the potential correlation of ash layers with source volcanoes will aid in constraining the extent of explosive volcanism in the respective volcanic centres. The new integrated data sets will also contribute to establish new reference sections for the study of these boundary events when combined with stable isotope data and biostratigraphy.

  16. Constraints on Late Paleozoic Ocean Response to Climate Change Based on Brachiopod δ11B and 87Sr/86Sr

    NASA Astrophysics Data System (ADS)

    Legett, S. A.; Rasbury, T.; Grossman, E. L.; Hemming, G.

    2017-12-01

    In order to understand the possible effects of climate change on present day oceans, it is important to determine how marine systems responded to climate change in the past. This study uses δ11B values from well-preserved Carboniferous and Permian brachiopods as well as models to examine chemical trends in seawater and how these relate to long- and short-term climate changes. Our results show that δ11B rises rapidly going into the Carboniferous from a low of 10‰ to a high of 17‰ and remains relatively stable through the Carboniferous, despite the initiation of glaciation in the Mid Carboniferous. At the Carboniferous-Permian boundary, δ11B declines into the Early Permian before reaching a low at the Sakmarian. This decline in δ11B is coincident with the decrease in 87Sr/86Sr through this interval, which corresponds to evidence for aridity going into the Permian. We hypothesize that a reduction in silicate weathering drives an increase in atmospheric pCO2 and a subsequent lowering of ocean pH going into the Permian. This is consistent with our interpretation of the Carboniferous-Permian boundary, as a major mechanism for controlling seawater boron isotope composition is the adsorption of borate on clays, removing isotopically light boron and thus leaving seawater boron isotopically heavy. Therefore, at lower pH seawater should become isotopically lighter as this mechanism for removal is reduced. These hypotheses are supported by our initial modeling results of the B and Sr isotopic budgets of the ocean during the Late Paleozoic.

  17. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua A.; Stern, Jennifer C.; Mandt, Kathleen E.; Domagal-Goldman, Shawn D.; Trainer, Melissa G.

    2016-05-01

    The ratios of the stable isotopes that comprise each chemical species in Titan's atmosphere provide critical information towards understanding the processes taking place within its modern and ancient atmosphere. Several stable isotope pairs, including 12C/13C and 14N/15N, have been measured in situ or probed spectroscopically by Cassini-borne instruments, space telescopes, or through ground-based observations. Current attempts to model the observed isotope ratios incorporate fractionation resulting from atmospheric diffusion, hydrodynamic escape, and primary photochemical processes. However, the effect of a potentially critical pathway for isotopic fractionation - organic aerosol formation and subsequent deposition onto the surface of Titan - has not been considered due to insufficient data regarding fractionation during aerosol formation. To better understand the nature of this process, we have conducted a laboratory study to measure the isotopic fractionation associated with the formation of Titan aerosol analogs, commonly referred to as 'tholins', via far-UV irradiation of several methane (CH4) and dinitrogen (N2) mixtures. Analysis of the δ13C and δ15N isotopic signatures of the photochemical aerosol products using an isotope ratio mass spectrometer (IRMS) show that fractionation direction and magnitude are dependent on the initial bulk composition of the gas mixture. In general, the aerosols showed enrichment in 13C and 14N, and the observed fractionation trends can provide insight into the chemical mechanisms controlling photochemical aerosol formation.

  18. Antimony isotopic composition in river waters affected by ancient mining activity.

    PubMed

    Resongles, Eléonore; Freydier, Rémi; Casiot, Corinne; Viers, Jérôme; Chmeleff, Jérôme; Elbaz-Poulichet, Françoise

    2015-11-01

    In this study, antimony (Sb) isotopic composition was determined in natural water samples collected along two hydrosystems impacted by historical mining activities: the upper Orb River and the Gardon River watershed (SE, France). Antimony isotope ratio was measured by HG-MC-ICP-MS (Hydride Generation Multi-Collector Inductively Coupled Plasma Mass Spectrometer) after a preconcentration and purification step using a new thiol-cellulose powder (TCP) procedure. The external reproducibility obtained for δ(123)Sb measurements of our in-house Sb isotopic standard solution and a certified reference freshwater was 0.06‰ (2σ). Significant isotopic variations were evident in surface waters from the upper Orb River (-0.06‰≤δ(123)Sb≤+0.11‰) and from the Gardon River watershed (+0.27‰≤δ(123)Sb≤+0.83‰). In particular, streams that drained different former mining sites exploited for Sb or Pb-Zn exhibited contrasted Sb isotopic signature, that may be related to various biogeochemical processes occurring during Sb transfer from rocks, mine wastes and sediments to the water compartment. Nevertheless, Sb isotopic composition appeared to be stable along the Gardon River, which might be attributed to the conservative transport of Sb at distance from mine-impacted streams, due to the relative mobile behavior of Sb(V) in natural oxic waters. This study suggests that Sb isotopic composition could be a useful tool to track pollution sources and/or biogeochemical processes in hydrologic systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. CHILI – the Chicago Instrument for Laser Ionization – a new tool for isotope measurements in cosmochemistry

    DOE PAGES

    Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.; ...

    2016-06-17

    Here, we describe CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis at high spatial resolution and high sensitivity of small samples like contemporary interstellar dust grains returned by the Stardust spacecraft. We explain how CHILI addresses the technical challenges associated with such analyses by pushing most technical specifications towards their physical limits. As an initial demonstration, after many years of designing and developing CHILI, we have analyzed presolar silicon carbide grains for their isotopic compositions of strontium, zirconium, and barium. Subsequently, after further technical improvements, we have used CHILI to analyze,more » for the first time without interference, all stable isotopes of iron and nickel simultaneously in presolar silicon carbide grains. With a special timing scheme for the ionization lasers, we separated iron and nickel isotopes in the time-of-flight spectrum such that the isobaric interference between 58Fe and 58Ni was resolved. In-depth discussion of the astrophysical implications of the presolar grain results is deferred to dedicated later publications. Here we focus on the technical aspects of CHILI, its status quo, and further developments necessary to achieve CHILI’s ultimate goals, 10 nm lateral resolution and 30–40% useful yield.« less

  20. CHILI – the Chicago Instrument for Laser Ionization – a new tool for isotope measurements in cosmochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephan, Thomas; Trappitsch, Reto; Davis, Andrew M.

    2016-08-01

    We describe CHILI, the Chicago Instrument for Laser Ionization, a new resonance ionization mass spectrometer developed for isotopic analysis at high spatial resolution and high sensitivity of small samples like contemporary interstellar dust grains returned by the Stardust spacecraft. We explain how CHILI addresses the technical challenges associated with such analyses by pushing most technical specifications towards their physical limits. As an initial demonstration, after many years of designing and developing CHILI, we have analyzed presolar silicon carbide grains for their isotopic compositions of strontium, zirconium, and barium. Subsequently, after further technical improvements, we have used CHILI to analyze, formore » the first time without interference, all stable isotopes of iron and nickel simultaneously in presolar silicon carbide grains. With a special timing scheme for the ionization lasers, we separated iron and nickel isotopes in the time-of-flight spectrum such that the isobaric interference between Fe-58 and Ni-58 was resolved. In-depth discussion of the astrophysical implications of the presolar grain results is deferred to dedicated later publications. Here we focus on the technical aspects of CHILI, its status quo, and further developments necessary to achieve CHILI's ultimate goals, similar to 10 nm lateral resolution and 30-40% useful yield.« less

  1. O, Mg, and Si isotope distributions in the complex ultrarefractory CAI Efremovka 101.1: Assimilation of ultrarefractory, FUN, and regular CAI precursors

    NASA Astrophysics Data System (ADS)

    Aléon, Jérôme; Marin-Carbonne, Johanna; McKeegan, Kevin D.; El Goresy, Ahmed

    2018-07-01

    Oxygen, magnesium, and silicon isotopic compositions in the mineralogically complex, ultrarefractory (UR) calcium-aluminum-rich inclusion (CAI) E101.1 from the reduced CV3 chondrite Efremovka confirm that E101.1 is a compound CAI composed of several lithological units that were once individual CAIs, free-floating in the solar protoplanetary disk. Each precursor unit was found to have had its own thermal history prior to being captured and incorporated into the partially molten host CAI. Four major lithological units can be distinguished on the basis of their isotopic compositions. (1) Al-diopside-rich sinuous fragments, hereafter sinuous pyroxene, are 16O-rich (Δ17O ≤ -20‰) and have light Mg and Si isotopic compositions with mass fractionation down to -3.5‰/amu for both isotopic systems. We attribute these peculiar isotopic compositions to kinetic effects during condensation out of thermal equilibrium. (2) Spinel clusters are 16O-rich (Δ17O ∼ -22‰) and have Mg isotope systematics consistent with extensive equilibration with the host melt. This includes (i) δ25Mg values varying between + 2.6‰ and + 6.5‰ close to the typical value of host melilite at ∼+5‰, and (ii) evidence for exchange of radiogenic 26Mg with adjacent melilite as indicated by Al/Mg systematics. The spinel clusters may represent fine-grained spinel-rich proto-CAIs captured, partially melted, and recrystallized in the host melt. Al/Mg systematics indicate that both the sinuous pyroxene fragments and spinel clusters probably had canonical or near-canonical 26Al contents before partial equilibration. (3) The main CAI host (Δ17O ≤ -2‰) had a complex thermal history partially obscured by subsequent capture and assimilation events. Its formation, referred to as the "cryptic" stage, could have resulted from the partial melting and crystallization of a 16O-rich precursor that underwent 16O-depletion and a massive evaporation event characteristic of F and FUN CAIs (Fractionated with Unknown Nuclear effects). Alternatively, a 16O-rich UR precursor may have coagulated with a 16O-poor FUN CAI having 48Ca anomalies, as indicated by perovskite, before subsequent extensive melting. The Al/Mg systematics (2.4 × 10-5 ≤ (26Al/27Al)0‧ ≤ 5.4 × 10-5, where (26Al/27Al)0‧ is a model initial 26Al/27Al ratio per analysis spot) are best understood if the FUN component was 26Al-poor, as are many FUN CAIs. (4) A complete Wark-Lovering rim (WLR) surrounds E101.1. Its Mg and Si isotopic compositions indicate that it formed by interaction of the evaporated interior CAI with an unfractionated 16O-rich condensate component. Heterogeneities in 26Al content in WLR spinels (3.7 × 10-5 ≤ (26Al/27Al)0‧ ≤ 5.7 × 10-5) suggest that the previously reported age difference of as much as 300,000 years between interior CAIs and their WLRs may be an artifact resulting from Mg isotopic perturbations, possibly by solid state diffusion or mixing between the interior and condensate components. The isotopic systematics of E101.1 imply that 16O-rich and 16O-poor reservoirs co-existed in the earliest solar protoplanetary disk and that igneous CAIs experienced a 16O-depletion in an early high temperature stage. The coagulation of various lithological units in E101.1 and their partial assimilation supports models of CAI growth by competing fragmentation and coagulation in a partially molten state. Our results suggest that chemical and isotopic heterogeneities of unclear origin in regular CAIs may result from such a complex aggregation history masked by subsequent melting and recrystallization.

  2. Origins of GEMS Grains

    NASA Technical Reports Server (NTRS)

    Messenger, S.; Walker, R. M.

    2012-01-01

    Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the chemical compositions of GEMS grains are extremely heterogeneous and seem to rule out this possibility. Based on their solar isotopic compositions and their non-solar elemental compositions we propose that most GEMS grains formed in the nebula as late-stage non-equilibrium condensates.

  3. Stable Isotopic Constraints on Abiogenic Hydrocarbon gas Contributions to Thermogenic Natural gas Resources in the Northern Appalachian Basin, USA

    NASA Astrophysics Data System (ADS)

    Burruss, R. C.; Laughrey, C. D.

    2006-05-01

    The generation of abiogenic methane by serpentinization or by graphite-water reactions in high-grade metamorphic rocks is well documented by isotopic, fluid inclusion, and petrographic studies. However, geochemical evidence is equivocal for abiogenic generation of higher hydrocarbon gases (ethane through pentane) in economic resources. Thermogenic hydrocarbon gases, generated by thermal cracking of sedimentary organic matter of biological origin, are progressively enriched in 13C as a function of increasing number of carbon atoms in the molecule. The isotopic composition is controlled by the kinetic isotope effect (KIE) during carbon-carbon bond breaking with the largest KIE for methane. Published work on gases in Precambrian rocks in Canada and South Africa suggest that some were generated by abiogenic Fischer-Tropsch type reactions that produced gases with carbon isotopic compositions that are reversed from the thermogenic trend. We have documented reversed isotopic compositions in natural gas accumulations in lower Paleozoic reservoirs of the Appalachian basin regionally from West Virginia and eastern Ohio through Pennsylvania to central New York. The regional accumulation in lower Silurian age strata shows progressive enhancement of the isotopic reversal with increasing depth in the basin. Multivariate analysis of the molecular and isotopic data define an end-member in the deep basin with an approximate composition of 98 mol % CH4, 1-2 mol % C2H6, << 1 mol % C3H8, and δ13C (CH4) = -27 ‰, δ13C (C2H6) = -40 ‰, δ13C (C3H8) = - 41‰. The nominal similarity of isotopic reversals in the gases from Precambrian rocks to those in the lower Paleozoic rocks of the Appalachian basin suggests that abiogenic F-T reactions may have generated some fraction of the gases in the deep basin. Comparison of molecular and hydrogen isotopic compositions show that the gases of putative abiogenic F-T origin are significantly different from Appalachian basin gases. All the Precambrian gases have extremely light hydrogen isotopic compositions of CH4 (δ2H < -300‰) and are depleted in CH4 (Canada gases C1/C2+ < 10, S. Africa gases C1/C2+ < 60) compared to gases in lower Paleozoic reservoirs of the Appalachian basin (δ2H (CH4) > -150‰, C1/C2+ up to 220). New isotopic studies of gas accumulations, gases in fluid inclusions, and of sedimentary organic matter in the Appalachian basin are in progress to constrain the possible contribution of abiogenic hydrocarbon generation to gas accumulations in this basin.

  4. Thermal and chemical evolution in the early Solar System as recorded by FUN CAIs: Part II - Laboratory evaporation of potential CMS-1 precursor material

    NASA Astrophysics Data System (ADS)

    Mendybaev, Ruslan A.; Williams, Curtis D.; Spicuzza, Michael J.; Richter, Frank M.; Valley, John W.; Fedkin, Alexei V.; Wadhwa, Meenakshi

    2017-03-01

    We present the results of laboratory experiments in which a forsterite-rich melt estimated to be a potential precursor of Allende CMS-1 FUN CAI was evaporated into vacuum for different lengths of time at 1900 °C. The evaporation of this melt resulted in residues that define trajectories in chemical as well as magnesium, silicon and oxygen isotopic composition space and come very close to the measured properties of CMS-1. The isotopic composition of the evaporation residues was also used to determine the kinetic isotopic fractionation factors [α2,1 (vapor-melt) defined as the ratio of isotopes 2 and 1 of a given element in the evaporating gas divided by their ratio in the evaporating source] for evaporation of magnesium (α25,24 for 25Mg/24Mg), silicon (α29,28 for 29Si/28Si) and oxygen (α18,16 for 18O/16O) from the forsterite-rich melt at 1900 °C. The values of α25,24 = 0.98383 ± 0.00033 and α29,28 = 0.99010 ± 0.00038 are essentially independent of change in the melt composition as evaporation proceeds. In contrast, α18,16 changes from 0.9815 ± 0.0016 to ∼0.9911 when the residual melt composition changes from forsteritic to melilitic. Using the determined values of α25,24 and α29,28 and present-day bulk chemical composition of the CMS-1, the composition of the precursor of the inclusion was estimated to be close to the clinopyroxene + spinel + forsterite assemblage condensed from a solar composition gas. The correspondence between the chemical composition and isotopic fractionation of experimental evaporation residues and the present-day bulk chemical and isotopic compositions of CMS-1 is evidence that evaporation played a major role in the chemical evolution of CMS-1.

  5. Effect of amino acids on the precipitation kinetics and Ca isotopic composition of gypsum

    NASA Astrophysics Data System (ADS)

    Harouaka, Khadouja; Kubicki, James D.; Fantle, Matthew S.

    2017-12-01

    Stirred gypsum (CaSO4 · 2H2O) precipitation experiments (initial Ωgypsum = 2.4 ± 0.14, duration ≈ 1.0-1.5 h) were conducted in the presence of the amino acids glycine (190 μM), L-alanine (190 μM), D- and L-arginine (45 μM), and L-tyrosine (200 μM) to investigate the effect of simple organic compounds on both the precipitation kinetics and Ca isotopic composition of gypsum. Relative to abiotic controls, glycine, tyrosine, and alanine inhibited precipitation rates by ∼22%, 27%, and 29%, respectively, while L- and D-arginine accelerated crystal growth by ∼8% and 48%, respectively. With the exception of tyrosine, amino acid induced inhibition resulted in fractionation factors (αs-f) associated with precipitation that were no more than 0.3‰ lower than amino acid-free controls. In contrast, the tyrosine and D- and L-arginine experiments had αs-f values associated with precipitation that were similar to the controls. Our experimental results indicate that Ca isotopic fractionation associated with gypsum precipitation is impacted by growth inhibition in the presence of amino acids. Specifically, we propose that the surface-specific binding of amino acids to gypsum can change the equilibrium fractionation factor of the bulk mineral. We investigate the hypothesis that amino acids can influence the growth of gypsum at specific crystal faces via adsorption and that different faces have distinct fractionation factors (αface-fluid). Accordingly, preferential sorption of amino acids at particular faces changes the relative, face-specific mass fluxes of Ca during growth, which influences the bulk isotopic composition of the mineral. Density functional theory (DFT) calculations suggest that the energetic favorability of glycine sorption onto gypsum crystal faces occurs in the order: (1 1 0) > (0 1 0) > (1 2 0) > (0 1 1), while glycine sorption onto the (-1 1 1) face was found to be energetically unfavorable. Face-specific fractionation factors constrained by frequency calculations of clusters derived from DFT structures vary by as much as 1.4‰. This suggests that the equilibrium fractionation factor for the bulk crystal can vary substantially, and that surface sorption can induce changes in αeq associated with gypsum precipitation. While we do not rule out the influence of kinetic isotope effects, our results clearly demonstrate that the mode of crystal growth can have a sizeable effect on the bulk fractionation factor (αs-f). Ultimately, our results suggest that the same mechanism by which organic molecules affect the morphology of a mineral can also impact the isotopic composition of the mineral. The results of our study provide valuable insight into the mechanism of Ca isotopic fractionation during gypsum precipitation. Our results are also important for establishing a framework for accurate interpretations of mineral-hosted Ca isotope records of the past, as we demonstrate a mechanistic pathway by which the biological and chemical environment can impact Ca isotopic fractionation during mineral precipitation.

  6. Temporal and spatial variability in stable isotope compositions of a freshwater mussel: Implications for biomonitoring and ecological studies

    USGS Publications Warehouse

    Gustafson, L.; Showers, W.; Kwak, T.; Levine, J.; Stoskopf, M.

    2007-01-01

    Stable isotopes can be used to elucidate ecological relationships in community and trophic studies. Findings are calibrated against baselines, e.g. from a producer or primary consumer, assumed to act as a reference to the isotopic context created by spatio-temporal attributes such as geography, climate, nutrient, and energy sources. The ability of an organism to accurately represent a community base depends on how, and over what time-scale, it assimilates ambient materials. Freshwater mussels have served as references for trophic studies of freshwater communities and as indicators of change in nutrient pollution load or source. Their suitability as reference animals has not yet been fully explored, however. We conducted a series of studies examining the suitability of freshwater mussels as isotopic baselines, using their ability to reflect variation in ambient nutrient loads as a case scenario. (1) We analyzed bivalve foot tissue ??15N and ??13C from 22 stream reaches in the Piedmont region of North Carolina, USA to show that compositions varied substantially among locations. Site mean bivalve ??13C values correlated with site ambient particulate organic matter (POM) ??13C values, and site mean bivalve ??15N values correlated with site ambient water dissolved ??15N-NO3 values. (2) Similarity of results among sample types demonstrated that the minimally invasive hemolymph sample is a suitable substitute for foot tissue in ??15N analyses, and that small sample sizes generate means representative of a larger population. Both findings can help minimize the impact of sampling on imperiled freshwater mussel populations. (3) In a bivalve transplantation study we showed that hemolymph ??15N compositions responded to a shift in ambient dissolved ??15N-NO3, although slowly. The tissue turnover time for bivalve hemolymph was 113 days. We conclude that bivalves serve best as biomonitors of chronic, rather than acute, fluctuations in stream nutrient loads, and provide initial evidence of their suitability as time-integrated isotopic baselines for community studies. ?? 2006 Springer-Verlag.

  7. Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.

    2012-12-01

    Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic overgrowth, with significant redistribution of U, Th, P and Y along microfracture arrays extending into the overgrowth, and 2) Paleoproterozoic monazite in thin bands <1μm wide along cleavage planes within much older (Neoarchean) monazite from the Boothia mainland of the Western Churchill Province, Canada.

  8. Osmium isotope variations in the oceans recorded by Fe-Mn crusts

    USGS Publications Warehouse

    Burton, K.W.; Bourdon, B.; Birck, J.-L.; Allegre, C.J.; Hein, J.R.

    1999-01-01

    This study presents osmium (Os) isotope data for recent growth surfaces of hydrogenetic ferromanganese (Fe-Mn) crusts from the Pacific, Atlantic and Indian Oceans. In general, these data indicate a relatively uniform Os isotopic composition for modern seawater, but suggest that North Atlantic seawater is slightly more radiogenic than that of the Pacific and Indian Oceans. The systematic difference in the Os isotopic composition between the major oceans probably reflects a greater input of old continental material with a high Re/Os ratio in the North Atlantic Ocean, consistent with the distribution of Nd and Pb isotopes. This spatial variation in the Os isotope composition in seawater is consistent with a residence time for Os of between 2 and 60 kyr. Indian Ocean samples show no evidence of a local source of radiogenic Os, which suggests that the present-day riverine input from the Himalaya-Tibet region is not a major source for Os. Recently formed Fe-Mn crusts from the TAG hydrothermal field in the North Atlantic yield an Os isotopic composition close to that of modern seawater, which indicates that, in this area, the input of unradiogenic Os from the hydrothermal alteration of oceanic crust is small. However, some samples from the deep Pacific (???4 km) possess a remarkably unradiogenic Os isotope composition (187Os/186Os ratios as low as 4.3). The compositional control of Os incorporation into the crusts and mixing relationships suggest that this unradiogenic composition is most likely due to the direct incorporation of micrometeoritic or abyssal peridotite particles, rather than indicating the presence of an unradiogenic deep-water mass. Moreover, this unradiogenic signal appears to be temporary, and local, and has had little apparent effect on the overall evolution of seawater. These results confirm that input of continental material through erosion is the dominant source of Os in seawater, but it is not clear whether global Os variations are due to the input of mantle or meteoritic material, or simply indicate that the continental source itself is not uniform.

  9. Changes in erosion and ocean circulation recorded in the Hf isotopic compositions of North Atlantic and Indian Ocean ferromanganese crusts

    USGS Publications Warehouse

    Piotrowski, Alexander M.; Lee, Der-Chuen; Christensen, John N.; Burton, Kevin W.; Halliday, Alex N.; Hein, James R.; Günther, Detlef

    2000-01-01

    High-resolution Hf isotopic records are presented for hydrogenetic Fe–Mn crusts from the North Atlantic and Indian Oceans. BM1969 from the western North Atlantic has previously been shown to record systematically decreasing Nd isotopic compositions from about 60 to ∼4 Ma, at which time both show a rapid decrease to unradiogenic Nd composition, thought to be related to the increasing influence of NADW or glaciation in the northern hemisphere. During the Oligocene, North Atlantic Hf became progressively less radiogenic until in the mid-Miocene (∼15 Ma) it reached +1. It then shifted gradually back to an ϵHf value of +3 at 4 Ma, since when it has decreased rapidly to about −1 at the present day. The observed shifts in the Hf isotopic composition were probably caused by variation in intensity of erosion as glaciation progressed in the northern hemisphere. Ferromanganese crusts SS663 and 109D are from about 5500 m depth in the Indian Ocean and are now separated by ∼2300 km across the Mid-Indian Ridge. They display similar trends in Hf isotopic composition from 20 to 5 Ma, with the more northern crust having a composition that is consistently more radiogenic (by ∼2 ϵHf units). Paradoxically, during the last 20 Ma the Hf isotopic compositions of the two crusts have converged despite increased separation and subsidence relative to the ridge. A correlatable negative excursion at ∼5 Ma in the two records may reflect a short-term increase in erosion caused by the activation of the Himalayan main central thrust. Changes to unradiogenic Hf in the central Indian Ocean after 5 Ma may alternatively have been caused by the expanding influence of NADW into the Mid-Indian Basin via circum-Antarctic deep water or a reduction of Pacific flow through the Indonesian gateway. In either case, these results illustrate the utility of the Hf isotope system as a tracer of paleoceanographic changes, capable of responding to subtle changes in erosional regime not readily resolved using other isotope systems.

  10. Hydrologic and environmental controls on uranium-series and strontium isotope ratios in a natural weathering environment

    NASA Astrophysics Data System (ADS)

    White, A. M.; Ma, L.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    In a remote, volcanic headwater catchment of the Jemez River Basin Critical Zone Observatory (JRB-CZO) in NM, stable water isotopes and solute chemistry have shown that snowmelt infiltrates and is stored before later discharging into springs and streams via subsurface flowpaths that vary seasonally. Therefore, water-rock reactions are also expected to change with season as hydrologic flowpaths transport water, gases and solutes through different biogeochemical conditions, rock types and fracture networks. Uranium-series isotopes have been shown to be a novel tracer of water-rock reactions and source water contributions while strontium isotopes are frequently used as indicators of chemical weathering and bedrock geology. This study combines both isotopes to understand how U and Sr isotope signatures evolve through the Critical Zone (CZ). More specifically, this work examines the relationship between seasonality, water transit time (WTT), and U-series and Sr isotopes in stream and spring waters from three catchments within the JRB-CZO, as well as lithology, rock type and CZ structure in solid phase cores. Samples from ten springs with known WTTs were analyzed for U and Sr isotopes to determine the effect of WTT on the isotopic composition of natural waters. Results suggest that WTT alone cannot explain the variability of U and Sr isotopes in JRB-CZO springs. Stream samples were also collected across two water years to establish how seasonality controls surface water isotopic composition. U and Sr isotope values vary with season, consistent with a previous study from the La Jara catchment; however, this study revealed that these changes do not show a systematic pattern among the three catchments suggesting that differences in the mineralogy and structure of the deep CZ in individual catchments, and partitioning of water along deep vs surficial and fracture vs matrix flow paths, likely also control isotopic variability. The distribution of U-series and Sr isotopes in core samples with depth shows distinct weathering profiles with variable 234U/238U activity and Sr isotope ratios. Comparison of the isotopic composition of cores and groundwaters from similar depths, as well as surface waters in the JRB-CZO will be vital for the characterization of hydrogeologic controls on isotopic composition in this complex terrain.

  11. Fontinalis antipyretica as a bioindicator of environmental conditions in freshwater ecosystem from Sava River watershed and Cerknişko Lake, Slovenia

    NASA Astrophysics Data System (ADS)

    Kanduč, Tjaša; Mechora, Špela; Stibilj, Vekoslava

    2014-05-01

    Polluted waters recharging from agriculture water systems into watersheds have influence on water quality and living habitat. Stable isotopes of carbon and nitrogen in combination with other minor and trace elements are often used to trace biogeochemical processes and contamination of water systems. The aim of the study was to assess state of environment with minor and trace elements and stable isotopes of C and N in selected Slovenian streams. Ten locations in Notranjska region, Slovenia, with different land use in the catchment (town, village, agricultural areas, farms, dairy farms), including reference point considered as non-polluted site, were sampled. Samples of water and aquatic moss F. antipyretica in Slovenian fresh waters were taken in all four seasons during years 2010 and 2012, but for stable isotope analyses of C and N only in three seasons during years 2010 and 2011. The water chemistry of investigated locations is dominated by hydrogen carbonate - calcium - magnesium, concentrations of nitrate seasonally range from 2.07 mg/l to 6.4 mg/l and at reference site does not exceed 1.3 mg/l. Total alkalinity of water at investigated locations ranges from 2.9 to 6.02 mM. The pH of investigated water range from 7.2 to 8.5, waters are saturated with oxygen (up to 134%) and conductivity ranges from 295 to 525 mikroS/cm, while at reference site conductivity is up to 180 mikroS/cm. The content of minor and trace elements in F. antipyretica ranged for Ni 4-38 mikrog/g, Zn 17-105 mikrog/g, Pb 2-28 mikrog/g, Cd 220-1953 ng/g, Cu 4-27 mikrog/g, Cr 4-49 mikrog/g, As 1-6 mikrog/g and Se 0.33-3.24 mikrog/g. The most polluted watershed was Pšata stream (agricultural areas, cattle farm) with highest values for Ni, Cr, Pb, Zn and As. The highest content of Se, was found in village (dairy farms) in Žerovniščica stream. The highest values were measured in February and October. Isotopic composition of dissolved inorganic carbon seasonally range from -13.3 to -8.1‰, and indicate waters dominated by degradation of organic matter and dissolution of carbonates. At the reference point average measured isotopic composition of dissolved inorganic carbon value is -2.7‰ which confirmed that this is a non-polluted site. Isotopic composition of carbon of F. antipyretica seasonally ranges from -45 to -32.9‰ and isotopic composition of nitrogen from -0.2‰ to 6.5‰, respectively. In comparison to C3 terrestrial plants F. antipyretica has more negative isotopic composition of carbon value, which is probably related with the difference in CO2 plant fixation and depends on isotopic composition of dissolved inorganic carbon in water, which is primarily controlled by geological composition and soil thickness in the watershed. Higher isotopic composition of nitrogen value found in F. antipyretica is related to agricultural activity in watershed, while at the reference site measured isotopic composition of nitrogen value is -4.1 ‰. From our study it is evident that isotopic composition of carbon and nitrogen is useful tracer of natural and anthropogenic inputs from terrestrial (fertilizing, sewage sludge) to water system.

  12. Bioavailability and uptake of smelter emissions in freshwater zooplankton in northeastern Washington, USA lakes using Pb isotope analysis and trace metal concentrations.

    PubMed

    Child, A W; Moore, B C; Vervoort, J D; Beutel, M W

    2018-07-01

    The upper Columbia River and associated valley systems are highly contaminated with metal wastes from nearby smelting operations in Trail, British Columbia, Canada (Teck smelter), and to a lesser extent, Northport, Washington, USA (Le Roi smelter). Previous studies have investigated depositional patterns of airborne emissions from these smelters, and documented the Teck smelter as the primary metal contamination source. However, there is limited research directed at whether these contaminants are bioavailable to aquatic organisms. This study investigates whether smelter derived contaminants are bioavailable to freshwater zooplankton. Trace metal (Zn, Cd, As, Sb, Pb and Hg) concentrations and Pb isotope compositions of zooplankton and sediment were measured in lakes ranging from 17 to 144 km downwind of the Teck smelter. Pb isotopic compositions of historic ores used by both smelters are uniquely less radiogenic than local geologic formations, so when zooplankton assimilate substantial amounts of smelter derived metals their compositions deviate from local baseline compositions toward ore compositions. Sediment metal concentrations and Pb isotope compositions in sediment follow significant (p < 0.001) negative exponential and sigmoidal patterns, respectively, as distance from the Teck smelting operation increases. Zooplankton As, Cd, and Sb contents were related to distance from the Teck smelter (p < 0.05), and zooplankton Pb isotope compositions suggest As, Cd, Sb and Pb from historic and current smelter emissions are biologically available to zooplankton. Zooplankton from lakes within 86 km of the Teck facility display isotopic evidence that legacy ore pollution is biologically available for assimilation. However, without water column data our study is unable to determine if legacy contaminants are remobilized from lake sediments, or erosional pathways from the watershed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Paraná-Etendeka basalts in Misiones, Argentina; characterization and petrogenetic inferences

    NASA Astrophysics Data System (ADS)

    Rämö, O. T.; Heikkilä, P. A.

    2013-12-01

    The Early Cretaceous (ca. 130 Ma) Paraná-Etendeka flood basalts constitute one of the major Phanerozoic LIP sequences with an original volume probably in excess of 2.3 Mkm3.The bulk of this volcanic system is preserved in South America (Brazil, Uruguay, Paraguay, Argentina), where it manifests the onset of South Atlantic opening at present 25 degrees Southern Latitude. The sequence is overwhelmingly basaltic (ca. 90%), but also includes contemporaneous silicic volcanic rocks. Known as the Serra Geral Suite (e.g., Bellieni et al., 1984), it fills the Paraná Basin with a northward deepening strata of lavas with a maximum thickness of ca. 1500 m. We have collected and examined basalt samples from the west-central part (western flank) of the Paraná Basin in Misiones State, northeastern Argentina (54-55 degrees Western Longitude), where the estimated thickness of the basalt succession decreases from ca. 700 m in the east to ca. 300 m in the west. The examined samples are massive, aphyric (or microphyric with plagioclase and altered olivine microphenocrysts), and geochemically relatively evolved (Mg number 50-35) basalts and basaltic andesites. Their MgO values are between 6 and 3.7 wt.% and Ni content is relatively low (65-20 ppm). Incompatible trace element values increase with increasing fractionation (decreasing Mg number), e.g., Zr from 135 to 290 ppm, Ce from 45 to 105 ppm, Nd from 20 to 50 ppm, Sm from 5 to 11 ppm, Ba from 280 to 600 ppm, and Y from 25 to 50 ppm. In terms of Ti, the samples fall into two groups (1.9-2.3 and ca. 3.8 wt.% TiO2). These values conform, respectively, to the high-Ti, high-Ti/Y Paranapanema and Pitanga magma types of Peate et al. (1992) that govern the northern half of the Paraná basalt succession. Initial Nd and Sr isotope compositions of the two groups are remarkably uniform. Our analyzed ten samples have an average initial (at 134.6 Ma) epsilon-Nd value of -4.2 × 0.3 (1 SD) and an average initial 87Sr/86Sr of 0.70570 × 0.00015 (1 SD). No change in the initial values is observed with fractionation. This probably renders crustal contamination by the surrounding Precambrian bedrock negligible within the observed fractionation window (Mg number 50-35). The initial Nd and Sr isotope compositions of the basalts from Misiones comply with the isotope composition of the EM1 mantle component. Non-modal equilibrium melting modeling utilizing the Zr/Nb and Ce/Y values implies, for an overall primitive mantle source, a change in the melting regime from garnet lherzolite (Pitanga) to spinel lherzolite (Paranapanema).

  14. Surface water mass composition changes captured by cores of Arctic land-fast sea ice

    NASA Astrophysics Data System (ADS)

    Smith, I. J.; Eicken, H.; Mahoney, A. R.; Van Hale, R.; Gough, A. J.; Fukamachi, Y.; Jones, J.

    2016-04-01

    In the Arctic, land-fast sea ice growth can be influenced by fresher water from rivers and residual summer melt. This paper examines a method to reconstruct changes in water masses using oxygen isotope measurements of sea ice cores. To determine changes in sea water isotope composition over the course of the ice growth period, the output of a sea ice thermodynamic model (driven with reanalysis data, observations of snow depth, and freeze-up dates) is used along with sea ice oxygen isotope measurements and an isotopic fractionation model. Direct measurements of sea ice growth rates are used to validate the output of the sea ice growth model. It is shown that for sea ice formed during the 2011/2012 ice growth season at Barrow, Alaska, large changes in isotopic composition of the ocean waters were captured by the sea ice isotopic composition. Salinity anomalies in the ocean were also tracked by moored instruments. These data indicate episodic advection of meteoric water, having both lower salinity and lower oxygen isotopic composition, during the winter sea ice growth season. Such advection of meteoric water during winter is surprising, as no surface meltwater and no local river discharge should be occurring at this time of year in that area. How accurately changes in water masses as indicated by oxygen isotope composition can be reconstructed using oxygen isotope analysis of sea ice cores is addressed, along with methods/strategies that could be used to further optimize the results. The method described will be useful for winter detection of meteoric water presence in Arctic fast ice regions, which is important for climate studies in a rapidly changing Arctic. Land-fast sea ice effective fractionation coefficients were derived, with a range of +1.82‰ to +2.52‰. Those derived effective fractionation coefficients will be useful for future water mass component proportion calculations. In particular, the equations given can be used to inform choices made when engaging in end member determination for working out the component proportions of water masses.

  15. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle

    NASA Astrophysics Data System (ADS)

    Wang, Ze-Zhou; Liu, Sheng-Ao; Liu, Jingao; Huang, Jian; Xiao, Yan; Chu, Zhu-Yin; Zhao, Xin-Miao; Tang, Limei

    2017-02-01

    The zinc (Zn) stable isotope system has great potential for tracing planetary formation and differentiation processes due to its chalcophile, lithophile and moderately volatile character. As an initial approach, the terrestrial mantle, and by inference, the bulk silicate Earth (BSE), have previously been suggested to have an average δ66Zn value of ∼+0.28‰ (relative to JMC 3-0749L) primarily based on oceanic basalts. Nevertheless, data for mantle peridotites are relatively scarce and it remains unclear whether Zn isotopes are fractionated during mantle melting. To address this issue, we report high-precision (±0.04‰; 2SD) Zn isotope data for well-characterized peridotites (n = 47) from cratonic and orogenic settings, as well as their mineral separates. Basalts including mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) were also measured to avoid inter-laboratory bias. The MORB analyzed have homogeneous δ66Zn values of +0.28 ± 0.03‰ (here and throughout the text, errors are given as 2SD), similar to those of OIB obtained in this study and in the literature (+0.31 ± 0.09‰). Excluding the metasomatized peridotites that exhibit a wide δ66Zn range of -0.44‰ to +0.42‰, the non-metasomatized peridotites have relatively uniform δ66Zn value of +0.18 ± 0.06‰, which is lighter than both MORB and OIB. This difference suggests a small but detectable Zn isotope fractionation (∼0.1‰) during mantle partial melting. The magnitude of inter-mineral fractionation between olivine and pyroxene is, on average, close to zero, but spinels are always isotopically heavier than coexisting olivines (Δ66ZnSpl-Ol = +0.12 ± 0.07‰) due to the stiffer Zn-O bonds in spinel than silicate minerals (Ol, Opx and Cpx). Zinc concentrations in spinels are 11-88 times higher than those in silicate minerals, and our modelling suggests that spinel consumption during mantle melting plays a key role in generating high Zn concentrations and heavy Zn isotopic compositions of MORB. Therefore, preferential melting of spinel in the peridotites may account for the Zn isotopic difference between spinel peridotites and basalts. By contrast, the absence of Zn isotope fractionation between silicate minerals suggests that Zn isotopes are not significantly fractionated during partial melting of spinel-free garnet-facies mantle. If the studied non-metasomatized peridotites represent the refractory upper mantle, mass balance calculation shows that the depleted MORB mantle (DMM) has a δ66Zn value of +0.20 ± 0.05‰ (2SD), which is lighter than the primitive upper mantle (PUM) estimated in previous studies (+0.28 ± 0.05‰, 2SD, Chen et al., 2013b; +0.30 ± 0.07‰, 2SD, Doucet et al., 2016). This indicates that the Earth's upper mantle has a heterogeneous Zn isotopic composition vertically, which is probably due to shallow mantle melting processes.

  16. East Asian origin of central Greenland last glacial dust: just one possible scenario?

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Stevens, Thomas; Svensson, Anders; Klötzli, Urs Stephan; Manning, Christina; Németh, Tibor; Kovács, János

    2016-04-01

    Dust in Greenland ice cores is used to reconstruct the activity of dust emitting regions and atmospheric circulation for the last glacial period. However, the source dust material to Greenland over this period is the subject of considerable uncertainty. Here we use new clay mineral and Sr-Nd isotopic data from eleven loess samples collected around the Northern Hemisphere and compare the 87Sr/86Sr and 143Nd/144Nd isotopic signatures of fine (<10 μm) separates to existing Greenland ice core dust data (GISP2, GRIP; [1]; [2]). Smectite contents and kaolinite/chlorite (K/C) ratios allow exclusion of continental US dust emitting regions as potential sources, because of the very high (>3.6) K/C ratios and extremely high (>~70%) smectite contents. At the same time, Sr-Nd isotopic compositions demonstrate that ice core dust isotopic compositions can be explained by East Asian (Chinese loess) and/or Central/East Central European dust contributions. Central/East Central European loess Sr-Nd isotopic compositions overlap most with ice core dust, while the Sr isotopic signature of Chinese loess is slightly more radiogenic. Nevertheless, an admixture of 90‒10 % from Chinese loess and circum-Pacific volcanic material would also account for the Sr‒Nd isotopic ratios of central Greenland LGM dust. At the same time, sourcing of ice core dust from Alaska, continental US and NE Siberia seems less likely based on Sr and Nd isotopic signatures. The data demonstrate that currently no unique source discrimination for Greenland dust is possible using both published and our new data [3]. Thus, there is a need to identify more diagnostic tracers. Based on initial Hf isotope analyses of fine separates of three loess samples (continental US, Central Europe, China), an apparent dependence of Hf isotopic signatures on the relative proportions of radiogenic clay minerals (primarily illite) was found, as these fine dust fractions are apparently zircon-free. The observed difference between major potential source regions in 176Hf/177Hf that reach several ɛHf units and the first order clay mineralogy dependence of Hf isotopic signatures means there is strong potential for distinguishing between the two hypothesized Greenland dust sources using Hf isotopes [3]. [1] Biscaye P.E., Grousset F.E., Revel M., Van der Gaast S., Zielinski G.A., Vaars A., Kukla G. (1997). Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 Ice Core, Summit, Greenland. Journal of Geophysical Research 102, 26765-26781. [2] Svensson A., Biscaye P.E., Grousset F.E. (2000) Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. Journal of Geophysical Research 105, 4637-4656. [3] Újvári G., Stevens T., Svensson A., Klötzli U.S., Manning, C., Németh T., Kovács J., Sweeney M.R., Gocke M., Wiesenberg G.L.B., Markovic S.B., Zech M. (in press). Two possible source regions for Central Greenland last glacial dust. Geophysical Research Letters, doi: 10.1002/2015GL066153.

  17. Hafnium and neodymium isotopes and REY distribution in the truly dissolved, nanoparticulate/colloidal and suspended loads of rivers in the Amazon Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Merschel, Gila; Bau, Michael; Schmidt, Katja; Münker, Carsten; Dantas, Elton L.

    2017-09-01

    Radiogenic isotopes in river sediments and river waters have been widely used in provenance studies, as these samples naturally integrate the geology/chemistry of the entire catchment. While the Hf and Nd isotope systems are coupled during igneous processes, they are decoupled during supergene processes at the Earth's surface, which is reflected by the isotope composition of riverine sediments. We present the first data for both Hf and Nd isotope compositions of the dissolved (0.2 μm-filtrates rich in nanoparticles and colloids, NPCs) and the truly dissolved (1 kDa-ultrafiltrates) load of rivers. Hafnium and Nd isotope compositions and concentrations of the Rare Earths and Yttrium (REY) and Hf were determined for suspended particles (>0.2 μm) as well as for the dissolved and the truly dissolved load of the Rio Solimões, the Amazon's largest tributary draining the Andes, and of the Rio Negro, an organic NPC- and particle-rich river draining the rainforest of northern Amazonia. We also analyzed the Nd isotope compositions of suspended sediments and 0.2 μm-filtered water samples from the Amazon River and its tributaries Rio Tapajos, Rio Xingu and Rio Jari. Our novel results clearly show that the decoupling of the Hf and Nd isotope systems is related to incongruent weathering processes on the continent, as this decoupling can already be observed in the different Hf and Nd pools, i.e. in the particulate, the NPC-dominated dissolved and the truly dissolved load of rivers. In the Rio Negro and Rio Solimões, a strong particle size-dependent difference in Hf isotope composition is observed. Values of εHf become more radiogenic as filter poresize decreases, which can be related to the density- and size-dependent distribution of Hf-rich minerals, e.g. zircons, and their absence from the truly dissolved pool. In contrast, the Nd isotope composition of Amazonian river waters reflects that of their catchment geology. Tributaries draining the Precambrian Brazilian and Guyana shields show very unradiogenic εNd values of -19 to -25 in their dissolved load, whereas the Rio Solimões draining the Andes yields a more radiogenic εNd signal of only -7. The dissolved Nd isotope composition of the Amazon is dominated by its Andean tributaries and averages at -8. Although Nd isotope compositions are thought to not being fractionated by Earth surface processes, significant differences of 1.3-1.9 ε-units can be observed between the dissolved and suspended loads in the Amazon River and its main tributary, the Rio Solimões. In these rivers, the dissolved load is more radiogenic than the suspended sediment, which is likely due to incongruent weathering and related mineral sorting in the Andean headwaters. In contrast, the organic-rich and mineral-poor shield rivers do not show a difference between the truly dissolved, dissolved and suspended load, as the Nd in all these pools is controlled by surface- and solution-complexation and hence isotopically homogenized by continuous exchange and re-equilibration.

  18. Ca-,Al-rich inclusions in the unique chondrite ALH85085 - Petrology, chemistry, and isotopic compositions

    NASA Technical Reports Server (NTRS)

    Kimura, Makoto; El-Goresy, Ahmed; Palme, Herbert; Zinner, Ernst

    1993-01-01

    A comprehensive study is performed for the Ca-,Al-rich inclusions (CAIs) in the unique chondrite ALH85085. The ALH85085 inclusions are smaller (5-80 microns) and more refractory than their counterparts in carbonaceous chondrites. The study includes 42 inclusions for petrography and mineralogy, 15 for bulk major and minor element chemical composition, six for Mg-Al isotopic systematics, 10 for Ca isotopes, nine for Ti isotopes, and six for trace element abundances. In addition, oxygen-isotopic compositions were determined in minerals from a single inclusion. No correlation is found between mineralogy, major element chemistry, and trace element abundances. It is further shown that the high-temperature geochemical behavior of ultrarefractory trace elements is decoupled from that of the major elements Ca and Ti (Ti is correlated with the relatively volatile elements Nb and Yb) implying that perovskite is of only minor importance as carrier of ultrarefractories.

  19. Local equilibrium of mafic enclaves and granitoids of the Turtle pluton, southeast California: Mineral, chemical, and isotopic evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, C.M.

    Major element and trace element compositions of whole rocks, mineral compositions, and Rb-Sr isotopic compositions of enclave and host granitoid pairs from the Early Cretaceous, calc-alkaline Turtle pluton of southeastern California suggest that the local environmental profoundly affects some enclave types. In the Turtle pluton, where the source of fine-grained, mafic enclaves can be deduced to be magmatic by the presence of partially disaggregated basaltic dikes, mineral chemistry suggests partial or complete local equilibrium among mineral species in the enclave and its host granitoid. Because of local Rb-Sr isotopic equilibration between fine-grained enclaves and host granitoid, one cannot use Srmore » isotopes to distinguish an enclave source independent of its host rocks from an enclave source related to the enclosing pluton. However, preliminary Nd isotopic data suggest an independent, mantle source for enclaves.« less

  20. Turbidite geochemistry and evolution of the Izu-Bonin arc and continents

    NASA Astrophysics Data System (ADS)

    Gill, J. B.; Hiscott, R. N.; Vidal, Ph.

    1994-10-01

    The major and trace element and NdPb isotopic composition of Oligocene to Pleistocene volcaniclastic sands and sandstones derived from the Izu Bonin island arc has been determined. Many characteristics of the igneous sources are preserved and record the geochemical evolution of juvenile proto-continental crust in an island arc. After an initial boninitic phase, arc geochemistry has varied primarily as the result of backarc basin formation. The Izu arc source became depleted in incompatible trace elements during backarc basin formation, and re-enriched after spreading stopped in the basin. Renewed rifting during the Pliocene to Recent caused felsic magmatism as a result of easier eruption of differentiates rather than as a result of crustal melting. Four isotopically-distinct source components are recognized. Their combination in the sources of the Izu-Bonin and Mariana arcs initially was similar but diverged after backarc basin formation. The Izu arc turbidites are more similar to Archean than post-Archean sedimentary rocks, indicating that the production of new upper crust at subduction zones has changed little over time. The turbidites are similar in major element composition to average continental crust but are depleted in incompatible trace elements, especially Th and Nb. Consequently, the net effect of adding juvenile arc crust to continents is to reverse the trend of planetary trace element differentiation instead of continuing the process.

Top